WorldWideScience

Sample records for p53-independent apoptosis limits

  1. RITA (Reactivating p53 and Inducing Tumor Apoptosis) is efficient against TP53abnormal myeloma cells independently of the p53 pathway.

    Science.gov (United States)

    Surget, Sylvanie; Descamps, Géraldine; Brosseau, Carole; Normant, Vincent; Maïga, Sophie; Gomez-Bougie, Patricia; Gouy-Colin, Nadège; Godon, Catherine; Béné, Marie C; Moreau, Philippe; Le Gouill, Steven; Amiot, Martine; Pellat-Deceunynck, Catherine

    2014-06-14

    The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53(mutated) cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a 17p deletion, who are resistant to current therapies.

  2. Chk2 regulates transcription-independent p53-mediated apoptosis in response to DNA damage

    International Nuclear Information System (INIS)

    Chen Chen; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Motoyama, Noboru

    2005-01-01

    The tumor suppressor protein p53 plays a central role in the induction of apoptosis in response to genotoxic stress. The protein kinase Chk2 is an important regulator of p53 function in mammalian cells exposed to ionizing radiation (IR). Cells derived from Chk2-deficient mice are resistant to the induction of apoptosis by IR, and this resistance has been thought to be a result of the defective transcriptional activation of p53 target genes. It was recently shown, however, that p53 itself and histone H1.2 translocate to mitochondria and thereby induces apoptosis in a transcription-independent manner in response to IR. We have now examined whether Chk2 also regulates the transcription-independent induction of apoptosis by p53 and histone H1.2. The reduced ability of IR to induce p53 stabilization in Chk2-deficient thymocytes was associated with a marked impairment of p53 and histone H1 translocation to mitochondria. These results suggest that Chk2 regulates the transcription-independent mechanism of p53-mediated apoptosis by inducing stabilization of p53 in response to IR

  3. Thymocyte apoptosis induced by p53-dependent and independent pathways

    International Nuclear Information System (INIS)

    Clarke, A.R.; Purdie, C.A.; Harrison, D.J.; Morris, R.G.; Bird, C.C.; Hooper, M.L.; Wyllie, A.H.

    1993-01-01

    The authors studied the dependence of apoptosis on p53 expression in cells from the thymus cortex. Short-term thymocyte cultures were prepared from mice constitutively heterozygous or homozygous for a deletion in the p53 gene introduced into the germ line after gene targeting. Wild-type thymocytes readily undergo apoptosis after treatment with ionizing radiation, the glucocorticoid methylprednisolone, or etoposide (an inhibitor of topoisomerase II), or after Ca 2+ -dependent activation by phorbol ester and a calcium ionophore. In contrast, homozygous null p53 thymocytes are resistant to induction of apoptosis by radiation or etoposide, but retain normal sensitivity to glucocorticoid and calcium. The time-dependent apoptosis that occurs in untreated cultures is unaffected by p53 status. Cells heterozygous for p53 deletion are partially resistant to radiation and etoposide. Results show that p53 exerts a significant and dose-dependent effect in the initiation of apoptosis, but only when it is induced by agents that cause DNA-strand breakage. (Author)

  4. Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Chunhua [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019 Jiangsu (China); Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019 Jiangsu (China); Ma, Xa; Shi, Shangshi [Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019 Jiangsu (China); Zhao, Jianya; Nie, Xiaoke [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019 Jiangsu (China); Han, Jingling; Xiao, Jing; Wang, Xiaoke [Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019 Jiangsu (China); Jiang, Shengyang [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019 Jiangsu (China); Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019 Jiangsu (China); Jiang, Junkang, E-mail: Jiang_junkang@163.com [Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019 Jiangsu (China); Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019 Jiangsu (China)

    2014-12-15

    Chronic exposure to excessive manganese (Mn) has been known to lead to neuronal loss and a clinical syndrome resembling idiopathic Parkinson's disease (IPD). p53 plays an integral role in the development of various human diseases, including neurodegenerative disorders. However, the role of p53 in Mn-induced neuronal apoptosis and neurological deficits remains obscure. In the present study, we showed that p53 was critically involved in Mn-induced neuronal apoptosis in rat striatum through both transcription-dependent and -independent mechanisms. Western blot and immunohistochemistrical analyses revealed that p53 was remarkably upregulated in the striatum of rats following Mn exposure. Coincidentally, increased level of cleaved PARP, a hallmark of apoptosis, was observed. Furthermore, using nerve growth factor (NGF)-differentiated PC12 cells as a neuronal cell model, we showed that Mn exposure decreased cell viability and induced apparent apoptosis. Importantly, p53 was progressively upregulated, and accumulated in both the nucleus and the cytoplasm. The cytoplasmic p53 had a remarkable distribution in mitochondria, suggesting an involvement of p53 mitochondrial translocation in Mn-induced neuronal apoptosis. In addition, Mn-induced impairment of mitochondrial membrane potential (ΔΨm) could be partially rescued by pretreatment with inhibitors of p53 transcriptional activity and p53 mitochondrial translocation, Pifithrin-α (PFT-α) and Pifithrin-μ (PFT-μ), respectively. Moreover, blockage of p53 activities with PFT-α and PFT-μ significantly attenuated Mn-induced reactive oxidative stress (ROS) generation and mitochondrial H{sub 2}O{sub 2} production. Finally, we observed that pretreatment with PFT-α and PFT-μ ameliorated Mn-induced apoptosis in PC12 cells. Collectively, these findings implicate that p53 transcription-dependent and -independent pathways may play crucial roles in the regulation of Mn-induced neuronal death. - Highlights: • p53 is

  5. Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis

    International Nuclear Information System (INIS)

    Wan, Chunhua; Ma, Xa; Shi, Shangshi; Zhao, Jianya; Nie, Xiaoke; Han, Jingling; Xiao, Jing; Wang, Xiaoke; Jiang, Shengyang; Jiang, Junkang

    2014-01-01

    Chronic exposure to excessive manganese (Mn) has been known to lead to neuronal loss and a clinical syndrome resembling idiopathic Parkinson's disease (IPD). p53 plays an integral role in the development of various human diseases, including neurodegenerative disorders. However, the role of p53 in Mn-induced neuronal apoptosis and neurological deficits remains obscure. In the present study, we showed that p53 was critically involved in Mn-induced neuronal apoptosis in rat striatum through both transcription-dependent and -independent mechanisms. Western blot and immunohistochemistrical analyses revealed that p53 was remarkably upregulated in the striatum of rats following Mn exposure. Coincidentally, increased level of cleaved PARP, a hallmark of apoptosis, was observed. Furthermore, using nerve growth factor (NGF)-differentiated PC12 cells as a neuronal cell model, we showed that Mn exposure decreased cell viability and induced apparent apoptosis. Importantly, p53 was progressively upregulated, and accumulated in both the nucleus and the cytoplasm. The cytoplasmic p53 had a remarkable distribution in mitochondria, suggesting an involvement of p53 mitochondrial translocation in Mn-induced neuronal apoptosis. In addition, Mn-induced impairment of mitochondrial membrane potential (ΔΨm) could be partially rescued by pretreatment with inhibitors of p53 transcriptional activity and p53 mitochondrial translocation, Pifithrin-α (PFT-α) and Pifithrin-μ (PFT-μ), respectively. Moreover, blockage of p53 activities with PFT-α and PFT-μ significantly attenuated Mn-induced reactive oxidative stress (ROS) generation and mitochondrial H 2 O 2 production. Finally, we observed that pretreatment with PFT-α and PFT-μ ameliorated Mn-induced apoptosis in PC12 cells. Collectively, these findings implicate that p53 transcription-dependent and -independent pathways may play crucial roles in the regulation of Mn-induced neuronal death. - Highlights: • p53 is robustly

  6. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53.

    Science.gov (United States)

    Hallgren, O; Gustafsson, L; Irjala, H; Selivanova, G; Orrenius, S; Svanborg, C

    2006-02-01

    HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.

  7. UVC-induced apoptosis in Dubca cells is independent of JNK activation and p53Ser-15 phosphorylation

    International Nuclear Information System (INIS)

    Chathoth, Shahanas; Thayyullathil, Faisal; Hago, Abdulkader; Shahin, Allen; Patel, Mahendra; Galadari, Sehamuddin

    2009-01-01

    Ultraviolet C (UVC) irradiation in mammalian cell lines activates a complex signaling network that leads to apoptosis. By using Dubca cells as a model system, we report the presence of a UVC-induced apoptotic pathway that is independent of c-Jun N-terminal kinases (JNKs) activation and p53 phosphorylation at Ser 15 . Irradiation of Dubca cells with UVC results in a rapid JNK activation and phosphorylation of its downstream target c-Jun, as well as, phosphorylation of activating transcription factor 2 (ATF2). Pre-treatment with JNK inhibitor, SP600125, inhibited UVC-induced c-Jun phosphorylation without preventing UVC-induced apoptosis. Similarly, inhibition of UVC-induced p53 phosphorylation did not prevent Dubca cell apoptosis, suggesting that p53 Ser-15 phosphorylation is not associated with UVC-induced apoptosis signaling. The pan-caspase inhibitor z-VAD-fmk inhibited UVC-induced PARP cleavage, DNA fragmentation, and ultimately apoptosis of Dubca cells. Altogether, our study clearly indicates that UVC-induced apoptosis is independent of JNK and p53 activation in Dubca cells, rather, it is mediated through a caspase dependent pathway. Our findings are not in line with the ascribed critical role for JNKs activation, and downstream phosphorylation of targets such as c-Jun and ATF2 in UVC-induced apoptosis.

  8. E2F-1-Induced p53-independent apoptosis in transgenic mice

    DEFF Research Database (Denmark)

    Holmberg, Christian Henrik; Helin, K.; Sehested, M.

    1998-01-01

    The E2F transcription factors are key targets for the retinoblastoma protein, pRB. By inactivation of E2Fs, pRB prevents progression to the S phase. To test proliferative functions of E2F, we generated transgenic mice expressing human E2F-1 and/or human DP-1. When the hydroxymethyl glutaryl...... involving increased apoptosis in the germinal epithelium. This effect was potentiated by simultaneous overexpression of DP-1. Testicular atrophy as a result of overexpression of E2F-1 and DP-1 is independent of functional p53, since p53-nullizygous transgenic mice overexpressing E2F-1 and DP-1 also suffered...

  9. TGFbeta induces apoptosis and EMT in primary mouse hepatocytes independently of p53, p21Cip1 or Rb status

    International Nuclear Information System (INIS)

    Sheahan, Sharon; Bellamy, Christopher O; Harland, Stephen N; Harrison, David J; Prost, Sandrine

    2008-01-01

    TGFβ has pleiotropic effects that range from regulation of proliferation and apoptosis to morphological changes and epithelial-mesenchymal transition (EMT). Some evidence suggests that these effects may be interconnected. We have recently reported that P53, P21 Cip1 and pRB, three critical regulators of the G1/S transition are variably involved in TGFβ-induced cell cycle arrest in hepatocytes. As these proteins are also involved in the regulation of apoptosis in many circumstances, we investigated their contribution to other relevant TGFβ-induced effects, namely apoptosis and EMT, and examined how the various processes were interrelated. Primary mouse hepatocytes deficient in p53, p21 and/or Rb, singly or in combination were treated with TGFβ for 24 to 96 hours. Apoptosis was quantified according to morphology and by immunostaining for cleaved-capsase 3. Epithelial and mesenchymal marker expression was studied using immunocytochemistry and real time PCR. We found that TGFβ similarly induced morphological changes regardless of genotype and independently of proliferation index or sensitivity to inhibition of proliferation by TGFβ. Morphological changes were accompanied by decrease in E-cadherin and increased Snail expression but the mesenchymal markers (N-cadherin, SMAα and Vimentin) studied remained unchanged. TGFβ induced high levels of apoptosis in p53-/-, Rb-/-, p21 cip1 -/- and control hepatocytes although with slight differences in kinetics. This was unrelated to proliferation or changes in morphology and loss of cell-cell adhesion. However, hepatocytes deficient in both p53 and p21 cip1 were less sensitive to TGFβ-induced apoptosis. Although p53, p21 Cip1 and pRb are well known regulators of both proliferation and apoptosis in response to a multitude of stresses, we conclude that they are critical for TGFβ-driven inhibition of hepatocytes proliferation, but only slightly modulate TGFβ-induced apoptosis. This effect may depend on other parameters

  10. p53-independent early and late apoptosis is mediated by ceramide after exposure of tumor cells to photon or carbon ion irradiation

    International Nuclear Information System (INIS)

    Alphonse, Gersende; Maalouf, Mira; Battiston-Montagne, Priscillia; Ardail, Dominique; Beuve, Michaël; Rousson, Robert; Taucher-Scholz, Gisela; Fournier, Claudia; Rodriguez-Lafrasse, Claire

    2013-01-01

    To determine whether ceramide is responsible for the induction of p53-independent early or late apoptosis in response to high- and low-Linear-Energy-Transfer (LET) irradiation. Four cell lines displaying different radiosensitivities and p53-protein status were irradiated with photons or 33.4 or 184 keV/μm carbon ions. The kinetics of ceramide production was quantified by fluorescent microscopy or High-Performance-Liquid-Chromatogaphy and the sequence of events leading to apoptosis by flow cytometry. Regardless of the p53-status, both low and high-LET irradiation induced an early ceramide production in radiosensitive cells and late in the radioresistant. This production strongly correlated with the level of early apoptosis in radiosensitive cells and delayed apoptosis in the radioresistant ones, regardless of radiation quality, tumor type, radiosensitivity, or p53-status. Inhibition of caspase activity or ceramide production showed that, for both types of radiation, ceramide is essential for the initiation of early apoptosis in radiosensitive cells and late apoptosis following mitotic catastrophe in radioresistant cells. Ceramide is a determining factor in the onset of early and late apoptosis after low and high-LET irradiation and is the mediator of the p53-independent-apoptotic pathway. We propose that ceramide is the molecular bridge between mitotic catastrophe and the commitment phase of delayed apoptosis in response to irradiation

  11. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies.

    Science.gov (United States)

    Ishizawa, Jo; Kojima, Kensuke; Chachad, Dhruv; Ruvolo, Peter; Ruvolo, Vivian; Jacamo, Rodrigo O; Borthakur, Gautam; Mu, Hong; Zeng, Zhihong; Tabe, Yoko; Allen, Joshua E; Wang, Zhiqiang; Ma, Wencai; Lee, Hans C; Orlowski, Robert; Sarbassov, Dos D; Lorenzi, Philip L; Huang, Xuelin; Neelapu, Sattva S; McDonnell, Timothy; Miranda, Roberto N; Wang, Michael; Kantarjian, Hagop; Konopleva, Marina; Davis, R Eric; Andreeff, Michael

    2016-02-16

    The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies. Copyright © 2016, American Association for the Advancement of Science.

  12. BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2004-07-01

    Full Text Available Abstract Background BAK (Bcl-2 homologous antagonist/killer is a novel pro-apoptotic gene of the Bcl-2 family. It has been reported that gastric tumors have reduced BAK levels when compared with the normal mucosa. Moreover, mutations of the BAK gene have been identified in human gastrointestinal cancers, suggesting that a perturbation of BAK-mediated apoptosis may contribute to the pathogenesis of gastric cancer. In this study, we explored the therapeutic effects of gene transfer mediated elevations in BAK expression on human gastric cancer cells in vitro. Methods Eukaryotic expression vector for the BAK gene was constructed and transferred into gastric cancer cell lines, MKN-45 (wild-type p53 and MKN-28 (mutant-type p53. RT-PCR and Western Blotting detected cellular BAK gene expression. Cell growth activities were detected by MTT colorimetry and flow cytometry, while apoptosis was assayed by electronic microscopy and TUNEL. Western Blotting and colorimetry investigated cellular caspase-3 activities. Results BAK gene transfer could result in significant BAK overexpression, decreased in vitro growth, cell cycle G0/G1 arrest, and induced apoptosis in gastric cancer cells. In transferred cells, inactive caspase-3 precursor was cleaved into the active subunits p20 and p17, during BAK overexpression-induced apoptosis. In addition, this process occurred equally well in p53 wild-type (MKN-45, or in p53 mutant-type (MKN-28 gastric cancer cells. Conclusions The data presented suggests that overexpression of the BAK gene can lead to apoptosis of gastric cancer cells in vitro, which does not appear to be dependent on p53 status. The action mechanism of BAK mediated apoptosis correlates with activation of caspase-3. This could be served as a potential strategy for further development of gastric cancer therapies.

  13. BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells

    International Nuclear Information System (INIS)

    Tong, Qiang-Song; Zheng, Li-Duan; Wang, Liang; Liu, Jun; Qian, Wei

    2004-01-01

    BAK (Bcl-2 homologous antagonist/killer) is a novel pro-apoptotic gene of the Bcl-2 family. It has been reported that gastric tumors have reduced BAK levels when compared with the normal mucosa. Moreover, mutations of the BAK gene have been identified in human gastrointestinal cancers, suggesting that a perturbation of BAK-mediated apoptosis may contribute to the pathogenesis of gastric cancer. In this study, we explored the therapeutic effects of gene transfer mediated elevations in BAK expression on human gastric cancer cells in vitro. Eukaryotic expression vector for the BAK gene was constructed and transferred into gastric cancer cell lines, MKN-45 (wild-type p53) and MKN-28 (mutant-type p53). RT-PCR and Western Blotting detected cellular BAK gene expression. Cell growth activities were detected by MTT colorimetry and flow cytometry, while apoptosis was assayed by electronic microscopy and TUNEL. Western Blotting and colorimetry investigated cellular caspase-3 activities. BAK gene transfer could result in significant BAK overexpression, decreased in vitro growth, cell cycle G 0 /G 1 arrest, and induced apoptosis in gastric cancer cells. In transferred cells, inactive caspase-3 precursor was cleaved into the active subunits p20 and p17, during BAK overexpression-induced apoptosis. In addition, this process occurred equally well in p53 wild-type (MKN-45), or in p53 mutant-type (MKN-28) gastric cancer cells. The data presented suggests that overexpression of the BAK gene can lead to apoptosis of gastric cancer cells in vitro, which does not appear to be dependent on p53 status. The action mechanism of BAK mediated apoptosis correlates with activation of caspase-3. This could be served as a potential strategy for further development of gastric cancer therapies

  14. Flavopiridol induces apoptosis in glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a caspase-independent pathway.

    Science.gov (United States)

    Alonso, Michelle; Tamasdan, Cristina; Miller, Douglas C; Newcomb, Elizabeth W

    2003-02-01

    Flavopiridol is a synthetic flavone, which inhibits growth in vitro and in vivo of several solid malignancies such as renal, prostate, and colon cancers. It is a potent cyclin-dependent kinase inhibitor presently in clinical trials. In this study, we examined the effect of flavopiridol on a panel of glioma cell lines having different genetic profiles: five of six have codeletion of p16(INK4a) and p14(ARF); three of six have p53 mutations; and one of six shows overexpression of mouse double minute-2 (MDM2) protein. Independent of retinoblastoma and p53 tumor suppressor pathway alterations, flavopiridol induced apoptosis in all cell lines but through a caspase-independent mechanism. No cleavage products for caspase 3 or its substrate poly(ADP-ribose) polymerase or caspase 8 were detected. The pan-caspase inhibitor Z-VAD-fmk did not inhibit flavopiridol-induced apoptosis. Mitochondrial damage measured by cytochrome c release and transmission electron microscopy was not observed in drug-treated glioma cells. In contrast, flavopiridol treatment induced translocation of apoptosis-inducing factor from the mitochondria to the nucleus. The proteins cyclin D(1) and MDM2 involved in the regulation of retinoblastoma and p53 activity, respectively, were down-regulated early after flavopiridol treatment. Given that MDM2 protein can confer oncogenic properties under certain circumstances, loss of MDM2 expression in tumor cells could promote increased chemosensitivity. After drug treatment, a low Bcl-2/Bax ratio was observed, a condition that may favor apoptosis. Taken together, the data indicate that flavopiridol has activity against glioma cell lines in vitro and should be considered for clinical development in the treatment of glioblastoma multiforme.

  15. A novel alkaloid, evodiamine causes nuclear localization of cytochrome-c and induces apoptosis independent of p53 in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Vijay [School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat (India); Agarwal, Rajesh [Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO (United States); Singh, Rana P., E-mail: ranaps@hotmail.com [School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat (India); Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi (India)

    2016-09-02

    Lung cancer is the most frequently diagnosed malignancy that contributes to high proportion of deaths globally among patients who die due to cancer. Chemotherapy remains the common mode of treatment for lung cancer patients though with limited success. We assessed the biological effects and associated molecular changes of evodiamine, a plant alkaloid, on human lung cancer A549 and H1299 cells along with other epithelial cancer and normal lung SAEC cells. Our data showed that 20–40 μM evodiamine treatment for 24–48 h strongly (up to 73%, P < 0.001) reduced the growth and survival of these cancer cells. However, it also moderately inhibited growth and survival of SAEC cells. A strong inhibition (P < 0.001) was observed on clonogenicity of A549 cells. Further, evodiamine increased (4-fold) mitochondrial membrane depolarization with 6-fold increase in apoptosis and a slight increase in Bax/Bcl-2 ratio. It increased the cytochrome-c release from mitochondria into the cytosol as well as nucleus. Cytosolic cytochrome-c activated cascade of caspase-9 and caspase-3 intrinsic pathway, however, DR5 and caspase-8 extrinsic pathway was also activated which could be due to nuclear cytochrome-c. Pan-caspase inhibitor (z-VAD.fmk) partially reversed evodiamine induced apoptosis. An increase in p53 as well as its serine 15 phosphorylation was also observed. Pifithrin-α, a p53 inhibitor, slightly inhibited growth of A549 cells and under p53 inhibitory condition evodiamine-induced apoptosis could not be reversed. Together these findings suggest that evodiamine is a strong inducer of apoptosis in lung epithelial cancer cells independent of their p53 status and that could involve both intrinsic as well as extrinsic pathway of apoptosis. Thus evodiamine could be a potential anticancer agent against lung cancer. - Highlights: • Evodiamine, a novel plant alkaloid, relatively selectively inhibited growth and survival of human lung cancer cells. • Increased cancer cell

  16. The cyclin-dependent kinase inhibitor 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole induces nongenotoxic, DNA replication-independent apoptosis of normal and leukemic cells, regardless of their p53 status

    International Nuclear Information System (INIS)

    Turinetto, Valentina; Porcedda, Paola; Orlando, Luca; De Marchi, Mario; Amoroso, Antonio; Giachino, Claudia

    2009-01-01

    Current chemotherapy of human cancers focuses on the DNA damage pathway to induce a p53-mediated cellular response leading to either G1 arrest or apoptosis. However, genotoxic treatments may induce mutations and translocations that result in secondary malignancies or recurrent disease. In addition, about 50% of human cancers are associated with mutations in the p53 gene. Nongenotoxic activation of apoptosis by targeting specific molecular pathways thus provides an attractive therapeutic approach. Normal and leukemic cells were evaluated for their sensitivity to 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) through cell viability and caspase activation tests. The apoptotic pathway induced by DRB was analysed by immunfluorescence and immunoblot analysis. H2AX phosphorylation and cell cycle analysis were performed to study the dependance of apoptosis on DNA damage and DNA replication, respectively. To investigate the role of p53 in DRB-induced apoptosis, specific p53 inhibitors were used. Statistical analysis on cell survival was performed with the test of independence. Here we report that DRB, an inhibitor of the transcriptional cyclin-dependent kinases (CDKs) 7 and 9, triggers DNA replication-independent apoptosis in normal and leukemic human cells regardless of their p53 status and without inducing DNA damage. Our data indicate that (i) in p53-competent cells, apoptosis induced by DRB relies on a cytosolic accumulation of p53 and subsequent Bax activation, (ii) in the absence of p53, it may rely on p73, and (iii) it is independent of ATM and NBS1 proteins. Notably, even apoptosis-resistant leukemic cells such as Raji were sensitive to DRB. Our results indicate that DRB represents a potentially useful cancer chemotherapeutic strategy that employs both the p53-dependent and -independent apoptotic pathways without inducing genotoxic stress, thereby decreasing the risk of secondary malignancies

  17. The monofunctional alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine triggers apoptosis through p53-dependent and -independent pathways

    International Nuclear Information System (INIS)

    Kim, W.-J.; Beardsley, Dillon I.; Adamson, Aaron W.; Brown, Kevin D.

    2005-01-01

    One of the cellular responses to DNA damaging events is the activation of programmed cell death, also known as apoptosis. Apoptosis is an important process in limiting tumorigenesis by eliminating cells with damaged DNA. This view is reinforced by the finding that many genes with pro-apoptotic function are absent or altered in cancer cells. The tumor suppressor p53 performs a significant role in apoptotic signaling by controlling expression of a host of genes that have pro-apoptotic or pro-survival function. The S N 1 DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) triggers apoptosis and the upregulation/phosphorylation of p53; however, the mechanism(s) governing MNNG-induced cell death remain unresolved. We observed that the human lymphoblastoid cell line WTK-1, which expresses mutant p53, shows far less sensitivity to the cytotoxic effects of MNNG than the closely related, p53-normal line TK-6. Exposure to 15 μM MNNG (LD50 at 24 h in TK-6) leads to a kinetically slower rate of apoptotic onset in WTK-1 cells compared to TK-6 as judged by viability assays and approaches that directly examine apoptotic onset. Similar results were obtained using an unrelated human lymphoblastoid line B310 expressing reduced levels of p53 due to E6 oncoprotein expression, indicating that MNNG activates both p53-dependent and -independent apoptotic mechanisms and that these two mechanisms are discernable by the rates which they trigger apoptotic onset. We document, during time points corresponding to peak apoptotic response in TK6, WTK-1, B310, and B310-E6, that these cell lines show marked decreases in mitochondrial transmembrane potential and increases in cytochrome c within the cytosolic fraction of MNNG-treated cells. Consistent with these events, we observed that both caspase-9 and -3 are activated in our panel of lymphoblastoid cells after MNNG exposure. We also found, using both broad spectrum and specific inhibitors, that blocking caspase activity in TK-6 and

  18. Radiation could induce p53-independent and cell cycle - unrelated apoptosis in 5-fluorouracil radiosensitized head and neck carcinoma cells

    International Nuclear Information System (INIS)

    Didelot, C.; Mirjolet, J.F.; Barberi-Heyob, M.; Ramacci, C.; Merlin, J.L.

    2002-01-01

    The effect of chemoresistance induction in radio sensitivity and cellular behavior after irradiation remains misunderstood. This study was designed to understand the relationship between radiation-induced cell cycle arrest, apoptosis, and radiosensitivity in KB cell line and KB3 subline selected after 5-fluorouracil (5FU) exposure. Exposure of KB cells to 5FU led to an increase in radiosensitivity. G 2 /M cell cycle arrest was observed in the two cell lines after irradiation. The radioresistant KB cell line reached the maximum arrest two hours before KB3. The cellular exit from this arrest was found to be related to the wild type p53 protein expression induction. After irradiation, only KB3 cell line underwent apoptosis. This apoptosis induction seemed to be independent of G 2 /M arrest exit, which was carried out later. The difference in radiosensitivity between KB and KB3 subline may result therefore from both a difference in apoptosis induction and a difference in G 2 /M arrest maximum duration. Moreover, 5FU exposure has led to an increase in constitutive p53 protein expression, which may be associated with an increase in basal apoptosis cell fraction. Given the existing correlation between radiosensitivity and the percentage of basal apoptosis. the constitutive p53 protein expression may be related to intrinsic radiosensitivity in our cellular model. (author)

  19. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway.

    Science.gov (United States)

    Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong

    2014-12-01

    Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC.

  20. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    Science.gov (United States)

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  1. Neem oil limonoids induces p53-independent apoptosis and autophagy

    Science.gov (United States)

    Chandra, Dhyan

    2012-01-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells. PMID:22915764

  2. Inability of p53-reactivating compounds Nutlin-3 and RITA to overcome p53 resistance in tumor cells deficient in p53Ser46 phosphorylation.

    Science.gov (United States)

    Ma, Teng; Yamada, Shumpei; Ichwan, Solachuddin J A; Iseki, Sachiko; Ohtani, Kiyoshi; Otsu, Megumi; Ikeda, Masa-Aki

    2012-01-20

    The p53 tumor suppressor protein plays key roles in protecting cells from tumorigenesis. Phosphorylation of p53 at Ser46 (p53Ser46) is considered to be a crucial modification regulating p53-mediated apoptosis. Because the activity of p53 is impaired in most human cancers, restoration of wild-type p53 (wt-p53) function by its gene transfer or by p53-reactivating small molecules has been extensively investigated. The p53-reactivating compounds Nutlin-3 and RITA activate p53 in the absence of genotoxic stress by antagonizing the action of its negative regulator Mdm2. Although controversial, Nutlin-3 was shown to induce p53-mediated apoptosis in a manner independent of p53 phosphorylation. Recently, RITA was shown to induce apoptosis by promoting p53Ser46 phosphorylation. Here we examined whether Nutlin-3 or RITA can overcome resistance to p53-mediated apoptosis in p53-resistant tumor cell lines lacking the ability to phosphorylate p53Ser46. We show that Nutlin-3 did not rescue the apoptotic defect of a Ser46 phosphorylation-defective p53 mutant in p53-sensitive tumor cells, and that RITA neither restored p53Ser46 phosphorylation nor induced apoptosis in p53Ser46 phosphorylation-deficient cells retaining wt-p53. Furthermore, treatment with Nutlin-3 or RITA together with adenoviral p53 gene transfer also failed to induce apoptosis in p53Ser46 phosphorylation-deficient cells either expressing or lacking wt-p53. These results indicate that neither Nutlin-3 nor RITA in able to induce p53-mediated apoptosis in the absence of p53Ser46 phosphorylation. Thus, the dysregulation of this phosphorylation in tumor cells may be a critical factor that limits the efficacy of these p53-based cancer therapies. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Apoptosis in spermatogonia irradiated P53 null mice

    International Nuclear Information System (INIS)

    Streit-Bianchi, M.; Hendry, J.H.; Roberts, S.A.; Morris, J.D.; Durgaryan, A.A.

    2007-01-01

    Complete text of publication follows. The exposure of germ cells to ionizing radiations is of concern both from high-dose therapeutic exposures and from low doses causing deleterious trans-generational mutations. P53 protein plays an important role in cellular damage and is expressed in the testis normally during meiosis, its expression being localised to the preleptotene and early/mid pachytene spermatocytes. P53 null mice, heterozygotes possessing a 129 Sv/C57BL6 genetic background and B6D2F1 mice have been irradiated to 1 and 2 Gy single doses. Fractionated exposures of 1+1 Gy at 4 hours interval were also carried out. Apoptosis induction, spermatogonia and spermatocytes survival were assessed by microscope analysis of histological samples at 4 to 96 hours after irradiation in time-course experiments. The same end-points were also assessed at 72 and 96 hours after irradiation to single doses in the region between 20cGy to 2Gy. A dose dependent level of p53 expression was observed at 4 hours after irradiation to 1 and 2 Gy which returned to normal level by 24 hours. Our data support a two process mode of apoptosis with a first wave around 12 hours followed by a second wave at 2-3 days. The first wave apoptosis is substantially reduced in p53 null mice whereas the second wave is reduced in B6D2F1 mice. The initial increase in apoptosis was delayed in some stages of the of germ cells development which were identified by the spermatids shape. Clear correlation exists between apoptosis and survival assessed in stage XI-XII Tubules 72 hours after irradiation. The data are in agreement with other data in literature indicating that irradiated spermatogonia die through apoptosis. The lack of apoptosis observed in p53 null mice results in a very high survival rate of daughter cells assessed later. Theses spermatocytes and the following progenitor cells are likely to carry mutations as most will not die in the smaller second wave of apoptosis observed 3 days after

  4. Molecular mechanism of X-ray-induced p53-dependent apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Hisako [Tokyo Metropolitan Inst. of Medical Center (Japan)

    1999-03-01

    Radiation-induced cell death has been classified into the interphase- and mitotic-ones, both of which apoptosis involving. This review described the molecular mechanism of the apoptosis, focusing on its p53-dependent process. It is known that there are genes regulating cell death either negatively or positively and the latter is involved in apoptosis. As an important factor in the apoptosis, p53 has become remarkable since it was shown that X-ray-induced apoptosis required RNA and protein syntheses in thymocytes and those cells of p53 gene-depleted mouse were shown to be resistant to gamma-ray-induced apoptosis. Radiation sensitivity of MOLT-4 cells derived from human T cell leukemia, exhibiting the typical X-ray-induced p53-dependent apoptosis, depends on the levels of p53 mRNA and protein. p53 is a gene suppressing tumor and also a transcription factor. Consequently, mutation of p53 conceivably leads to the failure of cell cycle regulation, which allows damaged cells to divide without both repair and exclusion due to loss of the apoptotic mechanism, and finally results in carcinogenesis. The radiation effect occurs in the order of the cell damage, inhibition of p53-Mdm2 binding, accumulation of p53, activation of mdm2 transcription, Mdm2 accumulation, p53-protein degradation and recovery to the steady state level. Here, the cystein protease (caspases) plays an important role as a disposing mechanism for cells scheduled to die. However, many are unknown to be solved in future. (K.H.) 119 refs.

  5. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    Science.gov (United States)

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  6. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    Science.gov (United States)

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  7. RITA can induce cell death in p53-defective cells independently of p53 function via activation of JNK/SAPK and p38.

    Science.gov (United States)

    Weilbacher, A; Gutekunst, M; Oren, M; Aulitzky, W E; van der Kuip, H

    2014-07-10

    Significant advances have been made in the development of small molecules blocking the p53/MDM2 interaction. The Mdm2 inhibitor Nutlin-3 is restricted to tumors carrying wtp53. In contrast, RITA, a compound that binds p53, has recently been shown also to restore transcriptional functions of mtp53. As more than 50% of solid tumors carry p53 mutations, RITA promises to be a more effective therapeutic strategy than Nutlin-3. We investigated effects of RITA on apoptosis, cell cycle and induction of 45 p53 target genes in a panel of 14 cell lines from different tumor entities with different p53 status as well as primary lymphocytes and fibroblasts. Nine cell strains expressed wtp53, four harbored mtp53, and three were characterized by the loss of p53 protein. A significant induction of cell death upon RITA was observed in 7 of 16 cell lines. The nonmalignant cells in our panel were substantially less sensitive. We found that in contrast to Nultin-3, RITA is capable to induce cell death not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells. Importantly, whereas p53 has a central role for RITA-mediated effects in wtp53 cells, neither p53 nor p63 or p73 were essential for the RITA response in mtp53 or p53-null cells in our panel demonstrating that besides the known p53-dependent action of RITA in wtp53 cells, RITA can induce cell death also independently of p53 in cells harboring defective p53. We identified an important role of both p38 and JNK/SAPK for sensitivity to RITA in these cells leading to a typical caspase- and BAX/BAK-dependent mitochondrial apoptosis. In conclusion, our data demonstrate that RITA can induce apoptosis through p38 and JNK/SAPK not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells, making RITA an interesting tumor-selective drug.

  8. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box

    International Nuclear Information System (INIS)

    Liang Xin; Xu Ke; Xu Yufang; Liu Jianwen; Qian Xuhong

    2011-01-01

    The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report here that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P 2 promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research highlights: → B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. → B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. → B1 induced significant increase of p53 binding to Bcl-2 P 2 promoter TATA box.

  9. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cappadone, C., E-mail: concettina.cappadone@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Stefanelli, C. [Department for Life Quality Studies, University of Bologna, Rimini Campus, Rimini (Italy); Malucelli, E. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Zini, M. [Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna (Italy); Onofrillo, C. [Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna (Italy); Locatelli, A.; Rambaldi, M.; Sargenti, A. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Merolle, L. [ELETTRA–Sincrotrone Trieste S.C.p.A., Trieste (Italy); Farruggia, G. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); National Institute of Biostructures and Biosystems, Roma (Italy); Graziadio, A. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Montanaro, L. [Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna (Italy); Iotti, S. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); National Institute of Biostructures and Biosystems, Roma (Italy)

    2015-11-13

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of the cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.

  10. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    International Nuclear Information System (INIS)

    Cappadone, C.; Stefanelli, C.; Malucelli, E.; Zini, M.; Onofrillo, C.; Locatelli, A.; Rambaldi, M.; Sargenti, A.; Merolle, L.; Farruggia, G.; Graziadio, A.; Montanaro, L.; Iotti, S.

    2015-01-01

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of the cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.

  11. The contribution of p53 and Y chromosome long arm genes to regulation of apoptosis in mouse testis.

    Science.gov (United States)

    Lech, Tomasz; Styrna, Józefa; Kotarska, Katarzyna

    2018-03-01

    Apoptosis of excessive or defective germ cells is a natural process occurring in mammalian testes. Tumour suppressor protein p53 is involved in this process both in developing and adult male gonads. Its contribution to testicular physiology is known to be modified by genetic background. The aim of this study was to evaluate the combined influence of the p53 and Y chromosome long arm genes on male germ cell apoptosis. Knockout of the transformation related protein 53 (Trp53) gene was introduced into congenic strains: B10.BR (intact Y chromosome) and B10.BR-Ydel (Y chromosome with a deletion in the long arm). The level of apoptosis in the testes of 19-day-old and 3-month-old male mice was determined using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick-end labelling (TUNEL) method. The study revealed that although p53 is involved in germ cell apoptosis in peripubertal testes, this process can also be mediated by p53-independent mechanisms. However, activation of p53-independent apoptotic pathways in the absence of the p53 protein requires engagement of the multicopy Yq genes and was not observed in gonads of B10.BR-Ydel-p53-/- males. The role of Yq genes in the regulation of testicular apoptosis seems to be restricted to the initial wave of spermatogenesis and is not evident in adult gonads. The study confirmed, instead, that p53 does participate in spontaneous apoptosis in mature testes.

  12. Exposure to cigarette smoke increases apoptosis in the rat gastric mucosa through a reactive oxygen species-mediated and p53-independent pathway.

    Science.gov (United States)

    Wang, H; Ma, L; Li, Y; Cho, C H

    2000-04-01

    Cigarette smoking is a major risk factor for gastric cancer and peptic ulcer. The aim of our study was to investigate the relationship between exposure to cigarette smoke and apoptosis in the rat gastric mucosa and the mechanism involved. Rats were exposed to different concentrations of cigarette smoke (0, 2, and 4%) once daily for a different number of 1 h periods (1, 3, 6, and 9 d). Apoptosis was identified by the terminal deoxy-transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) method and caspase-3 activity. The mucosal xanthine oxidase (XO) activity and p53 level were also measured. The results showed that exposure to cigarette smoke produced a time- and concentration-dependent increase in apoptosis in the rat gastric mucosa that was accompanied by an increase in XO activity. The increased apoptosis and XO activity could be detected after even a single exposure. In contrast, the level of p53 was elevated only in the later stage of cigarette smoke exposure. The apoptotic effect could be blocked by pretreatment with an XO inhibitor (allopurinol, 20 mg/kg intraperitoneally) or a hydroxyl free radical scavenger (DMSO, 0.2%, 1 ml/kg intravenously). However, neither of these treatments had any effect on the p53 level of the mucosa. In summary, we conclude that exposure to cigarette smoke can increase apoptosis in the rat gastric mucosa through a reactive oxygen species- (ROS) mediated and a p53-independent pathway.

  13. Xylopine Induces Oxidative Stress and Causes G2/M Phase Arrest, Triggering Caspase-Mediated Apoptosis by p53-Independent Pathway in HCT116 Cells

    Directory of Open Access Journals (Sweden)

    Luciano de Souza Santos

    2017-01-01

    Full Text Available Xylopine is an aporphine alkaloid that has cytotoxic activity to cancer cells. In this study, the underlying mechanism of xylopine cytotoxicity was assessed in human colon carcinoma HCT116 cells. Xylopine displayed potent cytotoxicity in different cancer cell lines in monolayer cultures and in a 3D model of cancer multicellular spheroids formed from HCT116 cells. Typical morphology of apoptosis, cell cycle arrest in the G2/M phase, increased internucleosomal DNA fragmentation, loss of the mitochondrial transmembrane potential, and increased phosphatidylserine externalization and caspase-3 activation were observed in xylopine-treated HCT116 cells. Moreover, pretreatment with a caspase-3 inhibitor (Z-DEVD-FMK, but not with a p53 inhibitor (cyclic pifithrin-α, reduced xylopine-induced apoptosis, indicating induction of caspase-mediated apoptosis by the p53-independent pathway. Treatment with xylopine also caused an increase in the production of reactive oxygen/nitrogen species (ROS/RNS, including hydrogen peroxide and nitric oxide, but not superoxide anion, and reduced glutathione levels were decreased in xylopine-treated HCT116 cells. Application of the antioxidant N-acetylcysteine reduced the ROS levels and xylopine-induced apoptosis, indicating activation of ROS-mediated apoptosis pathway. In conclusion, xylopine has potent cytotoxicity to different cancer cell lines and is able to induce oxidative stress and G2/M phase arrest, triggering caspase-mediated apoptosis by the p53-independent pathway in HCT116 cells.

  14. RITA enhances chemosensivity of pre-B ALL cells to doxorubicin by inducing p53-dependent apoptosis.

    Science.gov (United States)

    Kazemi, Ahmad; Safa, Majid; Shahbazi, Atefeh

    2011-07-01

    The use of low-molecular-weight, non-peptidic molecules that disrupt the interaction between the p53 tumor suppressor and its negative regulator MDM2 has provided a promising alternative for the treatment of different types of cancer. Here, we used small-molecule reactivation of p53 and induction of tumor cell apoptosis (RITA) to sensitize leukemic NALM-6 cells to doxorubicin by upregulating p53 protein. RITA alone effectively inhibited NALM-6 cells viability in dose-dependent manner as measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay and induced apoptosis as evaluated by flow cytometry, whereas RITA in combination with doxorubicin enhanced NALM-6 cells to doxorubicin-sensitivity and promoted doxorubicin induced apoptosis. Levels of p53 protein and its proapoptotic target genes, quantified by western blot and real-time PCR respectively, showed that expression of p53 was significantly increased after RITA treatment. Using p53 inhibitors PFT-alpha and PFT-mu it was shown that p53-mediated apoptosis induced by RITA can be regulated by both p53-transcription-dependent and -independent pathways. Moreover, RITA-induced apoptosis was accompanied by the activation of caspase-3 and PARP cleavage. Therefore, exploiting synergistic effects between RITA and chemotherapeutics might be an effective clinical strategy for leukemia chemotherapy.

  15. Iron deprivation induces apoptosis independently of p53 in human and murine tumour cells

    Czech Academy of Sciences Publication Activity Database

    Truksa, Jaroslav; Kovář, Jan; Valenta, Tomáš; Ehrlichová, Marie; Polák, J.; Naumann, P. W.

    2003-01-01

    Roč. 36, č. 4 (2003), s. 199-213 ISSN 0960-7722 R&D Projects: GA ČR GA301/01/0041 Keywords : iron deprivation * p53 * apoptosis induction Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 1.529, year: 2003

  16. Signal transduction of p53-independent apoptotic pathway induced by hexavalent chromium in U937 cells

    International Nuclear Information System (INIS)

    Hayashi, Yoko; Kondo, Takashi; Zhao Qingli; Ogawa Ryohei; Cui Zhengguo; Feril, Loreto B.; Teranishi, Hidetoyo; Kasuya, Minoru

    2004-01-01

    It has been reported that the hexavalent chromium compound (Cr(VI)) can induce both p53-dependent and p53-independent apoptosis. While a considerable amount of information is available on the p53-dependent pathway, only little is known about the p53-independent pathway. To elucidate the p53-independent mechanism, the roles of the Ca 2+ -calpain- and mitochondria-caspase-dependent pathways in apoptosis induced by Cr(VI) were investigated. When human lymphoma U937 cells, p53 mutated cells, were treated with 20 μM Cr(VI) for 24 h, nuclear morphological changes and DNA fragmentation were observed. Production of hydroxyl radicals revealed by electron paramagnetic resonance (EPR)-spin trapping, and increase of intracellular calcium ion concentration monitored by digital imaging were also observed in Cr(VI)-treated cells. An intracellular Ca 2+ chelator, BAPTA-AM, and calpain inhibitors suppressed the Cr(VI)-induced DNA fragmentation. The number of cells showing low mitochondrial membrane potential (MMP), high level of superoxide anion radicals (O 2 - ), and high activity of caspase-3, which are indicators of mitochondria-caspase-dependent pathway, increased significantly in Cr(VI)-treated cells. An antioxidant, N-acetyl-L-cysteine (NAC), decreased DNA fragmentation and inhibited the changes in MMP, O 2 - formation, and activation of caspase-3 induced by Cr(VI). No increase of the expressions of Fas and phosphorylated JNK was observed after Cr(VI) treatment. Cell cycle analysis revealed that the fraction of G2/M phase tended to increase after 24 h of treatment, suggesting that Cr(VI)-induced apoptosis is related to the G2 block. These results indicate that Ca 2+ -calpain- and mitochondria-caspase-dependent pathways play significant roles in the Cr(VI)-induced apoptosis via the G2 block, which are independent of JNK and Fas activation. The inhibition of apoptosis and all its signal transductions by NAC suggests that intracellular reactive oxygen species (ROS) are

  17. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    NARCIS (Netherlands)

    Leszczynska, K.B.; Foskolou, I.P.; Abraham, A.G.; Anbalagan, S.; Tellier, C.; Haider, S.; Span, P.N.; O'Neill, E.E.; Buffa, F.M.; Hammond, E.M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent

  18. A Limited Role of p53 on the Ability of a Hexane Fraction of American Ginseng to Suppress Mouse Colitis

    Directory of Open Access Journals (Sweden)

    Deepak Poudyal

    2012-01-01

    Full Text Available Ulcerative colitis (UC is debilitating and carries a high colon cancer risk. Apoptosis of inflammatory cells is a key mechanism regulating UC. We have recently shown that American ginseng (AG, and to a greater extent, a Hexane fraction of AG (HAG can cause apoptosis and suppress mouse colitis through a p53-mediated mechanism. Here, we tested the hypothesis that HAG suppresses colitis through a p53 mechanism. We found only a limited impact of p53 in the ability of HAG to induce inflammatory cell apoptosis and suppress mouse colitis in vitro and in vivo. Finally, we asked whether HAG could cause cell cycle arrest of HCT116 colon cancer cells in vitro. Interestingly, HAG caused a G1 arrest of such cells independent of p53 status. Findings are significant because HAG suppresses colitis and associated colon cancer, and mutation in p53 is observed in most colitis-driven colon cancers. Therefore, HAG might be very effective in targeting the inflammatory cells and cancer cells since it induces apoptosis of inflammatory cells and cell cycle arrest in both p53−/− and WT p53 colon cancer cells.

  19. Gene expression and apoptosis induction in p53-heterozygous irradiated mice

    International Nuclear Information System (INIS)

    Di Masi, Alessandra; Antoccia, Antonio; Dimauro, Ivan; Argentino-Storino, Alberta; Mosiello, Alberto; Mango, Ruggiero; Novelli, Giuseppe; Tanzarella, Caterina

    2006-01-01

    The role of the p53-genetic background in the expression of genes involved in either cell cycle checkpoint activation or apoptosis was evaluated in p53+/+ and p53+/- mouse strains at both basal levels and after DNA-induced damage. The spleen, colon, kidneys, lungs and liver of both strains were harvested from untreated animals and from mice exposed to 7.5 Gy of X-rays and sacrificed after 5 h. No significant differences were observed in the basal levels of p53 protein, CDKN1A and bax mRNA and spontaneous apoptosis, neither among the different organs within the same strain, nor between the same organ in the p53+/+ and p53+/- strains. After X-ray exposure, p53-dependent regulation was strikingly tissue-specific. In wild-type irradiated mice, p53 protein level increased after radiation treatment in all the organs analysed, whereas both CDKN1A and bax genes transcription increased in the spleen, colon and lungs, as assessed by means of quantitative RT-PCR. In p53+/- irradiated mice, on the contrary, a significant p53 induction was detected only in the spleen, while CDKN1A and bax genes levels increased in the spleen, colon and lungs, revealing the existence of different mechanisms of gene regulation in different organs. Apoptosis induction was observed in the spleen and colon of both strains, even if to lower extent in p53+/- mice compared to p53+/+ animals. In conclusion, in the spleen and colon, target gene transcription and apoptosis may be related to p53 genotype after DNA damage-induction. Moreover, our findings highlight the selectivity of p53 in transactivation following DNA damage in vivo, resulting in tissue-specific responses

  20. Gene expression and apoptosis induction in p53-heterozygous irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Di Masi, Alessandra [Department of Biology, University of Rome ' Roma Tre' , Viale G. Marconi, 446, 00146 Rome (Italy); Antoccia, Antonio [Department of Biology, University of Rome ' Roma Tre' , Viale G. Marconi, 446, 00146 Rome (Italy); Dimauro, Ivan [Department of Biology, University of Rome ' Roma Tre' , Viale G. Marconi, 446, 00146 Rome (Italy); Argentino-Storino, Alberta [Research Toxicology Centre S.p.A., Via Tito Speri, 18, 00040 Pomezia (RM) (Italy); Mosiello, Alberto [Research Toxicology Centre S.p.A., Via Tito Speri, 18, 00040 Pomezia (RM) (Italy); Mango, Ruggiero [Centre of Excellence for Genomic Risk Assessment in Multifactorial and Complex Diseases, School of Medicine, University of Rome ' Tor Vergata' , Rome (Italy); Novelli, Giuseppe [Centre of Excellence for Genomic Risk Assessment in Multifactorial and Complex Diseases, School of Medicine, University of Rome ' Tor Vergata' , Rome (Italy); Tanzarella, Caterina [Department of Biology, University of Rome ' Roma Tre' , Viale G. Marconi, 446, 00146 Rome (Italy)]. E-mail: tanzarel@uniroma3.it

    2006-02-22

    The role of the p53-genetic background in the expression of genes involved in either cell cycle checkpoint activation or apoptosis was evaluated in p53+/+ and p53+/- mouse strains at both basal levels and after DNA-induced damage. The spleen, colon, kidneys, lungs and liver of both strains were harvested from untreated animals and from mice exposed to 7.5 Gy of X-rays and sacrificed after 5 h. No significant differences were observed in the basal levels of p53 protein, CDKN1A and bax mRNA and spontaneous apoptosis, neither among the different organs within the same strain, nor between the same organ in the p53+/+ and p53+/- strains. After X-ray exposure, p53-dependent regulation was strikingly tissue-specific. In wild-type irradiated mice, p53 protein level increased after radiation treatment in all the organs analysed, whereas both CDKN1A and bax genes transcription increased in the spleen, colon and lungs, as assessed by means of quantitative RT-PCR. In p53+/- irradiated mice, on the contrary, a significant p53 induction was detected only in the spleen, while CDKN1A and bax genes levels increased in the spleen, colon and lungs, revealing the existence of different mechanisms of gene regulation in different organs. Apoptosis induction was observed in the spleen and colon of both strains, even if to lower extent in p53+/- mice compared to p53+/+ animals. In conclusion, in the spleen and colon, target gene transcription and apoptosis may be related to p53 genotype after DNA damage-induction. Moreover, our findings highlight the selectivity of p53 in transactivation following DNA damage in vivo, resulting in tissue-specific responses.

  1. TAF6delta controls apoptosis and gene expression in the absence of p53.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Wilhelm

    Full Text Available BACKGROUND: Life and death decisions of metazoan cells hinge on the balance between the expression of pro- versus anti-apoptotic gene products. The general RNA polymerase II transcription factor, TFIID, plays a central role in the regulation of gene expression through its core promoter recognition and co-activator functions. The core TFIID subunit TAF6 acts in vitro as an essential co-activator of transcription for the p53 tumor suppressor protein. We previously identified a splice variant of TAF6, termed TAF6delta that can be induced during apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the impact of TAF6delta on cell death and gene expression, we have employed modified antisense oligonucleotides to enforce expression of endogenous TAF6delta. The induction of endogenous TAF6delta triggered apoptosis in tumor cell lines, including cells devoid of p53. Microarray experiments revealed that TAF6delta activates gene expression independently of cellular p53 status. CONCLUSIONS: Our data define TAF6delta as a pivotal node in a signaling pathway that controls gene expression programs and apoptosis in the absence of p53.

  2. The role of p53 and pRB in apoptosis and cancer

    DEFF Research Database (Denmark)

    Hickman, Emma S; Moroni, M Cristina; Helin, Kristian

    2002-01-01

    Loss of function of both the p53 pathway and the retinoblastoma protein (pRB) pathway plays a significant role in the development of most human cancers. Loss of pRB results in deregulated cell proliferation and apoptosis, whereas loss of p53 desensitizes cells to checkpoint signals, including...

  3. Loss of p19(Arf facilitates the angiogenic switch and tumor initiation in a multi-stage cancer model via p53-dependent and independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Danielle B Ulanet

    2010-08-01

    Full Text Available The Arf tumor suppressor acts as a sensor of oncogenic signals, countering aberrant proliferation in large part via activation of the p53 transcriptional program, though a number of p53-independent functions have been described. Mounting evidence suggests that, in addition to promoting tumorigenesis via disruptions in the homeostatic balance between cell proliferation and apoptosis of overt cancer cells, genetic alterations leading to tumor suppressor loss of function or oncogene gain of function can also incite tumor development via effects on the tumor microenvironment. In a transgenic mouse model of multi-stage pancreatic neuroendocrine carcinogenesis (PNET driven by inhibition of the canonical p53 and Rb tumor suppressors with SV40 large T-antigen (Tag, stochastic progression to tumors is limited in part by a requirement for initiation of an angiogenic switch. Despite inhibition of p53 by Tag in this mouse PNET model, concomitant disruption of Arf via genetic knockout resulted in a significantly accelerated pathway to tumor formation that was surprisingly not driven by alterations in tumor cell proliferation or apoptosis, but rather via earlier activation of the angiogenic switch. In the setting of a constitutional p53 gene knockout, loss of Arf also accelerated tumor development, albeit to a lesser degree. These findings demonstrate that Arf loss of function can promote tumorigenesis via facilitating angiogenesis, at least in part, through p53-independent mechanisms.

  4. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents.

    Science.gov (United States)

    Hickman, M J; Samson, L D

    1999-09-14

    All cells are unavoidably exposed to chemicals that can alkylate DNA to form genotoxic damage. Among the various DNA lesions formed, O(6)-alkylguanine lesions can be highly cytotoxic, and we recently demonstrated that O(6)-methylguanine (O(6)MeG) and O(6)-chloroethylguanine (O(6)CEG) specifically initiate apoptosis in hamster cells. Here we show, in both hamster and human cells, that the MutSalpha branch of the DNA mismatch repair pathway (but not the MutSbeta branch) is absolutely required for signaling the initiation of apoptosis in response to O(6)MeGs and is partially required for signaling apoptosis in response to O(6)CEGs. Further, O(6)MeG lesions signal the stabilization of the p53 tumor suppressor, and such signaling is also MutSalpha-dependent. Despite this, MutSalpha-dependent apoptosis can be executed in a p53-independent manner. DNA mismatch repair status did not influence the response of cells to other inducers of p53 and apoptosis. Thus, it appears that mismatch repair status, rather than p53 status, is a strong indicator of the susceptibility of cells to alkylation-induced apoptosis. This experimental system will allow dissection of the signal transduction events that couple a specific type of DNA base lesion with the final outcome of apoptotic cell death.

  5. Impact of the p53 status of tumor cells on extrinsic and intrinsic apoptosis signaling.

    Science.gov (United States)

    Wachter, Franziska; Grunert, Michaela; Blaj, Cristina; Weinstock, David M; Jeremias, Irmela; Ehrhardt, Harald

    2013-04-17

    The p53 protein is the best studied target in human cancer. For decades, p53 has been believed to act mainly as a tumor suppressor and by transcriptional regulation. Only recently, the complex and diverse function of p53 has attracted more attention. Using several molecular approaches, we studied the impact of different p53 variants on extrinsic and intrinsic apoptosis signaling. We reproduced the previously published results within intrinsic apoptosis induction: while wild-type p53 promoted cell death, different p53 mutations reduced apoptosis sensitivity. The prediction of the impact of the p53 status on the extrinsic cell death induction was much more complex. The presence of p53 in tumor cell lines and primary xenograft tumor cells resulted in either augmented, unchanged or reduced cell death. The substitution of wild-type p53 by mutant p53 did not affect the extrinsic apoptosis inducing capacity. In summary, we have identified a non-expected impact of p53 on extrinsic cell death induction. We suggest that the impact of the p53 status of tumor cells on extrinsic apoptosis signaling should be studied in detail especially in the context of therapeutic approaches that aim to restore p53 function to facilitate cell death via the extrinsic apoptosis pathway.

  6. p53-Induced Apoptosis Occurs in the Absence of p14ARF in Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Sally Hopkins-Donaldson

    2006-07-01

    Full Text Available Malignant pleural mesotheliomas (MPMs are usually wild type for the p53 gene but contain homozygous deletions in the INK4A locus that encodes p14ARF, an inhibitor of p53-MDM2 interaction. Previous findings suggest that lack of p14ARF expression and the presence of SV40 large T antigen (L-Tag result in p53 inactivation in MPM. We did not detect SV40 L-Tag mRNA in either MPM cell lines or primary cultures, treatment of p14ARF-deficient cells with cisplatin (CDDP increased both total and phosphorylated p53 and enhanced p53 DNA-binding activity. On incubation with CDDP, levels of positively regulated p53 transcriptional targets p21WAF, PIG3, MDM2, Bax, PUMA increased in p14ARF-deficient cells, whereas negatively regulated survivin decreased. Significantly, p53-induced apoptosis was activated by CDDP in p14ARF-deficient cells, treatment with p53-specific siRNA rendered them more CDDP-resistant. p53 was also activated by: 1 inhibition of MDM2 (using nutlin-3; 2 transient overexpression of p14ARF; and 3 targeting of survivin using antisense oligonucleotides. However, it is noteworthy that only survivin downregulation sensitized cells to CDDP-induced apoptosis. These results suggest that p53 is functional in the absence of p14ARF in MPM and that targeting of the downstream apoptosis inhibitor survivin can sensitize to CDDP-induced apoptosis.

  7. The role of hypoxia, p53, and apoptosis in human cervical carcinoma pathogenesis

    International Nuclear Information System (INIS)

    Kim, Charlotte Y.; Tsai, Mitchell H.; Osmanian, Cynthia; Calkins, Dennise P.; Graeber, Thomas G.; Greenspan, David L.; Kennedy, Andrew S.; Rinker, Lillian H.; Varia, Mahesh A.; DiPaolo, Joseph A.; Peehl, Donna M.; Raleigh, James A.; Giaccia, Amato J.

    1997-01-01

    , ionizing radiation did not stimulate p53 accumulation or apoptosis in these cells. Cervical epithelial cells containing the intact HPV 16 genome also exhibited hypoxia induced apoptosis. Hypoxia stimulated p53 induction but not apoptosis in cell lines derived from human cervical squamous cell carcinomas, indicating that these cell lines have acquired further genetic alterations independent of p53 which reduced their apoptotic sensitivity to hypoxia. Furthermore, E6 and E7 infected cervical epithelial cells subjected to multiple rounds of hypoxia followed by aerobic recovery achieved resistance to hypoxia induced apoptosis, indicating that hypoxia could directly select for cells with diminished apoptotic sensitivity. In situ, hypoxia and apoptosis were found to co-localize in tumors of patients with advanced clinical stage. Conclusion: Expression of viral oncoproteins in human cervical epithelial cells can increase their sensitivity to hypoxia-induced apoptosis. Hypoxia can select for variants that have lost their apoptotic potential and hypoxia correlates spatially with apoptosis in human cervical carcinoma biopsies. Therefore, these results implicate a role for hypoxia-mediated selection in human tumor progression and can in part explain the aggressiveness of cervical carcinomas with low p0 2 values

  8. Restoration of mp53 to wtp53 by chemical chaperones restores p53-dependent apoptosis after radiotherapy

    International Nuclear Information System (INIS)

    Ohnishi, T.; Asakawa, I.; Tamamoto, T.; Takahashi, A.; Ohnishi, K.

    2003-01-01

    The mutations of many kinds of cancer related genes have been investigated for the predictive assay against cancer therapy by the application of molecular biology. A tumor suppressor gene product of wtp53 plays important roles in cancer suppression through the induction of cell growth arrest, DNA repair or apoptosis. The p53 exerts its function by induction of downstream genes and/or interaction to various proteins. Mutations in the p53 gene (mp53) cause conformational alterations in the p53 protein, the majority of which can no longer induce expression of the downstream genes. The genetic status of p53 gene has been focused as the most important candidate among them for cancer therapy. The gene therapy of p53 has been already applied. We reported that the transfection of mp53 gene increased the radio-, thermo- and chemo-resistance, and depressed apoptosis introduced with them through bax-induction and proteolysis of PARP and caspase-3. From these results, we propose that the gene therapy of wtp53 to p53-deleted cancer cells may be very useful for cancer therapy by the combination with radiotherapy. Even in the case of mp53 cancer cells, we succeeded the restoration of mp53 to wtp53 by glycerol or C-terminal peptide of p53 as chemical chaperones. These experimental progresses might support effective cancer therapy against individual patients bearing with different p53 gene status by the use of the most suitable treatment to them in the near future

  9. Involvement of phorbol-12-myristate-13-acetate-induced protein 1 in goniothalamin-induced TP53-dependent and -independent apoptosis in hepatocellular carcinoma-derived cells

    International Nuclear Information System (INIS)

    Kuo, Kung-Kai; Chen, Yi-Ling; Chen, Lih-Ren; Li, Chien-Feng; Lan, Yu-Hsuan; Chang, Fang-Rong; Wu, Yang-Chang; Shiue, Yow-Ling

    2011-01-01

    The objective was to investigate the upstream apoptotic mechanisms that were triggered by a styrylpyrone derivative, goniothalamin (GTN), in tumor protein p53 (TP53)-positive and -negative hepatocellular carcinoma (HCC)-derived cells. Effects of GTN were evaluated by the flow cytometry, alkaline comet assay, immunocytochemistry, small-hairpin RNA interference, mitochondria/cytosol fractionation, quantitative reverse transcription-polymerase chain reaction, immunoblotting analysis and caspase 3 activity assays in two HCC-derived cell lines. Results indicated that GTN triggered phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, also known as NOXA)-mediated apoptosis via TP53-dependent and -independent pathways. In TP53-positive SK-Hep1 cells, GTN furthermore induced TP53 transcription-dependent and -independent apoptosis. After GTN treatment, accumulation of reactive oxygen species, formation of DNA double-strand breaks, transactivation of TP53 and/or PMAIP1 gene, translocation of TP53 and/or PMAIP1 proteins to mitochondria, release of cytochrome c from mitochondria, cleavage of caspases and induction of apoptosis in both cell lines were sustained. GTN might represent a novel class of anticancer drug that induces apoptosis in HCC-derived cells through PMAIP1 transactivation regardless of the status of TP53 gene. - Highlights: → Goniothalamin (GTN) induced apoptosis in hepatocellular carcinomas-derived cells. → The apoptosis induced by GTN is PMAIP1-dependent, regardless of TP53 status. → The apoptosis induced by GTN might be TP53 transcription-dependent or -independent. → GTN-induced apoptosis is mitochondria- and caspases-mediated.

  10. Expression of Egr1 and p53 in human carotid plaques and apoptosis induced by 7-oxysterol or p53.

    Science.gov (United States)

    Miah, Sayem; Zadeh, Shahram Nour Mohammad; Yuan, Xi-Ming; Li, Wei

    2013-07-01

    Egr-1 and p53 are involved in pathology of both atherosclerosis and cancer. However, it is unknown whether p53 and Egr1 are interactively involved in apoptosis in atherosclerosis. We found that in human carotid plaques, the expression of p53 was inversely correlated with Egr1. In U937 cells, 7β-hydroxycholesterol and 7-ketocholesterol induced production of reactive oxygen species (ROS), transient up-regulation of Egr1 followed by late induction of p53 and apoptosis. Cells with nuclear fragmentation induced by 7-oxysterol or p53 showed increased levels of p53, but decreased levels of Egr1. In conclusion, ROS induced by 7-oxysterols may function as an early initiator of Egr1 expression. The late induced p53 by 7-oxysterols contributes to apoptotic cell death and is linked to the reduction of Egr1 levels, which resembles the differential expression of p53 and Egr1 in human atheroma progression. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yosuke [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Takahashi, Akihisa [Advanced Scientific Research Leader Development Unit, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Kajihara, Atsuhisa; Yamakawa, Nobuhiro; Imai, Yuichiro [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ota, Ichiro; Okamoto, Noritomo [Department of Otorhinolaryngology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Mori, Eiichiro [Department of Radiation Oncology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Noda, Taichi [Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Furusawa, Yoshiya [Heavy-ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kirita, Tadaaki [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ohnishi, Takeo, E-mail: tohnishi@naramed-u.ac.jp [Department of Radiation Oncology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High-LET radiation induces efficiently apoptosis regardless of p53 gene status. Black-Right-Pointing-Pointer We examined whether high-LET radiation depresses the Akt-survival signals. Black-Right-Pointing-Pointer High-LET radiation depresses of survival signals even in the mp53 cancer cells. Black-Right-Pointing-Pointer High-LET radiation activates Caspase-9 through depression of survival signals. Black-Right-Pointing-Pointer High-LET radiation suppresses cell growth through depression of survival signals. -- Abstract: Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G{sub 2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp

  12. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro.

    Directory of Open Access Journals (Sweden)

    Fuqiang Xing

    Full Text Available Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant. Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis.

  13. Suberoyl bis-hydroxamic acid induces p53-dependent apoptosis of MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-gang ZHUANG; Fei FEI; Ying CHEN; Wei JIN

    2008-01-01

    Aim: To study the effects of suberoyl bis-hydroxamic acid (SBHA), an inhibitor of histone deacetylases, on the apoptosis of MCF-7 breast cancer cells. Meth-ods: Apoptosis in MCF-7 cells induced by SBHA was demonstrated by flow cytometric analysis, morphological observation, and DNA ladder. Mitochondrial membrane potential (△ψm) was measured using the fluorescent probe JC-1. The expressions of p53, p21, Bax, and PUMA were determined using RT-PCR or Western blotting analysis after the MCF-7 cells were treated with SBHA or p53 siRNA. Results: SBHA induced apoptosis in MCF-7 cells. The expressions of p53, p21, Bax, and PUMA were induced, and △ψm collapsed after treatment with SBHA. p53 siRNA abrogated the SBHA-induced apoptosis and the expressions of p53, p21, Bax, and PUMA. Conclusion: The activation of the p53 pathway is involved in SBHA-induced apoptosis in MCF-7 cells.

  14. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    International Nuclear Information System (INIS)

    Pauklin, Siim; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-01-01

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, β-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53

  15. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation

    International Nuclear Information System (INIS)

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Lee, Su-Jae; Lee, Chang-Woo; Song, Jie-Young; Um, Hong-Duck; Park, Jong Kuk; Park, In-Chul; Hwang, Sang-Gu

    2014-01-01

    Highlights: • HRP-3 is a radiation- and anticancer drug-responsive protein in H1299 cells. • Depletion of HRP-3 induces apoptosis of radio- and chemoresistant H1299 cells. • Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. • ROS generation enhances NF-κB activity, which acts as an upstream signal in the c-Myc/Noxa apoptotic pathway. - Abstract: We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells

  16. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi-Wei [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Wu, Chun-Ying [Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, Yen-Ting [Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan (China); Kao, Jun-Kai [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Pediatrics, Children' s Hospital, Changhua Christian Hospital, Changhua, Taiwan (China); Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chiu, Husan-Wen [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chang, Chuan-Hsun [Department of Surgical Oncology, Cheng Hsin General Hospital, Taipei, Taiwan (China); Department of Nutrition Therapy, Cheng Hsin General Hospital, Taipei, Taiwan (China); School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan (China); Liang, Shu-Mei [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chen, Yi-Ju [Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Huang, Jau-Ling [Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan (China); Shieh, Jeng-Jer, E-mail: shiehjj@vghtc.gov.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  17. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    International Nuclear Information System (INIS)

    Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting; Kao, Jun-Kai; Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu; Chiu, Husan-Wen; Chang, Chuan-Hsun; Liang, Shu-Mei; Chen, Yi-Ju; Huang, Jau-Ling; Shieh, Jeng-Jer

    2013-01-01

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status

  18. CD40-mediated apoptosis in murine B-lymphoma lines containing mutated p53

    DEFF Research Database (Denmark)

    Hollmann, Annette C; Gong, Qiaoke; Owens, Trevor

    2002-01-01

    Crosslinking CD40 induces normal B-cells to proliferate and differentiate but causes many tumor cell lines to undergo apoptosis. As p53 is required for many apoptotic pathways, we analyzed the effects of CD40 ligation and their correlation with p53 function in four murine B-lymphoma lines. A20...... of detectable p21 mRNA in A20 and M12 cells. P21 mRNA was increased to detectable levels in M12 cells upon CD40 ligation; however, blocking this effect with the p53 inhibitor pifithrin had no effect on CD40-mediated apoptosis. Sequencing showed that p53 in A20 and M12 cells contained point mutations leading...... to amino acid substitutions in DNA binding regions, but was unmutated in WEHI231 and WEHI 279. These results suggest that CD40-mediated apoptosis can occur in the absence of functional p53....

  19. Study of cellular signaling of apoptosis induced by different types of ionizing radiations in lymphoblastoid cells differing in their P53 status

    International Nuclear Information System (INIS)

    Fischer, Barbara

    2004-01-01

    The general objective of this thesis was to identify the cellular mechanisms that govern the induction of apoptosis by ionizing radiations with high linear energy transfer (LET), particularly fast neutrons and carbon ions. It was also attempted to determine the role in these mechanisms of the p53 tumor suppressor protein. For this, lymphoblastoid lines differing by their p53 status have been used: TK6 (p53 + / +), WTK1 (p53 mute) and NH32 (p53 - / -). At first, the study concerned the induction of apoptosis by fast neutrons, and the effects of these radiations have been compared with those of X-rays on cell lines. Results show that for the same irradiation dose, fast neutrons are more efficient than X-rays in terms of inducing apoptosis. This induction of apoptosis also varies according to the p53 status of the cells. These data suggest that fast neutrons activate apoptosis in two distinct ways: a p53-dependent pathway that occurs in the first hours after irradiation, and an independent pathway of p53, which is slower, but also involves caspases. The author then tried to characterize the two active apoptotic signaling pathways in lymphoblastoid lines by fast neutrons, in order to identify the different mechanisms involved in triggering the apoptotic process as a function of p53. Results show that the p53 status not only affects the kinetics of induction of apoptosis but also the nature of active caspases. The p53-dependent apoptosis is associated with the activation of caspases-3, 7, 8 and 9, the cleavage of BID by caspase-8, the fall of Δψm and the release of cytochrome c from mitochondria to cytoplasm. On the other hand, caspase-7 seems to be activated by an independent p53 signaling pathway. In the following experiments, the mechanisms leading to the initiation of apoptotic pathways induced by fast neutrons were explored, and more particularly the activation of caspase-8 in p53-dependent apoptosis. The involvement of the Fas necrosis receptor in the activation

  20. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Science.gov (United States)

    Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  1. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Matthew L Hirsch

    Full Text Available Human embryonic stem cells (hESCs are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  2. Chemotherapy-Induced Apoptosis in a Transgenic Model of Neuroblastoma Proceeds Through p53 Induction

    Directory of Open Access Journals (Sweden)

    Louis Chesler

    2008-11-01

    Full Text Available Chemoresistance in neuroblastoma is a significant issue complicating treatment of this common pediatric solid tumor. MYCN-amplified neuroblastomas are infrequently mutated at p53 and are chemosensitive at diagnosis but acquire p53 mutations and chemoresistance with relapse. Paradoxically, Myc-driven transformation is thought to require apoptotic blockade. We used the TH-MYCN transgenic murine model to examine the role of p53-driven apoptosis on neuroblastoma tumorigenesis and the response to chemotherapy. Tumors formed with high penetrance and low latency in p53-haploinsufficient TH-MYCN mice. Cyclophosphamide (CPM induced a complete remission in p53 wild type TH-MYCN tumors, mirroring the sensitivity of childhood neuroblastoma to this agent. Treated tumors showed a prominent proliferation block, induction of p53 protein, and massive apoptosis proceeding through induction of the Bcl-2 homology domain-3-only proteins PUMA and Bim, leading to the activation of Bax and cleavage of caspase-3 and -9. Apoptosis induced by CPM was reduced in p53-haploinsufficient tumors. Treatment of MYCN-expressing human neuroblastoma cell lines with CPM induced apoptosis that was suppressible by siRNA to p53. Taken together, the results indicate that the p53 pathway plays a significant role in opposing MYCN-driven oncogenesis in a mouse model of neuroblastoma and that basal inactivation of the pathway is achieved in progressing tumors. This, in part, explains the striking sensitivity of such tumors to chemotoxic agents that induce p53-dependent apoptosis and is consistent with clinical observations that therapy-associated mutations in p53 are a likely contributor to the biology of tumors at relapse and secondarily mediate resistance to therapy.

  3. MG132 plus apoptosis antigen-1 (APO-1) antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes.

    Science.gov (United States)

    Lagunas-Martínez, Alfredo; García-Villa, Enrique; Arellano-Gaytán, Magaly; Contreras-Ochoa, Carla O; Dimas-González, Jisela; López-Arellano, María E; Madrid-Marina, Vicente; Gariglio, Patricio

    2017-01-01

    The E6 oncoprotein can interfere with the ability of infected cells to undergo programmed cell death through the proteolytic degradation of proapoptotic proteins such as p53, employing the proteasome pathway. Therefore, inactivation of the proteasome through MG132 should restore the activity of several proapoptotic proteins. We investigated whether in HPV16 E6-expressing keratinocytes (KE6 cells), the restoration of p53 levels mediated by MG132 and/or activation of the CD95 pathway through apoptosis antigen-1 (APO-1) antibody are responsible for the induction of apoptosis. We found that KE6 cells underwent apoptosis mainly after incubation for 24 h with MG132 alone or APO-1 plus MG132. Both treatments activated the extrinsic and intrinsic apoptosis pathways. Autophagy was also activated, principally by APO-1 plus MG132. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in the elevation of p53 protein levels and its phosphorylation in Ser46 and Ser20; the p53 protein was localized mainly at nucleus after treatment with MG132 or APO-1 plus MG132. In addition, induction of its transcriptional target genes such as p21, Bax and TP53INP was observed 3 and 6 h after treatment. Also, LC3 mRNA was induced after 3 and 6 h, which correlates with lipidation of LC3B protein and induction of autophagy. Finally, using pifithrin alpha we observed a decrease in apoptosis induced by MG132, and by APO-1 plus MG132, suggesting that restoration of APO-1 sensitivity occurs in part through an increase in both the levels and the activity of p53. The use of small molecules to inhibit the proteasome pathway might permit the activation of cell death, providing new opportunities for CC treatment.

  4. p53-Independent thermosensitization by mitomycin C in human non-small cell lung carcinoma cells

    International Nuclear Information System (INIS)

    Jin, Z.-H.; Matsumoto, H.; Hayashi, S.; Shioura, H.; Kitai, R.; Kano, E.; Hatashita, M.

    2003-01-01

    The combined treatment with hyperthermia and chemotherapeutic drugs such as cisplatin (CDDP), doxorubicin (DOX) and mitomycin C (MMC) has been widely adopted as a strategy of interdisciplinary cancer therapy to obtain greater therapeutic benefits. However, the involved mechanisms of the interactive cytotoxic effects of hyperthermia and MMC remain unclear. To elucidate the relationship between p53 functions and the interactive effects of the combined treatment with mild-hyperthermia and MMC, we examined the potentiation of cytotoxic effects, the induction of apoptosis, the changes in cell cycles and the accumulation of Hsp72 after the combined treatment with hyperthermia at 42 degree C and MMC using human non-small cell lung carcinoma H1299 transfectants with either null, wild-type (wt) or mutant (m) p53 gene. H1299/null, H1299/wtp53 and H1299/mp53 cells showed similar sensitivities to either hyperthermia at 42 degree C alone or MMC alone. The combined treatment resulted in a synergistically enhanced cytotoxicity in H1299 transfectants in a p53-independent manner. The mechanisms involved an enhancement of heat-induced apoptosis and a modulation of the cell cycle distribution by the combined treatment. The accumulation of Hsp72 was not suppressed by the combined treatment, as is not the case of the combined treatment with hyperthermia and either CDDP (1) or bleomycin (2). Our findings demonstrate a p53-independent mechanism for a synergistically cytotoxic enhancement by the combined treatment with mild-hyperthermia and MMC

  5. The miR-1000-p53 pathway regulates apoptosis and virus infection in shrimp.

    Science.gov (United States)

    Gong, Yi; Ju, Chenyu; Zhang, Xiaobo

    2015-10-01

    The p53 protein plays an important role in apoptosis which is involved in the immunity of animals. However, effects of the miRNA-mediated regulation of p53 expression on apoptosis and virus infection are not extensively investigated. To address this issue, the miRNA-mediated p53-dependent apoptotic pathway was explored in this study. The results indicated that p53 could regulate the apoptotic activity of Marsupenaeus japonicas shrimp and influence the infection of white spot syndrome virus (WSSV). The further data presented that miR-1000 could target the 3'-untranslated region (3'UTR) of p53 gene. The results of in vivo experiments showed that the miR-1000 overexpression led to significant decreases of shrimp apoptotic activity and the capacity of WSSV infection, while the miR-1000 silencing resulted in significant increases of apoptotic activity and virus infection, indicating that miR-1000 took great effects on apoptosis and virus infection by targeting p53. Therefore, our study revealed a novel mechanism that the miR-1000-p53 pathway regulated apoptosis and virus infection in shrimp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Decreased transcription-coupled nucleotide excision repair capacity is associated with increased p53- and MLH1-independent apoptosis in response to cisplatin

    International Nuclear Information System (INIS)

    Stubbert, Lawton J; Smith, Jennifer M; McKay, Bruce C

    2010-01-01

    One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA repair capacity, mutations in p53 or loss of DNA mismatch repair capacity. RNA interference (RNAi) was used to reduce the transcription-coupled nucleotide excision repair (TC-NER) capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B) transcript on TC-NER and the sensitivity of cells to cisplatin-induced apoptosis was determined. These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines. The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic

  7. Decreased transcription-coupled nucleotide excision repair capacity is associated with increased p53- and MLH1-independent apoptosis in response to cisplatin

    Directory of Open Access Journals (Sweden)

    Smith Jennifer M

    2010-05-01

    Full Text Available Abstract Background One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA repair capacity, mutations in p53 or loss of DNA mismatch repair capacity. Methods RNA interference (RNAi was used to reduce the transcription-coupled nucleotide excision repair (TC-NER capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B transcript on TC-NER and the sensitivity of cells to cisplatin-induced apoptosis was determined. Results These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines. Conclusion The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic.

  8. Divergent evolution of human p53 binding sites: cell cycle versus apoptosis.

    Directory of Open Access Journals (Sweden)

    Monica M Horvath

    2007-07-01

    Full Text Available The p53 tumor suppressor is a sequence-specific pleiotropic transcription factor that coordinates cellular responses to DNA damage and stress, initiating cell-cycle arrest or triggering apoptosis. Although the human p53 binding site sequence (or response element [RE] is well characterized, some genes have consensus-poor REs that are nevertheless both necessary and sufficient for transactivation by p53. Identification of new functional gene regulatory elements under these conditions is problematic, and evolutionary conservation is often employed. We evaluated the comparative genomics approach for assessing evolutionary conservation of putative binding sites by examining conservation of 83 experimentally validated human p53 REs against mouse, rat, rabbit, and dog genomes and detected pronounced conservation differences among p53 REs and p53-regulated pathways. Bona fide NRF2 (nuclear factor [erythroid-derived 2]-like 2 nuclear factor and NFkappaB (nuclear factor of kappa light chain gene enhancer in B cells binding sites, which direct oxidative stress and innate immunity responses, were used as controls, and both exhibited high interspecific conservation. Surprisingly, the average p53 RE was not significantly more conserved than background genomic sequence, and p53 REs in apoptosis genes as a group showed very little conservation. The common bioinformatics practice of filtering RE predictions by 80% rodent sequence identity would not only give a false positive rate of approximately 19%, but miss up to 57% of true p53 REs. Examination of interspecific DNA base substitutions as a function of position in the p53 consensus sequence reveals an unexpected excess of diversity in apoptosis-regulating REs versus cell-cycle controlling REs (rodent comparisons: p < 1.0 e-12. While some p53 REs show relatively high levels of conservation, REs in many genes such as BAX, FAS, PCNA, CASP6, SIVA1, and P53AIP1 show little if any homology to rodent sequences. This

  9. Fluoxetine protects against IL-1β-induced neuronal apoptosis via downregulation of p53.

    Science.gov (United States)

    Shan, Han; Bian, Yaqi; Shu, Zhaoma; Zhang, Linxia; Zhu, Jialei; Ding, Jianhua; Lu, Ming; Xiao, Ming; Hu, Gang

    2016-08-01

    Fluoxetine, a selective serotonin reuptake inhibitor, exerts neuroprotective effects in a variety of neurological diseases including stroke, but the underlying mechanism remains obscure. In the present study, we addressed the molecular events in fluoxetine against ischemia/reperfusion-induced acute neuronal injury and inflammation-induced neuronal apoptosis. We showed that treatment of fluoxetine (40 mg/kg, i.p.) with twice injections at 1 h and 12 h after transient middle cerebral artery occlusion (tMCAO) respectively alleviated neurological deficits and neuronal apoptosis in a mouse ischemic stroke model, accompanied by inhibiting interleukin-1β (IL-1β), Bax and p53 expression and upregulating anti-apoptotic protein Bcl-2 level. We next mimicked neuroinflammation in ischemic stroke with IL-1β in primary cultured cortical neurons and found that pretreatment with fluoxetine (1 μM) prevented IL-1β-induced neuronal apoptosis and upregulation of p53 expression. Furthermore, we demonstrated that p53 overexpression in N2a cell line abolished the anti-apoptotic effect of fluoxetine, indicating that p53 downregulation is required for the protective role of fluoxetine in IL-1β-induced neuronal apoptosis. Fluoxetine downregulating p53 expression could be mimicked by SB203580, a specific inhibitor of p38, but blocked by anisomycin, a p38 activator. Collectively, our findings have revealed that fluoxetine protects against IL-1β-induced neuronal apoptosis via p38-p53 dependent pathway, which give us an insight into the potential of fluoxetine in terms of opening up novel therapeutic avenues for neurological diseases including stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The p53-reactivating small-molecule RITA enhances cisplatin-induced cytotoxicity and apoptosis in head and neck cancer.

    Science.gov (United States)

    Roh, Jong-Lyel; Ko, Jung Ho; Moon, Soo Jin; Ryu, Chang Hwan; Choi, Jun Young; Koch, Wayne M

    2012-12-01

    We evaluated whether the restoration of p53 function by the p53-reactivating small molecule RITA (reactivation of p53 and induction of tumor cell apoptosis enhances cisplatin-induced cytotoxicity and apoptosis in head-and-neck cancer (HNC). RITA induced prominent accumulation and reactivation of p53 in a wild-type TP53-bearing HNC cell line. RITA showed maximal growth suppression in tumor cells showing MDM2-dependent p53 degradation. RITA promoted apoptosis in association with upregulation of p21, BAX, and cleaved caspase-3; notably, the apoptotic response was blocked by pifithrin-α, demonstrating its p53 dependence. With increasing concentrations, RITA strongly induced apoptosis rather than G2-phase arrest. In combination therapy, RITA enhanced cisplatin-induced growth inhibition and apoptosis of HNC cells invitro and in vivo. Our data suggest that the restoration of p53 tumor-suppressive function by RITA enhances the cytotoxicity and apoptosis of cisplatin, an action that may offer an attractive strategy for treating HNC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. SCGB3A2 Inhibits Acrolein-Induced Apoptosis through Decreased p53 Phosphorylation.

    Science.gov (United States)

    Kurotani, Reiko; Shima, Reika; Miyano, Yuki; Sakahara, Satoshi; Matsumoto, Yoshie; Shibata, Yoko; Abe, Hiroyuki; Kimura, Shioko

    2015-04-28

    Chronic obstructive pulmonary disease (COPD), a major global health problem with increasing morbidity and mortality rates, is anticipated to become the third leading cause of death worldwide by 2020. COPD arises from exposure to cigarette smoke. Acrolein, which is contained in cigarette smoke, is the most important risk factor for COPD. It causes lung injury through altering apoptosis and causes inflammation by augmenting p53 phosphorylation and producing reactive oxygen species (ROS). Secretoglobin (SCGB) 3A2, a secretory protein predominantly present in the epithelial cells of the lungs and trachea, is a cytokine-like small molecule having anti-inflammatory, antifibrotic, and growth factor activities. In this study, the effect of SCGB3A2 on acrolein-related apoptosis was investigated using the mouse fibroblast cell line MLg as the first step in determining the possible therapeutic value of SCGB3A2 in COPD. Acrolein increased the production of ROS and phosphorylation of p53 and induced apoptosis in MLg cells. While the extent of ROS production induced by acrolein was not affected by SCGB3A2, p53 phosphorylation was significantly decreased by SCGB3A2. These results demonstrate that SCGB3A2 inhibited acrolein-induced apoptosis through decreased p53 phosphorylation, not altered ROS levels.

  12. SCGB3A2 Inhibits Acrolein-Induced Apoptosis through Decreased p53 Phosphorylation

    International Nuclear Information System (INIS)

    Kurotani, Reiko; Shima, Reika; Miyano, Yuki; Sakahara, Satoshi; Matsumoto, Yoshie; Shibata, Yoko; Abe, Hiroyuki; Kimura, Shioko

    2015-01-01

    Chronic obstructive pulmonary disease (COPD), a major global health problem with increasing morbidity and mortality rates, is anticipated to become the third leading cause of death worldwide by 2020. COPD arises from exposure to cigarette smoke. Acrolein, which is contained in cigarette smoke, is the most important risk factor for COPD. It causes lung injury through altering apoptosis and causes inflammation by augmenting p53 phosphorylation and producing reactive oxygen species (ROS). Secretoglobin (SCGB) 3A2, a secretory protein predominantly present in the epithelial cells of the lungs and trachea, is a cytokine-like small molecule having anti-inflammatory, antifibrotic, and growth factor activities. In this study, the effect of SCGB3A2 on acrolein-related apoptosis was investigated using the mouse fibroblast cell line MLg as the first step in determining the possible therapeutic value of SCGB3A2 in COPD. Acrolein increased the production of ROS and phosphorylation of p53 and induced apoptosis in MLg cells. While the extent of ROS production induced by acrolein was not affected by SCGB3A2, p53 phosphorylation was significantly decreased by SCGB3A2. These results demonstrate that SCGB3A2 inhibited acrolein-induced apoptosis through decreased p53 phosphorylation, not altered ROS levels

  13. p53-Dependent radiation-induced apoptosis in vivo: relationship to Bcl-2 and Bax expression

    International Nuclear Information System (INIS)

    Hasegawa, Masatoshi; Suzuki, Yoshiyuki; Furuta, Masaya; Yamakawa, Michitaka; Maebayashi, Katsuya; Hayakawa, Kayoko; Saito, Yoshihiro; Mitsuhashi, Norio; Niibe, Hideo

    1997-01-01

    Purpose: A close correlation between p53 protein expression and radiation-induced apoptosis has already been reported, however, Bcl-2 and Bax expression and the ratio of Bcl-2 to Bax have been also suggested to play an important role in the regulation of apoptotic cell death. In this study, we investigated the relationship between p53-dependent radiation-induced apoptosis and expression of Bcl-2 and Bax by using human tumors transplanted into nude mice. Materials and Methods: Three human tumors (an ependymoblastoma, a glioblastoma, and a small cell lung cancer) were subcutaneously transplanted into nude mice and irradiated with single doses of 1, 2, 5, or 10 Gy. The tumors were excised 1, 3, 6, 12, 24, and 48 hours after irradiation, fixed in 10% formalin for 24 hours, and embedded in paraffin. Slides were stained with hematoxylin and eosin for morphologic examination. Immunohistochemical studies were performed with mouse monoclonal antibodies to demonstrate p53, p21 (WAF-1), Bcl-2, and Bax expression. TdT-mediated dUTP-biotin nick-end labeling (TUNEL) and electron microscopic studies were performed to identify apoptosis, and PCR-SSCP analysis was used to evaluate p53 gene mutation. Results: All of the tumors showed only a few cells undergoing apoptosis before irradiation. Beginning several hours after irradiation, only the ependymoblastoma showed a large increase in the number of cells undergoing apoptosis, peaking at 6 hours after irradiation, and there was a clear dose-effect relationship. In contrast, the other tumors showed much less change following irradiation, and the dose-effect relationship was not as clear as in the ependymoblastoma. Immunohistochemically, the non-irradiated ependymoblastoma was negative for p53, p21, Bcl-2, and Bax. Following irradiation, however, many of the tumor cells became positive for p53 and p21, and a few cells became positive for bcl-2. In contrast, the glioblastoma and the small cell lung cancer were positive for p53 and Bcl-2

  14. Role for p53 in the Recovery of Transcription and Protection Against Apoptosis Induced by Ultraviolet Light

    Directory of Open Access Journals (Sweden)

    Bruce C. McKay

    1999-08-01

    Full Text Available We have previously suggested that the inhibition of RNA polymerase II-mediated transcription after exposure to UV light promotes the accumulation of p53 and the induction of apoptosis (Oncogene 13, 823–831. However, it was not clear whether p53 induction was contributing to apoptosis. Here we report that apoptosis is triggered at lower UV doses in p53-deficient Li-Fraumeni syndrome (LFS and human papillomavirus (HPV E6 expressing fibroblasts than in normal cells, suggesting that p53 can be protective against UVinduced apoptosis. There is no significant difference in the effect of UV-irradiation on the cell cycle distribution of normal and primary LFS fibroblasts. Importantly, the recovery of nascent mRNA synthesis in all p53-deficient fibroblasts is significantly impaired compared with control cells after exposure to relevant doses of UV light. Taken together, our results suggest that wild-type p53 can protect cells against UV-induced apoptosis by facilitating the recovery of transcription. Furthermore, we suggest that the capacity of cells to recover transcription after genotoxic damage is an important determinant of sensitivity to apoptosis.

  15. P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer.

    Science.gov (United States)

    Sharma, Shivani; Nagpal, Neha; Ghosh, Prahlad C; Kulshreshtha, Ritu

    2017-08-01

    miRNAs have emerged as key participants of p53 signaling pathways because they regulate or are regulated by p53. Here, we provide the first study demonstrating direct regulation of an oncogenic miRNA, miR-191-5p, by p53 and existence of a regulatory feedback loop. Using a combination of qRT-PCR, promoter-luciferase, and chromatin-immunoprecipitation assays, we show that p53 brings about down-regulation of miR-191-5p in breast cancer. miR-191-5p overexpression brought about inhibition of apoptosis in breast cancer cell lines (MCF7 and ZR-75) as demonstrated by reduction in annexin-V stained cells and caspase 3/7 activity, whereas miR-191-5p down-regulation showed the opposite. We further unveiled that SOX4 was a direct target of miR-191-5p. SOX4 overexpression was shown to increase p53 protein levels in MCF7 cells. miR-191-5p overexpression brought about down-regulation of SOX4 and thus p53 levels, suggesting the existence of a regulatory feedback loop. Breast cancer treatment by doxorubicin, an anti-cancer drug, involves induction of apoptosis by p53; we thus wanted to check whether miR-191-5p affects doxorubicin sensitivity. Interestingly, Anti-miR-191 treatment significantly decreased the IC50 of the doxorubicin drug and thus sensitized breast cancer cells to doxorubicin treatment by promoting apoptosis. Overall, this work highlights the importance of the p53-miR-191- SOX4 axis in the regulation of apoptosis and drug resistance in breast cancer and offers a preclinical proof-of-concept for use of an Anti-miR-191 and doxorubicin combination as a rational approach to pursue for better breast cancer treatment. © 2017 Sharma et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation

    Science.gov (United States)

    Apostolidis, Pani A.; Lindsey, Stephan; Miller, William M.

    2012-01-01

    During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects. PMID:22548738

  17. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    International Nuclear Information System (INIS)

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-01-01

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence

  18. Contribution of caspase-3 differs by p53 status in apoptosis induced by X-irradiation

    International Nuclear Information System (INIS)

    Kobayashi, Daisuke; Tokino, Takashi; Watanabe, Naoki

    2001-01-01

    We investigated the effect of p53 status on involvement of caspase-3 activation in cell death induced by X-irradiation, using rat embryonic fibroblasts (REFs) transduced with a temperature-sensitive mutant (mt) p53 gene. Cells with wild-type (wt) p53 showed greater resistance to X-irradiation than cells with mt p53. In cells with wt p53, X-irradiation-induced apoptosis was not inhibited by the caspase-3 inhibitor acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspartyl-aldehyde (Ac-DMQD-CHO) and caspase-3 activity was not elevated following X-irradiation, although induction of p53 and p21/WAF-1 protein was observed. In contrast, irradiated cells with mt p53 showed 89% inhibition of cell death with Ac-DMQD-CHO and 98% inhibition with the antioxidant N-acetyl-L-cysteine (NAC). In cells with mt p53, caspase-3 activity was increased approximately 5 times beyond baseline activity at 24 h after irradiation. This increase was almost completely inhibited by NAC. However, inhibition of caspase-3 by Ac-DMQD-CHO failed to decrease production of reactive oxygen species by cells with mt p53. Differential involvement of caspase-3 is a reason for differences in sensitivity to X-irradiation in cells with different p53 status. Caspase-3 activation appears to occur downstream from generation of reactive oxygen species occurring independently of wt p53 during X-irradiation-induced cell death. (author)

  19. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    Science.gov (United States)

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. OTUD5 regulates p53 stability by deubiquitinating p53.

    Directory of Open Access Journals (Sweden)

    Judong Luo

    Full Text Available The p53 tumour suppressor protein is a transcription factor that prevents oncogenic progression by activating the expression of apoptosis and cell-cycle arrest genes in stressed cells. The stability of p53 is tightly regulated by ubiquitin-dependent degradation, driven mainly by its negative regulators ubiquitin ligase MDM2.In this study, we have identified OTUD5 as a DUB that interacts with and deubiquitinates p53. OTUD5 forms a direct complex with p53 and controls level of ubiquitination. The function of OTUD5 is required to allow the rapid activation of p53-dependent transcription and a p53-dependent apoptosis in response to DNA damage stress.As a novel deubiquitinating enzyme for p53, OTUD5 is required for the stabilization and the activation of a p53 response.

  1. Enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell with different p53 status

    International Nuclear Information System (INIS)

    Pang Dequan; Wang Peiguo; Wang Ping; Zhang Weiming

    2008-01-01

    Objective: To investigate the enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell lines(A549 and GLC-82) with different p53 status in vitro. Methods: Two human lung adenocarcinoma cell lines of A549 and GLC-82 were examined on their difference in p53 status with immunohistochemistry stain and PCR-SSCP technique. Expand Ad-wtp53 was transfected into tumor cells. Clonogenic assays were performed to evaluate the inhibition effect on cell growth and the degree of sensitization to irradiation. Apoptosis and cell cycle changes were determined using the flow cytometry assay. Results: The A549 cell line presented positive P53 expression while GLC-82 negative. GLC-82 bore mutant p53 on the exon 7. The wtp53 gene could be efficiently expressed in the two cell lines and greatly inhibit the cell growth. Its efficiency didn't depend on the intrinsic p53 genetic status. After irradiation, its function of inducing G 1 arrest and apoptosis on GLC-82 cell line was much stronger than the A549 cell line. In both the A549 and GLC-82 cell lines, the combination of Ad-p53 plus radiation resulted in more apoptosis than the others. There was no significant difference between two groups. Conclusions: Ad-p53 can depress the tumor growth and enhance the radiosensitivity of human lung adenocarcinoma cells. And this effect is independent of endogenous p53 status. (authors)

  2. Critical role of p53 upregulated modulator of apoptosis in benzyl isothiocyanate-induced apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Marie Lue Antony

    Full Text Available Benzyl isothiocyanate (BITC, a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast, MCF-7 (breast, and HCT-116 (colon human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells and Bcl-2 (MCF-7 cells. Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study

  3. 3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis In Vivo via JNK/p53 Pathways

    Science.gov (United States)

    Liu, Man; Huang, Guoren; Wang, Thomas T.Y.; Sun, Xiangjun; Yu, Liangli (Lucy)

    2016-01-01

    Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) are a group of processing induced food contaminants with nephrotoxicity but the molecular mechanism(s) remains unclear. This study investigated whether and how the JNK/p53 pathway may play a role in the nephrotoxic effect of 3-MCPD esters using 3-MCPD 1-palmitate (MPE) as a probe compound in Sprague Dawley rats. Microarray analysis of the kidney from the Sprague Dawley rats treated with MPE, using Gene Ontology categories and KEGG pathways, revealed that MPE altered mRNA expressions of the genes involved in the mitogen-activated protein kinase (JNK and ERK), p53, and apoptotic signal transduction pathways. The changes in the mRNA expressions were confirmed by qRT-PCR and Western blot analyses and were consistent with the induction of tubular cell apoptosis as determined by histopathological, TUNEL, and immunohistochemistry analyses in the kidneys of the Sprague Dawley rats. Additionally, p53 knockout attenuated the apoptosis, and the apoptosis-related protein bax expression and cleaved caspase-3 activation induced by MPE in the p53 knockout C57BL/6 mice, whereas JNK inhibitor SP600125 but not ERK inhibitor U0126 inhibited MPE-induced apoptosis, supporting the conclusion that JNK/p53 might play a critical role in the tubular cell apoptosis induced by MPE and other 3-MCPD fatty acid esters. PMID:27008853

  4. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean

    International Nuclear Information System (INIS)

    Hollmann, Gabriela; Linden, Rafael; Giangrande, Angela; Allodi, Silvana

    2016-01-01

    Highlights: • The paper characterizes molecular pathways of cell responses to environmental doses of UV in brain tissue of a crab species. • The UV radiation changes levels of proteins which trigger apoptotic or cell cycle arrest pathways and also it changes neurotrophins which lead to apoptosis of neural cell in the central nervous system (CNS) of the crab Ucides cordatus. • The UVB wavelengths in the solar simulator damaged the DNA, either directly or indirectly, by increasing ROS, and induced the increase of p53 and AKT, which blocked p21 and increased the expression of activated caspase-3, triggering apoptosis. The signs of death increased the expression of neurotrophins (BDNF and GDNF), which continued to stimulate the apoptosis signaling mediated by caspase-3. • In the brain of the crab U. cordatus, p53/p21 relationship in response to UV radiation is different from that of most mammals. - Abstract: Ultraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3. After the fifth day of exposure, UVB radiation and SIM increased the protein content of p53, increasing the content of AKT and, somehow, blocking p21, increasing the content of activated caspase-3, which led the cells to apoptosis. The signs of death affected the increase in neurotrophins, such as BDNF and GDNF, stimulating the apoptotic cascade of events. Immunohistochemical assays and immunoblotting showed that apoptosis was present in the brains of all UV groups, while

  5. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, Gabriela, E-mail: gabrielahollmann@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Linden, Rafael, E-mail: rlinden@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Giangrande, Angela, E-mail: angela.giangrande@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire-IGBMC, INSERM, Strasbourg (France); Allodi, Silvana, E-mail: sallodi@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil)

    2016-04-15

    Highlights: • The paper characterizes molecular pathways of cell responses to environmental doses of UV in brain tissue of a crab species. • The UV radiation changes levels of proteins which trigger apoptotic or cell cycle arrest pathways and also it changes neurotrophins which lead to apoptosis of neural cell in the central nervous system (CNS) of the crab Ucides cordatus. • The UVB wavelengths in the solar simulator damaged the DNA, either directly or indirectly, by increasing ROS, and induced the increase of p53 and AKT, which blocked p21 and increased the expression of activated caspase-3, triggering apoptosis. The signs of death increased the expression of neurotrophins (BDNF and GDNF), which continued to stimulate the apoptosis signaling mediated by caspase-3. • In the brain of the crab U. cordatus, p53/p21 relationship in response to UV radiation is different from that of most mammals. - Abstract: Ultraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3. After the fifth day of exposure, UVB radiation and SIM increased the protein content of p53, increasing the content of AKT and, somehow, blocking p21, increasing the content of activated caspase-3, which led the cells to apoptosis. The signs of death affected the increase in neurotrophins, such as BDNF and GDNF, stimulating the apoptotic cascade of events. Immunohistochemical assays and immunoblotting showed that apoptosis was present in the brains of all UV groups, while

  6. Driving p53 Response to Bax Activation Greatly Enhances Sensitivity to Taxol by Inducing Massive Apoptosis

    Directory of Open Access Journals (Sweden)

    Paola De Feudis

    2000-05-01

    Full Text Available The proapoptotic gene bax is one of the downstream effectors of p53. The p53 binding site in the bax promoter is less responsive to p53 than the one in the growth arrest mediating gene p21. We introduced the bax gene under the control of 13 copies of a strong p53 responsive element into two ovarian cancer cell lines. The clones expressing bax under the control of p53 obtained from the wild-type (wt p53-expressing cell line A2780 were much more sensitive (500- to 1000-fold to the anticancer agent taxol than the parent cell line, with a higher percentage of cells undergoing apoptosis after drug treatment that was clearly p53-dependent and bax-mediated. Xenografts established in nude mice from one selected clone (A2780/C3 were more responsive to taxol than the parental line and the apoptotic response of A2780/C3 tumors was also increased after treatment. Introduction of the same plasmid into the p53 null SKOV3 cell line did not alter the sensitivity to taxol or the induction of apoptosis. In conclusion, driving the p53 response (after taxol treatment by activating the bax gene rather than the p21 gene results in induction of massive apoptosis, in vitro and in vivo, and greatly enhances sensitivity to the drug.

  7. Mitotic catastrophe occurs in the absence of apoptosis in p53-null cells with a defective G1 checkpoint.

    Directory of Open Access Journals (Sweden)

    Michalis Fragkos

    Full Text Available Cell death occurring during mitosis, or mitotic catastrophe, often takes place in conjunction with apoptosis, but the conditions in which mitotic catastrophe may exhibit features of programmed cell death are still unclear. In the work presented here, we studied mitotic cell death by making use of a UV-inactivated parvovirus (adeno-associated virus; AAV that has been shown to induce a DNA damage response and subsequent death of p53-defective cells in mitosis, without affecting the integrity of the host genome. Osteosarcoma cells (U2OSp53DD that are deficient in p53 and lack the G1 cell cycle checkpoint respond to AAV infection through a transient G2 arrest. We found that the infected U2OSp53DD cells died through mitotic catastrophe with no signs of chromosome condensation or DNA fragmentation. Moreover, cell death was independent of caspases, apoptosis-inducing factor (AIF, autophagy and necroptosis. These findings were confirmed by time-lapse microscopy of cellular morphology following AAV infection. The assays used readily revealed apoptosis in other cell types when it was indeed occurring. Taken together the results indicate that in the absence of the G1 checkpoint, mitotic catastrophe occurs in these p53-null cells predominantly as a result of mechanical disruption induced by centrosome overduplication, and not as a consequence of a suicide signal.

  8. High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation

    International Nuclear Information System (INIS)

    Yamakawa, Nobuhiro; Takahashi, Akihisa; Mori, Eiichiro; Imai, Yuichiro; Ohnishi, Ken; Kirita, Tadaaki; Ohnishi, Takeo; Furusawa, Yoshiya

    2008-01-01

    Although mutations in the p53 gene can lead to resistance to radiotherapy, chemotherapy and thermotherapy, high linear energy transfer (LET) radiation induces apoptosis regardless of p53 gene status in cancer cells. The aim of this study was to clarify the mechanisms involved in high LET radiation-induced apoptosis. Human gingival cancer cells (Ca9-22 cells) containing a mutated p53 (mp53) gene were irradiated with X-rays, C-ion (13-100 KeV/μm), or Fe-ion beams (200 KeV/μm). Cellular sensitivities were determined using colony forming assays. Apoptosis was detected and quantified with Hoechst 33342 staining. The activity of Caspase-3 was analyzed with Western blotting and flow cytometry. Cells irradiated with high LET radiation showed a high sensitivity with a high frequency of apoptosis induction. The relative biological effectiveness (RBE) values for the surviving fraction and apoptosis induction increased in a LET-dependent manner. Both RBE curves reached a peak at 100 KeV/μm, and then decreased at values over 100 KeV/μm. When cells were irradiated with high LET radiation, Caspase-3 was cleaved and activated, leading to poly (ADP-ribose) polymerase (PARP) cleavage. In addition, Caspase-9 inhibitor suppressed Caspase-3 activation and apoptosis induction resulting from high LET radiation to a greater extent than Caspase-8 inhibitor. These results suggest that high LET radiation enhances apoptosis by activation of Caspase-3 through Caspase-9, even in the presence of mp53. (author)

  9. Fast neutrons-induced apoptosis is Fas-independent in lymphoblastoid cells

    International Nuclear Information System (INIS)

    Fischer, Barbara; Benzina, Sami; Jeannequin, Pierre; Dufour, Patrick; Bergerat, Jean-Pierre; Denis, Jean-Marc; Gueulette, John; Bischoff, Pierre L.

    2005-01-01

    We have previously shown that ionizing radiation-induced apoptosis in human lymphoblastoid cells differs according to their p53 status, and that caspase 8-mediated cleavage of BID is involved in the p53-dependent pathway. In the present study, we investigated the role of Fas signaling in caspase 8 activation induced by fast neutrons irradiation in these cells. Fas and FasL expression was assessed by flow cytometry and by immunoblot. We also measured Fas aggregation after irradiation by fluorescence microscopy. We found a decrease of Fas expression after irradiation, but no change in Fas ligand expression. We also showed that, in contrast to the stimulation of Fas by an agonistic antibody, Fas aggregation did not occur after irradiation. Altogether, our data strongly suggest that fast neutrons induced-apoptosis is Fas-independent, even in p53-dependent apoptosis

  10. C/EBPβ represses p53 to promote cell survival downstream of DNA damage independent of oncogenic Ras and p19Arf

    Science.gov (United States)

    Ewing, SJ; Zhu, S; Zhu, F; House, JS; Smart, RC

    2013-01-01

    CCAAT/enhancer-binding protein-β (C/EBPβ) is a mediator of cell survival and tumorigenesis. When C/EBPβ−/− mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19Arf and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19Arf is dramatically elevated in C/EBPβ−/− epidermis and that C/EBPβ represses a p19Arf promoter reporter. To determine whether p19Arf is responsible for the proapoptotic phenotype in C/EBPβ−/− mice, C/EBPβ−/−;p19Arf−/− mice were generated. C/EBPβ−/−;p19Arf−/− mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19Arf is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPβ−/− epidermis, we generated K14-ER:Ras; C/EBPβ−/− mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPβ−/− mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPβ represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPβ may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents. PMID:18636078

  11. The p53-MDM2 network: from oscillations to apoptosis

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Apoptosis; cancer; cell cycle; MDM2 overexpression; tumour suppressor .... model of the p53-MDM2 negative feedback loop included an .... MDM2 overexpression, when subjected to nutlin-3 treatment. Some aspects of the model are similar to those ... A family of proteases termed caspases .... Implications for therapy; Proc.

  12. Phosphorylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53

    Science.gov (United States)

    Charvet, Céline; Wissler, Manuela; Brauns-Schubert, Prisca; Wang, Shang-Jui; Tang, Yi; Sigloch, Florian C.; Mellert, Hestia; Brandenburg, Martin; Lindner, Silke E.; Breit, Bernhard; Green, Douglas R.; McMahon, Steven B.; Borner, Christoph; Gu, Wei; Maurer, Ulrich

    2011-01-01

    Summary Activation of p53 by DNA damage results in either cell cycle arrest, allowing DNA repair and cell survival, or induction of apoptosis. As these opposite outcomes are both mediated by p53 stabilization, additional mechanisms to determine this decision must exist. Here we show that glycogen synthase kinase-3 (GSK-3) is required for the p53-mediated induction of the pro-apoptotic BH3 only-protein PUMA, an essential mediator of p53-induced apoptosis. Inhibition of GSK-3 protected from cell death induced by DNA damage and promoted increased long-term cell survival. We demonstrate that GSK-3 phosphorylates serine 86 of the p53-acetyltransferase Tip60. A Tip60S86A mutant was less active to induce p53 K120 acetylation, Histone 4 acetylation and expression of PUMA. Our data suggest that GSK-3 mediated Tip60S86-phosphorylation provides a link between PI3K signaling and the choice for or against apoptosis induction by p53. PMID:21658600

  13. Restriction of human herpesvirus 6B replication by p53

    DEFF Research Database (Denmark)

    Øster, Bodil; Kofod-Olsen, Emil; Bundgaard, Bettina

    2008-01-01

    Human herpesvirus 6B (HHV-6B) induces significant accumulation of p53 in both the nucleus and cytoplasm during infection. Activation of p53 by DNA damage is known to induce either growth arrest or apoptosis; nevertheless, HHV-6B-infected cells are arrested in their cell cycle independently of p53...

  14. Human herpesvirus 6B inhibits cell proliferation by a p53-independent pathway

    DEFF Research Database (Denmark)

    Øster, Bodil; Kaspersen, M.D.; Kofod-Olsen, Emil

    2006-01-01

    BACKGROUND: Various forms of cellular stress can activate the tumour suppressor protein p53, an important regulator of cell cycle arrest, apoptosis, and cellular senescence. Cells infected by human herpesvirus 6B (HHV-6B) accumulate aberrant amounts of p53. OBJECTIVES: The aim of this study...

  15. p53-dependent inhibition of TrxR1 contributes to the tumor-specific induction of apoptosis by RITA.

    Science.gov (United States)

    Hedström, Elisabeth; Eriksson, Sofi; Zawacka-Pankau, Joanna; Arnér, Elias S J; Selivanova, Galina

    2009-11-01

    Thioredoxin reductase 1 (TrxR1) is a key regulator in many redox-dependent cellular pathways, and is often overexpressed in cancer. Several studies have identified TrxR1 as a potentially important target for anticancer therapy. The low molecular weight compound RITA (NSC 652287) binds p53 and induces p53-dependent apoptosis. Here we found that RITA also targets TrxR1 by non-covalent binding, followed by inhibition of its activity in vitro and by inhibition of TrxR activity in cancer cells. Interestingly, a novel approximately 130 kDa form of TrxR1, presumably representing a stable covalently linked dimer, and an increased generation of reactive oxygen species (ROS) were induced by RITA in cancer cells in a p53-dependent manner. Similarly, the gold-based TrxR inhibitor auranofin induced apoptosis related to oxidative stress, but independently of p53 and without apparent induction of the approximately 130 kDa form of TrxR1. In contrast to the effects observed in cancer cells, RITA did not inhibit TrxR or ROS formation in normal fibroblasts (NHDF). The inhibition of TrxR1 can sensitize tumor cells to agents that induce oxidative stress and may directly trigger cell death. Thus, our results suggest that a unique p53-dependent effect of RITA on TrxR1 in cancer cells might synergize with p53-dependent induction of pro-apoptotic genes and oxidative stress, thereby leading to a robust induction of cancer cell death, without affecting non-transformed cells.

  16. Genomic alterations during p53-dependent apoptosis induced by γ-irradiation of Molt-4 leukemia cells.

    Directory of Open Access Journals (Sweden)

    Rouba Hage-Sleiman

    Full Text Available Molt-4 leukemia cells undergo p53-dependent apoptosis accompanied by accumulation of de novo ceramide after 14 hours of γ-irradiation. In order to identify the potential mediators involved in ceramide accumulation and the cell death response, differentially expressed genes were identified by Affymetrix Microarray Analysis. Molt-4-LXSN cells, expressing wild type p53, and p53-deficient Molt-4-E6 cells were irradiated and harvested at 3 and 8 hours post-irradiation. Human genome U133 plus 2.0 array containing >47,000 transcripts was used for gene expression profiling. From over 10,000 probes, 281 and 12 probes were differentially expressed in Molt-4-LXSN and Molt-4-E6 cells, respectively. Data analysis revealed 63 (upregulated and 20 (downregulated genes (>2 fold in Molt-4-LXSN at 3 hours and 140 (upregulated and 21 (downregulated at 8 hours post-irradiation. In Molt-4-E6 cells, 5 (upregulated genes each were found at 3 hours and 8 hours, respectively. In Molt-4-LXSN cells, a significant fraction of the genes with altered expression at 3 hours were found to be involved in apoptosis signaling pathway (BCL2L11, p53 pathway (PMAIP1, CDKN1A and FAS and oxidative stress response (FDXR, CROT and JUN. Similarly, at 8 hours the genes with altered expression were involved in the apoptosis signaling pathway (BAX, BIK and JUN, p53 pathway (BAX, CDKN1A and FAS, oxidative stress response (FDXR and CROT and p53 pathway feedback loops 2 (MDM2 and CDKN1A. A global molecular and biological interaction map analysis showed an association of these altered genes with apoptosis, senescence, DNA damage, oxidative stress, cell cycle arrest and caspase activation. In a targeted study, activation of apoptosis correlated with changes in gene expression of some of the above genes and revealed sequential activation of both intrinsic and extrinsic apoptotic pathways that precede ceramide accumulation and subsequent execution of apoptosis. One or more of these altered genes

  17. Novel small molecule induces p53-dependent apoptosis in human colon cancer cells

    International Nuclear Information System (INIS)

    Park, Sang Eun; Min, Yong Ki; Ha, Jae Du; Kim, Bum Tae; Lee, Woo Ghil

    2007-01-01

    Using high-throughput screening with small-molecule libraries, we identified a compound, KCG165 [(2-(3-(2-(pyrrolidin-1-yl)ethoxy)-1,10b-dihydro-[1,2,4]triazolo[1,5-c] quinazolin-5(6H)-one)], which strongly activated p53-mediated transcriptional activity. KCG165-induced phosphorylations of p53 at Ser 6 , Ser 15 , and Ser 20 , which are all key residues involved in the activation and stabilization of p53. Consistent with these findings, KCG165 increased level of p53 protein and led to the accumulation of transcriptionally active p53 in the nucleus with the increased occupancy of p53 in the endogenous promoter region of its downstream target gene, p21 WAF1/CIP . Notably, KCG165-induced p53-dependent apoptosis in cancer cells. Furthermore, we suggested topoisomerase II as the molecular target of KCG165. Together, these results indicate that KCG165 may have potential applications as an antitumor agent

  18. Radioadaptive response and radiation-induced teratogenesis in the late period of organogenesis in mice. Involvement of p53-dependent apoptosis

    International Nuclear Information System (INIS)

    Wang, Bing; Ohyama, Harumi; Nose, Masako; Yukawa, Osami; Yamada, Takeshi; Hayata, Isamu

    2003-01-01

    In the past 5 years, a series of study was done at our institute to investigate radiation effects on the embryogenesis in mice with an emphasis on mechanisms involved in the radiation-induced adaptive response and the role of radiation-induced apoptosis played in teratogenesis in the late period of organogenesis. Using the limb bud system, we first found that radiation-induced apoptosis is involved in malformations, namely, radiation-induced apoptosis in the predigital regions of embryonic limb buds is responsible for digital defects in ICR mice. Examination of embryonic C57BL/6J mice with different p53 status led to further finding that susceptibility to the radiation-induced apoptosis and digital defects depends on both the p53 status and the radiation dose. p53 wild-type mice appeared to be the most sensitive, while p53 knockout mice were the most resistant. These results indicate that p53-dependent apoptosis mediates radiation-induced digital defects. The existence of a radioadaptive response in fetuses, i.e., the priming dose significantly decreases the apoptosis induction, prenatal death, and digital defects in the living fetuses induced by the challenging dose, was found first in ICR strain mice and later confirmed again in C57BL/6J mice. p53 heterozygous embryos did not show the radioadaptive response, indicating the involvement of p53 in the radioadaptive response. (author)

  19. Title of paper: the induction of P-53 independent programmed cell death (apoptosis) with ionizing radiation and 5-fluorouracil (5-FU) in the HT-29 human colon carcinoma cell line

    International Nuclear Information System (INIS)

    Blackstock, A. Wm.; Gill, Misha; Hess, Suzanne M.; Fisher, Robert W.; Leadon, Steven A.; Tepper, Joel E.

    1996-01-01

    Purpose/Objective: The role of programmed cell death (apoptosis) as a cellular response to cancer therapy such as radiation or chemotherapy is the subject of much study, and manipulation of the apoptotic response in tumor cells may be valuable in the treatment of a variety of cancers. Both p53 dependent and independent apoptotic pathways have been identified; p53 is mutated in at least 50 % of human cancers and a majority of radiation resistant tumors contain p53 mutations. This study is designed to examine the induction of programmed cell death in a human colon carcinoma cell line that possesses two mutated p53 alleles. Ionizing radiation alone, or in combination with the chemotherapeutic drug 5-fluorouracil (5-FU), were used to elicit the apoptotic response. This study will focus on whether these treatments can induce a significant apoptotic response in cells that have mutated p53 alleles. Materials and Methods: HT-29 cells were assessed for clonogenic survival after being plated at a variety of densities, and treated with single graded doses of radiation (0, 1, 2, 4, 6, 8, 10 Gy) either alone or immediately prior to a 24 hour exposure to 5-FU (2 ug/ml). The extent of radiation and 5-FU-induced apoptosis was determined in the HT-29 cell line after single doses of 0, 2, 5, and 10 Gy either alone or immediately prior to a 24 hour incubation in 5-FU (2 ug/ml). Three separate assays were used to evaluate the apoptotic response. Cells undergoing apoptosis undergo gross morphological changes including a condensation of chromatin, membrane blebbing, and an eventual release of membrane bound cytoplasmic fragments. Hematoxylin and eosin staining were used to visualize some of these morphological changes. Another characteristic of the apoptotic response is the activation of an endonuclease that cleaves DNA into specific fragments. Accordingly, an ELISA cell death assay (Boehringer Mannheim, Indianapolis IN) was used to quantitate cytoplasmic histone-associated DNA

  20. Free radical scavenger edaravone suppresses X-ray-induced apoptosis through p53 inhibition in MOLT-4 cells

    International Nuclear Information System (INIS)

    Sasano, Nakashi; Shiraishi, Kenshiro; Igaki, Hiroshi; Nakagawa, Keiichi; Enomoto, Atsushi; Hosoi, Yoshio; Matsumoto, Yoshihisa; Miyagawa, Kiyoshi; Katsumura, Yosuke

    2007-01-01

    Edaravone, a clinical drug used widely for the treatment of acute cerebral infarction, is reported to scavenge free radicals. In the present study, we investigated the radioprotective effect of edaravone on X-ray-induced apoptosis in MOLT-4 cells. Apoptosis was determined by the dye exclusion test, Annexin V binding assay, cleavage of caspase, and DNA fragmentation. We found that edaravone significantly suppressed the X-ray-induced apoptosis. The amount of intracellular reactive oxygen species (ROS) production was determined by the chloromethyl-2', 7'-dichlorodihydro-fluorescein diacetate system. We found that the intracellular ROS production by X-irradiation was completely suppressed by the addition of edaravone. The accumulation and phosphorylation of p53 and the expression of p21 WAF1 , a target protein of p53, which were induced by X-irradiation, were also suppressed by adding edaravone. We conclude that the free radical scavenger edaravone suppresses X-ray-induced apoptosis in MOLT-4 cells by inhibiting p53. (author)

  1. Free radical scavenger edaravone suppresses X-ray-induced apoptosis through p53 inhibition in MOLT-4 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sasano, Nakashi; Shiraishi, Kenshiro; Igaki, Hiroshi; Nakagawa, Keiichi [Tokyo Univ., Graduate School of Medicine, Tokyo (Japan); Enomoto, Atsushi; Hosoi, Yoshio; Matsumoto, Yoshihisa; Miyagawa, Kiyoshi [Tokyo Univ., Faculty of Medicine, Tokyo (Japan); Katsumura, Yosuke [Tokyo Univ., Graduate School of Engineering, Tokyo (Japan)

    2007-11-15

    Edaravone, a clinical drug used widely for the treatment of acute cerebral infarction, is reported to scavenge free radicals. In the present study, we investigated the radioprotective effect of edaravone on X-ray-induced apoptosis in MOLT-4 cells. Apoptosis was determined by the dye exclusion test, Annexin V binding assay, cleavage of caspase, and DNA fragmentation. We found that edaravone significantly suppressed the X-ray-induced apoptosis. The amount of intracellular reactive oxygen species (ROS) production was determined by the chloromethyl-2', 7'-dichlorodihydro-fluorescein diacetate system. We found that the intracellular ROS production by X-irradiation was completely suppressed by the addition of edaravone. The accumulation and phosphorylation of p53 and the expression of p21{sup WAF1}, a target protein of p53, which were induced by X-irradiation, were also suppressed by adding edaravone. We conclude that the free radical scavenger edaravone suppresses X-ray-induced apoptosis in MOLT-4 cells by inhibiting p53. (author)

  2. Disruption of the MDM2-p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway

    NARCIS (Netherlands)

    Koster, R.; Timmer-Bosscha, H.; Bischoff, R.; Gietema, J. A.; de Jong, S.

    Wild-type p53 has a major role in the response and execution of apoptosis after chemotherapy in many cancers. Although high levels of wild-type p53 and hardly any TP53 mutations are found in testicular cancer (TC), chemotherapy resistance is still observed in a significant subgroup of TC patients.

  3. Differential induction of p53-mediated apoptosis in medulloblastomas and gliomas correlates with their ability to induce bax

    International Nuclear Information System (INIS)

    Shu, H.-K.G.; Furman, Felix; Dee, Suzanne; Israel, Mark A.

    1997-01-01

    Purpose/Objective: Medulloblastoma cell lines readily undergo a p53-mediated apoptosis following exposure to ionizing radiation, while glioma cell lines do not undergo significant levels of apoptosis following irradiation. This study attempts to define some of the molecular events that characterize the differential ability medulloblastomas and gliomas to undergo radiation-induced apoptosis. Materials and Methods: The medulloblastoma cell lines D283 and D341 and the glioma cell lines U87, U343 and U563 were used in this study. All five cell lines were confirmed to have a wild type p53 by their ability to induce p21 protein levels and to undergo a cell-cycle arrest in G1 following treatment with ionizing radiation. Also, 3 clonal derivatives of D283 were used. Two of the clones were derived following transfection with an expression plasmid containing a dominant negative mutant p53 (Arg175 --> His) expressed from the CMV promoter (D283/53.6 and D283/53.7), while the remaining clone was derived following transfection with that same expression plasmid without mutant p53 (D283/vec). All irradiation experiments were performed on Phillips RT-250 X-ray unit using 250 Kvp X-rays. In each case, 5 Gy of ionizing radiation was given at a dose rate of 250 cGy/minute. Apoptosis was quantitated by staining fixed cells with propidium iodide and determining the percentage of cells with subdiploid DNA content by flow cytometry. Northern blot analysis was performed using standard methods. Results: The D283 and D341 cell lines exhibited a significant induction of apoptosis when assayed 2 days following treatment with radiation while the U87, U343 and U563 cell lines displayed only minimal induction of apoptosis when assayed following treatment at that time. RNA was prepared from the different cell lines that were unirradiated, 6 hours or 24 hours post-irradiation. Northern blots were made of the total RNAs and probed for bax, bcl-2 and bcl-x mRNA. This analysis detected no significant

  4. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Weiwei Guo

    Full Text Available Heat shock protein 90 (HSP90 inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70 family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.

  5. Delayed expression of apoptosis in X-irradiated human leukemic MOLT-4 cells transfected with mutant p53

    International Nuclear Information System (INIS)

    Nakano, Hisako; Yonekawa, Hiromichi; Shinohara, Kunio

    2003-01-01

    The effects of X-rays on cell survival, apoptosis, and long-term response in the development of cell death as measured by the dye exclusion test were studied in human leukemic MOLT-4 cells (p53 wild-type) stably transfected with a mutant p53 cDNA expression vector. Cell survival, as determined from colony-forming ability, was increased in an expression level dependent manner, but the increase was partial even with the highest-expressing clone (B3). This contrasts with the prior observation that cell death and apoptosis in B3 are completely inhibited at 24 h after irradiation with 1.8 Gy of X-rays. The examination of B3 cells incubated for longer than 24 h after X-irradiation showed a delay in the induction of cell death and apoptosis. Western blot analysis revealed that the time required to reach the highest level of wild-type p53 protein in B3 was longer than the time in MOLT-4 and that the p53 may be stabilized by the phosphorylation at Ser-15. These results suggest that the introduction of mutant p53 into MOLT-4 merely delays the development of apoptosis, during which the cells could repair the damage induced by X-rays, and results in the partial increase in cell survival. (author)

  6. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Wang, Dan, E-mail: danwangwdd@163.com; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.

  7. Apoptosis and cell proliferation in the development of gastric carcinomas: associations with c-myc and p53 protein expression.

    Science.gov (United States)

    Ishii, Hideaki H; Gobé, Glenda C; Pan, Wenshen; Yoneyama, Juichi; Ebihara, Yoshiro

    2002-09-01

    Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P cancers that had either c-myc or p53-positivity. The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. Copyright 2002 Blackwell Publishing Asia Pty Ltd

  8. Effects of serum starvation on radiosensitivity, proliferation and apoptosis in four human tumor cell lines with different p53 status

    International Nuclear Information System (INIS)

    Oya, N.; Zoelzer, F.; Werner, F.; Streffer, C.

    2003-01-01

    Purpose: The effects of serum starvation on radiation sensitivity, cell proliferation and apoptosis were investigated with particular consideration of the p53 status. Material and Methods: Four human tumor cell lines, Be11 (melanoma, p53 wild-type), MeWo (melanoma, p53 mutant), 4197 (squamous cell carcinoma, p53 wild-type) and 4451 (squamous cell carcinoma, p53 mutant), were used. After the cells had been incubated in starvation medium (0.5% FCS) for 1-6 days, changes in cell cycle distribution, induction of apoptosis and necrosis, and changes in radiation sensitivity were assessed by two-parameter flow cytometric measurements of DNA content/BrdU labeling, two-parameter flow cytometric measurements of DNA-dye-exclusion/Annexin V binding, and a conventional colony assay, respectively. Results: p53 wild-type cell lines showed a decrease in the BrdU labeling index and an increase in the apoptotic cell frequency in starvation medium. p53 mutant cell lines showed a decrease in the BrdU labeling index but no evidence of apoptosis. These cells went into necrosis instead. The radiation sensitivity was increased in 4451 and slightly decreased in Be11 and 4197 in starvation medium. Conclusion: These data suggest a functional involvement of p53 in starvation-induced G1-block and apoptosis in tumor cells. Altered radiosensitivity after culture in starvation medium seemed to be explained at least in part by the starvation-induced G1-block. The frequency of starvation-induced apoptosis or necrosis was not correlated with radiation sensitivity. (orig.)

  9. Transfection of wild type ADVP53 gene into human brain tumor cell lines has a radiosensitizing effect independent of apoptosis

    International Nuclear Information System (INIS)

    Geng, L.; Walter, S; Vaughan, A.T.M.

    1997-01-01

    Purpose: Despite attempts with a variety of therapeutic approaches there has been little impact on the survival of patients with Glioblastoma multiforme, with median survivals reported of approximately 12 months. In this study a replication restricted adenovirus vector is used to transfer the wild type p53 gene into two cell lines derived from a human astrocytoma U87MG or glioblastoma T98G, to determine its ability to act as a radiosensitizer in conjunction with conventional radiotherapy. Methods: An adenovirus vector containing the human wild type p53 (Advp53) gene was used in addition to a control vector containing the β-galactosidase (Advγgal) reporter gene. To achieve cellular incorporation both vectors were incubated with cells for 30 minutes - washed and returned to culture. The successful incorporation of each vector was determined by either a p53 assay using either a western blotting or flow cytometry techniques, or specific staining for β-galactosidase activity. The presence of each vector was assayed until the constructs were eliminated from the cell. To determine the effects of these vectors on cell survival sufficient vector was added to produce a measurable reduction in clonogenic survival and this value was used in subsequent irradiation experiments. To determine the ability of wild type p53 to induce apoptosis the cells were examined from 1 to 5 days after irradiation by H and E staining for the characteristic morphology indicating an apoptotic process. Results: Both the Advp53 and Advβgal vectors were successfully incorporated into each cell line. Expression of each gene was reduced to approximately half by 5 days and virtually eliminated by 15 days after transfection in both lines. At the doses used the wild type Advp53 adenovirus was toxic to both cell lines giving surviving fractions between 39-74%. When this toxicity was taken into account the presence of the Advp53 gene had a radiosensitizing effect in each cell line. To determine the

  10. Apaf-1 is a transcriptional target for E2F and p53

    DEFF Research Database (Denmark)

    Moroni, M C; Hickman, E S; Lazzerini Denchi, E

    2001-01-01

    between the deregulation of the pRB pathway and apoptosis. Furthermore, because the pRB pathway is functionally inactivated in most cancers, the identification of Apaf-1 as a transcriptional target for E2F might explain the increased sensitivity of tumour cells to chemotherapy. We also show that......, independently of the pRB pathway, Apaf-1 is a direct transcriptional target of p53, suggesting that p53 might sensitize cells to apoptosis by increasing Apaf-1 levels....

  11. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage

    International Nuclear Information System (INIS)

    Liu Zhaojian; Liu Qiao; Xu Bing; Wu Jingjing; Guo Chun; Zhu Faliang; Yang Qiaozi; Gao Guimin; Gong Yaoqin; Shao Changshun

    2009-01-01

    Alkaloid berberine is widely used for the treatment of diarrhea and other diseases. Many laboratory studies showed that it exhibits anti-proliferative activity against a wide spectrum of cancer cells in culture. In this report we studied the mechanisms underlying the inhibitory effects of berberine on human osteosarcoma cells and on normal osteoblasts. The inhibition was largely attributed to cell cycle arrest at G1 and G2/M, and to a less extent, to apoptosis. The G1 arrest was dependent on p53, as G1 arrest was abolished in p53-deficient osteosarcoma cells. The induction of G1 arrest and apoptosis was accompanied by a p53-dependent up-regulation of p21 and pro-apoptotic genes. However, the G2/M arrest could be induced by berberine regardless of the status of p53. Interestingly, DNA double-strand breaks, as measured by the phosphorylation of H2AX, were remarkably accumulated in berberine-treated cells in a dose-dependent manner. Thus, one major mechanism by which berberine exerts its growth-inhibitory effect is to inflict genomic lesions on cells, which in turn trigger the activation of p53 and the p53-dependent cellular responses including cell cycle arrest and apoptosis

  12. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhaojian; Liu Qiao; Xu Bing; Wu Jingjing [Key Laboratory of Experimental Teratology of Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012 (China); Guo Chun; Zhu Faliang [Institute of Immunology, Shandong University School of Medicine, Jinan, Shandong 250012 (China); Yang Qiaozi [Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States); Gao Guimin [Key Laboratory of Experimental Teratology of Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012 (China); Gong Yaoqin [Key Laboratory of Experimental Teratology of Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012 (China)], E-mail: yxg8@sdu.edu.cn; Shao Changshun [Key Laboratory of Experimental Teratology of Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012 (China); Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States)], E-mail: shao@biology.rutgers.edu

    2009-03-09

    Alkaloid berberine is widely used for the treatment of diarrhea and other diseases. Many laboratory studies showed that it exhibits anti-proliferative activity against a wide spectrum of cancer cells in culture. In this report we studied the mechanisms underlying the inhibitory effects of berberine on human osteosarcoma cells and on normal osteoblasts. The inhibition was largely attributed to cell cycle arrest at G1 and G2/M, and to a less extent, to apoptosis. The G1 arrest was dependent on p53, as G1 arrest was abolished in p53-deficient osteosarcoma cells. The induction of G1 arrest and apoptosis was accompanied by a p53-dependent up-regulation of p21 and pro-apoptotic genes. However, the G2/M arrest could be induced by berberine regardless of the status of p53. Interestingly, DNA double-strand breaks, as measured by the phosphorylation of H2AX, were remarkably accumulated in berberine-treated cells in a dose-dependent manner. Thus, one major mechanism by which berberine exerts its growth-inhibitory effect is to inflict genomic lesions on cells, which in turn trigger the activation of p53 and the p53-dependent cellular responses including cell cycle arrest and apoptosis.

  13. Non-Canonical Cell Death Induced by p53

    Directory of Open Access Journals (Sweden)

    Atul Ranjan

    2016-12-01

    Full Text Available Programmed cell death is a vital biological process for multicellular organisms to maintain cellular homeostasis, which is regulated in a complex manner. Over the past several years, apart from apoptosis, which is the principal mechanism of caspase-dependent cell death, research on non-apoptotic forms of programmed cell death has gained momentum. p53 is a well characterized tumor suppressor that controls cell proliferation and apoptosis and has also been linked to non-apoptotic, non-canonical cell death mechanisms. p53 impacts these non-canonical forms of cell death through transcriptional regulation of its downstream targets, as well as direct interactions with key players involved in these mechanisms, in a cell type- or tissue context-dependent manner. In this review article, we summarize and discuss the involvement of p53 in several non-canonical modes of cell death, including caspase-independent apoptosis (CIA, ferroptosis, necroptosis, autophagic cell death, mitotic catastrophe, paraptosis, and pyroptosis, as well as its role in efferocytosis which is the process of clearing dead or dying cells.

  14. MDM2 inhibitor nutlin-3a induces apoptosis and senescence in cutaneous T-cell lymphoma: Role of p53

    DEFF Research Database (Denmark)

    Manfé, Valentina; Biskup, Edyta Urszula; Johansen, Peter

    2012-01-01

    cell lines, P53 mutation analysis identified a homozygous nonsense mutation (R196Stop in Hut-78) and a homozygous missense mutation (G245S in SeAx). In MyLa2000, Mac1, and Mac2a carrying wild-type P53, nutlin-3a induced apoptosis and senescence demonstrated by permanent G0/G1 cell-cycle block...... with intact p53 but also in Hut-78, SeAx, and Sézary cells. Thus, targeting p53 by nutlin-3a may constitute a therapeutic approach in CTCL because of increased apoptosis and senescence of tumor cells....

  15. Ser46 phosphorylation and prolyl-isomerase Pin1-mediated isomerization of p53 are key events in p53-dependent apoptosis induced by mutant huntingtin.

    Science.gov (United States)

    Grison, Alice; Mantovani, Fiamma; Comel, Anna; Agostoni, Elena; Gustincich, Stefano; Persichetti, Francesca; Del Sal, Giannino

    2011-11-01

    Huntington disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for huntingtin protein. Several mechanisms have been proposed by which mutant huntingtin (mHtt) may trigger striatal neurodegeneration, including mitochondrial dysfunction, oxidative stress, and apoptosis. Furthermore, mHtt induces DNA damage and activates a stress response. In this context, p53 plays a crucial role in mediating mHtt toxic effects. Here we have dissected the pathway of p53 activation by mHtt in human neuronal cells and in HD mice, with the aim of highlighting critical nodes that may be pharmacologically manipulated for therapeutic intervention. We demonstrate that expression of mHtt causes increased phosphorylation of p53 on Ser46, leading to its interaction with phosphorylation-dependent prolyl isomerase Pin1 and consequent dissociation from the apoptosis inhibitor iASPP, thereby inducing the expression of apoptotic target genes. Inhibition of Ser46 phosphorylation by targeting homeodomain-interacting protein kinase 2 (HIPK2), PKCδ, or ataxia telangiectasia mutated kinase, as well as inhibition of the prolyl isomerase Pin1, prevents mHtt-dependent apoptosis of neuronal cells. These results provide a rationale for the use of small-molecule inhibitors of stress-responsive protein kinases and Pin1 as a potential therapeutic strategy for HD treatment.

  16. Zinc Deficiency Induces Apoptosis via Mitochondrial p53- and Caspase-Dependent Pathways in Human Neuronal Precursor Cells

    Science.gov (United States)

    Seth, Rohit; Corniola, Rikki S.; Gower-Winter, Shannon D.; Morgan, Thomas J., Jr.; Bishop, Brian; Levenson, Cathy W.

    2015-01-01

    Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to the mitochondria and p53-dependent…

  17. Mitochondrial localization of the low level p53 protein in proliferative cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferecatu, Ioana; Bergeaud, Marie; Rodriguez-Enfedaque, Aida; Le Floch, Nathalie [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Oliver, Lisa [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Rincheval, Vincent; Renaud, Flore [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vallette, Francois M. [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Mignotte, Bernard [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vayssiere, Jean-Luc, E-mail: jean-luc.vayssiere@uvsq.fr [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France)

    2009-10-02

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  18. Mitochondrial localization of the low level p53 protein in proliferative cells

    International Nuclear Information System (INIS)

    Ferecatu, Ioana; Bergeaud, Marie; Rodriguez-Enfedaque, Aida; Le Floch, Nathalie; Oliver, Lisa; Rincheval, Vincent; Renaud, Flore; Vallette, Francois M.; Mignotte, Bernard; Vayssiere, Jean-Luc

    2009-01-01

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  19. PHTS, a novel putative tumor suppressor, is involved in the transformation reversion of HeLaHF cells independently of the p53 pathway

    International Nuclear Information System (INIS)

    Yu Dehua; Fan, Wufang; Liu, Guohong; Nguy, Vivian; Chatterton, Jon E.; Long Shilong; Ke, Ning; Meyhack, Bernd; Bruengger, Adrian; Brachat, Arndt; Wong-Staal, Flossie; Li, Qi-Xiang

    2006-01-01

    HeLaHF is a non-transformed revertant of HeLa cells, likely resulting from the activation of a putative tumor suppressor(s). p53 protein was stabilized in this revertant and reactivated for certain transactivation functions. Although p53 stabilization has not conclusively been linked to the reversion, it is clear that the genes in p53 pathway are involved. The present study confirms the direct role of p53 in HeLaHF reversion by demonstrating that RNAi-mediated p53 silencing partially restores anchorage-independent growth potential of the revertant through the suppression of anoikis. In addition, we identified a novel gene, named PHTS, with putative tumor suppressor properties, and showed that this gene is also involved in HeLaHF reversion independently of the p53 pathway. Expression profiling revealed that PHTS is one of the genes that is up-regulated in HeLaHF but not in HeLa. It encodes a putative protein with CD59-like domains. RNAi-mediated PHTS silencing resulted in the partial restoration of transformation (anchorage-independent growth) in HeLaHF cells, similar to that of p53 gene silencing, implying its tumor suppressor effect. However, the observed increased transformation potential by PHTS silencing appears to be due to an increased anchorage-independent proliferation rate rather than suppression of anoikis, unlike the effect of p53 silencing. p53 silencing did not affect PHTS gene expression, and vice versa, suggesting PHTS may function in a new and p53-independent tumor suppressor pathway. Furthermore, over-expression of PHTS in different cancer cell lines, in addition to HeLa, reduces cell growth likely via induced apoptosis, confirming the broad PHTS tumor suppressor properties

  20. Activation of p53 by nutlin-3a induces apoptosis and cellular senescence in human glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Ruth Villalonga-Planells

    2011-04-01

    Full Text Available Glioblastoma multiforme (GBM is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.

  1. PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53

    DEFF Research Database (Denmark)

    Zandi, Roza; Selivanova, Galina; Christensen, Camilla Laulund

    2011-01-01

    Small cell lung cancer (SCLC) is a highly malignant disease with poor prognosis, necessitating the need to develop new and efficient treatment modalities. PRIMA-1(Met) (p53-dependent reactivation of massive apoptosis), also known as APR-246, is a small molecule, which restores tumor suppressor...... function to mutant p53 and induces cancer cell death in various cancer types. Since p53 is mutated in more than 90% of SCLC, we investigated the ability of PRIMA-1(Met) to induce apoptosis and inhibit tumor growth in SCLC with different p53 mutations....

  2. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    Science.gov (United States)

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  3. Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38MAPK-p53 cascade.

    Science.gov (United States)

    Chen, Yu-Ying; Hsieh, Cheng-Ying; Jayakumar, Thanasekaran; Lin, Kuan-Hung; Chou, Duen-Suey; Lu, Wan-Jung; Hsu, Ming-Jen; Sheu, Joen-Rong

    2014-07-10

    The abnormal growth of vascular smooth muscle cells (VSMCs) is considered a critical pathogenic process in inflammatory vascular diseases. We have previously demonstrated that protein phosphatase 2 A (PP2A)-mediated NF-κB dephosphorylation contributes to the anti-inflammatory properties of andrographolide, a novel NF-κB inhibitor. In this study, we investigated whether andrographolide causes apoptosis, and characterized its apoptotic mechanisms in rat VSMCs. Andrographolide activated the p38 mitogen-activated protein kinase (p38MAPK), leading to p53 phosphorylation. Phosphorylated p53 subsequently transactivated the expression of Bax, a pro-apoptotic protein. Transfection with pp2a small interfering RNA (siRNA) suppressed andrographolide-induced p38MAPK activation, p53 phosphorylation, and caspase 3 activation. Andrographolide also activated the Src homology 1 domain-containing protein tyrosine phosphatase (SHP-1), and induced PP2A dephosphorylation, both of which were inhibited by the SHP-1 inhibitor sodium stibogluconate (SSG) or shp-1 siRNA. SSG or shp-1 siRNA prevented andrographolide-induced apoptosis. These results suggest that andrographolide activates the PP2A-p38MAPK-p53-Bax cascade, causing mitochondrial dysfunction and VSMC death through an SHP-1-dependent mechanism.

  4. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo.

    Science.gov (United States)

    Phesse, T J; Myant, K B; Cole, A M; Ridgway, R A; Pearson, H; Muncan, V; van den Brink, G R; Vousden, K H; Sears, R; Vassilev, L T; Clarke, A R; Sansom, O J

    2014-06-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.

  5. Glycerol restores the p53 function in human lingual cancer cells bearing mutant p53

    International Nuclear Information System (INIS)

    Ota, Ichiro; Yane, Katsunari; Yuki, Kazue; Kanata, Hirokazu; Hosoi, Hiroshi; Miyahara, Hiroshi

    2001-01-01

    Mutations in p53, tumor suppressor gene, have recently been shown to have an impact on the clinical course of several human tumors, including head and neck cancers. The genetic status of the p53 gene has been focused on as the most important candidate among various cancer-related genes for prognosis-predictive assays of cancer therapy. We examined the restoration of radiation- or cisplatin (CDDP)-induced p53-dependent apoptosis in human lingual cancer cells. The results suggest that glycerol is effective in inducing a conformational change of p53 and restoring normal function of mutant p53, leading to enhanced radiosensitivity or chemosensitivity through the induction of apoptosis. We have also represented the same results in vivo as in vitro. Thus, this novel tool for enhancement of radiosensitivity or chemosensitivity in cancer cells bearing m p53 may be applicable for p53-targeted cancer therapy. (author)

  6. Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum

    Energy Technology Data Exchange (ETDEWEB)

    Denamur, Sophie; Boland, Lidvine [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium); Beyaert, Maxime [Université catholique de Louvain, de Duve Institute, Laboratory of Physiological Chemistry, UCL B1.75.08, avenue Hippocrate, 75 B -1200 Brussels (Belgium); Verstraeten, Sandrine L. [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium); Fillet, Marianne [University of Liege, CIRM, Department of Pharmacy, Laboratory for the Analysis of Medicines, Quartier Hopital, Avenue Hippocrate, 15, B36, Tower 4, 4000 Liège 1 (Belgium); Tulkens, Paul M. [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium); Bontemps, Françoise [Université catholique de Louvain, de Duve Institute, Laboratory of Physiological Chemistry, UCL B1.75.08, avenue Hippocrate, 75 B -1200 Brussels (Belgium); Mingeot-Leclercq, Marie-Paule [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium)

    2016-10-15

    Gentamicin, an aminoglycoside used to treat severe bacterial infections, may cause acute renal failure. In the renal cell line LLC-PK1, gentamicin accumulates in lysosomes, induces alterations of their permeability, and triggers the mitochondrial pathway of apoptosis via activation of caspase-9 and -3 and changes in Bcl-2 family proteins. Early ROS production in lysosomes has been associated with gentamicin induced lysosomal membrane permeabilization. In order to better understand the multiple interconnected pathways of gentamicin-induced apoptosis and ensuing renal cell toxicity, we investigated the effect of gentamicin on p53 and p21 levels. We also studied the potential effect of gentamicin on proteasome by measuring the chymotrypsin-, trypsin- and caspase-like activities, and on endoplasmic reticulum by determining phopho-eIF2α, caspase-12 activation and GRP78 and 94. We observed an increase in p53 levels, which was dependent on ROS production. Accumulation of p53 resulted in accumulation of p21 and of phospho-eIF2α. These effects could be related to an impairment of proteasome as we demonstrated an inhibition of trypsin-and caspase-like activities. Moderate endoplasmic reticulum stress could also participate to cellular toxicity induced by gentamicin, with activation of caspase-12 without change in GRP74 and GRP98. All together, these data provide new mechanistic insights into the apoptosis induced by aminoglycoside antibiotics on renal cell lines. - Highlights: • Gentamicin induces apoptosis through p53 pathway. • Gentamicin inhibits proteosomal activity. • Gentamicin activates caspase-12.

  7. Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum

    International Nuclear Information System (INIS)

    Denamur, Sophie; Boland, Lidvine; Beyaert, Maxime; Verstraeten, Sandrine L.; Fillet, Marianne; Tulkens, Paul M.; Bontemps, Françoise; Mingeot-Leclercq, Marie-Paule

    2016-01-01

    Gentamicin, an aminoglycoside used to treat severe bacterial infections, may cause acute renal failure. In the renal cell line LLC-PK1, gentamicin accumulates in lysosomes, induces alterations of their permeability, and triggers the mitochondrial pathway of apoptosis via activation of caspase-9 and -3 and changes in Bcl-2 family proteins. Early ROS production in lysosomes has been associated with gentamicin induced lysosomal membrane permeabilization. In order to better understand the multiple interconnected pathways of gentamicin-induced apoptosis and ensuing renal cell toxicity, we investigated the effect of gentamicin on p53 and p21 levels. We also studied the potential effect of gentamicin on proteasome by measuring the chymotrypsin-, trypsin- and caspase-like activities, and on endoplasmic reticulum by determining phopho-eIF2α, caspase-12 activation and GRP78 and 94. We observed an increase in p53 levels, which was dependent on ROS production. Accumulation of p53 resulted in accumulation of p21 and of phospho-eIF2α. These effects could be related to an impairment of proteasome as we demonstrated an inhibition of trypsin-and caspase-like activities. Moderate endoplasmic reticulum stress could also participate to cellular toxicity induced by gentamicin, with activation of caspase-12 without change in GRP74 and GRP98. All together, these data provide new mechanistic insights into the apoptosis induced by aminoglycoside antibiotics on renal cell lines. - Highlights: • Gentamicin induces apoptosis through p53 pathway. • Gentamicin inhibits proteosomal activity. • Gentamicin activates caspase-12.

  8. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity.

    Science.gov (United States)

    Kim, Ji-Young; Lee, Kyu-Sun; Seol, Jin-Ee; Yu, Kweon; Chakravarti, Debabrata; Seo, Sang-Beom

    2012-01-01

    The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ.

  9. Survivin inhibits anti-growth effect of p53 activated by aurora B

    International Nuclear Information System (INIS)

    Jung, Ji-Eun; Kim, Tae-Kyung; Lee, Joong-Seob; Oh, Se-Yeong; Kwak, Sungwook; Jin, Xun; Sohn, Jin-Young; Song, Min-Keun; Sohn, Young-Woo; Lee, Soo-Yeon; Pian, Xumin; Lee, Jang-Bo; Chung, Yong Gu; Choi, Young Ki; You, Seungkwon; Kim, Hyunggee

    2005-01-01

    Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated β-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53 -/- mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53 -/- astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53

  10. LACE1 interacts with p53 and mediates its mitochondrial translocation and apoptosis

    Czech Academy of Sciences Publication Activity Database

    Česneková, J.; Spáčilová, J.; Hansíková, H.; Houštěk, Josef; Zeman, J.; Stibůrek, L.

    2016-01-01

    Roč. 7, č. 30 (2016), s. 47687-47698 ISSN 1949-2553 R&D Projects: GA ČR(CZ) GA13-07223S Institutional support: RVO:67985823 Keywords : p53 * LACE1 * mitochondria * apoptosis * translocation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.168, year: 2016

  11. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells

    Directory of Open Access Journals (Sweden)

    Kyoung-jin Min

    2017-08-01

    Full Text Available Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose polymerase (PARP, which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5 expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  12. Platelet-derived growth factor (PDGF)-signaling mediates radiation-induced apoptosis in human prostate cancer cells with loss of p53 function

    International Nuclear Information System (INIS)

    Kim, Harold E.; Han, Sue J.; Kasza, Thomas; Han, Richard; Choi, Hyeong-Seon; Palmer, Kenneth C.; Kim, Hyeong-Reh C.

    1997-01-01

    Platelet-derived growth factor (PDGF) signals a diversity of cellular responses in vitro, including cell proliferation, survival, transformation, and chemotaxis. PDGF functions as a 'competence factor' to induce a set of early response genes expressed in G 1 including p21 WAF1/CIP1 , a functional mediator of the tumor suppressor gene p53 in G 1 /S checkpoint. For PDGF-stimulated cells to progress beyond G 1 and transit the cell cycle completely, progression factors in serum such as insulin and IGF-1 are required. We have recently shown a novel role of PDGF in inducing apoptosis in growth-arrested murine fibroblasts. The PDGF-induced apoptosis is rescued by insulin, suggesting that G 1 /S checkpoint is a critical determinant for PDGF-induced apoptosis. Because recent studies suggest that radiation-induced signal transduction pathways interact with growth factor-mediated signaling pathways, we have investigated whether activation of the PDGF-signaling facilitates the radiation-induced apoptosis in the absence of functional p53. For this study we have used the 125-IL cell line, a mutant p53-containing, highly metastatic, and hormone-unresponsive human prostate carcinoma cell line. PDGF signaling is constitutively activated by transfection with a p28 v-sis expression vector, which was previously shown to activate PDGF α- and β- receptors. Although the basal level of p21 WAF1/CIP1 expression and radiation-induced apoptosis were not detectable in control 125-IL cells as would be predicted in mutant p53-containing cells, activation of PDGF-signaling induced expression of p21 WAF1/CIP1 and radiation-induced apoptosis. Our study suggests that the level of 'competence' growth factors including PDGF may be one of the critical determinants for radiation-induced apoptosis, especially in cells with loss of p53 function at the site of radiotherapy in vivo

  13. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells.

    Science.gov (United States)

    Agarwal, Ayushi; Kasinathan, Akiladdevi; Ganesan, Ramamoorthi; Balasubramanian, Akhila; Bhaskaran, Jahnavi; Suresh, Samyuktha; Srinivasan, Revanth; Aravind, K B; Sivalingam, Nageswaran

    2018-03-01

    Curcumin is a natural dietary polyphenol compound that has various pharmacological activities such as antiproliferative and cancer-preventive activities on tumor cells. Indeed, the role reactive oxygen species (ROS) generated by curcumin on cell death and cell proliferation inhibition in colon cancer is poorly understood. In the present study, we hypothesized that curcumin-induced ROS may promote apoptosis and cell cycle arrest in colon cancer. To test this hypothesis, the apoptosis-inducing potential and cell cycle inhibition effect of ROS induced by curcumin was investigated in Smd4 and p53 mutated HT-29 colon adenocarcinoma cells. We found that curcumin treatment significantly increased the level of ROS in HT-29 cells in a dose- and time-dependent manner. Furthermore, curcumin treatment markedly decreased the cell viability and proliferation potential of HT-29 cells in a dose- and time-dependent manner. Conversely, generation of ROS and inhibitory effect of curcumin on HT-29 cells were abrogated by N-acetylcysteine treatment. In addition, curcumin treatment did not show any cytotoxic effects on HT-29 cells. Furthermore, curcumin-induced ROS generation caused the DNA fragmentation, chromatin condensation, and cell nuclear shrinkage and significantly increased apoptotic cells in a dose- and time-dependent manner in HT-29 cells. However, pretreatment of N-acetylcysteine inhibited the apoptosis-triggering effect of curcumin-induced ROS in HT-29 cells. In addition, curcumin-induced ROS effectively mediated cell cycle inhibition in HT-29 cells. In conclusion, our data provide the first evidence that curcumin induces ROS independent apoptosis and cell cycle arrest in colon cancer cells that carry mutation on Smad4 and p53. Copyright © 2018. Published by Elsevier Inc.

  14. Apoptosis signaling and radiation protection

    International Nuclear Information System (INIS)

    Morita, Akinori; Suzuki, Norio; Hosoi, Yoshio

    2005-01-01

    Radiation protection by apoptosis control is the suppression of cell death in highly radiosensitive tissues. This paper describes the outline of radiation-induced apoptosis framework, apoptosis-concerned target molecules possibly related to apoptosis by radiation and their inhibitors. Although there are intrinsic (via mitochondria) and extrinsic (via death receptor) pathways in apoptosis, this review mainly mentions the former which is more important in radiation-induced apoptosis. Those molecules known at present in the apoptosis are caspase, Bcl-2 family and p53. Caspase, a group of cystein proteases, initiates apoptosis but its inhibition is known not always to result in apoptosis suppression, suggesting the existence of caspase-independent pathways. Bcl-2 family involves apoptosis-suppressing (possessing BH domains) and -promoting (lacking BH domains or possessing BH3 domain alone/BH3-only protein) groups. Two p53-transcription-dependent and one -independent pathways in p53-induced apoptosis are known and p53 can be a most possible target molecule since it positions at the start of apoptosis. Authors have found a vanadate inactivates p53. Inhibitors affecting upstream molecules of apoptosis will be the most useful candidate for apoptosis suppression/radiation protection. (S.I.) 106 refs

  15. P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2013-02-01

    Full Text Available Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect-transmitted infectious diseases. The fact that many viruses carry genes that have anti-apoptotic activity has long led to the hypothesis that induction of apoptosis could be a fundamental innate immune response. However, the cellular mechanisms mediating the induction of apoptosis following viral infection remained enigmatic, which has prevented experimental verification of the functional significance of apoptosis in limiting viral infection in insects. In addition, studies with cultured insect cells have shown that there is sometimes a lack of apoptosis, or the pro-apoptotic response happens relatively late, thus casting doubt on the functional significance of apoptosis as an innate immunity. Using in vivo mosquito models and the native route of infection, we found that there is a rapid induction of reaper-like pro-apoptotic genes within a few hours following exposure to DNA or RNA viruses. Recapitulating a similar response in Drosophila, we found that this rapid induction of apoptosis requires the function of P53 and is mediated by a stress-responsive regulatory region upstream of reaper. More importantly, we showed that the rapid induction of apoptosis is responsible for preventing the expression of viral genes and blocking the infection. Genetic changes influencing this rapid induction of reaper-like pro-apoptotic genes led to significant differences in susceptibility to viral infection.

  16. A p53-independent role for the MDM2 antagonist Nutlin-3 in DNA damage response initiation

    Directory of Open Access Journals (Sweden)

    Kumar Sonia

    2011-02-01

    Full Text Available Abstract Background The mammalian DNA-damage response (DDR has evolved to protect genome stability and maximize cell survival following DNA-damage. One of the key regulators of the DDR is p53, itself tightly regulated by MDM2. Following double-strand DNA breaks (DSBs, mediators including ATM are recruited to the site of DNA-damage. Subsequent phosphorylation of p53 by ATM and ATM-induced CHK2 results in p53 stabilization, ultimately intensifying transcription of p53-responsive genes involved in DNA repair, cell-cycle checkpoint control and apoptosis. Methods In the current study, we investigated the stabilization and activation of p53 and associated DDR proteins in response to treatment of human colorectal cancer cells (HCT116p53+/+ with the MDM2 antagonist, Nutlin-3. Results Using immunoblotting, Nutlin-3 was observed to stabilize p53, and activate p53 target proteins. Unexpectedly, Nutlin-3 also mediated phosphorylation of p53 at key DNA-damage-specific serine residues (Ser15, 20 and 37. Furthermore, Nutlin-3 induced activation of CHK2 and ATM - proteins required for DNA-damage-dependent phosphorylation and activation of p53, and the phosphorylation of BRCA1 and H2AX - proteins known to be activated specifically in response to DNA damage. Indeed, using immunofluorescent labeling, Nutlin-3 was seen to induce formation of γH2AX foci, an early hallmark of the DDR. Moreover, Nutlin-3 induced phosphorylation of key DDR proteins, initiated cell cycle arrest and led to formation of γH2AX foci in cells lacking p53, whilst γH2AX foci were also noted in MDM2-deficient cells. Conclusion To our knowledge, this is the first solid evidence showing a secondary role for Nutlin-3 as a DDR triggering agent, independent of p53 status, and unrelated to its role as an MDM2 antagonist.

  17. The pro-survival function of p53 in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Kang, Mi Young; Jang, Eun Yeong; Kim, Jin Hong [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of)

    2014-11-15

    The rate of apoptosis and autophagy was variable with different p53 status after IR treatment of cells. The influence of p53 status on cell fate suggests a role of p53 in two fundamentally important cell biological pathways: autophagy and apoptosis. p53 coordinates cell cycle arrest and apoptosis to govern cell fate. This study was done to identify p53-mediated regulation of cell's fate. Autophagy induced by IR may prevent cells from undergoing apoptosis, implying an interlink modulation between autophagy and apoptosis. The rate of apoptosis and autophagy was determined with different p53 status after IR treatment of HeLa cells in this study. Our research on IR-induced cellular responses may provide new information about fate decision between the processes of apoptosis and autophagy.

  18. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Holst, Bjørn; Tümer, Zeynep

    2014-01-01

    The discovery of human-induced pluripotent stem cells (iPSCs) has sparked great interest in the potential treatment of patients with their own in vitro differentiated cells. Recently, knockout of the Tumor Protein 53 (p53) gene was reported to facilitate reprogramming but unfortunately also led...... to genomic instability. Here, we report that transient suppression of p53 during nonintegrative reprogramming of human fibroblasts leads to a significant increase in expression of pluripotency markers and overall number of iPSC colonies, due to downstream suppression of p21, without affecting apoptosis...... and DNA damage. Stable iPSC lines generated with or without p53 suppression showed comparable expression of pluripotency markers and methylation patterns, displayed normal karyotypes, contained between 0 and 5 genomic copy number variations and produced functional neurons in vitro. In conclusion...

  19. NF-kappaB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope.

    Science.gov (United States)

    Perfettini, Jean-Luc; Roumier, Thomas; Castedo, Maria; Larochette, Nathanael; Boya, Patricia; Raynal, Brigitte; Lazar, Vladimir; Ciccosanti, Fabiola; Nardacci, Roberta; Penninger, Josef; Piacentini, Mauro; Kroemer, Guido

    2004-03-01

    The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-kappaB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor kappaB (NF-kappaB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p53 abolished apoptosis and AP1 activation. Signs of NF-kappaB and p53 activation were also detected in lymph node biopsies from HIV-1-infected individuals. Microarrays revealed that most (85%) of the transcriptional effects of HIV-1 Env were blocked by the p53 inhibitor pifithrin-alpha. Macroarrays led to the identification of several Env-elicited, p53-dependent proapoptotic transcripts, in particular Puma, a proapoptotic "BH3-only" protein from the Bcl-2 family known to activate Bax/Bak. Down modulation of Puma by antisense oligonucleotides, as well as RNA interference of Bax and Bak, prevented Env-induced apoptosis. HIV-1-infected primary lymphoblasts up-regulated Puma in vitro. Moreover, circulating CD4+ lymphocytes from untreated, HIV-1-infected donors contained enhanced amounts of Puma protein, and these elevated Puma levels dropped upon antiretroviral therapy. Altogether, these data indicate that NF-kappaB and p53 cooperate as the dominant proapoptotic transcription factors participating in HIV-1 infection.

  20. Tumor protein 53-induced nuclear protein 1 (TP53INP1 enhances p53 function and represses tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeyran eShahbazi

    2013-05-01

    Full Text Available Tumor protein 53-induced nuclear protein 1 (TP53INP1 is a stress-induced p53 target gene whose expression is modulated by transcription factors such as p53, p73 and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. When associated with homeodomain-interacting protein kinase-2 (HIPK2, TP53INP1 phosphorylates p53 protein at Serine 46, enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53 target genes such as p21, PIG-3 and MDM2, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis; while TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment.

  1. Polycomb Group Protein PHF1 Regulates p53-dependent Cell Growth Arrest and Apoptosis*

    Science.gov (United States)

    Yang, Yang; Wang, Chenji; Zhang, Pingzhao; Gao, Kun; Wang, Dejie; Yu, Hongxiu; Zhang, Ting; Jiang, Sirui; Hexige, Saiyin; Hong, Zehui; Yasui, Akira; Liu, Jun O.; Huang, Haojie; Yu, Long

    2013-01-01

    Polycomb group protein PHF1 is well known as a component of a novel EED-EZH2·Polycomb repressive complex 2 complex and plays important roles in H3K27 methylation and Hox gene silencing. PHF1 is also involved in the response to DNA double-strand breaks in human cells, promotes nonhomologous end-joining processes through interaction with Ku70/Ku80. Here, we identified another function of PHF1 as a potential p53 pathway activator in a pathway screen using luminescence reporter assay. Subsequent studies showed PHF1 directly interacts with p53 proteins both in vivo and in vitro and co-localized in nucleus. PHF1 binds to the C-terminal regulatory domain of p53. Overexpression of PHF1 elevated p53 protein level and prolonged its turnover. Knockdown of PHF1 reduced p53 protein level and its target gene expression both in normal state and DNA damage response. Mechanically, PHF1 protects p53 proteins from MDM2-mediated ubiquitination and degradation. Furthermore, we showed that PHF1 regulates cell growth arrest and etoposide-induced apoptosis in a p53-dependent manner. Finally, PHF1 expression was significantly down-regulated in human breast cancer samples. Taken together, we establish PHF1 as a novel positive regulator of the p53 pathway. These data shed light on the potential roles of PHF1 in tumorigenesis and/or tumor progression. PMID:23150668

  2. Ribosomal stress induces L11- and p53-dependent apoptosis in mouse pluripotent stem cells.

    Science.gov (United States)

    Morgado-Palacin, Lucia; Llanos, Susana; Serrano, Manuel

    2012-02-01

    Ribosome biogenesis is the most demanding energetic process in proliferating cells and it is emerging as a critical sensor of cellular homeostasis. Upon disturbance of ribosome biogenesis, specific free ribosomal proteins, most notably L11, bind and inhibit Mdm2, resulting in activation of the tumor suppressor p53. This pathway has been characterized in somatic and cancer cells, but its function in embryonic pluripotent cells has remained unexplored. Here, we show that treatment with low doses of Actinomycin D or depletion of ribosomal protein L37, two well-established inducers of ribosomal stress, activate p53 in an L11-dependent manner in mouse embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). Activation of p53 results in transcriptional induction of p53 targets, including p21, Mdm2, Pidd, Puma, Noxa and Bax. Finally, ribosomal stress elicits L11- and p53-dependent apoptosis in ESCs/iPSCs. These results extend to pluripotent cells the functionality of the ribosomal stress pathway and we speculate that this could be a relevant cellular checkpoint during early embryogenesis.

  3. FGF1 protects neuroblastoma SH-SY5Y cells from p53-dependent apoptosis through an intracrine pathway regulated by FGF1 phosphorylation

    Science.gov (United States)

    Pirou, Caroline; Montazer-Torbati, Fatemeh; Jah, Nadège; Delmas, Elisabeth; Lasbleiz, Christelle; Mignotte, Bernard; Renaud, Flore

    2017-01-01

    Neuroblastoma, a sympathetic nervous system tumor, accounts for 15% of cancer deaths in children. In contrast to most human tumors, p53 is rarely mutated in human primary neuroblastoma, suggesting impaired p53 activation in neuroblastoma. Various studies have shown correlations between fgf1 expression levels and both prognosis severity and tumor chemoresistance. As we previously showed that fibroblast growth factor 1 (FGF1) inhibited p53-dependent apoptosis in neuron-like PC12 cells, we initiated the study of the interaction between the FGF1 and p53 pathways in neuroblastoma. We focused on the activity of either extracellular FGF1 by adding recombinant rFGF1 in media, or of intracellular FGF1 by overexpression in human SH-SY5Y and mouse N2a neuroblastoma cell lines. In both cell lines, the genotoxic drug etoposide induced a classical mitochondrial p53-dependent apoptosis. FGF1 was able to inhibit p53-dependent apoptosis upstream of mitochondrial events in SH-SY5Y cells by both extracellular and intracellular pathways. Both rFGF1 addition and etoposide treatment increased fgf1 expression in SH-SY5Y cells. Conversely, rFGF1 or overexpressed FGF1 had no effect on p53-dependent apoptosis and fgf1 expression in neuroblastoma N2a cells. Using different FGF1 mutants (that is, FGF1K132E, FGF1S130A and FGF1S130D), we further showed that the C-terminal domain and phosphorylation of FGF1 regulate its intracrine anti-apoptotic activity in neuroblastoma SH-SY5Y cells. This study provides the first evidence for a role of an intracrine growth factor pathway on p53-dependent apoptosis in neuroblastoma, and could lead to the identification of key regulators involved in neuroblastoma tumor progression and chemoresistance. PMID:29048426

  4. Inhibitor of apoptosis-stimulating protein of p53 (iASPP is required for neuronal survival after axonal injury.

    Directory of Open Access Journals (Sweden)

    Ariel M Wilson

    Full Text Available The transcription factor p53 mediates the apoptosis of post-mitotic neurons exposed to a wide range of stress stimuli. The apoptotic activity of p53 is tightly regulated by the apoptosis-stimulating proteins of p53 (ASPP family members: ASPP1, ASPP2 and iASPP. We previously showed that the pro-apoptotic members ASPP1 and ASPP2 contribute to p53-dependent death of retinal ganglion cells (RGCs. However, the role of the p53 inhibitor iASPP in the central nervous system (CNS remains to be elucidated. To address this, we asked whether iASPP contributes to the survival of RGCs in an in vivo model of acute optic nerve damage. We demonstrate that iASPP is expressed by injured RGCs and that iASPP phosphorylation at serine residues, which increase iASPP affinity towards p53, is significantly reduced following axotomy. We show that short interference RNA (siRNA-induced iASPP knockdown exacerbates RGC death, whereas adeno-associated virus (AAV-mediated iASPP expression promotes RGC survival. Importantly, our data also demonstrate that increasing iASPP expression in RGCs downregulates p53 activity and blocks the expression of pro-apoptotic targets PUMA and Fas/CD95. This study demonstrates a novel role for iASPP in the survival of RGCs, and provides further evidence of the importance of the ASPP family in the regulation of neuronal loss after axonal injury.

  5. Pax3 stimulates p53 ubiquitination and degradation independent of transcription.

    Directory of Open Access Journals (Sweden)

    Xiao Dan Wang

    Full Text Available Pax3 is a developmental transcription factor that is required for neural tube and neural crest development. We previously showed that inactivating the p53 tumor suppressor protein prevents neural tube and cardiac neural crest defects in Pax3-mutant mouse embryos. This demonstrates that Pax3 regulates these processes by blocking p53 function. Here we investigated the mechanism by which Pax3 blocks p53 function.We employed murine embryonic stem cell (ESC-derived neuronal precursors as a cell culture model of embryonic neuroepithelium or neural crest. Pax3 reduced p53 protein stability, but had no effect on p53 mRNA levels or the rate of p53 synthesis. Full length Pax3 as well as fragments that contained either the DNA-binding paired box or the homeodomain, expressed as GST or FLAG fusion proteins, physically associated with p53 and Mdm2 both in vitro and in vivo. In contrast, Splotch Pax3, which causes neural tube and neural crest defects in homozygous embryos, bound weakly, or not at all, to p53 or Mdm2. The paired domain and homeodomain each stimulated Mdm2-mediated ubiquitination of p53 and p53 degradation in the absence of the Pax3 transcription regulatory domains, whereas Splotch Pax3 did not stimulate p53 ubiquitination or degradation.Pax3 inactivates p53 function by stimulating its ubiquitination and degradation. This process utilizes the Pax3 paired domain and homeodomain but is independent of DNA-binding and transcription regulation. Because inactivating p53 is the only required Pax3 function during neural tube closure and cardiac neural crest development, and inactivating p53 does not require Pax3-dependent transcription regulation, this indicates that Pax3 is not required to function as a transcription factor during neural tube closure and cardiac neural crest development. These findings further suggest novel explanations for PAX3 functions in human diseases, such as in neural crest-derived cancers and Waardenburg syndrome types 1 and 3.

  6. The novel fusion proteins, GnRH-p53 and GnRHIII-p53, expression and their anti-tumor effect.

    Directory of Open Access Journals (Sweden)

    Peiyuan Jia

    Full Text Available p53, one of the most well studied tumor suppressor factor, is responsible to a variety of damage owing to the induction of apoptosis and cell cycle arrest in the tumor cells. More than 50% of human tumors contain mutation or deletion of p53. Gonadotrophin-releasing hormone (GnRH, as the ligand of Gonadotrophin-releasing hormone receptor (GnRH-R, was used to deliver p53 into tumor cells. The p53 fusion proteins GnRH-p53 and GnRH iii-p53 were expressed and their targeted anti-tumor effects were determined. GnRH mediates its fusion proteins transformation into cancer cells. The intracellular delivery of p53 fusion proteins exerted the inhibition of the growth of H1299 cells in vitro and the reduction of tumor volume in vivo. Their anti-tumor effect was functioned by the apoptosis and cell cycle arrest induced by p53. Hence, the fusion protein could be a novel protein drug for anti-tumor therapy.

  7. Inhibition of autophagy exerts anti-colon cancer effects via apoptosis induced by p53 activation and ER stress

    International Nuclear Information System (INIS)

    Sakitani, Kosuke; Hirata, Yoshihiro; Hikiba, Yohko; Hayakawa, Yoku; Ihara, Sozaburo; Suzuki, Hirobumi; Suzuki, Nobumi; Serizawa, Takako; Kinoshita, Hiroto; Sakamoto, Kei; Nakagawa, Hayato; Tateishi, Keisuke; Maeda, Shin; Ikenoue, Tsuneo; Kawazu, Shoji; Koike, Kazuhiko

    2015-01-01

    Although some molecularly targeted drugs for colorectal cancer are used clinically and contribute to a better prognosis, the current median survival of advanced colorectal cancer patients is not sufficient. Autophagy, a basic cell survival mechanism mediated by recycling of cellular amino acids, plays an important role in cancer. Recently, autophagy has been highlighted as a promising new molecular target. The unfolded protein response (UPR) reportedly act in complementary fashion with autophagy in intestinal homeostasis. However, the roles of UPR in colon cancer under autophagic inhibition remain to be elucidated. We aim to clarify the inhibitory effect of autophagy on colon cancer. We crossed K19 CreERT and Atg5 flox/flox mice to generate Atg5 flox/flox /K19 CreERT mice. Atg5 flox/flox /K19 CreERT mice were first treated with azoxymethane/dextran sodium sulfate and then injected with tamoxifen to inhibit autophagy in CK19-positive epithelial cells. To examine the anti-cancer mechanisms of autophagic inhibition, we used colon cancer cell lines harboring different p53 gene statuses, as well as small interfering RNAs (siRNAs) targeting Atg5 and immunoglobulin heavy-chain binding protein (BiP), a chaperone to aid folding of unfolded proteins. Colon tumors in Atg5 flox/flox /K19 CreERT mice showed loss of autophagic activity and decreased tumor size (the total tumor diameter was 28.1 mm in the control and 20.7 mm in Atg5 flox/flox /K19 CreERT mice, p = 0.036). We found that p53 and UPR/endoplasmic reticulum (ER) stress-related proteins, such as cleaved caspase 3, and CAAT/enhancer-binding protein homologous protein, are up-regulated in colon tumors of Atg5 flox/flox /K19 CreERT mice. Although Atg5 and BiP silencing, respectively, increased apoptosis in p53 wild type cells, Atg5 silencing alone did not show the same effect on apoptosis in p53 mutant cells. However, co-transfection of Atg5 and BiP siRNAs led to increased apoptosis in p53 mutant cells. Blocking autophagy

  8. Coxsackievirus B5 induced apoptosis of HeLa cells: Effects on p53 and SUMO

    International Nuclear Information System (INIS)

    Gomes, Rogerio; Guerra-Sa, Renata; Arruda, Eurico

    2010-01-01

    Coxsackievirus B5 (CVB5), a human enterovirus of the family Picornaviridae, is a frequent cause of acute and chronic human diseases. The pathogenesis of enteroviral infections is not completely understood, and the fate of the CVB5-infected cell has a pivotal role in this process. We have investigated the CVB5-induced apoptosis of HeLa cells and found that it happens by the intrinsic pathway by a mechanism dependent on the ubiquitin-proteasome system, associated with nuclear aggregation of p53. Striking redistribution of both SUMO and UBC9 was noted at 4 h post-infection, simultaneously with a reduction in the levels of the ubiquitin-ligase HDM2. Taken together, these results suggest that CVB5 infection of HeLa cells elicit the intrinsic pathway of apoptosis by MDM2 degradation and p53 activation, destabilizing protein sumoylation, by a mechanism that is dependent on a functional ubiquitin-proteasome system.

  9. Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway

    International Nuclear Information System (INIS)

    Zhang, Hongling; Huang, Yong; Du, Qian; Luo, Xiaomao; Zhang, Liang; Zhao, Xiaomin; Tong, Dewen

    2015-01-01

    Highlights: • PPV reduces PK-15 cells viability by inducing apoptosis. • PPV infection induces apoptosis through mitochondria-mediated pathway. • PPV infection activates p53 to regulate the mitochondria apoptotic signaling. - Abstract: Porcine parvovirus (PPV) infection has been reported to induce the cytopathic effects (CPE) in some special host cells and contribute the occurrence of porcine parvovirus disease, but the molecular mechanisms underlying PPV-induced CPE are not clear. In this study, we investigated the morphological and molecular changes of porcine kidney cell line (PK-15 cells) infected with PPV. The results showed that PPV infection inhibited the viability of PK-15 cells in a time and concentration dependent manner. PPV infection induced typical apoptotic features including chromatin condensation, apoptotic body formation, nuclear fragmentation, and Annexin V-binding activity. Further studies showed that Bax was increased and translocated to mitochondria, whereas Bcl-2 was decreased in PPV-infected cells, which caused mitochondrial outer-membrane permeabilization, resulting in the release of mitochondrial cytochrome c, followed by caspase-9 and caspase-3 activation. However, the expression of Fas and Fas ligand (FasL) did not appear significant changes in the process of PPV-induced apoptosis. Moreover, PPV infection activated p53 signaling, which was involved in the activation of apoptotic signaling induced by PPV infection via regulation of Bax and Bcl-2. Taken together, our results demonstrated that PPV infection induced apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated apoptosis pathway. This study may contribute to shed light on the molecular pathogenesis of PPV infection

  10. Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongling; Huang, Yong; Du, Qian; Luo, Xiaomao; Zhang, Liang; Zhao, Xiaomin; Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn

    2015-01-09

    Highlights: • PPV reduces PK-15 cells viability by inducing apoptosis. • PPV infection induces apoptosis through mitochondria-mediated pathway. • PPV infection activates p53 to regulate the mitochondria apoptotic signaling. - Abstract: Porcine parvovirus (PPV) infection has been reported to induce the cytopathic effects (CPE) in some special host cells and contribute the occurrence of porcine parvovirus disease, but the molecular mechanisms underlying PPV-induced CPE are not clear. In this study, we investigated the morphological and molecular changes of porcine kidney cell line (PK-15 cells) infected with PPV. The results showed that PPV infection inhibited the viability of PK-15 cells in a time and concentration dependent manner. PPV infection induced typical apoptotic features including chromatin condensation, apoptotic body formation, nuclear fragmentation, and Annexin V-binding activity. Further studies showed that Bax was increased and translocated to mitochondria, whereas Bcl-2 was decreased in PPV-infected cells, which caused mitochondrial outer-membrane permeabilization, resulting in the release of mitochondrial cytochrome c, followed by caspase-9 and caspase-3 activation. However, the expression of Fas and Fas ligand (FasL) did not appear significant changes in the process of PPV-induced apoptosis. Moreover, PPV infection activated p53 signaling, which was involved in the activation of apoptotic signaling induced by PPV infection via regulation of Bax and Bcl-2. Taken together, our results demonstrated that PPV infection induced apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated apoptosis pathway. This study may contribute to shed light on the molecular pathogenesis of PPV infection.

  11. Residues in the alternative reading frame tumor suppressor that influence its stability and p53-independent activities

    International Nuclear Information System (INIS)

    Tommaso, Anne di; Hagen, Jussara; Tompkins, Van; Muniz, Viviane; Dudakovic, Amel; Kitzis, Alain; Ladeveze, Veronique; Quelle, Dawn E.

    2009-01-01

    The Alternative Reading Frame (ARF) protein suppresses tumorigenesis through p53-dependent and p53-independent pathways. Most of ARF's anti-proliferative activity is conferred by sequences in its first exon. Previous work showed specific amino acid changes occurred in that region during primate evolution, so we programmed those changes into human p14ARF to assay their functional impact. Two human p14ARF residues (Ala 14 and Thr 31 ) were found to destabilize the protein while two others (Val 24 and Ala 41 ) promoted more efficient p53 stabilization and activation. Despite those effects, all modified p14ARF forms displayed robust p53-dependent anti-proliferative activity demonstrating there are no significant biological differences in p53-mediated growth suppression associated with simian versus human p14ARF residues. In contrast, p53-independent p14ARF function was considerably altered by several residue changes. Val 24 was required for p53-independent growth suppression whereas multiple residues (Val 24 , Thr 31 , Ala 41 and His 60 ) enabled p14ARF to block or reverse the inherent chromosomal instability of p53-null MEFs. Together, these data pinpoint specific residues outside of established p14ARF functional domains that influence its expression and signaling activities. Most intriguingly, this work reveals a novel and direct role for p14ARF in the p53-independent maintenance of genomic stability.

  12. The combination of BH3-mimetic ABT-737 with the alkylating agent temozolomide induces strong synergistic killing of melanoma cells independent of p53.

    Directory of Open Access Journals (Sweden)

    Steven N Reuland

    Full Text Available Metastatic melanoma has poor prognosis and is refractory to most conventional chemotherapies. The alkylating agent temozolomide (TMZ is commonly used in treating melanoma but has a disappointing response rate. Agents that can act cooperatively with TMZ and improve its efficacy are thus highly sought after. The BH3 mimetic ABT-737, which can induce apoptosis by targeting pro-survival Bcl-2 family members, has been found to enhance the efficacy of many conventional chemotherapeutic agents in multiple cancers. We found that combining TMZ and ABT-737 induced strong synergistic apoptosis in multiple human melanoma cell lines. When the drugs were used in combination in a mouse xenograft model, they drastically reduced tumor growth at concentrations where each individual drug had no significant effect. We found that TMZ treatment elevated p53 levels, and that the pro-apoptotic protein Noxa was elevated in TMZ/ABT-737 treated cells. Experiments with shRNA demonstrated that the synergistic effect of TMZ and ABT-737 was largely dependent on Noxa. Experiments with nutlin-3, a p53 inducer, demonstrated that p53 induction was sufficient for synergistic cell death with ABT-737 in a Noxa-dependent fashion. However, p53 was not necessary for TMZ/ABT-737 synergy as demonstrated by a p53-null line, indicating that TMZ and ABT-737 together induce Noxa in a p53-independent fashion. These results demonstrate that targeting anti-apoptotic Bcl-2 members is a promising method for treating metastatic melanoma, and that clinical trials with TMZ and Bcl-2 inhibitors are warranted.

  13. Retention of the In Vitro Radiosensitizing Potential of Gemcitabine Under Anoxic Conditions, in p53 Wild-Type and p53-Deficient Non-Small-Cell Lung Carcinoma Cells

    International Nuclear Information System (INIS)

    Wouters, An; Pauwels, Bea; Lambrechts, Hilde A.J.; Pattyn, Greet G.O.; Ides, Johan; Baay, Marc; Meijnders, Paul; Peeters, Marc; Vermorken, Jan B.; Lardon, Filip

    2011-01-01

    Purpose: Whereas radiosensitization by gemcitabine is well studied under normal oxygen conditions, little is known about its radiosensitizing potential under reduced oxygen conditions. Therefore, the present study evaluated the impact of anoxia on gemcitabine-mediated radiosensitization. Methods and Materials: The clonogenic assay was performed in three isogenic A549 cell lines differing in p53 status (24 h, 0-15 nM gemcitabine, 0-8 Gy irradiation, normoxia vs. anoxia). Using radiosensitizing conditions, cells were collected for cell cycle analysis and apoptosis detection. Results: Whereas wild-type p53 A549-LXSN cells were more sensitive to radiation than p53-deficient A549-E6 cells, both cell lines showed similar radiosensitization by gemcitabine under normoxia and anoxia. Independent of p53 functionality, gemcitabine was able to overcome anoxia-induced G 0/1 arrest and established an (early) S phase block in normoxic and anoxic cells. The percentage early and late apoptotic/necrotic cells increased with the gemcitabine/radiation combination, with a significant difference between A549-LXSN and A549-E6. Conclusions: This study is the first to show that gemcitabine retains its radiosensitizing potential under low oxygen conditions. Although radiosensitization was observed in both p53 wild-type and p53-deficient cells, p53 status might influence induction of apoptosis after gemcitabine/radiation treatment, whereas no effect on cell cycle progression was noticed.

  14. Combination of Heavy-ion radiotherapy and p53-gene therapy by radio-sensitizing promoter for glioma

    International Nuclear Information System (INIS)

    Oga, Masaru; Koshikawa, Nobuko; Takenaga, Keizo; Iwadate, Yasuo; Nojima, Kumie

    2005-01-01

    In this study we have investigated the anti-tumor effect of the combination of heavy-ion radiotherapy, inducing p53-independent apoptosis, and p53-gene therapy, inducing p53-dependent apoptosis for glioma. To enhance the p53-dependent apoptosis, we chose the strategy to utilize the heavy-ion irradiation itself as a ''trigger'' by using radio-sensitizing promoter-E9ns-2/CMV chimeric promoter (Scott et al:2003) in p53-gene therapy. First, EGFP reporter gene with E9ns-2/CMV chimeric promoter was transfected in C6 rat glioma cell-line and the transfected-cell bulk was irradiated at dose of 3, 5, 10 Gy respectively with charged carbon particle (290 MeV/nucleon). The light upregulation of EGFP was observed in 24 hours after 5 Gy irradiation. On the basis of this result, p53 gene with E9ns-2/CMV chimeric promoter was transfected in p53-mutant U373MG human glioma cell-line and the transfected-cell bulk was irradiated at dose of 5 Gy. There was, however, no obvious p53-upregulation at any time-point, so far. Further investigation is needed to clarify the appropriate experimental system. (author)

  15. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    Science.gov (United States)

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G1 arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G1 arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication. PMID:16103161

  16. Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression

    Directory of Open Access Journals (Sweden)

    Kumari Ratna

    2010-07-01

    Full Text Available Abstract Background p53 is the most studied tumor suppressor and its overexpression may or may not cause cell death depending upon the genetic background of the cells. p53 is degraded by human papillomavirus (HPV E6 protein in cervical carcinoma. Several stress activated kinases are known to phosphorylate p53 and, among them cyclin dependent kinase 5 (Cdk5 is one of the kinase studied in neuronal cell system. Recently, the involvement of Cdk5 in phosphorylating p53 has been shown in certain cancer types. Phosphorylation at specific serine residues in p53 is essential for it to cause cell growth inhibition. Activation of p53 under non stress conditions is poorly understood. Therefore, the activation of p53 and detection of upstream kinases that phosphorylate non-genotoxically overexpressed p53 will be of therapeutic importance for cancer treatment. Results To determine the non-genotoxic effect of p53; Tet-On system was utilized and p53 inducible HPV-positive HeLa cells were developed. p53 overexpression in HPV-positive cells did not induce cell cycle arrest or apoptosis. However, we demonstrate that overexpressed p53 can be activated to upregulate p21 and Bax which causes G2 arrest and apoptosis, by inhibiting protein phosphatase 2A. Additionally, we report that the upstream kinase cyclin dependent kinase 5 interacts with p53 to phosphorylate it at Serine20 and Serine46 residues thereby promoting its recruitment on p21 and bax promoters. Upregulation and translocation of Bax causes apoptosis through intrinsic mitochondrial pathway. Interestingly, overexpressed activated p53 specifically inhibits cell-growth and causes regression in vivo tumor growth as well. Conclusion Present study details the mechanism of activation of p53 and puts forth the possibility of p53 gene therapy to work in HPV positive cervical carcinoma.

  17. RITA enhances irradiation-induced apoptosis in p53-defective cervical cancer cells via upregulation of IRE1α/XBP1 signaling.

    Science.gov (United States)

    Zhu, Hong; Abulimiti, Muyasha; Liu, Huan; Su, Xiang-Jiang; Liu, Cai-Hong; Pei, Hai-Ping

    2015-09-01

    Radiation therapy is the most widely used treatment for patients with cervical cancer. Recent studies have shown that endoplasmic reticulum (ER) stress induces apoptosis and sensitizes tumor cells to radiotherapy, which reportedly induces ER stress in cells. Classical key tumor suppressor p53 is involved in the response to a variety of cellular stresses, including those incurred by ionizing irradiation. A recent study demonstrated that small-molecule RITA (reactivation of p53 and induction of tumor cell apoptosis) increased the radiosensitivity of tumor cells expressing mutant p53 (mtp53). In the present study, we explored the effects and the underlying mechanisms of RITA in regards to the radiosensitivity and ER stress in mtp53-expressing human cervix cancer cells. Treatment with 1 µM of RITA for 24 h before irradiation markedly decreased survival and increased apoptosis in C-33A and HT-3 cells; the effects were not significantly altered by knockdown of p53. In the irradiated C-33A and HT-3 cells, RITA significantly increased the expression of IRE1α, the spliced XBP1 mRNA level, as well as apoptosis; the effects were abolished by knockdown of IRE1α. Transcriptional pulse-chase assays revealed that RITA significantly increased the stability of IRE1α mRNA in the irradiated C-33A and HT-3 cells. In contrast, the same RITA treatment did not show any significant effect on sham-irradiated cells. In conclusion, the present study provides initial evidence that RITA upregulates the expression level of IRE1α by increasing the stability of IRE1α mRNA in irradiated mtp53-expressing cervical cancer cells; the effect leads to enhanced IRE1α/XBP1 ER stress signaling and increased apoptosis in the cells. The present study offers novel insight into the pharmacological potential of RITA in the radiotherapy for cervical cancer.

  18. Terpenoids from Zingiber officinale (Ginger induce apoptosis in endometrial cancer cells through the activation of p53.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Novel strategies are necessary to improve chemotherapy response in advanced and recurrent endometrial cancer. Here, we demonstrate that terpenoids present in the Steam Distilled Extract of Ginger (SDGE are potent inhibitors of proliferation of endometrial cancer cells. SDGE, isolated from six different batches of ginger rhizomes, consistently inhibited proliferation of the endometrial cancer cell lines Ishikawa and ECC-1 at IC(50 of 1.25 µg/ml. SDGE also enhanced the anti-proliferative effect of radiation and cisplatin. Decreased proliferation of Ishikawa and ECC-1 cells was a direct result of SDGE-induced apoptosis as demonstrated by FITC-Annexin V staining and expression of cleaved caspase 3. GC/MS analysis identified a total of 22 different terpenoid compounds in SDGE, with the isomers neral and geranial constituting 30-40%. Citral, a mixture of neral and geranial inhibited the proliferation of Ishikawa and ECC-1 cells at an IC(50 10 µM (2.3 µg/ml. Phenolic compounds such as gingerol and shogaol were not detected in SDGE and 6-gingerol was a weaker inhibitor of the proliferation of the endometrial cancer cells. SDGE was more effective in inducing cancer cell death than citral, suggesting that other terpenes present in SDGE were also contributing to endometrial cancer cell death. SDGE treatment resulted in a rapid and strong increase in intracellular calcium and a 20-40% decrease in the mitochondrial membrane potential. Ser-15 of p53 was phosphorylated after 15 min treatment of the cancer cells with SDGE. This increase in p53 was associated with 90% decrease in Bcl2 whereas no effect was observed on Bax. Inhibitor of p53, pifithrin-α, attenuated the anti-cancer effects of SDGE and apoptosis was also not observed in the p53(neg SKOV-3 cells. Our studies demonstrate that terpenoids from SDGE mediate apoptosis by activating p53 and should be therefore be investigated as agents for the treatment of endometrial cancer.

  19. Dihydroptychantol A, a macrocyclic bisbibenzyl derivative, induces autophagy and following apoptosis associated with p53 pathway in human osteosarcoma U2OS cells

    International Nuclear Information System (INIS)

    Li Xia; Wu, William K.K.; Sun Bin; Cui Min; Liu Shanshan; Gao Jian; Lou Hongxiang

    2011-01-01

    Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G 2 /M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine, suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21 Waf1/Cip1 . In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B 1 , a cyclin required for progression through the G 2 /M phase. Taken together, DHA induces G 2 /M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.

  20. Zingiber officinale, Piper retrofractum and Combination Induced Apoptosis and p53 Expression in Myeloma and WiDr Cell Lines

    Directory of Open Access Journals (Sweden)

    HENY EKOWATI

    2012-09-01

    Full Text Available In previous studies, Zingiber officinale, Piper retrofractum, and the combination showed cytotoxic activity, induced apoptosis, and p53 expression of HeLa, T47D, and MCF-7 cell lines. This study was conducted to investigate the cytotoxic and apoptotic activity of Zingiber officinale (ZO, Piper retrofractum (PR, and the combination as well as their effect to p53 expression on Myeloma and WiDr cells. The powder of ZO, PR, and ZO + PR combination (1:1 were macerated with 96% ethanol for 3 x 24 hours. MTT cytotoxic assay was performed on Myeloma and WiDr cell lines. Apoptotic cells were stained with ethidium bromide and acridine orange. Imunohistochemical expression of p53 was examined on Myeloma and WiDr cell lines. Doxorubicin was used as positive control in all assays. Results showed that ZO, PR, and ZO + PR combination had cytotoxic activity on Myeloma cells with IC50 of 28, 36, and 55 mg/ml respectively and WiDr cell lines with IC50 of 74, 158, and 64 mg/ml respectively, induced apoptotic activity, and increased p53 expression on Myeloma and WiDr cells. These results suggest that ZO, PR, and their combination induced Myeloma and WiDr cells in apoptosis through p53 expression.

  1. Andrographolide Induces Apoptosis of C6 Glioma Cells via the ERK-p53-Caspase 7-PARP Pathway

    Directory of Open Access Journals (Sweden)

    Shih-Hung Yang

    2014-01-01

    Full Text Available Background. Glioma is the most malignant tumor of the central nervous system. Efforts on the development of new chemotherapy are mandatory. Andrographolide (AND, a diterpenoid lactone isolated from the Andrographis paniculata, has been shown to have antitumor activities in several types of cancer cells. Whether AND can exert its antitumor activity in glioblastoma cells remains unknown. This study examined the anticancer effects of AND, both in vitro and in vivo. Methods. Cell apoptosis was assayed by flow cytometry and nuclear staining. The signaling pathway for AND was determined by western blotting. The effects of AND on tumor growth was evaluated in a mouse model. Results and Conclusion. In vitro, with application of specific inhibitors and siRNA, AND-induced apoptosis was proven through ROS-ERK-P53-caspase 7-PARP signaling pathway. In vivo, AND significantly retarded tumor growth and caused regression of well-formed tumors in vivo. Furthermore, AND did not induce apoptosis or activate ERK and p53 in primary cultured astrocyte cells, and it may serve as a potential therapeutic candidate for the treatment of glioma.

  2. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice

    Science.gov (United States)

    Li, Runqin; Zhang, Yinglin

    2016-01-01

    Background and Objective: Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. Materials and Methods: The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. Results: The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. Conclusion: The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells. PMID:27402632

  3. GRIM-19 disrupts E6/E6AP complex to rescue p53 and induce apoptosis in cervical cancers.

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    Full Text Available BACKGROUND: Our previous studies showed a down-regulation of GRIM-19 in primary human cervical cancers, and restoration of GRIM-19 induced tumor regression. The induction of tumor suppressor protein p53 ubiquitination and degradation by E6 oncoportein of high risk-HPV through forming a stable complex with E6AP is considered as a critical mechanism for cervical tumor development. The aims of this study were to determine the potential role of GRIM-19 in rescuing p53 protein and inducing cervical cancer cell apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The protein levels of GRIM-19 and p53 were detected in normal cervical tissues from 45 patients who underwent hysterectomy for reasons other than neoplasias of either the cervix or endometrium, and cervical cancer tissues from 60 patients with non-metastatic squamous epithelial carcinomas. Coimmunoprecipitation and GST pull-down assay were performed to examine the interaction of GRIM-19 with 18E6 and E6AP in vivo and in vitro respectively. The competition of 18E6 with E6AP in binding GRIM-19 by performing competition pull-down assays was designed to examine the disruption of E6/E6AP complex by GRIM-19. The augment of E6AP ubiquitination by GRIM-19 was detected in vivo and in vitro ubiquitination assay. The effects of GRIM-19-dependent p53 accumulation on cell proliferation, cell cycle, apoptosis were explored by MTT, flow cytometry and transmission electron microscopy respectively. The tumor suppression was detected by xenograft mouse model. CONCLUSION/SIGNIFICANCE: The levels of GRIM-19 and p53 were concurrently down regulated in cervical cancers. The restoration of GRIM-19 can induce ubiquitination and degradation of E6AP, and disrupt the E6/E6AP complex through the interaction of N-terminus of GRIM-19 with both E6 and E6AP, which protected p53 from degradation and promoted cell apoptosis. Tumor xenograft studies also revealed the suppression of p53 degradation in presence of GRIM-19. These data

  4. ERK mediated upregulation of death receptor 5 overcomes the lack of p53 functionality in the diaminothiazole DAT1 induced apoptosis in colon cancer models: efficiency of DAT1 in Ras-Raf mutated cells.

    Science.gov (United States)

    Thamkachy, Reshma; Kumar, Rohith; Rajasekharan, K N; Sengupta, Suparna

    2016-03-08

    p53 is a tumour suppressor protein that plays a key role in many steps of apoptosis, and malfunctioning of this transcription factor leads to tumorigenesis. Prognosis of many tumours also depends upon the p53 status. Most of the clinically used anticancer compounds activate p53 dependent pathway of apoptosis and hence require p53 for their mechanism of action. Further, Ras/Raf/MEK/ERK axis is an important signaling pathway activated in many cancers. Dependence of diaminothiazoles, compounds that have gained importance recently due to their anticancer and anti angiogenic activities, were tested in cancer models with varying p53 or Ras/Raf mutational status. In this study we have used p53 mutated and knock out colon cancer cells and xenograft tumours to study the role of p53 in apoptosis mediated by diaminothiazoles. Colon cancer cell lines with varying mutational status for Ras or Raf were also used. We have also examined the toxicity and in vivo efficacy of a lead diaminothiazole 4-Amino-5-benzoyl-2-(4-methoxy phenylamino)thiazole (DAT1) in colon cancer xenografts. We have found that DAT1 is active in both in vitro and in vivo models with nonfunctional p53. Earlier studies have shown that extrinsic pathway plays major role in DAT1 mediated apoptosis. In this study, we have found that DAT1 is causing p53 independent upregulation of the death receptor 5 by activating the Ras/Raf/MEK/ERK signaling pathway both in wild type and p53 suppressed colon cancer cells. These findings are also confirmed by the in vivo results. Further, DAT1 is more efficient to induce apoptosis in colon cancer cells with mutated Ras or Raf. Minimal toxicity in both acute and subacute studies along with the in vitro and in vivo efficacy of DAT1 in cancers with both wild type and nonfunctional p53 place it as a highly beneficial candidate for cancer chemotherapy. Besides, efficiency in cancer cells with mutations in the Ras oncoprotein or its downstream kinase Raf raise interest in

  5. p53 Maintains Genomic Stability by Preventing Interference between Transcription and Replication

    Directory of Open Access Journals (Sweden)

    Constance Qiao Xin Yeo

    2016-04-01

    Full Text Available p53 tumor suppressor maintains genomic stability, typically acting through cell-cycle arrest, senescence, and apoptosis. We discovered a function of p53 in preventing conflicts between transcription and replication, independent of its canonical roles. p53 deficiency sensitizes cells to Topoisomerase (Topo II inhibitors, resulting in DNA damage arising spontaneously during replication. Topoisomerase IIα (TOP2A-DNA complexes preferentially accumulate in isogenic p53 mutant or knockout cells, reflecting an increased recruitment of TOP2A to regulate DNA topology. We propose that p53 acts to prevent DNA topological stress originating from transcription during the S phase and, therefore, promotes normal replication fork progression. Consequently, replication fork progression is impaired in the absence of p53, which is reversed by transcription inhibition. Pharmacologic inhibition of transcription also attenuates DNA damage and decreases Topo-II-DNA complexes, restoring cell viability in p53-deficient cells. Together, our results demonstrate a function of p53 that may underlie its role in tumor suppression.

  6. Combination of heavy-ion radiotherapy and p53-gene therapy by radio- and hypoxia-sensitizing promoter for glioma

    International Nuclear Information System (INIS)

    Oga, Masaru; Koshikawa, Nobuko; Takenaga, Keizo; Iwadate, Yasuo; Nojima, Kumie

    2006-01-01

    In this study we have started to investigate the anti-tumor effect of the combination of heavy-ion radiotherapy, inducing p53-independent apoptosis, and p53-gene therapy, inducing p53-dependent apoptosis for glioma. To enhance the p53-dependent apoptosis, we chose the strategy to utilize the heavy-ion irradiation itself as a ''trigger'' by using radio-sensitizing E 9ns-2 /cytomegalovirus (CMV) chimeric promoter (Scott et al: 2003) in p53-gene therapy. Our study in the first year, however, suggested the uselessness of E 9ns-2 /CMV chimeric promoter. Then we applied E 9ns-2 /Epo5/CMV-radio and hypoxia-sensitizing chimeric promoter to amplify p53 gene exopression. P53 gene with E 9ns2 /Epo5/CMV chimeric promoter was transfected in p53-mutant U373MG human glioma cell-line and the transfected-cell bulk was irradiated at dose of 1 Gy of high linear energy transfer (LET)-carbon ion beam or low-LET X-ray under various hypoxic conditions. The result suggested the possible role of 1 Gy of high LET-carbon ion beam as a ''useful trigger'' to enhance a selective anti-tumor effect toward glioma under hypoxic condition through amplification of p53 gene expression. (author)

  7. Benzene activates caspase-4 and -12 at the transcription level, without an association with apoptosis, in mouse bone marrow cells lacking the p53 gene

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jung-Yeon; Han, Jeong-Hee; Yoon, Byung-Il [Kangwon National University, School of Veterinary Medicine, Chuncheon, Gangwon (Korea); Hirabayashi, Yoko; Kodama, Yukio; Kanno, Jun [National Institute of Health Sciences, Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, Tokyo (Japan); Choi, Yang-Kyu [Konkuk University, College of Veterinary Medicine, Seoul (Korea); Inoue, Tohru [National Institute of Health Sciences, Biological Safety and Research Center, Tokyo (Japan)

    2009-08-15

    Benzene is a well-known environmental pollutant that can induce hematotoxicity, aplastic anemia, acute myelogenous leukemia, and lymphoma. However, although benzene metabolites are known to induce oxidative stress and disrupt the cell cycle, the mechanism underlying lympho/leukemogenicity is not fully understood. Caspase-4 (alias caspase-11) and -12 are inflammatory caspases implicated in inflammation and endoplasmic reticulum stress-induced apoptosis. The objectives of this study were to investigate the altered expression of caspase-4 and -12 in mouse bone marrow after benzene exposure and to determine whether their alterations are associated with benzene-induced bone marrow toxicity, especially cellular apoptosis. In addition, we evaluated whether the p53 gene is involved in regulating the mechanism, using both wild-type (WT) mice and mice lacking the p53 gene. For this study, 8-week-old C57BL/6 mice [WT and p53 knockout (KO)] were administered a benzene solution (150 mg/kg diluted in corn oil) via oral gavage once daily, 5 days/week, for 1 or 2 weeks. Blood and bone marrow cells were collected and cell counts were measured using a Coulter counter. Total mRNA and protein extracts were prepared from the harvested bone marrow cells. Then qRT-PCR and Western blotting were performed to detect changes in the caspases at the mRNA and protein level, respectively. A DNA fragmentation assay and Annexin-V staining were carried out on the bone marrow cells to detect apoptosis. Results indicated that when compared to the control, leukocyte number and bone marrow cellularity decreased significantly in WT mice. The expression of caspase-4 and -12 mRNA increased significantly after 12 days of benzene treatment in the bone marrow cells of benzene-exposed p53KO mice. However, apoptosis detection assays indicated no evidence of apoptosis in p53KO or WT mice. In addition, no changes of other apoptosis-related caspases, such as caspase-3 and -9, were found in WT or p53KO mice at the

  8. The sirtuin 1/2 inhibitor tenovin-1 induces a nonlinear apoptosis-inducing factor-dependent cell death in a p53 null Ewing's sarcoma cell line.

    Science.gov (United States)

    Marx, Christian; Marx-Blümel, Lisa; Lindig, Nora; Thierbach, René; Hoelzer, Doerte; Becker, Sabine; Wittig, Susan; Lehmann, Roland; Slevogt, Hortense; Heinzel, Thorsten; Wang, Zhao-Qi; Beck, James F; Sonnemann, Jürgen

    2018-06-01

    The sirtuin 1/2 inhibitor tenovin-1 activates p53 and may have potential in the management of cancer. Here, we investigated the responsiveness of Ewing's sarcoma cells to tenovin-1. We examined its effects in two Ewing's sarcoma cell lines with different p53 status, i.e. in p53 wild-type and p53 null cells. Effects were assessed by flow cytometric analyses of cell death, mitochondrial membrane depolarization and reactive oxygen species (ROS) generation, by caspase 3/7 activity measurement, by mRNA expression profiling and by immunoblotting. Tenovin-1 elicited caspase-mediated cell death in p53 wild-type cells, but caspase-independent cell death in p53 null cells. Remarkably, it induced a nonlinear concentration response in the latter: low concentrations of tenovin-1 were much more effective than were higher concentrations. Tenovin-1's effects in p53 null cells involved gene expression changes of Bcl-2 family members, mitochondrial membrane depolarization, nuclear translocation of apoptosis-inducing factor, ROS formation and DNA damage; all these effects followed a bell-shaped pattern. In conclusion, our results provide new insights into tenovin-1's mode of action by demonstrating that it can induce different pathways of cell death.

  9. Noscapine induced apoptosis via downregulation of survivin in human neuroblastoma cells having wild type or null p53.

    Directory of Open Access Journals (Sweden)

    Shiwang Li

    Full Text Available Neuroblastoma is the most common extracranial solid tumor of childhood. It accounts for 15% of pediatric cancer deaths. Chemotherapy is the mainstay of treatment in children with advanced neuroblastoma. Noscapine, a nontoxic natural compound, can trigger apoptosis in many cancer types. We now show that p53 is dispensable for Noscapine-induced cell death in neuroblastoma cell lines, proapoptotic response to this promising chemopreventive agent is mediated by suppression of survivin protein expression. The Noscapine treatment increased levels of total and Ser(15-phosphorylated p53 protein in SK-SY5Y cells, but the proapoptotic response to this agent was maintained even after knockdown of the p53 protein level. Exposure of SK-SY5Y and LA1-5S cells to Noscapine resulted in a marked decrease in protein and mRNA level of survivin as early as 12 hours after treatment. Ectopic expression of survivin conferred statistically significant protection against Noscapine-mediated cytoplasmic histone-associated apoptotic DNA fragmentation. Also, the Noscapine-induced apoptosis was modestly but statistically significantly augmented by RNA interference of survivin in both cell lines. Furthermore, Noscapine-induced apoptotic cell death was associated with activation of caspase-3 and cleavage of PARP. In conclusion, the present study provides novel insight into the molecular circuitry of Noscapine-induced apoptosis to indicate suppression of survivin expression as a critical mediator of this process.

  10. Induction of p53-mediated apoptosis in splenocytes and thymocytes of C57BL/6 mice exposed to perfluorooctane sulfonate (PFOS)

    International Nuclear Information System (INIS)

    Dong, Guang-Hui; Wang, Jing; Zhang, Ying-Hua; Liu, Miao-Miao; Wang, Da; Zheng, Li; Jin, Yi-He

    2012-01-01

    Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant found in human and wildlife tissues. It has been reported that PFOS can cause atrophy of the immune organs and apoptosis of immunocytes in rodents. However, the mechanism behind such cause is still unclear. To understand the model of cell death and its mechanism on lymphoid cells in vivo, we conducted a dose/response experiment in which 4 groups of male adult C57BL/6 mice (12 mice per group) were dosed daily by oral gavage with PFOS at 0, 0.0167, 0.0833, or 0.8333 mg/kg/day, yielding targeted Total Administered Dose (TAD) of 0, 1, 5, or 50 mg PFOS/kg, respectively, over 60 days. The results showed that spleen and thymus weight were significantly reduced in the highest PFOS-dose-group (TAD 50 mg PFOS/kg) compared to the control group, whereas liver weight was significantly increased. We analyzed the cell death via apoptosis with an annexin-V/propidium iodide assay by flow cytometry, and observed that both the percentage of apoptosis and the expression of the pro-apoptotic proteins p53 in splenocytes and thymocytes increased in a dose-related manner after PFOS treatment. We also observed that PFOS induced p53-dependent apoptosis through the cooperation between the Bcl-xl down regulation without changing the Bcl-2 and Bax expression. The down regulation of Bcl-xl was strongly indicating mitochondrial involvement in apoptosis. It is confirmed by the release of cytochrome c and activation of caspase-3. All of these findings establish an important role of p53 and mitochondrial function in PFOS induced toxic environment in the host. -- Highlights: ► PFOS immunotoxicity is caused by induction of apoptosis via the p53 activation. ► PFOS exposure can induce down regulation of Bcl-xl. ► Mitochondria are involved in PFOS-induced apoptosis. ► PFOS exposure can cause the release of cytochrome c and activation of caspase-3.

  11. Induction of p53-mediated apoptosis in splenocytes and thymocytes of C57BL/6 mice exposed to perfluorooctane sulfonate (PFOS)

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guang-Hui, E-mail: ghdong@mail.cmu.edu.cn [School of Public Health, China Medical University, Shenyang 110001 (China); Wang, Jing [Department of Biostatistics, School of Public Health, Saint Louis University, Saint Louis, MO 63104 (United States); Zhang, Ying-Hua; Liu, Miao-Miao; Wang, Da [School of Public Health, China Medical University, Shenyang 110001 (China); Zheng, Li [Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110001 (China); Jin, Yi-He [School of Public Health, China Medical University, Shenyang 110001 (China); School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian 116024 (China)

    2012-10-15

    Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant found in human and wildlife tissues. It has been reported that PFOS can cause atrophy of the immune organs and apoptosis of immunocytes in rodents. However, the mechanism behind such cause is still unclear. To understand the model of cell death and its mechanism on lymphoid cells in vivo, we conducted a dose/response experiment in which 4 groups of male adult C57BL/6 mice (12 mice per group) were dosed daily by oral gavage with PFOS at 0, 0.0167, 0.0833, or 0.8333 mg/kg/day, yielding targeted Total Administered Dose (TAD) of 0, 1, 5, or 50 mg PFOS/kg, respectively, over 60 days. The results showed that spleen and thymus weight were significantly reduced in the highest PFOS-dose-group (TAD 50 mg PFOS/kg) compared to the control group, whereas liver weight was significantly increased. We analyzed the cell death via apoptosis with an annexin-V/propidium iodide assay by flow cytometry, and observed that both the percentage of apoptosis and the expression of the pro-apoptotic proteins p53 in splenocytes and thymocytes increased in a dose-related manner after PFOS treatment. We also observed that PFOS induced p53-dependent apoptosis through the cooperation between the Bcl-xl down regulation without changing the Bcl-2 and Bax expression. The down regulation of Bcl-xl was strongly indicating mitochondrial involvement in apoptosis. It is confirmed by the release of cytochrome c and activation of caspase-3. All of these findings establish an important role of p53 and mitochondrial function in PFOS induced toxic environment in the host. -- Highlights: ► PFOS immunotoxicity is caused by induction of apoptosis via the p53 activation. ► PFOS exposure can induce down regulation of Bcl-xl. ► Mitochondria are involved in PFOS-induced apoptosis. ► PFOS exposure can cause the release of cytochrome c and activation of caspase-3.

  12. Antiproliferation and apoptosis induced by tamoxifen in human bile duct carcinoma QBC939 cells via upregulated p53 expression

    International Nuclear Information System (INIS)

    Han, Peng; Kang, Jin-He; Li, Hua-Liang; Hu, Su-Xian; Lian, Hui-Hui; Qiu, Ping-Ping; Zhang, Jian; Li, Wen-Gang; Chen, Qing-Xi

    2009-01-01

    Tamoxifen (TAM) is a nonsteroidal antiestrogen that has been used in the treatment of breast cancer for over 30 years. Recently, it was shown that TAM also has efficacy on gastrointestinal neoplasms such as hepatocarcinoma and pancreatic carcinoma, and that the chemopreventive activities of TAM might be due to its abilities to inhibit cell growth and induce apoptosis. In the present study, we investigated the effects of tamoxifen on growth and apoptosis in the human bile duct carcinoma (BDC) cell line QBC939 using MTT assay, inverted microscopy, fluorescence microscopy, transmission electron microscopy, classic DNA fragmentation agarose gel electrophoresis assay, PI single- and FITC/PI double-staining flow cytometry, and Western blotting. Our data revealed that TAM could significantly inhibit growth and induce apoptosis in QBC939 cells. Increased expression of p53 was observed in TAM-treated cells, indicating that p53 might play an important role in TAM-induced apoptosis in QBC939 cells. These results provide significant insight into the anticarcinogenic action of TAM on BDC.

  13. Antiproliferation and apoptosis induced by tamoxifen in human bile duct carcinoma QBC939 cells via upregulated p53 expression

    Energy Technology Data Exchange (ETDEWEB)

    Han, Peng; Kang, Jin-He; Li, Hua-Liang [Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Hu, Su-Xian [First Hospital Attached to Fujian Medical University, Xiamen 361004 (China); Lian, Hui-Hui; Qiu, Ping-Ping; Zhang, Jian [Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Li, Wen-Gang [First Hospital Attached to Fujian Medical University, Xiamen 361004 (China); Chen, Qing-Xi [Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005 (China)

    2009-07-24

    Tamoxifen (TAM) is a nonsteroidal antiestrogen that has been used in the treatment of breast cancer for over 30 years. Recently, it was shown that TAM also has efficacy on gastrointestinal neoplasms such as hepatocarcinoma and pancreatic carcinoma, and that the chemopreventive activities of TAM might be due to its abilities to inhibit cell growth and induce apoptosis. In the present study, we investigated the effects of tamoxifen on growth and apoptosis in the human bile duct carcinoma (BDC) cell line QBC939 using MTT assay, inverted microscopy, fluorescence microscopy, transmission electron microscopy, classic DNA fragmentation agarose gel electrophoresis assay, PI single- and FITC/PI double-staining flow cytometry, and Western blotting. Our data revealed that TAM could significantly inhibit growth and induce apoptosis in QBC939 cells. Increased expression of p53 was observed in TAM-treated cells, indicating that p53 might play an important role in TAM-induced apoptosis in QBC939 cells. These results provide significant insight into the anticarcinogenic action of TAM on BDC.

  14. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish.

    Science.gov (United States)

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)- b -poly( ε -caprolactone) (PCL), namely PEG- b -PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG- b -PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG- b -PCL nano-micelle on cardiovascular development. The results showed that PEG- b -PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG- b -PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG- b -PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG- b -PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG- b -PCL nano-micelles, indicating that PEG- b -PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG- b -PCL nano-micelle could

  15. DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions.

    Science.gov (United States)

    Lambrughi, Matteo; De Gioia, Luca; Gervasio, Francesco Luigi; Lindorff-Larsen, Kresten; Nussinov, Ruth; Urani, Chiara; Bruschi, Maurizio; Papaleo, Elena

    2016-11-02

    Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. SCO2 induces p53-mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trx complex.

    Science.gov (United States)

    Madan, Esha; Gogna, Rajan; Kuppusamy, Periannan; Bhatt, Madan; Mahdi, Abbas Ali; Pati, Uttam

    2013-04-01

    p53 prevents cancer via cell cycle arrest, apoptosis, and the maintenance of genome stability. p53 also regulates energy-generating metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis via transcriptional regulation of SCO2 and TIGAR. SCO2, a cytochrome c oxidase assembly factor, is a metallochaperone which is involved in the biogenesis of cytochrome c oxidase subunit II. Here we have shown that SCO2 functions as an apoptotic protein in tumor xenografts, thus providing an alternative pathway for p53-mediated apoptosis. SCO2 increases the generation of reactive oxygen species (ROS) and induces dissociation of the protein complex between apoptosis signal-regulating kinase 1 (ASK-1) (mitogen-activated protein kinase kinase kinase [MAPKKK]) and its cellular inhibitor, the redox-active protein thioredoxin (Trx). Furthermore, SCO2 induces phosphorylation of ASK-1 at the Thr(845) residue, resulting in the activation of the ASK-1 kinase pathway. The phosphorylation of ASK-1 induces the activation of mitogen-activated protein kinase kinases 4 and 7 (MAP2K4/7) and MAP2K3/6, which switches the c-Jun N-terminal protein kinase (JNK)/p38-dependent apoptotic cascades in cancer cells. Exogenous addition of the SCO2 gene to hypoxic cancer cells and hypoxic tumors induces apoptosis and causes significant regression of tumor xenografts. We have thus discovered a novel apoptotic function of SCO2, which activates the ASK-1 kinase pathway in switching "on" an alternate mode of p53-mediated apoptosis. We propose that SCO2 might possess a novel tumor suppressor function via the ROS-ASK-1 kinase pathway and thus could be an important candidate for anticancer gene therapy.

  17. A surrogate p53 reporter in Drosophila reveals the interaction of eIF4E and p53

    International Nuclear Information System (INIS)

    Corujo, G.; Campagno, R.; Rivera Pomar, R.; Ferrero, P.; Lu, W.J.

    2011-01-01

    eIF4E promotes translation upon binding the mRNA 5'cap and it is required for cell proliferation. p53 is a proapoptotic protein which is activated in response to DNA damage. There is evidence that suggests that eIF4E and p53 are connected in a mechanism that regulates their function. We propose a model for that such a mechanism to explain the equilibrium between apoptosis and cell proliferation. Our data shows a correlation between the overexpression of eIF4E and the suppression of apoptosis triggered by the overexpression of p53 in Drosophila imaginal discs. We also studied a reporter transgene which expresses GFP in response to p53 activation by gamma radiation. We could confirm that this p53 surrogate works in imaginal discs as well as in embryos. This provided us a tool to quantify the effect on the GFP signal by overexpression of eIF4E to confirm how these two proteins could interact in vivo. Our results suggest that p53 and eIF4E are indeed in an equilibrium that decides if a cell shall proliferate or die. (authors)

  18. Epstein-Barr virus nuclear antigen 3C stabilizes Gemin3 to block p53-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Qiliang Cai

    2011-12-01

    Full Text Available The Epstein-Barr nuclear antigen 3C (EBNA3C, one of the essential latent antigens for Epstein-Barr virus (EBV-induced immortalization of primary human B lymphocytes in vitro, has been implicated in regulating cell proliferation and anti-apoptosis via interaction with several cellular and viral factors. Gemin3 (also named DDX20 or DP103 is a member of DEAD RNA helicase family which exhibits diverse cellular functions including DNA transcription, recombination and repair, and RNA metabolism. Gemin3 was initially identified as a binding partner to EBNA2 and EBNA3C. However, the mechanism by which EBNA3C regulates Gemin3 function remains unclear. Here, we report that EBNA3C directly interacts with Gemin3 through its C-terminal domains. This interaction results in increased stability of Gemin3 and its accumulation in both B lymphoma cells and EBV transformed lymphoblastoid cell lines (LCLs. Moreover, EBNA3C promotes formation of a complex with p53 and Gemin3 which blocks the DNA-binding affinity of p53. Small hairpin RNA based knockdown of Gemin3 in B lymphoma or LCL cells remarkably attenuates the ability of EBNA3C to inhibit the transcription activity of p53 on its downstream genes p21 and Bax, as well as apoptosis. These findings provide the first evidence that Gemin3 may be a common target of oncogenic viruses for driving cell proliferation and anti-apoptotic activities.

  19. Radiosensitivity of cancer cells against carbon-ion beams in an aspect of the p53 gene status

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Ohnishi, Takeo; Matsumoto, Hideki

    2004-01-01

    We can easily understand that radiation sensitivities of cancer cells are dependent on the status of cancer-related genes. It is important to clarify which genes affect radiation sensitivity and reflect the effectiveness of radiation therapy for cancer cells. We have studied about the function of a tumor suppressor gene of p53, because p53 controls apoptosis, cell cycle and DNA repair from an aspect of important roles in cell fate. By analysis of function of p53 gene, therefore, we aim to predict the therapeutic effectiveness and to select the modalities of cancer therapies such as radiotherapy, chemotherapy and hyperthermia. As a final goal, we want to accept the most effective therapy, namely tailor-made cancer therapy, for each patient. Here, we introduce that carbon-beam therapy induced the expression of p53-independent apoptosis-related genes and NO radicals in mutated p53 cancer cells. (author)

  20. A Link between the p53 germ line polymorphisms and white blood cells apoptosis in lung cancer patients

    Czech Academy of Sciences Publication Activity Database

    Biroš, Erik; Kohút, A.; Biroš, I.; Kalina, I.; Bogyiová, E.; Štubňa, J.

    2002-01-01

    Roč. 35, č. 3 (2002), s. 231-235 ISSN 0169-5002 R&D Projects: GA MŽP SI/340/1/97 Institutional research plan: CEZ:AV0Z5039906 Keywords : apoptosis * p53 polymorphism * lung cancer Subject RIV: FD - Oncology ; Hematology Impact factor: 2.451, year: 2002

  1. The role of the expression of bcl-2, p53 gene in tamoxifen-induced apoptosis of breast cancer cells and its relationship with hormone receptor status

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Woo Chul; Ham, Yong Ho [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1998-01-01

    To investigate the relationship of bcl-2, p53, ER and tamoxifen-induced apoptosis of breast cancer cells, MCF-7 (ER+/bcl-2+/p53-) and MB MDA 468 (ER-/bcl-2-/p53+) cell line were cultured in estrogen-free condition. E2(10`-`9M) and tamoxifen (10`-`5M) were added to the media. The changes of bcl-2 and mutant p53 protein were checked by Western blot and apoptosis were measured by flowcytometry. In MCF-7 cells, we found that treatment with tamoxifen resulted in a decrease in bcl-2 protein level, but produced no change in mutant p53. In MB MDA 468 cell however, there were no changes of bcl-2 and mutant p53 protein level when E2 or tamoxifen were added. Apoptotic cells increased with time-dependent pattern when tamoxifen was added to MCF-7 cells. According to these result, ER+/blc-2+/mutant p53- cells, when treated with tamoxifen, were converted into bcl-2/mutant p53- cells which were more prone to apoptosis than bcl-2-/mutant p53+ cells. The paradoxical correlation of bcl-2 and ER which had been observed in clinical studies might be explained with this results and bcl-2 protein seems to be one of important factors that can predict the effect of hormone therapy. (author). 26 refs., 5 figs

  2. The role of the expression of bcl-2, p53 gene in tamoxifen-induced apoptosis of breast cancer cells and its relationship with hormone receptor status

    International Nuclear Information System (INIS)

    Noh, Woo Chul; Ham, Yong Ho

    1998-01-01

    To investigate the relationship of bcl-2, p53, ER and tamoxifen-induced apoptosis of breast cancer cells, MCF-7 (ER+/bcl-2+/p53-) and MB MDA 468 (ER-/bcl-2-/p53+) cell line were cultured in estrogen-free condition. E2(10'-'9M) and tamoxifen (10'-'5M) were added to the media. The changes of bcl-2 and mutant p53 protein were checked by Western blot and apoptosis were measured by flowcytometry. In MCF-7 cells, we found that treatment with tamoxifen resulted in a decrease in bcl-2 protein level, but produced no change in mutant p53. In MB MDA 468 cell however, there were no changes of bcl-2 and mutant p53 protein level when E2 or tamoxifen were added. Apoptotic cells increased with time-dependent pattern when tamoxifen was added to MCF-7 cells. According to these result, ER+/blc-2+/mutant p53- cells, when treated with tamoxifen, were converted into bcl-2/mutant p53- cells which were more prone to apoptosis than bcl-2-/mutant p53+ cells. The paradoxical correlation of bcl-2 and ER which had been observed in clinical studies might be explained with this results and bcl-2 protein seems to be one of important factors that can predict the effect of hormone therapy. (author). 26 refs., 5 figs

  3. Reactivating p53 and Inducing Tumor Apoptosis (RITA) Enhances the Response of RITA-Sensitive Colorectal Cancer Cells to Chemotherapeutic Agents 5-Fluorouracil and Oxaliplatin.

    Science.gov (United States)

    Wiegering, Armin; Matthes, Niels; Mühling, Bettina; Koospal, Monika; Quenzer, Anne; Peter, Stephanie; Germer, Christoph-Thomas; Linnebacher, Michael; Otto, Christoph

    2017-04-01

    Colorectal carcinoma (CRC) is the most common cancer of the gastrointestinal tract with frequently dysregulated intracellular signaling pathways, including p53 signaling. The mainstay of chemotherapy treatment of CRC is 5-fluorouracil (5FU) and oxaliplatin. The two anticancer drugs mediate their therapeutic effect via DNA damage-triggered signaling. The small molecule reactivating p53 and inducing tumor apoptosis (RITA) is described as an activator of wild-type and reactivator of mutant p53 function, resulting in elevated levels of p53 protein, cell growth arrest, and cell death. Additionally, it has been shown that RITA can induce DNA damage signaling. It is expected that the therapeutic benefits of 5FU and oxaliplatin can be increased by enhancing DNA damage signaling pathways. Therefore, we highlighted the antiproliferative response of RITA alone and in combination with 5FU or oxaliplatin in human CRC cells. A panel of long-term established CRC cell lines (n=9) including p53 wild-type, p53 mutant, and p53 null and primary patient-derived, low-passage cell lines (n=5) with different p53 protein status were used for this study. A substantial number of CRC cells with pronounced sensitivity to RITA (IC 50 RITA appeared independent of p53 status and was associated with an increase in antiproliferative response to 5FU and oxaliplatin, a transcriptional increase of p53 targets p21 and NOXA, and a decrease in MYC mRNA. The effect of RITA as an inducer of DNA damage was shown by a strong elevation of phosphorylated histone variant H2A.X, which was restricted to RITA-sensitive cells. Our data underline the primary effect of RITA, inducing DNA damage, and demonstrate the differential antiproliferative effect of RITA to CRC cells independent of p53 protein status. We found a substantial number of RITA-sensitive CRC cells within both panels of established CRC cell lines and primary patient-derived CRC cell lines (6/14) that provide a rationale for combining RITA with 5FU or

  4. The Fanconi anemia pathway sensitizes to DNA alkylating agents by inducing JNK-p53-dependent mitochondrial apoptosis in breast cancer cells.

    Science.gov (United States)

    Zhao, Lin; Li, Yanlin; He, Miao; Song, Zhiguo; Lin, Shu; Yu, Zhaojin; Bai, Xuefeng; Wang, Enhua; Wei, Minjie

    2014-07-01

    The Fanconi anemia/BRCA (FA/BRCA) DNA damage repair pathway plays a pivotal role in the cellular response to DNA alkylating agents and greatly influences drug response in cancer treatment. However, the molecular mechanisms underlying the FA/BRCA pathway reversed resistance have received limited attention. In the present study, we investigated the effect of Fanconi anemia complementation group F protein (FANCF), a critical factor of the FA/BRCA pathway, on cancer cell apoptosis induced by DNA alkylating agents such as mitomycin c (MMC). We found that FANCF shRNA potentiated MMC-induced cytotoxicity and apoptosis in MCF-7 and MDA-MB-231 breast cancer cells. At a mechanistic level, FANCF shRNA downregulated the anti-apoptotic protein Bcl-2 and upregulated the pro-apoptotic protein Bax, accompanied by release of cyt-c and smac into the cytosol in MMC-treated cells. Furthermore, activation of caspase-3 and -9, other than caspase-8, cleavage of poly(ADP ribose) polymerase (PARP), and a decrease of mitochondrial membrane potential (MMP) indicated that involvement of the mitochondrial apoptotic pathway in FANCF silencing of MMC-treated breast cancer cells. A decrease in IAP family proteins XIAP and survivin were also observed following FANCF silencing in MMC-treated breast cancer cells. Notably, FANCF shRNA was able to increase p53 levels through activation of the JNK pathway in MMC-treated breast cancer cells. Furthermore, p53 inhibition using pifithrin-α abolished the induction of caspase-3 and PARP by FANCF shRNA and MMC, indicating that MMC-induced apoptosis is substantially enhanced by FANCF shRNA via p53-dependent mechanisms. To our knowledge, we provide new evidence for the potential application of FANCF as a chemosensitizer in breast cancer therapy.

  5. Ubiquitin specific peptidase 5 mediates Histidine-rich protein Hpn induced cell apoptosis in hepatocellular carcinoma through P14-P53 signaling.

    Science.gov (United States)

    Liu, Yi; Wang, Wei-Mao; Zou, Li-Yi; Li, Li; Feng, Lu; Pan, Ming-Zhu; Lv, Min-Yi; Cao, Ying; Wang, Hua; Kung, Hsiang-Fu; Pang, Jian-Xin; Fu, Wei-Ming; Zhang, Jin-Fang

    2017-06-01

    Hpn is a small histidine-rich cytoplasmic protein from Helicobacter pylori and has been recognized as a high-risk factor for several cancers including gastric cancer, colorectal cancer, and MALT lymphoma. However, the relationship between Hpn and cancers remains elusive. In this study, we discovered that Hpn protein effectively suppressed cell growth and induced apoptosis in hepatocellular carcinoma (HCC). A two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics was performed to find the molecular targets of Hpn in HCC cells. It was identified that twelve proteins were differentially expressed, with USP5 being one of the most significantly downregulated protein. The P14 ARF -P53 signaling was activated by USP5 knockdown in HCC cells. Furthermore, USP5 overexpression significantly rescued the suppressive effect of Hpn on the viability of HCC cells. In conclusion, our study suggests that Hpn plays apoptosis-inducing roles through suppressing USP5 expression and activating the P14 ARF -P53 signaling. Therefore, Hpn may be a potential candidate for developing novel anti-HCC drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Translocation of p53 to Mitochondria Is Regulated by Its Lipid Binding Property to Anionic Phospholipids and It Participates in Cell Death Control

    Directory of Open Access Journals (Sweden)

    Ching-Hao Li

    2010-02-01

    Full Text Available p53, can regulate cell apoptosis in both transcription-dependent and -independent manners. The transcription-independent pathway was demonstrated by the translocation of p53 to mitochondria. Our study showed that p53 mitochondrial translocation was found in mitomycin C (MMC-treated HepG2. The p53 C-terminal domain is clustered with potential nuclear leading sequences and showed strong electrostatic ion-ion interactions with cardiolipin, phosphatidylglycerol and phosphatidic acid in vitro. Disruption of cardiolipin biosynthesis by phosphatidylglycero-phosphate synthase (PGS or CDP-diacylglycerol synthase 2 (CDS-2 short hairpin RNA (shRNA transfection eliminated the MMC-induced translocation of mitochondrial p53. The elimination of mitochondrial p53 translocation also reduced Bcl-xL and Bcl-2 mitochondrial distribution. In HEK 293T models with saturated p53 expression, the mitochondrial partition of p53, Bcl-xL, and Bcl-2 obviously decreased in their PGS shRNA- or CDS-2 shRNA-expressing stable clones. In p53-null H1299 models, both the mitochondrial partitions of Bcl-xL and Bcl-2 were strongly reduced in relation to the HEK 293T models. The Bcl-xL mitochondrial partition was elevated in H1299 models expressing pCEP4-p53wt suggesting the direct carrier role of p53 in transporting Bcl-xL to the mitochondria. We also found that the cytosolic pool of Bcl-xL and Bcl-2 remained unaffected in the low-dose MMC treatment but decreased in the high-dose MMC treatment. The cytosolic pool of Bcl-2 and Bcl-xL directly regulated their amounts in p53-dependent mitochondrial distribution. In the low-dose MMC treatment, the increased mitochondrial p53, Bcl-xL, and Bcl-2 could attenuate apoptosis. However, in the high-dose MMC treatment, only the p53 translocated to the mitochondria and resulted in apoptosis progression. On the basis of this study, we thought mitochondrial p53 might regulate apoptosis in a biphasic manner.

  7. Tumor hypoxia, p53, and prognosis in cervical cancers

    International Nuclear Information System (INIS)

    Haensgen, Gabriele; Krause, Ulf; Becker, Axel; Stadler, Peter; Lautenschlaeger, Christine; Wohlrab, Wolfgang; Rath, Friedrich W.; Molls, Michael; Dunst, Juergen

    2001-01-01

    Background: The p53 protein is involved in the regulation of initiation of apoptosis. In vitro, p53-deficient cells do not respond to hypoxia with apoptosis as do p53-normal cells, and this may lead to a relative growth advantage of cells without a functioning p53 under hypoxia. On the basis of this hypothesis, a selection of cells with a functionally inactive p53 may occur in hypoxic tumors. The development of uterine cervical carcinomas is closely associated with infections of human papilloma viruses, which may cause a degradation of the tumor suppressor gene p53, resulting in a restriction of apoptosis. Thus, cervical cancers have often a functionally inactive p53. The purpose of our clinical study was therefore to investigate the association between p53, hypoxia, and prognosis in cervical cancers in which the oxygenation status can be determined by clinical methods. Material and Methods: Seventy patients with locally advanced squamous cell cervical cancer Stages IIB (n=14), IIIB (n=49), and IVA (n=7) were investigated in the period from 1996 through 1999. All were treated with definitive radiotherapy with curative intent by a combination of external radiotherapy plus high-dose-rate afterloading. Before therapy, tumor oxygenation was measured with a needle probe polarographically using the Eppendorf histograph. Hypoxic tumors were defined as those with pO 2 measurements below 5 mm Hg (HF5). Pretreatment biopsies were taken and analyzed immunohistologically for p53 protein expression with the DO-7 antibody. The DNA index was measured by flow cytometry. The statistical data analysis was done with SPSS 9.0 for Windows. Results: The 3-year overall survival was 55% for the whole group of patients. Clinical prognostic factors in a multivariate analysis were pretreatment hemoglobin level (3-year survival 62% for patients with a pretreatment hemoglobin ≥11 g/dl vs. 27% for hemoglobin <11 g/dl, p=0.006) and FIGO stage (Stage IIB: 65%; Stage IIIB: 60%; Stage IVA: 29%, p

  8. Kaempferol induces ATM/p53-mediated death receptor and mitochondrial apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Chiu-Fang; Yang, Jai-Sing; Tsai, Fuu-Jen; Chiang, Ni-Na; Lu, Chi-Cheng; Huang, Yu-Syuan; Chen, Chun; Chen, Fu-An

    2016-05-01

    Kaempferol is a member of the flavonoid compounds found in vegetables and fruits. It is shown to exhibit biological impact and anticancer activity, but no report exists on the angiogenic effect of kaempferol and induction of cell apoptosis in vitro. In this study, we investigated the role of kaempferol on anti-angiogenic property and the apoptotic mechanism of human umbilical vein endothelial cells (HUVECs). Our results demonstrated that kaempferol decreased HUVEC viability in a time- and concentration-dependent manner. Kaempferol also induced morphological changes and sub-G1 phase cell population (apoptotic cells). Kaempferol triggered apoptosis of HUVECs as detecting by DNA fragmentation, comet assay and immunofluorescent staining for activated caspase-3. The caspase signals, including caspase-8, -9 and -3, were time-dependently activated in HUVECs after kaempferol exposure. Furthermore, pre-treatment with a specific inhibitor of caspase-8 (Z-IETD-FMK) significantly reduced the activity of caspase-8, -9 and -3, indicating that extrinsic pathway is a major signaling pathway in kaempferol-treated HUVECs. Importantly, kaempferol promoted reactive oxygen species (ROS) evaluated using flow cytometric assay in HUVECs. We further investigated the upstream extrinsic pathway and showed that kaempferol stimulated death receptor signals [Fas/CD95, death receptor 4 (DR4) and DR5] through increasing the levels of phosphorylated p53 and phosphorylated ATM pathways in HUVECs, which can be individually confirmed by N-acetylcysteine (NAC), ATM specific inhibitor (caffeine) and p53 siRNA. Based on these results, kaempferol-induced HUVEC apoptosis was involved in an ROS-mediated p53/ATM/death receptor signaling. Kaempferol might possess therapeutic effects on cancer treatment in anti-vascular targeting.

  9. p53 tumor suppressor gene: significance in neoplasia - a review

    International Nuclear Information System (INIS)

    Alam, J.M.

    2000-01-01

    p53 is a tumor suppressor gene located on chromosome 17p13.1. Its function includes cell cycle control and apoptosis. Loss of p53 function, either due to decreased level or genetic transformation, is associated with loss of cell cycle control, decrease, apoptosis and genomic modification, such mutation of p53 gene is now assessed and the indicator of neoplasia of cancer of several organs and cell types, p53 has demonstrated to have critical role in defining various progressive stages of neoplasia, therapeutic strategies and clinical application. The present review briefly describes function of p53 in addition to its diagnostic and prognostic significance in detecting several types of neoplasia. (author)

  10. cfa-miR-143 Promotes Apoptosis via the p53 Pathway in Canine Influenza Virus H3N2-Infected Cells.

    Science.gov (United States)

    Zhou, Pei; Tu, Liqing; Lin, Xi; Hao, Xiangqi; Zheng, Qingxu; Zeng, Weijie; Zhang, Xin; Zheng, Yun; Wang, Lifang; Li, Shoujun

    2017-11-25

    MicroRNAs regulate multiple aspects of the host response to viral infection. This study verified that the expression of cfa-miR-143 was upregulated in vivo and in vitro by canine influenza virus (CIV) H3N2 infection. To understand the role of cfa-miR-143 in CIV-infected cells, the target gene of cfa-miR-143 was identified and assessed for correlations with proteins involved in the apoptosis pathway. A dual luciferase reporter assay showed that cfa-miR-143 targets insulin-like growth factor binding protein 5 (Igfbp5). Furthermore, a miRNA agomir and antagomir of cfa-miR-143 caused the downregulation and upregulation of Igfbp5, respectively, in CIV-infected madin-darby canine kidney (MDCK) cells. This study demonstrated that cfa-miR-143 stimulated p53 and caspase3 activation and induced apoptosis via the p53 pathway in CIV H3N2-infected cells. In conclusion, CIV H3N2 induced the upregulation of cfa-miR-143, which contributes to apoptosis via indirectly activating the p53-caspase3 pathway.

  11. Estrogen-Related Receptor Alpha Confers Methotrexate Resistance via Attenuation of Reactive Oxygen Species Production and P53 Mediated Apoptosis in Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2014-01-01

    Full Text Available Osteosarcoma (OS is a malignant tumor mainly occurring in children and adolescents. Methotrexate (MTX, a chemotherapy agent, is widely used in treating OS. However, treatment failures are common due to acquired chemoresistance, for which the underlying molecular mechanisms are still unclear. In this study, we report that overexpression of estrogen-related receptor alpha (ERRα, an orphan nuclear receptor, promoted cell survival and blocked MTX-induced cell death in U2OS cells. We showed that MTX induced ROS production in MTX-sensitive U2OS cells while ERRα effectively blocked the ROS production and ROS associated cell apoptosis. Our further studies demonstrated that ERRα suppressed ROS induction of tumor suppressor P53 and its target genes NOXA and XAF1 which are mediators of P53-dependent apoptosis. In conclusion, this study demonstrated that ERRα plays an important role in the development of MTX resistance through blocking MTX-induced ROS production and attenuating the activation of p53 mediated apoptosis signaling pathway, and points to ERRα as a novel target for improving osteosarcoma therapy.

  12. Biologic effect of exogenous wild p53 combined with irradiation on human melanoma cell lines with different p53 status

    International Nuclear Information System (INIS)

    Min Fengling; Zhang Hong; Li Wenjian; Liu Bing; Zhou Qingming; Duan Xin; Gao Qingxiang

    2007-01-01

    Objective: To investigate the effect of low dose irradiation on gene transfer efficiency and the effect of adenoviral-mediated exogenous P53 overexpression on apoptosis and radiosensitivity of radioresistant human melanoma cell lines A375(wild type p53)and WM983a(mutant type p53). Methods: Control vector, a replication deficient recombinant adenoviral vector containing a CMV promoter and green fluorescent protein (AdCMV-GFP), was used to transfect A375 cells and WM983a cells preirradiated with or without 1 Gy X-ray. The transduction efficiency of GFP gene was determined with fluorescence microscope directly. These two types of cells irradiated by 1 Gy X-ray were transfected with a replication deficient recombinant adenoviral vector carrying human wild p53 (AdCMV-p53), and mRNA level was detected by RT-PCR. The cell cycle delay and the expression of exogenous P53 were detected using flow cytometry (FCM) at different times after transfection. Tunel technique was used to detect cell apoptosis. The radiosensivity of A375 and WM983a cells after p53 transduction was analyzed by colony formation. Results: It is found that 1 Gy irradiation increased the gene transfection efficiency of A375 and WM983a cells. The expression of exogenous P53 was found to range from 60% to 80% among transfected cells during the first three days after transduction and then declined continuously down to the control level on day 10. G 1 cell cycle arrest was also observed after p53 gene transduction. WM983a cells transfected with p53 showed higher sensitivity to X-ray-induced cell killing than A375 cells. Conclusions: It is indicated that low dose of ionizing radiation can improve gene transfection efficiency of A375 and WM983a cells mediated by adenovirus vector. Althrough the overexpresion of exogenous p53 may not inhibit cell growth and induce apoptosis of melanoma cell line A375 and WM983a irt vitro, the two cell lines are much more sensitive to cell death induced by irradiation. It is

  13. Reactivating p53 and Inducing Tumor Apoptosis (RITA Enhances the Response of RITA-Sensitive Colorectal Cancer Cells to Chemotherapeutic Agents 5-Fluorouracil and Oxaliplatin

    Directory of Open Access Journals (Sweden)

    Armin Wiegering

    2017-04-01

    Full Text Available Colorectal carcinoma (CRC is the most common cancer of the gastrointestinal tract with frequently dysregulated intracellular signaling pathways, including p53 signaling. The mainstay of chemotherapy treatment of CRC is 5-fluorouracil (5FU and oxaliplatin. The two anticancer drugs mediate their therapeutic effect via DNA damage-triggered signaling. The small molecule reactivating p53 and inducing tumor apoptosis (RITA is described as an activator of wild-type and reactivator of mutant p53 function, resulting in elevated levels of p53 protein, cell growth arrest, and cell death. Additionally, it has been shown that RITA can induce DNA damage signaling. It is expected that the therapeutic benefits of 5FU and oxaliplatin can be increased by enhancing DNA damage signaling pathways. Therefore, we highlighted the antiproliferative response of RITA alone and in combination with 5FU or oxaliplatin in human CRC cells. A panel of long-term established CRC cell lines (n = 9 including p53 wild-type, p53 mutant, and p53 null and primary patient-derived, low-passage cell lines (n = 5 with different p53 protein status were used for this study. A substantial number of CRC cells with pronounced sensitivity to RITA (IC50< 3.0 μmol/l were identified within established (4/9 and primary patient-derived (2/5 CRC cell lines harboring wild-type or mutant p53 protein. Sensitivity to RITA appeared independent of p53 status and was associated with an increase in antiproliferative response to 5FU and oxaliplatin, a transcriptional increase of p53 targets p21 and NOXA, and a decrease in MYC mRNA. The effect of RITA as an inducer of DNA damage was shown by a strong elevation of phosphorylated histone variant H2A.X, which was restricted to RITA-sensitive cells. Our data underline the primary effect of RITA, inducing DNA damage, and demonstrate the differential antiproliferative effect of RITA to CRC cells independent of p53 protein status. We found a substantial number

  14. Actinomycin D synergistically enhances the cytotoxicity of CDDP on KB cells by activating P53 via decreasing P53-MDM2 complex.

    Science.gov (United States)

    Wang, Lin; Pang, Xiao-Cong; Yu, Zi-Ru; Yang, Sheng-Qian; Liu, Ai-Lin; Wang, Jin-Hua; Du, Guan-Hua

    2017-06-01

    The aim of this study is to investigate the synergism of low dose of actinomycin D (LDActD) to the cytotoxicity of cisplatin (CDDP) on KB cells. The role of P53 reactivation by LDActD in the synergism and its mechanism were further studied. Cell viability was determined by MTT assay. Apoptosis was determined by AnnexinV-FITC/PI staining. Mitochondrial membrane potential (MMP) was detected by JC-1 staining. Expression of proteins was detected by Western blotting (WB) and/or immunofluorescence (IF). Molecular docking of actinomycin D (ACTD) to Mouse double minute 2 homolog (MDM2) and Mouse double minute 2 homolog X (MDMX). MDMX was analyzed by Discovery Studio. The content of P53-MDM2 complex was detected by ELISA assay. The cytotoxicity of CDDP was increased by the combination of LDActD in kinds of cancer cells. Molecular docking showed strong interaction between ACTD and MDM2/MDMX. Meanwhile, LDActD significantly decreased P53-MDM2 complex. Significant increase of the apoptotic activity by the combination therapy in KB cells is P53 upregulated modulator of apoptosis (PUMA) dependent. In addition to the decrease in MMP, LDActD increased P53 regulated protein and decreased BCL-XL in KB cells. LDActD efficiently enhanced the cytotoxicity of CDDP in cancer cells and induced P53-PUMA-dependent and mitochondria-mediated apoptosis in KB cells. The reactivation of P53 was probably achieved by disturbing the interaction of P53 and MDM2/MDMX.

  15. A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Kim, Sang-Soo; Rait, Antonina; Kim, Eric; Pirollo, Kathleen F; Chang, Esther H

    2015-02-01

    Development of temozolomide (TMZ) resistance contributes to the poor prognosis for glioblastoma multiforme (GBM) patients. It was previously demonstrated that delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex (SGT-53) which crosses the blood-brain barrier could sensitize highly TMZ-resistant GBM tumors to TMZ. Here we assessed whether SGT-53 could inhibit development of TMZ resistance. SGT-53 significantly chemosensitized TMZ-sensitive human GBM cell lines (U87 and U251), in vitro and in vivo. Furthermore, in an intracranial GBM tumor model, two cycles of concurrent treatment with systemically administered SGT-53 and TMZ inhibited tumor growth, increased apoptosis and most importantly, significantly prolonged median survival. In contrast TMZ alone had no significant effect on median survival compared to a single cycle of TMZ. These results suggest that combining SGT-53 with TMZ appears to limit development of TMZ resistance, prolonging its anti-tumor effect and could be a more effective therapy for GBM. Using human glioblastoma multiforma cell lines, this research team demonstrated that the delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex limited the development of temozolomide resistance and prolonged its anti-tumor effect, which may enable future human application of this or similar techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Apoptosis, proliferation, Bax, Bcl-2 and p53 status prior to and after preoperative radiochemotherapy for locally advanced rectal cancer

    International Nuclear Information System (INIS)

    Tannapfel, Andrea; Nuesslein, Siegfried; Fietkau, Rainer; Katalinic, Alexander; Koeckerling, Ferdinand; Wittekind, Christian

    1998-01-01

    Purpose: To investigate the relationship between apoptotic cell death, proliferative activity, and the expression of apoptosis regulating proteins in rectal cancer prior to and after radiochemotherapy. Materials and Methods: In 32 patients dispositioned to receive preoperative radiochemotherapy for locally advanced rectal carcinoma, pretherapy biopsies and the final resected specimen after radiochemotherapy were available for analyses. Apoptotic cells were identified and quantified using in situ end labeling (ISEL) technique. The expression of the bax protein was assessed immunohistochemically. Additionally, double immunostaining was performed for apoptotic cells and bax expression. The proliferative activity was determined by immunohistochemical assessment of the Ki67 (MIB-1) and the proliferating cell nuclear antigen (PCNA). p53- and bcl-2 expression was analyzed immunohistochemically. A clinical-to-pathologic downstaging after radiochemotherapy was achieved in 25 of 32 patients (78%). During follow-up, tumor recurrence was observed in six cases. In one case, no residual tumor was detected after radiochemotherapy. Results: After radiochemotherapy, the apoptotic index increased significantly in almost every case examined. In contrast, the proliferative activity was significantly decreased in resected specimens as compared to biopsies. Bax immunostaining was detected in 12/31 (39%) biopsies and in 26/31 (84%) resected specimens. In the resected specimen, significantly more apoptotic cells that were bax-positive were found than in biopsies. Bcl-2 immunostaining occurred in 15/31 biopsies and 12/31 resected specimens, respectively. Tumors that were immunohistochemically negative for p53 (20/31 [65%]) generally exhibited a higher apoptotic index and a high expression level of bax than p53-positive tumors (11/31 [35%]). However, we did not find any correlation between the (pre- and post-therapeutic) rate of apoptosis or the level of bax expression and the degree of

  17. NF-κB and p53 Are the Dominant Apoptosis-inducing Transcription Factors Elicited by the HIV-1 Envelope

    OpenAIRE

    Perfettini, Jean-Luc; Roumier, Thomas; Castedo, Maria; Larochette, Nathanael; Boya, Patricia; Raynal, Brigitte; Lazar, Vladimir; Ciccosanti, Fabiola; Nardacci, Roberta; Penninger, Josef; Piacentini, Mauro; Kroemer, Guido

    2004-01-01

    The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-κB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor κB (NF-κB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p5...

  18. The role of p53 molecule in radiation and hyperthermic therapies

    International Nuclear Information System (INIS)

    Yasumoto, Jun-ichi; Takahashi, Akihisa; Ohnishi, Ken; Ohnishi, Takeo

    2003-01-01

    In recent years, cancer-related genes have been analyzed at the molecular level as predictive indicators for cancer therapy. Among those genes, the tumor suppressor gene p53 is worthy of notice in cancer therapy, because the p53 molecule prevents the malignant degeneration of non-cancer cells by regulating cell-cycle arrest, apoptosis, and DNA repair. An abnormality of the p53 gene introduces a genetic instability and increases the incidence of carcinogenesis and teratogenesis. Therefore, p53 is called a guardian of the genome. Mutations of p53 are observed at a high frequency in human tumors, and are recognized in about half of all malignant tumors in human head and neck cancers. We previously reported that radio- and heat-sensitivities of human cultured tongue squamous cell carcinoma cells are p53-dependent, and are closely correlated with the induction of apoptosis. In a human cell culture system, the interactive hyperthermic enhancement of radiosensitivity was observed in wild-type p53 cells, but not in mutated p53 cells. In a transplanted tumor system, the combination therapies of radiation and hyperthermia induced efficient tumor growth depression and apoptosis in the wild-type p53 tumors. In this review, we discuss the p53 activation signaling pathways through the modification of p53 molecules, such as phosphorylation after radiation and hyperthermia treatments. (author)

  19. PSK, a biological response modifier, modifies p53 expression, mitosis and apoptosis in X-ray irradiated mouse embryos. Possible cellular mechanism of the anti-teratogenic effect

    International Nuclear Information System (INIS)

    Kagohashi, Yukiko; Naora, Hiroyuki; Otani, Hiroki

    2002-01-01

    We previously showed that PSK, a biological response modifier, suppressed X-ray irradiation induced ocular anomalies in mouse embryos. In the present study, in mouse embryos irradiated at E7.5, PSK, when administered immediately after irradiation, suppressed mitosis and increased apoptosis as compared with embryos not treated with PSK at 12 hrs after irradiation. In the irradiated embryos, p53, which is normally expressed at a high level in early embryos, increased at 6 hrs and decreased at 12 hrs after irradiation. In the irradiated and PSK-treated embryos, the p53 level did not change at 6 hrs, increased at 12 hrs and decreased at 24 hrs after irradiation. This timing of PSK-induced delayed increase of p53 coincided with that of the PSK-induced decrease in mitosis and increase in apoptosis. These results suggested that PSK modified the p53 level and affected cell proliferation and apoptosis, which might contribute to the suppression of teratogenesis. (author)

  20. RITA inhibits multiple myeloma cell growth through induction of p53-mediated caspase-dependent apoptosis and synergistically enhances nutlin-induced cytotoxic responses.

    Science.gov (United States)

    Saha, Manujendra N; Jiang, Hua; Mukai, Asuka; Chang, Hong

    2010-11-01

    Mutations or deletions of p53 are relatively rare in multiple myeloma (MM), at least in newly diagnosed patients. Thus, restoration of p53 tumor suppressor function in MM by blocking the inhibitory role of murine double minute 2 (MDM2) is a promising and applicable therapeutic strategy. RITA and nutlin are two new classes of small molecule MDM2 inhibitors that prevent the p53-MDM2 interaction. Earlier reports showed p53-dependent activity of RITA in solid tumors as well as in leukemias. We and others recently described nutlin-induced apoptosis in MM cells, but it remains unclear whether RITA exerts antimyeloma activity. Here, we found that RITA activates the p53 pathway and induces apoptosis in MM cell lines and primary MM samples, preferentially killing myeloma cells. The activation of p53 induced by RITA was mediated through modulation of multiple apoptotic regulatory proteins, including upregulation of a proapoptotic protein (NOXA), downregulation of an antiapoptotic protein, Mcl-1, and activation of caspases through extrinsic pathways. Moreover, a number of key p53-mediated apoptotic target genes were identified by gene expression profiling and further validated by quantitative real-time PCR. Importantly, the combination of RITA with nutlin displayed a strong synergism on growth inhibition with the combination index ranging from 0.56 to 0.82 in MM cells. Our data support further clinical evaluation of RITA as a potential novel therapeutic intervention in MM. ©2010 AACR.

  1. Identification of proteins that regulate radiation-induced apoptosis in murine tumors with wild type p53

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jinsil; Oh, Hae Jin; Kim, Jiyoung; An, Jeung Hee; Kim, Wonwoo [Dept. of Radiation Oncology, Yonsei Univ. Medical College, Seoul (Korea, Republic of)

    2007-09-15

    In this study, we investigated the molecular factors determining the induction of apoptosis by radiation. Two murine tumors syngeneic to C3H/HeJ mice were used: an ovarian carcinoma OCa-I, and a hepatocarcinoma HCa-I. Both have wild type p53, but display distinctly different radiosensitivity in terms of specific growth delay (12.7 d in OCa-I and 0.3 d in HCa-I) and tumor cure dose 50% (52.6 Gy in OCa-I and >80 Gy in HCa-I). Eight-mm tumors on the thighs of mice were irradiated with 25 Gy and tumor samples were collected at regular time intervals after irradiation. The peak levels of apoptosis were 16.1{+-}0.6% in OCa-I and 0.2{+-}0.0% in HCa-I at 4 h after radiation, and this time point was used for subsequent proteomics analysis. Protein spots were identified by peptide mass fingerprinting with a focus on those related to apoptosis. In OCa-I tumors, radiation increased the expression of cytochrome c oxidase and Bcl2/adenovirus E1B-interacting 2 (Nip 2) protein higher than 3-fold. However in HCa-I, these two proteins showed no significant change. The results suggest that radiosensitivity in tumors with wild type p53 is regulated by a complex mechanism. Furthermore, these proteins could be molecular targets for a novel therapeutic strategy involving the regulation of radiosensitivity. (author)

  2. Identification of proteins that regulate radiation-induced apoptosis in murine tumors with wild type p53

    International Nuclear Information System (INIS)

    Seong, Jinsil; Oh, Hae Jin; Kim, Jiyoung; An, Jeung Hee; Kim, Wonwoo

    2007-01-01

    In this study, we investigated the molecular factors determining the induction of apoptosis by radiation. Two murine tumors syngeneic to C3H/HeJ mice were used: an ovarian carcinoma OCa-I, and a hepatocarcinoma HCa-I. Both have wild type p53, but display distinctly different radiosensitivity in terms of specific growth delay (12.7 d in OCa-I and 0.3 d in HCa-I) and tumor cure dose 50% (52.6 Gy in OCa-I and >80 Gy in HCa-I). Eight-mm tumors on the thighs of mice were irradiated with 25 Gy and tumor samples were collected at regular time intervals after irradiation. The peak levels of apoptosis were 16.1±0.6% in OCa-I and 0.2±0.0% in HCa-I at 4 h after radiation, and this time point was used for subsequent proteomics analysis. Protein spots were identified by peptide mass fingerprinting with a focus on those related to apoptosis. In OCa-I tumors, radiation increased the expression of cytochrome c oxidase and Bcl2/adenovirus E1B-interacting 2 (Nip 2) protein higher than 3-fold. However in HCa-I, these two proteins showed no significant change. The results suggest that radiosensitivity in tumors with wild type p53 is regulated by a complex mechanism. Furthermore, these proteins could be molecular targets for a novel therapeutic strategy involving the regulation of radiosensitivity. (author)

  3. p53 Acetylation: Regulation and Consequences

    International Nuclear Information System (INIS)

    Reed, Sara M.; Quelle, Dawn E.

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer

  4. p53 Acetylation: Regulation and Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Sara M. [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Quelle, Dawn E., E-mail: dawn-quelle@uiowa.edu [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States)

    2014-12-23

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  5. Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation.

    Directory of Open Access Journals (Sweden)

    Mikael S Lindström

    Full Text Available BACKGROUND: Disruption of the nucleolus often leads to activation of the p53 tumor suppressor pathway through inhibition of MDM2 that is mediated by a limited set of ribosomal proteins including RPL11 and RPL5. The effects of ribosomal protein loss in cultured mammalian cells have not been thoroughly investigated. Here we characterize the cellular stress response caused by depletion of ribosomal protein S9 (RPS9. METHODOLOGY/PRINCIPAL FINDINGS: Depletion of RPS9 impaired production of 18S ribosomal RNA and induced p53 activity. It promoted p53-dependent morphological differentiation of U343MGa Cl2:6 glioma cells as evidenced by intensified expression of glial fibrillary acidic protein and profound changes in cell shape. U2OS osteosarcoma cells displayed a limited senescence response with increased expression of DNA damage response markers, whereas HeLa cervical carcinoma cells underwent cell death by apoptosis. Knockdown of RPL11 impaired p53-dependent phenotypes in the different RPS9 depleted cell cultures. Importantly, knockdown of RPS9 or RPL11 also markedly inhibited cell proliferation through p53-independent mechanisms. RPL11 binding to MDM2 was retained despite decreased levels of RPL11 protein following nucleolar stress. In these settings, RPL11 was critical for maintaining p53 protein stability but was not strictly required for p53 protein synthesis. CONCLUSIONS: p53 plays an important role in the initial restriction of cell proliferation that occurs in response to decreased level of RPS9. Our results do not exclude the possibility that other nucleolar stress sensing molecules act upstream or in parallel to RPL11 to activate p53. Inhibiting the expression of certain ribosomal proteins, such as RPS9, could be one efficient way to reinitiate differentiation processes or to induce senescence or apoptosis in rapidly proliferating tumor cells.

  6. Regulatory RNA Key Player in p53-Mediated Apoptosis in Embryonic Stem Cells | Center for Cancer Research

    Science.gov (United States)

    Embryonic stem cells (ESCs) must maintain the integrity of their genomes or risk passing potentially deleterious mutations on to numerous tissues. Thus, ESCs have a unique genome surveillance system and easily undergo apoptosis or differentiation when DNA damage is detected. The protein p53 is known to promote differentiation in mouse ESCs (mESCs), but its role in DNA

  7. Pre-irradiation at a low dose-rate blunted p53 response

    International Nuclear Information System (INIS)

    Takahashi, Akihisa

    2002-01-01

    We investigated whether chronic irradiation at a low dose-rate interferes with the p53-centered signal transduction pathyway induced by radiation in human cultured cells and C57BL/6N mice. In in vitro experiments, we found that a challenge with X-ray irradiation immediately after chronic irradiation resulted in lower levels of p53 than those observed after the challenge alone in glioblastoma cells (A-172). In addition, the levels of p53-centered apoptosis and its related proteins after the challenge were strongly correlated with the above-mentioned phenomena in squamous cell carcinoma cells (SAS/neo). In in vivo experiments, the accumulation of p53 and Bax, and the induction of apoptosis were observed dose-dependently in mouse spleen at 12 h after a challenge with X-rays (3.0 Gy). However, we found significant suppression of p53 and Bax accumulation and the induction of apoptosis 12 h after challenge irradiation at 3.0 Gy with a high doses-rate following chronic pre-irradiation (1.5 Gy, 0.001 Gy/min). These findings suggest that chronic pre-irradiation suppressed the p53 function through radiation-induced signaling and/or p53 stability. (author)

  8. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  9. [Punish or cherish: p53, metabolism and tumor suppression].

    Science.gov (United States)

    Albagli, Olivier

    2015-10-01

    The p53 gene is essential for tumor suppression, but how it does so remains unclear. Upon genotoxic or oncogenic stresses, increased p53 activity induces transient cell cycle arrest, senescence or apoptosis, the three cornerstones of the so-called triumvirate. Accordingly, it has long been thought that p53 suppresses tumorigenesis by somehow counteracting cell proliferation or survival. However, several recently described genetically modified mice indicate that p53 can suppress tumorigenesis without triggering these three responses. Rather, as an important mechanism for tumor suppression, these mutant mice point to the ability of p53 to prevent the Warburg effect, that is to dampen glycolysis and foster mitochondrial respiration. Interestingly, these metabolic functions of p53 rely, in part, on its "unstressed" (basal) expression, a feature shared by its mechanistically linked anti-oxydant function. Together, these "conservative" activities of p53 may prevent tumor initiation by promoting and maintaining a normal oxidative metabolism and hence underly the "daily" tumor suppression by p53 in most cells. Conversely, destructive activities elicited by high p53 levels and leading to senescence or apoptosis provide a shield against partially or overtly transformed cells. This last situation, although relatively infrequent throughout life, is usual in experimental settings, which could explain the disproportionally high number of data implicating the triumvirate in tumor suppression by p53. © 2015 médecine/sciences – Inserm.

  10. β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation.

    Science.gov (United States)

    Rajavel, Tamilselvam; Packiyaraj, Pandian; Suryanarayanan, Venkatesan; Singh, Sanjeev Kumar; Ruckmani, Kandasamy; Pandima Devi, Kasi

    2018-02-01

    β-Sitosterol (BS), a major bioactive constituent present in plants and vegetables has shown potent anticancer effect against many human cancer cells, but the underlying mechanism remain elusive on NSCLC cancers. We found that BS significantly inhibited the growth of A549 cells without harming normal human lung and PBMC cells. Further, BS treatment triggered apoptosis via ROS mediated mitochondrial dysregulation as evidenced by caspase-3 & 9 activation, Annexin-V/PI positive cells, PARP inactivation, loss of MMP, Bcl-2-Bax ratio alteration and cytochrome c release. Moreover, generation of ROS species and subsequent DNA stand break were found upon BS treatment which was reversed by addition of ROS scavenger (NAC). Indeed BS treatment increased p53 expression and its phosphorylation at Ser15, while silencing the p53 expression by pifithrin-α, BS induced apoptosis was reduced in A549 cells. Furthermore, BS induced apoptosis was also observed in NCI-H460 cells (p53 wild) but not in the NCI-H23 cells (p53 mutant). Down-regulation of Trx/Trx1 reductase contributed to the BS induced ROS accumulation and mitochondrial mediated apoptotic cell death in A549 and NCI-H460 cells. Taken together, our findings provide evidence for the novel anti-cancer mechanism of BS which could be developed as a promising chemotherapeutic drug against NSCLC cancers.

  11. Effect of UV C irradiation on P53 in FADD+/+ and FADD-/- cells

    International Nuclear Information System (INIS)

    Matic, Igor; Radnic, Maja; Marijanovic, Inga; Furcic, Ivana; Nagy, Biserka

    2008-01-01

    The dominant paradigm of tumor biology is that evasion from apoptosis is one of the crucial features of malignant diseases and that the efficiency of cancer therapy depends on P53-dependent apoptosis. Because of the importance of apoptotic pathways in protecting cells against malignant transformation, disruption of apoptosis is extremely common in cancer cells, and is frequently due to mutations in the P53 tumor suppressor gene. Fas-associated death domain (FADD) is an adapter protein that is required for apoptosis induced by all known death receptors. FADD is implicated in death receptor-independent apoptotic response, such as DNA damage. We used embryonic fibroblasts derived from FADD knockout mice and their genetic counterparts. We predicted that UV exposure induces a loss of FADD function and leads to mutations in P53. Loss of FADD expression causes deregulation of apoptosis and expansion of mutated cells and initiation of cancer. We predicted that FADD dysfunction may be potentially advantageous for tumor growth and that FADD can act as a tumor suppressor. Cells were irradiated with UV C light (254 nm) using a germicidal lamp (Upland, CA). The culture media was drained before the irradiation and fresh media was added after. In the first experiment we irradiated cells with a dose of 25 J/m 2 and after 5 days we isolated genomic DNA but part of the cells were irradiated again with the same dose. After 5 days DNA were isolated so the cumulative irradiation dose was 50 J/m 2 . In the second experiment cells were irradiated ones with the dose of 40 J/m 2 and DNA was isolated after 18 days. Lethal dosage for each cell line is 50 J/m 2 . Genomic DNA was analyzed by allele-specific polymerase chain reaction (AS-PCR) for CC to TT mutation at codons 154-155 and 175-176 in exon 5 and for C to T mutations at codons 270 and 275 in exon 8 of the P53 gene. The mutant-specific forward primer was used for each mutation. The reverse primers for amplification of mutations were

  12. Paracrine Apoptotic Effect of p53 Mediated by Tumor Suppressor Par-4

    Directory of Open Access Journals (Sweden)

    Ravshan Burikhanov

    2014-01-01

    Full Text Available The guardian of the genome, p53, is often mutated in cancer and may contribute to therapeutic resistance. Given that p53 is intact and functional in normal tissues, we harnessed its potential to inhibit the growth of p53-deficient cancer cells. Specific activation of p53 in normal fibroblasts selectively induced apoptosis in p53-deficient cancer cells. This paracrine effect was mediated by p53-dependent secretion of the tumor suppressor Par-4. Accordingly, the activation of p53 in normal mice, but not p53−/− or Par-4−/− mice, caused systemic elevation of Par-4, which induced apoptosis of p53-deficient tumor cells. Mechanistically, p53 induced Par-4 secretion by suppressing the expression of its binding partner, UACA, which sequesters Par-4. Thus, normal cells can be empowered by p53 activation to induce Par-4 secretion for the inhibition of therapy-resistant tumors.

  13. Role of wild-type p53 in apoptotic and non-apoptotic cell death induced by X-irradiation and heat treatment in p53-mutated mouse M10 cells

    International Nuclear Information System (INIS)

    Ito, Atsushi; Nakano, Hisako; Shinohara, Kunio

    2010-01-01

    The sensitizing effects of wild-type p53 on X-ray-induced cell death and on heat-induced apoptosis in M10, a radiosensitive and Trp53 (mouse p53 gene)-mutated lymphoma cell line which dies through necrosis by X-irradiation, were investigated using three M10 derived transfectants with wild-type TP53 (human p53 gene). Cell death was determined by colony formation and/or dye exclusion test, and apoptosis was detected as the changes in nuclear morphology by Giemsa staining. Expression of wild-type p53 protein increased radiosensitivity of cell death as determined by both clonogenic and dye exclusion assays. This increase in radiosensitivity was attributable largely to apoptosis induction in addition to a small enhancement of necrosis. Interestingly neither pathway to cell death was accompanied by caspase-3 activation. On the other hand, heat-induced caspase-3 dependent apoptotic cell death without transfection was further increased by the transfection of wild-type p53. In conclusion, the introduction of wild-type p53 enhanced apoptotic cell death by X-rays or heat via different mechanisms that do or do not activate caspase-3, respectively. In addition, p53 also enhanced the X-ray-induced necrosis in M10 cells. (author)

  14. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth.

    Science.gov (United States)

    Cañibano, Carmen; Rodriguez, Noela L; Saez, Carmen; Tovar, Sulay; Garcia-Lavandeira, Montse; Borrello, Maria Grazia; Vidal, Anxo; Costantini, Frank; Japon, Miguel; Dieguez, Carlos; Alvarez, Clara V

    2007-04-18

    Somatotrophs are the only pituitary cells that express Ret, GFRalpha1 and GDNF. This study investigated the effects of Ret in a somatotroph cell line, in primary pituitary cultures and in Ret KO mice. Ret regulates somatotroph numbers by inducing Pit-1 overexpression, leading to increased p53 expression and apoptosis, both of which can be prevented with Ret or Pit-1 siRNA. The Pit-1 overexpression is mediated by sustained activation of PKCdelta, JNK, c/EBPalpha and CREB induced by a complex of Ret, caspase 3 and PKCdelta. In the presence of GDNF, Akt is activated, and the Pit-1 overexpression and resulting apoptosis are blocked. The adenopituitary of Ret KO mice is larger than normal, showing Pit-1 and somatotroph hyperplasia. In normal animals, activation of the Ret/Pit-1/p53 pathway by retroviral introduction of Ret blocked tumor growth in vivo. Thus, somatotrophs have an intrinsic mechanism for controlling Pit-1/GH production through an apoptotic/survival pathway. Ret might be of value for treatment of pituitary adenomas.

  15. A Triterpenoid from Thalictrum fortunei Induces Apoptosis in BEL-7402 Cells Through the P53-Induced Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Lvyi Chen

    2011-11-01

    Full Text Available Thalictrum fortunei S. Moore, a perennial plant distributed in the southeastern part of China, has been used in Traditional Chinese Medicine for thousands of years for its antitumor, antibacterial and immunoregulatory effects. In order to investigate the active components and the mechanism of the anti-tumor effects of Thalictrum fortunei, the growth inhibitory effects of eight triterpenoids isolated from the aerial parts of the plant on tumor cell lines were examined by 3-(4,5-dimethylthiazoy1-3,5-diphenyltetrazolium bromide (MTT assay. The MTT-assay results showed that the inhibitory activity of 3-O-β-D-glucopyranosyl-(1→4-β-D-fucopyranosyl(22S,24Z-cycloart-24-en-3β,22,26-triol 26-O-β-D-glucopyranoside (1 was stronger than that of the other seven tested triterpenoids on human hepatoma Bel-7402 cell line (Bel-7402, human colon lovo cells (LoVo, human non-small cells lung cancer NCIH-460 cells (NCIH-460 and human gastric carcinoma SGC-7901 cells (SGC-7901 after 48 h treatment in vitro, with the IC50 values of 66.4, 84.8, 73.5, 89.6 μM, respectively. Moreover, the antitumor mechanism of compound 1 on Bel-7402 cell was explored through nucleus dyeing, fluorescence assay, flow cytometry and western blot. The flow cytometric analysis results revealed that compound 1 caused apoptosis and mitochondrial membrane potential (MMP loss in Bel-7402 cells. A fluorescence assay indicated that intracellular reactive oxygen species (ROS were markedly provoked by compound 1 treatment compared to control cells. Immunoblot results showed that compound 1 significantly increased the expression levels of cleaved caspase-3, P53 and Bax protein, and decreased the expression level of Bcl-2 protein. These findings indicate that compound 1 inhibits the growth activity of tumor cells, probably through the P53 protein-induced apoptosis pathway.

  16. Borax-induced apoptosis in HepG2 cells involves p53, Bcl-2, and Bax.

    Science.gov (United States)

    Wei, Y; Yuan, F J; Zhou, W B; Wu, L; Chen, L; Wang, J J; Zhang, Y S

    2016-06-21

    Borax, a boron compound and a salt of boric acid, is known to inhibit the growth of tumor cells. HepG2 cells have been shown to be clearly susceptible to the anti-proliferative effects of borax. However, the specific mechanisms regulating this effect are poorly understood. This study aimed to investigate the pathways underlying the growth inhibition induced by borax in HepG2 cells. The effects of borax on HepG2 cell viability were characterized using MTT. Apoptosis was also verified by annexin V/propidium iodide staining. JC-1 dye and western blotting techniques were used to measure mitochondrial membrane potential and p53, Bax, and Bcl-2 protein expression, respectively. Relevant mRNA levels were measured by qRT-PCR. Borax inhibited the proliferation of HepG2 cells in a time- and dose-dependent manner in vitro. The apoptotic process triggered by borax involved the upregulation of p53 and Bax and the downregulation of Bcl-2, which was confirmed by a change in the mitochondrial membrane potential. These results elucidate a borax-induced apoptotic pathway in HepG2 cells that involves the upregulation of p53 and Bax and the downregulation of Bcl-2.

  17. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.

    Science.gov (United States)

    Orre, L M; Panizza, E; Kaminskyy, V O; Vernet, E; Gräslund, T; Zhivotovsky, B; Lehtiö, J

    2013-12-05

    S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.

  18. Pifithrin-α provides neuroprotective effects at the level of mitochondria independently of p53 inhibition.

    Science.gov (United States)

    Neitemeier, Sandra; Ganjam, Goutham K; Diemert, Sebastian; Culmsee, Carsten

    2014-12-01

    Impaired mitochondrial integrity and function are key features of intrinsic death pathways in neuronal cells. Therefore, key regulators of intrinsic death pathways acting upstream of mitochondria are potential targets for therapeutic approaches of neuroprotection. The tumor suppressor p53 is a well-established regulator of cellular responses towards different kinds of lethal stress, including oxidative stress. Recent reports suggested that p53 may affect mitochondrial integrity and function through both, transcriptional activation of mitochondria-targeted pro-death proteins and direct effects at the mitochondrial membrane. In the present study, we compared the effects of pharmacological inhibition of p53 by pifithrin-α with those of selective p53 gene silencing by RNA interference. Using MTT assay and real-time cell impedance measurements we confirmed the protective effect of both strategies against glutamate-induced oxidative stress in immortalized mouse hippocampal HT-22 neurons. Further, we observed full restoration of mitochondrial membrane potential and inhibition of glutamate-induced mitochondrial fragmentation by pifithrin-α which was, in contrast, not achieved by p53 gene silencing. Downregulation of p53 by siRNA decreased p53 transcriptional activity and reduced expression levels of p21 mRNA, while pifithrin-α did not affect these endpoints. These results suggest a neuroprotective effect of pifithrin-α which occurred at the level of mitochondria and independently of p53 inhibition.

  19. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier.

    Science.gov (United States)

    Garcia, Patrick Vianna; Seiva, Fábio Rodrigues Ferreira; Carniato, Amanda Pocol; de Mello Júnior, Wilson; Duran, Nelson; Macedo, Alda Maria; de Oliveira, Alexandre Gabarra; Romih, Rok; Nunes, Iseu da Silva; Nunes, Odilon da Silva; Fávaro, Wagner José

    2016-07-07

    The new modalities for treating patients with non-muscle invasive bladder cancer (NMIBC) for whom BCG (Bacillus Calmette-Guerin) has failed or is contraindicated are recently increasing due to the development of new drugs. Although agents like mitomycin C and BCG are routinely used, there is a need for more potent and/or less-toxic agents. In this scenario, a new perspective is represented by P-MAPA (Protein Aggregate Magnesium-Ammonium Phospholinoleate-Palmitoleate Anhydride), developed by Farmabrasilis (non-profit research network). This study detailed and characterized the mechanisms of action of P-MAPA based on activation of mediators of Toll-like Receptors (TLRs) 2 and 4 signaling pathways and p53 in regulating angiogenesis and apoptosis in an animal model of NMIBC, as well as, compared these mechanisms with BCG treatment. Our results demonstrated the activation of the immune system by BCG (MyD88-dependent pathway) resulted in increased inflammatory cytokines. However, P-MAPA intravesical immunotherapy led to distinct activation of TLRs 2 and 4-mediated innate immune system, resulting in increased interferons signaling pathway (TRIF-dependent pathway), which was more effective in the NMIBC treatment. Interferon signaling pathway activation induced by P-MAPA led to increase of iNOS protein levels, resulting in apoptosis and histopathological recovery. Additionally, P-MAPA immunotherapy increased wild-type p53 protein levels. The increased wild-type p53 protein levels were fundamental to NO-induced apoptosis and the up-regulation of BAX. Furthermore, interferon signaling pathway induction and increased p53 protein levels by P-MAPA led to important antitumor effects, not only suppressing abnormal cell proliferation, but also by preventing continuous expansion of tumor mass through suppression of angiogenesis, which was characterized by decreased VEGF and increased endostatin protein levels. Thus, P-MAPA immunotherapy could be considered an important therapeutic

  20. Expression of Caspase-3, P53 in EL-4 cells induced by ionizing radiation and its biological implications

    International Nuclear Information System (INIS)

    Ju Guizhi; Shen Bo; Sun Shilong; Yan Fengqin; Fu Shibo; Li Pengwu

    2006-01-01

    Objective: To investigate the effect of ionizing radiation on the expressions of Caspase-3 and P53 proteins in EL-4 cells and its implications in the induction of apoptosis and polyploid cells. Methods: EL- 4 cells were irradiated with 4.0 Gy X-rays (180 kV, 15 mA, 0.287 Gy/min). Fluorescent staining and flow cytometry analysis were used to measure protein expression, apoptosis and polyploid cells. Results: It was found that the expression of Caspase-3 protein was increased significantly at 8 h and 12 h after the irradiation compared with sham-irradiated control (P<0.05), and the expression of P53 protein was also increased significantly at 2,4,8,12 and 24 h after the irradiation compared with sham-irradiated control (P<0.05 or P<0.01). The results showed that apoptosis of EL-4 cells was increased significantly at 2,4,8,12,24,48, and 72 h after 4.0 Gy irradiation compared with sham-irradiated control (P<0.05 or P<0.01 or P<0.001). However, no significant change in the number of polyploidy cells was found during the period from 2 to 48 h after the irradiation with 4.0 Gy X-rays. Conclusions: It is indicated that the expressions of Caspase-3 and P53 protein in EL-4 cells can be induced by ionizing radiation, and play an important role in the induction of apoptosis; the molecular pathway for polyploid formation might be P53-independent. (authors)

  1. Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells.

    Science.gov (United States)

    Choudhury, Sreetama; Ghosh, Sayan; Mukherjee, Sudeshna; Gupta, Payal; Bhattacharya, Saurav; Adhikary, Arghya; Chattopadhyay, Sreya

    2016-12-01

    Molecular mechanisms involved in arsenic-induced toxicity are complex and elusive. Liver is one of the most favored organs for arsenic toxicity as methylation of arsenic occurs mostly in the liver. In this study, we have selected a range of environmentally relevant doses of arsenic to examine the basis of arsenic toxicity and the role of pomegranate fruit extract (PFE) in combating it. Male Swiss albino mice exposed to different doses of arsenic presented marked hepatic injury as evident from histological and electron microscopic studies. Increased activities of enzymes alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase corroborated extensive liver damage. It was further noted that arsenic exposure initiated reactive oxygen species (ROS)-dependent apoptosis in the hepatocytes involving loss of mitochondrial membrane potential. Arsenic significantly increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB), coupled with increase in phosphorylated Iκ-B, possibly as adaptive cellular survival strategies. Arsenic-induced oxidative DNA damage to liver cells culminated in p53 activation and increased expression of p53 targets like miR-34a and Bax. Pomegranate polyphenols are known to possess remarkable antioxidant properties and are capable of protecting normal cells from various stimuli-induced oxidative stress and toxicities. We explored the protective role of PFE in ameliorating arsenic-induced hepatic damage. PFE was shown to reduce ROS generation in hepatocytes, thereby reducing arsenic-induced Nrf2 activation. PFE also inhibited arsenic-induced NF-κB-inflammatory pathway. Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53-miR-34a axis. For the first time, we have mapped the possible signaling pathways associated with arsenic-induced hepatotoxicity and its rescue by pomegranate polyphenols. Copyright

  2. ATM Expression Predicts Veliparib and Irinotecan Sensitivity in Gastric Cancer by Mediating P53-Independent Regulation of Cell Cycle and Apoptosis.

    Science.gov (United States)

    Subhash, Vinod Vijay; Tan, Shi Hui; Yeo, Mei Shi; Yan, Fui Leng; Peethala, Praveen C; Liem, Natalia; Krishnan, Vaidehi; Yong, Wei Peng

    2016-12-01

    Identification of synthetically lethal cellular targets and synergistic drug combinations is important in cancer chemotherapy as they help to overcome treatment resistance and increase efficacy. The Ataxia Telangiectasia Mutated (ATM) kinase is a nuclear protein that plays a major role in the initiation of DNA repair signaling and cell-cycle check points during DNA damage. Although ATM was shown to be associated with poor prognosis in gastric cancer, its implications as a predictive biomarker for cancer chemotherapy remain unexplored. The present study evaluated ATM-induced synthetic lethality and its role in sensitization of gastric cancer cells to PARP and TOP1 inhibitors, veliparib (ABT-888) and irinotecan (CPT-11), respectively. ATM expression was detected in a panel of gastric cell lines, and the IC 50 against each inhibitors was determined. The combinatorial effect of ABT-888 and CPT-11 in gastric cancer cells was also determined both in vitro and in vivo ATM deficiency was found to be associated with enhanced sensitivity to ABT-888 and CPT-11 monotherapy, hence suggesting a mechanism of synthetic lethality. Cells with high ATM expression showed reduced sensitivity to monotherapy; however, they showed a higher therapeutic effect with ABT-888 and CPT-11 combinatorial therapy. Furthermore, ATM expression was shown to play a major role in cellular homeostasis by regulating cell-cycle progression and apoptosis in a P53-independent manner. The present study highlights the clinical utility of ATM expression as a predictive marker for sensitivity of gastric cancer cells to PARP and TOP1 inhibition and provides a deeper mechanistic insight into ATM-dependent regulation of cellular processes. Mol Cancer Ther; 15(12); 3087-96. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: Probable role of p38MAPK and p53

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Rehan; Khan, Abdul Quaiyoom; Qamar, Wajhul; Lateef, Abdul; Tahir, Mir; Rehman, Muneeb U; Ali, Farrah; Sultana, Sarwat, E-mail: sarwat786@rediffmail.com

    2012-02-01

    Cisplatin, an antineoplastic drug, is widely used as a foremost therapy against numerous forms of cancer but it has pronounced adverse effects viz., nephrotoxicity, ototoxicity etc. CDDP-induced emesis and diarrhea are also marked toxicities that may be due to intestinal injury. Chrysin (5,7-dihydroxyflavone), a natural flavone commonly found in many plants possesses multiple biological activities, such as antioxidant, anti-inflammatory and anti-cancer effects. In the present study, we investigated the protective effect of chrysin against CDDP-induced colon toxicity. The plausible mechanism of CDDP-induced colon toxicity and damage includes oxidative stress, activation of p38MAPK and p53, and colonic epithelial cell apoptosis via upregulating the expression of Bak and cleaved caspase-3. Chrysin was administered to Wistar rats once daily for 14 consecutive days at the doses of 25 and 50 mg/kg body weight orally in corn oil. On day 14, a single intraperitoneal injection of cisplatin was given at the dose of 7.5 mg/kg body weight and animals were euthanized after 24 h of cisplatin injection. Chrysin ameliorated CDDP-induced lipid peroxidation, xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, glutathione peroxidase and glucose-6 phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin also attenuated goblet cell disintegration, expression of phospho-p38MAPK and p53, and apoptotic tissue damage which were induced by CDDP. Histological findings further supported the protective effects of chrysin against CDDP-induced colonic damage. The results of the present study suggest that the protective effect of chrysin against CDDP-induced colon toxicity was related with attenuation of oxidative stress, activation of p38MAPK and p53, and apoptotic tissue damage. Highlights: ► Cisplatin-induced colon toxicity is associated with oxidative stress and

  4. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: Probable role of p38MAPK and p53

    International Nuclear Information System (INIS)

    Khan, Rehan; Khan, Abdul Quaiyoom; Qamar, Wajhul; Lateef, Abdul; Tahir, Mir; Rehman, Muneeb U; Ali, Farrah; Sultana, Sarwat

    2012-01-01

    Cisplatin, an antineoplastic drug, is widely used as a foremost therapy against numerous forms of cancer but it has pronounced adverse effects viz., nephrotoxicity, ototoxicity etc. CDDP-induced emesis and diarrhea are also marked toxicities that may be due to intestinal injury. Chrysin (5,7-dihydroxyflavone), a natural flavone commonly found in many plants possesses multiple biological activities, such as antioxidant, anti-inflammatory and anti-cancer effects. In the present study, we investigated the protective effect of chrysin against CDDP-induced colon toxicity. The plausible mechanism of CDDP-induced colon toxicity and damage includes oxidative stress, activation of p38MAPK and p53, and colonic epithelial cell apoptosis via upregulating the expression of Bak and cleaved caspase-3. Chrysin was administered to Wistar rats once daily for 14 consecutive days at the doses of 25 and 50 mg/kg body weight orally in corn oil. On day 14, a single intraperitoneal injection of cisplatin was given at the dose of 7.5 mg/kg body weight and animals were euthanized after 24 h of cisplatin injection. Chrysin ameliorated CDDP-induced lipid peroxidation, xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, glutathione peroxidase and glucose-6 phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin also attenuated goblet cell disintegration, expression of phospho-p38MAPK and p53, and apoptotic tissue damage which were induced by CDDP. Histological findings further supported the protective effects of chrysin against CDDP-induced colonic damage. The results of the present study suggest that the protective effect of chrysin against CDDP-induced colon toxicity was related with attenuation of oxidative stress, activation of p38MAPK and p53, and apoptotic tissue damage. Highlights: ► Cisplatin-induced colon toxicity is associated with oxidative stress and

  5. An adaptive molecular timer in p53-meidated cell fate decision

    Science.gov (United States)

    Zhang, Xiao-Peng; Wang, Ping; Liu, Feng; Wang, Wei

    The tumor suppressor p53 decides cellular outcomes in the DNA damage response. It is intriguing to explore the link between p53 dynamics and cell fates. We developed a theoretical model of p53 signaling network to clarify the mechanism of cell fate decision mediated by its dynamics. We found that the interplay between p53-Mdm2 negative feedback loop and p53-PTEN-Mdm2 positive feedback loop shapes p53 dynamics. Depending on the intensity of DNA damage, p53 shows three modes of dynamics: persistent pulses, two-phase dynamics with pulses followed by sustained high levels and straightforward high levels. Especially, p53 shows two-phase dynamics upon moderated damage and the required number of p53 pulses before apoptosis induction decreases with increasing DNA damage. Our results suggested there exists an adaptive molecular timer that determines whether and when the apoptosis switch should be triggered. We clarified the mechanism behind the switching of p53 dynamical modes by bifurcation analysis. Moreover, we reproduced the experimental results that drug additions alter p53 pulses to sustained p53 activation and leads to senescence. Our work may advance the understanding the significance of p53 dynamics in tumor suppression. This work was supported by National Natural Science Foundation of China (Nos. 11175084, 11204126 and 31361163003).

  6. Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53.

    Science.gov (United States)

    Riscal, Romain; Schrepfer, Emilie; Arena, Giuseppe; Cissé, Madi Y; Bellvert, Floriant; Heuillet, Maud; Rambow, Florian; Bonneil, Eric; Sabourdy, Frédérique; Vincent, Charles; Ait-Arsa, Imade; Levade, Thierry; Thibaut, Pierre; Marine, Jean-Christophe; Portais, Jean-Charles; Sarry, Jean-Emmanuel; Le Cam, Laurent; Linares, Laetitia K

    2016-06-16

    The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD(+)/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Directory of Open Access Journals (Sweden)

    Simon Leuchs

    Full Text Available Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs and live pigs carrying a latent TP53(R167H mutant allele, orthologous to oncogenic human mutant TP53(R175H and mouse Trp53(R172H, that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal.

  8. Ciglitazone induces caspase-independent apoptosis via p38-dependent AIF nuclear translocation in renal epithelial cells

    International Nuclear Information System (INIS)

    Kwon, Chae Hwa; Yoon, Chang Soo; Kim, Yong Keun

    2008-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been reported to induce apoptosis in a variety of cell types including renal proximal epithelial cells. However, the underlying mechanism of cell death induced by PPARγ agonists has not been clearly defined in renal proximal tubular cells. This study was therefore undertaken to determine the mechanism by which ciglitazone, a synthetic PPARγ agonist, induces apoptosis in opossum kidney (OK) cells, an established renal epithelial cell line. Ciglitazone treatment induced apoptotic cell death in a dose- and time-dependent manner. Ciglitazone caused a transient activation of ERK and sustained activation of p38 MAP kinase. Ciglitazone-mediated cell death was attenuated by the p38 inhibitor SB203580 and transfection of dominant-negative form of p38, but not by the MEK inhibitor U0126, indicating that p38 MAP kinase activation is involved in the ciglitazone-induced cell death. Although ciglitazone-induced caspase-3 activation, the ciglitazone-mediated cell death was not affected by the caspase-3 inhibitor DEVD-CHO. Ciglitazone-induced mitochondrial membrane depolarization and apoptosis-inducing factor (AIF) nuclear translocation and these effects were prevented by the p38 inhibitor. These results suggest that ciglitazone induces caspase-independent apoptosis through p38 MAP kinase-dependent AIF nuclear translocation in OK renal epithelial cells

  9. Apoptosis by [Pt(O,O'-acac)(γ-acac)(DMS)] requires PKC-δ mediated p53 activation in malignant pleural mesothelioma.

    Science.gov (United States)

    Muscella, Antonella; Vetrugno, Carla; Cossa, Luca Giulio; Antonaci, Giovanna; Barca, Amilcare; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo; Marsigliante, Santo

    2017-01-01

    Mesothelioma cancer cells have epithelioid or sarcomatoid morphology. The worst prognosis is associated with sarcomatoid phenotype and resistance to therapy is affected by cells heterogeneity. We recently showed that in ZL55 mesothelioma cell line of epithelioid origin [Pt(O,O'-acac)(γ-acac)(DMS)] (Ptac2S) has an antiproliferative effect in vitro and in vivo. Aim of this work was to extend the study on the effects of Ptac2S on ZL34 cell line, representative of sarcomatoid mesothelioma. ZL34 cells were used to assay the antitumor activity of Ptac2S in a mouse xenograft model in vivo. Then, both ZL34 and ZL55 cells were used in order to assess the involvement of p53 protein in (a) the processes underlying the sensitivity to chemotherapy and (b) the activation of various transduction proteins involved in apoptosis/survival processes. Ptac2S increases ZL34 cell death in vivo compared with cisplatin and, in vitro, Ptac2S was more efficacious than cisplatin in inducing apoptosis. In Ptac2S-treated ZL34 and ZL55 cells, p53 regulated gene products of apoptotic BAX and anti-apoptotic Bcl-2 proteins via transcriptional activation. Ptac2S activated PKC-δ and PKC-ε; their inhibition by PKC-siRNA decreased the apoptotic death of cells. PKC-δ was responsible for JNK1/2 activation that has a role in p53 activation. In addition, PKC-ε activation provoked phosphorylation of p38MAPK, concurring to apoptosis. In ZL34 cells, Ptac2S also activated PKC-α thus provoking ERK1/2 activation; inhibition of PKC-α, or ERK1/2, increased Ptac2S cytotoxicity. Results confirm that Ptac2S is a promising therapeutic agent for malignant mesothelioma, giving a substantial starting point for its further validation.

  10. Mitofusin-2 is a novel direct target of p53

    International Nuclear Information System (INIS)

    Wang, Weilin; Cheng, Xiaofei; Lu, Jianju; Wei, Jianfeng; Fu, Guanghou; Zhu, Feng; Jia, Changku; Zhou, Lin; Xie, Haiyang; Zheng, Shusen

    2010-01-01

    Research highlights: → Mfn2 is a novel target gene of p53. → Mfn2 mRNA and protein levels can be up-regulated in a p53-dependent manner. → Mfn2 promoter activity can be elevated by the p53 protein. → P53 protein binds the Mfn2 promoter directly both in vitro and in vivo. -- Abstract: The tumor suppressor p53 modulates transcription of a number of target genes involved in cell cycle arrest, apoptosis, DNA repair, and other important cellular responses. Mitofusin-2 (Mfn2) is a novel suppressor of cell proliferation that may also exert apoptotic effects via the mitochondrial apoptotic pathway. Through bioinformatics analysis, we identified a p53 binding site in the Mfn2 promoter. Consistent with this, we showed that the p53 protein binds the Mfn2 promoter directly both in vitro and in vivo. Additionally, we found that Mfn2 mRNA and protein levels are up-regulated in a p53-dependent manner. Furthermore, luciferase assays revealed that the activity of the wild-type Mfn2 promoter, but not a mutated version of the promoter, was up-regulated by p53. These results indicate that Mfn2 is a novel p53-inducible target gene, which provides insight into the regulation of Mfn2 and its associated activities in the inhibition of cell proliferation, promotion of apoptosis, and modulation of tumor suppression.

  11. Doxycyclin induces p53 expression in SaOs (osteosarcoma) cell line ...

    African Journals Online (AJOL)

    The p53 tumour suppressor gene plays an important role in preventing cancer development. This study determined if p53 can be induced in osteosarcoma cell line upon treatment ... represent an important component of the p53 tumor suppressor pathway. Keywords: Tumor suppressor, oncogene, mdm2, cyclinE, apoptosis ...

  12. p53 Over-expression and p53 mutations in colon carcinomas: Relation to dietary risk factors

    NARCIS (Netherlands)

    Voskuil, D.W.; Kampman, E.; Kraats, A.A. van; Balder, H.F.; Muijen, G.N.P. van; Goldbohm, R.A.; Veer, P. van 't

    1999-01-01

    Epidemiological studies have suggested that dietary factors may differently affect p53-dependent and p53-independent pathways to colon cancer. Results of such studies may depend on the method used to assess p53 status. This case-control study of 185 colon-cancer cases and 259 controls examines this

  13. Elevation of cAMP Levels Inhibits Doxorubicin-Induced Apoptosis in Pre- B ALL NALM- 6 Cells Through Induction of BAD Phosphorylation and Inhibition of P53 Accumulation.

    Science.gov (United States)

    Fatemi, Ahmad; Kazemi, Ahmad; Kashiri, Meysam; Safa, Majid

    2015-01-01

    Recognition of the molecular mechanisms of cAMP action against DNA damage-induced apoptosis can be useful to improve the efficacy of DNA damaging therapeutic agents. Considering the critical role of bcl-2-associated death promoter (BAD) and p53 proteins in DNA damage -induced apoptosis, the aim of this study was to assess the effect of cAMP-elevating agents on these proteins in doxorubicin-treated pre-B acute lymphoblastic leukemia (pre-B ALL) NALM-6 cells.The pre-B ALL cell line NALM-6 was cultured and treated with doxorubicin in combination with or without cAMP-elevating agents forskolin and 3-isobutyl-1-methylxanthine (IBMX). Cell viability was measured by trypan blue staining and MTT assay. For evaluation of apoptosis, annexin-V staining by flow cytometry and caspase-3 activity assay were used. Protein expression of p53, BAD and phoshorylated BAD was detected by western blotting analysis.cAMP-increasing agents diminished the doxorubicin-mediated cytotoxicity in NALM-6 cells as indicated by the viability assays. Annexin-V apoptosis assay showed that the cAMP-elevating agents decreased doxorubicin-induced apoptosis. Moreover, doxorubicin-induced caspase-3 activity was attenuated in the presence of cAMP-increasing agents. Western blot results revealed the reduced expression of p53 protein in cells treated with combination of cAMP-elevating agents and doxorubicin in contrast to cells treated with doxorubicin alone. Expression of total BAD protein was not affected by doxorubicin and cAMP-elevating agents. However, phosphorylation of BAD protein was induced in the presence of cAMP-elevating agents. Our study suggests that elevated cAMP levels inhibit doxorubicin-induced apoptosis in pre-B ALL cells through induction of BAD phosphorylation and abrogation of p53 accumulation.

  14. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier

    International Nuclear Information System (INIS)

    Garcia, Patrick Vianna; Seiva, Fábio Rodrigues Ferreira; Carniato, Amanda Pocol; Mello Júnior, Wilson de; Duran, Nelson; Macedo, Alda Maria; Oliveira, Alexandre Gabarra de; Romih, Rok; Nunes, Iseu da Silva; Nunes, Odilon da Silva; Fávaro, Wagner José

    2016-01-01

    The new modalities for treating patients with non-muscle invasive bladder cancer (NMIBC) for whom BCG (Bacillus Calmette-Guerin) has failed or is contraindicated are recently increasing due to the development of new drugs. Although agents like mitomycin C and BCG are routinely used, there is a need for more potent and/or less-toxic agents. In this scenario, a new perspective is represented by P-MAPA (Protein Aggregate Magnesium-Ammonium Phospholinoleate-Palmitoleate Anhydride), developed by Farmabrasilis (non-profit research network). This study detailed and characterized the mechanisms of action of P-MAPA based on activation of mediators of Toll-like Receptors (TLRs) 2 and 4 signaling pathways and p53 in regulating angiogenesis and apoptosis in an animal model of NMIBC, as well as, compared these mechanisms with BCG treatment. Our results demonstrated the activation of the immune system by BCG (MyD88-dependent pathway) resulted in increased inflammatory cytokines. However, P-MAPA intravesical immunotherapy led to distinct activation of TLRs 2 and 4-mediated innate immune system, resulting in increased interferons signaling pathway (TRIF-dependent pathway), which was more effective in the NMIBC treatment. Interferon signaling pathway activation induced by P-MAPA led to increase of iNOS protein levels, resulting in apoptosis and histopathological recovery. Additionally, P-MAPA immunotherapy increased wild-type p53 protein levels. The increased wild-type p53 protein levels were fundamental to NO-induced apoptosis and the up-regulation of BAX. Furthermore, interferon signaling pathway induction and increased p53 protein levels by P-MAPA led to important antitumor effects, not only suppressing abnormal cell proliferation, but also by preventing continuous expansion of tumor mass through suppression of angiogenesis, which was characterized by decreased VEGF and increased endostatin protein levels. Thus, P-MAPA immunotherapy could be considered an important therapeutic

  15. The tumor suppressors pRB and p53 as regulators of adipocyte differentiation and function

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Feddersen, Søren; Madsen, Lise

    2009-01-01

    BACKGROUND: The retinoblastoma protein (pRB) and p53 are crucial members of regulatory networks controlling the cell cycle and apoptosis, and a hallmark of virtually all cancers is dysregulation of expression or function of pRB or p53. Although they are best known for their role in cancer...

  16. The p53-dependent radioadaptive response

    Science.gov (United States)

    Ohnishi, Takeo

    We already reported that conditioning exposures at low doses, or at low dose-rates, lowered radiation-induced p53-dependent apoptosis in cultured cells in vitro and in the spleens of mice in vivo. In this study, the aim was to characterize the p53-dependent radioadaptive response at the molecular level. We used wild-type (wt) p53 and mutated (m) p53 containing cells derived from the human lung cancer H1299 cell line, which is p53-null. Cellular radiation sensitivities were determined with a colony-forming assay. The accumulation of p53, Hdm2, and iNOS was analyzed with Western blotting. The quantification of chromosomal aberrations was estimated by scoring dicentrics per cell. In wtp53 cells, it was demonstrated that the lack of p53 accumulation was coupled with the activation of Hdm2 after low dose irradiation (0.02 Gy). Although NO radicals were only minimally induced in wtp53 cells irradiated with a challenging irradiation (6 Gy) alone, NO radicals were seen to increase about 2-4 fold after challenging irradiation following a priming irradiation (0.02 Gy). Under similar irradiation conditions with a priming and challenging irradiation in wtp53 cells, induction of radioresistance and a depression of chromosomal aberrations were observed only in the absence of Pifithrin-α (a p53 inhibitor), RITA or Nutlin-3 (p53-Hdm2 interaction inhibitors), aminoguanidine (an iNOS inhibitor) and c-PTIO (an NO radical scavenger). On the other hand, in p53 dysfunctional cells, a radioadaptive response was not observed in the presence or absence of those inhibitors. Moreover, radioresistance developed when wtp53 cells were treated with ISDN (an NO generating agent) alone. These findings suggest that NO radicals are an initiator of the radioadaptive response acting through the activation of Hdm2 and the depression of p53 accumulations.

  17. Pre-irradiation at a low dose-rate blunted p53 response

    International Nuclear Information System (INIS)

    Takahashi, A.; Ohnishi, K.; Asakawa, I.; Tamamoto, T.; Yasumoto, J.; Yuki, K.; Ohnishi, T.; Tachibana, A.

    2003-01-01

    Full text: We have studied whether the p53-centered signal transduction pathway induced by acute radiation is interfered with chronic pre-irradiation at a low dose-rate in human cultured cells and whole body of mice. In squamous cell carcinoma cells, we found that a challenge irradiation with X-ray immediately after chronic irradiation resulted in lower levels of p53 than those observed after the challenge irradiation alone. In addition, the induction of p53-centered apoptosis and the accumulation of its related proteins after the challenge irradiation were strongly correlated with the above-mentioned phenomena. In mouse spleen, the induction of apoptosis and the accumulation of p53 and Bax were observed dose-dependently at 12 h after a challenge irradiation. In contrast, we found significant suppression of them induced by challenge irradiation at a high dose-rate when mice were pre-irradiated with chronic irradiation at a low dose-rate. These findings suggest that chronic pre-irradiation suppressed the p53 function through radiation-induced p53-dependent signal transduction processes. There are numerous papers about p53 functions in apoptosis, radiosensitivity, genomic instability and cancer incidence in cultured cells or animals. According to our data and other findings, since p53 can prevent carcinogenesis, pre-irradiation at a low dose-rate might enhance the predisposition to cancer. Therefore, it is possible that different maximal permissible dose equivalents for the public populations are appropriate. Furthermore, concerning health of human beings, studies of the adaptive responses to radiation are quite important, because the radiation response strongly depends on experience of prior exposure to radiation

  18. The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.

    Science.gov (United States)

    Chuang, Hui-Ching; Yang, Liang Peng; Fitzgerald, Alison L; Osman, Abdullah; Woo, Sang Hyeok; Myers, Jeffrey N; Skinner, Heath D

    2014-01-01

    TP53 is the most commonly mutated gene in head and neck cancer (HNSCC), with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis), a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1) inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.

  19. Cellular inactivation of nitric oxide induces p53-dependent ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research August 2016; 15 (8): 1595-1603 ... Cellular inactivation of nitric oxide induces p53-dependent apoptosis in ... apoptosis induced by a selective iNOS inhibitor, N-[(3-aminomethyl) benzyl] acetamidine (1400W), .... and nitrate. ... Nitrite production was measured in culture media.

  20. The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tayebeh Hamzehloie

    2012-03-01

    Full Text Available The gene TP53 (also known as protein 53 or tumor protein 53, encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. The main function of P53 is to organize cell defense against cancerous transformation. P53 is a potent transcription factor that is activated in response to diverse stresses, leading to the induction of cell cycle arrest, apoptosis or senescence. The P53 tumor suppressor is negatively regulated in cells by the murine double minute 2 (MDM2 protein. Murine double minute 2 favors its nuclear export, and stimulates its degradation. Inhibitors of the P53-MDM2 interaction might be attractive new anticancer agents that could be used to activate wild-type P53 in tumors. Down regulation of MDM2 using an small interfering RNA (siRNA approach has recently provided evidence for a new role of MDM2 in the P53 response, by modulating the inhibition of the cyclin dependent kinase 2 (cdk2 by P21/WAF1 (also known as cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1.

  1. Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Liz J. Valente

    2016-03-01

    Full Text Available Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted mouse models lacking the critical p53 target genes, p21, Puma, and Noxa, we found that only loss of PUMA conferred profound protection against Nutlin3a-induced killing in both non-transformed lymphoid cells and Eμ-Myc lymphomas in vitro and in vivo. CRISPR/Cas9-mediated targeting of the PUMA gene rendered human hematopoietic cancer cell lines markedly resistant to Nutlin3a-induced cell death. These results demonstrate that PUMA-mediated apoptosis, but not p21-mediated cell-cycle arrest or senescence, is a critical determinant of the therapeutic response to non-genotoxic p53 activation by Nutlin3a. Importantly, in human cancer, PUMA expression may predict patient responses to treatment with MDM2 antagonists.

  2. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    Directory of Open Access Journals (Sweden)

    Liang Y

    2018-03-01

    Full Text Available Yayun Liang,1 Benford Mafuvadze,1 Cynthia Besch-Williford,2 Salman M Hyder1 1Deparment of Biomedical Sciences and Dalton Cardiovascular Research Center, Columbia, MO, USA; 2IDEXX BioResearch, Columbia, MO, USA Background: Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53 lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods: In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results: APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood

  3. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53.

    Science.gov (United States)

    Wienken, Magdalena; Dickmanns, Antje; Nemajerova, Alice; Kramer, Daniela; Najafova, Zeynab; Weiss, Miriam; Karpiuk, Oleksandra; Kassem, Moustapha; Zhang, Yanping; Lozano, Guillermina; Johnsen, Steven A; Moll, Ute M; Zhang, Xin; Dobbelstein, Matthias

    2016-01-07

    The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Gelsolin negatively regulates the activity of tumor suppressor p53 through their physical interaction in hepatocarcinoma HepG2 cells

    International Nuclear Information System (INIS)

    An, Joo-Hee; Kim, Jung-Woong; Jang, Sang-Min; Kim, Chul-Hong; Kang, Eun-Jin; Choi, Kyung-Hee

    2011-01-01

    Highlights: → The actin binding protein Gelsolin (GSN) interacts with transcription factor p53. → GSN interacts with transactivation- and DNA binding domains of p53. → GSN represses transactivity of p53 via inhibition of nuclear translocation of p53. → GSN inhibits the p53-mediated apoptosis in hepatocarcinoma HepG2 cells. -- Abstract: As a transcription factor, p53 modulates several cellular responses including cell-cycle control, apoptosis, and differentiation. In this study, we have shown that an actin regulatory protein, gelsolin (GSN), can physically interact with p53. The nuclear localization of p53 is inhibited by GSN overexpression in hepatocarcinoma HepG2 cells. Additionally, we demonstrate that GSN negatively regulates p53-dependent transcriptional activity of a reporter construct, driven by the p21-promoter. Furthermore, p53-mediated apoptosis was repressed in GSN-transfected HepG2 cells. Taken together, these results suggest that GSN binds to p53 and this interaction leads to the inhibition of p53-induced apoptosis by anchoring of p53 in the cytoplasm in HepG2 cells.

  5. Battle Against Cancer: An Everlasting Saga of p53

    Directory of Open Access Journals (Sweden)

    Qian Hao

    2014-12-01

    Full Text Available Cancer is one of the most life-threatening diseases characterized by uncontrolled growth and spread of malignant cells. The tumor suppressor p53 is the master regulator of tumor cell growth and proliferation. In response to various stress signals, p53 can be activated and transcriptionally induces a myriad of target genes, including both protein-encoding and non-coding genes, controlling cell cycle progression, DNA repair, senescence, apoptosis, autophagy and metabolism of tumor cells. However, around 50% of human cancers harbor mutant p53 and, in the majority of the remaining cancers, p53 is inactivated through multiple mechanisms. Herein, we review the recent progress in understanding the molecular basis of p53 signaling, particularly the newly identified ribosomal stress—p53 pathway, and the development of chemotherapeutics via activating wild-type p53 or restoring mutant p53 functions in cancer. A full understanding of p53 regulation will aid the development of effective cancer treatments.

  6. Abrogation of Wip1 expression by RITA-activated p53 potentiates apoptosis induction via activation of ATM and inhibition of HdmX

    Science.gov (United States)

    Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G

    2011-01-01

    Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 – HdmX and Wip1, leading to efficient elimination of tumour cells. PMID:21546907

  7. Abrogation of Wip1 expression by RITA-activated p53 potentiates apoptosis induction via activation of ATM and inhibition of HdmX.

    Science.gov (United States)

    Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G

    2011-11-01

    Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 - HdmX and Wip1, leading to efficient elimination of tumour cells.

  8. Regulation of p53 tetramerization and nuclear export by ARC.

    Science.gov (United States)

    Foo, Roger S-Y; Nam, Young-Jae; Ostreicher, Marc Jason; Metzl, Mark D; Whelan, Russell S; Peng, Chang-Fu; Ashton, Anthony W; Fu, Weimin; Mani, Kartik; Chin, Suet-Feung; Provenzano, Elena; Ellis, Ian; Figg, Nichola; Pinder, Sarah; Bennett, Martin R; Caldas, Carlos; Kitsis, Richard N

    2007-12-26

    Inactivation of the transcription factor p53 is central to carcinogenesis. Yet only approximately one-half of cancers have p53 loss-of-function mutations. Here, we demonstrate a mechanism for p53 inactivation by apoptosis repressor with caspase recruitment domain (ARC), a protein induced in multiple cancer cells. The direct binding in the nucleus of ARC to the p53 tetramerization domain inhibits p53 tetramerization. This exposes a nuclear export signal in p53, triggering Crm1-dependent relocation of p53 to the cytoplasm. Knockdown of endogenous ARC in breast cancer cells results in spontaneous tetramerization of endogenous p53, accumulation of p53 in the nucleus, and activation of endogenous p53 target genes. In primary human breast cancers with nuclear ARC, p53 is almost always WT. Conversely, nearly all breast cancers with mutant p53 lack nuclear ARC. We conclude that nuclear ARC is induced in cancer cells and negatively regulates p53.

  9. A point mutation of human p53, which was not detected as a mutation by a yeast functional assay, led to apoptosis but not p21Waf1/Cip1/Sdi1 expression in response to ionizing radiation in a human osteosarcoma cell line, Saos-2

    International Nuclear Information System (INIS)

    Okaichi, Kumio; Wang Lihong; Sasaki, Ji-ichiro; Saya, Hideyuki; Tada, Mitsuhiro; Okumura, Yutaka

    1999-01-01

    Purpose: The 123A point mutation of p53 showed increased radiosensitivity, whereas other mutations (143A, 175H, and 273H) were not affected. To determine the reason for increased radiosensitivity of the 123A mutation, the response of the transformant of 123A mutation to ionizing radiation (IR) was examined and compared to those of transformants with the wild type p53 or other point mutations (143A, 175H, and 273H). Methods and Materials: Stable transformants with a mutant or wild type p53 made by introducing cDNA into the human osteosarcoma cell line, Saos-2, which lacks an endogenous p53 were used. The transcriptional activity of mutant p53 was examined using a yeast functional assay. The transformants were examined for the accumulation of p53, the induction of p21 Waf1/Cip1/Sdi1 (hereafter referred to as p21), and the other response of p53-responsive genes (MDM2, Bax, and Bcl-2) by Western blotting. Apoptosis was analyzed by detection of DNA fragmentation. Results: The 123A point mutation of p53 was detected as a wild type in the yeast functional assay. The 123A mutant accumulated p53 in response to IR. The 123A mutant did not induce p21, but normally responded to MDM2, Bax, and Bcl-2. The 123A mutant entered apoptosis earlier than the wild type p53 transformant, and induced Fas at earlier in response to IR. Conclusion: The 123A mutant led to apoptosis, but not p21 expression in response to IR. The occurrence of apoptosis, but not induction of p21, corresponded to the radiosensitivity in the transformant. The early occurrence of apoptosis in 123A transformants may depend on the early induction of Fas

  10. POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2003-10-23

    The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.

  11. Epothilones Suppress Neointimal Thickening in the Rat Carotid Balloon-Injury Model by Inducing Vascular Smooth Muscle Cell Apoptosis through p53-Dependent Signaling Pathway.

    Science.gov (United States)

    Son, Dong Ju; Jung, Jae Chul; Hong, Jin Tae

    2016-01-01

    Microtubule stabilizing agents (MTSA) are known to inhibit vascular smooth muscle cell (VSMC) proliferation and migration, and effectively reduce neointimal hyperplasia and restenosis. Epothilones (EPOs), non-taxane MTSA, have been found to be effective in the inhibition of VSMC proliferation and neointimal formation by cell cycle arrest. However, effect of EPOs on apoptosis in hyper-proliferated VSMCs as a possible way to reduce neointimal formation and its action mechanism related to VSMC viability has not been suited yet. Thus, the purposes of the present study was to investigate whether EPOs are able to inhibit neointimal formation by inducing apoptosis within the region of neointimal hyperplasia in balloon-injured rat carotid artery, as well as underlying action mechanism. Treatment of EPO-B and EPO-D significantly induced apoptotic cell death and mitotic catastrophe in hyper-proliferated VSMCs, resulting in cell growth inhibition. Further, EPOs significantly suppressed VSMC proliferation and induced apoptosis by activation of p53-dependent apoptotic signaling pathway, Bax/cytochrome c/caspase-3. We further demonstrated that the local treatment of carotid arteries with EPOs potently inhibited neointimal lesion formation by induction of apoptosis in rat carotid injury model. Our findings demonstrate a potent anti-neointimal hyperplasia property of EPOs by inducing p53-depedent apoptosis in hyper-proliferated VSMCs.

  12. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    Science.gov (United States)

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  13. Role of Tumor Suppressor P53 in Megakaryopoiesis and Platelet Function

    Science.gov (United States)

    Apostolidis, Pani A.; Woulfe, Donna S.; Chavez, Massiel; Miller, William M.; Papoutsakis, Eleftherios T.

    2011-01-01

    The pathobiological role of p53 has been widely studied, however its role in normophysiology is relatively unexplored. We previously showed that p53 knock-down increased ploidy in megakaryocytic cultures. This study aims to examine the effect of p53 loss on in vivo megakaryopoiesis, platelet production and function, and to investigate the basis for greater ploidy in p53−/− megakaryocytic cultures. Here, we used flow cytometry to analyze ploidy, DNA synthesis and apoptosis in murine cultured and bone marrow megakaryocytes following thrombopoietin administration and to analyze fibrinogen binding to platelets in vitro. Culture of p53−/− marrow cells for 6 days with thrombopoietin gave rise to 1.7-fold more megakaryocytes, 26.1±3.6% of which reached ploidy classes ≥64N compared to 8.2±0.9% of p53+/+ megakaryocytes. This was due to 30% greater DNA synthesis in p53−/− megakaryocytes and 31% greater apoptosis in p53+/+ megakaryocytes by day 4 of culture. Although the bone marrow and spleen steady-state megakaryocytic content and ploidy were similar in p53+/+ and p53−/− mice, thrombopoietin administration resulted in increased megakaryocytic polyploidization in p53−/− mice. Although their platelet counts were normal, p53−/− mice exhibited significantly longer bleeding times and p53−/− platelets were less sensitive than p53+/+ platelets to agonist-induced fibrinogen binding and P-selectin secretion. In summary, our in vivo and ex-vivo studies indicate that p53 loss leads to increased polyploidization during megakaryopoiesis. Our findings also suggest for the first time a direct link between p53 loss and the development of fully functional platelets resulting in hemostatic deficiencies. PMID:22024107

  14. The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism

    International Nuclear Information System (INIS)

    Reyes-Zurita, Fernando J; Pachón-Peña, Gisela; Lizárraga, Daneida; Rufino-Palomares, Eva E; Cascante, Marta; Lupiáñez, José A

    2011-01-01

    Maslinic acid, a pentacyclic triterpene found in the protective wax-like coating of the leaves and fruit of Olea europaea L., is a promising agent for the prevention of colon cancer. We have shown elsewhere that maslinic acid inhibits cell proliferation to a significant extent and activates mitochondrial apoptosis in colon cancer cells. In our latest work we have investigated further this compound's apoptotic molecular mechanism. We used HT29 adenocarcinoma cells. Changes genotoxicity were analyzed by single-cell gel electrophoresis (comet assay). The cell cycle was determined by flow cytometry. Finally, changes in protein expression were examined by western blotting. Student's t-test was used for statistical comparison. HT29 cells treated with maslinic acid showed significant increases in genotoxicity and cell-cycle arrest during the G0/G1 phase after 72 hours' treatment and an apoptotic sub-G0/G1 peak after 96 hours. Nevertheless, the molecular mechanism for this cytotoxic effect of maslinic acid has never been properly explored. We show here that the anti-tumoral activity of maslinic acid might proceed via p53-mediated apoptosis by acting upon the main signaling components that lead to an increase in p53 activity and the induction of the rest of the factors that participate in the apoptotic pathway. We found that in HT29 cells maslinic acid activated the expression of c-Jun NH2-terminal kinase (JNK), thus inducing p53. Treatment of tumor cells with maslinic acid also resulted in an increase in the expression of Bid and Bax, repression of Bcl-2, release of cytochrome-c and an increase in the expression of caspases -9, -3, and -7. Moreover, maslinic acid produced belated caspase-8 activity, thus amplifying the initial mitochondrial apoptotic signaling. All these results suggest that maslinic acid induces apoptosis in human HT29 colon-cancer cells through the JNK-Bid-mediated mitochondrial apoptotic pathway via the activation of p53. Thus we propose

  15. Influence of p53 and bcl-2 on chemosensitivity in benign and malignant prostatic cell lines.

    Science.gov (United States)

    Serafin, Antonio M; Bohm, Lothar

    2005-01-01

    The administration of cancer chemotherapeutic agents results in an increase in the apoptotic cells in the tumor: therefore, it has been assumed that anticancer drugs exhibit their cytotoxic effects via apoptotic signaling pathways. Characteristics that confer sensitivity to drug-induced apoptosis are, a functional p53 protein and expression of the apoptosis-promoting protein, bax. The role of p53 and bax/bcl-2 in drug-induced apoptosis was assessed in six prostate cell lines, 1532T, 1535T, 1542T, 1542N, BPH-1 and LNCaP using TD(50) concentrations of etoposide, vinblastine and estramustine. Cell death was monitored morphologically by fluorescent microscopy, and by flow cytometry (Annexin-V assay). Apoptotic morphology was rather low and ranged from 0.1% to 12.1%, 3.0% to 6.0% and 0.1% to 8.5% for etoposide, estramustine and vinblastine, respectively. Annexin-V binding and flow cytometry indicated apoptotic propensities of 0% to 4%, 0% to 3% and 0% to 5%, respectively. The percentage of cells responding to drug-induced apoptosis was, on average, higher in the tumor cell lines than in the normal cell lines, but showed no correlation with p53 status. The percentage of cells showing necrosis, assessed by Annexin binding and Propidium Iodide permeability in aqueous medium, tended to be much higher, and was found to be at the level of 5% to 30%. Immunoblotting demonstrated that bax and bcl-2 proteins were expressed at a basal level in all cell lines, but did not increase after exposure to TD(50) doses of the three drugs. The ratio of bax and bcl-2, measured by laser scanning densitometry, was not altered by the drug-induced DNA damage. The results suggest that apoptosis is not a major mechanism of drug-induced cell death in prostate cell lines and appears to be independent of p53 status and bax/bcl-2 expression.

  16. Butein activates p53 in hepatocellular carcinoma cells via blocking MDM2-mediated ubiquitination

    Directory of Open Access Journals (Sweden)

    Zhou Y

    2018-04-01

    Full Text Available Yuanfeng Zhou,1,2 Kuifeng Wang,2 Ni Zhou,2 Tingting Huang,2 Jiansheng Zhu,2 Jicheng Li1 1Institute of Cell Biology, Zhejiang University, Hangzhou, People’s Republic of China; 2Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, People’s Republic of China Introduction: In this study, we aimed to investigate the effect of butein on p53 in hepatocellular carcinoma (HCC cells and the related molecular mechanisms by which p53 was activated. Methods: MTS assay and clonogenic survival assay were used to examine the antitumor activity of butein in vitro. Reporter gene assay was adopted to evaluate p53 transcriptional activity. Flow cytometry and western blotting were performed to study apoptosis induction and protein expression respectively. Xenograft model was applied to determine the in vivo efficacy and the expression of p53 in tumor tissue was detected by immunohistochemistry. Results: HCC cell proliferation and clonogenic survival were significantly inhibited after butein treatment. With the activation of cleaved-PARP and capsase-3, butein induced apoptosis in HCC cells in a dose-dependent manner. The transcriptional activity of p53 was substantially promoted by butein, and the expression of p53-targeted gene was increased accordingly. Mechanism studies demonstrated that the interaction between MDM2 and p53 was blocked by butein and MDM2-mediated p53 ubiquitination was substantially decreased. Short-hairpin RNA experiment results showed that the sensitivity of HCC cells to butein was substantially impaired after p53 was knocked down and butein-induced apoptosis was dramatically decreased. In vivo experiments validated substantial antitumor efficacy of butein against HepG2 xenograft growth, and the expression of p53 in butein-treated tumor tissue was significantly increased. Conclusion: Butein demonstrated potent antitumor activities in HCC by activating p53, and butein or its analogs had

  17. Minocycline Protects Against NLRP3 Inflammasome-Induced Inflammation and P53-Associated Apoptosis in Early Brain Injury After Subarachnoid Hemorrhage.

    Science.gov (United States)

    Li, Jianru; Chen, Jingsen; Mo, Hangbo; Chen, Jingyin; Qian, Cong; Yan, Feng; Gu, Chi; Hu, Qiang; Wang, Lin; Chen, Gao

    2016-05-01

    Minocycline has beneficial effects in early brain injury (EBI) following subarachnoid hemorrhage (SAH); however, the molecular mechanisms underlying these effects have not been clearly identified. This study was undertaken to determine the influence of minocycline on inflammation and neural apoptosis and the possible mechanisms of these effects in early brain injury following subarachnoid hemorrhage. SAH was induced by the filament perforation model of SAH in male Sprague-Dawley rats. Minocycline or vehicle was given via an intraperitoneal injection 1 h after SAH induction. Minocycline treatment markedly attenuated brain edema secondary to blood-brain barrier (BBB) dysfunction by inhibiting NLRP3 inflammasome activation, which controls the maturation and release of pro-inflammatory cytokines, especially interleukin-1β (IL-1β). Minocycline treatment also markedly reduced the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-positive cells. To further identify the potential mechanisms, we demonstrated that minocycline increased Bcl2 expression and reduced the protein expression of P53, Bax, and cleaved caspase-3. In addition, minocycline reduced the cortical levels of reactive oxygen species (ROS), which are closely related to both NLRP3 inflammasome and P53 expression. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury following SAH. Minocycline's anti-inflammatory and anti-apoptotic effect may involve the reduction of ROS. Minocycline treatment may exhibit important clinical potentials in the management of SAH.

  18. 20(S-ginsenoside Rg3 promotes senescence and apoptosis in gallbladder cancer cells via the p53 pathway

    Directory of Open Access Journals (Sweden)

    Zhang F

    2015-08-01

    Full Text Available Fei Zhang,* Maolan Li,* Xiangsong Wu,* Yunping Hu, Yang Cao, Xu’an Wang, Shanshan Xiang, Huaifeng Li, Lin Jiang, Zhujun Tan, Wei Lu, Hao Weng, Yijun Shu, Wei Gong, Xuefeng Wang, Yong Zhang, Weibin Shi, Ping Dong,# Jun Gu,# Yingbin Liu#Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China *These authors contributed equally to this work #These authors jointly directed this work Abstract: Gallbladder cancer (GBC, the most frequent malignancy of the biliary tract, is associated with high mortality and extremely poor prognosis. 20(S-ginsenoside Rg3 (20(S-Rg3 is a steroidal saponin with high pharmacological activity. However, the anticancer effect of 20(S-Rg3 in human GBC has not yet been determined. In this study, we primarily found that 20(S-Rg3 exposure suppressed the survival of both NOZ and GBC-SD cell lines in a concentration-dependent manner. Moreover, induction of cellular senescence and G0/G1 arrest by 20(S-Rg3 were accompanied by a large accumulation of p53 and p21 as a result of murine double minute 2 (MDM2 inhibition. 20(S-Rg3 also caused a remarkable increase in apoptosis via the activation of the mitochondrial-mediated intrinsic caspase pathway. Furthermore, intraperitoneal injection of 20(S-Rg3 (20 or 40 mg/kg for 3 weeks markedly inhibited the growth of xenografts in nude mice. Our results demonstrated that 20(S-Rg3 potently inhibited growth and survival of GBC cells both in vitro and in vivo. 20(S-Rg3 attenuated GBC growth probably via activation of the p53 pathway, and subsequent induction of cellular senescence and mitochondrial-dependent apoptosis. Therefore, 20(S-Rg3 may be a potential chemotherapeutic agent for GBC therapy.Keywords: gallbladder cancer, 20(S-ginsenoside Rg3, senescence, apoptosis, p53 pathway

  19. The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.

    Directory of Open Access Journals (Sweden)

    Hui-Ching Chuang

    Full Text Available TP53 is the most commonly mutated gene in head and neck cancer (HNSCC, with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis, a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1 inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.

  20. The p53/HSP70 inhibitor, 2-phenylethynesulfonamide, causes oxidative stress, unfolded protein response and apoptosis in rainbow trout cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanxing; Tee, Catherine; Liu, Michelle [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Sherry, James P. [Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario L7R 4A6 (Canada); Dixon, Brian; Duncker, Bernard P. [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Bols, Niels C., E-mail: ncbols@uwaterloo.ca [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-01-15

    Highlights: •2-Phenylethynesulfonamide (PES) is an inhibitor of p53 and HSP 70 in mammals. •In the fish epithelial cell line, RTgill-W1, PES enhanced ROS generation and was cytotoxic. •RTgill-W1 death was by apoptosis and blocked by the anti-oxidant N-acetylcysteine. •This is the first report linking PES-induced cell death to ROS. •With this background PES should be useful for studying fish cell survival pathways. -- Abstract: The effect of 2-phenylethynesulfonamide (PES), which is a p53 and HSP70 inhibitor in mammalian cells, was studied on the rainbow trout (Oncorhynchus mykiss) gill epithelial cell line, RTgill-W1, in order to evaluate PES as a tool for understanding the cellular survival pathways operating in fish. As judged by three viability assays, fish cells were killed by 24 h exposures to PES, but cell death was blocked by the anti-oxidant N-acetylcysteine (NAC). Cell death had several hallmarks of apoptosis: DNA laddering, nuclear fragmentation, Annexin V staining, mitochondrial membrane potential decline, and caspases activation. Reactive oxygen species (ROS) production peaked in several hours after the addition of PES and before cell death. HSP70 and BiP levels were higher in cultures treated with PES for 24 h, but this was blocked by NAC. As well, PES treatment caused HSP70, BiP and p53 to accumulate in the detergent-insoluble fraction, and this too was prevented by NAC. Of several possible scenarios to explain the results, the following one is the simplest. PES enhances the generation of ROS, possibly by inhibiting the anti-oxidant actions of p53 and HSP70. ER stress arises from the ROS and from PES inhibiting the chaperone activities of HSP70. The ER stress in turn initiates the unfolded protein response (UPR), but this fails to restore ER homeostasis so proteins aggregate and cells die. Despite these multiple actions, PES should be useful for studying fish cellular survival pathways.

  1. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells.

    Science.gov (United States)

    Zhang, Zhiyu; Wang, Chong-Zhi; Du, Guang-Jian; Qi, Lian-Wen; Calway, Tyler; He, Tong-Chuan; Du, Wei; Yuan, Chun-Su

    2013-07-01

    Soybean isoflavones have been used as a potential preventive agent in anticancer research for many years. Genistein is one of the most active flavonoids in soybeans. Accumulating evidence suggests that genistein alters a variety of biological processes in estrogen-related malignancies, such as breast and prostate cancers. However, the molecular mechanism of genistein in the prevention of human colon cancer remains unclear. Here we attempted to elucidate the anticarcinogenic mechanism of genistein in human colon cancer cells. First we evaluated the growth inhibitory effect of genistein and two other isoflavones, daidzein and biochanin A, on HCT-116 and SW-480 human colon cancer cells. In addition, flow cyto-metry was performed to observe the morphological changes in HCT-116/SW-480 cells undergoing apoptosis or cell cycle arrest, which had been visualized using Annexin V-FITC and/or propidium iodide staining. Real-time PCR and western blot analyses were also employed to study the changes in expression of several important genes associated with cell cycle regulation. Our data showed that genistein, daidzein and biochanin A exhibited growth inhibitory effects on HCT-116/SW-480 colon cancer cells and promoted apoptosis. Genistein showed a significantly greater effect than the other two compounds, in a time- and dose-dependent manner. In addition, genistein caused cell cycle arrest in the G2/M phase, which was accompanied by activation of ATM/p53, p21waf1/cip1 and GADD45α as well as downregulation of cdc2 and cdc25A demonstrated by q-PCR and immunoblotting assay. Interestingly, genistein induced G2/M cell cycle arrest in a p53-dependent manner. These findings exemplify that isoflavones, especially genistein, could promote colon cancer cell growth inhibition and facilitate apoptosis and cell cycle arrest in the G2/M phase. The ATM/p53-p21 cross-regulatory network may play a crucial role in mediating the anticarcinogenic activities of genistein in colon cancer.

  2. Knockdown of HSPA9 induces TP53-dependent apoptosis in human hematopoietic progenitor cells.

    Directory of Open Access Journals (Sweden)

    Tuoen Liu

    Full Text Available Myelodysplastic syndromes (MDS are the most common adult myeloid blood cancers in the US. Patients have increased apoptosis in their bone marrow cells leading to low peripheral blood counts. The full complement of gene mutations that contribute to increased apoptosis in MDS remains unknown. Up to 25% of MDS patients harbor and acquired interstitial deletion on the long arm of chromosome 5 [del(5q], creating haploinsufficiency for a large set of genes including HSPA9. Knockdown of HSPA9 in primary human CD34+ hematopoietic progenitor cells significantly inhibits growth and increases apoptosis. We show here that HSPA9 knockdown is associated with increased TP53 expression and activity, resulting in increased expression of target genes BAX and p21. HSPA9 protein interacts with TP53 in CD34+ cells and knockdown of HSPA9 increases nuclear TP53 levels, providing a possible mechanism for regulation of TP53 by HSPA9 haploinsufficiency in hematopoietic cells. Concurrent knockdown of TP53 and HSPA9 rescued the increased apoptosis observed in CD34+ cells following knockdown of HSPA9. Reduction of HSPA9 below 50% results in severe inhibition of cell growth, suggesting that del(5q cells may be preferentially sensitive to further reductions of HSPA9 below 50%, thus providing a genetic vulnerability to del(5q cells. Treatment of bone marrow cells with MKT-077, an HSPA9 inhibitor, induced apoptosis in a higher percentage of cells from MDS patients with del(5q compared to non-del(5q MDS patients and normal donor cells. Collectively, these findings indicate that reduced levels of HSPA9 may contribute to TP53 activation and increased apoptosis observed in del(5q-associated MDS.

  3. p53 expression in biopsies from children with Langerhans cell histiocytosis

    DEFF Research Database (Denmark)

    Bank, Micha I; Lundegaard, Pia Rengtved; Carstensen, Henrik

    2002-01-01

    based on CD1a positivity. The slides were stained with p53 antibody and semiquantitatively evaluated using a grading system from 1 to 5 as an estimate for 0% to 20%, 20% to 40%, 40% to 60%, 60% to 80%, and 80% to 100% p53-positive for pathologic Langerhans cells (pLC), respectively. RESULTS: The p53...... protein was expressed in various degrees in pLC in all lesions. The degree of p53 expression could not be correlated to either clinical manifestation or outcome. CONCLUSIONS: An increased expression of p53 in pLC indicates an altered DNA repair control with or without abnormal control of apoptosis....

  4. Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells.

    Science.gov (United States)

    Dasiram, Jade Dhananjay; Ganesan, Ramamoorthi; Kannan, Janani; Kotteeswaran, Venkatesan; Sivalingam, Nageswaran

    2017-02-01

    Curcumin, a natural polyphenolic compound and it is isolated from the rhizome of Curcuma longa, have been reported to possess anticancer effect against stage I and II colon cancer. However, the effect of curcumin on colon cancer at Dukes' type C metastatic stage III remains still unclear. In the present study, we have investigated the anticancer effects of curcumin on p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. The cellular viability and proliferation were assessed by trypan blue exclusion assay and MTT assay, respectively. The cytotoxicity effect was examined by lactate dehydrogenase (LDH) cytotoxicity assay. Apoptosis was analyzed by DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis. Cell cycle distribution was performed by flow cytometry analysis. Here we have observed that curcumin treatment significantly inhibited the cellular viability and proliferation potential of p53 mutated COLO 320DM cells in a dose- and time-dependent manner. In addition, curcumin treatment showed no cytotoxic effects to the COLO 320DM cells. DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis revealed that curcumin treatment induced apoptosis in COLO 320DM cells. Furthermore, curcumin caused cell cycle arrest at the G1 phase, decreased the cell population in the S phase and induced apoptosis in COLO 320DM colon adenocarcinoma cells. Together, these data suggest that curcumin exerts anticancer effects and induces apoptosis in p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. p53 is important for the anti-proliferative effect of ibuprofen in colon carcinoma cells

    International Nuclear Information System (INIS)

    Janssen, Astrid; Schiffmann, Susanne; Birod, Kerstin; Maier, Thorsten J.; Wobst, Ivonne; Geisslinger, Gerd; Groesch, Sabine

    2008-01-01

    S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53 wt ) or being p(HCT-116 p53 -/- ), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53 -/- xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53 wt cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53 wt cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75 NTR , p53 and Bax

  6. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells

    Science.gov (United States)

    Bhattacharya, Sujoy; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF- /CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner. PMID:24242917

  7. Cr(VI) induces mitochondrial-mediated and caspase-dependent apoptosis through reactive oxygen species-mediated p53 activation in JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Son, Young-Ok; Hitron, J. Andrew; Wang Xin; Chang Qingshan; Pan Jingju; Zhang Zhuo; Liu Jiankang; Wang Shuxia; Lee, Jeong-Chae; Shi Xianglin

    2010-01-01

    Cr(VI) compounds are known to cause serious toxic and carcinogenic effects. Cr(VI) exposure can lead to a severe damage to the skin, but the mechanisms involved in the Cr(VI)-mediated toxicity in the skin are unclear. The present study examined whether Cr(VI) induces cell death by apoptosis or necrosis using mouse skin epidermal cell line, JB6 Cl41 cells. We also investigated the cellular mechanisms of Cr(VI)-induced cell death. This study showed that Cr(VI) induced apoptotic cell death in a dose-dependent manner, as demonstrated by the appearance of cell shrinkage, the migration of cells into the sub-G1 phase, the increase of Annexin V positively stained cells, and the formation of nuclear DNA ladders. Cr(VI) treatment resulted in the increases of mitochondrial membrane depolarization and caspases activation. Electron spin resonance (ESR) and fluorescence analysis revealed that Cr(VI) increased intracellular levels of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anion radical in dose-dependent manner. Blockage of p53 by si-RNA transfection suppressed mitochondrial changes of Bcl-2 family composition, mitochondrial membrane depolarization, caspase activation and PARP cleavage, leading to the inhibition of Cr(VI)-induced apoptosis. Further, catalase treatment prevented p53 phosphorylation stimulated by Cr(VI) with the concomitant inhibition of caspase activation. These results suggest that Cr(VI) induced a mitochondrial-mediated and caspase-dependent apoptosis in skin epidermal cells through activation of p53, which are mainly mediated by reactive oxidants generated by the chemical.

  8. P53-dependent ceramide generation in response ro ionizing irradiation is caspase-dependent

    International Nuclear Information System (INIS)

    Dbaibo, G.; El-Assaad, W.

    2000-01-01

    Full text.We have previously reported that p53-dependent apoptosis is accompanied by ceramide accumulation. Lack of p53 prevents ceramide accumulation in response to induces such as ionizing irradiation. The mechanisms of ceramide accumulation have not been explored. P53 has been reported to function by inducing the death receptors Fas and DR5 both of which function by initiating a caspase cascade that results in apoptosis. We decided to examine the role of caspases in the elevation of cellular ceramide levels. We treated Molt-4 cells with 5Gy of ionizing irradiation and examined the effects of co-treatment with the general caspase inhibitor z-VAD-fmk at concentration of 50 and 100μM. We found that z-VAD blocked apoptosis induced by irradiation without interfering with p53 accumulation indicating that it was not functioning upstream of p53. However, z-VAD treatment resulted in a significant decrease in ceramide accumulation. Additionally, z-VAD partially blocked the loss of glutathione in response to irradiation. This was important since glutathione has been described as an inhibitor of neutral sphindomyelinase, a major source of cellular ceramide via sphingomyelin hydrolysis. These studies indicate that p53 induces ceramide accumulation in a caspase-dependent manner and that the regulation of cellular glutathione by caspases may be a mechanism by which they regulate ceramide accumulation

  9. DRAGO (KIAA0247), a new DNA damage-responsive, p53-inducible gene that cooperates with p53 as oncosuppressor. [Corrected].

    Science.gov (United States)

    Polato, Federica; Rusconi, Paolo; Zangrossi, Stefano; Morelli, Federica; Boeri, Mattia; Musi, Alberto; Marchini, Sergio; Castiglioni, Vittoria; Scanziani, Eugenio; Torri, Valter; Broggini, Massimo

    2014-04-01

    p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53(-/-) and 107 p53(+/-) mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan-Meier curves and the Mantel-Haenszel test. All statistical tests were two-sided. We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO(-/-) mice are viable without macroscopic alterations. However, in p53(-/-) or p53(+/-) mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53(-/-) or p53(+/-) mice bearing wild-type DRAGO alleles (p53(-/-), DRAGO(-/-) mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53(+/-), DRAGO(-/-) mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO(+/+) counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional-through p53 (and p73) and methylation-dependent control-and post-transcriptional levels by miRNAs. DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions.

  10. NGF-mediated transcriptional targets of p53 in PC12 neuronal differentiation

    Directory of Open Access Journals (Sweden)

    Labhart Paul

    2007-05-01

    Full Text Available Abstract Background p53 is recognized as a critical regulator of the cell cycle and apoptosis. Mounting evidence also suggests a role for p53 in differentiation of cells including neuronal precursors. We studied the transcriptional role of p53 during nerve growth factor-induced differentiation of the PC12 line into neuron-like cells. We hypothesized that p53 contributed to PC12 differentiation through the regulation of gene targets distinct from its known transcriptional targets for apoptosis or DNA repair. Results Using a genome-wide chromatin immunoprecipitation cloning technique, we identified and validated 14 novel p53-regulated genes following NGF treatment. The data show p53 protein was transcriptionally activated and contributed to NGF-mediated neurite outgrowth during differentiation of PC12 cells. Furthermore, we describe stimulus-specific regulation of a subset of these target genes by p53. The most salient differentiation-relevant target genes included wnt7b involved in dendritic extension and the tfcp2l4/grhl3 grainyhead homolog implicated in ectodermal development. Additional targets included brk, sdk2, sesn3, txnl2, dusp5, pon3, lect1, pkcbpb15 and other genes. Conclusion Within the PC12 neuronal context, putative p53-occupied genomic loci spanned the entire Rattus norvegicus genome upon NGF treatment. We conclude that receptor-mediated p53 transcriptional activity is involved in PC12 differentiation and may suggest a contributory role for p53 in neuronal development.

  11. BRCA1 Expression is an Important Biomarker for Chemosensitivity: Suppression of BRCA1 Increases the Apoptosis via Up-regulation of p53 and p21 During Cisplatin Treatment in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ikuo Konishi

    2006-01-01

    Full Text Available BRCA1 is a tumor suppressor which plays a crucial role in the repair of DNA double-strand breaks, and its abnormality is responsible for hereditary ovarian cancer syndrome. It has recently been reported that reduced expression of BRCA1 is also common in sporadic ovarian carcinoma via its promoter hypermethylation, and that ovarian carcinoma patients negative for BRCA1 expression showed favorable prognosis. To address if BRCA1 expression plays a role in the chemotherapeutic response, we analyzed the effect of BRCA1 suppression on the sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Specific siRNA for BRCA1 gene was transfected into 3 ovarian cancer cell lines with various p53 status. Reduced expression of BRCA1 by transfection of BRCA1-siRNA resulted in a 5.3-fold increase in sensitivity to cisplatin in p53-wild A2780 cells, but not in p53-mutated A2780/CDDP and p53-deleted SKOV3 cells. Regarding the sensitivity to paclitaxel, BRCA1 suppression caused no significant changes in all the 3 cell lines. For ionizing radiation sensitivity, BRCA1 suppression also showed a significant higher sensitivity in A2780 cells. Growth curve and cell cycle analyses showed no signifi cant differences between BRCA1-siRNA-transfected A2780 cells and control cells. However, cisplatin treatment under suppression of BRCA1 showed a significantly increased apoptosis along with up-regulation of p53 and p21 in A2780 cells. Accordingly, reduced expression of BRCA1 enhances the cisplatin sensitivity and apoptosis via up-regulation of p53 and p21, but does not affect the paclitaxel sensitivity. Expression of BRCA1 might be an important biomarker for cisplatin resistance in ovarian carcinoma.

  12. Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated protein kinase/p38MAPK/p53 signalling axis: evidence for a combined use with 3-bromopyruvate in neuroblastoma treatment.

    Science.gov (United States)

    Filomeni, Giuseppe; Cardaci, Simone; Da Costa Ferreira, Ana Maria; Rotilio, Giuseppe; Ciriolo, Maria Rosa

    2011-08-01

    We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N']copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment. © The Authors Journal compilation © 2011 Biochemical Society

  13. Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1.

    Science.gov (United States)

    Wang, Qianli; Lingel, Amy; Geiser, Vicki; Kwapnoski, Zachary; Zhang, Luwen

    2017-10-15

    Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers. IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and

  14. Increased sensitivity of p53-deficient cells to anticancer agents due to loss of Pms2

    Science.gov (United States)

    Fedier, A; Ruefenacht, U B; Schwarz, V A; Haller, U; Fink, D

    2002-01-01

    A large fraction of human tumours carries mutations in the p53 gene. p53 plays a central role in controlling cell cycle checkpoint regulation, DNA repair, transcription, and apoptosis upon genotoxic stress. Lack of p53 function impairs these cellular processes, and this may be the basis of resistance to chemotherapeutic regimens. By virtue of the involvement of DNA mismatch repair in modulating cytotoxic pathways in response to DNA damaging agents, we investigated the effects of loss of Pms2 on the sensitivity to a panel of widely used anticancer agents in E1A/Ha-Ras-transformed p53-null mouse fibroblasts either proficient or deficient in Pms2. We report that lack of the Pms2 gene is associated with an increased sensitivity, ranging from 2–6-fold, to some types of anticancer agents including the topoisomerase II poisons doxorubicin, etoposide and mitoxantrone, the platinum compounds cisplatin and oxaliplatin, the taxanes docetaxel and paclitaxel, and the antimetabolite gemcitabine. In contrast, no change in sensitivity was found after treatment with 5-fluorouracil. Cell cycle analysis revealed that both, Pms2-deficient and -proficient cells, retain the ability to arrest at the G2/M upon cisplatin treatment. The data indicate that the concomitant loss of Pms2 function chemosensitises p53-deficient cells to some types of anticancer agents, that Pms2 positively modulates cell survival by mechanisms independent of p53, and that increased cytotoxicity is paralleled by increased apoptosis. Tumour-targeted functional inhibition of Pms2 may be a valuable strategy for increasing the efficacy of anticancer agents in the treatment of p53-mutant cancers. British Journal of Cancer (2002) 87, 1027–1033. doi:10.1038/sj.bjc.6600599 www.bjcancer.com © 2002 Cancer Research UK PMID:12434296

  15. Caspase Activation and Aberrant Cell Growth in a p53+/+ Cell Line from a Li-Fraumeni Syndrome Family

    Directory of Open Access Journals (Sweden)

    Zaki A. Sherif

    2015-01-01

    Full Text Available Wild-type p53 is well known to induce cell cycle arrest and apoptosis to block aberrant cell growth. However, p53’s unique role in apoptosis and cell proliferation in Li-Fraumeni Syndrome (LFS has not been well elucidated. The aim of this study is to characterize the activity of wild-type p53 protein in LFS family dominated by a germline negative mutant p53. As expected, etoposide-treated wild-type p53-containing cell lines, LFS 2852 and control Jurkat, showed a greater rate of caspase- and annexin V-induced apoptotic cell death compared to the p53-mutant LFS 2673 cell line although mitochondrial and nuclear assays could not detect apoptosis in these organelles. The most intriguing part of the observation was the abnormal proliferation rate of the wild-type p53-containing cell line, which grew twice as fast as 2673 and Jurkat cells. This is important because apoptosis inducers acting through the mitochondrial death pathway are emerging as promising drugs against tumors where the role of p53 is not only to target gene regulation but also to block cell proliferation. This study casts a long shadow on the possible dysregulation of p53 mediators that enable cell proliferation. The deregulation of proliferation pathways represents an important anticancer therapeutic strategy for patients with the LFS phenotype.

  16. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  17. Synergistic effect of p53 on TSA-induced stanniocalcin 1 expression in human nasopharyngeal carcinoma cells, CNE2.

    Science.gov (United States)

    Ching, L Y; Yeung, Bonnie H Y; Wong, Chris K C

    2012-06-01

    Human stanniocalcin 1 (STC1) has recently been identified as a putative protein factor involved in cellular apoptosis. The use of histone deacetylase inhibitor (i.e. trichostatin A (TSA)) and doxorubicin (Dox) is one of the common treatment methods to induce apoptosis in human cancer cells. A study on TSA and Dox-mediated apoptosis may shed light on the regulation and function of STC1 in cancer treatment. In this study, TSA and Dox cotreatment in human nasopharyngeal carcinoma cells (CNE2) elicited synergistic effects on STC1 gene expression and cellular apoptosis. An activation of p53 (TP53) transcriptional activity in Dox- or Dox+TSA-treated cells was revealed by the increased expression levels of p53 mRNA/protein as well as p53-driven luciferase activities. To elucidate the possible involvement of p53 in STC1 gene transcription, a vector expressing wild-type or dominant negative (DN) p53 was transiently transfected into the cells. Both STC1 promoter luciferase constructs and chromatin immunoprecipitation assays did not support the direct role of p53 in STC1 gene transactivation. However, the synergistic effects of p53 on the induction of NF-κB phosphorylation and the recruitment of acetylated histone H3 in STC1 promoter were observed in TSA-cotreated cells. The overexpression of exogenous STC1 sensitized apoptosis in Dox-treated cells. Taken together, this study provides data to show the cross talk of NF-κB, p53, and histone protein in the regulation of STC1 expression and function.

  18. Luteolin Prevents H2O2-Induced Apoptosis in H9C2 Cells through Modulating Akt-P53/Mdm2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hong Chang

    2016-01-01

    Full Text Available Introduction. Luteolin, a falconoid compound in many Chinese herbs and formula, plays important roles in cardiovascular diseases. The underlying mechanism of luteolin remains to be further elaborated. Methods. A model of hydrogen peroxide- (H2O2- induced H9C2 cells apoptosis was established. Cell viabilities were examined with an MTT assay. 2′,7′-Dichlorofluorescin diacetate (DCFH-DA and flow cytometry were used to detect ROS level and apoptosis rate, respectively. The expressions of signaling proteins related to apoptosis were analyzed by western blot and mRNA levels were detected by real-time polymerase chain reaction (PCR. Quercetin was applied as positive drug. Results. Incubation with various concentrations of H2O2 (0, 50, 100, and 200 μM for 1 h caused dose-dependent loss of cell viability and 100 μM H2O2 reduced the cell viability to approximately 50%. Treatments with luteolin and quercetin protected cells from H2O2-induced cytotoxicity and reduced cellular ROS level and apoptosis rate. Moreover, luteolin could downregulate the expressions of Bax, caspase-8, cleaved-caspase-3, and p53 in apoptotic signaling pathway. Further study showed that the expressions of Akt, Bcl-2, and Mdm2 were upregulated by luteolin. Conclusion. Luteolin protects H9C2 cells from H2O2-induced apoptosis. The protective and antiapoptotic effects of luteolin could be mediated by regulating the Akt-P53/Mdm2 apoptotic pathway.

  19. Radiation Induced Apoptosis of Murine Bone Marrow Cells Is Independent of Early Growth Response 1 (EGR1.

    Directory of Open Access Journals (Sweden)

    Karine Z Oben

    Full Text Available An understanding of how each individual 5q chromosome critical deleted region (CDR gene contributes to malignant transformation would foster the development of much needed targeted therapies for the treatment of therapy related myeloid neoplasms (t-MNs. Early Growth Response 1 (EGR1 is a key transcriptional regulator of myeloid differentiation located within the 5q chromosome CDR that has been shown to regulate HSC (hematopoietic stem cell quiescence as well as the master regulator of apoptosis-p53. Since resistance to apoptosis is a hallmark of malignant transformation, we investigated the role of EGR1 in apoptosis of bone marrow cells; a cell population from which myeloid malignancies arise. We evaluated radiation induced apoptosis of Egr1+/+ and Egr1-/- bone marrow cells in vitro and in vivo. EGR1 is not required for radiation induced apoptosis of murine bone marrow cells. Neither p53 mRNA (messenger RNA nor protein expression is regulated by EGR1 in these cells. Radiation induced apoptosis of bone marrow cells by double strand DNA breaks induced p53 activation. These results suggest EGR1 dependent signaling mechanisms do not contribute to aberrant apoptosis of malignant cells in myeloid malignancies.

  20. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    International Nuclear Information System (INIS)

    Li, Lin; Yue, Grace G.L.; Lau, Clara B.S.; Sun, Handong; Fung, Kwok Pui; Leung, Ping Chung; Han, Quanbin; Leung, Po Sing

    2012-01-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  1. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Yue, Grace G.L. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Lau, Clara B.S. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Sun, Handong [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS, Yunnan (China); Fung, Kwok Pui [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Leung, Ping Chung [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Han, Quanbin, E-mail: simonhan@hkbu.edu.hk [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); School of Chinese Medicine, The Hong Kong Baptist University, Hong Kong (China); Leung, Po Sing, E-mail: psleung@cuhk.edu.hk [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China)

    2012-07-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  2. Evidence that expression of a mutated p53 gene attenuates apoptotic cell death in human gastric intestinal-type carcinomas in vivo.

    Science.gov (United States)

    Ishida, M; Gomyo, Y; Ohfuji, S; Ikeda, M; Kawasaki, H; Ito, H

    1997-05-01

    To examine in vivo the validity of the results of experiments in vitro, we analyzed the relationship between p53 gene status and apoptotic cell death of human gastric intestinal-type adenocarcinomas. Surgical specimens were classified into two categories: 18 gastric cancers with nuclear p53 protein (A), and 17 gastric cancers without nuclear p53 protein (B). Polymerase chain reaction-single strand conformation polymorphism disclosed a shifted band that corresponded to a mutation in the p53 gene in 13 cases (72%) in category A and 3 cases (18%) in category B, the frequency being significantly higher in the former (P terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). The TUNEL index [TI; (the number of TUNEL-positive apoptotic cells/the total number of tumor cells) x 100] was 3.8 +/- 1.4% in category A and 4.9 +/- 1.2% in category B, the value being significantly lower in the former (P gastric cancer, in accordance with the previous in vitro finding that p53 gene mutation provides a possible selective advantage for tumor cell proliferation, and (2) apoptosis is related not only to expression of p53 and the stage of the cell cycle, but also to p53-independent and cell cycle-independent events.

  3. BAG3 down-modulation sensitizes HPV18(+) HeLa cells to PEITC-induced apoptosis and restores p53.

    Science.gov (United States)

    Cotugno, Roberta; Basile, Anna; Romano, Elena; Gallotta, Dario; Belisario, Maria Antonietta

    2014-11-28

    BAG3 is a multi-functional component of tumor cell pro-survival machinery, and its biological functions have been largely associated to proteasome system. Here, we show that BAG3 down-modulation resulted in reduced cell viability and enhanced PEITC-induced apoptosis largely more extensively in HeLa (HPV18(+)) rather than in C33A (HPV(-)) cervical carcinoma cell lines. Moreover, we demonstrate that BAG3 suppression led to a decrease of viral E6 oncoprotein and a concomitant recovery of p53 tumor suppressor, the best recognized target of E6 for proteasome degradation. E6 and p53 expression were modulated at protein level, since their respective mRNAs were unaffected. Taken together our findings reveal a novel role for BAG3 as host protein contributing to HPV18 E6-activated pro-survival strategies, and suggest a possible relevance of its expression levels in drug/radiotherapy-resistance of HPV18-bearing cervical carcinomas. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tzu-Chin [Chest Clinic, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Yi-Chin [Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan (China); Chen, Hsiao-Ling [Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China); Huang, Pei-Ru; Liu, Shang-Yu [Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan (China); Yeh, Shu-Lan, E-mail: suzyyeh@csmu.edu.tw [Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan (China); Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan (China)

    2016-02-01

    Genistein has been shown to enhance the antitumor activity of trichostatin A (TSA) in human lung carcinoma A549 cells. However, whether the combined treatment exerts the same effect in other lung cancer cells is unclear. In the present study we first compared the enhancing effect of genistein on the antitumor effect of TSA in ABC-1, NCI-H460 (H460) and A549 cells. Second, we investigated whether the effects of genistein are associated with increased histone/non-histone protein acetylation. We found that the enhancing effect of genistein on cell-growth-arrest in ABC-1 cells (p53 mutant) was less than in A549 and H460 cells. Genistein enhanced TSA induced apoptosis in A549 and H460 cells rather than in ABC-1 cells. After silencing p53 expression in A549 and H460 cells, the enhancing effect of genistein was diminished. In addition, genistein increased TSA-induced histone H3/H4 acetylation in A549 and H460 cells. Genistein also increased p53 acetylation in H460 cells. The inhibitor of acetyltransferase, anacardic acid, diminished the enhancing effect of genistein on all TSA-induced histone/p53 acetylation and apoptosis. Genistein in combination with TSA increased the expression of p300 protein, an acetyltransferase, in A549 and NCI-H460 cells. Furthermore, we demonstrated that genistein also enhanced the antitumor effect of genistein in A549-tumor-bearing mice. Taken together, these results suggest that the enhancing effects of genistein on TSA-induced apoptosis in lung cancer cells were p53-dependent and were associated with histone/non-histone protein acetylation. - Highlights: • Genistein enhances the antitumor effect of TSA through p53-associated pathways. • Genistein enhances TSA-induced histone acetylation commonly. • An acetyltransferase inhibitor diminishes the antitumor effect of genistein + TSA. • TSA in combination with genistein increases the expression of p300. • Genistein given by i.p. injection increases the antitumor effect of TSA in vivo.

  5. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase

    International Nuclear Information System (INIS)

    Wu, Tzu-Chin; Lin, Yi-Chin; Chen, Hsiao-Ling; Huang, Pei-Ru; Liu, Shang-Yu; Yeh, Shu-Lan

    2016-01-01

    Genistein has been shown to enhance the antitumor activity of trichostatin A (TSA) in human lung carcinoma A549 cells. However, whether the combined treatment exerts the same effect in other lung cancer cells is unclear. In the present study we first compared the enhancing effect of genistein on the antitumor effect of TSA in ABC-1, NCI-H460 (H460) and A549 cells. Second, we investigated whether the effects of genistein are associated with increased histone/non-histone protein acetylation. We found that the enhancing effect of genistein on cell-growth-arrest in ABC-1 cells (p53 mutant) was less than in A549 and H460 cells. Genistein enhanced TSA induced apoptosis in A549 and H460 cells rather than in ABC-1 cells. After silencing p53 expression in A549 and H460 cells, the enhancing effect of genistein was diminished. In addition, genistein increased TSA-induced histone H3/H4 acetylation in A549 and H460 cells. Genistein also increased p53 acetylation in H460 cells. The inhibitor of acetyltransferase, anacardic acid, diminished the enhancing effect of genistein on all TSA-induced histone/p53 acetylation and apoptosis. Genistein in combination with TSA increased the expression of p300 protein, an acetyltransferase, in A549 and NCI-H460 cells. Furthermore, we demonstrated that genistein also enhanced the antitumor effect of genistein in A549-tumor-bearing mice. Taken together, these results suggest that the enhancing effects of genistein on TSA-induced apoptosis in lung cancer cells were p53-dependent and were associated with histone/non-histone protein acetylation. - Highlights: • Genistein enhances the antitumor effect of TSA through p53-associated pathways. • Genistein enhances TSA-induced histone acetylation commonly. • An acetyltransferase inhibitor diminishes the antitumor effect of genistein + TSA. • TSA in combination with genistein increases the expression of p300. • Genistein given by i.p. injection increases the antitumor effect of TSA in vivo.

  6. The absence of Ser389 phosphorylation in p53 affects the basal gene expression level of many p53-dependent genes and alters the biphasic response to UV exposure in mouse embryonic fibroblasts

    NARCIS (Netherlands)

    Bruins, Wendy; Bruning, Oskar; Jonker, Martijs J.; Zwart, Edwin; van der Hoeven, Tessa V.; Pennings, Jeroen L. A.; Rauwerda, Han; de Vries, Annemieke; Breit, Timo M.

    2008-01-01

    Phosphorylation is important in p53-mediated DNA damage responses. After UV irradiation, p53 is phosphorylated specifically at murine residue Ser389. Phosphorylation mutant p53.S389A cells and mice show reduced apoptosis and compromised tumor suppression after UV irradiation. We investigated the

  7. Stabilization and activation of p53 are regulated independently by different phosphorylation events

    Science.gov (United States)

    Chernov, Mikhail V.; Ramana, Chilakamarti V.; Adler, Victor V.; Stark, George R.

    1998-01-01

    Treatment of mouse or human cells with the protein kinase C (PKC) inhibitors H7 or bisindolylmaleimide I induced an increase in the lifetime of p53, leading to its accumulation. In inhibitor-treated cells, p53 translocated to the nuclei and bound to DNA but was not competent to induce transcription. However, transactivation could be induced by subsequent DNA damage. Phorbol ester, a potent activator of PKC, significantly inhibited the accumulation of p53 after DNA damage. Therefore, constitutive PKC-dependent phosphorylation of p53 itself, or of a protein that interacts with p53, is required for the rapid degradation of p53 in untreated cells. Furthermore, an increase in the lifetime of p53 is not accompanied necessarily by its activation. Treatment with the PKC inhibitors decreased the overall level of p53 phosphorylation but led to the appearance of a phosphopeptide not seen in tryptic digests of p53 from untreated cells. Therefore, the lifetime and activities of p53 are likely to be regulated by distinct alterations of the phosphorylation pattern of p53, probably caused by the actions of different kinases. PMID:9482877

  8. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway

    Science.gov (United States)

    Drosten, Matthias; Sum, Eleanor Y. M.; Lechuga, Carmen G.; Simón-Carrasco, Lucía; Jacob, Harrys K. C.; García-Medina, Raquel; Huang, Sidong; Beijersbergen, Roderick L.; Bernards, Rene; Barbacid, Mariano

    2014-01-01

    The Ras family of small GTPases constitutes a central node in the transmission of mitogenic stimuli to the cell cycle machinery. The ultimate receptor of these mitogenic signals is the retinoblastoma (Rb) family of pocket proteins, whose inactivation is a required step to license cell proliferation. However, little is known regarding the molecular events that connect Ras signaling with the cell cycle. Here, we provide genetic evidence to illustrate that the p53/p21 Cdk-interacting protein 1 (Cip1)/Rb axis is an essential component of the Ras signaling pathway. Indeed, knockdown of p53, p21Cip1, or Rb restores proliferative properties in cells arrested by ablation of the three Ras loci, H-, N- and K-Ras. Ras signaling selectively inactivates p53-mediated induction of p21Cip1 expression by inhibiting acetylation of specific lysine residues in the p53 DNA binding domain. Proliferation of cells lacking both Ras proteins and p53 can be prevented by reexpression of the human p53 ortholog, provided that it retains an active DNA binding domain and an intact lysine residue at position 164. These results unveil a previously unidentified role for p53 in preventing cell proliferation under unfavorable mitogenic conditions. Moreover, we provide evidence that cells lacking Ras and p53 proteins owe their proliferative properties to the unexpected retroactivation of the Raf/Mek/Erk cascade by a Ras-independent mechanism. PMID:25288756

  9. Activation of the Nkx2.5–Calr–p53 signaling pathway by hyperglycemia induces cardiac remodeling and dysfunction in adult zebrafish

    Directory of Open Access Journals (Sweden)

    Yanyi Sun

    2017-10-01

    Full Text Available Hyperglycemia is an independent risk factor for diabetic cardiomyopathy in humans; however, the underlying mechanisms have not been thoroughly elucidated. Zebrafish (Danio rerio was used in this study as a novel vertebrate model to explore the signaling pathways of human adult cardiomyopathy. Hyperglycemia was induced by alternately immersing adult zebrafish in a glucose solution or water. The hyperglycemic fish gradually exhibited some hallmarks of cardiomyopathy such as myocardial hypertrophy and apoptosis, myofibril loss, fetal gene reactivation, and severe arrhythmia. Echocardiography of the glucose-treated fish demonstrated diastolic dysfunction at an early stage and systolic dysfunction at a later stage, consistent with what is observed in diabetic patients. Enlarged hearts with decreased myocardial density, accompanied by decompensated cardiac function, indicated that apoptosis was critical in the pathological process. Significant upregulation of the expression of Nkx2.5 and its downstream targets calreticulin (Calr and p53 was noted in the glucose-treated fish. High-glucose stimulation in vitro evoked marked apoptosis of primary cardiomyocytes, which was rescued by the p53 inhibitor pifithrin-μ. In vitro experiments were performed using compound treatment and genetically via cell infection. Genetically, knockout of Nkx2.5 induced decreased expression of Nkx2.5, Calr and p53. Upregulation of Calr resulted in increased p53 expression, whereas the level of Nkx2.5 remained unchanged. An adult zebrafish model of hyperglycemia-induced cardiomyopathy was successfully established. Hyperglycemia-induced myocardial apoptosis was mediated, at least in part, by activation of the Nkx2.5–Calr–p53 pathway in vivo, resulting in cardiac dysfunction and hyperglycemia-induced cardiomyopathy.

  10. Robustness of the p53 network and biological hackers.

    Science.gov (United States)

    Dartnell, Lewis; Simeonidis, Evangelos; Hubank, Michael; Tsoka, Sophia; Bogle, I David L; Papageorgiou, Lazaros G

    2005-06-06

    The p53 protein interaction network is crucial in regulating the metazoan cell cycle and apoptosis. Here, the robustness of the p53 network is studied by analyzing its degeneration under two modes of attack. Linear Programming is used to calculate average path lengths among proteins and the network diameter as measures of functionality. The p53 network is found to be robust to random loss of nodes, but vulnerable to a targeted attack against its hubs, as a result of its architecture. The significance of the results is considered with respect to mutational knockouts of proteins and the directed attacks mounted by tumour inducing viruses.

  11. Hexavalent chromium-induced apoptosis of granulosa cells involves selective sub-cellular translocation of Bcl-2 members, ERK1/2 and p53

    International Nuclear Information System (INIS)

    Banu, Sakhila K.; Stanley, Jone A.; Lee, JeHoon; Stephen, Sam D.; Arosh, Joe A.; Hoyer, Patricia B.; Burghardt, Robert C.

    2011-01-01

    Hexavalent chromium (CrVI) has been widely used in industries throughout the world. Increased usage of CrVI and atmospheric emission of CrVI from catalytic converters of automobiles, and its improper disposal causes various health hazards including female infertility. Recently we have reported that lactational exposure to CrVI induced a delay/arrest in follicular development at the secondary follicular stage. In order to investigate the underlying mechanism, primary cultures of rat granulosa cells were treated with 10 μM potassium dichromate (CrVI) for 12 and 24 h, with or without vitamin C pre-treatment for 24 h. The effects of CrVI on intrinsic apoptotic pathway(s) were investigated. Our data indicated that CrVI: (i) induced DNA fragmentation and increased apoptosis, (ii) increased cytochrome c release from the mitochondria to cytosol, (iii) downregulated anti-apoptotic Bcl-2, Bcl-XL, HSP70 and HSP90; upregulated pro-apoptotic BAX and BAD, (iv) altered translocation of Bcl-2, Bcl-XL, BAX, BAD, HSP70 and HSP90 to the mitochondria, (v) upregulated p-ERK and p-JNK, and selectively translocated p-ERK to the mitochondria and nucleus, (vi) activated caspase-3 and PARP, and (vii) increased phosphorylation of p53 at ser-6, ser-9, ser-15, ser-20, ser-37, ser-46 and ser-392, increased p53 transcriptional activation, and downregulated MDM-2. Vitamin C pre-treatment mitigated CrVI effects on apoptosis and related pathways. Our study, for the first time provides a clear insight into the effect of CrVI on multiple pathways that lead to apoptosis of granulosa cells which could be mitigated by vitamin C.

  12. Regulation of Metabolic Activity by p53

    Directory of Open Access Journals (Sweden)

    Jessica Flöter

    2017-05-01

    Full Text Available Metabolic reprogramming in cancer cells is controlled by the activation of multiple oncogenic signalling pathways in order to promote macromolecule biosynthesis during rapid proliferation. Cancer cells also need to adapt their metabolism to survive and multiply under the metabolically compromised conditions provided by the tumour microenvironment. The tumour suppressor p53 interacts with the metabolic network at multiple nodes, mostly to reduce anabolic metabolism and promote preservation of cellular energy under conditions of nutrient restriction. Inactivation of this tumour suppressor by deletion or mutation is a frequent event in human cancer. While loss of p53 function lifts an important barrier to cancer development by deleting cell cycle and apoptosis checkpoints, it also removes a crucial regulatory mechanism and can render cancer cells highly sensitive to metabolic perturbation. In this review, we will summarise the major concepts of metabolic regulation by p53 and explore how this knowledge can be used to selectively target p53 deficient cancer cells in the context of the tumour microenvironment.

  13. Cytotoxicity and Proapoptotic Effects of Allium atroviolaceum Flower Extract by Modulating Cell Cycle Arrest and Caspase-Dependent and p53-Independent Pathway in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Somayeh Khazaei

    2017-01-01

    Full Text Available Breast cancer is the second leading cause of cancer death among women and despite significant advances in therapy, it remains a critical health problem worldwide. Allium atroviolaceum is an herbaceous plant, with limited information about the therapeutic capability. We aimed to study the anticancer effect of flower extract and the mechanisms of action in MCF-7 and MDA-MB-231. The extract inhibits the proliferation of the cells in a time- and dose-dependent manner. The underlying mechanism involved the stimulation of S and G2/M phase arrest in MCF-7 and S phase arrest in MDA-MB-231 associated with decreased level of Cdk1, in a p53-independent pathway. Furthermore, the extract induces apoptosis in both cell lines, as indicated by the percentage of sub-G0 population, the morphological changes observed by phase contrast and fluorescent microscopy, and increase in Annexin-V-positive cells. The apoptosis induction was related to downregulation of Bcl-2 and also likely to be caspase-dependent. Moreover, the combination of the extract and tamoxifen exhibits synergistic effect, suggesting that it can complement current chemotherapy. LC-MS analysis displayed 17 major compounds in the extract which might be responsible for the observed effects. Overall, this study demonstrates the potential applications of Allium atroviolaceum extract as an anticancer drug for breast cancer treatment.

  14. SGK1 (glucose transport), dishevelled2 (wnt signaling), LC3/p62 (autophagy) and p53 (apoptosis) proteins are unaltered in Lafora disease

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P.; Israelian, L.; Xue, Y.; Song, S.; Attisano, L.; Minassian, B.

    2016-07-01

    Glycogen forms through the concerted actions of glycogen synthase (GS) which elongates glycogen strands, and glycogen branching enzyme (GBE). Lafora disease (LD) is a fatal neurodegenerative epilepsy that results from neuronal accumulation of hyperphosphorylated glycogen with excessively long strands (called polyglucosans). There is no GBE deficiency in LD. Instead, the disease is caused by loss-of-function mutations in the EPM2A or EPM2B genes, encoding, respectively, a phosphatase, laforin, and an E3 ubiquiting ligase, malin. A number of experimentally derived hypotheses have been published to explain LD, including: The SGK1 hypothesis - Phosphorylated SGK1 (pSGK1) raises cellular glucose uptake and levels, which would activate GS. Based on observing increased pSGK1 in LD mice it was proposed that raised pSGK1 leads to polyglucosan generation through GS hyperactivation. The Dishevelled2 hypothesis - Downregulating malin in cell culture was reported to increase levels of dishevelled2, which through the wnt/glycogen synthase kinase-3 pathway would likewise overactivate GS. The Autophagic defect hypothesis - Polyglucosans may be natural byproducts of normal glycogen metabolism. LD mice were reported to be autophagy-defective. LD would arise from failed autophagy leading to failed polyglucosan clearance. Finally, the p53 hypothesis - laforin and malin were reported to downregulate p53, their absence leading to increased p53, which would activate apoptosis, leading to the neurodegeneration of LD. In the present work we repeat key experiments that underlie these four hypotheses. We are unable to confirm increased pSGK1, dishevelled2, or p53 in LD mice, nor the reported autophagic defects. Our work does not support the above hypotheses in understanding this unique and severe form of epilepsy.

  15. SGK1 (glucose transport), dishevelled2 (wnt signaling), LC3/p62 (autophagy) and p53 (apoptosis) proteins are unaltered in Lafora disease

    International Nuclear Information System (INIS)

    Wang, P.; Israelian, L.; Xue, Y.; Song, S.; Attisano, L.; Minassian, B.

    2016-01-01

    Glycogen forms through the concerted actions of glycogen synthase (GS) which elongates glycogen strands, and glycogen branching enzyme (GBE). Lafora disease (LD) is a fatal neurodegenerative epilepsy that results from neuronal accumulation of hyperphosphorylated glycogen with excessively long strands (called polyglucosans). There is no GBE deficiency in LD. Instead, the disease is caused by loss-of-function mutations in the EPM2A or EPM2B genes, encoding, respectively, a phosphatase, laforin, and an E3 ubiquiting ligase, malin. A number of experimentally derived hypotheses have been published to explain LD, including: The SGK1 hypothesis - Phosphorylated SGK1 (pSGK1) raises cellular glucose uptake and levels, which would activate GS. Based on observing increased pSGK1 in LD mice it was proposed that raised pSGK1 leads to polyglucosan generation through GS hyperactivation. The Dishevelled2 hypothesis - Downregulating malin in cell culture was reported to increase levels of dishevelled2, which through the wnt/glycogen synthase kinase-3 pathway would likewise overactivate GS. The Autophagic defect hypothesis - Polyglucosans may be natural byproducts of normal glycogen metabolism. LD mice were reported to be autophagy-defective. LD would arise from failed autophagy leading to failed polyglucosan clearance. Finally, the p53 hypothesis - laforin and malin were reported to downregulate p53, their absence leading to increased p53, which would activate apoptosis, leading to the neurodegeneration of LD. In the present work we repeat key experiments that underlie these four hypotheses. We are unable to confirm increased pSGK1, dishevelled2, or p53 in LD mice, nor the reported autophagic defects. Our work does not support the above hypotheses in understanding this unique and severe form of epilepsy.

  16. Infection with E1B-mutant adenovirus stabilizes p53 but blocks p53 acetylation and activity through E1A

    DEFF Research Database (Denmark)

    Savelyeva, I.; Dobbelstein, M.

    2011-01-01

    to the suppression of p21 transcription. Depending on the E1A conserved region 3, E1B-defective adenovirus impaired the ability of the transcription factor Sp1 to bind the p21 promoter. Moreover, the amino terminal region of E1A, binding the acetyl transferases p300 and CREB-binding protein, blocked p53 K382...... accumulation of p53, without obvious defects in p53 localization, phosphorylation, conformation and oligomerization. Nonetheless, p53 completely failed to induce its target genes in this scenario, for example, p21/CDKN1A, Mdm2 and PUMA. Two regions of the E1A gene products independently contributed...... acetylation in infected cells. Mutating either of these E1A regions, in addition to E1B, partially restored p21 mRNA levels. Our findings argue that adenovirus attenuates p53-mediated p21 induction, through at least two E1B-independent mechanisms. Other virus species and cancer cells may employ analogous...

  17. A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma.

    Science.gov (United States)

    Abd El-Hafeez, Amer Ali; Fujimura, Takashi; Kamei, Rikiya; Hirakawa, Noriko; Baba, Kenji; Ono, Kazuhisa; Kawamoto, Seiji

    2017-07-14

    Perilla frutescens is an Asian dietary herb consumed as an essential seasoning in Japanese cuisine as well as used for a Chinese medicine. Here, we report that a newly found methoxyflavanone derivative from P. frutescens (Perilla-derived methoxyflavanone, PDMF; 8-hydroxy-5,7-dimethoxyflavanone) shows carcinostatic activity on human lung adenocarcinoma, A549. We found that treatment with PDMF significantly inhibited cell proliferation and decreased viability through induction of G 2 /M cell cycle arrest and apoptosis. The PDMF stimulation induces phosphorylation of tumor suppressor p53 on Ser15, and increases its protein amount in conjunction with up-regulation of downstream cyclin-dependent kinase inhibitor p21 Cip1/Waf1 and proapoptotic caspases, caspase-9 and caspase-3. We also found that small interfering RNA knockdown of p53 completely abolished the PDMF-induced G 2 /M cell cycle arrest, and substantially abrogated its proapoptotic potency. These results suggest that PDMF represents a useful tumor-preventive phytochemical that triggers p53-driven G 2 /M cell cycle arrest and apoptosis.

  18. Aspalathin Reverts Doxorubicin-Induced Cardiotoxicity through Increased Autophagy and Decreased Expression of p53/mTOR/p62 Signaling

    Directory of Open Access Journals (Sweden)

    Rabia Johnson

    2017-09-01

    Full Text Available Doxorubicin (Dox is an effective chemotherapeutic agent used in the treatment of various cancers. Its clinical use is often limited due to its potentially fatal cardiotoxic side effect. Increasing evidence indicates that tumour protein p53 (p53, adenosine monophosphate-activated protein kinase (AMPK, nucleoporin p62 (p62, and the mammalian target of rapamycin (mTOR are critical mediators of Dox-induced apoptosis, and subsequent dysregulation of autophagy. Aspalathin, a polyphenolic dihydrochalcone C-glucoside has been shown to activate AMPK while decreasing the expression of p53. However, the role that aspalathin could play in the inhibition of Dox-induced cardiotoxicity through increased autophagy flux remained unexplored. H9c2 cardiomyocytes and Caov-3 ovarian cancer cells were cultured in Dulbecco’s Modified Eagle’s medium and treated with or without Dox for five days. Thereafter, cells exposed to 0.2 µM Dox were co-treated with either 20 µM Dexrazozane (Dexra or 0.2 µM aspalathin (ASP daily for 5 days. Results obtained showed that ASP mediates its cytoprotective effect in a p53-dependent manner, by increasing the Bcl-2/Bax ratio and decreasing apoptosis. The latter effect was diminished through ASP-induced activation of autophagy-related genes (Atgs with an associated decrease in p62 through induction of AMPK and Fox01. Furthermore, we showed that ASP was able to potentiate this effect without decreasing the anti-cancer efficacy of Dox, as could be observed in Caov-3 ovarian cancer cells. Taken together, the data presented in this study provides a credible mechanism by which ASP co-treatment could protect the myocardium from Dox-induced cardiotoxicity.

  19. Endogenous DNA Damage Leads to p53-Independent Deficits in Replicative Fitness in Fetal Murine Fancd2−/− Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Young me Yoon

    2016-11-01

    Full Text Available Our mechanistic understanding of Fanconi anemia (FA pathway function in hematopoietic stem and progenitor cells (HSPCs owes much to their role in experimentally induced DNA crosslink lesion repair. In bone marrow HSPCs, unresolved stress confers p53-dependent apoptosis and progressive cell attrition. The role of FA proteins during hematopoietic development, in the face of physiological replicative demand, remains elusive. Here, we reveal a fetal HSPC pool in Fancd2−/− mice with compromised clonogenicity and repopulation. Without experimental manipulation, fetal Fancd2−/− HSPCs spontaneously accumulate DNA strand breaks and RAD51 foci, associated with a broad transcriptional DNA-damage response, and constitutive activation of ATM as well as p38 stress kinase. Remarkably, the unresolved stress during rapid HSPC pool expansion does not trigger p53 activation and apoptosis; rather, it constrains proliferation. Collectively our studies point to a role for the FA pathway during hematopoietic development and provide a new model for studying the physiological function of FA proteins.

  20. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage.

    Science.gov (United States)

    Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C

    2012-12-13

    p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments.

  1. p53-Dependent suppression of genome instability in germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Otozai, Shinji [Department of Otorhinolaryngology and Head and Neck Surgery, Osaka University School of Medicine, Osaka 565-0871 (Japan); Ishikawa-Fujiwara, Tomoko [Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Oda, Shoji [Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562 (Japan); Kamei, Yasuhiro [Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ryo, Haruko [Nomura Project, National Institute of Biomedical Innovation, Osaka 565-0085 (Japan); Sato, Ayuko [Department of Pathology, Hyogo College of Medicine, Hyogo 663-8501 (Japan); Nomura, Taisei [Nomura Project, National Institute of Biomedical Innovation, Osaka 565-0085 (Japan); Mitani, Hiroshi [Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562 (Japan); Tsujimura, Tohru [Department of Pathology, Hyogo College of Medicine, Hyogo 663-8501 (Japan); Inohara, Hidenori [Department of Otorhinolaryngology and Head and Neck Surgery, Osaka University School of Medicine, Osaka 565-0871 (Japan); Todo, Takeshi, E-mail: todo@radbio.med.osaka-u.ac.jp [Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    Highlights: • Radiation-induced microsatellite instability (MSI) was investigated in medaka fish. • msh2{sup −/−} fish had a high frequency of spontaneous MSI. • p53{sup −/−} fish had a high frequency of radiation-induced MSI. • p53 and msh2 suppress MSI by different pathways: mismatch removal and apoptosis. - Abstract: Radiation increases mutation frequencies at tandem repeat loci. Germline mutations in γ-ray-irradiated medaka fish (Oryzias latipes) were studied, focusing on the microsatellite loci. Mismatch-repair genes suppress microsatellite mutation by directly removing altered sequences at the nucleotide level, whereas the p53 gene suppresses genetic alterations by eliminating damaged cells. The contribution of these two defense mechanisms to radiation-induced microsatellite instability was addressed. The spontaneous mutation frequency was significantly higher in msh2{sup −/−} males than in wild-type fish, whereas there was no difference in the frequency of radiation-induced mutations between msh2{sup −/−} and wild-type fish. By contrast, irradiated p53{sup −/−} fish exhibited markedly increased mutation frequencies, whereas their spontaneous mutation frequency was the same as that of wild-type fish. In the spermatogonia of the testis, radiation induced a high level of apoptosis both in wild-type and msh2{sup −/−} fish, but negligible levels in p53{sup −/−} fish. The results demonstrate that the msh2 and p53 genes protect genome integrity against spontaneous and radiation-induced mutation by two different pathways: direct removal of mismatches and elimination of damaged cells.

  2. p53-Dependent suppression of genome instability in germ cells

    International Nuclear Information System (INIS)

    Otozai, Shinji; Ishikawa-Fujiwara, Tomoko; Oda, Shoji; Kamei, Yasuhiro; Ryo, Haruko; Sato, Ayuko; Nomura, Taisei; Mitani, Hiroshi; Tsujimura, Tohru; Inohara, Hidenori; Todo, Takeshi

    2014-01-01

    Highlights: • Radiation-induced microsatellite instability (MSI) was investigated in medaka fish. • msh2 −/− fish had a high frequency of spontaneous MSI. • p53 −/− fish had a high frequency of radiation-induced MSI. • p53 and msh2 suppress MSI by different pathways: mismatch removal and apoptosis. - Abstract: Radiation increases mutation frequencies at tandem repeat loci. Germline mutations in γ-ray-irradiated medaka fish (Oryzias latipes) were studied, focusing on the microsatellite loci. Mismatch-repair genes suppress microsatellite mutation by directly removing altered sequences at the nucleotide level, whereas the p53 gene suppresses genetic alterations by eliminating damaged cells. The contribution of these two defense mechanisms to radiation-induced microsatellite instability was addressed. The spontaneous mutation frequency was significantly higher in msh2 −/− males than in wild-type fish, whereas there was no difference in the frequency of radiation-induced mutations between msh2 −/− and wild-type fish. By contrast, irradiated p53 −/− fish exhibited markedly increased mutation frequencies, whereas their spontaneous mutation frequency was the same as that of wild-type fish. In the spermatogonia of the testis, radiation induced a high level of apoptosis both in wild-type and msh2 −/− fish, but negligible levels in p53 −/− fish. The results demonstrate that the msh2 and p53 genes protect genome integrity against spontaneous and radiation-induced mutation by two different pathways: direct removal of mismatches and elimination of damaged cells

  3. p53 Aggregates penetrate cells and induce the co-aggregation of intracellular p53.

    Directory of Open Access Journals (Sweden)

    Karolyn J Forget

    Full Text Available Prion diseases are unique pathologies in which the infectious particles are prions, a protein aggregate. The prion protein has many particular features, such as spontaneous aggregation, conformation transmission to other native PrP proteins and transmission from an individual to another. Protein aggregation is now frequently associated to many human diseases, for example Alzheimer's disease, Parkinson's disease or type 2 diabetes. A few proteins associated to these conformational diseases are part of a new category of proteins, called prionoids: proteins that share some, but not all, of the characteristics associated with prions. The p53 protein, a transcription factor that plays a major role in cancer, has recently been suggested to be a possible prionoid. The protein has been shown to accumulate in multiple cancer cell types, and its aggregation has also been reproduced in vitro by many independent groups. These observations suggest a role for p53 aggregates in cancer development. This study aims to test the «prion-like» features of p53. Our results show in vitro aggregation of the full length and N-terminally truncated protein (p53C, and penetration of these aggregates into cells. According to our findings, the aggregates enter cells using macropinocytosis, a non-specific pathway of entry. Lastly, we also show that once internalized by the cell, p53C aggregates can co-aggregate with endogenous p53 protein. Together, these findings suggest prion-like characteristics for p53 protein, based on the fact that p53 can spontaneously aggregate, these aggregates can penetrate cells and co-aggregate with cellular p53.

  4. 40 Years of Research Put p53 in Translation

    Science.gov (United States)

    Marcel, Virginie; Nguyen Van Long, Flora; Diaz, Jean-Jacques

    2018-01-01

    Since its discovery in 1979, p53 has shown multiple facets. Initially the tumor suppressor p53 protein was considered as a stress sensor able to maintain the genome integrity by regulating transcription of genes involved in cell cycle arrest, apoptosis and DNA repair. However, it rapidly came into light that p53 regulates gene expression to control a wider range of biological processes allowing rapid cell adaptation to environmental context. Among them, those related to cancer have been extensively documented. In addition to its role as transcription factor, scattered studies reported that p53 regulates miRNA processing, modulates protein activity by direct interaction or exhibits RNA-binding activity, thus suggesting a role of p53 in regulating several layers of gene expression not restricted to transcription. After 40 years of research, it appears more and more clearly that p53 is strongly implicated in translational regulation as well as in the control of the production and activity of the translational machinery. Translation control of specific mRNAs could provide yet unsuspected capabilities to this well-known guardian of the genome.

  5. p53-competent cells and p53-deficient cells display different susceptibility to oxygen functionalized graphene cytotoxicity and genotoxicity.

    Science.gov (United States)

    Petibone, Dayton M; Mustafa, Thikra; Bourdo, Shawn E; Lafont, Andersen; Ding, Wei; Karmakar, Alokita; Nima, Zeid A; Watanabe, Fumiya; Casciano, Daniel; Morris, Suzanne M; Dobrovolsky, Vasily N; Biris, Alexandru S

    2017-11-01

    Due to the distinctive physical, electrical, and chemical properties of graphene nanomaterials, numerous efforts pursuing graphene-based biomedical and industrial applications are underway. Oxidation of pristine graphene surfaces mitigates its otherwise hydrophobic characteristic thereby improving its biocompatibility and functionality. Yet, the potential widespread use of oxidized graphene derivatives raises concern about adverse impacts on human health. The p53 tumor suppressor protein maintains cellular and genetic stability after toxic exposures. Here, we show that p53 functional status correlates with oxygen functionalized graphene (f-G) cytotoxicity and genotoxicity in vitro. The f-G exposed p53-competent cells, but not p53-deficient cells, initiated G 0 /G 1 phase cell cycle arrest, suppressed reactive oxygen species, and entered apoptosis. There was p53-dependent f-G genotoxicity evident as increased structural chromosome damage, but not increased gene mutation or chromatin loss. In conclusion, the cytotoxic and genotoxic potential for f-G in exposed cells was dependent on the p53 functional status. These findings have broad implications for the safe and effective implementation of oxidized graphene derivatives into biomedical and industrial applications. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  6. CLCA2 as a p53-Inducible Senescence Mediator

    Directory of Open Access Journals (Sweden)

    Chizu Tanikawa

    2012-02-01

    Full Text Available p53 is a tumor suppressor gene that is frequently mutated in multiple cancer tissues. Activated p53 protein regulates its downstream genes and subsequently inhibits malignant transformation by inducing cell cycle arrest, apoptosis, DNA repair, and senescence. However, genes involved in the p53-mediated senescence pathway are not yet fully elucidated. Through the screening of two genome-wide expression profile data sets, one for cells in which exogenous p53 was introduced and the other for senescent fibroblasts, we have identified chloride channel accessory 2 (CLCA2 as a p53-inducible senescence-associated gene. CLCA2 was remarkably induced by replicative senescence as well as oxidative stress in a p53-dependent manner. We also found that ectopically expressed CLCA2 induced cellular senescence, and the down-regulation of CLCA2 by small interfering RNA caused inhibition of oxidative stress-induced senescence. Interestingly, the reduced expression of CLCA2 was frequently observed in various kinds of cancers including prostate cancer, whereas its expression was not affected in precancerous prostatic intraepithelial neoplasia. Thus, our findings suggest a crucial role of p53/CLCA2-mediated senescence induction as a barrier for malignant transformation.

  7. Functional characterization of a new p53 mutant generated by homozygous deletion in a neuroblastoma cell line

    International Nuclear Information System (INIS)

    Nakamura, Yohko; Ozaki, Toshinori; Niizuma, Hidetaka; Ohira, Miki; Kamijo, Takehiko; Nakagawara, Akira

    2007-01-01

    p53 is a key modulator of a variety of cellular stresses. In human neuroblastomas, p53 is rarely mutated and aberrantly expressed in cytoplasm. In this study, we have identified a novel p53 mutant lacking its COOH-terminal region in neuroblastoma SK-N-AS cells. p53 accumulated in response to cisplatin (CDDP) and thereby promoting apoptosis in neuroblastoma SH-SY5Y cells bearing wild-type p53, whereas SK-N-AS cells did not undergo apoptosis. We found another p53 (p53ΔC) lacking a part of oligomerization domain and nuclear localization signals in SK-N-AS cells. p53ΔC was expressed largely in cytoplasm and lost the transactivation function. Furthermore, a 3'-part of the p53 locus was homozygously deleted in SK-N-AS cells. Thus, our present findings suggest that p53 plays an important role in the DNA-damage response in certain neuroblastoma cells and it seems to be important to search for p53 mutations outside DNA-binding domain

  8. NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of β-cells via JNK, p38 MAPK and p53 pathways.

    Directory of Open Access Journals (Sweden)

    Huiping Yuan

    2010-12-01

    Full Text Available Dysfunction of β-cell is one of major characteristics in the pathogenesis of type 2 diabetes. The combination of obesity and type 2 diabetes, characterized as 'diabesity', is associated with elevated plasma free fatty acids (FFAs. Oxidative stress has been implicated in the pathogenesis of FFA-induced β-cell dysfunction. However, molecular mechanisms linking between reactive oxygen species (ROS and FFA-induced β-cell dysfunction and apoptosis are less clear. In the present study, we test the hypothesis that NOX2-derived ROS may play a critical role in dysfunction and apoptosis of β-cells induced by FFA. Our results show that palmitate and oleate (0.5 mmol/L, 48 h induced JNK activation and AKT inhibition which resulted in decreased phosphorylation of FOXO1 following nuclear localization and the nucleocytoplasmic translocation of PDX-1, leading to the reducing of insulin and ultimately dysfunction of pancreatic NIT-1 cells. We also found that palmitate and oleate stimulated apoptosis of NIT-1 cells through p38MAPK, p53 and NF-κB pathway. More interestingly, our data suggest that suppression of NOX2 may restore FFA-induced dysfunction and apoptosis of NIT-1 cells. Our findings provide a new insight of the NOX2 as a potential new therapeutic target for preservation of β-cell mass and function.

  9. Prolonged exposure of resveratrol induces reactive superoxide species-independent apoptosis in murine prostate cells.

    Science.gov (United States)

    Kumar, Sanjay; Stokes, James; Singh, Udai P; Scissum-Gunn, Karyn; Singh, Rajesh; Manne, Upender; Mishra, Manoj K

    2017-10-01

    Nitric oxide, a signaling molecule, inhibits mitochondrial respiration by binding with cytochrome c oxidase, resulting in elevated production of reactive superoxide species (reactive oxygen and nitrogen) in the mitochondria and increased susceptibility to cell death. Generation of mitochondrial superoxide species can be suppressed by natural compounds such as resveratrol, a dietary polyphenol found in the skin of red fruits. In various cancer cells, resveratrol shows anti-oxidant and cancer preventive properties. Since, the effect of resveratrol on reactive superoxide species-independent apoptosis in prostate cancer cells is not well illustrated; therefore, we investigated this phenomenon in TRAMP murine prostate cancer cells. To accomplish this, TRAMP cells were incubated with resveratrol, resveratrol + DETA-NONOate, DETA-NONOate (nitric oxide donor), resveratrol + L-NMMA, or L-NMMA (nitric oxide inhibitor) for 48 h, and reactive superoxide species in the mitochondria and culture supernatant were measured. In addition, the mitochondrial membrane potential, cell viability, expression of apoptotic markers (Bax and Bcl2), γ-H2A.x, p53, and caspase-3 was determined. We found that resveratrol suppressed reactive superoxide species such as reactive oxygen species in the mitochondria and nitric oxide in culture supernatant when compared to the DETA-NONOate treatment and disrupted the mitochondrial membrane potential. Resveratrol also reduced cell viability, altered the expression of apoptotic markers (Bax and Bcl2), and increased expression of γ-H2A.x (indicative marker of DNA fragmentation) and p53 (a critical DNA damage response protein). However, there was no appreciable modulation of the caspase-3. Therefore, our data suggest that resveratrol induces superoxide species-independent apoptosis and may act as a therapeutic agent against prostate cancer.

  10. Role for c-Abl and p73 in the radiation response of male germ cells

    NARCIS (Netherlands)

    Hamer, G.; Gademan, I. S.; Kal, H. B.; de rooij, D. G.

    2001-01-01

    p53 plays a central role in the induction of apoptosis of spermatogonia in response to ionizing radiation. In p53(-/-) testes, however, spermatogonial apoptosis still can be induced by ionizing radiation, so p53 independent apoptotic pathways must exist in spermatogonia. Here we show that the p53

  11. A Dual Role of P53 in Regulating Colistin-Induced Autophagy in PC-12 Cells

    Directory of Open Access Journals (Sweden)

    Ziyin Lu

    2017-10-01

    Full Text Available This study aimed to investigate the mechanism of p53 in regulating colistin-induced autophagy in PC-12 cells. Importantly, cells were treated with 125 μg/ml colistin for 12 and 24 h after transfection with p53 siRNA or recombinant plasmid. The hallmarks of autophagy and apoptosis were examined by real-time PCR and western blot, fluorescence/immunofluorescence microscopy, and electron microscopy. The results showed that silencing of p53 leads to down-regulation of Atg5 and beclin1 for 12 h while up-regulation at 24 h and up-regulation of p62 noted. The ratio of LC3-II/I and autophagic vacuoles were significantly increased at 24 h, but autophagy flux was blocked. The cleavage of caspase3 and PARP (poly ADP-ribose polymerase were enhanced, while PC-12-sip53 cells exposed to 3-MA showed down-regulation of apoptosis. By contrast, the expression of autophagy-related genes and protein reduced in p53 overexpressing cells following a time dependent manner. Meanwhile, there was an increase in the expression of activated caspase3 and PARP, condensed and fragmented nuclei were evident. Conclusively, the data supported that silencing of p53 promotes impaired autophagy, which acts as a pro-apoptotic induction factor in PC-12 cells treated with colistin for 24 h, and overexpression of p53 inhibits autophagy and accelerates apoptosis. Hence, it has been suggested that p53 could not act as a neuro-protective target in colistin-induced neurotoxicity.

  12. Roles of p53 and caspases in induction of apoptosis in MCF- 7 breast cancer cells treated with a methanolic extract of Nigella sativa seeds.

    Science.gov (United States)

    Alhazmi, Mohammed I; Hasan, Tarique N; Shafi, Gowhar; Al-Assaf, Abdullah H; Alfawaz, Mohammed A; Alshatwi, Ali A

    2014-01-01

    Nigella Sativa (NS) is an herb from the Ranunculaceae family that exhibits numerous medicinal properties and has been used as important constituent of many complementary and alternative medicines (CAMs). The ability of NS to kill cancer cells such as PC3, HeLa and hepatoma cells is well established. However, our understanding of the mode of death caused by NS remains nebulous. The objective of this study was to gain further insight into the mode and mechanism of death caused by NS in breast cancer MCF-7 cells. Human breast cancer cells (MCF-7) were treated with a methanolic extract of NS, and a dose- and time-dependent study was performed. The IC50 was calculated using a Cell Titer Blue® viability assay assay, and evidence for DNA fragmentation was obtained by fluorescence microscopy TUNEL assay. Gene expression was also profiled for a number of apoptosis-related genes (Caspase-3, -8, -9 and p53 genes) through qPCR. The IC50 of MCF-7 cells was 62.8 μL/mL. When MCF-7 cells were exposed to 50 μL/mL and 100 μL/mL NS for 24 h, 48 h and 72 h, microscopic examination (TUNEL assay) revealed a dose- and time-dependent increase in apoptosis. Similarly, the expression of the Caspase-3, -8, -9 and p53 genes increased significantly according to the dose and time. NS induced apoptosis in MCF-7 cells through both the p53 and caspase pathways. NS could potentially represent an alternative source of medicine for breast cancer therapy.

  13. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53

    DEFF Research Database (Denmark)

    Wienken, Magdalena; Dickmanns, Antje; Nemajerova, Alice

    2016-01-01

    The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion...... in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically...... associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell...

  14. SIAH1-induced p34SEI-1 polyubiquitination/degradation mediates p53 preferential vitamin C cytotoxicity.

    Science.gov (United States)

    Lee, Soonduck; Kim, Jinsun; Jung, Samil; Li, Chengping; Yang, Young; Kim, Keun Il; Lim, Jong-Seok; Kim, Yonghwan; Cheon, Choong-Il; Lee, Myeong-Sok

    2015-03-01

    Vitamin C is considered as an important anticancer therapeutic agent although this view is debatable. In this study, we introduce a physiological mechanism demonstrating how vitamin C exerts anticancer activity that induces cell cycle arrest and apoptosis. Our previous and current data reveal that p53 tumor suppressor is the prerequisite factor for stronger anticancer effects of vitamin C. In addition, vitamin C-mediated cancer cell cytotoxicity appears to be achieved at least partly through the downregulation of the p34SEI-1 oncoprotein. Our previous study showed that p34SEI-1 increases the survival of various types of cancer cells by inhibiting their apoptosis. Present data suggest that vitamin C treatment decreases the p34SEI-1 expression at the protein level and therefore alleviates its anti-apoptotic activity. Of note, SIAH1, E3 ubiquitin ligase, appears to be responsible for the p34SEI-1 polyubiquitination and its subsequent degradation, which is dependent on p53. In summary, vitamin C increases cancer cell death by inducing SIAH1-mediated polyubiquitination/degradation of the p34SEI-1 oncoprotein in a p53-dependent manner.

  15. Bioluminescence Detection of Cells Having Stabilized p53 in Response to a Genotoxic Event

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2004-01-01

    Full Text Available Inactivation of p53 is one of the most frequent molecular events in neoplastic transformation. Approximately 60% of all human tumors have mutations in both p53 alleles. Wild-type p53 activity is regulated in large part by the proteosome-dependent degradation of p53, resulting in a short p53 half-life in unstressed and untransformed cells. Activation of p53 by a variety of stimuli, including DNA damage induced by genotoxic drugs or radiation, is accomplished by stabilization of wild-type p53. The stabilized and active p53 can result in either cell-cycle arrest or apoptosis. Surprisingly, the majority of tumor-associated, inactivating p53 mutations also result in p53 accumulation. Thus, constitutive elevation of p53 levels in cells is a reliable measure of p53 inactivation, whereas transiently increased p53 levels reflect a recent genotoxic stress. In order to facilitate noninvasive imaging of p53 accumulation, we here describe the construction of a p53-luciferase fusion protein. Induction of DNA damage in cells expressing the fusion protein resulted in a time-dependent accumulation of the fusion that was noninvasively detected using bioluminescence imaging and validated by Western blot analysis. The p53-Luc protein retains p53 function because its expression in HCT116 cells lacking functional p53 resulted in activation of p21 expression as well as induction of apoptosis in response to a DNA damaging event. Employed in a transgenic animal model, the proposed p53-reporter fusion protein will be useful for studying p53 activation in response to exposure to DNA-damaging carcinogenic agents. It could also be used to study p53 stabilization as a result of inactivating p53 mutations. Such studies will further our understanding of p53's role as the “guardian of the genome” and its function in tumorigenesis.

  16. Dendrobium chrysanthum ethanolic extract induces apoptosis via p53 up-regulation in HeLa cells and inhibits tumor progression in mice.

    Science.gov (United States)

    Prasad, Ritika; Rana, Nishant Kumar; Koch, Biplob

    2017-06-01

    Background Dendrobium is one of the diverse genus of orchid plants. It possesses a number of pharmacological activities and has long been used in traditional system of medicine. The goal of this study was to investigate the apoptosis inducing property of the ethanolic extract from the leaves of Dendrobium chrysanthum, a species of Dendrobium whose anticancer role has not been ascertained yet. Methods To evaluate the anticancer activity of the ethanolic extract of D. chrysanthum in vitro in HeLa (human cervical cancer) cells, cytotoxic activity, generation of reactive oxygen species (ROS), induction of apoptosis and effect on cell cycle were determined. The in vivo study was carried out in Dalton's lymphoma (DL) bearing mice to assess the tumor growth delay. Results Our study demonstrated that the ethanolic extract showed dose-dependent cytotoxicity against HeLa cells. The extract exhibited dose-dependent increase in ROS production as well as apoptotic cell death which was further confirmed through presence of DNA fragmentation. Cell cycle analysis by flow cytometry suggests that the ethanolic extract perturbed cell cycle progression and leads to the delay of the cells in S phase. Further, the real-time PCR studies also showed up-regulation of apoptotic genes p53 and Bax. The in vivo antitumor activity exhibited significant increase in the life span of DL bearing mice as compared to control with significant decrease in abdominal size along with reduced tumor ascites. Conclusions These observations demonstrate the anticancer potential of the D. chrysanthum ethanolic extract mediated through p53-dependent apoptosis.

  17. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses.

    Science.gov (United States)

    Ou, Yang; Wang, Shang-Jui; Li, Dawei; Chu, Bo; Gu, Wei

    2016-11-01

    Although p53-mediated cell-cycle arrest, senescence, and apoptosis remain critical barriers to cancer development, the emerging role of p53 in cell metabolism, oxidative responses, and ferroptotic cell death has been a topic of great interest. Nevertheless, it is unclear how p53 orchestrates its activities in multiple metabolic pathways into tumor suppressive effects. Here, we identified the SAT1 (spermidine/spermine N 1 -acetyltransferase 1) gene as a transcription target of p53. SAT1 is a rate-limiting enzyme in polyamine catabolism critically involved in the conversion of spermidine and spermine back to putrescine. Surprisingly, we found that activation of SAT1 expression induces lipid peroxidation and sensitizes cells to undergo ferroptosis upon reactive oxygen species (ROS)-induced stress, which also leads to suppression of tumor growth in xenograft tumor models. Notably, SAT1 expression is down-regulated in human tumors, and CRISPR-cas9-mediated knockout of SAT1 expression partially abrogates p53-mediated ferroptosis. Moreover, SAT1 induction is correlated with the expression levels of arachidonate 15-lipoxygenase (ALOX15), and SAT1-induced ferroptosis is significantly abrogated in the presence of PD146176, a specific inhibitor of ALOX15. Thus, our findings uncover a metabolic target of p53 involved in ferroptotic cell death and provide insight into the regulation of polyamine metabolism and ferroptosis-mediated tumor suppression.

  18. P53 function influences the effect of fractionated radiotherapy on glioblastoma tumors

    International Nuclear Information System (INIS)

    Haas-Kogan, Daphne A.; Kogan, Scott S.; Yount, Garret; Hsu, Jennie; Haas, Martin; Deen, Dennis F.; Israel, Mark A.

    1999-01-01

    Purpose: Glioblastoma multiforme brain tumors (GM) are treated with a spectrum of fractionation regimens based on the clinical and anatomical characteristics of the tumor but rarely based on the molecular characteristics of the individual neoplasm. This study tests the hypothesis that the response of cell lines derived from GM to fractionated radiotherapy depends on the function of wild-type p53 (wt p53), a tumor suppressor gene frequently mutated in GM tumors. Methods and Materials: Isogenic derivatives of glioblastoma cells differing only in p53 function were prepared using a retroviral vector expressing a dominant negative mutant of p53 (mt p53). Radiation survival in vitro was quantitated using linear quadratic and repair-saturation mathematical models. Apoptosis was assayed by a terminal deoxynucleotide transferase-labeling technique and chromatin morphology. Results: We have previously reported the generation of isogenic GM cell lines differing only in p53 function. U87-175.4, lacking wt p53 function, had a significantly lower α/β value than U87-LUX.8, expressing functional wt p53, leading us to hypothesize that fractionated irradiation would preferentially spare GM cells harboring mt p53 compared with those expressing functional, wt p53. Survival curves following either 2.0 Gy or 3.5 Gy/fraction demonstrated that lack of functional wt p53 was associated with resistance to fractionated irradiation. Radiation-induced apoptosis could not account for the observed differences in clonogenic survival. Rather, our data suggested that a deficit in the G1-checkpoint contributed to increased resistance to fractionated irradiation of cells expressing mutant p53. Conclusions: The effect of fractionated radiotherapy in GM may depend on the function of the tumor suppressor gene p53. A potential clinical consequence of these findings is that hyperfractionation regimens may provide a therapeutic advantage specifically for tumors expressing wt p53 whereas a radiotherapy

  19. Sex-specific differences in fetal germ cell apoptosis induced by ionizing radiation

    International Nuclear Information System (INIS)

    Guerquin, M.J.; Duquenne, C.; Coffigny, H.; Rouiller-Fabre, V.; Lambrot, R.; Habert, R.; Livera, G.; Guerquin, M.J.; Duquenne, C.; Coffigny, H.; Rouiller-Fabre, V.; Lambrot, R.; Habert, R.; Livera, G.; Guerquin, M.J.; Duquenne, C.; Coffigny, H.; Rouiller-Fabre, V.; Lambrot, R.; Habert, R.; Livera, G.; Bakalska, M.; Frydman, R.; Frydman, R.; Frydman, R.

    2009-01-01

    Background: We have previously shown that male human fetal germ cells are highly radiosensitive and that their death depends on p53 activation. Male germ cell apoptosis was initiated with doses as low as 0.1 Gy and was prevented by pifithrin α, a p53 inhibitor. In this study, we investigated the radiosensitivity of early female and male fetal proliferating germ cells. Methods and results: Both male and female fetal germ cells displayed a similar number of γH2AX foci in response to ionizing radiation (IR). In organ culture of human fetal ovaries, the germ cells underwent apoptosis only when exposed to high doses of IR (1.5 Gy and above). Accumulation of p53 was detected in irradiated male human fetal germ cells but not in female ones. Inhibition of p53 with pifithrin α did not affect oogonia apoptosis following irradiation. IR induced apoptosis similarly in mouse fetal ovaries in organ culture and in vivo during oogonial proliferation. Germ cell survival in testes from p53 knockout or p63 knockout mice exposed to IR was better than wild-type, whereas female germ cell survival was unaffected by p53 or p63 knockout. Conclusions: These findings show that pre-meiotic male and female fetal germ cells behave differently in response to a genotoxic stress-irradiation with oogonia being less sensitive and undergoing p53-independent apoptosis. (authors)

  20. Sex-specific differences in fetal germ cell apoptosis induced by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Guerquin, M.J.; Duquenne, C.; Coffigny, H.; Rouiller-Fabre, V.; Lambrot, R.; Habert, R.; Livera, G. [CEA, DSV/DRR/SEGG/LDRG, Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, F-92265 Fontenay aux Roses (France); Guerquin, M.J.; Duquenne, C.; Coffigny, H.; Rouiller-Fabre, V.; Lambrot, R.; Habert, R.; Livera, G. [Univ. Paris 7-Denis Diderot, UFR of Biology, UMR-S 566, F-92265 Fontenay aux Roses (France); Guerquin, M.J.; Duquenne, C.; Coffigny, H.; Rouiller-Fabre, V.; Lambrot, R.; Habert, R.; Livera, G. [INSERM, U566, F-92265 Fontenay aux Roses (France); Bakalska, M. [Institute of Experimental Morphology and Anthropology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Frydman, R. [Univ Paris-Sud, Clamart F-92140 (France); Frydman, R. [AP-HP, Service de Gynecologie-Obstetrique et Medecine de la Reproduction, Hopital Antoine Beclere, Clamart F-92141 (France); Frydman, R. [INSERM, U782, Clamart F-92140 (France)

    2009-07-01

    Background: We have previously shown that male human fetal germ cells are highly radiosensitive and that their death depends on p53 activation. Male germ cell apoptosis was initiated with doses as low as 0.1 Gy and was prevented by pifithrin {alpha}, a p53 inhibitor. In this study, we investigated the radiosensitivity of early female and male fetal proliferating germ cells. Methods and results: Both male and female fetal germ cells displayed a similar number of {gamma}H2AX foci in response to ionizing radiation (IR). In organ culture of human fetal ovaries, the germ cells underwent apoptosis only when exposed to high doses of IR (1.5 Gy and above). Accumulation of p53 was detected in irradiated male human fetal germ cells but not in female ones. Inhibition of p53 with pifithrin {alpha} did not affect oogonia apoptosis following irradiation. IR induced apoptosis similarly in mouse fetal ovaries in organ culture and in vivo during oogonial proliferation. Germ cell survival in testes from p53 knockout or p63 knockout mice exposed to IR was better than wild-type, whereas female germ cell survival was unaffected by p53 or p63 knockout. Conclusions: These findings show that pre-meiotic male and female fetal germ cells behave differently in response to a genotoxic stress-irradiation with oogonia being less sensitive and undergoing p53-independent apoptosis. (authors)

  1. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  2. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    International Nuclear Information System (INIS)

    Vanamala, Jairam; Reddivari, Lavanya; Radhakrishnan, Sridhar; Tarver, Chris

    2010-01-01

    Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene), a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity) and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Resveratrol (100-150 μM) exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G 0 /G 1 -S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and activation of p53, suggesting its potential role as a

  3. Acetylation Is Crucial for p53-Mediated Ferroptosis and Tumor Suppression

    Directory of Open Access Journals (Sweden)

    Shang-Jui Wang

    2016-10-01

    Full Text Available Although previous studies indicate that loss of p53-mediated cell cycle arrest, apoptosis, and senescence does not completely abrogate its tumor suppression function, it is unclear how the remaining activities of p53 are regulated. Here, we have identified an acetylation site at lysine K98 in mouse p53 (or K101 for human p53. Whereas the loss of K98 acetylation (p53K98R alone has very modest effects on p53-mediated transactivation, simultaneous mutations at all four acetylation sites (p534KR: K98R+ 3KR[K117R+K161R+K162R] completely abolish its ability to regulate metabolic targets, such as TIGAR and SLC7A11. Notably, in contrast to p533KR, p534KR is severely defective in suppressing tumor growth in mouse xenograft models. Moreover, p534KR is still capable of inducing the p53-Mdm2 feedback loop, but p53-dependent ferroptotic responses are markedly abrogated. Together, these data indicate the critical role of p53 acetylation in ferroptotic responses and its remaining tumor suppression activity.

  4. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  5. P53 activation, a key event of the cellular response to gamma irradiation; L'activation de la proteine p53, un evenement determinant de la reponse cellulaire aux radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Drane, P.; Alvarez, S.; Meiller, A.; May, E. [CEA Fontenay-aux-Roses, Dept. de Radiobiologie et de Radiopathologie, Lab. de Cancerogenese Moleculaire, CNRS, UMR 217, 92 (France)

    2002-03-01

    The tumor suppressor gene p53 encodes a protein whose major function is to protect organisms from proliferation of potentially tumorigenic cells. In normal conditions (unstressed cells), the p53 protein is inert and maintained at low level through its association with the Mdm2 oncogene, causing its translocation from the nucleus into the cytoplasm and its degradation through ubiquitin/proteasome pathway. In response to damaged DNA or to a variety of stresses, p53 accumulates in the nucleus and is activated as a transcriptional trans-activator. Posttranslational modifications of p53 including multi-site phosphorylation and acetylation are the major mechanism of p53 regulation. After exposure to ionising radiation, p53 activation implicates ATM, ATR, Chk2 and Chk1 kinases that phosphorylate the N-terminal domain on Ser15 (ATM and/or ATR), and Ser20 (Chk2 and/or Chk1), causing the dissociation of the p53/Mdm2 complex and thereby the stabilisation of p53. The process initiated by {gamma}-irradiation exposure involves also increased interaction of the p53 N-terminal domain with CBP/p300 and P/CAF leading to acetylation of the distant C-terminal domain at Lys 320, 373 and 382. In addition, the ATM-mediated dephosphorylation of Ser376 creates a fixation site for 14-3-3 protein. Taken together, phosphorylation, acetylation and association with co factors induce the stimulation of p53 transcriptional activity resulting in the expression of a set of genes involved, notably, in cell cycle arrest and apoptosis. This stress-induced p53 pathways lead to one of two outcomes: growth arrest or apoptosis and consequently protects the organism from the genotoxic effects of ionising radiation. (author)

  6. Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation

    International Nuclear Information System (INIS)

    Lopez, Carlos A.; Feng, Felix Y.; Herman, Joseph M.; Nyati, Mukesh K.; Lawrence, Theodore S.; Ljungman, Mats

    2007-01-01

    Purpose: Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. Methods and Materials: Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. Results: Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G 1 arrest, increase in sub-G 1 fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios (± SE) of 1.5 (± 0.2) and 1.3 (± 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. Conclusions: Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53

  7. RBP-J-interacting and tubulin-associated protein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma by activating the p53–Fbxw7 pathway

    International Nuclear Information System (INIS)

    Wang, Haihe; Yang, Zhanchun; Liu, Chunbo; Huang, Shishun; Wang, Hongzhi; Chen, Yingli; Chen, Guofu

    2014-01-01

    Highlights: • RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. • RITA can significantly inhibit the in vitro growth of SMMC7721 and HepG2 cells. • RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC. - Abstract: Aberrant Notch signaling is observed in human hepatocellular carcinoma (HCC) and has been associated with the modulation of cell growth. However, the role of Notch signaling in HCC and its underlying mechanism remain elusive. RBP-J-interacting and tubulin-associated (RITA) mediates the nuclear export of RBP-J to tubulin fibers and downregulates Notch-mediated transcription. In this study, we found that RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. These changes led to growth inhibition and induced G0/G1 cell cycle arrest and apoptosis in SMMC7721 and HepG2 cells. Our findings indicate that RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC

  8. hSSB1 regulates both the stability and the transcriptional activity of p53

    OpenAIRE

    Xu, Shuangbing; Wu, Yuanzhong; Chen, Qiong; Cao, Jingying; Hu, Kaishun; Tang, Jianjun; Sang, Yi; Lai, Fenju; Wang, Li; Zhang, Ruhua; Li, Sheng-Ping; Zeng, Yi-Xin; Yin, Yuxin; Kang, Tiebang

    2012-01-01

    The tumor suppressor p53 is essential for several cellular processes that are involved in the response to diverse genotoxic stress, including cell cycle arrest, DNA repair, apoptosis and senescence. Studies of the regulation of p53 have mostly focused on its stability and transactivation; however, new regulatory molecules for p53 have also been frequently identified. Here, we report that human ssDNA binding protein SSB1 (hSSB1), a novel DNA damage-associated protein, can interact with p53 and...

  9. p53 as the focus of gene therapy: past, present and future.

    Science.gov (United States)

    Valente, Joana Fa; Queiroz, Joao A; Sousa, Fani

    2018-01-15

    Several gene deviations can be responsible for triggering oncogenic processes. However, mutations in tumour suppressor genes are usually more associated to malignant diseases, being p53 one of the most affected and studied element. p53 is implicated in a number of known cellular functions, including DNA damage repair, cell cycle arrest in G1/S and G2/M and apoptosis, being an interesting target for cancer treatment. Considering these facts, the development of gene therapy approaches focused on p53 expression and regulation seems to be a promising strategy for cancer therapy. Several studies have shown that transfection of cancer cells with wild-type p53 expressing plasmids could directly drive cells into apoptosis and/or growth arrest, suggesting that a gene therapy approach for cancer treatment can be based on the re-establishment of the normal p53 expression levels and function. Up until now, several clinical research studies using viral and non-viral vectors delivering p53 genes, isolated or combined with other therapeutic agents, have been accomplished and there are already in the market therapies based on the use of this gene. This review summarizes the different methods used to deliver and/or target the p53 as well as the main results of therapeutic effect obtained with the different strategies applied. Finally, the ongoing approaches are described, also focusing the combinatorial therapeutics to show the increased therapeutic potential of combining gene therapy vectors with chemo or radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Post-translational regulation enables robust p53 regulation.

    Science.gov (United States)

    Shin, Yong-Jun; Chen, Kai-Yuan; Sayed, Ali H; Hencey, Brandon; Shen, Xiling

    2013-08-30

    The tumor suppressor protein p53 plays important roles in DNA damage repair, cell cycle arrest and apoptosis. Due to its critical functions, the level of p53 is tightly regulated by a negative feedback mechanism to increase its tolerance towards fluctuations and disturbances. Interestingly, the p53 level is controlled by post-translational regulation rather than transcriptional regulation in this feedback mechanism. We analyzed the dynamics of this feedback to understand whether post-translational regulation provides any advantages over transcriptional regulation in regard to disturbance rejection. When a disturbance happens, even though negative feedback reduces the steady-state error, it can cause a system to become less stable and transiently overshoots, which may erroneously trigger downstream reactions. Therefore, the system needs to balance the trade-off between steady-state and transient errors. Feedback control and adaptive estimation theories revealed that post-translational regulation achieves a better trade-off than transcriptional regulation, contributing to a more steady level of p53 under the influence of noise and disturbances. Furthermore, post-translational regulation enables cells to respond more promptly to stress conditions with consistent amplitude. However, for better disturbance rejection, the p53- Mdm2 negative feedback has to pay a price of higher stochastic noise. Our analyses suggest that the p53-Mdm2 feedback favors regulatory mechanisms that provide the optimal trade-offs for dynamic control.

  11. Influence of X-ray on the P53 gene in human peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Jin Wenwei; Cai Ting

    2002-01-01

    Objective: To evaluate the reliability and safety of varying X-ray dosage. Methods: peripheral lymphocytes of five healthy volunteers were processed by varying X-rays, then detect the P53 gene mutation in 5-9 exons by PCR-SSCP silver staining, investigate the 249 th codon's mutation by PCR-RFLP, through immunohistochemistry staining monitor the abnormal expression of P53 and screen the apoptosis employing the Bio-dUTP terminal labelling technology included by DNA terminal transferase. Results: The frequency of apoptosis represents transparent dose-dependent manner with X-ray. When exposed to X-ray > 50 cGy after 48 h, the apoptosis group has evident difference compared with the control (P 0.05). After treating peripheral lymphocytes with 5-200 cGy X-ray and culturing 96 h, utilizing PCR-SSCP to determine the mutation in 5-9 exons, there was no single strand DNA abnormal migration. PCR-RFLP result indicates no mutation in the hotspot site-249 codon, and there was no obviously abnormal expression of P53 in immunohistochemistry staining. Conclusions: The apoptosis of peripheral lymphocytes is sensitive to the X-ray, and this can be a guideline or model reflecting the body state when exposing to the radiation

  12. Cdk2 is required for p53-independent G2/M checkpoint control.

    Directory of Open Access Journals (Sweden)

    Jon H Chung

    2010-02-01

    Full Text Available The activation of phase-specific cyclin-dependent kinases (Cdks is associated with ordered cell cycle transitions. Among the mammalian Cdks, only Cdk1 is essential for somatic cell proliferation. Cdk1 can apparently substitute for Cdk2, Cdk4, and Cdk6, which are individually dispensable in mice. It is unclear if all functions of non-essential Cdks are fully redundant with Cdk1. Using a genetic approach, we show that Cdk2, the S-phase Cdk, uniquely controls the G(2/M checkpoint that prevents cells with damaged DNA from initiating mitosis. CDK2-nullizygous human cells exposed to ionizing radiation failed to exclude Cdk1 from the nucleus and exhibited a marked defect in G(2/M arrest that was unmasked by the disruption of P53. The DNA replication licensing protein Cdc6, which is normally stabilized by Cdk2, was physically associated with the checkpoint regulator ATR and was required for efficient ATR-Chk1-Cdc25A signaling. These findings demonstrate that Cdk2 maintains a balance of S-phase regulatory proteins and thereby coordinates subsequent p53-independent G(2/M checkpoint activation.

  13. p18(Hamlet) mediates different p53-dependent responses to DNA-damage inducing agents.

    Science.gov (United States)

    Lafarga, Vanesa; Cuadrado, Ana; Nebreda, Angel R

    2007-10-01

    Cells organize appropriate responses to environmental cues by activating specific signaling networks. Two proteins that play key roles in coordinating stress responses are the kinase p38alpha (MAPK14) and the transcription factor p53 (TP53). Depending on the nature and the extent of the stress-induced damage, cells may respond by arresting the cell cycle or by undergoing cell death, and these responses are usually associated with the phosphorylation of particular substrates by p38alpha as well as the activation of specific target genes by p53. We recently characterized a new p38alpha substrate, named p18(Hamlet) (ZNHIT1), which mediates p53-dependent responses to different genotoxic stresses. Thus, cisplatin or UV light induce stabilization of the p18(Hamlet) protein, which then enhances the ability of p53 to bind to and activate the promoters of pro-apoptotic genes such as NOXA and PUMA leading to apoptosis induction. In a similar way, we report here that p18(Hamlet) can also mediate the cell cycle arrest induced in response to gamma-irradiation, by participating in the p53-dependent upregulation of the cell cycle inhibitor p21(Cip1) (CDKN1A).

  14. Pharmacological activation of tumor suppressor, wild-type p53 as a promising strategy to fight cancer

    Directory of Open Access Journals (Sweden)

    Alicja Sznarkowska

    2010-08-01

    Full Text Available A powerful tumor suppressor – p53 protein is a transcription factor which plays a critical role in eliciting cellular responses to a variety of stress signals, including DNA damage, hypoxia and aberrant proliferative signals, such as oncogene activation. Since its discovery thirty one years ago, p53 has been connected to tumorigenesis as it accumulates in the transformed tumor cells. Cellular stress induces stabilization of p53 and promotes, depending on the stress level, cell cycle arrest or apoptosis in the irreversibly damaged cells. The p53 protein is found inactive in more than 50�0of human tumors either by enhanced proteasomal degradation or due to the inactivating point mutations in its gene. Numerous data indicate that low molecular weight compounds, identified by molecular modeling or in the functional, cell-based assays, efficiently activate non-mutated p53 in cancer cells which in consequence leads to their elimination due to p53-dependent apoptosis. In this work we describe the structure and cellular function of p53 as well as the latest discoveries on the compounds with high anti-tumor activities aiming at reactivation of the tumor suppressor function of p53.

  15. Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma.

    Science.gov (United States)

    Saha, Manujendra N; Jiang, Hua; Yang, Yijun; Zhu, Xiaoyun; Wang, Xiaoming; Schimmer, Aaron D; Qiu, Lugui; Chang, Hong

    2012-01-01

    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK

  16. Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma.

    Directory of Open Access Journals (Sweden)

    Manujendra N Saha

    Full Text Available The low frequency of p53 alterations e.g., mutations/deletions (∼10% in multiple myeloma (MM makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP analysis showed that activated c-Jun binds to the activator protein-1 (AP-1 binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with

  17. Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p53 and p21/WAF1 proteins in skin of mice

    International Nuclear Information System (INIS)

    Saxena, Neha; Ansari, Kausar M.; Kumar, Rahul; Dhawan, Alok; Dwivedi, Premendra D.; Das, Mukul

    2009-01-01

    Patulin (PAT), a mycotoxin found in apples, grapes, oranges, pear and peaches, is a potent genotoxic compound. WHO has highlighted the need for the study of cutaneous toxicity of PAT as manual labour is employed during pre and post harvest stages, thereby causing direct exposure to skin. In the present study cutaneous toxicity of PAT was evaluated following topical application to Swiss Albino mice. Dermal exposure of PAT, to mice for 4 h resulted in a dose (40-160 μg/animal) and time (up to 6 h) dependent enhancement of ornithine decarboxylase (ODC), a marker enzyme of cell proliferation. The ODC activity was found to be normal after 12 and 24 h treatment of patulin. Topical application of PAT (160 μg/100 μl acetone) for 24-72 h caused (a) DNA damage in skin cells showing significant increase (34-63%) in olive tail moment, a parameter of Comet assay (b) significant G 1 and S-phase arrest along with induction of apoptosis (2.8-10 folds) as shown by annexin V and PI staining assay through flow cytometer. Moreover PAT leads to over expression of p 21/WAF1 (3.6-3.9 fold), pro apoptotic protein Bax (1.3-2.6) and tumor suppressor wild type p 53 (2.8-3.9 fold) protein. It was also shown that PAT induced apoptosis was mediated through mitochondrial intrinsic pathway as revealed through the release of cytochrome C protein in cytosol leading to enhancement of caspase-3 activity in skin cells of mice. These results suggest that PAT has a potential to induce DNA damage leading to p 53 mediated cell cycle arrest along with intrinsic pathway mediated apoptosis that may also be correlated with enhanced polyamine production as evident by induction of ODC activity, which may have dermal toxicological implications

  18. Molecular Mechanisms Regulating Ocular Apoptosis in Zebrafish gdf6a Mutants

    DEFF Research Database (Denmark)

    Pant, Sameer D.; March, Lindsey D.; Famulski, Jakub K.

    2013-01-01

    intrinsic or extrinsic apoptotic mechanisms were involved, morpholino antisense oligonucleotides targeting baxa, baxb, and p53 were employed. Caspase-3 immunohistochemistry (IHC) was performed to assay apoptosis. Pharmacologic inhibition (using SB203580) and IHC were used to investigate the role of p38...... occurs 28 hours post fertilization (hpf) in gdf6a(-/-) mutants that is mediated independently of p53 by intrinsic mechanisms involving Bax proteins. Also, gdf6a(-/-) mutants exhibit markedly increased p38 MAP kinase activation that can be inhibited to significantly reduce retinal apoptosis. A reduction...... in retinal smad1 expression was also noted in gdf6a(-/-) mutants. CONCLUSIONS. gdf6a(-/-)-induced apoptosis is characterized by the involvement of intrinsic apoptotic pathways, p38 MAP kinases, and dysregulated smad expression. Modulation of key mediators can inhibit retinal apoptosis offering potential...

  19. GTPBP4 Promotes Gastric Cancer Progression via Regulating P53 Activity

    Directory of Open Access Journals (Sweden)

    Li Li

    2018-01-01

    Full Text Available Background/Aims: gastric cancer is a serious health concern with high morbidity and mortality. Therefore, it is urgent to find novel targets for gastric cancer diagnosis and treatment. Methods: qRT-PCR and immunohistochemistry assays were used to detect GTPBP4 expression in gastric cancer tissues, and gastric cancer and gastric epithelial cells. Lentivirus infection was used to construct GTPBP4 stable knockdown cells. Annexin V/PI apoptosis, CCK8, EdU incorporation and cell clone formation analysis were performed to evaluate the effects of GTPBP4 on gastric cancer cell proliferation and apoptosis. Further RNA-based high-throughput sequencing and co-IP assays were constructed to explore the related mechanisms contributing to GTPBP4-mediated effects. Results: GTPBP4 expression was significantly increased in gastric cancer tissues compared with that in adjacent normal tissues, and positively correlated with gastric cancer stages. Meanwhile, GTPBP4 level was markedly upregulated in gastric cancer cells than in gastric epithelial cells. Additionaly, stable knockdown of GTPBP4 inhibited cell proliferation and promoted cell apoptosis. Mechanistically, p53 and its related signaling were significantly activated in GTPBP4 stable knockdown cells. And GTPBP4 interacted with p53 in gastric cancer cells. Conclusions: our results provide insights into mechanistic regulation and linkage of the GTPBP4-p53 in gastric cancer, and also a valuable potential target for gastric cancer.

  20. Influence of p53 (rs1625895 polymorphism in kidney transplant recipients

    Directory of Open Access Journals (Sweden)

    Negar Azarpira

    2014-01-01

    Full Text Available Reperfusion injury predisposes the kidney allograft to acute rejection. Apoptosis is a mechanism that results in graft injury, and TP53 is an important involved gene. To determine the association between single nucleotide polymorphism (SNP in the pro-apoptotic protein p53 (rs1625895 and acute rejection in renal transplants, we studied 100 recipients of kidney allografts and 100 healthy individuals served as controls. The polymorphism was determined by the polymerase chain reaction restriction-fragment length polymorphism (PCR-RFLP test. Overall, 31 recipients developed rejection. There was no difference in the genotype frequencies between the recipients and the controls. However, we found a difference of genotype and allele frequencies between recipients with and those without rejection. The WW genotype was more frequent in recipients with rejection. Although rejection is a complex immunologic event and functional importance of SNPs has not been confirmed yet, we suggest that wild type p53 may promote apoptosis during inflammation.

  1. Pharmacological targeting of p53 through RITA is an effective antitumoral strategy for malignant pleural mesothelioma.

    Science.gov (United States)

    Di Marzo, Domenico; Forte, Iris Maria; Indovina, Paola; Di Gennaro, Elena; Rizzo, Valeria; Giorgi, Francesca; Mattioli, Eliseo; Iannuzzi, Carmelina Antonella; Budillon, Alfredo; Giordano, Antonio; Pentimalli, Francesca

    2014-01-01

    Malignant mesothelioma, a very aggressive tumor associated to asbestos exposure, is expected to increase in incidence, and unfortunately, no curative modality exists. Reactivation of p53 is a new attractive antitumoral strategy. p53 is rarely mutated in mesothelioma, but it is inactivated in most tumors by the lack of p14(ARF). Here, we evaluated the feasibility of this approach in pleural mesothelioma by testing RITA and nutlin-3, two molecules able to restore p53 function through a different mechanism, on a panel of mesothelioma cell lines representing the epithelioid (NCI-H28, NCI-H2452, IST-MES 2), biphasic (MSTO-211H), and sarcomatoid (NCI-H2052) histotypes compared with the normal mesothelial HMC-hTERT. RITA triggered robust caspase-dependent apoptosis specifically in epithelioid and biphasic mesothelioma cell lines, both through wild-type and mutant p53, concomitant to p21 downregulation. Conversely, nutlin-3 induced a p21-dependent growth arrest, rather than apoptosis, and was slightly toxic on HMC-hTERT.   Interestingly, we identified a previously undetected point mutation of p53 (p.Arg249Ser) in IST-MES 2, and showed that RITA is also able to reactivate this p53 mutant protein and its apoptotic function. RITA reduced tumor growth in a MSTO-211H-derived xenograft model of mesothelioma and synergized with cisplatin, which is the mainstay of treatment for this tumor. Our data indicate that reactivation of p53 and concomitant p21 downregulation effectively induce cell death in mesothelioma, a tumor characterized by a high intrinsic resistance to apoptosis. Altogether, our findings provide the preclinical framework supporting the use of p53-reactivating agents alone, or in combination regimens, to improve the outcome of patients with mesothelioma.

  2. Analysis of the ARF/p53 Pathway During Oncogenic Stimulation

    National Research Council Canada - National Science Library

    Nahle, Zaher

    2003-01-01

    ... or deficient for the ARF and/or p53 genes. We found that the ElA oncoprotein regulates the expression of a myriad of targets involved in a diversity of functions such as apoptosis, cell cycle progression, checkpoint control, DNA replication...

  3. Molecular mechanisms of MYCN-dependent apoptosis and the MDM2-p53 pathway: an Achille’s heel to be exploited for the therapy of MYCN amplified neuroblastoma

    Directory of Open Access Journals (Sweden)

    Marialaura ePetroni

    2012-10-01

    Full Text Available The p53 oncosuppressor is very seldom mutated in neuroblastoma, but several mechanisms cooperate to its functional inactivation in this tumor. Increased MDM2 levels, due to genetic amplification or constitutive inhibition of p14ARF, significantly contribute to this event highlighting p53 reactivation as an attractive perspective for neuroblastoma treatment.In addition to its role in tumorigenesis, MYCN sensitizes untransformed and cancer cells to apoptosis. This is associated to a fine modulation of the MDM2-p53 pathway. Indeed MYCN induces p53 and MDM2 transcription, and, by evoking a DNA damage response (DDR, it stabilizes p53 and its proapoptotic kinase HIPK2. Through the regulation of the HIPK2-p53 inhibitor HMGA1 and the homeobox proteins BMI-1 and TWIST-1, MYCN establishes a delicate balance between pro- and anti-apoptotic molecules that might be easily perturbed by a variety of insults, leading to cell death. MDM2-p53 antagonists, such as Nutlin-3, are strikingly prone to inducing death in MYCN-amplified neuroblastoma, by further pushing on HIPK2 accumulation. Here we discuss implications and caveats of exploiting this pathway and its connections to MYCN-induced DDR for a tailored therapy of MYCN-amplified neuroblastoma.

  4. Characterisation in vivo of ways of induced deaths by p53, in the male germinal cells; Caracterisation in vivo des voies de mort induites par la p53, dans les cellules germinales males

    Energy Technology Data Exchange (ETDEWEB)

    Coureuil, M

    2006-10-15

    The male germinal cells constitute a heterogeneous cell population including pre-meiotic proliferating cells (spermatogonia) and meiotic cells and post meiotic cells in differentiation (spermatocytes and spermatids). We study the involvement in vivo of the p53 protein in the death of these cells with the help of two models, (1) a transgenic model of infertility, MTp53, in which the p53 is over expressed in the differentiated cells and induced their death, (2) the response of these cells to gamma irradiation, where only the spermatogonia die by apoptosis dependent of p53. We showed that the caspases (cysteine-aspartic proteases) are involved in the terminal differentiation of normal germinal cells. But in the MTp53 model, the p53 induces the death of differentiated cells via the activation of calpains and not of caspases. We studied the response of spermatogonia, to gamma irradiation by a transcriptomic approach, by DNA chips and semi-quantitative RT-PCR. we showed that the puma and dr5 genes are induced by the p53 after irradiation. more, the study of mice invalidated for trail ( the dr5 ligand) or for puma, allowed to demonstrate that the two effectors are essential to the activation of intrinsic and extrinsic ways of apoptosis. (N.C.)

  5. The p53 gene with emphasis on its paralogues in mosquitoes

    Directory of Open Access Journals (Sweden)

    Tien-Huang Chen

    2017-12-01

    Full Text Available The p53 gene is highly important in human cancers, as it serves as a tumor-suppressor gene. Subsequently, two p53 homologues, i.e., p73 and p63, with high identity of amino acids were identified, leading to construction of the p53 family. The p53 gene is highly important in human cancer because it usually transcribes genes that function by causing apoptosis in mammalian cells. In contrast, p63 and p73 tend to be more important in modulating development than inducing cell death, even though they share similar protein structures. Relatively recently, p53 was also identified in mosquitoes and many other insect species. Uniquely, its structure lacks the sterile alpha motif domain which is a putative protein-protein interaction domain and exclusively exists at the C-terminal region in p73 and p63 in mammals. A phylogenetic analysis revealed that the p53 gene derived from mosquitoes is composed of two paralogues, p53-1 and p53-2. Of these, only p53-2 is responsively upregulated by dengue 2 virus (DENV2 in C6/36 cells which usually survive the infection. This indicates that the p53 gene is closely related to DENV infection in mosquito cells. The specific significance of p53-2's involvement in cell survival from virus-induced stress is described and briefly discussed in this report. Keywords: p53 homologue, Paralogue, Mosquitoes, Phylogeny, Cell survival

  6. Cell-Cycle-Specific Function of p53 in Fanconi Anemia Hematopoietic Stem and Progenitor Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    2018-02-01

    Full Text Available Summary: Overactive p53 has been proposed as an important pathophysiological factor for bone marrow failure syndromes, including Fanconi anemia (FA. Here, we report a p53-dependent effect on hematopoietic stem and progenitor cell (HSPC proliferation in mice deficient for the FA gene Fanca. Deletion of p53 in Fanca−/− mice leads to replicative exhaustion of the hematopoietic stem cell (HSC in transplant recipients. Using Fanca−/− HSCs expressing the separation-of-function mutant p53515C transgene, which selectively impairs the p53 function in apoptosis but keeps its cell-cycle checkpoint activities intact, we show that the p53 cell-cycle function is specifically required for the regulation of Fanca−/− HSC proliferation. Our results demonstrate that p53 plays a compensatory role in preventing FA HSCs from replicative exhaustion and suggest a cautious approach to manipulating p53 signaling as a therapeutic utility in FA. : In this article, Pang and colleagues demonstrate a p53-dependent HSPC proliferation regulation in mice deficient for the Fanca gene in the Fanconi anemia (FA pathway. They show that the p53 cell-cycle function is specifically required for the regulation of FA HSC proliferation. These results suggest that overactive p53 may represent a compensatory checkpoint mechanism for FA HSC proliferation. Keywords: p53, bone marrow failure, Fanconi anemia, hematopoietic stem and progenitor cells, apoptosis, cell cycle, proliferation

  7. Rescue of p53 function by small-molecule RITA in cervical carcinoma by blocking E6-mediated degradation.

    Science.gov (United States)

    Zhao, Carolyn Ying; Szekely, Laszlo; Bao, Wenjie; Selivanova, Galina

    2010-04-15

    Proteasomal degradation of p53 by human papilloma virus (HPV) E6 oncoprotein plays a pivotal role in the survival of cervical carcinoma cells. Abrogation of HPV-E6-dependent p53 destruction can therefore be a good strategy to combat cervical carcinomas. Here, we show that a small-molecule reactivation of p53 and induction of tumor cell apoptosis (RITA) is able to induce the accumulation of p53 and rescue its tumor suppressor function in cells containing high-risk HPV16 and HPV18 by inhibiting HPV-E6-mediated proteasomal degradation. RITA blocks p53 ubiquitination by preventing p53 interaction with E6-associated protein, required for HPV-E6-mediated degradation. RITA activates the transcription of proapoptotic p53 targets Noxa, PUMA, and BAX, and repressed the expression of pro-proliferative factors CyclinB1, CDC2, and CDC25C, resulting in p53-dependent apoptosis and cell cycle arrest. Importantly, RITA showed substantial suppression of cervical carcinoma xenografts in vivo. These results provide a proof of principle for the treatment of cervical cancer in a p53-dependent manner by using small molecules that target p53. (c)2010 AACR.

  8. Chk2 mediates RITA-induced apoptosis.

    Science.gov (United States)

    de Lange, J; Verlaan-de Vries, M; Teunisse, A F A S; Jochemsen, A G

    2012-06-01

    Reactivation of the p53 tumor-suppressor protein by small molecules like Nutlin-3 and RITA (reactivation of p53 and induction of tumor cell apoptosis) is a promising strategy for cancer therapy. The molecular mechanisms involved in the responses to RITA remain enigmatic. Several groups reported the induction of a p53-dependent DNA damage response. Furthermore, the existence of a p53-dependent S-phase checkpoint has been suggested, involving the checkpoint kinase Chk1. We have recently shown synergistic induction of apoptosis by RITA in combination with Nutlin-3, and we observed concomitant Chk2 phosphorylation. Therefore, we investigated whether Chk2 contributes to the cellular responses to RITA. Strikingly, the induction of apoptosis seemed entirely Chk2 dependent. Transcriptional activity of p53 in response to RITA required the presence of Chk2. A partial rescue of apoptosis observed in Noxa knockdown cells emphasized the relevance of p53 transcriptional activity for RITA-induced apoptosis. In addition, we observed an early p53- and Chk2-dependent block of DNA replication upon RITA treatment. Replicating cells seemed more prone to entering RITA-induced apoptosis. Furthermore, the RITA-induced DNA damage response, which was not a secondary effect of apoptosis induction, was strongly attenuated in cells lacking p53 or Chk2. In conclusion, we identified Chk2 as an essential mediator of the cellular responses to RITA.

  9. p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.

    Directory of Open Access Journals (Sweden)

    Dana Austin

    Full Text Available Rift Valley fever virus (RVFV is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.

  10. p53 specific (auto)immunity in mice

    NARCIS (Netherlands)

    Lauwen, Marjolein Monique

    2008-01-01

    Self-tolerance to p53 is a major potential limitation for the activation of the endogenous T-cell repertoire. So far, p53 specific CD8+ and CD4+ T-cell immunity has been described in cancer patients and healthy individuals. However, the restrictions of tolerance on the recruitment of p53 specific T

  11. Super p53 for Treatment of Ovarian Cancer

    Science.gov (United States)

    2017-09-01

    position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public...a lead construct. Technical skills gained in the proposal include cell culture , transfections, microscopy, apoptosis assays, transcriptional assays...experiments complete 100% (DOD) Specific Aim 2: Deliver super p53 DNA with advanced polymeric systems alone and in combination with CPTX first in vitro

  12. Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor.

    Directory of Open Access Journals (Sweden)

    Barbara Costa

    Full Text Available Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM, p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2 oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients.

  13. The Histone Lysine Demethylase JMJD3/KDM6B Is Recruited to p53 Bound Promoters and Enhancer Elements in a p53 Dependent Manner

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Rappsilber, Juri

    2014-01-01

    linked to the regulation of different biological processes such as differentiation of embryonic stem cells, inflammatory responses in macrophages, and induction of cellular senescence via regulation of the INK4A-ARF locus. Here we show here that JMJD3 interacts with the tumour suppressor protein p53. We...... find that the interaction is dependent on the p53 tetramerization domain. Following DNA damage, JMJD3 is transcriptionally upregulated and by performing genome-wide mapping of JMJD3, we demonstrate that it binds genes involved in basic cellular processes, as well as genes regulating cell cycle......, response to stress and apoptosis. Moreover, we find that JMJD3 binding sites show significant overlap with p53 bound promoters and enhancer elements. The binding of JMJD3 to p53 target sites is increased in response to DNA damage, and we demonstrate that the recruitment of JMJD3 to these sites is dependent...

  14. Harnessing the p53-PUMA Axis to Overcome DNA Damage Resistance in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhou

    2014-12-01

    Full Text Available Resistance to DNA damage–induced apoptosis is a hallmark of cancer and a major cause of treatment failure and lethal disease outcome. A tumor entity that is largely resistant to DNA-damaging therapies including chemo- or radiotherapy is renal cell carcinoma (RCC. This study was designed to explore the underlying molecular mechanisms of DNA damage resistance in RCC to develop strategies to resensitize tumor cells to DNA damage–induced apoptosis. Here, we show that apoptosis-resistant RCC cells have a disconnect between activation of p53 and upregulation of the downstream proapoptotic protein p53 upregulated modulator of apoptosis (PUMA. We demonstrate that this disconnect is not caused by gene-specific repression through CCCTC-binding factor (CTCF but instead by aberrant chromatin compaction. Treatment with an HDAC inhibitor was found to effectively reactivate PUMA expression on the mRNA and protein level and to revert resistance to DNA damage–induced cell death. Ectopic expression of PUMA was found to resensitize a panel of RCC cell lines to four different DNA-damaging agents tested. Remarkably, all RCC cell lines analyzed were wild-type for p53, and a knockdown was likewise able to sensitize RCC cells to acute genotoxic stress. Taken together, our results indicate that DNA damage resistance in RCC is reversible, involves the p53-PUMA axis, and is potentially targetable to improve the oncological outcomes of RCC patients.

  15. Andrographolide induces degradation of mutant p53 via activation of Hsp70.

    Science.gov (United States)

    Sato, Hirofumi; Hiraki, Masatsugu; Namba, Takushi; Egawa, Noriyuki; Baba, Koichi; Tanaka, Tomokazu; Noshiro, Hirokazu

    2018-05-22

    The tumor suppressor gene p53 encodes a transcription factor that regulates various cellular functions, including DNA repair, apoptosis and cell cycle progression. Approximately half of all human cancers carry mutations in p53 that lead to loss of tumor suppressor function or gain of functions that promote the cancer phenotype. Thus, targeting mutant p53 as an anticancer therapy has attracted considerable attention. In the current study, a small-molecule screen identified andrographlide (ANDRO) as a mutant p53 suppressor. The effects of ANDRO, a small molecule isolated from the Chinese herb Andrographis paniculata, on tumor cells carrying wild-type or mutant p53 were examined. ANDRO suppressed expression of mutant p53, induced expression of the cyclin-dependent kinase inhibitor p21 and pro-apoptotic proteins genes, and inhibited the growth of cancer cells harboring mutant p53. ANDRO also induced expression of the heat-shock protein (Hsp70) and increased binding between Hsp70 and mutant p53 protein, thus promoting proteasomal degradation of p53. These results provide novel insights into the mechanisms regulating the function of mutant p53 and suggest that activation of Hsp70 may be a new strategy for the treatment of cancers harboring mutant p53.

  16. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    International Nuclear Information System (INIS)

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-01-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-α-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 μM) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-α and 5 μM sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction

  17. p53/Surviving Ratio as a Parameter for Chemotherapy Induction Response in Children with Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Rinaldi Lenggana

    2016-11-01

    Full Text Available Acute myeloid leukemia (AML is a malignancy that is often found in children. Many studies into the failure of apoptosis function, or programmed cell death, is one of the most important regulatory mechanisms of cellular hemostasis which is closely linked to the development of cancer, are important. Also, regulation of the apoptotic (p53 and anti-apoptotic (surviving proteins influence treatment outcome. One role of p53 is to monitor cellular stress necessary to induce apoptosis. Surviving (BIRC5 is a group of proteins in the apoptosis inhibitor which works by inhibiting caspase-3. The role of surviving is considered very important in oncogenesis proliferation and cell growth regulation. Chemotherapy in childhood AML can inhibit cell growth and induce slowing as well as stopping the cell cycle. Thus, the aim of this study was to compare p53 and surviving before and after receiving induction chemotherapy in children with AML and also to determine the p53/surviving ratio. Peripheral blood mononuclear cells were collected from AML children before treatment and three months after starting their induction therapy. p53 and surviving were measured by flowcytometry using monoclonal antibodies. Data were analyzed by t-test for comparison between groups and Spearman’s test to find out the correlation between variables with a significant value of p < 0.05. A total of 8 children were evaluated. The intensity of p53 expression was not significantly increased after induction phase chemotherapy (p = 0.224, but surviving expression and the ratio of p53/surviving were significantly increased in the treatment group compared with the levels prior to chemotherapy (p = 0.002, p = 0.034, and there was a strong negative correlation between p53 and surviving after chemotherapy (r = −0.63, p = 0.049.

  18. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis.

    Science.gov (United States)

    Zhu, Xue; Wang, Ke; Zhang, Kai; Zhang, Ting; Yin, Yongxiang; Xu, Fei

    2016-11-22

    Due to the aggressive clinical behavior, poor outcome, and lack of effective specific targeted therapies, triple-negative breast cancer (TNBC) has currently been recognized as one of the most malignant types of tumors. In the present study, we investigated the cytotoxic effect of ziyuglycoside I, one of the major components extracted from Chinese anti-tumor herbal Radix Sanguisorbae , on the TNBC cell line MDA-MB-231. The underlying molecular mechanism of the cytotoxic effect ziyuglycoside I on MDA-MB-231 cells was investigated with cell viability assay, flow cytometric analysis and Western blot. Compared to normal mammary gland Hs 578Bst cells, treatment of ziyuglycoside I resulted in a significant growth inhibitory effect on MDA-MB-231 cells. Ziyuglycoside I induced the G2/M phase arrest and apoptosis of MDA-MB-231 cells in a dose-dependent manner. These effects were found to be partially mediated through the up-regulation of p53 and p21 WAF1 , elevated Bax/Bcl-2 ratio, and the activation of both intrinsic (mitochondrial-initiated) and extrinsic (Fas/FasL-initiated) apoptotic pathways. Furthermore, the p53 specific siRNA attenuated these effects. Our study suggested that ziyuglycoside I-triggered MDA-MB-231 cell cycle arrest and apoptosis were probably mediated by p53. This suggests that ziyuglycoside I might be a potential drug candidate for treating TNBC.

  19. Tumor suppressor WWOX and p53 alterations and drug resistance in glioblastomas

    Directory of Open Access Journals (Sweden)

    Ming-Fu eChiang

    2013-03-01

    Full Text Available Tumor suppressor p53 are frequently mutated in glioblastomas (GBMs and appears to contribute, in part, to resistance to temozolomide and therapeutic drugs. WW domain-containing oxidoreductase WWOX (FOR or WOX1 is a proapoptotic protein and is considered as a tumor suppressor. Loss of WWOX gene expression is frequently seen in malignant cancer cells due to promoter hypermethylation, genetic alterations, and translational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge in p53 and WWOX, and postulate a potential scenarios that wild type and mutant p53, or isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ resistance and induce GBM cell death.

  20. Probucol Attenuates Cyclophosphamide-induced Oxidative Apoptosis, p53 and Bax Signal Expression in Rat Cardiac Tissues

    Directory of Open Access Journals (Sweden)

    Yousif A. Asiri

    2010-01-01

    Full Text Available Cyclophosphamide (CP is a widely used drug in cancer chemotherapy and immunosuppression, which could cause toxicity of the normal cells due to its toxic metabolites. Probucol, a cholesterol-lowering drug, acts as potential inhibitor of DNA damage and shows to protect against doxorubicin-induced cardiomyopathy by enhancing the endogenous antioxidant system including glutathione peroxidase, catalase and superoxide dismutase. This study examined the possible protective effects of probucol, a lipid-lowering compound with strong antioxidant properties, against CPinduced cardiotoxicity. This objective could be achieved through studying the gene expression-based on the possible protective effects of probucol against CP-induced cardiac failure in rats. Adult male Wistar albino rats were assigned into four treatment groups: Animals in the first (control and second (probucol groups were injected intraperitoneally with corn oil and probucol (61 mg/kg/day, respectively, for two weeks. Animals in the third (CP and fourth (probucol plus CP groups were injected with the same doses of corn oil and probucol (61 mg/kg/day, respectively, for one week before and one week after a single dose of CP (200 mg/kg, I.P.. The p53, Bax, Bcl2 and oxidative genes signal expression were measured by real time PCR. CP-induced cardiotoxicity was clearly observed by a significant increase in serum creatine phosphokinase isoenzyme (CK-MB (117%, lactate dehydrogenase (LDH (64%, free (69% and esterified cholesterol (42% and triglyceride (69% compared to control group. In cardiac tissues, CP significantly increases the mRNA expression levels of apoptotic genes, p53 with two-fold and Bax with 1.6-fold, and decreases the anti-apoptotic gene Bcl2 with 0.5-fold. Moreover, CP caused downregulation of antioxidant genes, glutathione peroxidase, catalase, and superoxide dismutase and increased the lipid peroxidation and decreased adenosine triphosphate (ATP (40% and ATP/ADP (44% in cardiac

  1. CP-31398 inhibits the growth of p53-mutated liver cancer cells in vitro and in vivo.

    Science.gov (United States)

    He, Xing-Xing; Zhang, Yu-Nan; Yan, Jun-Wei; Yan, Jing-Jun; Wu, Qian; Song, Yu-Hu

    2016-01-01

    The tumor suppressor p53 is one of the most frequently mutated genes in hepatocellular carcinoma (HCC). Previous studies demonstrated that CP-31398 restored the native conformation of mutant p53 and trans-activated p53 downstream genes in tumor cells. However, the research on the application of CP-31398 to liver cancer has not been reported. Here, we investigated the effects of CP-31398 on the phenotype of HCC cells carrying p53 mutation. The effects of CP-31398 on the characteristic of p53-mutated HCC cells were evaluated through analyzing cell cycle, cell apoptosis, cell proliferation, and the expression of p53 downstream genes. In tumor xenografts developed by PLC/PRF/5 cells, the inhibition of tumor growth by CP-31398 was analyzed through gross morphology, growth curve, and the expression of p53-related genes. Firstly, we demonstrated that CP-31398 inhibited the growth of p53-mutated liver cancer cells in a dose-dependent and p53-dependent manner. Then, further study showed that CP-31398 re-activated wild-type p53 function in p53-mutated HCC cells, which resulted in inhibitive response of cell proliferation and an induction of cell-cycle arrest and apoptosis. Finally, in vivo data confirmed that CP-31398 blocked the growth of xenografts tumors through transactivation of p53-responsive downstream molecules. Our results demonstrated that CP-31398 induced desired phenotypic change of p53-mutated HCC cells in vitro and in vivo, which revealed that CP-31398 would be developed as a therapeutic candidate for HCC carrying p53 mutation.

  2. Stress-specific response of the p53-Mdm2 feedback loop

    Directory of Open Access Journals (Sweden)

    Jensen Mogens H

    2010-07-01

    Full Text Available Abstract Background The p53 signalling pathway has hundreds of inputs and outputs. It can trigger cellular senescence, cell-cycle arrest and apoptosis in response to diverse stress conditions, including DNA damage, hypoxia and nutrient deprivation. Signals from all these inputs are channeled through a single node, the transcription factor p53. Yet, the pathway is flexible enough to produce different downstream gene expression patterns in response to different stresses. Results We construct a mathematical model of the negative feedback loop involving p53 and its inhibitor, Mdm2, at the core of this pathway, and use it to examine the effect of different stresses that trigger p53. In response to DNA damage, hypoxia, etc., the model exhibits a wide variety of specific output behaviour - steady states with low or high levels of p53 and Mdm2, as well as spiky oscillations with low or high average p53 levels. Conclusions We show that even a simple negative feedback loop is capable of exhibiting the kind of flexible stress-specific response observed in the p53 system. Further, our model provides a framework for predicting the differences in p53 response to different stresses and single nucleotide polymorphisms.

  3. Role of hTERT in apoptosis of cervical cancer induced by histone deacetylase inhibitor

    International Nuclear Information System (INIS)

    Wu, Peng; Meng, Li; Wang, Hui; Zhou, Jianfeng; Xu, Gang; Wang, Shixuan; Xi, Ling; Chen, Gang; Wang, Beibei; Zhu, Tao; Lu, Yunping; Ma, Ding

    2005-01-01

    Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase holoenzyme as well as the rate-limiting component of the telomerase enzyme complex. However, the role of the hTERT in apoptosis induced by histone deacetylase inhibitor has only been marginally addressed. For the first time, our study demonstrated that trichostatin A (TSA) briefly activated the proliferation of cervical cancer cell lines, HeLa and SiHa, within 12 h, but then inhibited cell growth after that time point. In response to TSA, hTERT expression, telomerase activity, and telomere length also underwent similar changes during the same time frame. Furthermore, the data in our study showed that cells transfected with dominant negative hTERT were more likely to undergo apoptosis induced by TSA than cells transfected with wild-type hTERT. The cyclin/cdk inhibitor p21 waf1 was down-regulated by hTERT without changing the expression of p53. Results from this study suggest that the hTERT might be a primary target of TSA and the anti-apoptosis effect of hTERT might be carried out through a p21 waf1 -dependent and p53-independent pathway

  4. Newly synthesized quinazolinone HMJ-38 suppresses angiogenetic responses and triggers human umbilical vein endothelial cell apoptosis through p53-modulated Fas/death receptor signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Jo-Hua [Department of Life Sciences, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 402, Taiwan (China); Yang, Jai-Sing [Department of Pharmacology, China Medical University, Taichung 404, Taiwan (China); Lu, Chi-Cheng [Department of Life Sciences, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 402, Taiwan (China); Hour, Mann-Jen; Chang, Shu-Jen [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Lee, Tsung-Han, E-mail: thlee@email.nchu.edu.tw [Department of Life Sciences, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 402, Taiwan (China); Department of Biological Science and Technology, China Medical University, 91, Hsueh-Shih Road, Taichung 404, Taiwan (China); Chung, Jing-Gung, E-mail: jgchung@mail.cmu.edu.tw [Department of Biological Science and Technology, China Medical University, 91, Hsueh-Shih Road, Taichung 404, Taiwan (China); Department of Biotechnology, Asia University, Taichung 413, Taiwan (China)

    2013-06-01

    The current study aims to investigate the antiangiogenic responses and apoptotic death of human umbilical vein endothelial cells (HUVECs) by a newly synthesized compound named 2-(3′-methoxyphenyl)-6-pyrrolidinyl-4-quinazolinone (HMJ-38). This work attempted to not only explore the effects of angiogenesis on in vivo and ex vivo studies but also hypothesize the implications for HUVECs (an ideal cell model for angiogenesis in vitro) and further undermined apoptotic experiments to verify the underlying molecular signaling by HMJ-38. Our results demonstrated that HMJ-38 significantly inhibited blood vessel growth and microvessel formation by the mouse Matrigel plug assay of angiogenesis, and the suppression of microsprouting from the rat aortic ring assay was observed after HMJ-38 exposure. In addition, HMJ-38 disrupted the tube formation and blocked the ability of HUVECs to migrate in response to VEGF. We also found that HMJ-38 triggered cell apoptosis of HUVECs in vitro. HMJ-38 concentration-dependently suppressed viability and induced apoptotic damage in HUVECs. HMJ-38-influenced HUVECs were performed by determining the oxidative stress (ROS production) and ATM/p53-modulated Fas and DR4/DR5 signals that were examined by flow cytometry, Western blotting, siRNA and real-time RT-PCR analyses, respectively. Our findings demonstrate that p53-regulated extrinsic pathway might fully contribute to HMJ-38-provoked apoptotic death in HUVECs. In view of these observations, we conclude that HMJ-38 reduces angiogenesis in vivo and ex vivo as well as induces apoptosis of HUVECs in vitro. Overall, HMJ-38 has a potent anti-neovascularization effect and could warrant being a vascular targeting agent in the future. - Highlights: • HMJ-38 suppresses angiogenic actions in vivo and ex vivo. • Inhibitions of blood vessel and microvessel formation by HMJ-38 are acted. • Cytotoxic effects of HUVECs occur by HMJ-38 challenge. • p53-modulated extrinsic pathway contributes to HMJ-38

  5. p53-Dependent and -Independent Epithelial Integrity: Beyond miRNAs and Metabolic Fluctuations

    Directory of Open Access Journals (Sweden)

    Tsukasa Oikawa

    2018-05-01

    Full Text Available In addition to its classical roles as a tumor suppressor, p53 has also been shown to act as a guardian of epithelial integrity by inducing the microRNAs that target transcriptional factors driving epithelial–mesenchymal transition. On the other hand, the ENCODE project demonstrated an enrichment of putative motifs for the binding of p53 in epithelial-specific enhancers, such as CDH1 (encoding E-cadherin enhancers although its biological significance remained unknown. Recently, we identified two novel modes of epithelial integrity (i.e., maintenance of CDH1 expression: one involves the binding of p53 to a CDH1 enhancer region and the other does not. In the former, the binding of p53 is necessary to maintain permissive histone modifications around the CDH1 transcription start site, whereas in the latter, p53 does not bind to this region nor affect histone modifications. Furthermore, these mechanisms likely coexisted within the same tissue. Thus, the mechanisms involved in epithelial integrity appear to be much more complex than previously thought. In this review, we describe our findings, which may instigate further experimental scrutiny towards understanding the whole picture of epithelial integrity as well as the related complex asymmetrical functions of p53. Such understanding will be important not only for cancer biology but also for the safety of regenerative medicine.

  6. Stabilization and activation of p53 are regulated independently by different phosphorylation events

    OpenAIRE

    Chernov, Mikhail V.; Ramana, Chilakamarti V.; Adler, Victor V.; Stark, George R.

    1998-01-01

    Treatment of mouse or human cells with the protein kinase C (PKC) inhibitors H7 or bisindolylmaleimide I induced an increase in the lifetime of p53, leading to its accumulation. In inhibitor-treated cells, p53 translocated to the nuclei and bound to DNA but was not competent to induce transcription. However, transactivation could be induced by subsequent DNA damage. Phorbol ester, a potent activator of PKC, significantly inhibited the accumulation of p53 after DNA damage. Therefore, constitut...

  7. Effect of p53 genotype on gene expression profiles in murine liver

    International Nuclear Information System (INIS)

    Morris, Suzanne M.; Akerman, Gregory S.; Desai, Varsha G.; Tsai, Chen-an; Tolleson, William H.; Melchior, William B.; Lin, Chien-Ju; Fuscoe, James C.; Casciano, Daniel A.; Chen, James J.

    2008-01-01

    The tumor suppressor protein p53 is a key regulatory element in the cell and is regarded as the 'guardian of the genome'. Much of the present knowledge of p53 function has come from studies of transgenic mice in which the p53 gene has undergone a targeted deletion. In order to provide additional insight into the impact on the cellular regulatory networks associated with the loss of this gene, microarray technology was utilized to assess gene expression in tissues from both the p53 -/- and p53 +/- mice. Six male mice from each genotype (p53 +/+ , p53 +/- , and p53 -/- ) were humanely killed and the tissues processed for microarray analysis. The initial studies have been performed in the liver for which the Dunnett test revealed 1406 genes to be differentially expressed between p53 +/+ and p53 +/- or between p53 +/+ and p53 -/- at the level of p ≤ 0.05. Both genes with increased expression and decreased expression were identified in p53 +/- and in p53 -/- mice. Most notable in the gene list derived from the p53 +/- mice was the significant reduction in p53 mRNA. In the p53 -/- mice, not only was there reduced expression of the p53 genes on the array, but genes associated with DNA repair, apoptosis, and cell proliferation were differentially expressed, as expected. However, altered expression was noted for many genes in the Cdc42-GTPase pathways that influence cell proliferation. This may indicate that alternate pathways are brought into play in the unperturbed liver when loss or reduction in p53 levels occurs

  8. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing

    DEFF Research Database (Denmark)

    Galanos, Panagiotis; Vougas, Konstantinos; Walter, David

    2016-01-01

    The cyclin-dependent kinase inhibitor p21(WAF1/CIP1) (p21) is a cell-cycle checkpoint effector and inducer of senescence, regulated by p53. Yet, evidence suggests that p21 could also be oncogenic, through a mechanism that has so far remained obscure. We report that a subset of atypical cancerous ...

  9. Somatotropinomas, but not nonfunctioning pituitary adenomas, maintain a functional apoptotic RET/Pit1/ARF/p53 pathway that is blocked by excess GDNF.

    Science.gov (United States)

    Diaz-Rodriguez, Esther; Garcia-Rendueles, Angela R; Ibáñez-Costa, Alejandro; Gutierrez-Pascual, Ester; Garcia-Lavandeira, Montserrat; Leal, Alfonso; Japon, Miguel A; Soto, Alfonso; Venegas, Eva; Tinahones, Francisco J; Garcia-Arnes, Juan A; Benito, Pedro; Angeles Galvez, Maria; Jimenez-Reina, Luis; Bernabeu, Ignacio; Dieguez, Carlos; Luque, Raul M; Castaño, Justo P; Alvarez, Clara V

    2014-11-01

    Acromegaly is caused by somatotroph cell adenomas (somatotropinomas [ACROs]), which secrete GH. Human and rodent somatotroph cells express the RET receptor. In rodents, when normal somatotrophs are deprived of the RET ligand, GDNF (Glial Cell Derived Neurotrophic Factor), RET is processed intracellularly to induce overexpression of Pit1 [Transcription factor (gene : POUF1) essential for transcription of Pituitary hormones GH, PRL and TSHb], which in turn leads to p19Arf/p53-dependent apoptosis. Our purpose was to ascertain whether human ACROs maintain the RET/Pit1/p14ARF/p53/apoptosis pathway, relative to nonfunctioning pituitary adenomas (NFPAs). Apoptosis in the absence and presence of GDNF was studied in primary cultures of 8 ACROs and 3 NFPAs. Parallel protein extracts were analyzed for expression of RET, Pit1, p19Arf, p53, and phospho-Akt. When GDNF deprived, ACRO cells, but not NFPAs, presented marked level of apoptosis that was prevented in the presence of GDNF. Apoptosis was accompanied by RET processing, Pit1 accumulation, and p14ARF and p53 induction. GDNF prevented all these effects via activation of phospho-AKT. Overexpression of human Pit1 (hPit1) directly induced p19Arf/p53 and apoptosis in a pituitary cell line. Using in silico studies, 2 CCAAT/enhancer binding protein alpha (cEBPα) consensus-binding sites were found to be 100% conserved in mouse, rat, and hPit1 promoters. Deletion of 1 cEBPα site prevented the RET-induced increase in hPit1 promoter expression. TaqMan qRT-PCR (real time RT-PCR) for RET, Pit1, Arf, TP53, GDNF, steroidogenic factor 1, and GH was performed in RNA from whole ACRO and NFPA tumors. ACRO but not NFPA adenomas express RET and Pit1. GDNF expression in the tumors was positively correlated with RET and negatively correlated with p53. In conclusion, ACROs maintain an active RET/Pit1/p14Arf/p53/apoptosis pathway that is inhibited by GDNF. Disruption of GDNF's survival function might constitute a new therapeutic route in

  10. Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA.

    Science.gov (United States)

    Zhao, Carolyn Y; Grinkevich, Vera V; Nikulenkov, Fedor; Bao, Wenjie; Selivanova, Galina

    2010-05-01

    Expression of mutant p53 correlates with poor prognosis in many tumors, therefore strategies aimed at reactivation of mutant p53 are likely to provide important benefits for treatment of tumors that are resistant to chemotherapy and radiotherapy. We have previously identified and characterized a small molecule RITA which binds p53 and induces a conformational change which prevents the binding of p53 to several inhibitors, including its own destructor MDM2. In this way, RITA rescues the tumor suppression function of wild type p53. Here, we demonstrate that RITA suppressed the growth and induced apoptosis in human tumor cell lines of a diverse origin carrying mutant p53 proteins. RITA restored transcriptional transactivation and transrepression function of several hot spot p53 mutants. The ability of RITA to rescue the activity of different p53 mutants suggests its generic mechanism of action. Thus, RITA is a promising lead for the development of anti-cancer drugs that reactivate the tumor suppressor function of p53 in cancer cells irrespective whether they express mutant or wild type p53.

  11. Modulation of the DNA repair system and ATR-p53 mediated apoptosis is relevant for tributyltin-induced genotoxic effects in human hepatoma G2 cells.

    Science.gov (United States)

    Li, Bowen; Sun, Lingbin; Cai, Jiali; Wang, Chonggang; Wang, Mengmeng; Qiu, Huiling; Zuo, Zhenghong

    2015-01-01

    The toxic effects of tributyltin (TBT) have been extensively documented in several types of cells, but the molecular mechanisms related to the genotoxic effects of TBT have still not been fully elucidated. Our study showed that exposure of human hepatoma G2 cells to 1-4 μmol/L TBT for 3 hr caused severe DNA damage in a concentration-dependent manner. Moreover, the expression levels of key DNA damage sensor genes such as the replication factor C, proliferating cell nuclear antigen and poly (ADP-ribose) polymerase-1 were inhabited in a concentration-dependent manner. We further demonstrated that TBT induced cell apoptosis via the p53-mediated pathway, which was most likely activated by the ataxia telangiectasia mutated and rad-3 related (ATR) protein kinase. The results also showed that cytochrome c, caspase-3, caspase-8, caspase-9, and the B-cell lymphoma 2 were involved in this process. Taken together, we demonstrated for the first time that the inhibition of the DNA repair system might be more responsible for TBT-induced genotoxic effects in cells. Then the generated DNA damage induced by TBT initiated ATR-p53-mediated apoptosis. Copyright © 2014. Published by Elsevier B.V.

  12. Evaluation of multiple bio-pathological factors in colorectal adenocarcinomas: independent prognostic role of p53 and bcl-2.

    Science.gov (United States)

    Buglioni, S; D'Agnano, I; Cosimelli, M; Vasselli, S; D'Angelo, C; Tedesco, M; Zupi, G; Mottolese, M

    1999-12-22

    About 40% of patients with colorectal carcinoma will develop local or distant tumour recurrences. Integrated analyses of bio-pathological markers, predictive of tumour aggressiveness, may offer a more rational approach to planning adjuvant therapy. To this end, we analysed the correlation between p53 accumulation, Bcl-2 expression, DNA ploidy, cell proliferation and conventional clinico-pathological parameters by testing the prognostic significance of these variables in a series of 171 colorectal carcinoma patients with long-term follow-up. The relationships among the various bio-pathological parameters, analysed by multiple correspondence analysis, showed 2 different clinico-biological profiles. The first, characterised by p53 negativity, Bcl-2 positivity, diploidy, low percentage of cells in S-phase (%S-phase), a low Ki-67 score, is associated with Dukes' A-B stage, well differentiated tumours and lack of relapse. The second, defined by p53 positivity, Bcl-2 negativity, aneuploidy, high %S-phase and elevated Ki-67 score, correlates with Dukes' C-D stage, poorly differentiated tumours and presence of relapse. When these parameters were examined according to Kaplan-Meier's method, significantly shorter disease-free (DFS) and overall survival (OS) were also observed in patients bearing p53 positive and Bcl-2 negative tumours, in Dukes' B stage. In multivariate analysis, p53 accumulation and Bcl-2 expression emerged as independent predictors of a worse and better clinical outcome, respectively. Our results indicate that, in colorectal adenocarcinomas, a biological profile, based on the combined evaluation of p53 and Bcl-2, may be useful for identifying high risk patients to be enrolled in an adjuvant setting, mainly in an early stage of the disease. Int. J. Cancer (Pred. Oncol.) 84:545-552, 1999. Copyright 1999 Wiley-Liss, Inc.

  13. Molecular mechanisms of MYCN-dependent apoptosis and the MDM2–p53 pathway: an Achille’s heel to be exploited for the therapy of MYCN-amplified neuroblastoma

    International Nuclear Information System (INIS)

    Petroni, Marialaura; Veschi, Veronica; Gulino, Alberto; Giannini, Giuseppe

    2012-01-01

    The p53 oncosuppressor is very seldom mutated in neuroblastoma, but several mechanisms cooperate to its functional inactivation in this tumor. Increased MDM2 levels, due to genetic amplification or constitutive inhibition of p14 ARF , significantly contribute to this event highlighting p53 reactivation as an attractive perspective for neuroblastoma treatment. In addition to its role in tumorigenesis, MYCN sensitizes untransformed and cancer cells to apoptosis. This is associated to a fine modulation of the MDM2–p53 pathway. Indeed MYCN induces p53 and MDM2 transcription, and, by evoking a DNA damage response (DDR), it stabilizes p53 and its proapoptotic kinase Homeodomain Interacting Protein Kinase 2 (HIPK2). Through the regulation of the HIPK2-p53 inhibitor High Mobility Group protein A1 (HMGA1) and the homeobox proteins BMI-1 and TWIST-1, MYCN establishes a delicate balance between pro- and antiapoptotic molecules that might be easily perturbed by a variety of insults, leading to cell death. MDM2–p53 antagonists, such as Nutlin-3, are strikingly prone to inducing death in MYCN-amplified neuroblastoma, by further pushing on HIPK2 accumulation. Here we discuss implications and caveats of exploiting this pathway and its connections to MYCN-induced DDR for a tailored therapy of MYCN-amplified neuroblastoma.

  14. Molecular mechanisms of MYCN-dependent apoptosis and the MDM2–p53 pathway: an Achille’s heel to be exploited for the therapy of MYCN-amplified neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, Marialaura; Veschi, Veronica; Gulino, Alberto; Giannini, Giuseppe, E-mail: giuseppe.giannini@uniroma1.it [Department of Molecular Medicine, University “La Sapienza”, Rome (Italy)

    2012-10-12

    The p53 oncosuppressor is very seldom mutated in neuroblastoma, but several mechanisms cooperate to its functional inactivation in this tumor. Increased MDM2 levels, due to genetic amplification or constitutive inhibition of p14{sup ARF}, significantly contribute to this event highlighting p53 reactivation as an attractive perspective for neuroblastoma treatment. In addition to its role in tumorigenesis, MYCN sensitizes untransformed and cancer cells to apoptosis. This is associated to a fine modulation of the MDM2–p53 pathway. Indeed MYCN induces p53 and MDM2 transcription, and, by evoking a DNA damage response (DDR), it stabilizes p53 and its proapoptotic kinase Homeodomain Interacting Protein Kinase 2 (HIPK2). Through the regulation of the HIPK2-p53 inhibitor High Mobility Group protein A1 (HMGA1) and the homeobox proteins BMI-1 and TWIST-1, MYCN establishes a delicate balance between pro- and antiapoptotic molecules that might be easily perturbed by a variety of insults, leading to cell death. MDM2–p53 antagonists, such as Nutlin-3, are strikingly prone to inducing death in MYCN-amplified neuroblastoma, by further pushing on HIPK2 accumulation. Here we discuss implications and caveats of exploiting this pathway and its connections to MYCN-induced DDR for a tailored therapy of MYCN-amplified neuroblastoma.

  15. Expression of p53 and p21 in primary glioblastomas

    International Nuclear Information System (INIS)

    Gross, M.W.; Nashwan, K.; Engenhart-Cabillic, R.; Kraus, A.; Mennel, H.D.; Schlegel, J.

    2005-01-01

    . Conclusion: p53 protein expression in vivo does not correlate with the outcome of patients with primary GBM. Therefore, p53 protein content per se does not appear to be a helpful prognostic factor for prognosis-adapted therapy in primary GBM. By contrast, primary GBM cells in vitro show different and independent responses in their p53 and p21 pathways to ionizing radiation. The failure of G1 arrest seems to be due to a functional defect in the p53 pathway, either because p21 was not induced or because of an unidentified defect downstream from p21. (orig.)

  16. p63 expression confers significantly better survival outcomes in high-risk diffuse large B-cell lymphoma and demonstrates p53-like and p53-independent tumor suppressor function

    DEFF Research Database (Denmark)

    Xu-Monette, Zijun Y; Zhang, Shanxiang; Li, Xin

    2016-01-01

    with a pan-p63-monoclonal antibody and correlated it with other clinicopathologic factors and clinical outcomes. p63 expression was observed in 42.5% of DLBCL, did not correlate with p53 levels, but correlated with p21, MDM2, p16INK4A, Ki-67, Bcl-6, IRF4/MUM-1 and CD30 expression, REL gains, and BCL6...... was likely due to the association of p63 expression with high-risk IPI, and potential presence of ∆Np63 isoform in TP63 rearranged patients (a mere speculation). Gene expression profiling suggested that p63 has both overlapping and distinct functions compared with p53, and that p63 and mutated p53 antagonize...

  17. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    International Nuclear Information System (INIS)

    Tsutsui, Shinichi; Yasuda, Kazuhiro; Suzuki, Kosuke; Takeuchi, Hideya; Nishizaki, Takashi; Higashi, Hidefumi; Era, Shoichi

    2006-01-01

    Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. The Bcl-2 protein expression was found to be decreased in 105 (42%) cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089) associated with a worse disease free survival (DFS), while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer

  18. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    Directory of Open Access Journals (Sweden)

    Nishizaki Takashi

    2006-07-01

    Full Text Available Abstract Background Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. Methods The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. Results The Bcl-2 protein expression was found to be decreased in 105 (42% cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089 associated with a worse disease free survival (DFS, while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. Conclusion The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer.

  19. Characterisation in vivo of ways of induced deaths by p53, in the male germinal cells

    International Nuclear Information System (INIS)

    Coureuil, M.

    2006-10-01

    The male germinal cells constitute a heterogeneous cell population including pre-meiotic proliferating cells (spermatogonia) and meiotic cells and post meiotic cells in differentiation (spermatocytes and spermatids). We study the involvement in vivo of the p53 protein in the death of these cells with the help of two models, (1) a transgenic model of infertility, MTp53, in which the p53 is over expressed in the differentiated cells and induced their death, (2) the response of these cells to gamma irradiation, where only the spermatogonia die by apoptosis dependent of p53. We showed that the caspases (cysteine-aspartic proteases) are involved in the terminal differentiation of normal germinal cells. But in the MTp53 model, the p53 induces the death of differentiated cells via the activation of calpains and not of caspases. We studied the response of spermatogonia, to gamma irradiation by a transcriptomic approach, by DNA chips and semi-quantitative RT-PCR. we showed that the puma and dr5 genes are induced by the p53 after irradiation. more, the study of mice invalidated for trail ( the dr5 ligand) or for puma, allowed to demonstrate that the two effectors are essential to the activation of intrinsic and extrinsic ways of apoptosis. (N.C.)

  20. Mathematical Modeling of E6-p53 interactions in Cervical Cancer

    Science.gov (United States)

    Khattak, Faryal; Haseeb, Muhammad; Fazal, Sahar; Bhatti, A I; Ullah, Mukhtar

    2017-04-01

    Background: Cervical cancer is the third most common cancer in women throughout the world. The human papillomavirus (HPV) E6 viral protein plays an essential role in proteasomal degradation of the cancer suppressant protein p53. As a result, p53 negative regulation and apoptosis relevant activities are abrogated, facilitating development of cervical cancer. Methods: A mathematical model of E6-p53 interactions was developed using mathematical laws. In-silico simulations were carried out on CellDesigner and as a test case the small molecule drug RITA was considered for its ability to rescue the functions of tumor suppressor p53 by inhibiting E6 mediated proteasomal degradation. Results: Using a computational model we scrutinized how p53 responds to RITA, and chemical reactions of this small molecule drug were incorporated to perceive the full effects. The evolved strategy allowed the p53 response and rescue of its tumor suppressor function to be delineated, RITA being found to block p53 interactions with E6 associated proteins. Conclusion: We could develop a model of E6-p53 interactions with incorporation of actions of the small molecule drug RITA. Suppression of E6 associated proteins by RITA induces accumulation of tumor suppressant p53. Using CellDesigner to encode the model ensured that it can be easily modified and extended as more data become available. This strategy should play an effective role in the development of therapies against cancer. Creative Commons Attribution License

  1. p53 nuclear accumulation and multiploidy are adverse prognostic factors in surgically resected stage II colorectal cancers independent of fluorouracil-based adjuvant therapy.

    Science.gov (United States)

    Buglioni, S; D'Agnano, I; Vasselli, S; Perrone Donnorso, R; D'Angelo, C; Brenna, A; Benevolo, M; Cosimelli, M; Zupi, G; Mottolese, M

    2001-09-01

    To identify the prognostically highest risk patients, DNA content and p53 nuclear or cytoplasmic accumulation, evaluated by monoclonal antibody DO7 and polyclonal antibody CM1, were determined in 94 surgically resected stage II (Dukes B2) colorectal cancers, treated or not with adjuvant 5-fluorouracil-based chemotherapy. Sixty-one (65%) of the tumors were aneuploid, 16 (17%) of which had a multiploid DNA content; 50 (53%) displayed DO7 nuclear p53 accumulation, and 44 (47%) showed cytoplasmic CM1 positivity. In multivariate analysis, only multiploidy and p53 nuclear positivity emerged as independent prognostic indicators of a poorer outcome. Positivity for p53 was associated with shorter survival in 5-fluorouracil-treated and untreated patients. Therefore, in patients with Dukes B2 colorectal cancer, a biologic profile based on the combined evaluation of DNA multiploidy and p53 status can provide valuable prognostic information, identifying patients to be enrolled in alternative, more aggressive therapeutic trials.

  2. Immunohistochemical investigation of cell cycle and apoptosis regulators (Survivin, β-Catenin, P53, Caspase 3 in canine appendicular osteosarcoma

    Directory of Open Access Journals (Sweden)

    Bongiovanni Laura

    2012-06-01

    Full Text Available Abstract Background Osteosarcoma (OSA represents the most common canine primary bone tumour. Despite several pathways have been investigated so far, few molecules have been identified as prognostic tools or potential therapeutic targets, and there is still the need to find out molecular pathways with specific influence over OSA progression to facilitate earlier prognosis and treatment. Aims of the present study were to evaluate the immunohistochemical pattern and levels of expression of a panel of molecules (survivin, β-catenin, caspase 3 -inactive and active forms- and p53 involved in cell cycle and apoptosis regulation in canine OSA samples, known to be of interest in the study also of human OSA, and to detect specific relations among them and with histological tumour grade, disease free interval (DFI and overall survival (OS. Results Nuclear β-catenin immunostaining was detected in normal osteoblasts adjacent to the tumour, and in 47% of the cases. Cytoplasmic and/or membranous immunostaining were also observed. Nuclear survivin and p53 positive cells were found in all cases. Moderate/high cytoplasmic β-catenin expression (≥10% positive cells was significantly associated with the development of metastasis (P = 0.014; moderate/high nuclear p53 expression (≥10% positive cells was significantly associated with moderate/high histological grade (P = 0.017 and shorter OS (P = 0.049. Moderate/high nuclear survivin expression (≥15% positive cells showed a tendency toward a longer OS (P = 0,088. Conclusions The present results confirmed p53 as negative prognostic marker, while suggested survivin as a potential positive prognostic indicator, rather than indicative of a poor prognosis. The detection of nuclear β-catenin immunostaining in normal osteoblasts and the absent/low expression in most of the OSAs, suggested that this pathway could not play a major role in oncogenic transformation of canine osteoblasts. Further studies

  3. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    International Nuclear Information System (INIS)

    Chen Wenshu; Lee Yijang; Yu Yichu; Hsaio Chinghui

    2010-01-01

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of γ-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G 2 /M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.

  4. A nanobody modulates the p53 transcriptional program without perturbing its functional architecture

    Science.gov (United States)

    Bethuyne, Jonas; De Gieter, Steven; Zwaenepoel, Olivier; Garcia-Pino, Abel; Durinck, Kaat; Verhelle, Adriaan; Hassanzadeh-Ghassabeh, Gholamreza; Speleman, Frank; Loris, Remy; Gettemans, Jan

    2014-01-01

    The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non-)covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds ‘structural’ mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 Å resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations. PMID:25324313

  5. CP-31398 prevents the growth of p53-mutated colorectal cancer cells in vitro and in vivo.

    Science.gov (United States)

    He, Xingxing; Kong, Xinjuan; Yan, Junwei; Yan, Jingjun; Zhang, Yunan; Wu, Qian; Chang, Ying; Shang, Haitao; Dou, Qian; Song, Yuhu; Liu, Fang

    2015-03-01

    Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Small molecule CP-31398 was shown to restore mutant p53 tumor suppressor functions in cancer cells. Here, we determined the effects of CP-31398 on the growth of p53-mutated colorectal cancer (CRC) cells in vitro and in vivo. CRC cells which carry p53 mutation in codon 273 were treated with CP-31398 and the control, and the effects of CP-31398 on cell cycle, cell apoptosis, and proliferation were determined. The expression of p53-responsive downstream genes was evaluated by quantitative reverse transcriptase PCR (RT-PCR) and Western blot. CP-31398 was administrated into xenograft tumors created by the inoculation of HT-29 cells, and then the effect of CP-31398 on the growth of xenograft tumors was examined. CP-31398 induced p53 downstream target molecules in cultured HT-29 cells, which resulted in the inhibition of CRC cell growth assessed by the determination of cell cycle, apoptosis, and cell proliferation. In xenograft tumors, CP-31398 modulated the expression of Bax, Bcl-2, caspase 3, cyclin D, and Mdm2 and then blocked the growth of xenograft tumors. CP-31398 would be developed as a therapeutic candidate for p53-mutated CRC due to the restoration of mutant p53 tumor suppressor functions.

  6. Radiation-induced phosphorylation of P53 protects radioresistant Spodoptera frugiperda 9 cells by suppressing microRNA-31-Bim-Bax mediated apoptosis

    International Nuclear Information System (INIS)

    Kumar, Ashish; Chandna, Sudhir

    2016-01-01

    In this study, we demonstrate the role of microRNA-31 (miR-31) in the regulation of radiation-induced apoptosis in model radioresistant insect cell line Sf9 (derived from the ovaries of insect Spodoptera frugiperda) which carries well-conserved apoptotic response. We also investigated the miR-31 expression regulation by p53 homologue in these cells. Our initial in silico analysis confirmed perfect conservation of mature miR-31 across various insect orders, hence we designed biotinylated probes from Bombyx mori sequence for successful detection of miR-31 in Sf9 cells

  7. Molecular mechanism implicated in Pemetrexed-induced apoptosis in human melanoma cells

    Directory of Open Access Journals (Sweden)

    Buqué Aitziber

    2012-04-01

    Full Text Available Abstract Background Metastatic melanoma is a lethal skin cancer and its incidence is rising every year. It represents a challenge for oncologist, as the current treatment options are non-curative in the majority of cases; therefore, the effort to find and/or develop novel compounds is mandatory. Pemetrexed (Alimta®, MTA is a multitarget antifolate that inhibits folate-dependent enzymes: thymidylate synthase, dihydrofolate reductase and glycinamide ribonucleotide formyltransferase, required for de novo synthesis of nucleotides for DNA replication. It is currently used in the treatment of mesothelioma and non-small cell lung cancer (NSCLC, and has shown clinical activity in other tumors such as breast, colorectal, bladder, cervical, gastric and pancreatic cancer. However, its effect in human melanoma has not been studied yet. Results In the current work we studied the effect of MTA on four human melanoma cell lines A375, Hs294T, HT144 and MeWo and in two NSCLC cell lines H1299 and Calu-3. We have found that MTA induces DNA damage, S-phase cell cycle arrest, and caspase- dependent and –independent apoptosis. We show that an increment of the intracellular reactive oxygen species (ROS and p53 is required for MTA-induced cytotoxicity by utilizing N-Acetyl-L-Cysteine (NAC to blockage of ROS and p53-defective H1299 NSCLC cell line. Pretreatment of melanoma cells with NAC significantly decreased the DNA damage, p53 up-regulation and cytotoxic effect of MTA. MTA was able to induce p53 expression leading to up-regulation of p53-dependent genes Mcl-1 and PIDD, followed by a postranscriptional regulation of Mcl-1 improving apoptosis. Conclusions We found that MTA induced DNA damage and mitochondrial-mediated apoptosis in human melanoma cells in vitro and that the associated apoptosis was both caspase-dependent and –independent and p53-mediated. Our data suggest that MTA may be of therapeutic relevance for the future treatment of human malignant melanoma.

  8. A systematic review of p53 regulation of oxidative stress in skeletal muscle.

    Science.gov (United States)

    Beyfuss, Kaitlyn; Hood, David A

    2018-12-01

    p53 is a tumor suppressor protein involved in regulating a wide array of signaling pathways. The role of p53 in the cell is determined by the type of imposed oxidative stress, its intensity and duration. The last decade of research has unravelled a dual nature in the function of p53 in mediating the oxidative stress burden. However, this is dependent on the specific properties of the applied stress and thus requires further analysis. A systematic review was performed following an electronic search of Pubmed, Google Scholar, and ScienceDirect databases. Articles published in the English language between January 1, 1990 and March 1, 2017 were identified and isolated based on the analysis of p53 in skeletal muscle in both animal and cell culture models. Literature was categorized according to the modality of imposed oxidative stress including exercise, diet modification, exogenous oxidizing agents, tissue manipulation, irradiation, and hypoxia. With low to moderate levels of oxidative stress, p53 is involved in activating pathways that increase time for cell repair, such as cell cycle arrest and autophagy, to enhance cell survival. However, with greater levels of stress intensity and duration, such as with irradiation, hypoxia, and oxidizing agents, the role of p53 switches to facilitate increased cellular stress levels by initiating DNA fragmentation to induce apoptosis, thereby preventing aberrant cell proliferation. Current evidence confirms that p53 acts as a threshold regulator of cellular homeostasis. Therefore, within each modality, the intensity and duration are parameters of the oxidative stressor that must be analyzed to determine the role p53 plays in regulating signaling pathways to maintain cellular health and function in skeletal muscle. Acadl: acyl-CoA dehydrogenase, long chain; Acadm: acyl-CoA dehydrogenase, C-4 to C-12 straight chain; AIF: apoptosis-inducing factor; Akt: protein kinase B (PKB); AMPK: AMP-activated protein kinase; ATF-4: activating

  9. Induction of Apoptosis and expression of Apoptosis-related gene products in response to radiation in murine tumors

    International Nuclear Information System (INIS)

    Seong, J. S.

    1997-01-01

    To analyze the involvement of apoptosis regulatory genes p53, p21 waf1/cip1 , bax and bcl-2 in induction of apoptosis by radiation in murine tumors. The radiation-sensitive ovarian carcinoma OCa-I and the radiation-resistant hepatocarcinoma HCa-I were used. Tumors, 8mm in diameter, were irradiated with 25Gy and at various times after irradiation, ranging from 1 to 48 h, were analyzed histologically for apoptosis and by western blot for alterations in the expression of these genes. The p53 status of the tumors were determined by the polymerase chain reaction-single strand conformation polymorphism assay. Both tumors were positive for wild-type p53. Radiation induced apoptosis in OCa-I but not in HCa-I. Apoptosis developed rapidly, peaked at 2 h after irradiation and returned to almost the background level at 48 h. In OCa-I radiation upregulated the expression of p53, p21 waf1/cip1 , and the bcl-2/bax ratio was decreased. In HCa-I radiation increased the expression of both p53 and p21 waf1/cip1 , although the increase of the latter was small. The bcl-2/bax ratio was greatly increased. In general the observed changes occurred within a few hours after irradiation, and either preceded or coincided with development of apoptosis. The development of apoptosis required upregulation of both p53 and p21 waf1/cip1 as well as a decrease in bcl-2/bax ratio. In contrast, an increase in bcl-2/bax ratio prevented apoptosis in the presence of upregulated p53 and p21 waf1/cip1 . These findings identified the involvement of multiple oncogenes in apoptosis regulation in vivo and demonstrate the complexity that may be associated with the use of a single oncogene assessment for predicting the outcome of cancer therapy with cytotoxic agents. (author)

  10. Induction of Apoptosis and expression of Apoptosis-related gene products in response to radiation in murine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Seong, J S [Yonsei Univ., Seoul (Korea, Republic of). Coll. of Medicine; Hunter, N R; Milas, L [Texas Univ., Houston, TX (United States)

    1997-09-01

    To analyze the involvement of apoptosis regulatory genes p53, p21{sup waf1/cip1}, bax and bcl-2 in induction of apoptosis by radiation in murine tumors. The radiation-sensitive ovarian carcinoma OCa-I and the radiation-resistant hepatocarcinoma HCa-I were used. Tumors, 8mm in diameter, were irradiated with 25Gy and at various times after irradiation, ranging from 1 to 48 h, were analyzed histologically for apoptosis and by western blot for alterations in the expression of these genes. The p53 status of the tumors were determined by the polymerase chain reaction-single strand conformation polymorphism assay. Both tumors were positive for wild-type p53. Radiation induced apoptosis in OCa-I but not in HCa-I. Apoptosis developed rapidly, peaked at 2 h after irradiation and returned to almost the background level at 48 h. In OCa-I radiation upregulated the expression of p53, p21{sup waf1/cip1}, and the bcl-2/bax ratio was decreased. In HCa-I radiation increased the expression of both p53 and p21{sup waf1/cip1}, although the increase of the latter was small. The bcl-2/bax ratio was greatly increased. In general the observed changes occurred within a few hours after irradiation, and either preceded or coincided with development of apoptosis. The development of apoptosis required upregulation of both p53 and p21{sup waf1/cip1} as well as a decrease in bcl-2/bax ratio. In contrast, an increase in bcl-2/bax ratio prevented apoptosis in the presence of upregulated p53 and p21{sup waf1/cip1}. These findings identified the involvement of multiple oncogenes in apoptosis regulation in vivo and demonstrate the complexity that may be associated with the use of a single oncogene assessment for predicting the outcome of cancer therapy with cytotoxic agents. (author).

  11. Inhibition of human colorectal adenocarcinoma cells with AdCMV-p53 gene transfection induced by irradiation

    International Nuclear Information System (INIS)

    Liu Bing; Min Fengling; Xie Yi; Zhou Qingming; Duan Xin; Chinese Academy of Sciences, Beijing; Zhang Hong; Li Wenjian; Hao Jifang; Zhou Guangming; Gao Qingxiang

    2006-01-01

    The effect of AdCMV-p53 gene transfection induced by γ-ray irradiation on human colorectal adenocarcinoma cells was investigated. The HT-29 cells were irradiated by 0.5, 1.0, 2.0 Gy 60 Co γ-rays, then were transfected with AdCMV-GFP (a replication of deficient recombinant adenoviral vector containing a CMV promoter and green fluorescent protein) or AdCMV-p53 (a replication of deficient recombinant adenoviral vector containing a CMV promoter and carrying human wild p53 gene). Cytotoxity was measured by clonogenic survival assay; apoptosis and the p53 expression were determined by flow cytometry. The results show that the pre-exposure of 0.5 Gy 60 Co γ-rays significantly enhanced the inhibition of HT-29 cells with AdCMV-53 transfection and promoted cell apoptosis. The inhibition rates for the groups of pre-exposure with 0.5 Gy and transfection with 40 and 80 MOI AdCMV-p53 were 50% and 20% higher than those for the groups of the mere transfection, and 40% more than the mere irradiation group. In the case of higher than 0.5 Gy pre-exposure, no significant difference was found between the pre-exposure with transfection group and the mere irradiation group. So 0.5 Gy pre-irradiation and AdCMV-p53 transfection obviously increases the inhibition of HT-29 cells with AdCMV-p53 transfection. The optimum condition is the lower than 1.0 Gy pre-exposure combined with the lower than 80 MOI AdCMV-p53 transfection. (authors)

  12. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jesus Adrian [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico); Alvarez-Salas, Luis Marat, E-mail: lalvarez@cinvestav.mx [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico)

    2011-06-10

    Highlights: {yields} In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. {yields} We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. {yields} We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. {yields} miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. {yields} In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  13. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    International Nuclear Information System (INIS)

    Lopez, Jesus Adrian; Alvarez-Salas, Luis Marat

    2011-01-01

    Highlights: → In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. → We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. → We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. → miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. → In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  14. Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities

    International Nuclear Information System (INIS)

    Yi Fuming; Saha, Abhik; Murakami, Masanao; Kumar, Pankaj; Knight, Jason S.; Cai Qiliang; Choudhuri, Tathagata; Robertson, Erle S.

    2009-01-01

    The p53 tumor suppressor gene is one of the most commonly mutated genes in human cancers and the corresponding encoded protein induces apoptosis or cell-cycle arrest at the G1/S checkpoint in response to DNA damage. To date, previous studies have shown that antigens encoded by human tumor viruses such as SV40 large T antigen, adenovirus E1A and HPV E6 interact with p53 and disrupt its functional activity. In a similar fashion, we now show that EBNA3C, one of the EBV latent antigens essential for the B-cell immortalization in vitro, interacts directly with p53. Additionally, we mapped the interaction of EBNA3C with p53 to the C-terminal DNA-binding and the tetramerization domain of p53, and the region of EBNA3C responsible for binding to p53 was mapped to the N-terminal domain of EBNA3C (residues 130-190), previously shown to interact with a number of important cell-cycle components, specifically SCF Skp2 , cyclin A, and cMyc. Furthermore, we demonstrate that EBNA3C substantially represses the transcriptional activity of p53 in luciferase based reporter assays, and rescues apoptosis induced by ectopic p53 expression in SAOS-2 (p53 -/- ) cells. Interestingly, we also show that the DNA-binding ability of p53 is diminished in the presence of EBNA3C. Thus, the interaction between the p53 and EBNA3C provides new insights into the mechanism(s) by which the EBNA3C oncoprotein can alter cellular gene expression in EBV associated human cancers.

  15. The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy

    International Nuclear Information System (INIS)

    Bristow, Robert G.; Benchimol, Samuel; Hill, Richard P.

    1996-01-01

    Background and purpose: Experimental studies have implicated the normal or 'wild type' p53 protein (i.e. WTp53) in the cellular response to ionizing radiation and other DNA damaging agents. Whether altered WTp53 protein function can lead to changes in cellular radiosensitivity and/or clinical radiocurability remains an area of ongoing study. In this review, we describe the potential implications of altered WTp53 protein function in normal and tumour cells as it relates to clinical radiotherapy, and describe novel treatment strategies designed to re-institute WTp53 protein function as a means of sensitizing cells to ionizing radiation. Methods and Materials: A number of experimental and clinical studies are critically reviewed with respect to the role of the p53 protein as a determinant of cellular oncogenesis, genomic stability, apoptosis, DNA repair and radioresponse in normal and transformed mammalian cells. Results: In normal fibroblasts, exposure to ionizing radiation leads to a G1 cell cycle delay (i.e. a 'G1 checkpoint') as a result of WTp53-mediated inhibition of G1-cyclin-kinase and retinoblastoma (pRb) protein function. The G1 checkpoint response is absent in tumour cells which express a mutant form of the p53 protein (i.e. MTp53), leading to acquired radioresistance in vitro. Depending on the cell type studied, this increase in cellular radiation survival can be mediated through decreased radiation-induced apoptosis, or altered kinetics of the radiation-induced G1 checkpoint. Recent biochemical studies support an indirect role for the p53 protein in both nucleotide excision and recombinational DNA repair pathways. However, based on clinicopathologic data, it remains unclear as to whether WTp53 protein function can predict for human tumour radiocurability and normal tissue radioresponse. Conclusions: Alterations in cell cycle control secondary to aberrant WTp53 protein function may be clinically significant if they lead to the acquisition of mutant

  16. Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Shatrunajay [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi ‐110062 (India); Sharma, Ankita [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Pandey, Vivek Kumar [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Academy of Scientific and Innovative Research (India); Raisuddin, Sheikh [Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi ‐110062 (India); Kakkar, Poonam, E-mail: kakkarp59@gmail.com [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Academy of Scientific and Innovative Research (India)

    2016-01-15

    -mediated apoptosis. - Highlights: • Berberine inhibits sirtuins at transcriptional as well as at translational level. • Sirtuins inhibition leads to acetylation of non-histone proteins, FoxO1/3a and p53. • Acetylated FoxO and p53 transcriptionally upregulate BH3-only proteins Bim and PUMA respectively. • BH3-only proteins trigger mitochondrial dysfunction culminating into apoptosis. • SRT-1720 (SIRT-1 activator) partially restores Bax/Bcl-2 ratio and reduces berberine induced cytotoxicity in HepG2 cells.

  17. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis.

    Science.gov (United States)

    Fong, Chii Shyang; Mazo, Gregory; Das, Tuhin; Goodman, Joshua; Kim, Minhee; O'Rourke, Brian P; Izquierdo, Denisse; Tsou, Meng-Fu Bryan

    2016-07-02

    Mitosis occurs efficiently, but when it is disturbed or delayed, p53-dependent cell death or senescence is often triggered after mitotic exit. To characterize this process, we conducted CRISPR-mediated loss-of-function screens using a cell-based assay in which mitosis is consistently disturbed by centrosome loss. We identified 53BP1 and USP28 as essential components acting upstream of p53, evoking p21-dependent cell cycle arrest in response not only to centrosome loss, but also to other distinct defects causing prolonged mitosis. Intriguingly, 53BP1 mediates p53 activation independently of its DNA repair activity, but requiring its interacting protein USP28 that can directly deubiquitinate p53 in vitro and ectopically stabilize p53 in vivo. Moreover, 53BP1 can transduce prolonged mitosis to cell cycle arrest independently of the spindle assembly checkpoint (SAC), suggesting that while SAC protects mitotic accuracy by slowing down mitosis, 53BP1 and USP28 function in parallel to select against disturbed or delayed mitosis, promoting mitotic efficiency.

  18. Cyclophilin B induces chemoresistance by degrading wild type p53 via interaction with MDM2 in colorectal cancer.

    Science.gov (United States)

    Choi, Tae Gyu; Nguyen, Minh Nam; Kim, Jieun; Jo, Yong Hwa; Jang, Miran; Nguyen, Ngoc Ngo Yen; Yun, Hyeong Rok; Choe, Wonchae; Kang, Insug; Ha, Joohun; Tang, Dean G; Kim, Sung Soo

    2018-06-06

    Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Chemoresistance is a major problem for effective therapy in CRC. Here, we investigated the mechanism by which peptidylprolyl isomerase B (PPIB; cyclophilin B, CypB) regulates chemoresistance in CRC. We found that CypB is a novel wild type p53 (p53WT)-inducible gene but a negative regulator of p53WT in response to oxaliplatin treatment. Overexpression of CypB shortens the half-life of p53WT and inhibits oxaliplatin-induced apoptosis in CRC cells, whereas knockdown of CypB lengthens the half-life of p53WT and stimulates p53WT dependent apoptosis. CypB interacts directly with MDM2, and enhances MDM2-dependent p53WT ubiquitination and degradation. Furthermore, we firmly validated using bioinformatics analyses that overexpression of CypB is associated with poor prognosis in CRC progression and chemoresistance. Hence, we suggest a novel mechanism of chemoresistance caused by overexpressed CypB, which may help to develop new anti-cancer drugs. We also propose that CypB may be utilized as a predictive biomarker in CRC patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Transcriptome analysis of the zebrafish model of Diamond-Blackfan anemia from RPS19 deficiency via p53-dependent and -independent pathways.

    Directory of Open Access Journals (Sweden)

    Qiong Jia

    Full Text Available Diamond-Blackfan anemia (DBA is a rare inherited bone marrow failure syndrome that is characterized by pure red-cell aplasia and associated physical deformities. It has been proven that defects of ribosomal proteins can lead to this disease and that RPS19 is the most frequently mutated gene in DBA patients. Previous studies suggest that p53-dependent genes and pathways play important roles in RPS19-deficient embryos. However, whether there are other vital factors linked to DBA has not been fully clarified. In this study, we compared the whole genome RNA-Seq data of zebrafish embryos injected with RPS19 morpholino (RPS19 MO, RPS19 and p53 morpholino simultaneously (RPS19+p53 MO and control morpholino (control. We found that genes enriched in the functions of hematological systems, nervous system development and skeletal and muscular disorders had significant differential expression in RPS19 MO embryos compared with controls. Co-inhibition of p53 partially alleviates the abnormalities for RPS19-deficient embryos. However, the hematopoietic genes, which were down-regulated significantly in RPS19 MO embryos, were not completely recovered by the co-inhibition of p53. Furthermore, we identified the genome-wide p53-dependent and -independent genes and pathways. These results indicate that not only p53 family members but also other factors have important impacts on RPS19-deficient embryos. The detection of potential pathogenic genes and pathways provides us a new paradigm for future research on DBA, which is a systematic and complex hereditary disease.

  20. Involvement of p53 Mutation and Mismatch Repair Proteins Dysregulation in NNK-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Ying Shen

    2014-01-01

    Full Text Available Genome integrity is essential for normal cellular functions and cell survival. Its instability can cause genetic aberrations and is considered as a hallmark of most cancers. To investigate the carcinogenesis process induced by tobacco-specific carcinogen NNK, we studied the dynamic changes of two important protectors of genome integrity, p53 and MMR system, in malignant transformation of human bronchial epithelial cells after NNK exposure. Our results showed that the expression of MLH1, one of the important MMR proteins, was decreased early and maintained the downregulation during the transformation in a histone modification involved and DNA methylation-independent manner. Another MMR protein PMS2 also displayed a declined expression while being in a later stage of transformation. Moreover, we conducted p53 mutation analysis and revealed a mutation at codon 273 which led to the replacement of arginine by histidine. With the mutation, DNA damage-induced activation of p53 was significantly impaired. We further reintroduced the wild-type p53 into the transformed cells, and the malignant proliferation can be abrogated by inducing cell cycle arrest and apoptosis. These findings indicate that p53 and MMR system play an important role in the initiation and progression of NNK-induced transformation, and p53 could be a potential therapeutic target for tobacco-related cancers.

  1. Apoptosis-Dependent and Apoptosis-Independent Functions Bim in Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Liu, Junwei

    2004-01-01

    ... (death, survival, proliferation/division, etc). Our hypothesis is that, under normal, unstimulated conditions, with its apoptotic function blocked, the upregulated Bim in PCa cells play an apoptosis-independent function...

  2. Interaction between the Cockayne syndrome B and p53 proteins: implications for aging.

    Science.gov (United States)

    Frontini, Mattia; Proietti-De-Santis, Luca

    2012-02-01

    The CSB protein plays a role in the transcription coupled repair (TCR) branch of the nucleotide excision repair pathway. CSB is very often found mutated in Cockayne syndrome, a segmental progeroid genetic disease characterized by organ degeneration and growth failure. The tumor suppressor p53 plays a pivotal role in triggering senescence and apoptosis and suppressing tumorigenesis. Although p53 is very important to avoid cancer, its excessive activity can be detrimental for the lifespan of the organism. This is why a network of positive and negative feedback loops, which most likely evolved to fine-tune the activity of this tumor suppressor, modulate its induction and activation. Accordingly, an unbalanced p53 activity gives rise to premature aging or cancer. The physical interaction between CSB and p53 proteins has been known for more than a decade but, despite several hypotheses, nobody has been able to show the functional consequences of this interaction. In this review we resume recent advances towards a more comprehensive understanding of the critical role of this interaction in modulating p53’s levels and activity, therefore helping the system find a reasonable equilibrium between the beneficial and the detrimental effects of its activity. This crosstalk re-establishes the physiological balance towards cell proliferation and survival instead of towards cell death, after stressors of a broad nature. Accordingly, cells bearing mutations in the csb gene are unable to re-establish this physiological balance and to properly respond to some stress stimuli and undergo massive apoptosis.

  3. Gene expression patterns associated with p53 status in breast cancer

    International Nuclear Information System (INIS)

    Troester, Melissa A; Herschkowitz, Jason I; Oh, Daniel S; He, Xiaping; Hoadley, Katherine A; Barbier, Claire S; Perou, Charles M

    2006-01-01

    Breast cancer subtypes identified in genomic studies have different underlying genetic defects. Mutations in the tumor suppressor p53 occur more frequently in estrogen receptor (ER) negative, basal-like and HER2-amplified tumors than in luminal, ER positive tumors. Thus, because p53 mutation status is tightly linked to other characteristics of prognostic importance, it is difficult to identify p53's independent prognostic effects. The relation between p53 status and subtype can be better studied by combining data from primary tumors with data from isogenic cell line pairs (with and without p53 function). The p53-dependent gene expression signatures of four cell lines (MCF-7, ZR-75-1, and two immortalized human mammary epithelial cell lines) were identified by comparing p53-RNAi transduced cell lines to their parent cell lines. Cell lines were treated with vehicle only or doxorubicin to identify p53 responses in both non-induced and induced states. The cell line signatures were compared with p53-mutation associated genes in breast tumors. Each cell line displayed distinct patterns of p53-dependent gene expression, but cell type specific (basal vs. luminal) commonalities were evident. Further, a common gene expression signature associated with p53 loss across all four cell lines was identified. This signature showed overlap with the signature of p53 loss/mutation status in primary breast tumors. Moreover, the common cell-line tumor signature excluded genes that were breast cancer subtype-associated, but not downstream of p53. To validate the biological relevance of the common signature, we demonstrated that this gene set predicted relapse-free, disease-specific, and overall survival in independent test data. In the presence of breast cancer heterogeneity, experimental and biologically-based methods for assessing gene expression in relation to p53 status provide prognostic and biologically-relevant gene lists. Our biologically-based refinements excluded genes

  4. Recent progress of the study of p53 control mechanism by ionizing radiation

    International Nuclear Information System (INIS)

    Kawai, Hidehiko

    2004-01-01

    Reviewed are the recent findings on the control mechanism of function and activity of p53 as a response factor to stress of ionizing radiation. The p53 protein is controlled to be essentially inactive in cells under normal conditions and is activated by various stresses. The role of p53 as a stress-responding and tumor-suppressing factor in cells with damaged DNA is discussed in relation with its participation in G1/S and G2/M checkpoints, DNA repair, and apoptosis. The stress like radiation affects the control mechanisms of stability and function of p53 through modification of its N-terminal region (the activation domain of transcription), DNA binding region (core domain) and C-terminal region (domains of the nuclear export signaling, tetramer formation and its own regulation). MDM2 (mouse double minute 2) family, the most important regulatory factor of p53, forms a negative feedback cycle since the family is the target factor of p53 transcription and also suppressor of p53. MDM2 is regulated by phosphorylation and by interaction with itself or other factors like p300/CBP. Further studies on p53 are thus important in various fields as well as in radiation biology. (N.I.)

  5. Nitrous oxide discretely up-regulates nNOS and p53 in neonatal rat brain.

    Science.gov (United States)

    Cattano, D; Valleggi, S; Abramo, A; Forfori, F; Maze, M; Giunta, F

    2010-06-01

    Animal studies suggest that neuronal cell death often results from anesthetic administration during synaptogenesis. Volatile anesthetics are strongly involved in triggering neuronal apoptosis, whereas other inhalational agents (xenon) demonstrate protective effects. Nitrous oxide (N2O) has modest pro-apoptotic effects on its own and potent, synergistic toxic effects when combined with volatile agents. Recent findings suggest that, during periods of rapid brain development, the enhanced neurodegeneration triggered by anesthetic drugs may be caused by a compensatory increase in intracellular free calcium, a potent activator of neuronal nitric oxide synthase (nNOS). Anesthesia-induced neuro-apoptosis is also activated via the intrinsic and the extrinsic apoptotic pathways because both pathways involve p53, a key regulatory gene. The molecular events related to neuronal cell apoptosis are not completely understood. To gain further insight into the events underlying neuro-apoptosis, we analyzed the transcriptional consequences of N2O exposure on nNOS, iNOS and p53 mRNA levels. The study used 2 groups of postnatal day seven Sprague/Dawley rats (N=6 each) that were exposed for 120 minutes to air (75% N2, 25% O2) or N2O (75% N2O, 25% O2; this N2O concentration is commonly used to induce anesthesia and has been demonstrated to trigger neurodegeneration in postnatal day seven rats). Total RNA was isolated from each brain and expression analyses on iNOS and nNOS transcripts were performed using relative Real-Time C-reactive protein PCR (using G3PDH as a housekeeping gene). A semi-quantitative RT-PCR analysis was performed on the p53 transcript (using Ciclophylin A as a housekeeping gene). Statistical analysis (REST 2005) revealed a significant, 11-fold up-regulation (P=0.026) of the nNOS transcript but no significant changes in iNOS transcription. The p53 mRNA was up-regulated almost 2-fold (P=0.0002; Student's t-Test; GraphPad Prism 4.00) in N2O-treated samples relative to

  6. Flavonoids and Tannins from Smilax china L. Rhizome Induce Apoptosis Via Mitochondrial Pathway and MDM2-p53 Signaling in Human Lung Adenocarcinoma Cells.

    Science.gov (United States)

    Fu, San; Yang, Yanfang; Liu, Dan; Luo, Yan; Ye, Xiaochuan; Liu, Yanwen; Chen, Xin; Wang, Song; Wu, Hezhen; Wang, Yuhang; Hu, Qiwei; You, Pengtao

    2017-01-01

    In vitro evidence indicates that Smilax china L. rhizome (SCR) can inhibit cell proliferation. Therefore, in the present study, we analyzed the effects in vitro of SCR extracts on human lung adenocarcinoma A549 cells. Our results showed that A549 cell growth was inhibited in a dose- and time-dependent manner after treatment with SCR extracts. Total flavonoids and total tannins from SCR induced A549 apoptosis in a dose-dependent manner, as shown by our flow cytometry analysis, which was consistent with the alterations in nuclear morphology we observed. In addition, the total apoptotic rate induced by total tannins was higher than the rate induced by total flavonoids at the same dose. Cleaved-caspase-3 protein levels in A549 cells after treatment with total flavonoids or total tannins were increased in a dose-dependent manner, followed by the activation of caspase-8 and caspase-9, finally triggering to PARP cleavage. Furthermore, total flavonoids and total tannins increased the expression of Bax, decreased the expression of Bcl-2, and promoted cytochrome [Formula: see text] release. Moreover, MDM2 and p-MDM2 proteins were decreased, while p53 and p-p53 proteins were increased, both in a dose-dependent manner, after A549 treatment with total flavonoids and total tannins. Finally, cleaved-caspase-3 protein levels in the total flavonoids or total tannins-treated H1299 (p53 null) and p53-knockdown A549 cells were increased. Our results indicated that total flavonoids and total tannins from SCR exerted a remarkable effect in reducing A549 growth through their action on mitochondrial pathway and disruption of MDM2-p53 balance. Hence, our findings demonstrated a potential application of total flavonoids and total tannins from SCR in the treatment of human lung adenocarcinoma.

  7. Loss of P53 Function in Colon Cancer Cells Results in Increased Phosphocholine and Total Choline

    Directory of Open Access Journals (Sweden)

    Noriko Mori

    2004-10-01

    Full Text Available Mutations in the p53 gene are the most frequently observed genetic lesions in human cancers. Human cancers that contain a p53 mutation are more aggressive, more apt to metastasize, and more often fatal. p53 controls numerous downstream targets that can influence various outcomes such as apoptosis, growth arrest, and DNA repair. Based on previous observations using 1H magnetic resonance spectroscopy (MRS, we have identified choline phospholipid metabolite intensities typical of increased malignancy. Here we have used 1H MRS to characterize the choline phospholipid metabolite levels of p53+/+ and p53−/– cells, and demonstrated that loss of p53 function results in increased phosphocholine and total choline. These data suggest that the increased malignancy of cancer cells resulting from loss of p53 may be mediated, in part, through the choline phospholipid pathway.

  8. Notch1/3 and p53/p21 are a potential therapeutic target for APS-induced apoptosis in non-small cell lung carcinoma cell lines.

    Science.gov (United States)

    Zhang, Jing-Xi; Han, Yi-Ping; Bai, Chong; Li, Qiang

    2015-01-01

    Previous studies have shown that Astragalus polysaccharide (APS) can be applied to anti-cancer. However, the mechanism by which APS mediate this effect is unclear. In the present study, APS-mediated NSCLC cell apoptosis was investigated through the regulation of the notch signaling pathway. The cell viability was detected by the CCK8 assay. The mRNA and protein expression of notch1/3 and tumor suppressors were analyzed by RT-PCR and western blotting, respectively. The mRNA and protein of notch1 and notch3 were significantly up-regulated in tumor tissues as compared to non-tumor adjacent tissues. Treatment of human NSCLC cells with APS induced cell death in a dose-and time-dependent manner by using CCK8 assay. The mRNA and protein expression of notch1 and notch3 were significantly lower in NSCLC cells with APS treatment than that in control group. Moreover, western blotting analysis showed that treatment of H460 cells with APS significantly increased the pro-apoptotic Bax and caspase 8 levels, decreased the anti-apoptotic Bcl-2 level. Furthermore, p53, p21 and p16 were obviously up-regulated by APS treatment in H460 cell. This study demonstrated that APS-treated could inhibit proliferation and promote cell apoptosis, at least partially, through suppressing the expression of notch1 and notch3 and up-regulating the expression of tumor suppressors in H460 NSCLC cell lines.

  9. p53 regulates the repair of DNA double-strand breaks by both homologous and non-homologous recombination

    International Nuclear Information System (INIS)

    Willers, H.; Powell, S.N.; Dahm-Daphi, J.

    2003-01-01

    Full text: p53 is known to suppress spontaneous homologous recombination (HR), while its role in non-homologous recombination (NHR) remains to be clarified. Here, we sought to determine the influence of p53 on the repair of chromosomal double-strand breaks (DSBs) by HR or NHR using specially designed recombination substrates that integrate into the genome. Isogenic mouse fibroblast pairs with or without expression of exogenous p53 protein were utilized. A reporter plasmid carrying a mutated XGPRT gene was chromosomally integrated and DSBs were generated within the plasmid by the I-SceI endonuclease. Subsequent homology-mediated repair from an episomal donor resulted in XGPRT reconstitution and cellular resistance to a selection antibiotic. Analogously, the repair of chromosomal I-SceI breaks by NHR using another novel reporter plasmid restored XGPRT translation. For p53-null cells, the mean frequency of I-SceI break repair via HR was 5.5 x 10 -4 . The p53-Val135 mutant, which previously has been shown to suppress spontaneous HR by 14-fold employing the same cell system and reporter gene, only caused a 2- to 3-fold suppression of break-induced HR. In contrast, a dramatic effect of p53 on repair via NHR was found. Preliminary sequence analysis indicated that there was at least a 1000-fold reduction of illegitimate repair events resulting in loss of sequence at the break sites. The observed effects were mediated by p53 mutants defective in regulation of the cell-cycle and apoptosis. The main findings were: (1) p53 virtually blocked illegitimate rejoining of chromosomal ends. (2) The suppression of homologous DSB repair was less pronounced than the inhibition of spontaneous HR. We hypothesize that p53 allows to a certain extent error-free homology-dependent repair to proceed, while blocking error-prone NHR. The data support and extent a previous model, in which p53 maintains genomic stability by regulating recombination independently of its transactivation function

  10. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression.

    Directory of Open Access Journals (Sweden)

    Alejo Efeyan

    Full Text Available Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.

  11. CD95 is part of a let-7/p53/miR-34 regulatory network.

    Directory of Open Access Journals (Sweden)

    Annika Hau

    Full Text Available The death receptor CD95 (APO-1/Fas mediates apoptosis induction upon ligation by its cognate ligand CD95L. Two types of CD95 signaling pathways have been identified, which are characterized by the absence (Type I or presence (Type II of mitochondrial involvement. Micro(miRNAs are small noncoding RNAs that negatively regulate gene expression. They are important regulators of differentiation processes and are found frequently deregulated in many human cancers. We recently showed that Type I cells express less of the differentiation marker miRNA let-7 and, hence, likely represent more advanced tumor cells than the let-7 high expressing Type II cells. We have now identified miR-34a as a selective marker for cells that are sensitive to CD95-mediated apoptosis. Both CD95 and miR-34a are p53 target genes, and consequently, both the sensitivity of cancer cells to CD95-mediated apoptosis and the ability to respond to p53 mediated DNA genotoxic stress are linked. Interestingly, while miR-34a was found to positively correlate with the ability of cells to respond to genotoxic stress, let-7 was negatively correlated. The expression level of CD95 inversely correlated with the expression of let-7 suggesting regulation of let-7 expression by CD95. To test a link between p53 and miR-34a, we altered the expression of CD95. This affected the ability of cells to activate p53 and to regulate miR-34a. Our data point to a novel regulatory network comprising p53, CD95, let-7, and miR-34a that affects cancer cell survival, differentiation, and sensitivity to apoptotic signals. The possible relevance of this regulatory network for cancer stem cells is discussed.

  12. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    Science.gov (United States)

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  13. Characterization and role of p53 family members in the symbiont-induced morphogenesis of the Euprymna scolopes light organ.

    Science.gov (United States)

    Goodson, Michael S; Crookes-Goodson, Wendy J; Kimbell, Jennifer R; McFall-Ngai, Margaret J

    2006-08-01

    Within hours of hatching, the squid Euprymna scolopes forms a specific light organ symbiosis with the marine luminous bacterium Vibrio fischeri. Interactions with the symbiont result in the loss of a complex ciliated epithelium dedicated to promoting colonization of host tissue, and some or all of this loss is due to widespread, symbiont-induced apoptosis. Members of the p53 family, including p53, p63, and p73, are conserved across broad phyletic lines and p63 is thought to be the ancestral gene. These proteins have been shown to induce apoptosis and developmental morphogenesis. In this study, we characterized p63-like transcripts from mRNA isolated from the symbiotic tissues of E. scolopes and described their role in symbiont-induced morphogenesis. Using degenerate RT-PCR and RACE PCR, we identified two p63-like transcripts encoding proteins of 431 and 567 amino acids. These transcripts shared identical nucleotides where they overlapped, suggesting that they are splice variants of the same gene. Immunocytochemistry and Western blots using an antibody specific for E. scolopes suggested that the p53 family members are activated in cells of the symbiont-harvesting structures of the symbiotic light organ. We propose that once the symbiosis is initiated, a symbiont-induced signal activates p53 family members, inducing apoptosis and developmental morphogenesis of the light organ.

  14. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  15. p53-independent structure-activity relationships of 3-ring mesogenic compounds' activity as cytotoxic effects against human non-small cell lung cancer lines.

    Science.gov (United States)

    Fukushi, Saori; Yoshino, Hironori; Yoshizawa, Atsushi; Kashiwakura, Ikuo

    2016-07-25

    We recently demonstrated the cytotoxicity of liquid crystal precursors (hereafter referred to as "mesogenic compounds") in the human non-small cell lung cancer (NSCLC) cell line A549 which carry wild-type p53. p53 mutations are observed in 50 % of NSCLC and contribute to their resistance to chemotherapy. To develop more effective and cancer-specific agents, in this study, we investigated the structure-activity relationships of mesogenic compounds with cytotoxic effects against multiple NSCLC cells. The pharmacological effects of mesogenic compounds were examined in human NSCLC cells (A549, LU99, EBC-1, and H1299) and normal WI-38 human fibroblast. Analyses of the cell cycle, cell-death induction, and capsases expression were performed. The 3-ring compounds possessing terminal alkyl and hydroxyl groups (compounds C1-C5) showed cytotoxicity in NSCLC cells regardless of the p53 status. The compounds C1 and C3, which possess a pyrimidine at the center of the core, induced G2/M arrest, while the compounds without a pyrimidine (C2, C4, and C5) caused G1 arrest; all compounds produced caspase-mediated cell death. These events occurred in a p53-independent manner. Furthermore, it was suggested that compounds induced cell death through p53-independent DNA damage-signaling pathway. Compounds C2, C4, and C5 did not show strong cytotoxicity in WI-38 cells, whereas C1 and C3 did. However, the cytotoxicity of compound C1 against WI-38 cells was improved by modulating the terminal alkyl chain lengths of the compound. We showed the p53-indepdent structure-activity relationships of mesogenic compounds related to the cytotoxic effects. These structure-activity relationships will be helpful in the development of more effective and cancer-specific agents.

  16. The quiescent and mitogen stimulated peripheral blood mononuclear cells after gamma irradiation and their P53, P21 and H2AX expression

    International Nuclear Information System (INIS)

    Vilasova, Z.; Vavrova, J.; Sinkorova, Z.; Tichy, A.; Oesterreicher, J.; Rezacova, M.; Zoelzer, F.

    2008-01-01

    The aim of this study was to compare reaction of quiescent and proliferating PHA (mitogenic lectin phytohemagglutinin)-stimulated human peripheral blood mononuclear cells (PBMCs) to γ-irradiation and analyze changes of proteins related to repair if DNA damage and apoptosis, such as γH2A.X, p53 and its phosphorylations on serine 15 and 392, and p21. Protein changes induced by radiation are different in quiescent and stimulated PBMCs. W e analyzed changes in proteins related to DNA damage repair and apoptosis using the western blot method in quiescent and stimulated PBMCs. Western blot technique can detect γH2A.X increase only at later times, when the phosphorylation of H2A.X is related to the onset of apoptosis (24-72 h after irradiation by the dose of 4 Gy). The level of H2A.X phosphorylation increased after stimulation of PBMC by PHA (72 h, 10 μg/ml) and as shown here it was detectable by western blot analysis. The increase in γH2A.X that we detected by western blot 4 h after irradiation of stimulated lymphocytes was dose dependent. It can be concluded that measurement of γH2A.X during the first hours after the irradiation is a good marker of the received dose of radiation. We compared the dynamics of p53 induction after irradiation by IR in both quiescent and stimulated lymphocytes. p53 increase was observed only in stimulated lymphocytes, as was p53 phosphorylation at serines-392 and -15. The increase in the amount of p53 was not dose-dependent 4 h after the irradiation. On the other hand, phosphorylation of p53 at serine-15 analyzed 4 h after the irradiation is dose-dependent over the studied dose range. Despite the fact that p53 was not detected in quiescent lymphocytes and a reaction to irradiation was not observed either, p21 levels increased after irradiation in both quiescent and stimulated lymphocytes in a dose-dependent manner. IR induces phosphorylation of p53 at both serines-15 and -392 in PHA stimulated human lymphocytes. However

  17. Antiproliferative and Apoptotic Effect of Dendrosomal Curcumin Nanoformulation in P53 Mutant and Wide-Type Cancer Cell Lines.

    Science.gov (United States)

    Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid

    2017-01-01

    The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Enhanced p53 gene transfer to human ovarian cancer cells using the cationic nonviral vector, DDC.

    Science.gov (United States)

    Kim, Chong-Kook; Choi, Eun-Jeong; Choi, Sung-Hee; Park, Jeong-Sook; Haider, Khawaja Hasnain; Ahn, Woong Shick

    2003-08-01

    Previously we have formulated a new cationic liposome, DDC, composed of dioleoyltrimethylamino propane (DOTAP), 1,2-dioeoyl-3-phosphophatidylethanolamine (DOPE), and cholesterol (Chol), and it efficiently delivered plasmid DNA into ovarian cancer cells. Mutations in the p53 tumor suppressor gene are the most common molecular genetic abnormalities to be described in ovarian cancer. However, there has been so far no report of nonviral vector-mediated p53 gene deliveries in ovarian cancer. In this study, wild-type p53 DNA was transfected into the ovarian cancer cells, using the DDC as a nonviral vector and the expression and activity of p53 gene were evaluated both in vitro and in vivo. DDC liposomes were prepared by mixing DOTAP:DOPE:Chol in a 1:0.7:0.3 molar ratio using the extrusion method. Plasmid DNA (pp53-EGFP) and DDC complexes were transfected into ovarian carcinoma cells (OVCAR-3 cells) and gene expression was determined by reverse transcription-polymerase chain reaction and Western blot analysis. The cellular growth inhibition and apoptosis of DDC-mediated p53 transfection were assessed by trypan blue exclusion assay and annexin-V staining, respectively. The OVCAR-3 cells treated with DDC/pp53-EGFP complexes were inoculated into female balb/c nude mice and tumor growth was observed. The transfection of liposome-complexed p53 gene resulted in a high level of wild-type p53 mRNA and protein expressions in OVCAR-3 cells. In vitro cell growth assay showed growth inhibition of cancer cells transfected with DDC/pp53-EGFP complexes compared with the control cells. The reestablishment of wild-type p53 function in ovarian cancer cells restored the apoptotic pathway. Following the inoculation of DDC/pp53-EGFP complexes, the volumes of tumors in nude mice were significantly reduced more than 60% compared to the control group. The DDC-mediated p53 DNA delivery may have the potential for clinical application as nonviral vector-mediated ovarian cancer therapy due to its

  19. Low temperature protects mammalian cells from apoptosis initiated by various stimuli in vitro

    International Nuclear Information System (INIS)

    Sakurai, Toshiharu; Itoh, Katsuhiko; Liu Yu; Higashitsuji, Hiroaki; Sumitomo, Yasuhiko; Sakamaki, Kazuhiro; Fujita, Jun

    2005-01-01

    Mild hypothermia shows protective effects on patients with brain damage and cardiac arrest. To elucidate the molecular mechanisms underlying these effects, we examined the effects of low temperature (32 deg. C) on cells exposed to a variety of stress in vitro. We found that 32 deg. C suppressed induction of apoptosis by cytotoxic stimuli such as adriamycin, etoposide, thapsigargin, NaCl, H 2 O 2 , and anti-Fas antibody. In adriamycin-treated BALB/3T3 cells, the down-shift in temperature from 37 deg. C to 32 deg. C increased the Bcl-xL protein level and decreased the mRNA level of Puma and mitochondrial translocation of Bax, suppressing caspase-9-mediated apoptosis. Furthermore, the protein level and stability of p53 were decreased, and its nuclear export was increased concomitant with Mdm2 mRNA upregulation. The low temperature effect was not observed in p53 -/- /Mdm2 -/- mouse embryonic fibroblasts, suggesting that the effect is mediated by suppression of the p53 pathway. In contrast, while thapsigargin-induced apoptosis was suppressed by the low temperature, no effect on the p53 protein level was observed. Furthermore, the survival rate of p53 -/- /Mdm2 -/- cells exposed to thapsigargin was increased when cultured at 32 deg. C compared with 37 deg. C. In conclusion, mild hypothermia protects cells from a variety of stress by p53-dependent and p53-independent mechanisms

  20. The effects of combining ionizing radiation and adenoviral p53 therapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Li Jianhua; Lax, Stuart A.; Kim, John; Klamut, Henry; Liu Feifei

    1999-01-01

    Purpose: Nasopharyngeal carcinoma (NPC) is a malignant disease of the head/neck region, with a 5-year survival level of approximately 65%. To explore gene therapy as a novel approach which might improve outcome, we have shown previously that introduction of human recombinant wild-type p53 mediated by the adenoviral vector (Ad5CMV-p53) was cytotoxic in two human nasopharyngeal carcinoma (NPC) cell lines (CNE-1 and CNE-2Z). The current work was designed to determine whether this strategy, combined with ionizing radiation (XRT), was more effective than either treatment alone. Methods and Materials: CNE-1, CNE-2Z, and a normal human nasopharyngeal fibroblast strain, KS1, were infected with 2- and 6-plaque-forming units (pfu)/cell of Ad5CMV-p53, respectively. These doses were iso-effective for β-galactosidase activity in the CNE-1 and CNE-2Z cells. XRT was administered 24 h post-infection, and Western blot analyses were conducted for p53, p21 WAF1/CIP1 , bax, and bcl-2 2 days after XRT. Cell survival was assessed using a clonogenic assay. Presence of DNA ladders reflecting apoptosis was detected using DNA agarose gel electrophoresis, and cell cycle was analyzed using flow cytometry. Results: The combination of Ad5CMV-p53 plus XRT (2, 4, and 6 Gy) resulted in an approximately 1-log greater level of cytotoxicity compared to that observed with XRT alone for both NPC cell lines. The two modalities appear to be interacting in a synergistic manner in cancer cells, but not in KS1 fibroblasts. XRT alone stimulated minimal p53 expression in control cells; Ad5CMV-p53 alone induced significant recombinant p53 expression, which was not further enhanced by the addition of XRT. Similar observations were made for p21 WAF1/CIP1 expression. No changes were observed for bax or bcl-2 expression with any of these treatments. Apoptosis was induced following 4 Gy of XRT alone, but was observed after only 2 Gy when combined with Ad5CMV-p53. Cell cycle analysis indicated that Ad5CMV-p53

  1. Combinatorial treatment with anacardic acid followed by TRAIL augments induction of apoptosis in TRAIL resistant cancer cells by the regulation of p53, MAPK and NFκβ pathways.

    Science.gov (United States)

    Harsha Raj, M; Yashaswini, B; Rössler, Jochen; Salimath, Bharathi P

    2016-05-01

    TRAIL, an apoptosis inducing cytokine currently in phase II clinical trial, was investigated for its capability to induce apoptosis in six different human tumor cell lines out of which three cell lines showed resistance to TRAIL induced apoptosis. To investigate whether Anacardic acid (A1) an active component of Anacardium occidentale can sensitize the resistant cell lines to TRAIL induced apoptosis, we treated the resistant cells with suboptimal concentration of A1 and showed that it is a potent enhancer of TRAIL induced apoptosis which up-regulates the expression of both DR4 and DR5 receptors, which has been observed in the cellular, protein and mRNA levels. The death receptors upregulation consequent to A1 treatment was corroborated by the activation of p53 as well as phosphorylation of p38 and JNK MAP kinases and concomitant inactivation of NFκβ and ERK signaling cascades. Also, A1 modulated the expression of key apoptotic players like Bax, Bcl-2 and CAD along with the abatement of tumor angiogenesis in vivo in EAT mouse model. Thus, post A1 treatment the TRAIL resistant cells turned into TRAIL sensitive cells. Hence our results demonstrate that A1 can synergize TRAIL induced apoptosis through the upregulation of death receptors and downregulation of anti-apoptotic proteins in cancer context.

  2. The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer.

    Directory of Open Access Journals (Sweden)

    Tingxiu Xiang

    Full Text Available Breast cancer (BrCa is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1 is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear.We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90% and 53 of 66 (80% primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90S-expressed cells.UCHL1 exerts its tumor suppressive functions by inducing G0/G1cell cycle arrest and apoptosis in breast tumorigenesis, requiring its deubiquitinase activity. Its frequent silencing by promoter CpG methylation may serve as a potential tumor marker for breast cancer.

  3. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.

    Science.gov (United States)

    Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine

    2009-06-17

    P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  4. Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage

    DEFF Research Database (Denmark)

    Savorani, Cecilia; Manfé, Valentina; Biskup, Edyta

    2015-01-01

    (CTCL), a disease that is progressive, chemoresistant and refractory to treatment. We tested the effect of ellipticine in three cell lines with different p53 status: MyLa2000 (p53(wt/wt)), SeAx ((G245S)p53) and Hut-78 ((R196Stop)p53). Ellipticine caused apoptosis in MyLa2000 and SeAx and restored...... the transcriptional activity of (G245S)p53 in SeAx. However, p53 siRNA knockdown experiments revealed that p53 was not required for ellipticine-induced apoptosis in CTCL. The lipophilic antioxidant α-tocopherol inhibited ellipticine-dependent apoptosis and we linked the apoptotic response to the oxidative DNA damage....... Our results provide evidence that ellipticine-induced apoptosis is exerted through DNA damage and does not require p53 activation in T-cell lymphoma....

  5. The role of p53 in lung macrophages following exposure to a panel of manufactured nanomaterials

    DEFF Research Database (Denmark)

    Belade, Esther; Chrusciel, Sandra; Armand, Lucie

    2015-01-01

    is a key transcription factor implicated in cellular defence and reparative responses to various stress factors. Additionally, p53 has been implicated in cellular responses following exposure to some MNMs. Here, the role of the MNM mediated p53 induction and activation and its downstream effects following...... exposure to five well-characterised materials [namely two types of TiO2, two carbon black (CB), and one single-walled carbon nanotube (SWCNT)] were investigated. MNM internalisation, cellular viability, p53 protein induction and activation, oxidative stress, inflammation and apoptosis were measured...... in murine cell line and primary pulmonary macrophage models. It was observed that p53 was implicated in the biological responses to MNMs, with oxidative stress associated with p53 activation (only following exposure to the SWCNT). We demonstrate that p53 acted as an antioxidant and anti...

  6. p53-Mediated Molecular Control of Autophagy in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Maria Mrakovcic

    2018-03-01

    Full Text Available Autophagy is an indispensable mechanism of the eukaryotic cell, facilitating the removal and renewal of cellular components and thereby balancing the cell’s energy consumption and homeostasis. Deregulation of autophagy is now regarded as one of the characteristic key features contributing to the development of tumors. In recent years, the suppression of autophagy in combination with chemotherapeutic treatment has been approached as a novel therapy in cancer treatment. However, depending on the type of cancer and context, interference with the autophagic machinery can either promote or disrupt tumorigenesis. Therefore, disclosure of the major signaling pathways that regulate autophagy and control tumorigenesis is crucial. To date, several tumor suppressor proteins and oncogenes have emerged as eminent regulators of autophagy whose depletion or mutation favor tumor formation. The mammalian cell “janitor” p53 belongs to one of these tumor suppressors that are most commonly mutated in human tumors. Experimental evidence over the last decade convincingly reports that p53 can act as either an activator or an inhibitor of autophagy depending on its subcellular localization and its mode of action. This finding gains particular significance as p53 deficiency or mutant variants of p53 that accumulate in the cytoplasm of tumor cells enable activation of autophagy. Accordingly, we recently identified p53 as a molecular hub that regulates autophagy and apoptosis in histone deacetylase inhibitor-treated uterine sarcoma cells. In light of this novel experimental evidence, in this review, we focus on p53 signaling as a mediator of the autophagic pathway in tumor cells.

  7. SIGNALING TO THE P53 TUMOR SUPPRESSOR THROUGH PATHWAYS ACTIVATED BY GENOTOXIC AND NON-GENOTOXIC STRESSES.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2002-07-01

    The p53 tumor suppressor is a tetrameric transcription factor that is post-translational modified at {approx}18 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review the posttranslational modifications to p53 and the pathways that produce them in response to both genotoxic and non-genotoxic stresses.

  8. Contribution to the investigation of the p53 in vivo and in vitro trans-activation activity

    International Nuclear Information System (INIS)

    Meiller, A.

    2004-03-01

    Among the body's defence mechanisms, the programmed cellular death or apoptosis is an important safeguard way which allows the body to get rid of the injured cells before they acquire steady genetic modifications leading to an anarchistic multiplication. As p53 tumor suppressor gene plays a predominant role within this process, this research report first presents the p53 protein, its structure, its activities as a transcription factor, its modifications and the implications on its functional activities, its biological activities, and describes the p53 intracellular rate regulation and the use of this protein in radiology, particularly in 'in vivo' investigations on irradiated mice. It also presents the p53 family. Then, the author reports experimental investigations on possible other genes which could be trans-activated by p53. A gene is identified as a new target gene. She also demonstrates a new p53 activation path induced by another member of the p53 family, the p73 alpha protein

  9. p53 immunostaining is correlated with reduced survival and is not correlated with gene mutations in resected pulmonary large cell carcinomas

    Directory of Open Access Journals (Sweden)

    L.M. Massoni Neto

    2007-08-01

    Full Text Available Malignancy of pulmonary large cell carcinomas (LCC increases from classic LCC through LCC with neuroendocrine morphology (LCCNM to large cell neuroendocrine carcinomas (LCNEC. However, the histological classification has sometimes proved to be difficult. Because the malignancy of LCC is highly dependent on proteins with functions in the cell cycle, DNA repair, and apoptosis, p53 has been targeted as a potentially useful biological marker. p53 mutations in lung cancers have been shown to result in expression and protein expression also occurs in the absence of mutations. To validate the importance of both p53 protein expression (by immunostaining and p53 gene mutations in lung LCC (by PCR-single strand conformational polymorphism analysis of exons 5, 6, 7, and 8 and to study their relationships with clinical factors and sub-classification we investigated the correlation of p53 abnormalities in 15 patients with LCC (5 classic LCC, 5 LCNEC, and 5 LCCNM who had undergone resection with curative intent. Of these patients, 5/15 expressed p53 and none had mutant p53 sequences. There was a negative survival correlation with positive p53 immunostaining (P = 0.05. After adjustment for stage, age, gender, chemotherapy, radiotherapy, and histological subtypes by multivariate analysis, p53 expression had an independent impact on survival. The present study indicates that p53 assessment may provide an objective marker for the prognosis of LCC irrespective of morphological variants and suggests that p53 expression is important for outcome prediction in patients with the early stages of LCC. The results reported here should be considered to be initial results because tumors from only 15 patients were studied: 5 each from LCC, LCNEC and LCCNM. This was due to the rarity of these specific diseases.

  10. PKI 166 induced redox signalling and apoptosis through activation of p53, MAP kinase and caspase pathway in epidermoid carcinoma.

    Science.gov (United States)

    Das, Subhasis; Dey, Kaushik Kumar; Bharti, Rashmi; MaitiChoudhury, Sujata; Maiti, Sukumar; Mandal, Mahitosh

    2012-01-01

    Cellular redox changes have emerged as a pivotal and proximal event in cancer. PKI 166 is used to determine the effects of redox sensitive inhibition of EGFR, metastasis and apoptosis in epidermoid carcinoma. Cytotoxicity study of PKI 166 (IC50 1.0 microM) treated A431 cells were performed by MTT assay for 48 and 72 hrs. Morphological analysis of PKI 166 treated A431 cells for 48 hrs. revealed the cell shrinkage, loss of filopodia and lamellipodia by phase contrast and SEM images in dose dependent manner. It has cytotoxic effects through inhibiting cellular proliferation, leads to the induction of apoptosis, as increased fraction of sub-G1 phase of the cell cycle, chromatin condensation and DNA ladder. It inhibited cyclin-D1 and cyclin-E expression and induced p53, p21 expression in dose dependent manner. Consequently, an imbalance of Bax/Bcl-2 ratio triggered caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favour of apoptosis. PKI 166 treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. It inhibited some metastatic properties of A431 cells supressing colony formation by soft agar assay and inhibition of MMP 9 activity by gelatin zymography and western blot analysis. PKI 166 inhibited growth factor induced phosphorylation of EGFR, Akt, MAPK, JNK and colony formation in A431 cells. Thus the inhibition of proliferation was associated with redox regulation of the caspase cascade, EGFR, Akt/PI3K, MAPK/ ERK and JNK pathway. On the other hand, increased antioxidant activity leads to decreased ROS generation inhibit the anti-proliferative and apoptotic properties of PKI 166 in A431 cells. These observations indicated PKI 166 induced redox signalling dependent inhibition of cell proliferation, metastatic properties and induction of apoptotic potential in epidermoid carcinoma.

  11. Apoptosis-Dependent and Apoptosis-Independent Functions of Bim in Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Tang, Dean; Liu, Junwei

    2005-01-01

    ... (death, survival, proliferation/division, etc.). Our hypothesis is that, under normal, unstimulated conditions, with its apoptotic function blocked, the upregulated Bim in PCa cells plays an apoptosis-independent function...

  12. Characterization and Molecular Mechanism of Peptide-Conjugated Gold Nanoparticle Inhibiting p53-HDM2 Interaction in Retinoblastoma

    Directory of Open Access Journals (Sweden)

    Sushma Kalmodia

    2017-12-01

    Full Text Available Inhibition of the interaction between p53 and HDM2 is an effective therapeutic strategy in cancers that harbor a wild-type p53 protein such as retinoblastoma (RB. Nanoparticle-based delivery of therapeutic molecules has been shown to be advantageous in localized delivery, including to the eye, by overcoming ocular barriers. In this study, we utilized biocompatible gold nanoparticles (GNPs to deliver anti-HDM2 peptide to RB cells. Characterization studies suggested that GNP-HDM2 was stable in biologically relevant solvents and had optimal cellular internalization capability, the primary requirement of any therapeutic molecule. GNP-HDM2 treatment in RB cells in vitro suggested that they function by arresting RB cells at the G2M phase of the cell cycle and initiating apoptosis. Analysis of molecular changes in GNP-HDM2-treated cells by qRT-PCR and western blotting revealed that the p53 protein was upregulated; however, transactivation of its downstream targets was minimal, except for the PUMA-BCl2 and Bax axis. Global gene expression and in silico bioinformatic analysis of GNP-HDM2-treated cells suggested that upregulation of p53 might presumptively mediate apoptosis through the induction of p53-inducible miRNAs.

  13. Long Non-coding RNA, PANDA, Contributes to the Stabilization of p53 Tumor Suppressor Protein.

    Science.gov (United States)

    Kotake, Yojiro; Kitagawa, Kyoko; Ohhata, Tatsuya; Sakai, Satoshi; Uchida, Chiharu; Niida, Hiroyuki; Naemura, Madoka; Kitagawa, Masatoshi

    2016-04-01

    P21-associated noncoding RNA DNA damage-activated (PANDA) is induced in response to DNA damage and represses apoptosis by inhibiting the function of nuclear transcription factor Y subunit alpha (NF-YA) transcription factor. Herein, we report that PANDA affects regulation of p53 tumor-suppressor protein. U2OS cells were transfected with PANDA siRNAs. At 72 h post-transfection, cells were subjected to immunoblotting and quantitative reverse transcription-polymerase chain reaction. Depletion of PANDA was associated with decreased levels of p53 protein, but not p53 mRNA. The stability of p53 protein was markedly reduced by PANDA silencing. Degradation of p53 protein by silencing PANDA was prevented by treatment of MG132, a proteasome inhibitor. Moreover, depletion of PANDA prevented accumulation of p53 protein, as a result of DNA damage, induced by the genotoxic agent etoposide. These results suggest that PANDA stabilizes p53 protein in response to DNA damage, and provide new insight into the regulatory mechanisms of p53. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Loss of ribosomal protein L11 affects zebrafish embryonic development through a p53-dependent apoptotic response.

    Directory of Open Access Journals (Sweden)

    Anirban Chakraborty

    Full Text Available Ribosome is responsible for protein synthesis in all organisms and ribosomal proteins (RPs play important roles in the formation of a functional ribosome. L11 was recently shown to regulate p53 activity through a direct binding with MDM2 and abrogating the MDM2-induced p53 degradation in response to ribosomal stress. However, the studies were performed in cell lines and the significance of this tumor suppressor function of L11 has yet to be explored in animal models. To investigate the effects of the deletion of L11 and its physiological relevance to p53 activity, we knocked down the rpl11 gene in zebrafish and analyzed the p53 response. Contrary to the cell line-based results, our data indicate that an L11 deficiency in a model organism activates the p53 pathway. The L11-deficient embryos (morphants displayed developmental abnormalities primarily in the brain, leading to embryonic lethality within 6-7 days post fertilization. Extensive apoptosis was observed in the head region of the morphants, thus correlating the morphological defects with apparent cell death. A decrease in total abundance of genes involved in neural patterning of the brain was observed in the morphants, suggesting a reduction in neural progenitor cells. Upregulation of the genes involved in the p53 pathway were observed in the morphants. Simultaneous knockdown of the p53 gene rescued the developmental defects and apoptosis in the morphants. These results suggest that ribosomal dysfunction due to the loss of L11 activates a p53-dependent checkpoint response to prevent improper embryonic development.

  15. The different radiation response and radiation-induced bystander effects in colorectal carcinoma cells differing in p53 status

    International Nuclear Information System (INIS)

    Widel, Maria; Lalik, Anna; Krzywon, Aleksandra; Poleszczuk, Jan; Fujarewicz, Krzysztof; Rzeszowska-Wolny, Joanna

    2015-01-01

    Highlights: • We tested radiation response and bystander effect on HCT116p53+/+ and p53−/− cells. • The p53+/+ cells developed premature senescence in exposed and bystander neighbors. • Directly exposed and bystander p53−/− cells died profoundly through apoptosis. • Interleukins 6 and 8 were differently generated by both cell lines. • NFκB path was activated mainly in p53+/+ hit cells, in p53 −/− in bystanders only. - Abstract: Radiation-induced bystander effect, appearing as different biological changes in cells that are not directly exposed to ionizing radiation but are under the influence of molecular signals secreted by irradiated neighbors, have recently attracted considerable interest due to their possible implication for radiotherapy. However, various cells present diverse radiosensitivity and bystander responses that depend, inter alia, on genetic status including TP53, the gene controlling the cell cycle, DNA repair and apoptosis. Here we compared the ionizing radiation and bystander responses of human colorectal carcinoma HCT116 cells with wild type or knockout TP53 using a transwell co-culture system. The viability of exposed to X-rays (0–8 Gy) and bystander cells of both lines showed a roughly comparable decline with increasing dose. The frequency of micronuclei was also comparable at lower doses but at higher increased considerably, especially in bystander TP53-/- cells. Moreover, the TP53-/- cells showed a significantly elevated frequency of apoptosis, while TP53+/+ counterparts expressed high level of senescence. The cross-matched experiments where irradiated cells of one line were co-cultured with non-irradiated cells of opposite line show that both cell lines were also able to induce bystander effects in their counterparts, however different endpoints revealed with different strength. Potential mediators of bystander effects, IL-6 and IL-8, were also generated differently in both lines. The knockout cells secreted IL-6 at

  16. The different radiation response and radiation-induced bystander effects in colorectal carcinoma cells differing in p53 status

    Energy Technology Data Exchange (ETDEWEB)

    Widel, Maria, E-mail: maria.widel@polsl.pl [Biosystems Group, Institute of Automatic Control, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice (Poland); Lalik, Anna; Krzywon, Aleksandra [Biosystems Group, Institute of Automatic Control, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice (Poland); Poleszczuk, Jan [College of Inter-faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 93 Zwirki i Wigury Street, 02-089 Warsaw (Poland); Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida (United States); Fujarewicz, Krzysztof; Rzeszowska-Wolny, Joanna [Biosystems Group, Institute of Automatic Control, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice (Poland)

    2015-08-15

    Highlights: • We tested radiation response and bystander effect on HCT116p53+/+ and p53−/− cells. • The p53+/+ cells developed premature senescence in exposed and bystander neighbors. • Directly exposed and bystander p53−/− cells died profoundly through apoptosis. • Interleukins 6 and 8 were differently generated by both cell lines. • NFκB path was activated mainly in p53+/+ hit cells, in p53 −/− in bystanders only. - Abstract: Radiation-induced bystander effect, appearing as different biological changes in cells that are not directly exposed to ionizing radiation but are under the influence of molecular signals secreted by irradiated neighbors, have recently attracted considerable interest due to their possible implication for radiotherapy. However, various cells present diverse radiosensitivity and bystander responses that depend, inter alia, on genetic status including TP53, the gene controlling the cell cycle, DNA repair and apoptosis. Here we compared the ionizing radiation and bystander responses of human colorectal carcinoma HCT116 cells with wild type or knockout TP53 using a transwell co-culture system. The viability of exposed to X-rays (0–8 Gy) and bystander cells of both lines showed a roughly comparable decline with increasing dose. The frequency of micronuclei was also comparable at lower doses but at higher increased considerably, especially in bystander TP53-/- cells. Moreover, the TP53-/- cells showed a significantly elevated frequency of apoptosis, while TP53+/+ counterparts expressed high level of senescence. The cross-matched experiments where irradiated cells of one line were co-cultured with non-irradiated cells of opposite line show that both cell lines were also able to induce bystander effects in their counterparts, however different endpoints revealed with different strength. Potential mediators of bystander effects, IL-6 and IL-8, were also generated differently in both lines. The knockout cells secreted IL-6 at

  17. Mutant p53 - heat shock response oncogenic cooperation: a new mechanism of cancer cell survival

    Directory of Open Access Journals (Sweden)

    Evguenia eAlexandrova

    2015-04-01

    Full Text Available The main tumor suppressor function of p53 as a ‘guardian of the genome’ is to respond to cellular stress by transcriptional activation of apoptosis, growth arrest or senescence in damaged cells. Not surprisingly, mutations in the p53 gene are the most frequent genetic alteration in human cancers. Importantly, mutant p53 (mutp53 proteins not only lose their wild-type tumor suppressor activity, but also can actively promote tumor development. Two main mechanisms accounting for mutp53 proto-oncogenic activity are inhibition of the wild-type p53 in a dominant-negative fashion and gain of additional oncogenic activities known as gain-of-function (GOF. Here we discuss a novel mechanism of mutp53 GOF, which relies on its oncogenic cooperation with the heat shock machinery. This coordinated adaptive mechanism renders cancer cells more resistant to proteotoxic stress and provides both, a strong survival advantage to cancer cells and a promising means for therapeutic intervention.

  18. Inhibition of GSK3B bypass drug resistance of p53-null colon carcinomas by enabling necroptosis in response to chemotherapy

    DEFF Research Database (Denmark)

    Grassilli, Emanuela; Narloch, Robert; Federzoni, Elena

    2013-01-01

    Evasion from chemotherapy-induced apoptosis due to p53 loss strongly contributes to drug resistance. Identification of specific targets for the treatment of drug-resistant p53-null tumors would therefore increase the effectiveness of cancer therapy....

  19. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    Science.gov (United States)

    Bailon-Moscoso, Natalia; González-Arévalo, Gabriela; Velásquez-Rojas, Gabriela; Malagon, Omar; Vidari, Giovanni; Zentella-Dehesa, Alejandro; Ratovitski, Edward A; Ostrosky-Wegman, Patricia

    2015-01-01

    Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  20. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage

    Directory of Open Access Journals (Sweden)

    Rolletschek Alexandra

    2009-06-01

    Full Text Available Abstract Background P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. Results In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. Conclusion In embryonic stem cells where (anti-proliferative p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  1. Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Adriana Rodríguez-Marí

    2010-07-01

    Full Text Available The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53 mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA-repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination.

  2. INGN 201: Ad-p53, Ad5CMV-p53, Adenoviral p53, INGN 101, p53 gene therapy--Introgen, RPR/INGN 201.

    Science.gov (United States)

    2003-01-01

    Introgen's adenoviral p53 gene therapy [INGN 201, ADVEXIN] is in clinical development for the treatment of various cancers. The p53 tumour suppressor gene is deleted or mutated in many tumour cells and is one of the most frequently mutated genes in human tumours. INGN 201 has been shown to kill cancer cells directly. In August 2002, Introgen announced plans to file an application for INGN 201 with the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of head and neck cancer; the European filing will be submitted simultaneously with the previously scheduled (planned for 2004) submission of a Biologics License Application (BLA) for ADVEXIN to the US FDA. On 20 February 2003, INGN 201 received orphan drug designation from the US FDA for head and neck cancer. INGN 201 is available for licensing although Introgen favours retaining partial or full rights to the therapy in the US. Introgen Therapeutics and its collaborative partner for the p53 programme, Aventis Gencell, have been developing p53 gene therapy products. The agreement was originally signed by Rhône-Poulenc Rorer's Gencell division, which became Aventis Gencell after Rhône-Poulenc Rorer merged with Hoechst Marion Roussel to form Aventis Pharma. According to the original agreement, Introgen was responsible for phase I and preclinical development in North America, while Aventis Gencell was responsible for clinical trials conducted in Europe and for clinical trials in North America beyond phase I. In April 2001, Aventis Gencell and Introgen restructured their existing collaboration agreement for p53 gene therapy products. Aventis Gencell indicated that p53 research had suffered from internal competition for resources and was pulling back from its development agreement with Introgen for p53 gene therapy products. Introgen will assume responsibility for worldwide development of all p53 programmes and will obtain exclusive worldwide commercial rights to p53-based gene therapy

  3. Prognostic value of p53, c-ErbB2 and tunel data in upper urothelial carcinoma associated with Balkan nephropathy

    Directory of Open Access Journals (Sweden)

    Savin Marina

    2014-01-01

    Full Text Available A characteristic tumor suppressor protein 53 (p53 mutational profile of genotoxic action of aristolochic acid was identified in the upper urothelial carcinoma (UUTT associated with Balkan nephropathy (BEN. In the present study, we examined the prognostic value of tissue-based molecular markers in overall-survival (OS risk after surgical treatment of UUTT, adjusted for gender, age and urological characteristics in 32 patients with BEN. Immunohistochemical examination of p53, the proliferation cell nuclear antigen (PCNA, the human epidermal growth factor receptor 2 (c-ErbB2; also known as HER-2/neu proto-oncogene and the in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay for apoptosis detection were used to examine serial tumor sections. The median OS-time was 60 months for UUTT operation; the mortality rate (18.7% was related to (new disease (reoccurrence or invasion in 12-216 months. High-grade (p=0.029, TUNEL>0.36%+ cells (p=0.010, and c-ErbB2+ cells (p=0.014 can define the risk of tumor invasion. Patients with Balkan nephropathy that develop UUTT at a stage greater than pT1 (with apoptosis TUNEL+ cells >0.36% and p53+ cells greater than 10% were at high risk of poor-OS after the tumor surgery (h(x=6.35; p=0.045. The obtained data present evidence for p53, cErbB2 and apoptosis deregulation, as a result of environmental toxin action. This is the first report of molecular biomarker linkage with OS for BEN-associated UUTT.

  4. Aberrations of the p53 pathway components p53, MDM2 and CDKN2A appear independent in diffuse large B cell lymphoma

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Ino, Y; Gerdes, A M

    1999-01-01

    The two gene products of the CDKN2A gene, p16 and p19ARF, have recently been linked to each of two major tumour suppressor pathways in human carcinogenesis, the RB1 pathway and the p53 pathway. p16 inhibits the phosphorylation of the retinoblastoma gene product by cyclin D-dependent kinases...

  5. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    Directory of Open Access Journals (Sweden)

    Gretel G. Pellegrini

    2016-07-01

    Full Text Available Oats contain unique bioactive compounds known as avenanthramides (AVAs with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT and Nrf2 Knockout (KO osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast

  6. Stimulation of autophagy by the p53 target gene Sestrin2.

    Science.gov (United States)

    Maiuri, Maria Chiara; Malik, Shoaib Ahmad; Morselli, Eugenia; Kepp, Oliver; Criollo, Alfredo; Mouchel, Pierre-Luc; Carnuccio, Rosa; Kroemer, Guido

    2009-05-15

    The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.

  7. Low-level overexpression of p53 promotes warfarin-induced calcification of porcine aortic valve interstitial cells by activating Slug gene transcription.

    Science.gov (United States)

    Gao, Li; Ji, Yue; Lu, Yan; Qiu, Ming; Shen, Yejiao; Wang, Yaqing; Kong, Xiangqing; Shao, Yongfeng; Sheng, Yanhui; Sun, Wei

    2018-03-09

    The most frequently used oral anti-coagulant warfarin has been implicated in inducing calcification of aortic valve interstitial cells (AVICs), whereas the mechanism is not fully understood. The low-level activation of p53 is found to be involved in osteogenic transdifferentiation and calcification of AVICs. Whether p53 participates in warfarin-induced AVIC calcification remains unknown. In this study, we investigated the role of low-level p53 overexpression in warfarin-induced porcine AVIC (pAVIC) calcification. Immunostaining, quantitative PCR, and Western blotting revealed that p53 was expressed in human and pAVICs and that p53 expression was slightly increased in calcific human aortic valves compared with non-calcific valves. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining indicated that apoptosis slightly increased in calcific aortic valves than in non-calcific valves. Warfarin treatment led to a low-level increase of p53 mRNA and protein in both pAVICs and mouse aortic valves. Low-level overexpression of p53 in pAVICs via an adenovirus vector did not affect pAVIC apoptosis but promoted warfarin-induced calcium deposition and expression of osteogenic markers. shRNA-mediated p53 knockdown attenuated the pAVIC calcium deposition and osteogenic marker expression. Moreover, ChIP and luciferase assays showed that p53 was recruited to the slug promoter and activated slug expression in calcific pAVICs. Of note, overexpression of Slug increased osteogenic marker Runx2 expression, but not pAVIC calcium deposition, and Slug knockdown attenuated pAVIC calcification and p53-mediated pAVIC calcium deposition and expression of osteogenic markers. In conclusion, we found that p53 plays an important role in warfarin induced pAVIC calcification, and increased slug transcription by p53 is required for p53-mediated pAVIC calcification. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Recurrent pregnancy failure is associated with a polymorphism in the p53 tumour suppressor gene.

    Science.gov (United States)

    Pietrowski, Detlef; Bettendorf, Hertha; Riener, Eva-Katrin; Keck, Christoph; Hefler, Lukas A; Huber, Johannes C; Tempfer, Clemens

    2005-04-01

    The p53 tumour suppressor gene is a well-known factor regulating apoptosis in a wide variety of cells and tissues. Alterations in the p53 gene are among the most common genetic changes in human cancers. In addition, recent data provide evidence that p53 plays a critical role in mediating pregnancy by regulating steroid hormone activation. In idiopathic recurrent miscarriages (IRM), causes and associations are much debated as the exact pathophysiological mechanisms are unknown. In this study, we assess whether an established polymorphism in the p53 gene is associated with the occurrence of IRM. Genotyping was performed by PCR-based amplification of the p53 Arg and Pro variants at codon 72 in 175 cases of IRM and 143 controls. We observed a statistically significant association between carriage of the Pro allele and the occurrence of IRM (P = 0.03, odds ratio 1.49, confidence interval 1.04-2.14). Distribution of genotypes was in Hardy-Weinberg equilibrium. Our results indicate an over-representation of the Pro allele of the p53 gene in women with IRM, giving support to the theory that p53 has a potential role during pregnancy.

  9. The p53-mediated cytotoxicity of photodynamic therapy of cancer: Recent advances

    International Nuclear Information System (INIS)

    Zawacka-Pankau, Joanna; Krachulec, Justyna; Grulkowski, Ireneusz; Bielawski, Krzysztof P.; Selivanova, Galina

    2008-01-01

    Photodynamic therapy (PDT) is a promising modality for the treatment of both pre-malignant and malignant lesions. The mechanism of action converges mainly on the generation of reactive oxygen species which damage cancer cells directly as well as indirectly acting on tumor vasculature. The exact mechanism of PDT action is not fully understood, which is a formidable barrier to its successful clinical application. Elucidation of the mechanisms of cancer cell elimination by PDT might help in establishing highly specific, non-genotoxic anti-cancer treatment of tomorrow. One of the candidate PDT targets is the well-known tumor suppressor p53 protein recognized as the guardian of the genome. Together with its family members, p73 and p63 proteins, p53 is involved in apoptosis induction upon stress stimuli. The wild-type and mutant p53-targeting chemotherapeutics are currently extensively investigated as a promising strategy for highly specific anti-cancer therapy. In photodynamic therapy porphyrinogenic sensitizers are the most widely used compounds due to their potent biophysical and biochemical properties. Recent data suggest that the p53 tumor suppressor protein might play a significant role in porphyrin-PDT-mediated cell death by direct interaction with the drug which leads to its accumulation and induction of p53-dependent cell death both in the dark and upon irradiation. In this review we describe the available evidence on the role of p53 in PDT

  10. In Vivo Bystander Effect: Cranial X-Irradiation Leads to Elevated DNA Damage, Altered Cellular Proliferation and Apoptosis, and Increased p53 Levels in Shielded Spleen

    International Nuclear Information System (INIS)

    Koturbash, Igor; Loree, Jonathan; Kutanzi, Kristy; Koganow, Clayton; Pogribny, Igor; Kovalchuk, Olga

    2008-01-01

    Purpose: It is well accepted that irradiated cells may 'forward' genome instability to nonirradiated neighboring cells, giving rise to the 'bystander effect' phenomenon. Although bystander effects were well studied by using cell cultures, data for somatic bystander effects in vivo are relatively scarce. Methods and Materials: We set out to analyze the existence and molecular nature of bystander effects in a radiation target-organ spleen by using a mouse model. The animal's head was exposed to X-rays while the remainder of the body was completely protected by a medical-grade shield. Using immunohistochemistry, we addressed levels of DNA damage, cellular proliferation, apoptosis, and p53 protein in the spleen of control animals and completely exposed and head-exposed/body bystander animals. Results: We found that localized head radiation exposure led to the induction of bystander effects in the lead-shielded distant spleen tissue. Namely, cranial irradiation led to increased levels of DNA damage and p53 expression and also altered levels of cellular proliferation and apoptosis in bystander spleen tissue. The observed bystander changes were not caused by radiation scattering and were observed in two different mouse strains; C57BL/6 and BALB/c. Conclusion: Our study proves that bystander effects occur in the distant somatic organs on localized exposures. Additional studies are required to characterize the nature of an enigmatic bystander signal and analyze the long-term persistence of these effects and possible contribution of radiation-induced bystander effects to secondary radiation carcinogenesis

  11. The experimental research in the effects of 32P combined with cisplatin on the apoptosis of lung cancer cell

    International Nuclear Information System (INIS)

    Yang Nianqin; Wu Jinchuan; Huang Gang; Liu Jianjun; Cheng Xu

    2004-01-01

    Objective: To study the effects and mechanism of 32 P on the apoptosis of cultured nonsmall-cell lung cancer (NSCLC) cell line, A549, and explore the value of its apoptosis induced by radiation combined with Cisplatin. Methods: The A549 cells cultured in vitro were irradiated by 32 P and/or treated with Cisplatin of different doses. The methyl thiazolyl tetrazolium (MTT) test, transmission electron microscopy and immunocytochemistry assay, flow cytometry were used to investigate the effects of β-particles on apoptosis of A549 cells, such as cell viability, cell apoptosis rate, cell ultrastructural morphological changes and related gene expression. Results: There were significant changes in the viability, cell apoptosis rate, and cellular ultrastructure of A549 cells along with the irradiation dose increasing, compared with that in the control group; and while the Cisplatin combined with low-dose 32 P radiation, the viable cell proportion markedly decreased, cell apoptosis rate significantly increased, and cellular ultrastructure was destroyed. The expression of p53, bax gene was up-regulated and bcl-2/bax down-regulated with the apoptosis of A549 cells induced by radiation. Conclusions: Low-dose radiation combined with chemotherapy on A549 cells could inhibit its proliferation, and significantly effect on cell viability, cell apoptosis rate, cell ultrastructure, meanwhile, it could result in significant apoptosis. The induction of apoptosis may be related to the expression of p53, bcl-2 and bax gene. Low-dose radiation combined with chemotherapy could be an ideal way, which not only enhance the apoptosis of A549 cells, but also decrease the doses of both agents used in the study

  12. Protein expression of P13K and P53 in prediction of response to radiotherapy in cervical cancer

    International Nuclear Information System (INIS)

    Teja Kisnanto; Devita Tetriana; Iin Kurnia; Sudiono S; Mellova Amir; Budiningsih Siregar; Ramli; Andrijono; Setiawan Soetopo; Irwan; Tjahya Kurjana; Bethy S Hernowo; Maringan DL Tobing

    2015-01-01

    Cervical cancer is a malignant disease that is common in women and is the first order of malignant disease in Indonesia. Radiotherapy is the main treatment on cervical cancer, especially at an advanced stage (IIB-IIB). P13K and P-53 protein plays a role in the regulation of apoptosis (programmed cell death). The purpose of this study was to determine the protein expression of P13K and P-53 in the prediction of response to radiotherapy action in patients with cervical cancer. Microscopic preparations obtained from biopsy tissue cancer (IIB-IIIB) to 20 patients from RSCM and RSHS. The method used is the method of immunohistochemistry using P13K and P-53 protein biomarkers in cervical cancer tissue preparations. P13K protein expression value obtained by the method of immuno reactive Score (IRS). P13K protein positive expression marked in blue on the cell cytoplasm and P-53 protein is characterized by brown or dark colors contained in the cell nucleus. Results showed that IRS value by 10% a negative P13K, P13K IRS weaker by 70%, IRS P13K was at 15%, and the IRS P13K stronger by 5%. While the index positive P-53 was obtained by 75% and negative P-53 index by 5%. Radiotherapy response analysis showed that there were 75% good response and 25% a bad response. The conclusion from this study is the expression of the protein P13K and P-53 for response prediction of radiotherapy IRS P13K values obtained in response to both radiotherapy is higher compared with radiotherapy response is bad, and the P-53 protein is not found differences in response to radiotherapy between positive and negative expressions. (author)

  13. Effects of P-Glycoprotein and Its Inhibitors on Apoptosis in K562 Cells

    Directory of Open Access Journals (Sweden)

    Yaqiong Zu

    2014-08-01

    Full Text Available P-glycoprotein (P-gp is a major factor in multidrug resistance (MDR which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence of P-gp in tumor cell apoptosis, K562/A cells (P-gp+ and K562/S cells (P-gp− were subjected to doxorubicin (Dox, serum withdrawal, or independent co-incubation with multiple P-gp inhibitors, including valspodar (PSC833, verapamil (Ver and H108 to induce apoptosis. Apoptosis was simultaneously detected by apoptotic rate, cell cycle by flow cytometry and cysteine aspartic acid-specific protease 3 (caspase 3 activity by immunoassay. Cytotoxicity and apoptosis induced by PSC833 were evaluated through an MTT method and apoptosis rate, and cell cycle combined with caspase 3 activity, respectively. The results show that K562/A cells are more resistant to apoptosis and cell cycle arrest than K562/S cells after treatment with Dox or serum deprivation. The apoptosis of K562/A cells increased after co-incubation with each of the inhibitors of P-gp. P-gp inhibitors also enhanced cell cycle arrest in K562/A cell. PSC833 most strikingly decreased viability and led to apoptosis and S phase arrest of cell cycle in K562/A cells. Our study demonstrates that P-gp inhibits the apoptosis of tumor cells in addition to participating in the efflux of intracellular chemotherapy drugs. The results of the caspase 3 activity assay also suggest that the role of P-gp in apoptosis avoidance is caspase-related.

  14. p21-LacZ reporter mice reflect p53-dependent toxic insult

    International Nuclear Information System (INIS)

    Vasey, Douglas B.; Wolf, C. Roland; MacArtney, Thomas; Brown, Ken; Whitelaw, C. Bruce A.

    2008-01-01

    There is an urgent need to discover less toxic and more selective drugs to treat disease. The use of transgenic mice that report on toxic insult-induced transcription can provide a valuable tool in this regard. To exemplify this strategy, we have generated transgenic mice carrying a p21-LacZ transgene. Transgene activity reflected endogenous p21 gene activation in various tissues, displayed compound-specific spatial expression signatures in the brain and immune tissues and enabled p53-dependent and p53-independent responses to be identified. We discuss the application of these mice in delineating the molecular events in normal cellular growth and disease and for the evaluation of drug toxicity

  15. Enhanced induction of apoptosis by combined treatment of human carcinoma cells with X rays and death receptor agonists

    International Nuclear Information System (INIS)

    Hamasu, Taku; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2005-01-01

    The death receptors Fas and DR5 are known to be expressed not only in immune cells but also in various tumor cells. The aim of the present study was to determine whether X irradiation enhanced induction of apoptosis in Tp53 wild type and Tp53-mutated tumor cell lines treated with agonists against these death receptors. We showed that 5 Gy of X irradiation significantly up-regulated the expression of death receptors Fas and DR5 on the plasma membrane in gastric cancer cell lines MKN45 and MKN28, lung cancer cell line A549, and prostate cancer cell line DU145, and that subsequent treatments with agonistic molecules for these death receptors, Fas antibody CHl1 and TRAIL, increased the formation of active fragment p20 of caspase 3 followed by the induction of apoptosis. This death-receptor-mediated apoptosis was independent of Tp53 status since MKN28 and DU145 were Tp53-mutated. The post-irradiation treatment of the cells with N-acetyl-L-cysteine (NAC) abolished the up-regulation of the expression of Fas and DR5 on the plasma membrane. NAC also attenuated the increase in the formation of p20 and the induction of apoptosis by agonistic molecules. These results suggested that the increase in the induction of apoptosis by combined treatment with X irradiation and CHl1 or TRAIL occurred through a change of the intracellular redox state independent of Tp53 status in human carcinoma cell lines. (author)

  16. Characterisation of the p53-mediated cellular responses evoked in primary mouse cells following exposure to ultraviolet radiation.

    Directory of Open Access Journals (Sweden)

    Gillian D McFeat

    Full Text Available Exposure to ultraviolet (UV light can cause significant damage to mammalian cells and, although the spectrum of damage produced varies with the wavelength of UV, all parts of the UV spectrum are recognised as being detrimental to human health. Characterising the cellular response to different wavelengths of UV therefore remains an important aim so that risks and their moderation can be evaluated, in particular in relation to the initiation of skin cancer. The p53 tumour suppressor protein is central to the cellular response that protects the genome from damage by external agents such as UV, thus reducing the risk of tumorigenesis. In response to a variety of DNA damaging agents including UV light, wild-type p53 plays a role in mediating cell-cycle arrest, facilitating apoptosis and stimulating repair processes, all of which prevent the propagation of potentially mutagenic defects. In this study we examined the induction of p53 protein and its influence on the survival of primary mouse fibroblasts exposed to different wavelengths of UV light. UVC was found to elevate p53 protein and its sequence specific DNA binding capacity. Unexpectedly, UVA treatment failed to induce p53 protein accumulation or sequence specific DNA binding. Despite this, UVA exposure of wild-type cells induced a p53 dependent G1 cell cycle arrest followed by a wave of p53 dependent apoptosis, peaking 12 hours post-insult. Thus, it is demonstrated that the elements of the p53 cellular response evoked by exposure to UV radiation are wavelength dependent. Furthermore, the interrelationship between various endpoints is complex and not easily predictable. This has important implications not only for understanding the mode of action of p53 but also for the use of molecular endpoints in quantifying exposure to different wavelengths of UV in the context of human health protection.

  17. 7-Chloro-6-piperidin-1-yl-quinoline-5,8-dione (PT-262), a novel synthetic compound induces lung carcinoma cell death associated with inhibiting ERK and CDC2 phosphorylation via a p53-independent pathway.

    Science.gov (United States)

    Hsu, Tzu-Sheng; Chen, Chinpiao; Lee, Pei-Ting; Chiu, Shu-Jun; Liu, Huei-Fang; Tsai, Chih-Chien; Chao, Jui-I

    2008-10-01

    The derivatives of 5,8-quinolinedione have been shown to exert anticancer activities. A new synthetic compound 7-chloro-6-piperidin-1-yl-quinoline-5,8-dione (designed as PT-262) derived from 6,7-dichloroquinoline-5,8-dione on its anticancer activity was investigated in this study. PT-262 was synthesized as the following: triethylamine (0.56 ml, 5.1 mmol) was added dropwise to a solution of 6,7-dichloroquinoline-5,8-dione (1.00 g, 4.4 mmol) and piperidine (0.50 ml, 5.1 mmol) in 150 ml of benzene with stirring at room temperature for 5 min, and the solvent was removed using rotary evaporator to give a dark brown solid. PT-262 was purified by flash chromatography using 50% ethyl acetate/hexanes to elute that displayed as brown solids. To examine the induction of apoptosis following PT-262 treatment, the lung cancer cells were subjected to apoptotic cell observation, caspase activation, and mitochondrial functional assays. The protein levels of phosphorylated ERK and CDC2 after treatment with PT-262 were analyzed by Western blot. Treatment with 1-20 microM PT-262 for 24 h induced cytotoxicity via a concentration-dependent manner in human lung cancer cells. PT-262 induced the loss of mitochondrial membrane potential and elevated the caspase-3 activation and apoptosis. Interestingly, the phosphorylation of ERK was inhibited by PT-262. The IC50 value of ERK phosphorylation inhibition was approximate around 5 microM. Treatment with a specific MEK1/2 (the upstream of ERK) inhibitor, PD98059, increased the PT-262-induced cytotoxicity in lung cancer cells. Moreover, PT-262 did not alter the protein expression of tumor suppressor p53. PT-262 elicited the cytotoxicity and accumulated the G2/M fractions in both the p53-wild type and p53-null lung cancer cells. The mitosis-regulated protein levels of cyclin B1 and phospho-CDC2 at Thr14, Tyr15, and Thr161 were repressed by PT-262 in these cells. PT-262 suppresses the phosphorylation of ERK and CDC2 associated with proliferation

  18. BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues.

    Science.gov (United States)

    Muthalagu, Nathiya; Junttila, Melissa R; Wiese, Katrin E; Wolf, Elmar; Morton, Jennifer; Bauer, Barbara; Evan, Gerard I; Eilers, Martin; Murphy, Daniel J

    2014-09-11

    MYC is one of the most frequently overexpressed oncogenes in human cancer, and even modestly deregulated MYC can initiate ectopic proliferation in many postmitotic cell types in vivo. Sensitization of cells to apoptosis limits MYC's oncogenic potential. However, the mechanism through which MYC induces apoptosis is controversial. Some studies implicate p19ARF-mediated stabilization of p53, followed by induction of proapoptotic BH3 proteins NOXA and PUMA, whereas others argue for direct regulation of BH3 proteins, especially BIM. Here, we use a single experimental system to systematically evaluate the roles of p19ARF and BIM during MYC-induced apoptosis, in vitro, in vivo, and in combination with a widely used chemotherapeutic, doxorubicin. We find a common specific requirement for BIM during MYC-induced apoptosis in multiple settings, which does not extend to the p53-responsive BH3 family member PUMA, and find no evidence of a role for p19ARF during MYC-induced apoptosis in the tissues examined. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    Directory of Open Access Journals (Sweden)

    Natalia Bailon-Moscoso

    Full Text Available Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL, a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  20. Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53.

    Science.gov (United States)

    Kitagaki, J; Yang, Y; Saavedra, J E; Colburn, N H; Keefer, L K; Perantoni, A O

    2009-01-29

    Nitric oxide (NO) is a major effector molecule in cancer prevention. A number of studies have shown that NO prodrug JS-K (O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) induces apoptotic cell death in vitro and in vivo, indicating that it is a promising new therapeutic for cancer. However, the mechanism of its tumor-killing activity remains unclear. Ubiquitin plays an important role in the regulation of tumorigenesis and cell apoptosis. Our earlier report has shown that inactivation of the ubiquitin system through blocking E1 (ubiquitin-activating enzyme) activity preferentially induces apoptosis in p53-expressing transformed cells. As E1 has an active cysteine residue that could potentially interact with NO, we hypothesized that JS-K could inactivate E1 activity. E1 activity was evaluated by detecting ubiquitin-E1 conjugates through immunoblotting. JS-K strikingly inhibits the ubiquitin-E1 thioester formation in cells in a dose-dependent manner with an IC(50) of approximately 2 microM, whereas a JS-K analog that cannot release NO did not affect these levels in cells. Moreover, JS-K decreases total ubiquitylated proteins and increases p53 levels, which is mainly regulated by ubiquitin and proteasomal degradation. Furthermore, JS-K preferentially induces cell apoptosis in p53-expressing transformed cells. These findings indicate that JS-K inhibits E1 activity and kills transformed cells harboring wild-type p53.

  1. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene combined with radiation therapy on human lymphoma cells lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wan Jianmei; Wang Yongqing; Wu Jinchang

    2008-01-01

    This paper analyzes the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Human lymphoma cell lines were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTF. The cell cycle and apoptosis were detected by flow cytometry, and the p53 protein expression was detected by Western blotting. The results showed that extrinsic p53 gene have expressed to some degree, but not at high level. The role of inhibition and radiation sensitivity of rAd-p53 was not significant to human lymphoma cell lines. (authors)

  2. p53 and telomerase control rat myocardial tissue response to hypoxia and ageing

    Directory of Open Access Journals (Sweden)

    A. Cataldi

    2009-12-01

    Full Text Available Cellular senescence implies loss of proliferative and tissue regenerative capability. Also hypoxia, producing Reactive Oxygen Species (ROS, can damage cellular components through the oxidation of DNA, proteins and lipids, thus influencing the shortening of telomeres. Since ribonucleoprotein Telomerase (TERT, catalyzing the replication of the ends of eukaryotic chromosomes, promotes cardiac muscle cell proliferation, hypertrophy and survival, here we investigated its role in the events regulating apoptosis occurrence and life span in hearts deriving from young and old rats exposed to hypoxia. TUNEL (terminal-deoxinucleotidyl -transferase- mediated dUTP nick end-labeling analysis reveals an increased apoptotic cell number in both samples after hypoxia exposure, mainly in the young with respect to the old. TERT expression lowers either in the hypoxic young, either in the old in both experimental conditions, with respect to the normoxic young. These events are paralleled by p53 and HIF-1 ? expression dramatic increase and by p53/ HIF-1 ? co-immunoprecipitation in the hypoxic young, evidencing the young subject as the most stressed by such challenge. These effects could be explained by induction of damage to genomic DNA by ROS that accelerates cell senescence through p53 activation. Moreover, by preventing TERT enzyme down-regulation, cell cycle exit and apoptosis occurrence could be delayed and new possibilities for intervention against cell ageing and hypoxia could be opened.

  3. The role of p53 in the response to mitotic spindle damage

    International Nuclear Information System (INIS)

    Meek, D.W.

    2000-01-01

    The p53 tumour suppressor protein has defined roles in G1/S and G2/M cell cycle checkpoint in response to a range of cellular stresses including DNA damage, dominant oncogene expression, hypoxia, metabolic changes and viral infection. In addition to these responses, p53 can also be activated when damage occurs to the mitotic spindle. Initially, spindle damage activates a p53-independent checkpoint which functions at the metaphase-anaphase transition and prevents cells from progressing through mitosis until the completion of spindle formation. Cells eventually escape from this block (a process termed 'mitotic slippage'), and an aberrant mitosis ensues in which sister chromatids fail to segregate properly. After a delay period, p53 responds to this mitotic failure by instituting a G1-like growth arrest, with an intact nucleus containing 4N DNA, but without the cells undergoing division. Cells lacking wild-type p53 are still able to arrest transiently at mitosis, and also fail to undergo division, underscoring that the delay in mitosis is p53-independent. However, these cells are not prevented from re-entering the cell cycle and can reduplicate their DNA unchecked, leading to polyploidy. Additionally, p53-null cells which experience spindle failure often show the appearance of micronuclei arising from poorly segregated chromosomes which have de-condensed and been enclosed in a nuclear envelope. The ability of p53 to prevent their formation suggests an additional G2 involvement which prevents nuclear breakdown prior to mitosis. The molecular mechanism by which p53 is able to sense mitotic failure is still unknown, but may be linked to the ability of p53 to regulate duplication of the centrosome, the organelle which nucleates spindle formation. (authors)

  4. The influence of sleep deprivation on expression of apoptosis regulatory proteins p53, bcl-2 and bax following rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide

    Directory of Open Access Journals (Sweden)

    Juliana Noguti

    2013-01-01

    Full Text Available Background: The aim of this study was to evaluate whether paradoxical sleep deprivation could affects the mechanisms and pathways essentials for cancer cells in tongue cancer induced by 4-nitroquinole 1-oxide in Wistar rats. Materials and Methods: For this purpose, the animals were distributed into 4 groups of 5 animals each treated with 50 ppm 4 nitroquinoline 1 oxide (4 NQO solution through their drinking water for 4 and 12 weeks. The animals were submitted to paradoxical sleep deprivation (PSD for 72 h using the modified multiple platform method, which consisted of placing 5 mice in a cage (41 × 34 × 16 cm containing 10 circular platforms (3.5 cm in diameter with water 1 cm below the upper surface. The investigations were conducted using immunohistochemistry of p53, Bax and Bcl-2 proteins related to apoptosis and its pathways. Statistical analysis was performed by Kruskal-Wallis non-parametric test followed by the Dunn′s test using SPSS software pack (version 1.0. P value < 0.05 was considered for statistic significance. Results: Although no histopathological abnormalities were induced in the epithelium after 4 weeks of carcinogen exposure in all groups, in 12 weeks were observed pre-neoplasic lesions. Data analysis revealed statistically significant differences ( P < 0.05 in 4 weeks group for p53 and for bcl-2 and for all immunomarkers after 12 weeks of 4NQO administration. Conclusion: Our results reveal that sleep deprivation exerted alterations in proteins associated with proliferation and apoptosis in carcinogenesis.

  5. TP53 suppression promotes erythropoiesis in del(5q) MDS, suggesting a targeted therapeutic strategy in lenalidomide-resistant patients

    Science.gov (United States)

    Caceres, Gisela; McGraw, Kathy; Yip, Bon Ham; Pellagatti, Andrea; Johnson, Joseph; Zhang, Ling; Liu, Kenian; Zhang, Lan Min; Fulp, William J.; Lee, Ji-Hyun; Al Ali, Najla H.; Basiorka, Ashley; Smith, Larry J.; Daugherty, F. Joseph; Littleton, Neil; Wells, Richard A.; Sokol, Lubomir; Wei, Sheng; Komrokji, Rami S.; Boultwood, Jacqueline; List, Alan F.

    2013-01-01

    Stabilization of p53 in erythroid precursors in response to nucleosomal stress underlies the hypoplastic anemia in myelodysplastic syndromes (MDS) with chromosome 5q deletion [del(5q)]. We investigated whether cenersen, a clinically active 20-mer antisense oligonucleotide complementary to TP53 exon10, could suppress p53 expression and restore erythropoiesis in del(5q) MDS. Cenersen treatment of ribosomal protein S-14-deficient erythroblasts significantly reduced cellular p53 and p53-up-regulated modulator of apoptosis expression compared with controls, accompanied by a significant reduction in apoptosis and increased cell proliferation. In a two-stage erythroid differentiation assay, cenersen significantly suppressed nuclear p53 in bone marrow CD34+ cells isolated from patients with del(5q) MDS, whereas erythroid burst recovery increased proportionally to the magnitude of p53 suppression without evidence of del(5q) clonal suppression (r = −0.6; P = 0.005). To explore the effect of p53 suppression on erythropoiesis in vivo, dexamethasone, a glucocorticoid receptor-dependent p53 antagonist, was added to lenalidomide treatment in eight lower-risk, transfusion-dependent, del(5q) MDS patients with acquired drug resistance. Transfusion independence was restored in five patients accompanied by expansion of erythroid precursors and decreased cellular p53 expression. We conclude that targeted suppression of p53 could support effective erythropoiesis in lenalidomide-resistant del(5q) MDS. PMID:24043769

  6. Transcriptional Inhibition of the Human Papilloma Virus Reactivates Tumor Suppressor p53 in Cervical Carcinoma Cells

    Science.gov (United States)

    Kochetkov, D. V.; Ilyinskaya, G. V.; Komarov, P. G.; Strom, E.; Agapova, L. S.; Ivanov, A. V.; Budanov, A. V.; Frolova, E. I.; Chumakov, P. M.

    2009-01-01

    Inactivation of tumor suppressor p53 accompanies the majority of human malignancies. Restoration of p53 function causes death of tumor cells and is potentially suitable for gene therapy of cancer. In cervical carcinoma, human papilloma virus (HPV) E6 facilitates proteasomal degradation of p53. Hence, a possible approach to p53 reactivation is the use of small molecules suppressing the function of viral proteins. HeLa cervical carcinoma cells (HPV-18) with a reporter construct containing the b-galactosidase gene under the control of a p53-responsive promoter were used as a test system to screen a library of small molecules for restoration of the transcriptional activity of p53. The effect of the two most active compounds was studied with cell lines differing in the state of p53-dependent signaling pathways. The compounds each specifically activated p53 in cells expressing HPV-18 and, to a lesser extent, HPV-16 and exerted no effect on control p53-negative cells or cells with the intact p53-dependent pathways. Activation of p53 in cervical carcinoma cells was accompanied by induction of p53-dependent CDKN1 (p21), inhibition of cell proliferation, and induction of apoptosis. In addition, the two compounds dramatically decreased transcription of the HPV genome, which was assumed to cause p53 reactivation. The compounds were low-toxic for normal cells and can be considered as prototypes of new anticancer drugs. PMID:17685229

  7. Potentiation of apoptosis by histone deacetylase inhibitors and doxorubicin combination: cytoplasmic cathepsin B as a mediator of apoptosis in multiple myeloma.

    Science.gov (United States)

    Cheriyath, V; Kuhns, M A; Kalaycio, M E; Borden, E C

    2011-03-15

    Although inhibitors of histone deacetylase inhibitors (HDACis) in combination with genotoxins potentiate apoptosis, the role of proteases other than caspases in this process remained elusive. Therefore, we examined the potentiation of apoptosis and related mechanisms of HDACis and doxorubicin combination in a panel of myeloma cell lines and in 25 primary myelomas. At IC(50) concentrations, sodium butyrate (an HDACi) or doxorubicin alone caused little apoptosis. However, their combination potentiated apoptosis and synergistically reduced the viability of myeloma cells independent of p53 and caspase 3-7 activation. Potentiated apoptosis correlated with nuclear translocation of apoptosis-inducing factor, suggesting the induction of caspase 3- and 7-independent pathways. Consistent with this, butyrate and doxorubicin combination significantly increased the activity of cytoplasmic cathepsin B. Inhibition of cathepsin B either with a small-molecule inhibitor or downregulation with a siRNA reversed butyrate- and doxorubicin-potentiated apoptosis. Finally, ex vivo, clinically relevant concentrations of butyrate or SAHA (suberoylanilide hydroxamic acid, vorinostat, an HDACi in clinical testing) in combination with doxorubicin significantly (Pmediating apoptosis potentiated by HDACi and doxorubicin combinations in myeloma. Our results support a molecular model of lysosomal-mitochondrial crosstalk in HDACi- and doxorubicin-potentiated apoptosis through the activation of cathepsin B.

  8. Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage

    Science.gov (United States)

    Logan, Ian R.; McNeill, Hesta V.; Cook, Susan; Lu, Xiaohong; Meek, David W.; Fuller-Pace, Frances V.; Lunec, John; Robson, Craig N.

    2009-01-01

    Here we define an important role for heat shock factor 1 (HSF1) in the cellular response to genotoxic agents. We demonstrate for the first time that HSF1 can complex with nuclear p53 and that both proteins are co-operatively recruited to p53-responsive genes such as p21. Analysis of natural and synthetic cis elements demonstrates that HSF1 can enhance p53-mediated transcription, whilst depletion of HSF1 reduces the expression of p53-responsive transcripts. We find that HSF1 is required for optimal p21 expression and p53-mediated cell-cycle arrest in response to genotoxins while loss of HSF1 attenuates apoptosis in response to these agents. To explain these novel properties of HSF1 we show that HSF1 can complex with DNA damage kinases ATR and Chk1 to effect p53 phosphorylation in response to DNA damage. Our data reveal HSF1 as a key transcriptional regulator in response to genotoxic compounds widely used in the clinical setting, and suggest that HSF1 will contribute to the efficacy of these agents. PMID:19295133

  9. Arecoline-induced growth arrest and p21WAF1 expression are dependent on p53 in rat hepatocytes

    International Nuclear Information System (INIS)

    Chou, W.-W.; Guh, J.-Y.; Tsai, J.-F.; Hwang, C.-C.; Chen, H.-C.; Huang, J.-S.; Yang, Y.-L.; Hung, W.-C.; Chuang, L.-Y.

    2008-01-01

    Betel-quid use is associated with the risk of liver cirrhosis and hepatocellular carcinoma and arecoline, the major alkaloid of betel-quid, is hepatotoxic in mice. Therefore, we studied the cytotoxic and genotoxic effects of arecoline in normal rat hepatocytes (Clone-9 cells). Arecoline dose-dependently (0.1-1 mM) decreased cell cycle-dependent proliferation while inducing DNA damage at 24 h. Moreover, arecoline (1 mM)-induced apoptosis and necrosis at 24 h. Arecoline dose-dependently (0.1-0.5 mM) increased transforming growth factor-β (TGF-β) mRNA, gene transcription and bioactivity and neutralizing TGF-β antibody attenuated arecoline (0.5 mM)-inhibited cell proliferation at 24 h. Arecoline (0.5 mM) also increased p21 WAF1 protein expression and p21 WAF1 gene transcription. Moreover, arecoline (0.5 mM) time-dependently (8-24 h) increased p53 serine 15 phosphorylation. Pifithrin-α (p53 inhibitor) and the loss of the two p53-binding elements in the p21 WAF1 gene promoter attenuated arecoline-induced p21 WAF1 gene transcription at 24 h. Pifithrin-α also attenuated arecoline (0.5 mM)-inhibited cell proliferation at 24 h. We concluded that arecoline induces cytotoxicity, DNA damage, G 0 /G 1 cell cycle arrest, TGF-β1, p21 WAF1 and activates p53 in Clone-9 cells. Moreover, arecoline-induced p21 WAF1 is dependent on p53 while arecoline-inhibited growth is dependent on both TGF-β and p53

  10. Inactivation of p16INK4a, with retention of pRB and p53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization.

    Science.gov (United States)

    Taylor, Lisa M; James, Alexander; Schuller, Christine E; Brce, Jesena; Lock, Richard B; Mackenzie, Karen L

    2004-10-15

    Recent investigations, including our own, have shown that specific strains of fibroblasts expressing telomerase reverse transcriptase (hTERT) have an extended lifespan, but are not immortal. We previously demonstrated that hTERT-transduced MRC5 fetal lung fibroblasts (MRC5hTERTs) bypassed senescence but eventually succumbed to a second mortality barrier (crisis). In the present study, 67 MRC5hTERT clones were established by limiting dilution of a mass culture. Whereas 39/67 clones had an extended lifespan, all 39 extended lifespan clones underwent crisis. 11 of 39 clones escaped crisis and were immortalized. There was no apparent relationship between the fate of clones at crisis and the level of telomerase activity. Telomeres were hyperextended in the majority of the clones analyzed. There was no difference in telomere length of pre-crisis compared with post-crisis and immortal clones, indicating that hyperextended telomeres were conducive for immortalization and confirming that crisis was independent of telomere length. Immortalization of MRC5hTERT cells was associated with repression of the cyclin-dependent kinase inhibitor p16INK4a and up-regulation of pRB. However, the regulation of pRB phosphorylation and the response of the p53/p21cip1/waf1 pathway were normal in immortal cells subject to genotoxic stress. Overexpression of oncogenic ras failed to de-repress p16INK4a in immortal cells. Furthermore, expression of ras enforced senescent-like growth arrest in p16INK4a-positive, but not p16INK4a-negative MRC5hTERT cells. Immortal cells expressing ras formed small, infrequent colonies in soft agarose, but were non-tumorigenic. Overall, these results implicate the inactivation of p16INK4a as a critical event for overcoming telomere-independent crisis, immortalizing MRC5 fibroblasts and overcoming ras-induced premature senescence.

  11. Enzastaurin inhibits ABCB1-mediated drug efflux independently of effects on protein kinase C signalling and the cellular p53 status.

    Science.gov (United States)

    Michaelis, Martin; Rothweiler, Florian; Löschmann, Nadine; Sharifi, Mohsen; Ghafourian, Taravat; Cinatl, Jindrich

    2015-07-10

    The PKCβ inhibitor enzastaurin was tested in parental neuroblastoma and rhabdomyosarcoma cell lines, their vincristine-resistant sub-lines, primary neuroblastoma cells, ABCB1-transduced, ABCG2-transduced, and p53-depleted cells. Enzastaurin IC50s ranged from 3.3 to 9.5 μM in cell lines and primary cells independently of the ABCB1, ABCG2, or p53 status. Enzastaurin 0.3125 μM interfered with ABCB1-mediated drug transport. PKCα and PKCβ may phosphorylate and activate ABCB1 under the control of p53. However, enzastaurin exerted similar effects on ABCB1 in the presence or absence of functional p53. Also, enzastaurin inhibited PKC signalling only in concentrations ≥ 1.25 μM. The investigated cell lines did not express PKCβ. PKCα depletion reduced PKC signalling but did not affect ABCB1 activity. Intracellular levels of the fluorescent ABCB1 substrate rhodamine 123 rapidly decreased after wash-out of extracellular enzastaurin, and enzastaurin induced ABCB1 ATPase activity resembling the ABCB1 substrate verapamil. Computational docking experiments detected a direct interaction of enzastaurin and ABCB1. These data suggest that enzastaurin directly interferes with ABCB1 function. Enzastaurin further inhibited ABCG2-mediated drug transport but by a different mechanism since it reduced ABCG2 ATPase activity. These findings are important for the further development of therapies combining enzastaurin with ABC transporter substrates.

  12. Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy.

    Science.gov (United States)

    Benkafadar, Nesrine; Menardo, Julien; Bourien, Jérôme; Nouvian, Régis; François, Florence; Decaudin, Didier; Maiorano, Domenico; Puel, Jean-Luc; Wang, Jing

    2017-01-01

    Cisplatin is a widely used chemotherapy drug, despite its significant ototoxic side effects. To date, the mechanism of cisplatin-induced ototoxicity remains unclear, and hearing preservation during cisplatin-based chemotherapy in patients is lacking. We found activation of the ATM-Chk2-p53 pathway to be a major determinant of cisplatin ototoxicity. However, prevention of cisplatin-induced ototoxicity is hampered by opposite effects of ATM activation upon sensory hair cells: promoting both outer hair cell death and inner hair cell survival. Encouragingly, however, genetic or pharmacological ablation of p53 substantially attenuated cochlear cell apoptosis, thus preserving hearing. Importantly, systemic administration of a p53 inhibitor in mice bearing patient-derived triple-negative breast cancer protected auditory function, without compromising the anti-tumor efficacy of cisplatin. Altogether, these findings highlight a novel and effective strategy for hearing protection in cisplatin-based chemotherapy. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability.

    Directory of Open Access Journals (Sweden)

    Bo Ram Seo

    Full Text Available The PI3K/Akt and mTOR signaling pathways are important for cell survival and growth, and they are highly activated in cancer cells compared with normal cells. Therefore, these signaling pathways are targets for inducing cancer cell death. The dual PI3K/Akt and mTOR inhibitor NVP-BEZ235 completely inhibited both signaling pathways. However, NVP-BEZ235 had no effect on cell death in human renal carcinoma Caki cells. We tested whether combined treatment with natural compounds and NVP-BEZ235 could induce cell death. Among several chemopreventive agents, curcumin, a natural biologically active compound that is extracted from the rhizomes of Curcuma species, markedly induced apoptosis in NVP-BEZ235-treated cells. Co-treatment with curcumin and NVP-BEZ235 led to the down-regulation of Mcl-1 protein expression but not mRNA expression. Ectopic expression of Mcl-1 completely inhibited curcumin plus NVP-NEZ235-induced apoptosis. Furthermore, the down-regulation of Bcl-2 was involved in curcumin plus NVP-BEZ235-induced apoptosis. Curcumin or NVP-BEZ235 alone did not change Bcl-2 mRNA or protein expression, but co-treatment reduced Bcl-2 mRNA and protein expression. Combined treatment with NVP-BEZ235 and curcumin reduced Bcl-2 expression in wild-type p53 HCT116 human colon carcinoma cells but not p53-null HCT116 cells. Moreover, Bcl-2 expression was completely reversed by treatment with pifithrin-α, a p53-specific inhibitor. Ectopic expression of Bcl-2 also inhibited apoptosis in NVP-BE235 plus curcumin-treated cells. In contrast, NVP-BEZ235 combined with curcumin did not have a synergistic effect on normal human skin fibroblasts and normal human mesangial cells. Taken together, combined treatment with NVP-BEZ235 and curcumin induces apoptosis through p53-dependent Bcl-2 mRNA down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional level.

  14. Peran p53 Sebagai Jalur Kritis pada Mekanisme Kontrol Siklus Sel Sebagai Pencegah Terjadinya Kanker Mulut

    Directory of Open Access Journals (Sweden)

    Herlia Nur Istindiah

    2015-09-01

    Full Text Available In cell cycle control, p53 acts as an emergency brake, where its important checkpoint function is to maintain the genome integrity by preventing the formation and proliferation of mutant cells. P53 activity is increased by DNA damage occurs caused by agents (such as radioation, UV light or drugs or oncogenes. Mdm2 protein can inhibit the p53 activation, but oncogenes can inhibit Mdm2 or activate p53. If DNA damage occurs, then p53 prevents the cells from replicating their DNA by arresting the cell cycle, so that the cells can repair the damage. Alternatively, p53 instructs the cells to undergo apoptosis by inducing bax gene expression, so that irregular cell growth, and cancer can be avoided. Cancer, including oral cancer, oftenthuolved cells with altered p53. Exogenous factors, such as tobacco and alcohol, presumably plays a role in triggering p53 mutations. Several techniques, such as immunohistochemistry and PCR can be used to investigation their etiology and development of oral cancer. The results hopefully be applied clinically in early detection, prevention and prediction of cancer. This paper discusses the role on p53 in preventing the occurrence and proliferation of mutated cells that lead to cancer, including oral cancer.

  15. The oncogenic properties of EWS/WT1 of desmoplastic small round cell tumors are unmasked by loss of p53 in murine embryonic fibroblasts

    International Nuclear Information System (INIS)

    Bandopadhayay, Pratiti; Thomas, David M; Algar, Elizabeth; Ekert, Paul G; Jabbour, Anissa M; Riffkin, Christopher; Salmanidis, Marika; Gordon, Lavinia; Popovski, Dean; Rigby, Lin; Ashley, David M; Watkins, David N

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is characterized by the presence of a fusion protein EWS/WT1, arising from the t (11;22) (p13;q12) translocation. Here we examine the oncogenic properties of two splice variants of EWS/WT1, EWS/WT1-KTS and EWS/WT1 + KTS. We over-expressed both EWS/WT1 variants in murine embryonic fibroblasts (MEFs) of wild-type, p53 +/- and p53 -/- backgrounds and measured effects on cell-proliferation, anchorage-independent growth, clonogenicity after serum withdrawal, and sensitivity to cytotoxic drugs and gamma irradiation in comparison to control cells. We examined gene expression profiles in cells expressing EWS/WT1. Finally we validated our key findings in a small series of DSRCT. Neither isoform of EWS/WT1 was sufficient to transform wild-type MEFs however the oncogenic potential of both was unmasked by p53 loss. Expression of EWS/WT1 in MEFs lacking at least one allele of p53 enhanced cell-proliferation, clonogenic survival and anchorage-independent growth. EWS/WT1 expression in wild-type MEFs conferred resistance to cell-cycle arrest after irradiation and daunorubicin induced apoptosis. We show DSRCT commonly have nuclear localization of p53, and copy-number amplification of MDM2/MDMX. Expression of either isoform of EWS/WT1 induced characteristic mRNA expression profiles. Gene-set enrichment analysis demonstrated enrichment of WNT pathway signatures in MEFs expressing EWS/WT1 + KTS. Wnt-activation was validated in cell lines with over-expression of EWS/WT1 and in DSRCT. In conclusion, we show both isoforms of EWS/WT1 have oncogenic potential in MEFs with loss of p53. In addition we provide the first link between EWS/WT1 and Wnt-pathway signaling. These data provide novel insights into the function of the EWS/WT1 fusion protein which characterize DSRCT

  16. The antagonism between MCT-1 and p53 affects the tumorigenic outcomes

    Directory of Open Access Journals (Sweden)

    Lin Tai-Du

    2010-12-01

    Full Text Available Abstract Background MCT-1 oncoprotein accelerates p53 protein degradation via a proteosome pathway. Synergistic promotion of the xenograft tumorigenicity has been demonstrated in circumstance of p53 loss alongside MCT-1 overexpression. However, the molecular regulation between MCT-1 and p53 in tumor development remains ambiguous. We speculate that MCT-1 may counteract p53 through the diverse mechanisms that determine the tumorigenic outcomes. Results MCT-1 has now identified as a novel target gene of p53 transcriptional regulation. MCT-1 promoter region contains the response elements reactive with wild-type p53 but not mutant p53. Functional p53 suppresses MCT-1 promoter activity and MCT-1 mRNA stability. In a negative feedback regulation, constitutively expressed MCT-1 decreases p53 promoter function and p53 mRNA stability. The apoptotic events are also significantly prevented by oncogenic MCT-1 in a p53-dependent or a p53-independent fashion, according to the genotoxic mechanism. Moreover, oncogenic MCT-1 promotes the tumorigenicity in mice xenografts of p53-null and p53-positive lung cancer cells. In support of the tumor growth are irrepressible by p53 reactivation in vivo, the inhibitors of p53 (MDM2, Pirh2, and Cop1 are constantly stimulated by MCT-1 oncoprotein. Conclusions The oppositions between MCT-1 and p53 are firstly confirmed at multistage processes that include transcription control, mRNA metabolism, and protein expression. MCT-1 oncogenicity can overcome p53 function that persistently advances the tumor development.

  17. Phosphorylation and gene expression of p53 are not affected in human cells exposed to 2.1425 GHz band CW or W-CDMA modulated radiation allocated to mobile radio base stations.

    Science.gov (United States)

    Hirose, H; Sakuma, N; Kaji, N; Suhara, T; Sekijima, M; Nojima, T; Miyakoshi, J

    2006-09-01

    A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields induce apoptosis or other cellular stress response that activate p53 or the p53-signaling pathway. First, we evaluated the response of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole-body SAR for general public exposure defined as a basic restriction by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and wideband code division multiple access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced apoptosis or any signs of stress. Human glioblastoma A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg, and CW radiation at 80 mW/kg for 24 or 48 h. Human IMR-90 fibroblasts from fetal lungs were exposed to both W-CDMA and CW radiation at a SAR of 80 mW/kg for 28 h. Under the RF field exposure conditions described above, no significant differences in the percentage of apoptotic cells were observed between the test groups exposed to RF signals and the sham-exposed negative controls, as evaluated by the Annexin V affinity assay. No significant differences in expression levels of phosphorylated p53 at serine 15 or total p53 were observed between the test groups and the negative controls by the bead-based multiplex assay. Moreover, microarray hybridization and real-time RT-PCR analysis showed no noticeable differences in gene expression of the subsequent downstream targets of p53 signaling involved in apoptosis between the test groups and the negative controls. Our results confirm that exposure to low-level RF signals up to 800 mW/kg does not induce p53-dependent apoptosis, DNA damage, or other stress response in human

  18. Complex Biological Systems Analysis of Cell Cycling Models in Carcinogenesis: I. The essential roles of modifications in the c-Myc, TP53/p53, p27 and hTERT modules in Cancer Initiation and Progression

    CERN Document Server

    Prisecaru, V I

    2004-01-01

    A new approach to the integration of results from a modular, complex biological systems analysis of nonlinear dynamics in cell cycling network transformations that are leading to carcinogenesis is proposed. Carcinogenesis is a complex process that involves dynamically inter-connected biomolecules in the intercellular, membrane, cytosolic, nuclear and nucleolar compartments that form numerous inter-related pathways referred to as networks. One such network module contains the cell cyclins whose functions are essential to cell cycling and division. Cyclins are proteins that also link to several critical pro-apoptotic and other cell cycling/division components, such as: c-Myc, p27, the tumor suppressor gene TP53 and its product-- the p53 protein with key roles in controlling DNA repair, inducing apoptosis and activating p21 (which can depress cell cyclins if activated), mdm2(with its biosynthesis activated by p53 and also, in its turn, inhibiting p53), p21, the Thomsen-Friedenreich antigen(T- antigen),Rb,Bax, Ba...

  19. Integral analysis of p53 and its value as prognostic factor in sporadic colon cancer

    International Nuclear Information System (INIS)

    Fariña Sarasqueta, Arantza; Morreau, Hans; Forte, Giusi; Corver, Wim E; Miranda, Noel F de; Ruano, Dina; Eijk, Ronald van; Oosting, Jan; Tollenaar, Rob AEM; Wezel, Tom van

    2013-01-01

    p53 (encoded by TP53) is involved in DNA damage repair, cell cycle regulation, apoptosis, aging and cellular senescence. TP53 is mutated in around 50% of human cancers. Nevertheless, the consequences of p53 inactivation in colon cancer outcome remain unclear. Recently, a new role of p53 together with CSNK1A1 in colon cancer invasiveness has been described in mice. By combining data on different levels of p53 inactivation, we aimed to predict p53 functionality and to determine its effects on colon cancer outcome. Moreover, survival effects of CSNK1A1 together with p53 were also studied. Eighty-three formalin fixed paraffin embedded colon tumors were enriched for tumor cells using flow sorting, the extracted DNA was used in a custom SNP array to determine chr17p13-11 allelic state; p53 immunostaining, TP53 exons 5, 6, 7 and 8 mutations were determined in combination with mRNA expression analysis on frozen tissue. Patients with a predicted functional p53 had a better prognosis than patients with non functional p53 (Log Rank p=0.009). Expression of CSNK1A1 modified p53 survival effects. Patients with low CSNK1A1 expression and non-functional p53 had a very poor survival both in the univariate (Log Rank p<0.001) and in the multivariate survival analysis (HR=4.74 95% CI 1.45 – 15.3 p=0.009). The combination of mutational, genomic, protein and downstream transcriptional activity data predicted p53 functionality which is shown to have a prognostic effect on colon cancer patients. This effect was specifically modified by CSKN1A1 expression

  20. ATR-p53 restricts homologous recombination in response to replicative stress but does not limit DNA interstrand crosslink repair in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Bianca M Sirbu

    Full Text Available Homologous recombination (HR is required for the restart of collapsed DNA replication forks and error-free repair of DNA double-strand breaks (DSB. However, unscheduled or hyperactive HR may lead to genomic instability and promote cancer development. The cellular factors that restrict HR processes in mammalian cells are only beginning to be elucidated. The tumor suppressor p53 has been implicated in the suppression of HR though it has remained unclear why p53, as the guardian of the genome, would impair an error-free repair process. Here, we show for the first time that p53 downregulates foci formation of the RAD51 recombinase in response to replicative stress in H1299 lung cancer cells in a manner that is independent of its role as a transcription factor. We find that this downregulation of HR is not only completely dependent on the binding site of p53 with replication protein A but also the ATR/ATM serine 15 phosphorylation site. Genetic analysis suggests that ATR but not ATM kinase modulates p53's function in HR. The suppression of HR by p53 can be bypassed under experimental conditions that cause DSB either directly or indirectly, in line with p53's role as a guardian of the genome. As a result, transactivation-inactive p53 does not compromise the resistance of H1299 cells to the interstrand crosslinking agent mitomycin C. Altogether, our data support a model in which p53 plays an anti-recombinogenic role in the ATR-dependent mammalian replication checkpoint but does not impair a cell's ability to use HR for the removal of DSB induced by cytotoxic agents.

  1. DNA double strand break repair is enhanced by P53 following induction by DNA damage and is dependent on the C-terminal domain of P53

    International Nuclear Information System (INIS)

    Wei Tang; Powell, Simon N.

    1996-01-01

    Purpose: The tumor suppressor gene p53 can mediate cell cycle arrest or apoptosis in response to DNA damage. Accumulating evidence suggests that it may also directly or indirectly influence the DNA repair machinery. In the present study, we investigated whether p53, induced by DNA damage, could enhance the rejoining of double-strand DNA breaks. Materials and Methods: DNA double-strand breaks (dsb) were made by restriction enzyme digestion of a plasmid, between a promoter and a 'reporter' gene: luciferase (LUC) or chloramphenicol acetyl-transferase (CAT). Linear or circular plasmid DNA (LUC or CAT) was co-transfected with circular β-Gal plasmid (to normalize for uptake) into mouse embryonic fibroblasts genetically matched to be (+/+) or (-/-) for p53. Their ability to rejoin linearized plasmid was measured by the luciferase or CAT activity detected in rescued plasmids. The activity detected in cells transfected with linear plasmid was scored relative to the activity detected in cells transfected with circular plasmid. Results: Ionizing radiation (IR, 2 Gy) enhanced the dsb repair activity in wild type p53 cells; however, p53 null cells lose this effect, indicating that the enhancement of dsb repair was p53-dependent. REF cells with dominant-negative mutant p53 showed a similar induction compared with the parental REF cells with wild-type p53. This ala-143 mutant p53 prevents cell cycle arrest and transactivation of p21 WAF1/cip1) following IR, indicating that the p53-dependent enhancement of DNA repair is distinct from transactivation. Immortalized murine embryonic fibroblasts, 10(1)VasK1 cells, which express p53 cDNA encoding a temperature-sensitive mutant in the DNA sequence specific binding domain (ala135 to val135) with an alternatively spliced C-terminal domain (ASp53: amino-acids 360-381) and, 10(1)Val5 cells, which express the normal spliced p53 (NSp53) with the same temperature-sensitive mutant were compared. It was found that 10(1)VasK1 cells showed no DNA

  2. Human herpesvirus 6B induces phosphorylation of p53 in its regulatory domain by a CK2- and p38-independent pathway

    DEFF Research Database (Denmark)

    Øster, Bodil; Bundgaard, B; Hupp, T R

    2008-01-01

    Here, we demonstrate that human herpesvirus 6B (HHV-6B) infection upregulates the tumour suppressor p53 and induces phosphorylation of p53 at Ser392. Interestingly, phosphorylation at the equivalent site has previously been shown to correlate with p53 tumour suppression in murine models. Although...

  3. Mutational myriad of tumor suppressor p53 in Filipino breast cancer: results and perspectives in molecular pathology and epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Deocaris, Custer C

    2000-04-01

    The p53 tumor suppressor is by far the most widely mutated gene in human cancers. p53 encodes a 53-kDa phosphoprotein, transcription-activator whose targets include genes and gene products that orchestrate genomic stability, cellular response to DNA damage, cell cycle progression apoptosis and aging (senescence). Analysis of the p53 gene profile has previously resulted in identifying several cancer-causative factors in the human setting, as well as, in creating a unique molecular profile of a tumor useful in the design of tailored-therapies for individual cancer patients. Our results in screening for p53 abnormalities in 140 Filipino patients with primary breast lesions confined from 1997-1998 in 5 major hospitals in Manila reveal that p53 plays an important role in the development and progression of breast cancer in at least 48% of all cases. Two methods of p53 analysis are employed, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction-temporal temperature gradient electrophoresis (PCR-TTGE). Inter-comparisons of method exhibit 63.3% concordance in 21 fresh breast carcinoma samples, with ELISA demonstrating 14% false-positives and 10% false-negatives. Only mutations in exon 7 (p=0.063) in the tumor samples how significant correlation with abnormal cellular elevation of p53. PCR-TTGE screening in a large series of 140 patients show that most genetic lesions are localized in exons 5 (41% of the total cases) and 6 (27% of the total cases). No mutations are, however, detected in the transactivation (exons 2-4) and oligomerization (exons 10-11) domains. Invasive carcinomas (stages II and III) are characterized with more frequent and diverse genetic alterations compared with benign tumors, most significantly at exon 5B (p=0.066) and at independently multiple sites (p=0.066). Earlier-onset cases (age of diagnosis < 50 yrs), known to be more clinico-pathologically aggressive, are diagnosed harboring more frequent p53 mutations centered at exon 7 (p=0

  4. Mutational myriad of tumor suppressor p53 in Filipino breast cancer: results and perspectives in molecular pathology and epidemiology

    International Nuclear Information System (INIS)

    Deocaris, Custer C.

    2000-04-01

    The p53 tumor suppressor is by far the most widely mutated gene in human cancers. p53 encodes a 53-kDa phosphoprotein, transcription-activator whose targets include genes and gene products that orchestrate genomic stability, cellular response to DNA damage, cell cycle progression apoptosis and aging (senescence). Analysis of the p53 gene profile has previously resulted in identifying several cancer-causative factors in the human setting, as well as, in creating a unique molecular profile of a tumor useful in the design of tailored-therapies for individual cancer patients. Our results in screening for p53 abnormalities in 140 Filipino patients with primary breast lesions confined from 1997-1998 in 5 major hospitals in Manila reveal that p53 plays an important role in the development and progression of breast cancer in at least 48% of all cases. Two methods of p53 analysis are employed, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction-temporal temperature gradient electrophoresis (PCR-TTGE). Inter-comparisons of method exhibit 63.3% concordance in 21 fresh breast carcinoma samples, with ELISA demonstrating 14% false-positives and 10% false-negatives. Only mutations in exon 7 (p=0.063) in the tumor samples how significant correlation with abnormal cellular elevation of p53. PCR-TTGE screening in a large series of 140 patients show that most genetic lesions are localized in exons 5 (41% of the total cases) and 6 (27% of the total cases). No mutations are, however, detected in the transactivation (exons 2-4) and oligomerization (exons 10-11) domains. Invasive carcinomas (stages II and III) are characterized with more frequent and diverse genetic alterations compared with benign tumors, most significantly at exon 5B (p=0.066) and at independently multiple sites (p=0.066). Earlier-onset cases (age of diagnosis < 50 yrs), known to be more clinico-pathologically aggressive, are diagnosed harboring more frequent p53 mutations centered at exon 7 (p=0

  5. Artonin E induces p53-independent G1 cell cycle arrest and apoptosis through ROS-mediated mitochondrial pathway and livin suppression in MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Etti IC

    2017-03-01

    . Gene and protein expression studies revealed significant upregulation of cytochrome c, Bax, caspases 7 and 9, and p21 in Artonin E-treated MCF-7 cells, while MAPK and cyclin D were downregulated. Livin, a member of the inhibitors of apoptosis, whose upregulation has been noted to precede chemotherapeutic resistance and apoptosis evasion was remarkably repressed. In all, Artonin E stood high as a potential agent in the treatment of breast cancer. Keywords: Artonin E, breast cancer, apoptosis, cell cycle, livin

  6. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation.

    Science.gov (United States)

    De Smet, Frederik; Saiz Rubio, Mirian; Hompes, Daphne; Naus, Evelyne; De Baets, Greet; Langenberg, Tobias; Hipp, Mark S; Houben, Bert; Claes, Filip; Charbonneau, Sarah; Delgado Blanco, Javier; Plaisance, Stephane; Ramkissoon, Shakti; Ramkissoon, Lori; Simons, Colinda; van den Brandt, Piet; Weijenberg, Matty; Van England, Manon; Lambrechts, Sandrina; Amant, Frederic; D'Hoore, André; Ligon, Keith L; Sagaert, Xavier; Schymkowitz, Joost; Rousseau, Frederic

    2017-05-01

    Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great

  7. Circumvention and reactivation of the p53 oncogene checkpoint in mouse colon tumors.

    Science.gov (United States)

    Aizu, Wataru; Belinsky, Glenn S; Flynn, Christopher; Noonan, Emily J; Boes, Colleen C; Godman, Cassandra A; Doshi, Bindi; Nambiar, Prashant R; Rosenberg, Daniel W; Giardina, Charles

    2006-10-16

    The p53 tumor suppressor protein is sequence-normal in azoxymethane (AOM)-induced mouse colon tumors, making them a good model for human colon cancers that retain a wild type p53 gene. Cellular localization and co-immunoprecipitation experiments using a cell line derived from an AOM-induced colon tumor (AJ02-NM(0) cells) pointed to constitutively expressed Mdm2 as being an important negative regulator of p53 in these cells. Although the Mdm2 inhibitory protein p19/ARF was expressed in AJ02-NM(0) cells, its level of expression was not sufficient for p53 activation. We tested the response of AJ02-NM(0) cells to the recently developed Mdm2 inhibitor, Nutlin-3. Nutlin-3 was found to activate p53 DNA binding in AJ02-NM(0) cells, to a level comparable to doxorubicin and 5-fluorouracil (5-FU). In addition, Nutlin-3 increased expression of the p53 target genes Bax and PERP to a greater extent than doxorubicin or 5-FU, and triggered a G2/M phase arrest in these cells, compared to a G1 arrest triggered by doxorubicin and 5-FU. The differences in the cellular response may be related to differences in the kinetics of p53 activation and/or its post-translational modification status. In an ex vivo experiment, Nutlin-3 was found to activate p53 target gene expression and apoptosis in AOM-induced tumor tissue, but not in normal adjacent mucosa. Our data indicate that Mdm2 inhibitors may be an effective means of selectively targeting colon cancers that retain a sequence-normal p53 gene while sparing normal tissue and that the AOM model is an appropriate model for the preclinical development of these drugs.

  8. Drug resistance to inhibitors of the human double minute-2 E3 ligase is mediated by point mutations of p53, but can be overcome with the p53 targeting agent RITA.

    Science.gov (United States)

    Jones, Richard J; Bjorklund, Chad C; Baladandayuthapani, Veerabhadran; Kuhn, Deborah J; Orlowski, Robert Z

    2012-10-01

    The human double minute (HDM)-2 E3 ubiquitin ligase plays a key role in p53 turnover and has been validated preclinically as a target in multiple myeloma (MM) and mantle cell lymphoma (MCL). HDM-2 inhibitors are entering clinical trials, and we therefore sought to understand potential mechanisms of resistance in lymphoid models. Wild-type p53 H929 MM and Granta-519 MCL cells resistant to MI-63 or Nutlin were generated by exposing them to increasing drug concentrations. MI-63-resistant H929 and Granta-519 cells were resistant to Nutlin, whereas Nutlin-resistant cells displayed cross-resistance to MI-63. These cells also showed cross-resistance to bortezomib, doxorubicin, cisplatin, and melphalan, but remained sensitive to the small molecule inhibitor RITA (reactivation of p53 and induction of tumor cell apoptosis). HDM-2 inhibitor-resistant cells harbored increased p53 levels, but neither genotoxic nor nongenotoxic approaches to activate p53 induced HDM-2 or p21. Resequencing revealed wild-type HDM-2, but mutations were found in the p53 DNA binding and dimerization domains. In resistant cells, RITA induced a G(2)-M arrest, upregulation of p53 targets HDM-2, PUMA, and NOXA, and PARP cleavage. Combination regimens with RITA and MI-63 resulted in enhanced cell death compared with RITA alone. These findings support the possibility that p53 mutation could be a primary mechanism of acquired resistance to HDM-2 inhibitors in MCL and MM. Furthermore, they suggest that simultaneous restoration of p53 function and HDM-2 inhibition is a rational strategy for clinical translation.

  9. p53 induces differentiation but not apoptosis of v-Myb-transformed monoblasts

    Czech Academy of Sciences Publication Activity Database

    Navrátilová, J.; Horváth, Viktor; Kozubík, Alois; Lojek, Antonín; Šmarda, J.

    2006-01-01

    Roč. 18, č. 1 (2006), S38-S38 ISSN 1107-3756. [The 11th World Congress on Advances in Oncology and 9th International Symposium on Molecular Medicine . 12.10.2006-14.10.2006, Hersonissos] R&D Projects: GA ČR(CZ) GA301/06/0036 Institutional research plan: CEZ:AV0Z50040507 Keywords : p53 * v-Myb * BM2 Subject RIV: BO - Biophysics

  10. Microrna-31 mediates radiation induced apoptosis selectively in malignant tumour cells with dysfunctional P53

    International Nuclear Information System (INIS)

    Kumar, Ashish; Mukherjee, Prabuddho; Babu, Bincy; Chandna, Sudhir

    2016-01-01

    The protein p53 has been recognized as an important radio-responsive protein which functions mainly through transcriptional control of its target genes and microRNAs that target multiple response pathways. In this study, we investigate a putative link between p53 functionality and microRNA-31 expression that largely contributes to cellular transformation/malignancy and also establishes the role of miR-31 in radiation-induced cell death. The expression of miR-31 is found to be attenuated in cells in successive stages of cancer progression

  11. Studies on hematopoietic cell apoptosis and the relative gene expression in irradiated mouse bone marrow

    International Nuclear Information System (INIS)

    Peng Ruiyun; Wang Dewen; Xiong Chengqi; Gao Yabing; Yang Hong; Cui Yufang; Wang Baozhen

    2001-01-01

    Objective: To study apoptosis and expressions bcl-2 and p53 in irradiated mouse bone marrow. Methods: LACA mice were irradiated with 60 Co γ-rays. By means of in situ terminal labelling, in situ hybridization and image analysis, the authors studied radiation-induced apoptosis of hematopoietic cells and the expressions of bcl-2 and p53. Results: The characteristics of apoptosis appeared in hematopoietic cells at 6 hrs after irradiation. The expression of bcl-2 was obviously decreased when apoptosis of hematopoietic cells occurred, whereas it increased in the early recovery phase; p53 protein increased during both apoptosis of hematopoietic cells and the recovery phase, and mutant type p53 DNA was positive only in the recovery phase. Conclusion: Radiation may induced apoptosis of hematopoietic cells in a dose-dependent manner; Both bcl-2 and p53 genes play an important role in apoptosis and recovery phase

  12. Influence of P53 on the radiotherapy response of hepatocellular carcinoma

    Science.gov (United States)

    Gomes, Ana R.; Abrantes, Ana M.; Brito, Ana F.; Laranjo, Mafalda; Casalta-Lopes, João E.; Gonçalves, Ana C.; Sarmento-Ribeiro, Ana B.; Tralhão, José G.

    2015-01-01

    Background/Aims Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and it has a poor prognosis and few therapeutic options. Radiotherapy is one of the most effective forms of cancer treatment, and P53 protein is one of the key molecules determining how a cell responds to radiotherapy. The aim of this study was to determine the therapeutic efficacy of iodine-131 in three human HCC cell lines. Methods Western blotting was used to measure P53 expression. The effects of radiotherapy with iodine-131 were assessed by using the clonogenic assay to evaluate cell survival. Flow cytometry was carried out to examine the effects of iodine-131 on cell death, oxidative stress, reduced intracellular glutathione expression, the mitochondrial membrane potential, and the cell cycle. Results The P53 protein was not expressed in Hep3B2.1-7 cells, was expressed at normal levels in HepG2 cells, and was overexpressed in HuH7 cells. P53 expression in the HuH7 and HepG2 cell lines increased after internal and external irradiation with iodine-131. Irradiation induced a decrease in cell survival and led to a decrease in cell viability in all of the cell lines studied, accompanied by cell death via late apoptosis/necrosis and necrosis. Irradiation with 131-iodine induced mostly cell-cycle arrest in the G0/G1 phase. Conclusions These results suggest that P53 plays a key role in the radiotherapy response of HCC. PMID:26527121

  13. Effect of hydroxyurea on the promoter occupancy profiles of tumor suppressor p53 and p73

    Directory of Open Access Journals (Sweden)

    Lu Xin

    2009-06-01

    Full Text Available Abstract Background The p53 tumor suppressor and its related protein, p73, share a homologous DNA binding domain, and mouse genetics studies have suggested that they have overlapping as well as distinct biological functions. Both p53 and p73 are activated by genotoxic stress to regulate an array of cellular responses. Previous studies have suggested that p53 and p73 independently activate the cellular apoptotic program in response to cytotoxic drugs. The goal of this study was to compare the promoter-binding activity of p53 and p73 at steady state and after genotoxic stress induced by hydroxyurea. Results We employed chromatin immunoprecipitation, the NimbleGen promoter arrays and a model-based algorithm for promoter arrays to identify promoter sequences enriched in anti-p53 or anti-p73 immunoprecipitates, either before or after treatment with hydroxyurea, which increased the expression of both p53 and p73 in the human colon cancer cell line HCT116-3(6. We calculated a model-based algorithm for promoter array score for each promoter and found a significant correlation between the promoter occupancy profiles of p53 and p73. We also found that after hydroxyurea treatment, the p53-bound promoters were still bound by p73, but p73 became associated with additional promoters that that did not bind p53. In particular, we showed that hydroxyurea induces the binding of p73 but not p53 to the promoter of MLH3, which encodes a mismatch repair protein, and causes an up-regulation of the MLH3 mRNA. Conclusion These results suggest that hydroxyurea exerts differential effects on the promoter-binding functions of p53 and p73 and illustrate the power of model-based algorithm for promoter array in the analyses of promoter occupancy profiles of highly homologous transcription factors.

  14. The cooperative effect of p53 and Rb in local nanotherapy in a rabbit VX2 model of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Dong S

    2013-10-01

    Full Text Available Shengli Dong,1 Qibin Tang,2 Miaoyun Long,3 Jian Guan,4 Lu Ye,5 Gaopeng Li6 1Department of General Surgery, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi Province, 2Department of Hepatobiliopancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 3Department of Thyroid and Vascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 4Department of Radiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 5Infection Department, Guangzhou No 8 Hospital, Guangzhou, Guangdong Province, 6Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People's Republic of China Background/aim: A local nanotherapy (LNT combining the therapeutic efficacy of trans-arterial embolization, nanoparticles, and p53 gene therapy has been previously presented. The study presented here aimed to further improve the incomplete tumor eradication and limited survival enhancement and to elucidate the molecular mechanism of the LNT. Methods: In a tumor-targeting manner, recombinant expressing plasmids harboring wild-type p53 and Rb were either co-transferred or transferred separately to rabbit hepatic VX2 tumors in a poly-L-lysine-modified hydroxyapatite nanoparticle nanoplex and Lipiodol® (Guerbet, Villepinte, France emulsion via the hepatic artery. Subsequent co-expression of p53 and Rb proteins within the treated tumors was investigated by Western blotting and in situ analysis by laser-scanning confocal microscopy. The therapeutic effect was evaluated by the tumor growth velocity, apoptosis and necrosis rates, their sensitivity to Adriamycin® (ADM, mitomycin C, and fluorouracil, the microvessel density of tumor tissue, and the survival time of animals. Eventually, real-time polymerase chain reaction and enhanced chemiluminescence Western blotting

  15. Regulation of apoptosis-inducing factor-mediated, cisplatin-induced apoptosis by Akt

    OpenAIRE

    Yang, X; Fraser, M; Abedini, M R; Bai, T; Tsang, B K

    2008-01-01

    Cisplatin is a first-line chemotherapeutic for ovarian cancer, although chemoresistance limits treatment success. Apoptosis, an important determinant of cisplatin sensitivity, occurs via caspase-dependent and -independent mechanisms. Activation of the protein kinase Akt, commonly observed in ovarian tumours, confers resistance to ovarian cancer cells via inhibition of caspase-dependent apoptosis. However, the effect of Akt on cisplatin-induced, caspase-independent apoptosis remains unclear. W...

  16. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells

    Science.gov (United States)

    2012-01-01

    Background Bupivacaine-induced neurotoxicity has been shown to occur through apoptosis. Recently, bupivacaine was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in a human neuroblastoma cell line. We have reported that WDR35, a WD40-repeat protein, may mediate apoptosis through caspase-3 activation. The present study was undertaken to test whether bupivacaine induces apoptosis in mouse neuroblastoma Neuro2a cells and to determine whether ROS, p38 MAPK, and WDR35 are involved. Results Our results showed that bupivacaine induced ROS generation and p38 MAPK activation in Neuro2a cells, resulting in apoptosis. Bupivacaine also increased WDR35 expression in a dose- and time-dependent manner. Hydrogen peroxide (H2O2) also increased WDR35 expression in Neuro2a cells. Antioxidant (EUK-8) and p38 MAPK inhibitor (SB202190) treatment attenuated the increase in caspase-3 activity, cell death and WDR35 expression induced by bupivacaine or H2O2. Although transfection of Neuro2a cells with WDR35 siRNA attenuated the bupivacaine- or H2O2-induced increase in expression of WDR35 mRNA and protein, in contrast to our previous studies, it did not inhibit the increase in caspase-3 activity in bupivacaine- or H2O2-treated cells. Conclusions In summary, our results indicated that bupivacaine induced apoptosis in Neuro2a cells. Bupivacaine induced ROS generation and p38 MAPK activation, resulting in an increase in WDR35 expression, in these cells. However, the increase in WDR35 expression may not be essential for the bupivacaine-induced apoptosis in Neuro2a cells. These results may suggest the existence of another mechanism of bupivacaine-induced apoptosis independent from WDR35 expression in Neuro2a cells. PMID:23227925

  17. Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer

    Directory of Open Access Journals (Sweden)

    Villiard Éric

    2007-09-01

    Full Text Available Abstract Background Urodele amphibians like the axolotl are unique among vertebrates in their ability to regenerate and their resistance to develop cancers. It is unknown whether these traits are linked at the molecular level. Results Blocking p53 signaling in axolotls using the p53 inhibitor, pifithrin-α, inhibited limb regeneration and the expression of p53 target genes such as Mdm2 and Gadd45, suggesting a link between tumor suppression and regeneration. To understand this relationship we cloned the p53 gene from axolotl. When comparing its sequence with p53 from other organisms, and more specifically human we observed multiple amino acids changes found in human tumors. Phylogenetic analysis of p53 protein sequences from various species is in general agreement with standard vertebrate phylogeny; however, both mice-like rodents and teleost fishes are fast evolving. This leads to long branch attraction resulting in an artefactual basal emergence of these groups in the phylogenetic tree. It is tempting to assume a correlation between certain life style traits (e.g. lifespan and the evolutionary rate of the corresponding p53 sequences. Functional assays of the axolotl p53 in human or axolotl cells using p53 promoter reporters demonstrated a temperature sensitivity (ts, which was further confirmed by performing colony assays at 37°C. In addition, axolotl p53 was capable of efficient transactivation at the Hmd2 promoter but has moderate activity at the p21 promoter. Endogenous axolotl p53 was activated following UV irradiation (100 j/m2 or treatment with an alkylating agent as measured using serine 15 phosphorylation and the expression of the endogenous p53 target Gadd45. Conclusion Urodele p53 may play a role in regeneration and has evolved to contain multiple amino acid changes predicted to render the human protein defective in tumor suppression. Some of these mutations were probably selected to maintain p53 activity at low temperature. However

  18. Pharmacological manipulation of radiation induced apoptosis in a cervical carcinoma cell line

    International Nuclear Information System (INIS)

    Kamradt, M.; Mohideen, N.; Krueger, E.; Sokolova, I.A.; Khodarev, N.N; Vaughan, A.T.M.

    1997-01-01

    Purpose: Radiotherapy is a curative option in the treatment of early stage cervical carcinoma and radioresistant tumors limit local control and survival. Therefore, it is important to understand mechanisms by which cells evade death after irradiation. Of these, the process of apoptosis offers a useful model system to study. Tumors of the cervix offer a unique opportunity in that most contain an HPV genome expressing the E6 and E7 gene products under the control of a glucocorticoid responsive promoter. The HPV E6 and E7 proteins target p53 and/or Rb, both of which are involved in cell cycle control and in the apoptotic process. It was previously determined that treatment with the corticosteroid dexamethasone increased transcription of E6 and E7 and decreased p53 protein levels which corresponded with increased radioresistance and decreased apoptosis in C4-1 cervical carcinoma cells. The goal of this study is to demonstrate pharmacological manipulation of apoptosis within an HPV +ve cervical cell line. Methods: The HPV 18 +ve and p53 wildtype human cervical cell line C4-1 was used in this study. Apoptosis was induced by exposure to 6 Gy of gamma radiation and the ability of cells to undergo apoptosis was determined by morphology and the ability to form internucleosomal fragments using a DNA laddering technique. Cells were exposed to 0.01 to 1 μM dexamethasone in the presence or absence of 1 μM Mifepristone (RU486), a steroid antagonist and analyzed using the DNA laddering assay. In addition, cells that were irradiated in the presence of dexamethasone and/or Mifepristone were collected and p53 protein levels determined by FACS analysis. Results: Apoptosis was observed at a low level in control cells and was increased by irradiation with 6 Gy as determined by DNA laddering and morphology. The presence of 0.01 to 1 μM dexamethasone reduced both the radiation induced DNA laddering and also that seen in control cells. Addition of 1 μM Mifepristone to dexamethasone

  19. Efficacy and Molecular Mechanisms of Differentiated Response to the Aurora and Angiogenic Kinase Inhibitor ENMD-2076 in Preclinical Models of p53-Mutated Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Anastasia A. Ionkina

    2017-05-01

    Full Text Available PurposeTriple-negative breast cancer (TNBC is a subtype associated with poor prognosis and for which there are limited therapeutic options. The purpose of this study was to evaluate the efficacy of ENMD-2076 in p53-mutated TNBC patient-derived xenograft (PDX models and describe patterns of terminal cell fate in models demonstrating sensitivity, intrinsic resistance, and acquired resistance to ENMD-2076.Experimental designp53-mutated, TNBC PDX models were treated with ENMD-2076 and evaluated for mechanisms of sensitivity or resistance to treatment. Correlative tissue testing was performed on tumor tissue to assess for markers of proliferation, apoptosis, senescence, and pathways of resistance after treatment and at the time of acquired resistance.ResultsSensitivity to ENMD-2076 200 mg/kg daily was associated with induction of apoptosis while models exhibiting intrinsic or acquired resistance to treatment presented with a senescent phenotype. Response to ENMD-2076 was accompanied by an increase in p53 and p73 levels, even within the background of mutant p53. Treatment with ENMD-2076 resulted in a decrease in pAurA and an increase in pHH3. We observed a TNBC subtype switch from the luminal androgen receptor to the basal-like subtype at acquired resistance.ConclusionENMD-2076 has antitumor activity in preclinical models of p53-mutated TNBC. Increased levels of p53 and p73 correlated with sensitivity whereas senescence was associated with resistance to ENMD-2076. The novel finding of a TNBC subtype switch at time of acquired resistance may provide mechanistic insights into the biologic effects of selective pressure of anticancer treatments on TNBC. ENMD-2076 is currently being evaluated in a Phase 2 clinical trial in patients with metastatic, previously treated TNBC where these biologic correlates can be further explored.

  20. The role of p53 in radiation therapy outcomes for favorable-to-intermediate-risk prostate cancer

    International Nuclear Information System (INIS)

    Ritter, Mark A.; Gilchrist, Kennedy W.; Voytovich, Marta; Chappell, Richard J.; Verhoven, Bret M.

    2002-01-01

    Purpose: Some prostate cancers may have molecular alterations that render them less responsive to radiation therapy; identification of these alterations before treatment might allow improved treatment optimization. This study investigated whether p53, a potential molecular determinant, could predict long-term radiation therapy outcome in a restricted group of relatively favorable-risk prostate cancer patients treated uniformly with irradiation alone. Methods and Materials: This study included 53 patients previously treated with radiotherapy for favorable-to-intermediate-risk prostate cancer. These patients were selected for relatively low pretreatment PSAs (≤21 ng/mL) and Gleason scores (≤7) to decrease the likelihood of nonlocalized disease, because disease localization was necessary to examine the efficacy of localized radiation therapy. The status of p53 was immunohistochemically assessed in paraffin-embedded pretreatment biopsy specimens, along with appropriate controls. This marker was selected based upon a usable mutation prevalence in early-stage prostate cancer and its potential linkage with radiation response via cell cycle, DNA repair, and cell death pathways. Correlation between p53 mutation and clinical outcome was analyzed in univariate and multivariate fashion and included conventional prognosticators, such as stage, grade, and PSA. Freedom from biochemical failure was determined using American Society for Therapeutic Radiology and Oncology criteria. Limitations of prior studies were potentially avoided by requiring adequate posttreatment follow-up (median follow-up in nonfailing patients of 5.1 years), as well as pretreatment PSA and Gleason scores that suggested localized disease, and uniformity of treatment. Results: The total group of 53 favorable-to-intermediate-risk patients demonstrated an actuarial biochemical failure rate of 35% at 5 years. Forty percent of all specimens had a greater than 10% labeling index for p53 mutation, and