WorldWideScience

Sample records for p450 genes involved

  1. A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants.

    Science.gov (United States)

    Rong Tan, Li; Chen Lu, Yi; Jing Zhang, Jing; Luo, Fang; Yang, Hong

    2015-09-01

    Plant cytochrome P450 monooxygenases constitute one of the largest families of protein genes involved in plant growth, development and acclimation to biotic and abiotic stresses. However, whether these genes respond to organic toxic compounds and their biological functions for detoxifying toxic compounds such as herbicides in rice are poorly understood. The present study identified 201 genes encoding cytochrome P450s from an atrazine-exposed rice transcriptome through high-throughput sequencing. Of these, 69 cytochrome P450 genes were validated by microarray and some of them were confirmed by real time PCR. Activities of NADPH-cytochrome P450 reductase (CPR) and p-nitroanisole O-demethylase (PNOD) related to toxicity were determined and significantly induced by atrazine exposure. To dissect the mechanism underlying atrazine modification and detoxification by P450, metabolites (or derivatives) of atrazine in plants were analyzed by ultra performance liquid chromatography mass spectrometry (UPLC/MS). Major metabolites comprised desmethylatrazine (DMA), desethylatrazine (DEA), desisopropylatrazine (DIA), hydroxyatrazine (HA), hydroxyethylatrazine (HEA) and hydroxyisopropylatrazine (HIA). All of them were chemically modified by P450s. Furthermore, two specific inhibitors of piperonyl butoxide (PBO) and malathion (MAL) were used to assess the correlation between the P450s activity and rice responses including accumulation of atrazine in tissues, shoot and root growth and detoxification. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    Science.gov (United States)

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  3. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    Science.gov (United States)

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  4. Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus.

    Science.gov (United States)

    Gong, Youhui; Li, Ting; Zhang, Lee; Gao, Xiwu; Liu, Nannan

    2013-01-01

    The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance.

  5. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga.

    Science.gov (United States)

    Chen, Chengyu; Wang, Cuicui; Liu, Ying; Shi, Xueyan; Gao, Xiwu

    2018-02-07

    Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odoriphaga that respond to imidacloprid treatment. Differential expression data between imidacloprid treatment and the control revealed 281 transcripts (176 with annotations) showing upregulation and 394 transcripts (235 with annotations) showing downregulation. Among them, differential expression levels of seven P450 unigenes were associated with imidacloprid detoxification mechanism, with 4 unigenes that were upregulated and 3 unigenes that were downregulated. The qRT-PCR results of the seven differential expression P450 unigenes after imidacloprid treatment were consistent with RNA-Seq data. Furthermore, oral delivery mediated RNA interference of these four upregulated P450 unigenes followed by an insecticide bioassay significantly increased the mortality of imidacloprid-treated B. odoriphaga. This result indicated that the four upregulated P450s are involved in detoxification of imidacloprid. This study provides a genetic basis for further exploring P450 genes for imidacloprid detoxification in B. odoriphaga.

  6. A comparative study of P450 gene expression in field and laboratory Musca domestica L. strains.

    Science.gov (United States)

    Højland, Dorte H; Vagn Jensen, Karl-Martin; Kristensen, Michael

    2014-08-01

    The housefly is a global pest that has developed resistance to most insecticides applied for its control. Resistance has been associated with cytochrome P450 monooxygenases (P450s). The authors compare the expression of six genes possibly associated with insecticide resistance in three unselected strains: a multiresistant strain (791a), a neonicotinoid-resistant strain (766b) and a new field strain (845b). CYP4G2 was highly expressed throughout the range of strains and proved to be the one of the most interesting expression profiles of all P450s analysed. CYP6G4 was expressed up to 11-fold higher in 766b than in WHO-SRS. Significant differences between expression of P450 genes between F1 flies from 845b and established laboratory strains were shown. In general, P450 gene expression in 845b was 2-14-fold higher than in the reference strain (P resistance. There is a strong indication that CYP6G4 is a major insecticide resistance gene involved in neonicotinoid resistance. © 2013 Society of Chemical Industry.

  7. Computational identification of putative cytochrome P450 genes in ...

    African Journals Online (AJOL)

    Chattha

    Economically, legumes represent the second most important family of crop plants after Poacea (grass family), accounting for ... further characterization of P450 genes with both known and unknown functions. MATERIALS AND METHODS ..... Cytochrome P450. In: Somerville CR, Meyerowitz EM (eds) .The Arabidopsis book,.

  8. The molecular evolution of cytochrome P450 genes within and between drosophila species.

    Science.gov (United States)

    Good, Robert T; Gramzow, Lydia; Battlay, Paul; Sztal, Tamar; Batterham, Philip; Robin, Charles

    2014-04-20

    We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes-with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Multiple Cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes, Culex quinquefasciatus.

    Science.gov (United States)

    Liu, Nannan; Li, Ting; Reid, William R; Yang, Ting; Zhang, Lee

    2011-01-01

    Four cytochrome P450 cDNAs, CYP6AA7, CYP9J40, CYP9J34, and CYP9M10, were isolated from mosquitoes, Culex quinquefasciatus. The P450 gene expression and induction by permethrin were compared for three different mosquito populations bearing different resistance phenotypes, ranging from susceptible (S-Lab), through intermediate (HAmCq(G0), the field parental population) to highly resistant (HAmCq(G8), the 8(th) generation of permethrin selected offspring of HAmCq(G0)). A strong correlation was found for P450 gene expression with the levels of resistance and following permethrin selection at the larval stage of mosquitoes, with the highest expression levels identified in HAmCq(G8), suggesting the importance of CYP6AA7, CYP9J40, CYP9J34, and CYP9M10 in the permethrin resistance of larva mosquitoes. Only CYP6AA7 showed a significant overexpression in HAmCq(G8) adult mosquitoes. Other P450 genes had similar expression levels among the mosquito populations tested, suggesting different P450 genes may be involved in the response to insecticide pressure in different developmental stages. The expression of CYP6AA7, CYP9J34, and CYP9M10 was further induced by permethrin in resistant mosquitoes. Taken together, these results indicate that multiple P450 genes are up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, thus increasing the overall expression levels of P450 genes.

  10. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes

    Directory of Open Access Journals (Sweden)

    Li Xianchun

    2007-03-01

    Full Text Available Abstract Background Transposons, i.e. transposable elements (TEs, are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. Results Twelve novel transposons, including LINEs (long interspersed nuclear elements, SINEs (short interspersed nuclear elements, MITEs (miniature inverted-repeat transposable elements, one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1 implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1 involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. Conclusion These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes.

  11. Expression of xenobiotic metabolizing cytochrome P450 genes in a spinosad-resistant Musca domestica L. strain.

    Directory of Open Access Journals (Sweden)

    Dorte H Højland

    Full Text Available Spinosad is important in pest management strategies of multiple insect pests. However, spinosad resistance is emerging in various pest species. Resistance has in some species been associated with alterations of the target-site receptor, but in others P450s seems to be involved. We test the possible importance of nine cytochrome P450 genes in the spinosad-resistant housefly strain 791spin and investigate the influence of spinosad on P450 expression in four other housefly strains.Significant differences in P450 expression of the nine P450 genes in the four strains after spinosad treatment were identified in 40% of cases, most of these as induction. The highly expressed CYP4G2 was induced 6.6-fold in the insecticide susceptible WHO-SRS females, but decreased 2-fold in resistant 791spin males. CYP6G4 was constitutively higher expressed in the resistant strain compared to the susceptible strain. Furthermore, CYP6G4 gene expression was increased in susceptible WHO-SRS flies by spinosad while the expression level did not alter significantly in resistant fly strains. Expression of CYP6A1 and male CYP6D3 was constitutively higher in the resistant strain compared to the susceptible. However, in both cases male expression was higher than female expression.CYP4G2, CYP6A1, CYP6D3 and CYP6G4 have expressions patterns approaching the expectations of a hypothesized sex specific spinosad resistance gene. CYP4G2 fit requirements of a spinosad resistance gene best, making it the most likely candidate. The overall high expression level of CYP4G2 throughout the strains also indicates importance of this gene. However, the data on 791spin are not conclusive concerning spinosad resistance and small contributions from multiple P450s with different enzymatic capabilities could be speculated to do the job in 791spin. Differential expression of P450s between sexes is more a rule than an exception. Noteworthy differences between spinosad influenced expression of P450 genes

  12. Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: A genome-scale analysis.

    Science.gov (United States)

    Zhang, Jianhua; Zhang, Yixi; Wang, Yunchao; Yang, Yuanxue; Cang, Xinzhu; Liu, Zewen

    2016-09-01

    The overexpression of P450 monooxygenase genes is a main mechanism for the resistance to imidacloprid, a representative neonicotinoid insecticide, in Nilaparvata lugens (brown planthopper, BPH). However, only two P450 genes (CYP6AY1 and CYP6ER1), among fifty-four P450 genes identified from BPH genome database, have been reported to play important roles in imidacloprid resistance until now. In this study, after the confirmation of important roles of P450s in imidacloprid resistance by the synergism analysis, the expression induction by imidacloprid was determined for all P450 genes. In the susceptible (Sus) strain, eight P450 genes in Clade4, eight in Clade3 and two in Clade2 were up-regulated by imidacloprid, among which three genes (CYP6CS1, CYP6CW1 and CYP6ER1, all in Clade3) were increased to above 4.0-fold and eight genes to above 2.0-fold. In contrast, no P450 genes were induced in Mito clade. Eight genes induced to above 2.0-fold were selected to determine their expression and induced levels in Huzhou population, in which piperonyl butoxide showed the biggest effects on imidacloprid toxicity among eight field populations. The expression levels of seven P450 genes were higher in Huzhou population than that in Sus strain, with the biggest differences for CYP6CS1 (9.8-fold), CYP6ER1 (7.7-fold) and CYP6AY1 (5.1-fold). The induction levels for all tested genes were bigger in Sus strain than that in Huzhou population except CYP425B1. Screening the induction of P450 genes by imidacloprid in the genome-scale will provide an overall view on the possible metabolic factors in the resistance to neonicotinoid insecticides. The further work, such as the functional study of recombinant proteins, will be performed to validate the roles of these P450s in imidacloprid resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. In planta functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2.

    Science.gov (United States)

    Ye, Zhongfeng; Yamazaki, Kohei; Minoda, Hiromi; Miyamoto, Koji; Miyazaki, Sho; Kawaide, Hiroshi; Yajima, Arata; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2018-06-01

    In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.

  14. "Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila.".

    OpenAIRE

    Waters, L C; Zelhof, A C; Shaw, B J; Ch'ang, L Y

    1992-01-01

    P450-A and P450-B are electrophoretically defined subsets of cytochrome P450 enzymes in Drosophila melanogaster. P450-A is present among all strains tested, whereas expression of P450-B is associated with resistance to insecticides. Monoclonal antibodies were used to obtain cDNA clones for an enzyme from each P450 subset (i.e., P450-A1 and P450-B1). The P450-B1 cDNA was sequenced and shown to code for a P450 of 507 amino acids. Its gene has been named CYP6A2. Comparative molecular analyses of...

  15. Induction of P450 genes in Nilaparvata lugens and Sogatella furcifera by two neonicotinoid insecticides.

    Science.gov (United States)

    Yang, Yuan-Xue; Yu, Na; Zhang, Jian-Hua; Zhang, Yi-Xi; Liu, Ze-Wen

    2018-06-01

    Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidacloprid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over-expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IMI and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD 85 ), and in N. lugens among three IMI doses (LD 15 , LD 50 and LD 85 ). When IMI and NMI at the LD 85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up-regulation of nine genes and down-regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD 85 dose, 10 genes had very similar patterns, such as up-regulation in seven genes, down-regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up-regulation in four genes at all doses and dose-dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up-regulated by the LD 50 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose-dependent. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  16. Activation of anthocyanin synthesis genes by white light in eggplant hypocotyl tissues, and identification of an inducible P-450 cDNA

    International Nuclear Information System (INIS)

    Toguri, T.; Umemoto, N.; Kobayashi, O.; Ohtani, T.

    1993-01-01

    Eggplant seedlings (Solanum melongena) grown under red light irradiation showed a normal morphology with green, fully expanded cotyledons. When the seedlings grown under red light were irradiated with ultraviolet-containing white light, anthocyanin synthesis was induced in the hypocotyl tissues, especially when a UV light supplement was added. The accumulation of pigments was closely associated with the expression of genes involved in flavonoid synthesis. These genes include chalcone synthase (CHS) and dihydroflavonol 4-reductase (DFR). Using subtracted probes, which had been enriched for the accumulated mRNA, one white light-responsive cDNA was identified as being a P450 gene by comparison with database sequences. The maximal amino acid homology this cDNA had with other P450s was 36%. This was with CYP71 from avocado (Persea americana). Thus it represents a new P-450 family, which has been named CYP75. The mRNA of this gene was localized in the hypocotyl tissues of eggplant seedlings, which had been white light-irradiated. The transcript was accumulated by changing the light source, as in the case of other flavonoid biosynthesis genes. In delphinidin producing petunia plants, the mRNAs corresponding to the eggplant P-450 and flavonoid biosynthesis genes such as CHS and DFR were most abundant during the mid stage of flower bud development, but could not be detected in leaf tissues. These results suggest that this P-450 gene encodes a hydroxylating enzyme involved in flavonoid biosynthesis. (author)

  17. A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases (http://www.P450.kvl.dk).

    Science.gov (United States)

    Paquette, Suzanne M; Jensen, Kenneth; Bak, Søren

    2009-12-01

    Gene and genome duplication is a key driving force in evolution of plant diversity. This has resulted in a number of large multi-gene families. Two of the largest multi-gene families in plants are the cytochromes P450 (P450s) and family 1 glycosyltransferases (UGTs). These two families are key players in evolution, especially of plant secondary metabolism, and in adaption to abiotic and biotic stress. In the model plant Arabidopsis thaliana there are 246 and 112 cytochromes P450 and UGTs, respectively. The Arabidopsis P450, cytochromes b(5), NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases website (http://www.P450.kvl.dk) is a sequence repository of manually curated sequences, multiple sequence alignments, phylogenetic trees, sequence motif logos, 3D structures, intron-exon maps, and customized BLAST datasets.

  18. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Yu, Liying; Tang, Weiqi; He, Weiyi; Ma, Xiaoli; Vasseur, Liette; Baxter, Simon W; Yang, Guang; Huang, Shiguo; Song, Fengqin; You, Minsheng

    2015-03-10

    Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification.

  19. Computational identification of putative cytochrome P450 genes in ...

    African Journals Online (AJOL)

    In this work, a computational study of expressed sequence tags (ESTs) of soybean was performed by data mining methods and bio-informatics tools and as a result 78 putative P450 genes were identified, including 57 new ones. These genes were classified into five clans and 20 families by sequence similarities and among ...

  20. Two cytochrome P450 genes are involved in imidacloprid resistance in field populations of the whitefly, Bemisia tabaci, in China.

    Science.gov (United States)

    Yang, Xin; Xie, Wen; Wang, Shao-li; Wu, Qing-jun; Pan, Hui-peng; Li, Ru-mei; Yang, Ni-na; Liu, Bai-ming; Xu, Bao-yun; Zhou, Xiaomao; Zhang, You-jun

    2013-11-01

    The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae), is an invasive and damaging pest of field crops worldwide. The neonicotinoid insecticide imidacloprid has been widely used to control this pest. We assessed the species composition (B vs. Q), imidacloprid resistance, and association between imidacloprid resistance and the expression of five P450 genes for 14-17 B. tabaci populations in 12 provinces in China. Fifteen of 17 populations contained only B. tabaci Q, and two populations contained both B and Q. Seven of 17 populations exhibited moderate to high resistance to imidacloprid, and eight populations exhibited low resistance to imidacloprid, compared with the most susceptible field WHHB population. In a study of 14 of the populations, resistance level was correlated with the expression of the P450 genes CYP6CM1 and CYP4C64 but not with the expression of CYP6CX1, CYP6CX4, or CYP6DZ7. This study indicates that B. tabaci Q has a wider distribution in China than previously reported. Resistance to imidacloprid in field populations of B. tabaci is associated with the increased expression of two cytochrome P450 genes (CYP6CM1 and CYP4C64). Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  1. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses.

    Directory of Open Access Journals (Sweden)

    Qiang Yan

    Full Text Available The cytochrome P450 monooxygenases (P450s represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.. Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA or ethephon (ETH. Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA, and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes.

  2. Adenoviral delivery of pan-caspase inhibitor p35 enhances bystander killing by P450 gene-directed enzyme prodrug therapy using cyclophosphamide+

    International Nuclear Information System (INIS)

    Doloff, Joshua C; Su, Ting; Waxman, David J

    2010-01-01

    Cytochrome P450-based suicide gene therapy for cancer using prodrugs such as cyclophosphamide (CPA) increases anti-tumor activity, both directly and via a bystander killing mechanism. Bystander cell killing is essential for the clinical success of this treatment strategy, given the difficulty of achieving 100% efficient gene delivery in vivo using current technologies. Previous studies have shown that the pan-caspase inhibitor p35 significantly increases CPA-induced bystander killing by tumor cells that stably express P450 enzyme CYP2B6 (Schwartz et al, (2002) Cancer Res. 62: 6928-37). To further develop this approach, we constructed and characterized a replication-defective adenovirus, Adeno-2B6/p35, which expresses p35 in combination with CYP2B6 and its electron transfer partner, P450 reductase. The expression of p35 in Adeno-2B6/p35-infected tumor cells inhibited caspase activation, delaying the death of the CYP2B6 'factory' cells that produce active CPA metabolites, and increased bystander tumor cell killing compared to that achieved in the absence of p35. Tumor cells infected with Adeno-2B6/p35 were readily killed by cisplatin and doxorubicin, indicating that p35 expression is not associated with acquisition of general drug resistance. Finally, p35 did not inhibit viral release when the replication-competent adenovirus ONYX-017 was used as a helper virus to facilitate co-replication and spread of Adeno-2B6/p35 and further increase CPA-induced bystander cell killing. The introduction of p35 into gene therapeutic regimens constitutes an effective approach to increase bystander killing by cytochrome P450 gene therapy. This strategy may also be used to enhance other bystander cytotoxic therapies, including those involving the production of tumor cell toxic protein products

  3. Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Babu, Peram Ravindra; Rao, Khareedu Venkateswara; Reddy, Vudem Dashavantha

    2013-01-15

    Flax CYPome analysis resulted in the identification of 334 putative cytochrome P450 (CYP450) genes in the cultivated flax genome. Classification of flax CYP450 genes based on the sequence similarity with Arabidopsis orthologs and CYP450 nomenclature, revealed 10 clans representing 44 families and 98 subfamilies. CYP80, CYP83, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733 and CYP736 families are absent in the flax genome. The subfamily members exhibited conserved sequences, length of exons and phasing of introns. Similarity search of the genomic resources of wild flax species Linum bienne with CYP450 coding sequences of the cultivated flax, revealed the presence of 127 CYP450 gene orthologs, indicating amplification of novel CYP450 genes in the cultivated flax. Seven families CYP73, 74, 75, 76, 77, 84 and 709, coding for enzymes associated with phenylpropanoid/fatty acid metabolism, showed extensive gene amplification in the flax. About 59% of the flax CYP450 genes were present in the EST libraries. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A comparative study of P450 gene expression in field and laboratory Musca domestica L. strains

    DEFF Research Database (Denmark)

    Højland, Dorte Heidi; Vagn Jensen, Karl-Martin; Kristensen, Michael

    2014-01-01

    BACKGROUND The housefly is a global pest that has developed resistance to most insecticides applied for its control. Resistance has been associated with cytochrome P450 monooxygenases (P450s). The authors compare the expression of six genes possibly associated with insecticide resistance in three...... unselected strains: a multiresistant strain (791a), a neonicotinoid-resistant strain (766b) and a new field strain (845b). RESULTS CYP4G2 was highly expressed throughout the range of strains and proved to be the one of the most interesting expression profiles of all P450s analysed. CYP6G4 was expressed up...... to 11-fold higher in 766b than in WHO-SRS. Significant differences between expression of P450 genes between F1 flies from 845b and established laboratory strains were shown. In general, P450 gene expression in 845b was 2–14-fold higher than in the reference strain (P

  5. Genome-wide and expression-profiling analyses suggest the main cytochrome P450 genes related to pyrethroid resistance in the malaria vector, Anopheles sinensis (Diptera Culicidae).

    Science.gov (United States)

    Yan, Zheng-Wen; He, Zheng-Bo; Yan, Zhen-Tian; Si, Feng-Ling; Zhou, Yong; Chen, Bin

    2018-02-02

    Anopheles sinensis is one of the major malaria vectors. However, pyrethroid resistance in An. sinensis is threatening malaria control. Cytochrome P450-mediated detoxification is an important pyrethroid resistance mechanism that has been unexplored in An. sinensis. In this study, we performed a comprehensive analysis of the An. sinensis P450 gene superfamily with special attention to their role in pyrethroid resistance using bioinformatics and molecular approaches. Our data revealed the presence of 112 individual P450 genes in An. sinensis, which were classified into four major clans (mitochondrial, CYP2, CYP3 and CYP4), 18 families and 50 subfamilies. Sixty-seven genes formed nine gene clusters, and genes within the same cluster and the same gene family had a similar gene structure. Phylogenetic analysis showed that most of An. sinensis P450s (82/112) had very close 1: 1 orthology with Anopheles gambiae P450s. Five genes (AsCYP6Z2, AsCYP6P3v1, AsCYP6P3v2, AsCYP9J5 and AsCYP306A1) were significantly upregulated in three pyrethroid-resistant populations in both RNA-seq and RT-qPCR analyses, suggesting that they could be the most important P450 genes involved in pyrethroid resistance in An. sinensis. Our study provides insight on the diversity of An. sinensis P450 superfamily and basis for further elucidating pyrethroid resistance mechanism in this mosquito species. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  6. Two mutant alleles of the human cytochrome P-450dbl gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs

    International Nuclear Information System (INIS)

    Skoda, R.C.; Gonzalez, F.L.; Demierre, A.; Meyer, R.A.

    1988-01-01

    The debrisoquine polymorphism is a clinically important genetic defect of drug metabolism affecting 5-10% of individuals in Caucasian populations. It is inherited as an autosomal recessive trait. A full-length cDNA for human cytochrome P-450db1, the deficient enzyme (also designated P450IID1 for P450 family II subfamily D isozyme 1), has recently been cloned. Leukocyte DNA from extensive metabolizers (EMs) or poor metabolizers (PMs) of debrisoquine was examined by Southern analysis. Two polymorphic restriction fragments were associated with the PM phenotype when DNAs from 24 unrelated PM and 29 unrelated EM individuals were probed with P-450db1 cDNA after digestion with Xba I restriction endonuclease and Southern blotting. Seventy-five percent of PMs had either the 44-kb or the 11.5-kb fragment or both. Segregation of these restriction fragment length polymorphisms in the families of six PM probands demonstrated that each of the two fragments is allelic with the 29-kb fragment present in all EM individuals and suggests that they identify two independent mutated alleles of the P-450db1 gene (designated P450C2D1). The Xba I 44-kb fragment and 11.5-kb fragment were in linkage disequilibrium with restriction fragment length polymorphisms generated by four and five additional restriction endonucleases, respectively, which can be used to identify the same mutant alleles for the P-450db1 gene

  7. Molecular Characterization and Functional Analysis of Three Pathogenesis-Related Cytochrome P450 Genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea

    Directory of Open Access Journals (Sweden)

    Xiao-Lu Xu

    2015-03-01

    Full Text Available Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant.

  8. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica.

    Science.gov (United States)

    Zhu, Fang; Li, Ting; Zhang, Lee; Liu, Nannan

    2008-09-25

    Insects may use various biochemical pathways to enable them to tolerate the lethal action of insecticides. For example, increased cytochrome P450 detoxification is known to play an important role in many insect species. Both constitutively increased expression (overexpression) and induction of P450s are thought to be responsible for increased levels of detoxification of insecticides. However, unlike constitutively overexpressed P450 genes, whose expression association with insecticide resistance has been extensively studied, the induction of P450s is less well characterized in insecticide resistance. The current study focuses on the characterization of individual P450 genes that are induced in response to permethrin treatment in permethrin resistant house flies. The expression of 3 P450 genes, CYP4D4v2, CYP4G2, and CYP6A38, was co-up-regulated by permethrin treatment in permethrin resistant ALHF house flies in a time and dose-dependent manner. Comparison of the deduced protein sequences of these three P450s from resistant ALHF and susceptible aabys and CS house flies revealed identical protein sequences. Genetic linkage analysis located CYP4D4v2 and CYP6A38 on autosome 5, corresponding to the linkage of P450-mediated resistance in ALHF, whereas CYP4G2 was located on autosome 3, where the major insecticide resistance factor(s) for ALHF had been mapped but no P450 genes reported prior to this study. Our study provides the first direct evidence that multiple P450 genes are co-up-regulated in permethrin resistant house flies through the induction mechanism, which increases overall expression levels of P450 genes in resistant house flies. Taken together with the significant induction of CYP4D4v2, CYP4G2, and CYP6A38 expression by permethrin only in permethrin resistant house flies and the correlation of the linkage of the genes with resistance and/or P450-mediated resistance in resistant ALHF house flies, this study sheds new light on the functional importance of P450

  9. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Wang, Linhai; Dossa, Komivi; Zhang, Xiurong; Ke, Tao; Liao, Boshou

    2017-09-18

    The cytochrome P450 monooxygenase (P450) superfamily is involved in the biosynthesis of various primary and secondary metabolites. However, little is known about the effects of whole genome duplication (WGD) and tandem duplication (TD) events on the evolutionary history and functional divergence of P450s in Brassica after splitting from a common ancestor with Arabidopsis thaliana. Using Hidden Markov Model search and manual curation, we detected that Brassica species have nearly 1.4-fold as many P450 members as A. thaliana. Most P450s in A. thaliana and Brassica species were located on pseudo-chromosomes. The inferred phylogeny indicated that all P450s were clustered into two different subgroups. Analysis of WGD event revealed that different P450 gene families had appeared after evolutionary events of species. For the TD event analyses, the P450s from TD events in Brassica species can be divided into ancient and recent parts. Our comparison of influence of WGD and TD events on the P450 gene superfamily between A. thaliana and Brassica species indicated that the family-specific evolution in the Brassica lineage can be attributed to both WGD and TD, whereas WGD was recognized as the major mechanism for the recent evolution of the P450 super gene family. Expression analysis of P450s from A. thaliana and Brassica species indicated that WGD-type P450s showed the same expression pattern but completely different expression with TD-type P450s across different tissues in Brassica species. Selection force analysis suggested that P450 orthologous gene pairs between A. thaliana and Brassica species underwent negative selection, but no significant differences were found between P450 orthologous gene pairs in A. thaliana-B. rapa and A. thaliana-B. oleracea lineages, as well as in different subgenomes in B. rapa or B. oleracea compared with A. thaliana. This study is the first to investigate the effects of WGD and TD on the evolutionary history and functional divergence of P450

  10. P450XXI (steroid 21-hydroxylase) gene deletions are not found in family studies of congenital adrenal hyperplasia

    International Nuclear Information System (INIS)

    Matteson, K.J.; Phillips, J.A. III; Miller, W.L.; Chung, B.C.; Orlando, P.J.; Frisch, H.; Ferrandez, A.; Burr, I.M.

    1987-01-01

    Congenital adrenal hyperplasia (CAH) is a common genetic disorder due to defective 21-hydroxylation of steroid hormones. The human P450XXIA2 gene encodes cytochrome P450c21 [steroid 21-monooxygenase (steroid 21-hydroxylase)], which mediates 21-hydroxylation. The P450XXIA2 gene may be distinguished from the duplicated P450XXIA1 pseudogene by cleavage with the restriction endonuclease Taq I, with the XXIA2 gene characterized by a 3.7-kilobase (kb) fragment and the XXIA1 pseudogene characterized by a 3.2-kb fragment. Restriction endonuclease mapping by several laboratories has suggested that deletion of the P450XXIA2 gene occurs in about 25% of patients with CAH, as their genomic DNA lacks detectable 3.7-kb Taq I fragments. The authors have cloned human P450c21 cDNA and used it to study genomic DNA prepared from 51 persons in 10 families, each of which includes 2 or more persons with CAH. After Taq I digestion, apparent deletions are seen in 7 of the 20 alleles of the probands; using EcoRI, apparent deletions are seen in 9 of the 20 alleles. However, the apparently deleted alleles seen with Taq I do not coincide with those seen with EcoRI. Furthermore, studies with Bgl II, EcoRI, Kpn I, and Xba I yield normal patterns with at least two enzymes in all cases. Since all probands yielded normal patterns with at least two of the five enzymes used, they conclude that the P450XXIA2 gene deletions widely reported in CAH patients probably represent gene conversions, unequal crossovers,or polymorphisms rather than simple gene deletions

  11. The cytochrome p450 homepage.

    Science.gov (United States)

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  12. Regulation of the cytochrome P450 2A genes

    International Nuclear Information System (INIS)

    Su Ting; Ding Xinxin

    2004-01-01

    Cytochrome P450 monooxygenases of the CYP2A subfamily play important roles in xenobiotic disposition in the liver and in metabolic activation in extrahepatic tissues. Many of the CYP2A transcripts and enzymes are inducible by xenobiotic compounds, and the expression of at least some of the CYP2A genes is influenced by physiological status, such as circadian rhythm, and pathological conditions, such as inflammation, microbial infection, and tumorigenesis. Variability in the expression of the CYP2A genes, which differs by species, animal strain, gender, and organ, may alter the risks of chemical toxicity for numerous compounds that are CYP2A substrates. The mechanistic bases of these variabilities are generally not well understood. However, recent studies have yielded interesting findings in several areas, such as the role of nuclear factor 1 in the tissue-selective expression of CYP2A genes in the olfactory mucosa (OM); the roles of constitutive androstane receptor, pregnane X receptor (PXR), and possibly, peroxisome proliferator-activated receptors in transcriptional regulation of the Cyp2a5 gene; and the involvement of heterogeneous nuclear ribonucleoprotein A1 in pyrazole-induced stabilization of CYP2A5 mRNA. The aims of this minireview are to summarize current knowledge of the regulation of the CYP2A genes in rodents and humans, and to stimulate further mechanistic studies that will ultimately improve our ability to determine, and to understand, these variabilities in humans

  13. Identification of SNPs involved in regulating a novel alternative transcript of P450 CYP6ER1 in the brown planthopper.

    Science.gov (United States)

    Liang, Zhi-Kun; Pang, Rui; Dong, Yi; Sun, Zhong-Xiang; Ling, Yan; Zhang, Wen-Qing

    2017-04-29

    Cytochrome P450-mediated metabolic resistance is one of the major mechanisms involved in insecticide resistance. Although the up-regulation of cytochrome P450 plays a vital role in insecticide metabolism, the molecular basis for the transcriptional regulation of cytochrome P450 remains largely unknown. The P450 gene CYP6ER1, has been reported to confer imidacloprid resistance to the brown planthopper, Nilaparvata lugens. Here, we identified a novel alternative transcript of CYP6ER1 (transcript A2) that had different expression patterns between resistant and susceptible populations, and was more stable after insecticide induction. The promoter of this transcript was sequenced and multiple single nucleotide polymorphisms (SNPs) were detected in individuals from susceptible and resistant field-collected populations. Resistant alleles of four SNPs were found to significantly enhance the promoter activity of the CYP6ER1 transcript A2. Electrophoretic mobility shift assays (EMSAs) revealed that these SNPs might regulate the binding of transcription factors to the promoter. Our findings provide novel evidence regarding the transcriptional regulation of a metabolic resistance-related gene and may be useful to understand the resistance mechanism of N. lugens in the field. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  14. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Lao, Shu-Hua; Huang, Xiao-Hui; Huang, Hai-Jian; Liu, Cheng-Wen; Zhang, Chuan-Xi; Bao, Yan-Yuan

    2015-11-01

    The cytochrome P450 monooxygenase (P450) gene family is one of the most abundant eukaryotic gene families that encode detoxification enzymes. In this study, we identified an abundance of P450 gene repertoire through genome- and transcriptome-wide analysis in the brown planthopper (Nilaparvata lugens), the most destructive rice pest in Asia. Detailed gene information including the exon-intron organization, size, transcription orientation and distribution in the genome revealed that many P450 loci were closely situated on the same scaffold, indicating frequent occurrence of gene duplications. Insecticide-response expression profiling revealed that imidacloprid significantly increased NlCYP6CS1v2, NLCYP4CE1v2, NlCYP4DE1, NlCYP417A1v2 and NlCYP439A1 expression; while triazophos and deltamethrin notably enhanced NlCYP303A1 expression. Expression analysis at the developmental stage showed the egg-, nymph-, male- and female-specific expression patterns of N. lugens P450 genes. These novel findings will be helpful for clarifying the P450 functions in physiological processes including development, reproduction and insecticide resistance in this insect species. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Cytochrome P450s--Their expression, regulation, and role in insecticide resistance.

    Science.gov (United States)

    Liu, Nannan; Li, Ming; Gong, Youhui; Liu, Feng; Li, Ting

    2015-05-01

    P450s are known to be critical for the detoxification and/or activation of xenobiotics such as drugs and pesticides and overexpression of P450 genes can significantly affect the disposition of xenobiotics in the tissues of organisms, altering their pharmacological/toxicological effects. In insects, P450s play an important role in detoxifying exogenous compounds such as insecticides and plant toxins and their overexpression can result in increased levels of P450 proteins and P450 activities. This has been associated with enhanced metabolic detoxification of insecticides and has been implicated in the development of insecticide resistance in insects. Multiple P450 genes have been found to be co-overexpressed in individual insect species via several constitutive overexpression and induction mechanisms, which in turn are co-responsible for high levels of insecticide resistance. Many studies have also demonstrated that the transcriptional overexpression of P450 genes in resistant insects is regulated by trans and/or cis regulatory genes/factors. Taken together, these earlier findings suggest not only that insecticide resistance is conferred via multi-resistance P450 genes, but also that it is mediated through the interaction of regulatory genes/factors and resistance genes. This chapter reviews our current understanding of how the molecular mechanisms of P450 interaction/gene regulation govern the development of insecticide resistance in insects and our progress along the road to a comprehensive characterization of P450 detoxification-mediated insecticide resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    Science.gov (United States)

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme kinetics demonstrated the involvement of at least two enzymes contributing to the 7-hydroxylation of granisetron, one of which was a high affinity component with a Km of 4 microM. A single, low affinity, enzyme was responsible for the 9'-desmethylation of granisetron. 4. Granisetron caused no inhibition of any of the cytochrome P450 activities investigated (CYP1A2, CYP2A6, CYP2B6, CYP2C9/8, CYP2C19, CYP2D6, CYP2E1 and CYP3A), at concentrations up to 250 microM. 5. Studies using chemical inhibitors selective for individual P450 enzymes indicated the involvement of cytochrome P450 3A (CYP3A), both pathways of granisetron metabolism being very sensitive to ketoconazole inhibition. Correlation data were consistent with the role of CYP3A3/4 in granisetron 9'-desmethylation but indicated that a different enzyme was involved in the 7-hydroxylation. PMID:7888294

  17. Transcriptome Analysis of an Insecticide Resistant Housefly Strain: Insights about SNPs and Regulatory Elements in Cytochrome P450 Genes.

    Science.gov (United States)

    Mahmood, Khalid; Højland, Dorte H; Asp, Torben; Kristensen, Michael

    2016-01-01

    Insecticide resistance in the housefly, Musca domestica, has been investigated for more than 60 years. It will enter a new era after the recent publication of the housefly genome and the development of multiple next generation sequencing technologies. The genetic background of the xenobiotic response can now be investigated in greater detail. Here, we investigate the 454-pyrosequencing transcriptome of the spinosad-resistant 791spin strain in relation to the housefly genome with focus on P450 genes. The de novo assembly of clean reads gave 35,834 contigs consisting of 21,780 sequences of the spinosad resistant strain. The 3,648 sequences were annotated with an enzyme code EC number and were mapped to 124 KEGG pathways with metabolic processes as most highly represented pathway. One hundred and twenty contigs were annotated as P450s covering 44 different P450 genes of housefly. Eight differentially expressed P450s genes were identified and investigated for SNPs, CpG islands and common regulatory motifs in promoter and coding regions. Functional annotation clustering of metabolic related genes and motif analysis of P450s revealed their association with epigenetic, transcription and gene expression related functions. The sequence variation analysis resulted in 12 SNPs and eight of them found in cyp6d1. There is variation in location, size and frequency of CpG islands and specific motifs were also identified in these P450s. Moreover, identified motifs were associated to GO terms and transcription factors using bioinformatic tools. Transcriptome data of a spinosad resistant strain provide together with genome data fundamental support for future research to understand evolution of resistance in houseflies. Here, we report for the first time the SNPs, CpG islands and common regulatory motifs in differentially expressed P450s. Taken together our findings will serve as a stepping stone to advance understanding of the mechanism and role of P450s in xenobiotic detoxification.

  18. Differential expression of cytochrome P450 genes between bromadiolone-resistant and anticoagulant-susceptible Norway rats:

    DEFF Research Database (Denmark)

    Markussen, Mette Drude; Heiberg, Ann-Charlotte; Fredholm, Merete

    2008-01-01

    Anticoagulant resistance in Norway rats (Rattus norvegicus) has been suggested to be due to mutations in the VKORC1 gene, encoding the target protein of anticoagulant rodenticides such as warfarin and bromadiolone. Other factors, e.g. pharmacokinetics, may however also contribute to resistance. We...... that bromadiolone resistance in Norway rats involves enhanced anticoagulant clearance and metabolism catalyzed by specific cytochrome P450 enzymes, such as Cyp2e1, Cyp3a2 and Cyp3a3. This pharmacokinetically based resistance varies to some extend between the genders....

  19. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2010-07-01

    Full Text Available Abstract Background Plant cytochrome P450 monooxygenases (CYP mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. Results Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS in the upstream region and three candidate polyadenylation (PolyA sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. Conclusions This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression

  20. Over-expression of multiple cytochrome P450 genes in fenvalerate-resistant field strains of Helicoverpa armigera from north of China.

    Science.gov (United States)

    Xu, Li; Li, Dongzhi; Qin, Jianying; Zhao, Weisong; Qiu, Lihong

    2016-09-01

    Pyrethroid resistance was one of the main reasons for control failure of cotton bollworm Helicoverpa armigera (Hübner) in China. The promotion of Bt crops decreased the application of chemical insecticides in controlling H.armigera. However, the cotton bollworm still kept high levels of resistance to fenvalerate. In this study, the resistance levels of 8 field-collected strains of H. armigera from north of China to 4 insecticides, as well as the expression levels of related P450 genes were investigated. The results of bioassay indicated that the resistance levels to fenvalerate in the field strains varied from 5.4- to 114.7-fold, while the resistance levels to lambda-cyhalothrin, phoxim and methomyl were low, which were ranged from 1.5- to 5.2-, 0.2- to 1.6-, and 2.9- to 8.3- fold, respectively, compared to a susceptible strain. Synergistic experiment showed that PBO was the most effective synergist in increasing the sensitivity of H. armigera to fenvalerate, suggesting that P450 enzymes were involved in the pyrethroid resistance in the field strains. The results of quantitative RT-PCR indicated that eight P450 genes (CYP332A1, CYP4L11, CYP4L5, CYP4M6, CYP4M7, CYP6B7, CYP9A12, CYP9A14) were all significantly overexpressed in Hejian1 and Xiajin1 strains of H. armigera collected in 2013, and CYP4L5 was significantly overexpressed in all the 6 field strains collected in 2014. CYP332A1, CYP6B7 and CYP9A12 had very high overexpression levels in all the field strains, indicating their important roles in fenvalerate resistance. The results suggested that multiple P450 genes were involved in the high-level fenvalerate-resistance in different field strains of H. armigera collected from north of China. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Identification of a novel cytochrome P450 gene, CYP321E1 from the diamondback moth, Plutella xylostella (L.) and RNA interference to evaluate its role in chlorantraniliprole resistance.

    Science.gov (United States)

    Hu, Z; Lin, Q; Chen, H; Li, Z; Yin, F; Feng, X

    2014-12-01

    Insect cytochrome P450 monooxygenases (P450s) play an important role in catalysis of many reactions leading to insecticides resistance. Our previous studies on transcriptome analysis of chlorantraniliprole-resistant development in the diamondback moth, Plutella xylostella revealed that up-regulation of cytochrome P450s are one of the main factors leading to the development of chlorantraniliprole resistance. Here, we report for the first time a novel cytochrome P450 gene CYP321E1, which belongs to the cytochrome P450 gene family CYP321. Real-time quantitative PCR (RT-qPCR) analyses indicated that CYP321E1 was expressed at all developmental stages of P. xylostella but was highest in the fourth-instar larvae; furthermore, the relatively high expression was observed in the midgut of the fourth-instar larvae, followed by fat bodies and epidermis. The expression of CYP321E1 in P. xylostella was differentially affected by three representative insecticides, including alphamethrin, abamectin and chlorantraniliprole. Among them, the exposure to chlorantraniliprole resulted in the largest transcript level of this cytochrome P450 gene. The findings suggested potential involvement of CYP321E1 in chlorantraniliprole resistance of P. xylostella. To assess the functional link of CYP321E1 to chlorantraniliprole resistance, RNA interference (RNAi)-mediated gene silencing by double stranded RNA (dsRNA) injecting was used. Results revealed that injection delivery of dsRNA can greatly reduce gene expression after 24 h. As a consequence of RNAi, a significant increment in mortality of larvae injected CYP321E1 dsRNA was observed after 24 h of exposure to chlorantraniliprole. These results strongly support our notion that this novel cytochrome P450 gene plays an important role in chlorantraniliprole detoxification in the diamondback moth and is partly responsible for its resistance.

  2. Identification of cytochrome P450 differentiated expression related to developmental stages in bromadiolone resistance in rats (Rattus norvegicus)

    DEFF Research Database (Denmark)

    Markussen, Mette; Heiberg, Ann-Charlotte; Fredholm, Merete

    2008-01-01

    over-express the Cyp2a1 gene. TGhe altered gene expression has been suggested to be involved in the bromadiolone resistance by facilitating enhanced anticoagulant metabolism. To investigate the gene expression of these cytochrome P450 genes in rats of different developmental stages we compared...... expression profiles, from 8-, 12- and 20-week-old resistant rats of the Danish strain to profiles of anticoagulant-susceptible rats of same ages. The three age-groups were selected to represent a group of pre-pubertal, pubertal and adult rats. We found expression profiles of the pre-pubertal and pubertal...... resistant rats to concur with profiles of the adults suggesting that cytochrome P450 enzymes are involved in the Danish bromadiolone resistance regardless of developmental stage. We also investigated the relative importance of the six cytochrome P450s in the different development stages of the resistant...

  3. Transcriptome Profiling of Tomato Uncovers an Involvement of Cytochrome P450s and Peroxidases in Stigma Color Formation

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2017-05-01

    Full Text Available Stigma is a crucial structure of female reproductive organ in plants. Stigma color is usually regarded as an important trait in variety identification in some species, but the molecular mechanism of stigma color formation remains elusive. Here, we characterized a tomato mutant, yellow stigma (ys, that shows yellow rather than typical green color in the stigma. Analysis of pigment contents revealed that the level of flavonoid naringenin chalcone was increased in the ys stigma, possibly as a result of higher accumulation of p-coumaric acid, suggesting that naringenin chalcone might play a vital role in yellow color control in tomato stigma. To understand the genes and gene networks that regulate tomato stigma color, RNA-sequencing (RNA-Seq analyses were performed to compare the transcriptomes of stigmas between ys mutant and wild-type (WT. We obtained 507 differentially expressed genes, in which, 84 and 423 genes were significantly up-regulated and down-regulated in the ys mutant, respectively. Two cytochrome P450 genes, SlC3H1 and SlC3H2 which encode p-coumarate 3-hydroxylases, and six peroxidase genes were identified to be dramatically inhibited in the yellow stigma. Further bioinformatic and biochemical analyses implied that the repression of the two SlC3Hs and six PODs may indirectly lead to higher naringenin chalcone level through inhibiting lignin biosynthesis, thereby contributing to yellow coloration in tomato stigma. Thus, our data suggest that two SlC3Hs and six PODs are involved in yellow stigma formation. This study provides valuable information for dissecting the molecular mechanism of stigma color control in tomato.Statement: This study reveals that two cytochrome P450s (SlC3H1 and SlC3H2 and six peroxidases potentially regulate the yellow stigma formation by indirectly enhancing biosynthesis of yellow-colored naringenin chalcone in the stigma of tomato.

  4. Regulation of rabbit lung cytochrome P-450 prostaglandin omega-hydroxylase (P-450/sub PG-omega/) during pregnancy

    International Nuclear Information System (INIS)

    Muerhoff, A.S.; Williams, D.E.; Jackson, V.; Leithauser, M.T.; Waterman, M.R.; Johnson, E.F.; Masters, B.S.S.

    1987-01-01

    The mechanism of induction during pregnancy of a rabbit lung prostaglandin omega-hydroxylase cytochrome P-450 has been investigated. This activity has been demonstrated to be induced over 100-fold in 28-day pregnant rabbits, as compared to nonpregnant rabbits. The induction is reflected by an increase in the amount of P-450/sub PG-omega/ protein as measured by Western blotting. P-450/sub PG-omega/ microsomal protein increases throughout gestation concomitant with an increase in PGE 1 omega-hydroxylase activity. Elucidation of the level of induction involved extraction of RNA from rabbit lungs obtained at various days of gestation followed by in vitro translation of the RNA in the presence of 35 S-methionine. Immunoprecipitation of newly synthesized P-450 and analysis of the immunoisolates by SDS-PAGE, autoradiography and densitometry of the P-450/sub PG-omega/ band revealed that the P-450/sub PG-omega/ mRNA levels followed the gestational time-dependent increase observed for both PGE 1 omega-hydroxylase activity and P-450/sub PG-omega/ protein, i.e., a gradual increase peaking at 28-days, dropping precipitously to near control levels following parturition. These data suggest that control of P-450/sub PG-omega expression occurs at the transcriptional level. Western blots of human lung bronchioloalveolar-carcinoma cell lines NCL-H322 and NCL-H358 utilizing a guinea pig IgG to P-450/sub PG-omega/ detect a cross-reactive species

  5. Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b₅ gene from Plutella xylostella: possible involvement in resistance to beta-cypermethrin.

    Science.gov (United States)

    Chen, Xi'en; Zhang, Yalin

    2015-03-10

    NADPH-cytochrome P450 reductase (CPR) and cytochrome b5 (b5) are essential for cytochrome P450 mediated biological reactions. CPR and b5 in several insects have been found to be associated with insecticide resistance. However, CPR and b5 in the diamondback moth (DBM), Plutella xylostella, are not characterized and their roles remain undefined. A full-length cDNA of CPR encoding 678 amino acids and a full-length cDNA of b5 encoding 127 amino acids were cloned from DBM. Their deduced amino acid sequences shared high identities with those of other insects and showed characteristics of classical CPRs and b5s, respectively. The mRNAs of both genes were detectable in all developmental stages with the highest expression levels occurring in the 4th instar larvae. Tissue-specific expression analysis showed that their transcripts were most abundant in gut. Transcripts of CPR and b5 in the beta-cypermethrin resistant DBM strain were 13.2- and 2.84-fold higher than those in the beta-cypermethrin susceptible strain, respectively. The expression levels of CPR and b5 were enhanced by beta-cypermethrin at the concentration of 12 mg L(-1) (~LC10). The results indicate that CPR and b5 may play essential roles in the P450 mediated resistance of DBM to beta-cypermethrin or even other insecticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Genome analysis of cytochrome P450s and their expression profiles in insecticide resistant mosquitoes, Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    Ting Yang

    Full Text Available Here we report a study of the 204 P450 genes in the whole genome sequence of larvae and adult Culex quinquefasciatus mosquitoes. The expression profiles of the P450 genes were compared for susceptible (S-Lab and resistant mosquito populations, two different field populations of mosquitoes (HAmCq and MAmCq, and field parental mosquitoes (HAmCq(G0 and MAmCq(G0 and their permethrin selected offspring (HAmCq(G8 and MAmCq(G6. While the majority of the P450 genes were expressed at a similar level between the field parental strains and their permethrin selected offspring, an up- or down-regulation feature in the P450 gene expression was observed following permethrin selection. Compared to their parental strains and the susceptible S-Lab strain, HAmCq(G8 and MAmCq(G6 were found to up-regulate 11 and 6% of total P450 genes in larvae and 7 and 4% in adults, respectively, while 5 and 11% were down-regulated in larvae and 4 and 2% in adults. Although the majority of these up- and down-regulated P450 genes appeared to be developmentally controlled, a few were either up- or down-regulated in both the larvae and adult stages. Interestingly, a different gene set was found to be up- or down-regulated in the HAmCq(G8 and MAmCq(G6 mosquito populations in response to insecticide selection. Several genes were identified as being up- or down-regulated in either the larvae or adults for both HAmCq(G8 and MAmCq(G6; of these, CYP6AA7 and CYP4C52v1 were up-regulated and CYP6BY3 was down-regulated across the life stages and populations of mosquitoes, suggesting a link with the permethrin selection in these mosquitoes. Taken together, the findings from this study indicate that not only are multiple P450 genes involved in insecticide resistance but up- or down-regulation of P450 genes may also be co-responsible for detoxification of insecticides, insecticide selection, and the homeostatic response of mosquitoes to changes in cellular environment.

  7. Insect P450 inhibitors and insecticides: challenges and opportunities.

    Science.gov (United States)

    Feyereisen, René

    2015-06-01

    P450 enzymes are encoded by a large number of genes in insects, often over a hundred. They play important roles in insecticide metabolism and resistance, and growing numbers of P450 enzymes are now known to catalyse important physiological reactions, such as hormone metabolism or cuticular hydrocarbon synthesis. Ways to inhibit P450 enzymes specifically or less specifically are well understood, as P450 inhibitors are found as drugs, as fungicides, as plant growth regulators and as insecticide synergists. Yet there are no P450 inhibitors as insecticides on the market. As new modes of action are constantly needed to support insecticide resistance management, P450 inhibitors should be considered because of their high potential for insect selectivity, their well-known mechanisms of action and the increasing ease of rational design and testing. © 2014 Society of Chemical Industry.

  8. A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.).

    Science.gov (United States)

    Tamiru, Muluneh; Undan, Jerwin R; Takagi, Hiroki; Abe, Akira; Yoshida, Kakoto; Undan, Jesusa Q; Natsume, Satoshi; Uemura, Aiko; Saitoh, Hiromasa; Matsumura, Hideo; Urasaki, Naoya; Yokota, Takao; Terauchi, Ryohei

    2015-05-01

    Cytochrome P450s are among the largest protein coding gene families in plant genomes. However, majority of the genes remain uncharacterized. Here, we report the characterization of dss1, a rice mutant showing dwarfism and reduced grain size. The dss1 phenotype is caused by a non-synonymous point mutation we identified in DSS1, which is member of a P450 gene cluster located on rice chromosome 3 and corresponds to the previously reported CYP96B4/SD37 gene. Phenotypes of several dwarf mutants characterized in rice are associated with defects in the biosynthesis or perception of the phytohormones gibberellins (GAs) and brassinosteroids (BRs). However, both GA and BR failed to rescue the dss1 phenotype. Hormone profiling revealed the accumulation of abscisic acid (ABA) and ABA metabolites, as well as significant reductions in GA19 and GA53 levels, precursors of the bioactive GA1, in the mutant. The dss1 contents of cytokinin and auxins were not significantly different from wild-type plants. Consistent with the accumulation of ABA and metabolites, germination and early growth was delayed in dss1, which also exhibited an enhanced tolerance to drought. Additionally, expressions of members of the DSS1/CYP96B gene cluster were regulated by drought stress and exogenous ABA. RNA-seq-based transcriptome profiling revealed, among others, that cell wall-related genes and genes involved in lipid metabolism were up- and down-regulated in dss1, respectively. Taken together, these findings suggest that DSS1 mediates growth and stress responses in rice by fine-tuning GA-to-ABA balance, and might as well play a role in lipid metabolism.

  9. Cytochrome P450s and molecular epidemiology

    Science.gov (United States)

    Gonzalez, Frank J.; Gelboin, Harry V.

    1993-03-01

    Cytochrome P450 (P450) represent a superfamily of heme-containing monooxygenases that are found throughout the animal and plant kingdoms and in many microorganisms. A number of these enzymes are involved in biosynthetic pathways of steroid synthesis but in mammals the vast majority of P450s function to metabolize foreign chemicals or xenobiotics. In the classical phase I reactions on the latter, a membrane-bound P450 will hydroxylate a compound, usually hydrophobic in nature, and the hydroxyl group will serve as a substrate for the various transferases or phase II enzymes that attach hydrophilic substituents such as glutathione, sulfate or glucuronic acid. Some chemicals, however, are metabolically-activated by P450s to electrophiles capable of reacting with cellular macromolecules. The cellular concentrations of the chemical and P450, reactivity of the active metabolite with nucleic acid and the repairability of the resultant adducts, in addition to the nature of the cell type, likely determines whether a chemical will be toxic and kill the cell or will transform the cell. Immunocorrelative and cDNA-directed expression have been used to define the substrate specificities of numerous human P450s. Levels of expression of different human P450 forms have been measured by both in vivo and in vitro methodologies leading to the realization that a large degree of interindividual differences occur in P450 expression. Reliable procedures for measuring P450 expression in healthy and diseased subjects will lead to prospective and case- cohort studies to determine whether interindividual differences in levels of P450 are associated with susceptibility or resistance to environmentally-based disease.

  10. Identification of a cytochrome P450 gene in the earthworm Eisenia fetida and its mRNA expression under enrofloxacin stress.

    Science.gov (United States)

    Li, Yinsheng; Zhao, Chun; Lu, Xiaoxu; Ai, Xiaojie; Qiu, Jiangping

    2018-04-15

    Cytochrome P450 (CYP450) enzymes are a family of hemoproteins primarily responsible for detoxification functions. Earthworms have been used as a bioindicator of soil pollution in numerous studies, but no CYP450 gene has so far been cloned. RT-PCR and RACE-PCR were employed to construct and sequence the CYP450 gene DNA from the extracted mRNA in the earthworm Eisenia fetida. The cloned gene (EW1) has an open reading frame of 477bp. The 3'-terminal region contained both the consensus and the signature sequences characteristic of CYP450. It was closely related to the CYP450 gene from the flatworm genus Opisthorchis felineus with 87% homology. The predicted structure of the putative protein was 97% homologous to human CYP450 family 27. This gene has been deposited in GenBank (accession no. KM881474). Earthworms (E. fetida) were then exposed to 1, 10, 100, and 500mgkg -1 enrofloxacin in soils to explore the mRNA expression by real time qPCR. The effect of enrofloxacin on mRNA expression levels of EW1 exhibited a marked hormesis pattern across the enrofloxacin dose range tested. This is believed to be the first reported CYP450 gene in earthworms, with reference value for molecular studies on detoxification processes in earthworms. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Expression of cytochrome P450 regulators in cynomolgus macaque.

    Science.gov (United States)

    Uno, Yasuhiro; Yamazaki, Hiroshi

    2017-09-11

    1. Cytochrome P450 (P450) regulators including nuclear receptors and transcription factors have not been fully investigated in cynomolgus macaques, an important species used in drug metabolism studies. In this study, we analyzed 17 P450 regulators by sequence and phylogenetic analysis, and tissue expression. 2. Gene and genome structures of 17 P450 regulators were similar to the human orthologs, and the deduced amino acid sequences showed high sequence identities (92-95%) and more closely clustered in a phylogenetic tree, with the human orthologs. 3. Many of the P450 regulator mRNAs were preferentially expressed in the liver, kidney, and/or jejunum. Among the P450 regulator mRNAs, PXR was most abundant in the liver and jejunum, and HNF4α in the kidney. In the liver, the expression of most P450 regulator mRNAs did not show significant differential expression (>2.5-fold) between cynomolgus macaques bred in Cambodia, China, and Indonesia, or rhesus macaques. 4. By correlation analysis, most of the P450 regulators were significantly (p < 0.05) correlated to other P450 regulators, and many of them were also significantly (p < 0.05) correlated with P450s. 5. These results suggest that 17 P450 regulators of cynomolgus macaques had similar molecular characteristics to the human orthologs.

  12. Fungal Cytochrome P450s and the P450 Complement (CYPome of Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Jiyoung Shin

    2018-03-01

    Full Text Available Cytochrome P450s (CYPs, heme-containing monooxygenases, play important roles in a wide variety of metabolic processes important for development as well as biotic/trophic interactions in most living organisms. Functions of some CYP enzymes are similar across organisms, but some are organism-specific; they are involved in the biosynthesis of structural components, signaling networks, secondary metabolisms, and xenobiotic/drug detoxification. Fungi possess more diverse CYP families than plants, animals, or bacteria. Various fungal CYPs are involved in not only ergosterol synthesis and virulence but also in the production of a wide array of secondary metabolites, which exert toxic effects on humans and other animals. Although few studies have investigated the functions of fungal CYPs, a recent systematic functional analysis of CYP genes in the plant pathogen Fusarium graminearum identified several novel CYPs specifically involved in virulence, asexual and sexual development, and degradation of xenobiotics. This review provides fundamental information on fungal CYPs and a new platform for further metabolomic and biochemical studies of CYPs in toxigenic fungi.

  13. Novel extrahepatic cytochrome P450s

    International Nuclear Information System (INIS)

    Karlgren, Maria; Miura, Shin-ichi; Ingelman-Sundberg, Magnus

    2005-01-01

    The cytochrome P450 enzymes are highly expressed in the liver and are involved in the metabolism of xenobiotics. Because of the initiatives associated with the Human Genome Project, a great progress has recently been seen in the identification and characterization of novel extrahepatic P450s, including CYP2S1, CYP2R1, CYP2U1 and CYP2W1. Like the hepatic enzymes, these P450s may play a role in the tissue-specific metabolism of foreign compounds, but they may also have important endogenous functions. CYP2S1 has been shown to metabolize all-trans retinoic acid and CYP2R1 is a major vitamin D 25-hydroxylase. Regarding their metabolism of xenobiotics, much remains to be established, but CYP2S1 metabolizes naphthalene and it is likely that these P450s are responsible for metabolic activation of several different kinds of xenobiotic chemicals and contribute to extrahepatic toxicity and carcinogenesis

  14. Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): responses to plant allelochemicals and pesticides.

    Science.gov (United States)

    Giraudo, M; Hilliou, F; Fricaux, T; Audant, P; Feyereisen, R; Le Goff, G

    2015-02-01

    Spodoptera frugiperda is a polyphagous lepidopteran pest that encounters a wide range of toxic plant metabolites in its diet. The ability of this insect to adapt to its chemical environment might be explained by the action of major detoxification enzymes such as cytochrome P450s (or CYP). Forty-two sequences coding for P450s were identified and most of the transcripts were found to be expressed in the midgut, Malpighian tubules and fat body of S. frugiperda larvae. Relatively few P450s were expressed in the established cell line Sf9. In order to gain information on how these genes respond to different chemical compounds, larvae and Sf9 cells were exposed to plant secondary metabolites (indole, indole-3-carbinol, quercetin, 2-tridecanone and xanthotoxin), insecticides (deltamethrin, fipronil, methoprene, methoxyfenozide) or model inducers (clofibrate and phenobarbital). Several genes were induced by plant chemicals such as P450s from the 6B, 321A and 9A subfamilies. Only a few genes responded to insecticides, belonging principally to the CYP9A family. There was little overlap between the response in vivo measured in the midgut and the response in vitro in Sf9 cells. In addition, regulatory elements were detected in the promoter region of these genes. In conclusion, several P450s were identified that could potentially be involved in the adaptation of S. frugiperda to its chemical environment. © 2014 The Royal Entomological Society.

  15. ISOLATION OF THE CANDIDA TROPICALIS GENE FOR P450 LANOSTEROL DEMETHYLASE AND ITS EXPRESSION IN SACCAROMYCES CEREVISIAE

    Science.gov (United States)

    We have isolated the gene for cytochrome P450 lanosterol 14-demethylase (14DM) from the yeast Candida tropicalis. This was accomplished by screening genomic libraries of strain ATCC750 in E. coli using a DNA fragment containing the yeast Saccharomyces cerevisiae 14DM gene. Identi...

  16. Genome-wide identification of 52 cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus and their B[α]P-induced expression patterns.

    Science.gov (United States)

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Nelson, David R; Lee, Jae-Seong

    2017-09-01

    Cytochrome P450s (CYPs) are enzymes with a heme-binding domain that are found in all living organisms. CYP enzymes have important roles associated with detoxification of xenobiotics and endogenous compounds (e.g. steroids, fatty acids, and hormones). Although CYP enzymes have been reported in several invertebrates, including insects, little is known about copepod CYPs. Here, we identified the entire repertoire of CYP genes (n=52) from whole genome and transcriptome sequences of the benthic copepod Tigriopus japonicus, including a tandem duplication (CYP3026A3, CYP3026A4, CYP3026A5), and examined patterns of gene expression over various developmental stages and in response to benzo[α]pyrene (B[α]P) exposure. Through phylogenetic analysis, the 52 T. japonicus CYP genes were assigned to five distinct clans: CYP2 (22 genes), CYP3 (19 genes), CYP4 (two genes), CYP20 (one gene), and mitochondrial (eight genes). Developmental stage and gender-specific expression patterns of the 52 T. japonicus CYPs were analyzed. CYP3022A1 was constitutively expressed during all developmental stages. CYP genes in clans 2 and 3 were induced in response to B[α]P, suggesting that these differentially modulated CYP transcripts are likely involved in defense against exposure to B[α]P and other pollutants. This study enhances our understanding of the repertoire of CYP genes in copepods and of their potential role in development and detoxification in copepods. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius.

    Science.gov (United States)

    Zhu, Fang; Sams, Sarah; Moural, Tim; Haynes, Kenneth F; Potter, Michael F; Palli, Subba R

    2012-01-01

    NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochrome P450 action. The genes coding for P450s are not yet fully identified in the bed bug, Cimex lectularius. Hence, we decided to clone cDNA and knockdown the expression of the gene coding for CPR which is suggested to be required for the function of all P450s to determine whether or not P450s are involved in resistance of bed bugs to insecticides. The full length Cimex lectularius CPR (ClCPR) cDNA was isolated from a deltamethrin resistant bed bug population (CIN-1) using a combined PCR strategy. Bioinformatics and in silico modeling were employed to identify three conserved binding domains (FMN, FAD, NADP), a FAD binding motif, and the catalytic residues. The critical amino acids involved in FMN, FAD, NADP binding and their putative functions were also analyzed. No signal peptide but a membrane anchor domain with 21 amino acids which facilitates the localization of ClCPR on the endoplasmic reticulum was identified in ClCPR protein. Phylogenetic analysis showed that ClCPR is closer to the CPR from the body louse, Pediculus humanus corporis than to the CPRs from the other insect species studied. The ClCPR gene was ubiquitously expressed in all tissues tested but showed an increase in expression as immature stages develop into adults. We exploited the traumatic insemination mechanism of bed bugs to inject dsRNA and successfully knockdown the expression of the gene coding for ClCPR. Suppression of the ClCPR expression increased susceptibility to deltamethrin in resistant populations but not in the susceptible population of bed bugs. These data suggest that P450-mediated metabolic detoxification may serve as one of the resistance mechanisms in bed bugs.

  18. Molecular characterization of cytochrome P450 1B1 and effect of ...

    African Journals Online (AJOL)

    CYP1B which belongs to the cytochrome P450 superfamily of genes, is involved in the oxidation of endogenous and exogenous compounds, and could potentially be a useful biomarker in fish for exposure to arylhydrocarbon receptors (AhR) ligands. In this study, a new complementary DNA (cDNA) of the CYP1B subfamily ...

  19. Posttranslational modification of hepatic cytochrome P-450. Phosphorylation of phenobarbital-inducible P-450 forms PB-4 (IIB1) and PB-5 (IIB2) in isolated rat hepatocytes and in vivo

    International Nuclear Information System (INIS)

    Koch, J.A.; Waxman, D.J.

    1989-01-01

    Phosphorylation of hepatic cytochrome P-450 was studied in isolated hepatocytes incubated in the presence of agents known to stimulate protein kinase activity. Incubation of hepatocytes isolated from phenobarbital-induced adult male rats with [ 32 P]orthophosphate in the presence of N 6 , O 2' -dibutyryl-cAMP (diBtcAMP) or glucagon resulted in the phosphorylation of microsomal proteins that are immunoprecipitable by polyclonal antibodies raised to the phenobarbital-induced P-450 form PB-4 (P-450 gene IIB1). Two-dimensional gel electrophoresis revealed that these 32 P-labeled microsomal proteins consist of a mixture of P-450 PB-4 and the closely related P-450 PB-5 (gene IIB2), both of which exhibited heterogeneity in the isoelectric focusing dimension. Phosphorylation of both P-450 forms was markedly enhanced by diBtcAMP at concentrations as low as 5 μM. Phosphoamino acid analysis of the 32 P-labeled P-450 PB-4 + PB-5 immunoprecipitate revealed that these P-450s are phosphorylated on serine in the isolated hepatocytes. Peptide mapping indicated that the site of phosphorylation in hepatocytes is indistinguishable from the site utilized by cAMP-dependent protein kinase in vitro, which was previously identified as serine-128 for the related rabbit protein P-450 LM2. In vitro analyses revealed that phosphorylation of P-450 PB-4 leads to a loss of monooxygenase activity, suggesting that the posttranslational modification of this P-450 enzyme by cAMP-dependent protein kinase may play a role in the modulation of P-450-dependent monooxygenase activity in vivo

  20. PRIMARY STRUCTURE OF THE CYTOCHROME P450 LANOSTEROL 14A-DEMETHYLASE GENE FROM CANDIDA TROPICALIS

    Science.gov (United States)

    We report the nucleotide sequence of the gene and flanking DNA for the cytochrome P450 lanosterol 14 alpha-demethylase (14DM) from the yeast Candida tropicalis ATCC750. An open reading frame (ORF) of 528 codons encoding a 60.9-kD protein is identified. This ORF includes a charact...

  1. Role of cytochrome P450 genotype in the steps toward personalized drug therapy

    Directory of Open Access Journals (Sweden)

    Cavallari LH

    2011-11-01

    Full Text Available Larisa H Cavallari1,2, Hyunyoung Jeong1,2, Adam Bress11Department of Pharmacy Practice, 2Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USAAbstract: Genetic polymorphism for cytochrome 450 (P450 enzymes leads to interindividual variability in the plasma concentrations of many drugs. In some cases, P450 genotype results in decreased enzyme activity and an increased risk for adverse drug effects. For example, individuals with the CYP2D6 loss-of-function genotype are at increased risk for ventricular arrhythmia if treated with usual does of thioridazine. In other cases, P450 genotype may influence the dose of a drug required to achieve a desired effect. This is the case with warfarin, with lower doses often necessary in carriers of a variant CYP2C9*2 or *3 allele to avoid supratherapeutic anticoagulation. When a prodrug, such as clopidogrel or codeine, must undergo hepatic biotransformation to its active form, a loss-of-function P450 genotype leads to reduced concentrations of the active drug and decreased drug efficacy. In contrast, patients with multiple CYP2D6 gene copies are at risk for opioid-related toxicity if treated with usual doses of codeine-containing analgesics. At least 25 drugs contain information in their US Food and Drug Administration-approved labeling regarding P450 genotype. The CYP2C9, CYP2C19, and CYP2D6 genes are the P450 genes most often cited. To date, integration of P450 genetic information into clinical decision making is limited. However, some institutions are beginning to embrace routine P450 genotyping to assist in the treatment of their patients. Genotyping for P450 variants may carry less risk for discrimination compared with genotyping for disease-associated variants. As such, P450 genotyping is likely to lead the way in the clinical implementation of pharmacogenomics. This review discusses variability in the CYP2C9, CYP2C19, and CYP2D6 genes and the

  2. Cytochrome P450 monooxygenases and insecticide resistance in insects.

    OpenAIRE

    Bergé, J B; Feyereisen, R; Amichot, M

    1998-01-01

    Cytochrome P450 monooxygenases are involved in many cases of resistance of insects to insecticides. Resistance has long been associated with an increase in monooxygenase activities and with an increase in cytochrome P450 content. However, this increase does not always account for all of the resistance. In Drosophila melanogaster, we have shown that the overproduction of cytochrome P450 can be lost by the fly without a corresponding complete loss of resistance. These results prompted the seque...

  3. An extensive (co-expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Provart Nicholas J

    2008-04-01

    Full Text Available Abstract Background Sequencing of the first plant genomes has revealed that cytochromes P450 have evolved to become the largest family of enzymes in secondary metabolism. The proportion of P450 enzymes with characterized biochemical function(s is however very small. If P450 diversification mirrors evolution of chemical diversity, this points to an unexpectedly poor understanding of plant metabolism. We assumed that extensive analysis of gene expression might guide towards the function of P450 enzymes, and highlight overlooked aspects of plant metabolism. Results We have created a comprehensive database, 'CYPedia', describing P450 gene expression in four data sets: organs and tissues, stress response, hormone response, and mutants of Arabidopsis thaliana, based on public Affymetrix ATH1 microarray expression data. P450 expression was then combined with the expression of 4,130 re-annotated genes, predicted to act in plant metabolism, for co-expression analyses. Based on the annotation of co-expressed genes from diverse pathway annotation databases, co-expressed pathways were identified. Predictions were validated for most P450s with known functions. As examples, co-expression results for P450s related to plastidial functions/photosynthesis, and to phenylpropanoid, triterpenoid and jasmonate metabolism are highlighted here. Conclusion The large scale hypothesis generation tools presented here provide leads to new pathways, unexpected functions, and regulatory networks for many P450s in plant metabolism. These can now be exploited by the community to validate the proposed functions experimentally using reverse genetics, biochemistry, and metabolic profiling.

  4. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae.

    Science.gov (United States)

    Puinean, Alin M; Foster, Stephen P; Oliphant, Linda; Denholm, Ian; Field, Linda M; Millar, Neil S; Williamson, Martin S; Bass, Chris

    2010-06-24

    The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class. In this study, the mechanisms underlying resistance to the neonicotinoid insecticides were investigated using biological, biochemical, and genomic approaches. Bioassays on a resistant M. persicae clone (5191A) suggested that P450-mediated detoxification plays a primary role in resistance, although additional mechanism(s) may also contribute. Microarray analysis, using an array populated with probes corresponding to all known detoxification genes in M. persicae, revealed constitutive over-expression (22-fold) of a single P450 gene (CYP6CY3); and quantitative PCR showed that the over-expression is due, at least in part, to gene amplification. This is the first report of a P450 gene amplification event associated with insecticide resistance in an agriculturally important insect pest. The microarray analysis also showed over-expression of several gene sequences that encode cuticular proteins (2-16-fold), and artificial feeding assays and in vivo penetration assays using radiolabeled insecticide provided direct evidence of a role for reduced cuticular penetration in neonicotinoid resistance. Conversely, receptor radioligand binding studies and nucleotide sequencing of nAChR subunit genes suggest that target-site changes are unlikely to contribute to resistance to neonicotinoid insecticides in M. persicae.

  5. Differential regulation by heat stress of novel cytochrome P450 genes from the dinoflagellate symbionts of reef-building corals.

    Science.gov (United States)

    Rosic, Nedeljka N; Pernice, Mathieu; Dunn, Simon; Dove, Sophie; Hoegh-Guldberg, Ove

    2010-05-01

    Exposure to heat stress has been recognized as one of the major factors leading to the breakdown of the coral-alga symbiosis and coral bleaching. Here, we describe the presence of three new cytochrome P450 (CYP) genes from the reef-building coral endosymbiont Symbiodinium (type C3) and changes in their expression during exposure to severe and moderate heat stress conditions. Sequence analysis of the CYP C-terminal region and two conserved domains, the "PERF" and "heme-binding" domains, confirmed the separate identities of the CYP genes analyzed. In order to explore the effects of different heat stress scenarios, samples of the scleractinian coral Acropora millepora were exposed to elevated temperatures incrementally over an 18-h period (rapid thermal stress) and over a 120-h period (gradual thermal stress). After 18 h of gradual heating and incubation at 26 degrees C, the Symbiodinium CYP mRNA pool was approximately 30% larger, while a further 6 degrees C increase to a temperature above the average sea temperature (29 degrees C after 72 h) resulted in a 2- to 4-fold increase in CYP expression. Both rapid heat stress and gradual heat stress at 32 degrees C resulted in 50% to 90% decreases in CYP gene transcript abundance. Consequently, the initial upregulation of expression of CYP genes at moderately elevated temperatures (26 degrees C and 29 degrees C) was followed by a decrease in expression under the greater thermal stress conditions at 32 degrees C. These findings indicate that in the coral-alga symbiosis under heat stress conditions there is production of chemical stressors and/or transcriptional factors that regulate the expression of genes, such as the genes encoding cytochrome P450 monooxygenases, that are involved in the first line of an organism's chemical defense.

  6. Artificial Self-Sufficient P450 in Reversed Micelles

    Directory of Open Access Journals (Sweden)

    Teruyuki Nagamune

    2010-04-01

    Full Text Available Cytochrome P450s are heme-containing monooxygenases that require electron transfer proteins for their catalytic activities. They prefer hydrophobic compounds as substrates and it is, therefore, desirable to perform their reactions in non-aqueous media. Reversed micelles can stably encapsulate proteins in nano-scaled water pools in organic solvents. However, in the reversed micellar system, when multiple proteins are involved in a reaction they can be separated into different micelles and it is then difficult to transfer electrons between proteins. We show here that an artificial self-sufficient cytochrome P450, which is an enzymatically crosslinked fusion protein composed of P450 and electron transfer proteins, showed micelle-size dependent catalytic activity in a reversed micellar system. Furthermore, the presence of thermostable alcohol dehydrogenase promoted the P450-catalyzed reaction due to cofactor regeneration.

  7. Third international symposium: Cytochrome P450 biodiversity. Final report, January 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Loper, J.C.

    1997-03-01

    The Symposium was held on October 8-12, 1995 at the Marine Biological Laboratory in Woods Hole Massachusetts. Other international symposia promote cytochrome P450 research but have a primary focus on mammalian systems. This symposium is exclusively devoted to research in other organisms, and major topics reflect the distribution and dominance of non-mammalian species in the biosphere. The five sessions focused on basic mechanism, regulation, biodiversity, host-parasite interactions, and practical applications. 170 Scientists contributed 38 oral presentations and 91 posters, with a truly international composition of the symposium. Practical applications were a recurring feature, linking reports on mechanism and regulation to studies on the engineering of substrate specificity, microorganisms to degrade halogenated hydrocarbons and herbicides, and the production of in vitro P450 electrochemical bioreactors. At the time of the symposium there were 477 cytochrome P450 sequences in the database. Expansion of the known plant P450 genes was reported, with 20 new plant P450 families added in the last 3 years. Of these only 5 families have a physiological function associated with them. A growing number of identified invertebrate P450s was documented, where in insects, the forms identified are primarily involved in inducible xenobiotic metabolism and detoxification of toxic plant substances.

  8. Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3.

    Science.gov (United States)

    Sowden, Rebecca J; Yasmin, Samina; Rees, Nicholas H; Bell, Stephen G; Wong, Luet-Lok

    2005-01-07

    The sesquiterpenoids are a large class of naturally occurring compounds with biological functions and desirable properties. Oxidation of the sesquiterpene (+)-valencene by wild type and mutants of P450cam from Pseudomonas putida, and of P450BM-3 from Bacillus megaterium, have been investigated as a potential route to (+)-nootkatone, a fine fragrance. Wild type P450cam did not oxidise (+)-valencene but the mutants showed activities up to 9.8 nmol (nmol P450)(-1) min(-1), with (+)-trans-nootkatol and (+)-nootkatone constituting >85% of the products. Wild type P450BM-3 and mutants had higher activities (up to 43 min(-1)) than P450cam but were much less selective. Of the many products, cis- and trans-(+)-nootkatol, (+)-nootkatone, cis-(+)-valencene-1,10-epoxide, trans-(+)-nootkaton-9-ol, and (+)-nootkatone-13S,14-epoxide were isolated from whole-cell reactions and characterised. The selectivity patterns suggest that (+)-valencene has one binding orientation in P450cam but multiple orientations in P450BM-3.

  9. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control.

    Science.gov (United States)

    Hashimoto, H; Toide, K; Kitamura, R; Fujita, M; Tagawa, S; Itoh, S; Kamataki, T

    1993-12-01

    CYP3 A4 is the adult-specific form of cytochrome P450 in human livers [Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K. & Kamataki, T. (1990) Biochemistry 29, 4430-4433]. The sequences of three genomic clones for CYP3A4 were analyzed for all exons, exon-intron junctions and the 5'-flanking region from the major transcription site to nucleotide position -1105, and compared with those of the CYP3A7 gene, a fetal-specific form of cytochrome P450 in humans. The results showed that the identity of 5'-flanking sequences between CYP3A4 and CYP3A7 genes was 91%, and that each 5'-flanking region had characteristic sequences termed as NFSE (P450NF-specific element) and HFLaSE (P450HFLa specific element), respectively. A basic transcription element (BTE) also lay in the 5'-flanking region of the CYP3A4 gene as seen in many CYP genes [Yanagida, A., Sogawa, K., Yasumoto, K. & Fujii-Kuriyama, Y. (1990) Mol. Cell. Biol. 10, 1470-1475]. The BTE binding factor (BTEB) was present in both adult and fetal human livers. To examine the transcriptional activity of the CYP3A4 gene, DNA fragments in the 5'-flanking region of the gene were inserted in front of the simian virus 40 promoter and the chloramphenicol acetyltransferase structural gene, and the constructs were transfected in HepG2 cells. The analysis of the chloramphenicol acetyltransferase activity indicated that (a) specific element(s) which could bind with a factor(s) in livers was present in the 5'-flanking region of the CYP3A4 gene to show the transcriptional activity.

  10. The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons.

    Science.gov (United States)

    Finta, C; Zaphiropoulos, P G

    2000-12-30

    Using a bacterial artificial chromosome (BAC) clone, we have mapped the human cytochrome P450 3A (CYP3A) locus containing the genes encoding for CYP3A4, CYP3A5 and CYP3A7. The genes lie in a head-to-tail orientation in the order of 3A4, 3A7 and 3A5. In both intergenic regions (3A4-3A7 and 3A7-3A5), we have detected several additional cytochrome P450 3A exons, forming two CYP3A pseudogenes. These pseudogenes have the same orientation as the CYP3A genes. To our surprise, a 3A7 mRNA species has been detected in which the exons 2 and 13 of one of the pseudogenes (the one that is downstream of 3A7) are spliced after the 3A7 terminal exon. This results in an mRNA molecule that consists of the 13 3A7 exons and two additional exons at the 3' end. The additional two exons originating from the pseudogene are in an altered reading frame and consequently have the capability to code a completely different amino acid sequence than the canonical CYP3A exons 2 and 13. These findings may represent a generalized evolutionary process with genes having the potential to capture neighboring sequences and use them as functional exons.

  11. Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17).

    Science.gov (United States)

    Martin, Lisandra L; Kubeil, Clemens; Simonov, Alexandr N; Kuznetsov, Vladimir L; Corbin, C Jo; Auchus, Richard J; Conley, Alan J; Bond, Alan M; Rodgers, Raymond J

    2017-02-05

    Within the superfamily of cytochrome P450 enzymes (P450s), there is a small class which is functionally employed for steroid biosynthesis. The enzymes in this class appear to have a small active site to accommodate the steroid substrates specifically and snuggly, prior to the redox transformation or hydroxylation to form a product. Cytochrome P450c17 is one of these and is also a multi-functional P450, with two activities, the first 17α-hydroxylation of pregnenolone is followed by a subsequent 17,20-lyase transformation to dehydroepiandrosterone (DHEA) as the dominant pathways to cortisol precursors or androgens in humans, respectively. How P450c17 regulates these two redox reactions is of special interest. There is a paucity of direct electrochemical studies on steroidogenic P450s, and in this mini-review we provide an overview of these studies with P450c17. Historical consideration as to the difficulties in obtaining reliable electrochemistry due to issues of handling proteins on an electrode, together with advances in the electrochemical techniques are addressed. Recent work using Fourier transformed alternating current voltammetry is highlighted as this technique can provide both catalytic information simultaneously with the underlying redox transfer with the P450 haem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.

    Science.gov (United States)

    Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi

    2012-12-15

    Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes.

    Science.gov (United States)

    Ishak, Intan H; Kamgang, Basile; Ibrahim, Sulaiman S; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2017-01-01

    Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. The predominant

  14. Molecular evolution of the insect Halloween family of cytochrome P450s

    DEFF Research Database (Denmark)

    Rewitz, Kim; O'Connor, Michael B.; Gilbert, Lawrence I.

    2007-01-01

    . In the present study, we examine the phylogenetic relationships of these P450 genes in holometabolous insects belonging to the orders Hymenoptera, Coleoptera, Lepidoptera and Diptera. The analyzed insect genomes each contains single orthologs of Phantom (CYP306A1), Disembodied (CYP302A1), Shadow (CYP315A1...... of orthologous Halloween genes indicates selective constraint on these residues to prevent functional divergence. The results suggest that duplications of ancestral P450 genes that acquired novel functions may have been an important mechanism for evolving the ecdysteroidogenic pathway. © 2007 Elsevier B.V. All...

  15. Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline.

    Science.gov (United States)

    Utoh, Masahiro; Murayama, Norie; Uno, Yasuhiro; Onose, Yui; Hosaka, Shinya; Fujino, Hideki; Shimizu, Makiko; Iwasaki, Kazuhide; Yamazaki, Hiroshi

    2013-12-01

    Caffeine (1,3,7-trimethylxanthine) is a phenotyping substrate for human cytochrome P450 1A2. 3-N-Demethylation of caffeine is the main human metabolic pathway, whereas monkeys extensively mediate the 7-N-demethylation of caffeine to form pharmacological active theophylline. Roles of monkey P450 enzymes in theophylline formation from caffeine were investigated using individual monkey liver microsomes and 14 recombinantly expressed monkey P450 enzymes, and the results were compared with those for human P450 enzymes. Caffeine 7-N-demethylation activity in microsomes from 20 monkey livers was not strongly inhibited by α-naphthoflavone, quinidine or ketoconazole, and was roughly correlated with diclofenac 4'-hydroxylation activities. Monkey P450 2C9 had the highest activity for caffeine 7-N-demethylation. Kinetic analysis revealed that monkey P450 2C9 had a high Vmax/Km value for caffeine 7-N-demethylation, comparable to low Km value for monkey liver microsomes. Caffeine could dock favorably with monkey P450 2C9 modeled for 7-N-demethylation and with human P450 1A2 for 3-N-demethylation. The primary metabolite theophylline was oxidized to 8-hydroxytheophylline in similar ways by liver microsomes and by recombinant P450s in both humans and monkeys. These results collectively suggest a high activity for monkey liver P450 2C9 toward caffeine 7-N-demethylation, whereas, in humans, P450 1A2-mediated caffeine 3-N-demethylation is dominant.

  16. Triterpene Structural Diversification by Plant Cytochrome P450 Enzymes

    Directory of Open Access Journals (Sweden)

    Sumit Ghosh

    2017-11-01

    Full Text Available Cytochrome P450 monooxygenases (P450s represent the largest enzyme family of the plant metabolism. Plants typically devote about 1% of the protein-coding genes for the P450s to execute primary metabolism and also to perform species-specific specialized functions including metabolism of the triterpenes, isoprene-derived 30-carbon compounds. Triterpenes constitute a large and structurally diverse class of natural products with various industrial and pharmaceutical applications. P450-catalyzed structural modification is crucial for the diversification and functionalization of the triterpene scaffolds. In recent times, a remarkable progress has been made in understanding the function of the P450s in plant triterpene metabolism. So far, ∼80 P450s are assigned biochemical functions related to the plant triterpene metabolism. The members of the subfamilies CYP51G, CYP85A, CYP90B-D, CYP710A, CYP724B, and CYP734A are generally conserved across the plant kingdom to take part in plant primary metabolism related to the biosynthesis of essential sterols and steroid hormones. However, the members of the subfamilies CYP51H, CYP71A,D, CYP72A, CYP81Q, CYP87D, CYP88D,L, CYP93E, CYP705A, CYP708A, and CYP716A,C,E,S,U,Y are required for the metabolism of the specialized triterpenes that might perform species-specific functions including chemical defense toward specialized pathogens. Moreover, a recent advancement in high-throughput sequencing of the transcriptomes and genomes has resulted in identification of a large number of candidate P450s from diverse plant species. Assigning biochemical functions to these P450s will be of interest to extend our knowledge on triterpene metabolism in diverse plant species and also for the sustainable production of valuable phytochemicals.

  17. The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of beta-carotene into astaxanthin and other xanthophylls.

    Science.gov (United States)

    Alvarez, Vanessa; Rodríguez-Sáiz, Marta; de la Fuente, Juan Luis; Gudiña, Eduardo J; Godio, Ramiro P; Martín, Juan F; Barredo, José Luis

    2006-04-01

    The conversion of beta-carotene into xanthophylls is a subject of great scientific and industrial interest. We cloned the crtS gene involved in astaxanthin biosynthesis from two astaxanthin producing strains of Xanthophyllomyces dendrorhous: VKPM Y2410, an astaxanthin overproducing strain, and the wild type ATCC 24203. In both cases, the ORF has a length of 3166 bp, including 17 introns, and codes for a protein of 62.6 kDa with similarity to cytochrome-P450 hydroxylases. crtS gene sequences from strains VKPM Y2410, ATCC 24203, ATCC 96594, and ATCC 96815 show several nucleotide changes, but none of them causes any amino acid substitution, except a G2268 insertion in the 13th exon of ATCC 96815 which causes a change in the reading frame. A G1470 --> A change in the 5' splicing region of intron 8 was also found in ATCC 96815. Both point mutations explain astaxanthin idiotrophy and beta-carotene accumulation in ATCC 96815. Mutants accumulating precursors of the astaxanthin biosynthetic pathway were selected from the parental strain VKPM Y2410 (red) showing different colors depending on the compound accumulated. Two of them were blocked in the biosynthesis of astaxanthin, M6 (orange; 1% astaxanthin, 71 times more beta-carotene) and M7 (orange; 1% astaxanthin, 58 times more beta-carotene, 135% canthaxanthin), whereas the rest produced lower levels of astaxanthin (5-66%) than the parental strain. When the crtS gene was expressed in M7, canthaxanthin accumulation disappeared and astaxanthin production was partially restored. Moreover, astaxanthin biosynthesis was restored when X. dendrorhous ATCC 96815 was transformed with the crtS gene. The crtS gene was heterologously expressed in Mucor circinelloides conferring to this fungus an improved capacity to synthesize beta-cryptoxanthin and zeaxanthin, two hydroxylated compounds from beta-carotene. These results show that the crtS gene is involved in the conversion of beta-carotene into xanthophylls, being potentially useful to

  18. Characterization of the expression of the thcB gene, coding for a pesticide-degrading cytochrome P-450 in Rhodococcus strains.

    OpenAIRE

    Shao, Z Q; Behki, R

    1996-01-01

    A cytochrome P-450 system in Rhodococcus strains, encoded by thcB, thcC, and thcD, participates in the degradation of thiocarbamates and several other pesticides. The regulation of the system was investigated by fusing a truncated lacZ in frame to thcB, the structural gene for the cytochrome P-450 monooxygenase. Analysis of the thcB-lacZ fusion showed that the expression of thcB was 10-fold higher in the presence of the herbicide EPTC (s-ethyl dipropylthiocarbamate). Similar enhancement of th...

  19. [The role of cytochrome P450 in nonalcoholic fatty liver induced by high-fat diet: a gene expression profile analysis].

    Science.gov (United States)

    Liu, Y; Cheng, F; Luo, Y X; Hu, P; Ren, H; Peng, M L

    2017-04-20

    Objective: To clarify the role of cytochrome P450 in nonalcoholic fatty liver disease (NAFLD) by RNA-Seq and bioinformatics analysis. Methods: A total of 20 male C57BL/6 mice were used. Ten mice were fed with high-fat diet (D12492, 60% kcal fat) for 16 weeks to establish a mouse model of NAFLD, and the other 10 mice were fed with low-fat diet (D12450B, 10% kcal fat) as control group. At the end of the experiment, the body weight, liver weight, and hepatic triglyceride (TG) content were measured. Meanwhile, HE staining and RNA-Seq analysis were performed for the liver tissues. The differentially expressed genes were screened out and subjected to bioinformatics analysis, including KEGG and GO BP enrichment analyses and interaction network analysis. Comparison of means between the two groups was made using t-test. Results: Compared with the control group, the mice in the model group were obviously obese, with significantly increased body weight (41.41 ± 6.01 g vs 28.78 ± 1.79 g, t = 6.04, P steatosis, accompanied by a small amount of inflammatory cell infiltration, but with no obvious fibrosis, according to the results of HE staining. In addition, the hepatic TG content in the model group was significantly increased compared with that in the control group (0.64 ± 0.01 mg/mg vs 0.29 ± 0.06 mg/mg, t = 10.11, P = 0.04). Compared with the control group, a total of 367 differentially expressed genes, including 211 down-regulated and 156 up-regulated ones, were identified in the model group according to the RNA-seq results. Meanwhile, 19 CYP450 subtypes, accounting for 5% of the differentially expressed genes, were identified, and CYP2E1, CYP2C70, CYP3A11, CYP3A25, CYP2D26, CYP4A10, CYP17A1, CYP2B10, and CYP2C38 were involved in oxidative stress, steroid hormone metabolism, fatty acid metabolism, arachidonic acid metabolism, and the PPAR signaling pathway. An interaction network was constructed with 30 nodes, and CYP2E1 and CYP2C70 were identified as key nodes. RT

  20. Effects of chronic exposure to tributyltin on tissue-specific cytochrome P450 1 regulation in juvenile common carp.

    Science.gov (United States)

    Li, Zhi-Hua; Zhong, Li-Qiao; Mu, Wei-Na; Wu, Yan-Hua

    2016-01-01

    1. The purpose of this study was to compare tributyltin (TBT)-induced cytochrome P450 1 (CYP450 1) regulation in liver, gills and muscle of juvenile common carp (Cyprinus carpio). 2. Fish were exposed to sublethal concentrations of TBT (75, 0.75 and 7.5 μg/L) for 60 days. CYP450 1A was measured at the enzyme activity level as 7-ethoxyresorufin-O-deethylase (EROD) activity, as well as the mRNA expression of CYP450 1 family genes (CYP1A, CYP1B, CYP1C1 and CYP1C2) in fish tissues. 3. Based on the results, the liver displayed the highest absolute levels of EROD activity, both under nonexposed and exposed conditions. Additional, EROD activities and CYP1A gene levels showed a good correlation in all three organs. According to the mRNA expression of CYP450 1 family genes, it suggested that CYP1A was to accommodate most EROD activity in fish, but other CYP450 forms also involved in this proceeding. 4. Overall, the study revealed both similarities and differences in the concentration-dependent CYP450 1 responses of the three target organs, which could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity.

  1. Cytochromes P450: History, Classes, Catalytic Mechanism, and Industrial Application.

    Science.gov (United States)

    Cook, D J; Finnigan, J D; Cook, K; Black, G W; Charnock, S J

    Cytochromes P450, a family of heme-containing monooxygenases that catalyze a diverse range of oxidative reactions, are so-called due to their maximum absorbance at 450nm, ie, "Pigment-450nm," when bound to carbon monoxide. They have appeal both academically and commercially due to their high degree of regio- and stereoselectivity, for example, in the area of active pharmaceutical ingredient synthesis. Despite this potential, they often exhibit poor stability, low turnover numbers and typically require electron transport protein(s) for catalysis. P450 systems exist in a variety of functional domain architectures, organized into 10 classes. P450s are also divided into families, each of which is based solely on amino acid sequence homology. Their catalytic mechanism employs a very complex, multistep catalytic cycle involving a range of transient intermediates. Mutagenesis is a powerful tool for the development of improved biocatalysts and has been used extensively with the archetypal Class VIII P450, BM3, from Bacillus megaterium, but with the increasing scale of genomic sequencing, a huge resource is now available for the discovery of novel P450s. © 2016 Elsevier Inc. All rights reserved.

  2. Crude oil exposure results in oxidative stress-mediated dysfunctional development and reproduction in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes.

    Science.gov (United States)

    Han, Jeonghoon; Won, Eun-Ji; Hwang, Dae-Sik; Shin, Kyung-Hoon; Lee, Yong Sung; Leung, Kenneth Mei-Yee; Lee, Su-Jae; Lee, Jae-Seong

    2014-07-01

    In this study, we investigated the effects of the water-accommodated fraction (WAF) of crude oil on the development and reproduction of the intertidal copepod Tigriopus japonicus through life-cycle experiments. Furthermore, we investigated the mechanisms underlying the toxic effects of WAF on this benthic organism by studying expression patterns of cytochrome P450 (CYP) genes. Development of T. japonicus was delayed and molting was interrupted in response to WAF exposure. Hatching rate was also significantly reduced in response to WAF exposure. Activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), and catalase (CAT) were increased by WAF exposure in a concentration-dependent manner. These results indicated that WAF exposure resulted in oxidative stress, which in turn was associated with dysfunctional development and reproduction. To evaluate the involvement of cytochrome P450 (CYP) genes, we cloned the entire repertoire of CYP genes in T. japonicus (n=52) and found that the CYP genes belonged to five different clans (i.e., Clans 2, 3, 4, mitochondrial, and 20). We then examined expression patterns of these 52 CYP genes in response to WAF exposure. Three TJ-CYP genes (CYP3024A2, CYP3024A3, and CYP3027C2) belonging to CYP clan 3 were significantly induced by WAF exposure in a time- and concentration-dependent manner. We identified aryl hydrocarbon responsive elements (AhRE), xenobiotic responsive elements (XREs), and metal response elements (MRE) in the promoter regions of these three CYP genes, suggesting that these genes are involved in detoxification of toxicants. Overall, our results indicate that WAF can trigger oxidative stress and thus induce dysfunctional development and reproduction in the copepod T. japonicus. Furthermore, we identified three TJ-CYP genes that represent potential biomarkers of oil pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Immunohistochemical detection of cytochrome P450 isoenzymes in cultured human epidermal cells.

    Science.gov (United States)

    Van Pelt, F N; Meierink, Y J; Blaauboer, B J; Weterings, P J

    1990-12-01

    We used specific monoclonal antibodies (MAb) to human cytochrome P450 isoenzymes to determine the presence of these proteins in human epidermal cells. Two MAb (P450-5 and P450-8) recognize major forms of hepatic cytochrome P450 involved in biotransformation of xenobiotics. A third MAb, to cytochrome P450-9, is not fully characterized. The proteins were determined by the indirect immunoperoxidase technique after fixation with methanol and acetone. Biopsy materials for cultured keratinocytes, i.e., foreskin and hair follicles, contained the two major forms of cytochrome P450. In cultured keratinocytes derived from hair follicles the proteins were undetectable, whereas the keratinocytes derived from foreskin continued to express the two major forms of hepatic cytochrome P450. Cultured human fibroblasts and a human keratinocyte cell line (SVK14) showed staining similar to that of the foreskin keratinocytes. Cytochrome P450-9 was detectable only in human hepatocytes. The results indicate that, under the culture conditions applied, cultured human foreskin cells and the cell line SVK14 continue to express specific cytochrome P450 isoenzymes in culture, in contrast to hair follicle keratinocytes.

  4. Genome-wide identification of 31 cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and analysis of their benzo[α]pyrene-induced expression patterns.

    Science.gov (United States)

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Kim, Hee-Jin; Declerck, Steven A J; Hagiwara, Atsushi; Lee, Jae-Seong

    2018-03-01

    While marine invertebrate cytochrome P450 (CYP) genes and their roles in detoxification mechanisms have been studied, little information is available regarding freshwater rotifer CYPs and their functions. Here, we used genomic sequences and RNA-seq databases to identify 31 CYP genes in the freshwater rotifer Brachionus calyciflorus. The 31 Bc-CYP genes with a few tandem duplications were clustered into CYP 2, 3, 4, mitochondrial, and 46 clans with two marine rotifers Brachionus plicatilis and Brachionus koreanus. To understand the molecular responses of these 31 Bc-CYP genes, we also examined their expression patterns in response to benzo[α]pyrene (B[α]P). Three Bc-CYP genes (Bc-CYP3044B3, Bc-CYP3049B4, Bc-CYP3049B6) were significantly upregulated (P<0.05) in response to B[α]P, suggesting that these CYP genes can be involved in detoxification in response to B[α]P exposure. These genes might be useful as biomarkers of B[α]P exposure in B. calyciflorus. Overall, our findings expand the repertoire of known CYPs and shed light on their potential roles in xenobiotic detoxification in rotifers. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper.

    Science.gov (United States)

    Zimmer, Christoph T; Garrood, William T; Singh, Kumar Saurabh; Randall, Emma; Lueke, Bettina; Gutbrod, Oliver; Matthiesen, Svend; Kohler, Maxie; Nauen, Ralf; Davies, T G Emyr; Bass, Chris

    2018-01-22

    Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3-5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6-8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    International Nuclear Information System (INIS)

    Liu, Senyan; Yao, Yunyi; Lu, Shijun; Aldous, Kenneth; Ding, Xinxin; Mei, Changlin; Gu, Jun

    2013-01-01

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity

  7. Effects of electro-acupuncture on ovarian P450arom, P450c17α and mRNA expression induced by letrozole in PCOS rats.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    Full Text Available Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS. Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg(-1 of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA showed significantly decreased androgens (i.e., androstenedione and testosterone with significantly increased estrogens (i.e., estrone, estradiol and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive

  8. Effects of electro-acupuncture on ovarian P450arom, P450c17α and mRNA expression induced by letrozole in PCOS rats.

    Science.gov (United States)

    Sun, Jie; Jin, Chunlan; Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing

    2013-01-01

    Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg(-1) of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and

  9. Effects of Electro-Acupuncture on Ovarian P450arom, P450c17α and mRNA Expression Induced by Letrozole in PCOS Rats

    Science.gov (United States)

    Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing

    2013-01-01

    Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg−1 of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and

  10. Monoclonal antibodies to drosophila cytochrome P-450's

    International Nuclear Information System (INIS)

    Sundseth, S.S.; Kennel, S.J.; Waters, L.C.

    1987-01-01

    Hybridomas producing monoclonal antibodies were prepared by the fusion of SP2/0 myeloma cells and spleen cells from a female BALB/c mouse immunized by cytochrome P-450-A and P-450-B purified from Drosophila Hikone-R (BG) microsomes. P-450-A and P-450-B are electrophoretically distinct subsets of Drosophila P-450. P-450-A is ubiquitous among strains tested, while P-450-B is present in only a few strains displaying unique enzyme activities and increased insecticide resistance. The Oregon-R strain contains only cytochromes P-450-A and is susceptible to insecticides. The authors Hikone-R (BG) strain expresses both cytochromes P-450-A and P-450-B and is insecticide resistant. Antibody producing hybridomas were detected in a solid-phase radioimmunoassay (RIA) by binding to Hikone-R (BG) or Oregon-R microsomes. Four independent hybridomas were identified as producing monoclonal antibodies that recognized proteins in the P-450 complex by immunoblot experiments. Three monoclonal antibodies recognized P-450-A proteins, while one monoclonal antibody bound predominantly P-450-B. This monoclonal antibody also recognized southern armyworm (Spodoptera eridania, Cramer) microsomal proteins

  11. Identification of human cytochrome P450s as autoantigens.

    Science.gov (United States)

    Manns, M P; Johnson, E F

    1991-01-01

    Antimicrosomal antibodies in inflammatory liver diseases all seem to be directed against members of the cytochrome P450 family of proteins. These autoantigens seem to be genetically polymorphic, the autoantibodies are inhibitory, and the autoepitopes are generally conserved among species. Anti-P450 autoantibodies share these characteristics with other autoantibodies, for example, antinuclear antibodies in systemic lupus erythematosus. The identification of P450s as human autoantigens is clinically important. Diagnostic tests will be developed on the basis of cloned antigen, facilitating a better diagnosis of drug-induced and idiopathic autoimmune hepatitis. It is unknown what triggers autoantibody production against cytochrome P450 proteins. Furthermore, their pathogenetic role and thus their involvement in tissue destruction is unclear. In this context LKM1 autoantibodies may serve as a model. Although LKM1 antibodies are inhibitory, all LKM1 antibody-positive patients tested so far are extensive metabolizers for drug metabolism mediated by P450IID6 and express this protein in their livers. Thus, the inhibitory LKM1 autoantibody does not sufficiently penetrate through the intact liver cell membrane to inhibit enzyme function in vivo. Presumably, tissue destruction in autoimmune hepatitis is mediated by liver-infiltrating T lymphocytes. T lymphocytes have been cloned from liver tissue that specifically proliferate in the presence of recombinant cytochrome P450IID6. The construction of overlapping cDNA subclones is also valuable to identify immunodominant B cell as well as relevant T cell epitopes.

  12. Novel Detection of Insecticide Resistance Related P450 Genes and Transcriptome Analysis of the Hemimetabolous Pest Erthesina fullo (Thunberg) (Hemiptera: Heteroptera).

    Science.gov (United States)

    Liu, Yang; Wu, Haoyang; Xie, Qiang; Bu, Wenjun

    2015-01-01

    Erthesina fullo (Thunberg, 1783) is an economically important heteropteran species in China. Since only three nucleotide sequences of this species (COI, 16S rRNA, and 18S rRNA) appear in the GenBank database so far, no analysis of the molecular mechanisms underlying E. fullo's resistance to insecticide and environmental stress has been accomplished. We reported a de novo assembled and annotated transcriptome for adult E. fullo using the Illumina sequence system. A total of 53,359,458 clean reads of 4.8 billion nucleotides (nt) were assembled into 27,488 unigenes with an average length of 750 bp, of which 17,743 (64.55%) were annotated. In the present study, we identified 88 putative cytochrome P450 sequences and analyzed the evolution of cytochrome P450 superfamilies, genes of the CYP3 clan related to metabolizing xenobiotics and plant natural compounds, in E. fullo, increasing the candidate genes for the molecular mechanisms of insecticide resistance in P450. The sequenced transcriptome greatly expands the available genomic information and could allow a better understanding of the mechanisms of insecticide resistance at the systems biology level.

  13. The Role of Cytochromes P450 in Infection

    Directory of Open Access Journals (Sweden)

    Elisavet Stavropoulou

    2018-01-01

    Full Text Available Cytochromes are expressed in many different tissues of the human body. They are found mostly in intestinal and hepatic tissues. Cytochromes P450 (CYPs are enzymes that oxidize substances using iron and are able to metabolize a large variety of xenobiotic substances. CYP enzymes are linked to a wide array of reactions including and O-dealkylation, S-oxidation, epoxidation, and hydroxylation. The activity of the typical P450 cytochrome is influenced by a variety of factors, such as genus, environment, disease state, herbicide, alcohol, and herbal medications. However, diet seems to play a major role. The mechanisms of action of dietary chemicals, macro- and micronutrients on specific CYP isoenzymes have been extensively studied. Dietary modulation has effects upon the metabolism of xenobiotics. Cytochromes harbor intra- or interindividual and intra- or interethnic genetic polymorphisms. Bacteria were shown to express CYP-like genes. The tremendous metabolic activity of the microbiota is associated to its abundant pool of CYP enzymes, which catalyze phase I and II reactions in drug metabolism. Disease states, intestinal disturbances, aging, environmental toxic effects, chemical exposures or nutrition modulate the microbial metabolism of a drug before absorption. A plethora of effects exhibited by most of CYP enzymes can resemble those of proinflammatory cytokines and IFNs. Moreover, they are involved in the initiation and persistence of pathologic pain by directly activating sensory neurons and inflammatory cytokines.

  14. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    International Nuclear Information System (INIS)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2010-01-01

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  15. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    International Nuclear Information System (INIS)

    Kaspera, Rüdiger; Sahele, Tariku; Lakatos, Kyle; Totah, Rheem A.

    2012-01-01

    Highlights: ► Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k cat ∼ 25 min −1 ). ► Reduction is a direct hydride transfer from R-NADP 2 H to the carbonyl moiety. ► P450 domain variants enhance reduction through potential allosteric/redox interactions. ► Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k cat of ∼25 min −1 was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP 2 H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP 2 H but not D 2 O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  16. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus.

    Science.gov (United States)

    Ishak, Intan H; Riveron, Jacob M; Ibrahim, Sulaiman S; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S

    2016-04-20

    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus.

  17. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States); Totah, Rheem A., E-mail: rtotah@u.washington.edu [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  18. Flower colour and cytochromes P450.

    Science.gov (United States)

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  19. Phytomonitoring and phytoremediation of agrochemicals and related compounds based on recombinant cytochrome P450s and aryl hydrocarbon receptors (AhRs).

    Science.gov (United States)

    Shimazu, Sayuri; Inui, Hideyuki; Ohkawa, Hideo

    2011-04-13

    Molecular mechanisms of metabolism and modes of actions of agrochemicals and related compounds are important for understanding selective toxicity, biodegradability, and monitoring of biological effects on nontarget organisms. It is well-known that in mammals, cytochrome P450 (P450 or CYP) monooxygenases metabolize lipophilic foreign compounds. These P450 species are inducible, and both CYP1A1 and CYP1A2 are induced by aryl hydrocarbon receptor (AhR) combined with a ligand. Gene engineering of P450 and NADPH cytochrome P450 oxidoreductase (P450 reductase) was established for bioconversion. Also, gene modification of AhRs was developed for recombinant AhR-mediated β-glucronidase (GUS) reporter assay of AhR ligands. Recombinant P450 genes were transformed into plants for phytoremediation, and recombinant AhR-mediated GUS reporter gene expression systems were each transformed into plants for phytomonitoring. Transgenic rice plants carrying CYP2B6 metabolized the herbicide metolachlor and remarkably reduced the residues in the plants and soils under paddy field conditions. Transgenic Arabidopsis plants carrying recombinant guinea pig (g) AhR-mediated GUS reporter genes detected PCB126 at the level of 10 ng/g soils in the presence of biosurfactants MEL-B. Both phytomonitoring and phytoremediation plants were each evaluated from the standpoint of practical uses.

  20. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2010-10-15

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  1. The biodiversity of microbial cytochromes P450.

    Science.gov (United States)

    Kelly, Steven L; Lamb, David C; Jackson, Colin J; Warrilow, Andrew G; Kelly, Diane E

    2003-01-01

    The cytochrome P450 (CYP) superfamily of genes and proteins are well known for their involvement in pharmacology and toxicology, but also increasingly for their importance and diversity in microbes. The extent of diversity has only recently become apparent with the emergence of data from whole genome sequencing projects and the coming years will reveal even more information on the diversity in microbial eukaryotes. This review seeks to describe the historical development of these studies and to highlight the importance of the genes and proteins. CYPs are deeply involved in the development of strategies for deterrence and attraction as well as detoxification. As such, there is intense interest in pathways of secondary metabolism that include CYPs in oxidative tailoring of antibiotics, sometimes influencing potency as bioactive compounds. Further to this is interest in CYPs in metabolism of xenobiotics for use as carbon sources for microbial growth and as biotransformation agents or in bioremediation. CYPs are also current and potential drug targets; compounds inhibiting CYP are antifungal and anti-protozoan agents, and potentially similar compounds may be useful against some bacterial diseases such as tuberculosis. Of note is the diversity of CYP requirements within an organism, ranging from Escherichia coli that has no CYPs as in many bacteria, to Mycobacterium smegmatis that has 40 representing 1% of coding genes. The basidiomycete fungus Phanerochaete chrysosporium surprised all when it was found to contain a hundred or more CYPs. The functional genomic investigation of these orphan CYPs is a major challenge for the future.

  2. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function.

    Science.gov (United States)

    Rudolf, Jeffrey D; Chang, Chin-Yuan; Ma, Ming; Shen, Ben

    2017-08-30

    Covering: up to January 2017Cytochrome P450 enzymes (P450s) are some of the most exquisite and versatile biocatalysts found in nature. In addition to their well-known roles in steroid biosynthesis and drug metabolism in humans, P450s are key players in natural product biosynthetic pathways. Natural products, the most chemically and structurally diverse small molecules known, require an extensive collection of P450s to accept and functionalize their unique scaffolds. In this review, we survey the current catalytic landscape of P450s within the Streptomyces genus, one of the most prolific producers of natural products, and comprehensively summarize the functionally characterized P450s from Streptomyces. A sequence similarity network of >8500 P450s revealed insights into the sequence-function relationships of these oxygen-dependent metalloenzymes. Although only ∼2.4% and structurally characterized, respectively, the study of streptomycete P450s involved in the biosynthesis of natural products has revealed their diverse roles in nature, expanded their catalytic repertoire, created structural and mechanistic paradigms, and exposed their potential for biomedical and biotechnological applications. Continued study of these remarkable enzymes will undoubtedly expose their true complement of chemical and biological capabilities.

  3. Inactivation of Cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a Thiophene-Containing Anticancer DrugS⃞

    Science.gov (United States)

    Lin, Hsia-lien; Zhang, Haoming; Medower, Christine; Johnson, William W.

    2011-01-01

    An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b5 and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b5. The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a KI of 24 μM and a kinact of 0.04 min−1. This KI is significantly greater than the clinical OSI-930 Cmax of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site for oxidation

  4. LKM-1 autoantibodies recognize a short linear sequence in P450IID6, a cytochrome P-450 monooxygenase.

    OpenAIRE

    Manns, M P; Griffin, K J; Sullivan, K F; Johnson, E F

    1991-01-01

    LKM-1 autoantibodies, which are associated with autoimmune chronic active hepatitis, recognize P450IID6, a cytochrome P-450 monooxygenase. The reactivities of 26 LKM-1 antisera were tested with a panel of deletion mutants of P450IID6 expressed in Escherichia coli. 22 sera recognize a 33-amino acid segment of P450IID6, and 11 of these recognize a shorter segment, DPAQPPRD. PAQPPR is also found in IE175 of herpes simplex virus type 1 (HSV-1). Antibodies for HSV-1 proteins were detected by ELISA...

  5. Potent Nematicidal Activity and New Hybrid Metabolite Production by Disruption of a Cytochrome P450 Gene Involved in the Biosynthesis of Morphological Regulatory Arthrosporols in Nematode-Trapping Fungus Arthrobotrys oligospora.

    Science.gov (United States)

    Song, Tian-Yang; Xu, Zi-Fei; Chen, Yong-Hong; Ding, Qiu-Yan; Sun, Yu-Rong; Miao, Yang; Zhang, Ke-Qin; Niu, Xue-Mei

    2017-05-24

    Types of polyketide synthase-terpenoid synthase (PKS-TPS) hybrid metabolites, including arthrosporols with significant morphological regulatory activity, have been elucidated from nematode-trapping fungus Arthrobotrys oligospora. A previous study suggested that the gene cluster AOL_s00215 in A. oligospora was involved in the production of arthrosporols. Here, we report that disruption of one cytochrome P450 monooxygenase gene AOL_s00215g280 in the cluster resulted in significant phenotypic difference and much aerial hyphae. A further bioassay indicated that the mutant showed a dramatic decrease in the conidial formation but developed numerous traps and killed 85% nematodes within 6 h in contact with prey, in sharp contrast to the wild-type strain with no obvious response. Chemical investigation revealed huge accumulation of three new PKS-TPS epoxycyclohexone derivatives with different oxygenated patterns around the epoxycyclohexone moiety and the absence of arthrosporols in the cultural broth of the mutant ΔAOL_s00215g280. These findings suggested that a study on the biosynthetic pathway for morphological regulatory metabolites in nematode-trapping fungus would provide an efficient way to develop new fungal biocontrol agents.

  6. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase

    DEFF Research Database (Denmark)

    Bavishi, Krutika; Laursen, Tomas; Martinez, Karen Laurence

    2016-01-01

    Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially...... was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions...

  7. Identification and Characterization of CYP9A40 from the Tobacco Cutworm Moth (Spodoptera litura), a Cytochrome P450 Gene Induced by Plant Allelochemicals and Insecticides

    Science.gov (United States)

    Wang, Rui-Long; Staehelin, Christian; Xia, Qing-Qing; Su, Yi-Juan; Zeng, Ren-Sen

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) of insects play crucial roles in the metabolism of endogenous and dietary compounds. Tobacco cutworm moth (Spodoptera litura), an important agricultural pest, causes severe yield losses in many crops. In this study, we identified CYP9A40, a novel P450 gene of S. litura, and investigated its expression profile and potential role in detoxification of plant allelochemicals and insecticides. The cDNA contains an open reading frame encoding 529 amino acid residues. CYP9A40 transcripts were found to be accumulated during various development stages of S. litura and were highest in fifth and sixth instar larvae. CYP9A40 was mainly expressed in the midgut and fat body. Larval consumption of xenobiotics, namely plant allelochemicals (quercetin and cinnamic acid) and insecticides (deltamethrin and methoxyfenozide) induced accumulation of CYP9A40 transcripts in the midgut and fat body. Injection of dsCYP9A40 (silencing of CYP9A40 by RNA interference) significantly increased the susceptibility of S. litura larvae to the tested plant allelochemicals and insecticides. These results indicate that CYP9A40 expression in S. litura is related to consumption of xenobiotics and suggest that CYP9A40 is involved in detoxification of these compounds. PMID:26393579

  8. Reduction of Aromatic and Heterocyclic Aromatic N-Hydroxylamines by Human Cytochrome P450 2S1

    Science.gov (United States)

    Wang, Kai; Guengerich, F. Peter

    2013-01-01

    Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals and there is also strong evidence for some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anti-cancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions (Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740–1751). In the present study, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs. PMID:23682735

  9. Differential Expression of P450 Genes and nAChR Subunits Associated With Imidacloprid Resistance in Laodelphax striatellus (Hemiptera: Delphacidae).

    Science.gov (United States)

    Zhang, Yueliang; Liu, Baosheng; Zhang, Zhichun; Wang, Lihua; Guo, Huifang; Li, Zhong; He, Peng; Liu, Zewen; Fang, Jichao

    2018-05-28

    Imidacloprid is a key insecticide used for controlling sucking insect pests, including the small brown planthopper (Laodelphax striatellus, Fallén) (Hemiptera: Delphacidae), an important agricultural pest of rice. A strain of L. striatellus (YN-ILR) developed 21-fold resistance when selected with imidacloprid on a susceptible YN strain. An in vitro study on piperonyl butoxide synergism indicated that enhanced detoxification mediated by cytochrome P450s contributed to imidacloprid resistance to some extent, and multiple P450 genes showed altered expression in the imidacloprid-resistant YN-ILR strain compared with the susceptible YN strain (CYP425B1-CYP6BD10 had 1.51- to 11.45-fold higher expression, CYP4CE2-CYP4DD1V2 had 0.12- to 0.57-fold lower expression). While there were no mutations in target nicotinic acetylcholine receptor (nAChR) genes, subunits of Lsα1, Lsβ1, and Lsβ3 in the YN-ILR strain showed 3.86-, 4.39-, and 2.59-fold higher expression and Lsa8 displayed 0.38-fold lower expression than the YN strain. Moreover, 21-fold moderate imidacloprid resistance in individuals of L. striatellus did not produce a fitness cost. The findings suggest that L. striatellus has the capacity to develop resistance to imidacloprid through P450 detoxification and potential target nAChR expression changes, and moderate imidacloprid resistance was not associated with a fitness cost.

  10. Cytochrome P450-mediated metabolic engineering

    DEFF Research Database (Denmark)

    Renault, Hugues; Bassard, Jean-Étienne André; Hamberger, Björn Robert

    2014-01-01

    for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered...... in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing...

  11. Cytochrome P450 humanised mice

    Directory of Open Access Journals (Sweden)

    Gonzalez Frank J

    2004-05-01

    Full Text Available Abstract Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s. These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach.

  12. Cytochrome P450 humanised mice

    Science.gov (United States)

    2004-01-01

    Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s). These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach. PMID:15588489

  13. A glycine insertion in the estrogen-related receptor (ERR is associated with enhanced expression of three cytochrome P450 genes in transgenic Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Weilin Sun

    Full Text Available Insecticide-resistant Drosophila melanogaster strains represent a resource for the discovery of the underlying molecular mechanisms of cytochrome P450 constitutive over-expression, even if some of these P450s are not directly involved in the resistance phenotype. For example, in select 4,4'-dichlorodiphenyltrichloroethane (DDT resistant strains the glucocorticoid receptor-like (GR-like potential transcription factor binding motifs (TFBMs have previously been shown to be associated with constitutively differentially-expressed cytochrome P450s, Cyp12d1, Cyp6g2 and Cyp9c1. However, insects are not known to have glucocorticoids. The only ortholog to the mammalian glucocorticoid receptor (GR in D. melanogaster is an estrogen-related receptor (ERR gene, which has two predicted alternative splice isoforms (ERRa and ERRb. Sequencing of ERRa and ERRb in select DDT susceptible and resistant D. melanogaster strains has revealed a glycine (G codon insertion which was only observed in the ligand binding domain of ERR from the resistant strains tested (ERR-G. Transgenic flies, expressing the ERRa-G allele, constitutively over-expressed Cyp12d1, Cyp6g2 and Cyp9c1. Only Cyp12d1 and Cyp6g2 were over-expressed in the ERRb-G transgenic flies. Phylogenetic studies show that the G-insertion appeared to be located in a less conserved domain in ERR and this insertion is found in multiple species across the Sophophora subgenera.

  14. P450 oxidoreductase deficiency: a disorder of steroidogenesis with multiple clinical manifestations.

    Science.gov (United States)

    Miller, Walter L

    2012-10-23

    Cytochrome P450 enzymes catalyze the biosynthesis of steroid hormones and metabolize drugs. There are seven human type I P450 enzymes in mitochondria and 50 type II enzymes in endoplasmic reticulum. Type II enzymes, including both drug-metabolizing and some steroidogenic enzymes, require electron donation from a two-flavin protein, P450 oxidoreductase (POR). Although knockout of the POR gene causes embryonic lethality in mice, we discovered human POR deficiency as a disorder of steroidogenesis associated with the Antley-Bixler skeletal malformation syndrome and found mild POR mutations in phenotypically normal adults with infertility. Assay results of mutant forms of POR using the traditional but nonphysiologic assay (reduction of cytochrome c) did not correlate with patient phenotypes; assays based on the 17,20 lyase activity of P450c17 (CYP17) correlated with clinical phenotypes. The POR sequence in 842 normal individuals revealed many polymorphisms; amino acid sequence variant A503V is encoded by ~28% of human alleles. POR A503V has about 60% of wild-type activity in assays with CYP17, CYP2D6, and CYP3A4, but nearly wild-type activity with P450c21, CYP1A2, and CYP2C19. Activity of a particular POR variant with one P450 enzyme will not predict its activity with another P450 enzyme: Each POR-P450 combination must be studied individually. Human POR transcription, initiated from an untranslated exon, is regulated by Smad3/4, thyroid receptors, and the transcription factor AP-2. A promoter polymorphism reduces transcription to 60% in liver cells and to 35% in adrenal cells. POR deficiency is a newly described disorder of steroidogenesis, and POR variants may account for some genetic variation in drug metabolism.

  15. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation.

    Science.gov (United States)

    Jin, Shuangxia; Singh, Nameirakpam D; Li, Lebin; Zhang, Xianlong; Daniell, Henry

    2015-04-01

    In the past two decades, chloroplast genetic engineering has been advanced to achieve high-level protein accumulation but not for down-regulation of targeted genes. Therefore, in this report, lepidopteran chitin synthase (Chi), cytochrome P450 monooxygenase (P450) and V-ATPase dsRNAs were expressed via the chloroplast genome to study RNA interference (RNAi) of target genes in intended hosts. PCR and Southern blot analysis confirmed homoplasmy and site-specific integration of transgene cassettes into the chloroplast genomes. Northern blots and real-time qRT-PCR confirmed abundant processed and unprocessed dsRNA transcripts (up to 3.45 million copies of P450 dsRNAs/μg total RNA); the abundance of cleaved dsRNA was greater than the endogenous psbA transcript. Feeding of leaves expressing P450, Chi and V-ATPase dsRNA decreased transcription of the targeted gene to almost undetectable levels in the insect midgut, likely after further processing of dsRNA in their gut. Consequently, the net weight of larvae, growth and pupation rates were significantly reduced by chloroplast-derived dsRNAs. Taken together, successful expression of dsRNAs via the chloroplast genome for the first time opens the door to study RNA interference/processing within plastids. Most importantly, dsRNA expressed in chloroplasts can be utilized for gene inactivation to confer desired agronomic traits or for various biomedical applications, including down-regulation of dysfunctional genes in cancer or autoimmune disorders, after oral delivery of dsRNA bioencapsulated within plant cells. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout

    International Nuclear Information System (INIS)

    Sandhu, Navdeep; Vijayan, Mathilakath M.

    2011-01-01

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  17. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Navdeep [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Vijayan, Mathilakath M., E-mail: mvijayan@uwaterloo.ca [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2011-05-15

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  18. Regulation of P450-mediated permethrin resistance in Culex quinquefasciatus by the GPCR/Gαs/AC/cAMP/PKA signaling cascade.

    Science.gov (United States)

    Li, Ting; Liu, Nannan

    2017-12-01

    This study explores the role of G-protein-coupled receptor-intracellular signaling in the development of P450-mediated insecticide resistance in mosquitoes, Culex quinquefasciatus , focusing on the essential function of the GPCRs and their downstream effectors of Gs alpha subunit protein (Gαs) and adenylyl cyclase (ACs) in P450-mediated insecticide resistance of Culex mosquitoes. Our RNAi-mediated functional study showed that knockdown of Gαs caused the decreased expression of the downstream effectors of ACs and PKAs in the GPCR signaling pathway and resistance P450 genes, whereas knockdown of ACs decreased the expression of PKAs and resistance P450 genes. Knockdown of either Gαs or ACs resulted in an increased susceptibility of mosquitoes to permethrin. These results add significantly to our understanding of the molecular basis of resistance P450 gene regulation through GPCR/Gαs/AC/cAMP-PKA signaling pathways in the insecticide resistance of mosquitoes. The temporal and spatial dynamic analyses of GPCRs, Gαs, ACs, PKAs, and P450s in two insecticide resistant mosquito strains revealed that all the GPCR signaling pathway components tested, namely GPCRs, Gαs, ACs and PKAs, were most highly expressed in the brain for both resistant strains, suggesting the role played by these genes in signaling transduction and regulation. The resistance P450 genes were mainly expressed in the brain, midgut and malpighian tubules (MTs), suggesting their critical function in the central nervous system and importance for detoxification. The temporal dynamics analysis for the gene expression showed a diverse expression profile during mosquito development, indicating their initially functional importance in response to exposure to insecticides during their life stages.

  19. NADPH–Cytochrome P450 Oxidoreductase: Roles in Physiology, Pharmacology, and Toxicology

    Science.gov (United States)

    Ding, Xinxin; Wolf, C. Roland; Porter, Todd D.; Pandey, Amit V.; Zhang, Qing-Yu; Gu, Jun; Finn, Robert D.; Ronseaux, Sebastien; McLaughlin, Lesley A.; Henderson, Colin J.; Zou, Ling; Flück, Christa E.

    2013-01-01

    This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH–cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b5, squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b5 are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b5 on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell–culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism. PMID:23086197

  20. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus

    Energy Technology Data Exchange (ETDEWEB)

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon, E-mail: jeonghoon@skku.edu; Lee, Jae-Seong, E-mail: jslee2@skku.edu

    2017-03-15

    Highlights: • Impaired effects of UV-B on the copepod Tigriopus japonicus were examined. • Modulation of entire CYP genes were analyzed in response to UV-B. • CYP inhibitor (PBO) confirmed the role of CYP in UV-B induced mortality. • Low-dose UV-B found induce developmental delays, and higher doses cause reproductive impairments. • Study predicted the mechanistic effects of UV-B in copepods through the AhR-mediated up-regulation of CYP genes. - Abstract: To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P < 0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48 h LD10 and LD50 were 1.35 and 1.84 kJ/m{sup 2}, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5 kJ/m{sup 2}) induced developmental delays, and higher doses (6–18 kJ/m{sup 2}) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12 kJ/m{sup 2}) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.

  1. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus

    International Nuclear Information System (INIS)

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-01-01

    Highlights: • Impaired effects of UV-B on the copepod Tigriopus japonicus were examined. • Modulation of entire CYP genes were analyzed in response to UV-B. • CYP inhibitor (PBO) confirmed the role of CYP in UV-B induced mortality. • Low-dose UV-B found induce developmental delays, and higher doses cause reproductive impairments. • Study predicted the mechanistic effects of UV-B in copepods through the AhR-mediated up-regulation of CYP genes. - Abstract: To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P < 0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48 h LD10 and LD50 were 1.35 and 1.84 kJ/m"2, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5 kJ/m"2) induced developmental delays, and higher doses (6–18 kJ/m"2) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12 kJ/m"2) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.

  2. Polymorphisms of genes involved in polycyclic aromatic hydrocarbons’ biotransformation and atherosclerosis

    Science.gov (United States)

    Marinković, Natalija; Pašalić, Daria; Potočki, Slavica

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most prevalent environmental pollutants and result from the incomplete combustion of hydrocarbons (coal and gasoline, fossil fuel combustion, byproducts of industrial processing, natural emission, cigarette smoking, etc.). The first phase of xenobiotic biotransformation in the PAH metabolism includes activities of cytochrome P450 from the CYP1 family and microsomal epoxide hydrolase. The products of this biotransformation are reactive oxygen species that are transformed in the second phase through the formation of conjugates with glutathione, glucuronate or sulphates. PAH exposure may lead to PAH-DNA adduct formation or induce an inflammatory atherosclerotic plaque phenotype. Several genetic polymorphisms of genes encoded for enzymes involved in PAH biotransformation have been proven to lead to the development of diseases. Enzyme CYP P450 1A1, which is encoded by the CYP1A1 gene, is vital in the monooxygenation of lipofilic substrates, while GSTM1 and GSTT1 are the most abundant isophorms that conjugate and neutralize oxygen products. Some single nucleotide polymorphisms of the CYP1A1 gene as well as the deletion polymorphisms of GSTT1 and GSTM1 may alter the final specific cellular inflammatory respond. Occupational exposure or conditions from the living environment can contribute to the production of PAH metabolites with adverse effects on human health. The aim of this study was to obtain data on biotransformation and atherosclerosis, as well as data on the gene polymorphisms involved in biotransformation, in order to better study gene expression and further elucidate the interaction between genes and the environment. PMID:24266295

  3. Identification of 28 cytochrome P450 genes from the transcriptome of the marine rotifer Brachionus plicatilis and analysis of their expression.

    Science.gov (United States)

    Kim, Hui-Su; Han, Jeonghoon; Kim, Hee-Jin; Hagiwara, Atsushi; Lee, Jae-Seong

    2017-09-01

    Whole transcriptomes of the rotifer Brachionus plicatilis were analyzed using an Illumina sequencer. De novo assembly was performed with 49,122,780 raw reads using Trinity software. Among the assembled 42,820 contigs, 27,437 putative open reading frame contigs were identified (average length 1235bp; N50=1707bp). Functional gene annotation with Gene Ontology and InterProScan, in addition to Kyoto Encyclopedia of Genes and Genomes pathway analysis, highlighted the metabolism of xenobiotics by cytochrome P450 (CYP). In addition, 28 CYP genes were identified, and their transcriptional responses to benzo[α]pyrene (B[α]P) were investigated. Most of the CYPs were significantly upregulated or downregulated (Pplicatilis in response to exposure to various chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca

    NARCIS (Netherlands)

    Schallmey, Anett; den Besten, Gijs; Teune, Ite G. P.; Kembaren, Roga F.; Janssen, Dick B.

    Cytochrome P450 monooxygenases are valuable biocatalysts due to their ability to hydroxylate unactivated carbon atoms using molecular oxygen. We have cloned the gene for a new cytochrome P450 monooxygenase, named CYP154H1, from the moderately thermophilic soil bacterium Thermobifida fusca. The

  5. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes.

    Science.gov (United States)

    Zhang, Yixi; Yang, Yuanxue; Sun, Huahua; Liu, Zewen

    2016-12-01

    Target insensitivity contributing to imidacloprid resistance in Nilaparvata lugens has been reported to occur either through point mutations or quantitative change in nicotinic acetylcholine receptors (nAChRs). However, the metabolic resistance, especially the enhanced detoxification by P450 enzymes, is the major mechanism in fields. From one field-originated N. lugens population, an imidacloprid resistant strain G25 and a susceptible counterpart S25 were obtained to analyze putative roles of P450s in imidacloprid resistance. Compared to S25, over-expression of twelve P450 genes was observed in G25, with ratios above 5.0-fold for CYP6AY1, CYP6ER1, CYP6CS1, CYP6CW1, CYP4CE1 and CYP425B1. RNAi against these genes in vivo and recombinant tests on the corresponding proteins in vitro revealed that four P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, played important roles in imidacloprid resistance. The importance of the four P450s was not equal at different stages of resistance development based on their over-expression levels, among which CYP6ER1 was important at all stages, and that the others might only contribute at certain stages. The results indicated that, to completely reflect roles of P450s in insecticide resistances, their over-expression in resistant individuals, expression changes at the stages of resistance development, and catalytic activities against insecticides should be considered. In this study, multiple P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, have proven to be important in imidacloprid resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Evolution of NADPH-cytochrome P450 oxidoreductases (POR) in Apiales - POR 1 is missing

    DEFF Research Database (Denmark)

    Andersen, Trine Bundgaard; Hansen, Niels Bjørn; Laursen, Tomas

    2016-01-01

    The NADPH-dependent cytochrome P450 oxidoreductase (POR) is the obligate electron donor to eukaryotic microsomal cytochromes P450 enzymes. The number of PORs within plant species is limited to one to four isoforms, with the most common being two PORs per plant. These enzymes provide electrons to ...... (available from the SRA at NCBI). All three genes were shown to be functional upon reconstitution into nanodiscs, confirming that none of the isoforms are pseudogenes....

  7. Plant Expression of a Bacterial Cytochrome P450 That Catalyzes Activation of a Sulfonylurea Pro-Herbicide.

    Science.gov (United States)

    O'Keefe, D. P.; Tepperman, J. M.; Dean, C.; Leto, K. J.; Erbes, D. L.; Odell, J. T.

    1994-01-01

    The Streptomyces griseolus gene encoding herbicide-metabolizing cytochrome P450SU1 (CYP105A1) was expressed in transgenic tobacco (Nicotiana tabacum). Because this P450 can be reduced by plant chloroplast ferredoxin in vitro, chloroplast-targeted and nontargeted expression were compared. Whereas P450SU1 antigen was found in the transgenic plants regardless of the targeting, only those with chloroplast-directed enzyme performed P450SU1-mediated N-dealkylation of the sulfonylurea 2-methylethyl-2,3-dihydro-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1, 2-benzoisothiazole- 7-sulfonamide-1,1-dioxide (R7402). Chloroplast targeting appears to be essential for the bacterial P450 to function in the plant. Because the R7402 metabolite has greater phytotoxicity than R7402 itself, plants bearing active P450SU1 are susceptible to injury from R7402 treatment that is harmless to plants without P450SU1. Thus, P450SU1 expression and R7402 treatment can be used as a negative selection system in plants. Furthermore, expression of P450SU1 from a tissue-specific promoter can sequester production of the phytotoxic R7402 metabolite to a single plant tissue. In tobacco expressing P450SU1 from a tapetum-specific promoter, treatment of immature flower buds with R7402 caused dramatically lowered pollen viability. Such treatment could be the basis for a chemical hybridizing agent. PMID:12232216

  8. Genome-wide identification of 31 cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and analysis of their benzo[alpha]pyrene-induced expression patterns

    NARCIS (Netherlands)

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Kim, Hee-Jin; Declerck, S.A.J.; Hagiwara, Atsushi; Lee, Jae-Seong

    2017-01-01

    While marine invertebrate cytochrome P450 (CYP) genes and their roles in detoxification mechanisms have been studied, little information is available regarding freshwater rotifer CYPs and their functions. Here, we used genomic sequences and RNA-seq databases to identify 31 CYP genes in the

  9. Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine

    Science.gov (United States)

    Kirkwood, L. C.; Nation, R. L.; Somogyi, A. A.

    1997-01-01

    Aims Using human liver microsomes from donors of the CYP2D6 poor and extensive metabolizer genotypes, the role of individual cytochromes P-450 in the oxidative metabolism of dihydrocodeine was investigated. Methods The kinetics of formation of N- and O-demethylated metabolites, nordihydrocodeine and dihydromorphine, were determined using microsomes from six extensive and one poor metabolizer and the effects of chemical inhibitors selective for individual P-450 enzymes of the 1A, 2A, 2C, 2D, 2E and 3A families and of LKM1 (anti-CYP2D6) antibodies were studied. Results Nordihydrocodeine was the major metabolite in both poor and extensive metabolizers. Kinetic constants for N-demethylation derived from the single enzyme Michaelis-Menten model did not differ between the two groups. Troleandomycin and erythromycin selectively inhibited N-demethylation in both extensive and poor metabolizers. The CYP3A inducer, α-naphthoflavone, increased N-demethylation rates. The kinetics of formation of dihydromorphine in both groups were best described by a single enzyme Michaelis-Menten model although inhibition studies in extensive metabolizers suggested involvement of two enzymes with similar Km values. The kinetic constants for O-demethylation were significantly different in extensive and poor metabolizers. The extensive metabolizers had a mean intrinsic clearance to dihydromorphine more than ten times greater than the poor metabolizer. The CYP2D6 chemical inhibitors, quinidine and quinine, and LKM1 antibodies inhibited O-demethylation in extensive metabolizers; no effect was observed in microsomes from a poor metabolizer. Conclusions CYP2D6 is the major enzyme mediating O-demethylation of dihydrocodeine to dihydromorphine. In contrast, nordihydrocodeine formation is predominantly catalysed by CYP3A. PMID:9431830

  10. Marine copepod cytochrome P450 genes and their applications for molecular ecotoxicological studies in response to oil pollution.

    Science.gov (United States)

    Han, Jeonghoon; Won, Eun-Ji; Kang, Hye-Min; Lee, Min-Chul; Jeong, Chang-Bum; Kim, Hui-Su; Hwang, Dae-Sik; Lee, Jae-Seong

    2017-11-30

    Recently, accidental spills of heavy oil have caused adverse effects in marine organisms. Oil pollution can induce damages on development and reproduction, linking with detrimental effects on diverse molecular levels of genes and proteins in plankton and fish. However, most information was mainly focused on marine vertebrates and consequently, limited information was available in marine invertebrates. Furthermore, there is still a lack of knowledge bridging in vivo endpoints with the functional regulation of cytochrome P450 (CYP) genes in response to oil spill pollution in marine invertebrates. In this paper, adverse effects of oil spill pollution in marine invertebrates are summarized with the importance of CYP genes as a potential biomarker, applying for environmental monitoring to detect oil spill using marine copepods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-03-01

    To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (Pcopepods through the predicted AhR-mediated up-regulation of CYP genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Anti-liver-kidney microsome antibody type 1 recognizes human cytochrome P450 db1.

    Science.gov (United States)

    Gueguen, M; Yamamoto, A M; Bernard, O; Alvarez, F

    1989-03-15

    Anti-liver-kidney microsome antibody type 1 (LKM1), present in the sera of a group of children with autoimmune hepatitis, was recently shown to recognize a 50 kDa protein identified as rat liver cytochromes P450 db1 and db2. High homology between these two members of the rat P450 IID subfamily and human P450 db1 suggested that anti-LKM1 antibody is directed against this human protein. To test this hypothesis, a human liver cDNA expression library in phage lambda GT-11 was screened using rat P450 db1 cDNA as a probe. Two human cDNA clones were found to be identical to human P450 db1 by restriction mapping. Immunoblot analysis using as antigen, the purified fusion protein from one of the human cDNA clones showed that only anti-LKM1 with anti-50 kDa reactivity recognized the fusion protein. This fusion protein was further used to develop an ELISA test that was shown to be specific for sera of children with this disease. These results: 1) identify the human liver antigen recognized by anti-LKM1 auto-antibodies as cytochrome P450 db1, 2) allow to speculate that mutation on the human P450 db1 gene could alter its expression in the hepatocyte and make it auto-antigenic, 3) provide a simple and specific diagnostic test for this disease.

  13. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  14. Regulation of Porcine Hepatic Cytochrome P450 — Implication for Boar Taint

    Directory of Open Access Journals (Sweden)

    Martin Krøyer Rasmussen

    2014-09-01

    Full Text Available Cytochrome P450 (CYP450 is the major family of enzymes involved in the metabolism of several xenobiotic and endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole, one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover, CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint.

  15. Circadian expression of steroidogenic cytochromes P450 in the mouse adrenal gland--involvement of cAMP-responsive element modulator in epigenetic regulation of Cyp17a1.

    Science.gov (United States)

    Košir, Rok; Zmrzljak, Ursula Prosenc; Bele, Tanja; Acimovic, Jure; Perse, Martina; Majdic, Gregor; Prehn, Cornelia; Adamski, Jerzy; Rozman, Damjana

    2012-05-01

    The cytochrome P450 (CYP) genes Cyp51, Cyp11a1, Cyp17a1, Cyb11b1, Cyp11b2 and Cyp21a1 are involved in the adrenal production of corticosteroids, whose circulating levels are circadian. cAMP signaling plays an important role in adrenal steroidogenesis. By using cAMP responsive element modulator (Crem) knockout mice, we show that CREM isoforms contribute to circadian expression of steroidogenic CYPs in the mouse adrenal gland. Most striking was the CREM-dependent hypomethylation of the Cyp17a1 promoter at zeitgeber time 12, which resulted in higher Cyp17a1 mRNA and protein expression in the knockout adrenal glands. The data indicate that products of the Crem gene control the epigenetic repression of Cyp17 in mouse adrenal glands. © 2011 The Authors Journal compilation © 2011 FEBS.

  16. Alteration of cytochrome P450 1 regulation and HSP 70 level in brain of juvenile common carp (Cyprinus carpio) after chronic exposure to tributyltin.

    Science.gov (United States)

    Li, Zhi-Hua; Zhong, Li-Qiao; Wu, Yan-Hua; Mu, Wei-Na

    2016-02-01

    Tributyltin (TBT), a toxic contaminant in aquatic environments, has bio-accumulated in aquatic food webs throughout the world and can be found at toxic levels in some biota. However, the molecular mechanisms and effects of TBT are not fully understood. The aim of the present study was to investigate the effect of long-term exposure of TBT on cytochrome P450 (CYP450) 1 regulation and heat-shock proteins (HSPs) profiling in brain of freshwater teleost. The effects of long-term exposure to TBT on mRNA expression of cytochrome P450 (CYP450) 1 family genes and ethoxyresorufin O-deethylase (EROD) activity in the brain of common carp were evaluated, as well as HSP 70 level. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L) for 15, 30, and 60 days. Based on the results, long-term exposure (more than 15 days) to TBT could lead to obvious physiological-biochemical responses (based on EROD activity, HSP 70 level and CYP450 1 family genes expression). The mRNA expression of CYP450 1 family genes (CYP1A, CYP1B, CYP1C1 and CYP1C2) suggested that CYP1A was to accommodate most EROD activity in fish, but other CYP450 forms also involved in this proceeding. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity and could be used as potential biomarkers for monitoring the TBT pollution in the field.

  17. Genetic polymorphism of human cytochrome P-450 (S)-mephenytoin 4-hydroxylase. Studies with human autoantibodies suggest a functionally altered cytochrome P-450 isozyme as cause of the genetic deficiency

    International Nuclear Information System (INIS)

    Meier, U.T.; Meyer, U.A.

    1987-01-01

    The metabolism of the anticonvulsant mephenytoin is subject to a genetic polymorphism. In 2-5% of Caucasians and 18-23% of Japanese subjects a specific cytochrome P-450 isozyme, P-450 meph, is functionally deficient or missing. The authors have accumulated evidence that autoimmune antibodies observed in sera of patients with tienilic acid induced hepatitis (anti-liver kidney microsome 2 or anti-LKM2 antibodies) specifically recognize the cytochrome P-450 involved in the mephrenytoin hydroxylation polymorphism. This is demonstrated by immunoinhibition and immunoprecipitation of microsomal (S)-mephenytoin 4-hydroxylation activity and by the recognition by anti-LKM2 antibodies of a single [ 125 I]-protein band on immunoblots of human liver microsomes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis or isoelectric focusing. The cytochrome P-450 recognized by anti-LKM2 antibodies was immunopurified from microsomes derived from livers of extensive (EM) or poor metabolizers (PM) of (S)-mephenytoin. Comparison of the EM-type cytochrome P-450 to that isolated from PM livers revealed no difference in regard to immuno-cross-reactivity, molecular weight, isoelectric point, relative content in microsomes, two-dimensional tryptic peptide maps, one-dimensional peptide maps with three proteases, amino acid composition, and amino-terminal protein sequence. Finally, the same protein was precipitated from microsomes prepared from the liver biopsy of a subject phenotyped in vivo as a poor metabolizer of mephenytoin. These data strongly suggest that the mephenytoin hydroxylation deficiency is caused by a minor structural change leading to a functionally altered cytochrome P-450 isozyme

  18. Human cytochrome P450 enzymes of importance for the bioactivation of methyleugenol to the proximate carcinogen 1′-hydroxymethyleugenol

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Bogaards, J.J.P.; Boersma, M.G.; Horst, J.P.F. ter; Awad, H.M.; Fiamegos, Y.C.; Beek, T.A. van; Alink, G.M.; Sudhölter, E.J.R.; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2006-01-01

    In vitro studies were performed to elucidate the human cytochrome P450 enzymes involved in the bioactivation of methyleugenol to its proximate carcinogen 1′-hydroxymethyleugenol. Incubations with Supersomes, expressing individual P450 enzymes to a high level, revealed that P450 1A2, 2A6, 2C9, 2C19,

  19. Guidelines for development and implementation of biocatalytic P450 processes

    DEFF Research Database (Denmark)

    Lundemo, Marie Therese; Woodley, John

    2015-01-01

    in order to apply and implement them in industrial processes, both from a biological and process perspective. Indeed, a combined approach of host selection and cell engineering, integrated with process engineering, is suggested as the most effective route to implementation.......Biocatalytic reactions performed by cytochrome P450 monooxygenases are interesting in pharmaceutical research since they are involved in human drug metabolism. Furthermore, they are potentially interesting as biocatalysts for synthetic chemistry because of the exquisite selectivity of the chemistry...... they undertake. For example, selective hydroxylation can be undertaken on a highly functionalized molecule without the need for functional group protection. Recent progress in the discovery of novel P450s as well as protein engineering of these enzymes strongly encourages further development of their application...

  20. Over-expression of a cytochrome P450 is associated with resistance to pyriproxyfen in the greenhouse whitefly Trialeurodes vaporariorum.

    Directory of Open Access Journals (Sweden)

    Nikos Karatolos

    Full Text Available The juvenile hormone mimic, pyriproxyfen is a suppressor of insect embryogenesis and development, and is effective at controlling pests such as the greenhouse whitefly Trialeurodes vaporariorum (Westwood which are resistant to other chemical classes of insecticides. Although there are reports of insects evolving resistance to pyriproxyfen, the underlying resistance mechanism(s are poorly understood.Bioassays against eggs of a German (TV8 population of T. vaporariorum revealed a moderate level (21-fold of resistance to pyriproxyfen. This is the first time that pyriproxyfen resistance has been confirmed in this species. Sequential selection of TV8 rapidly generated a strain (TV8pyrsel displaying a much higher resistance ratio (>4000-fold. The enzyme inhibitor piperonyl butoxide (PBO suppressed this increased resistance, indicating that it was primarily mediated via metabolic detoxification. Microarray analysis identified a number of significantly over-expressed genes in TV8pyrsel as candidates for a role in resistance including cytochrome-P450 dependent monooxygenases (P450s. Quantitative PCR highlighted a single P450 gene (CYP4G61 that was highly over-expressed (81.7-fold in TV8pyrsel.Over-expression of a single cytochrome P450 gene (CYP4G61 has emerged as a strong candidate for causing the enhanced resistance phenotype. Further work is needed to confirm the role of the encoded P450 enzyme CYP4G61 in detoxifying pyriproxyfen.

  1. Prediction of cytochrome P450 mediated metabolism

    DEFF Research Database (Denmark)

    Olsen, Lars; Oostenbrink, Chris; Jørgensen, Flemming Steen

    2015-01-01

    Cytochrome P450 enzymes (CYPs) form one of the most important enzyme families involved in the metabolism of xenobiotics. CYPs comprise many isoforms, which catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be formed. However, it is often hard...... to rationalize what metabolites these enzymes generate. In recent years, many different in silico approaches have been developed to predict binding or regioselective product formation for the different CYP isoforms. These comprise ligand-based methods that are trained on experimental CYP data and structure...

  2. Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chuanwu; Panda, Satya P.; Marohnic, Christopher C.; Martásek, Pavel; Masters, Bettie Sue; Kim, Jung-Ja P. (MCW); (Charles U); (UTSMC)

    2012-03-15

    NADPH-cytochrome P450 oxidoreductase (CYPOR) is essential for electron donation to microsomal cytochrome P450-mediated monooxygenation in such diverse physiological processes as drug metabolism (approximately 85-90% of therapeutic drugs), steroid biosynthesis, and bioactive metabolite production (vitamin D and retinoic acid metabolites). Expressed by a single gene, CYPOR's role with these multiple redox partners renders it a model for understanding protein-protein interactions at the structural level. Polymorphisms in human CYPOR have been shown to lead to defects in bone development and steroidogenesis, resulting in sexual dimorphisms, the severity of which differs significantly depending on the degree of CYPOR impairment. The atomic structure of human CYPOR is presented, with structures of two naturally occurring missense mutations, V492E and R457H. The overall structures of these CYPOR variants are similar to wild type. However, in both variants, local disruption of H bonding and salt bridging, involving the FAD pyrophosphate moiety, leads to weaker FAD binding, unstable protein, and loss of catalytic activity, which can be rescued by cofactor addition. The modes of polypeptide unfolding in these two variants differ significantly, as revealed by limited trypsin digestion: V492E is less stable but unfolds locally and gradually, whereas R457H is more stable but unfolds globally. FAD addition to either variant prevents trypsin digestion, supporting the role of the cofactor in conferring stability to CYPOR structure. Thus, CYPOR dysfunction in patients harboring these particular mutations may possibly be prevented by riboflavin therapy in utero, if predicted prenatally, or rescued postnatally in less severe cases.

  3. Cytochrome P450 1D1: A novel CYP1A-related gene that is not transcriptionally activated by PCB126 or TCDD

    DEFF Research Database (Denmark)

    Goldstone, J.V.; Jönsson, M.E.; Behrendt, Lars

    2009-01-01

    Enzymes in the cytochrome P450 1 family oxidize many common environmental toxicants. We identified a new CYP1, termed CYP1D1, in zebrafish. Phylogenetically, CYP1D1 is paralogous to CYP1A and the two share 45% amino acid identity and similar gene structure. In adult zebrafish, CYP1D1 is most high...

  4. Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae.

    Science.gov (United States)

    Gavira, Carole; Höfer, René; Lesot, Agnès; Lambert, Fanny; Zucca, Joseph; Werck-Reichhart, Danièle

    2013-07-01

    Natural nootkatone is a high value ingredient for the flavor and fragrance industry because of its grapefruit flavor/odor, low sensorial threshold and low availability. Valencene conversion into nootkatol and nootkatone is known to be catalyzed by cytochrome P450 enzymes from both prokaryotic and eukaryotic organisms, but so far development of a viable bioconversion process using either native microorganisms or recombinant enzymes was not successful. Using an in silico gene-mining approach, we selected 4 potential candidate P450 enzymes from higher plants and identified two of them that selectively converted (+)-valencene into β-nootkatol with high efficiency when tested using recombinant yeast microsomes in vitro. Recombinant yeast expressing CYP71D51v2 from tobacco and a P450 reductase from arabidopsis was used for optimization of a bioconversion process. Bioconversion assays led to production of β-nootkatol and nootkatone, but with low yields that decreased upon increase of the substrate concentration. The reasons for this low bioconversion efficiency were further investigated and several factors potentially hampering industry-compatible valencene bioconversion were identified. One is the toxicity of the products for yeast at concentrations exceeding 100 mg L⁻¹. The second is the accumulation of β-nootkatol in yeast endomembranes. The third is the inhibition of the CYP71D51v2 hydroxylation reaction by the products. Furthermore, we observed that the formation of nootkatone from β-nootkatol is not P450-dependent but catalyzed by a yeast component. Based on these data, we propose new strategies for implementation of a viable P450-based bioconversion process. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. P450 reductase and cytochrome b5 interactions with cytochrome P450: Effects on house fly CYP6A1 catalysis

    OpenAIRE

    Murataliev, Marat B.; Guzov, Victor M.; Walker, F. Ann; Feyereisen, René

    2008-01-01

    The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylatio...

  6. Evaluation of cytochrome P-450 concentration in Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Míriam Cristina Sakuragui Matuo

    2010-09-01

    Full Text Available Saccharomyces cerevisiae has been widely used in mutagenicity tests due to the presence of a cytochrome P-450 system, capable of metabolizing promutagens to active mutagens. There are a large number of S. cerevisiae strains with varying abilities to produce cytochrome P-450. However, strain selection and ideal cultivation conditions are not well defined. We compared cytochrome P-450 levels in four different S. cerevisiae strains and evaluated the cultivation conditions necessary to obtain the highest levels. The amount of cytochrome P-450 produced by each strain varied, as did the incubation time needed to reach the maximum level. The highest cytochrome P-450 concentrations were found in media containing fermentable sugars. The NCYC 240 strain produced the highest level of cytochrome P-450 when grown in the presence of 20 % (w/v glucose. The addition of ethanol to the media also increased cytochrome P-450 synthesis in this strain. These results indicate cultivation conditions must be specific and well-established for the strain selected in order to assure high cytochrome P-450 levels and reliable mutagenicity results.Linhagens de Saccharomyces cerevisiae tem sido amplamente empregadas em testes de mutagenicidade devido à presença de um sistema citocromo P-450 capaz de metabolizar substâncias pró-mutagênicas à sua forma ativa. Devido à grande variedade de linhagens de S. cerevisiae com diferentes capacidades de produção de citocromo P-450, torna-se necessária a seleção de cepas, bem como a definição das condições ideais de cultivo. Neste trabalho, foram comparados os níveis de citocromo P-450 em quatro diferentes linhagens de S. cerevisiae e avaliadas as condições de cultivo necessárias para obtenção de altas concentrações deste sistema enzimático. O maior nível enzimático foi encontrado na linhagem NCYC 240 em presença de 20 % de glicose (p/v. A adição de etanol ao meio de cultura também produziu um aumento na s

  7. The SMARTCyp cytochrome P450 metabolism prediction server

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Gloriam, David Erik Immanuel; Olsen, Lars

    2010-01-01

    The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism.......The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism....

  8. DrugMetZ DB: an anthology of human drug metabolizing Chytochrome P450 enzymes.

    Science.gov (United States)

    Antony, Tresa Remya Thomas; Nagarajan, Shanthi

    2006-11-14

    Understandings the basics of Cytochrome P450 (P450 or CYP) will help to discern drug metabolism. CYP, a super-family of heme-thiolate proteins, are found in almost all living organisms and is involved in the biotransformation of a diverse range of xenobiotics, therapeutic drugs and toxins. Here, we describe DrugMetZ DB, a database for CYP metabolizing drugs. The DB is implemented in MySQL, PHP and HTML. www.bicpu.edu.in/DrugMetZDB/

  9. De-bugging and maximizing plant cytochrome P450 production in Escherichia coli with C-terminal GFP fusions

    DEFF Research Database (Denmark)

    Christensen, Ulla; Vazquez Albacete, Dario; Søgaard, Karina Marie

    2017-01-01

    Cytochromes P450 (CYP) are attractive enzyme targets in biotechnology as they catalyze stereospecific C-hydroxylations of complex core skeletons at positions that typically are difficult to access by chemical synthesis. Membrane bound CYPs are involved in nearly all plant pathways leading......-type E. coli strains using standard growth media. Furthermore, sequences encoding a small synthetic peptide and a small bacterial membrane anchor markedly enhance the expression of all six genes. For one of the CYPs, the length of the linker region between the predicted N-terminal transmembrane segment...

  10. Inhibitors of steroidal cytochrome p450 enzymes as targets for drug development.

    Science.gov (United States)

    Baston, Eckhard; Leroux, Frédéric R

    2007-01-01

    Cytochrome P450's are enzymes which catalyze a large number of biological reactions, for example hydroxylation, N-, O-, S- dealkylation, epoxidation or desamination. Their substrates include fatty acids, steroids or prostaglandins. In addition, a high number of various xenobiotics are metabolized by these enzymes. The enzyme 17alpha-hydroxylase-C17,20-lyase (P450(17), CYP 17, androgen synthase), a cytochrome P450 monooxygenase, is the key enzyme for androgen biosynthesis. It catalyzes the last step of the androgen biosynthesis in the testes and adrenal glands and produces androstenedione and dehydroepiandrosterone from progesterone and pregnenolone. The microsomal enzyme aromatase (CYP19) transforms these androgens to estrone and estradiol. Estrogens stimulate tumor growth in hormone dependent breast cancer. In addition, about 80 percent of prostate cancers are androgen dependent. Selective inhibitors of these enzymes are thus important alternatives to treatment options like antiandrogens or antiestrogens. The present article deals with recent patents (focus on publications from 2000 - 2006) concerning P450 inhibitor design where steroidal substrates are involved. In this context a special focus is provided for CYP17 and CYP19. Mechanisms of action will also be discussed. Inhibitors of CYP11B2 (aldosterone synthase) will also be dealt with.

  11. Ligand Access Channels in Cytochrome P450 Enzymes: A Review

    Directory of Open Access Journals (Sweden)

    Philippe Urban

    2018-05-01

    Full Text Available Quantitative structure-activity relationships may bring invaluable information on structural elements of both enzymes and substrates that, together, govern substrate specificity. Buried active sites in cytochrome P450 enzymes are connected to the solvent by a network of channels exiting at the distal surface of the protein. This review presents different in silico tools that were developed to uncover such channels in P450 crystal structures. It also lists some of the experimental evidence that actually suggest that these predicted channels might indeed play a critical role in modulating P450 functions. Amino acid residues at the entrance of the channels may participate to a first global ligand recognition of ligands by P450 enzymes before they reach the buried active site. Moreover, different P450 enzymes show different networks of predicted channels. The plasticity of P450 structures is also important to take into account when looking at how channels might play their role.

  12. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-07-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy.

  13. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    International Nuclear Information System (INIS)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2007-01-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy

  14. One-electron reduction of mitomycin c by rat liver : role of cytochrome P-450 and NADPH-cytochrome P-450 reductase

    NARCIS (Netherlands)

    Vromans, R M; Van de Straat, R; Groeneveld, M.; Vermeulen, N P

    1. The role of cytochrome P-450 in the one-electron reduction of mitomycin c was studied in rat hepatic microsomal systems and in reconstituted systems of purified cytochrome P-450. Formation of H2O2 from redox cycling of the reduced mitomycin c in the presence of O2 and the alkylation of

  15. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A. [Departments of Biochemistry and Chemistry, University of Illinois, 505 South Goodwin Avenue (United States); Sligar, Stephen G., E-mail: s-sligar@illinois.edu [Departments of Biochemistry and Chemistry, University of Illinois, 505 South Goodwin Avenue (United States)

    2013-01-25

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4

  16. A cytochrome P450 monooxygenase commonly used for negative selection in transgenic plants causes growth anomalies by disrupting brassinosteroid signaling

    Directory of Open Access Journals (Sweden)

    Manivasagam Sindhu

    2011-04-01

    Full Text Available Abstract Background Cytochrome P450 monooxygenases form a large superfamily of enzymes that catalyze diverse reactions. The P450SU1 gene from the soil bacteria Streptomyces griseolus encodes CYP105A1 which acts on various substrates including sulfonylurea herbicides, vitamin D, coumarins, and based on the work presented here, brassinosteroids. P450SU1 is used as a negative-selection marker in plants because CYP105A1 converts the relatively benign sulfonyl urea pro-herbicide R7402 into a highly phytotoxic product. Consistent with its use for negative selection, transgenic Arabidopsis plants were generated with P450SU1 situated between recognition sequences for FLP recombinase from yeast to select for recombinase-mediated excision. However, unexpected and prominent developmental aberrations resembling those described for mutants defective in brassinosteroid signaling were observed in many of the lines. Results The phenotypes of the most affected lines included severe stunting, leaf curling, darkened leaves characteristic of anthocyanin accumulation, delayed transition to flowering, low pollen and seed yields, and delayed senescence. Phenotype severity correlated with P450SU1 transcript abundance, but not with transcript abundance of other experimental genes, strongly implicating CYP105A1 as responsible for the defects. Germination and seedling growth of transgenic and control lines in the presence and absence of 24-epibrassinolide indicated that CYP105A1 disrupts brassinosteroid signaling, most likely by inactivating brassinosteroids. Conclusions Despite prior use of this gene as a genetic tool, deleterious growth in the absence of R7402 has not been elaborated. We show that this gene can cause aberrant growth by disrupting brassinosteroid signaling and affecting homeostasis.

  17. Chronic ethanol exposure downregulates hepatic expression of pregnane X receptor and P450 3A11 in female ICR mice

    International Nuclear Information System (INIS)

    Wang Jianping; Xu Dexiang; Sun Meifang; Chen Yuanhua; Wang Hua; Wei Wei

    2005-01-01

    Pregnane X receptor (PXR) is a nuclear receptor that regulates cytochrome P450 3A (CYP3A) gene transcription in a ligand-dependent manner. Ethanol has been reported to be either an inducer or an inhibitor of CYP3A expression. In this study, we investigated the effects of chronic ethanol exposure on PXR and P450 3A11 gene expression in mouse liver. Female ICR mice were administered by gavage with different doses (1000, 2000 and 4000 mg/kg) of ethanol for up to 5 weeks. Hepatic PXR and P450 3A11 mRNA levels were measured using RT-PCR. Erythromycin N-demethylase (ERND) activity was used as an indicator of CYP3A protein expression. Results showed that chronic ethanol exposure markedly decreased hepatic PXR and P450 3A11 mRNA levels. Consistent with downregulation of P450 3A11 mRNA, chronic ethanol exposure significantly decreased ERND activity in a dose-dependent manner. Additional experiment showed that chronic ethanol exposure significantly increased plasma endotoxin level and hepatic CD14 and TLR-4 mRNA expression, all of which were blocked by elimination of Gram-negative bacteria and endotoxin with antibiotics. Correspondingly, pretreatment with antibiotics reversed the downregulation of PXR and P450 3A11 mRNA expression and ERND activity in mouse liver. Furthermore, the downregulation of hepatic PXR and P450 3A11 mRNA expression was significantly attenuated in mice pretreated with GdCl 3 , a selective Kupffer cell toxicant. GdCl 3 pretreatment also significantly attenuated chronically ethanol-induced decrease in ERND activity. These results indicated that activation of Kupffer cells by gut-derived endotoxin contributes to downregulation of hepatic PXR and P450 3A11 expression during chronic alcohol intoxication

  18. Effect of p-amino-diphenyl ethers on hepatic microsomal cytochrome P450.

    Science.gov (United States)

    Jiang, Huidi; Xuan, Guida

    2003-09-01

    The present paper aims to investigate whether p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450. Mice were given daily intraperitoneal (ip) injections of p-amino-2',4'-dichlorodiphenyl ether (0.25 mmol/kg) or p-amino-4'-methyldiphenyl ether (0.25 mmol/kg) for 4 days and tested at 24 h and 48 h after the last dose injection. The results showed the mice pentobarbital sleeping time was shorter and the P450 content of hepatic microsome increased significantly in the group pretreated with p-amino-4'-methyldiphenyl ether when compared with the control group, while in mice pretreated with p-amino-2',4'-dichlorodiphenyl ether the hepatic microsome P450 content increased but the pentobarbital sleeping time was extended in clear contrast to the control group. The sleeping time of the phenobarbital group (80 mg/kg daily ip injection for 4 days) was shortened at 24 h after the last injection with increased P450 content of hepatic microsome, but it showed no difference at 48 h. The zoxazolamine-paralysis times of mice treated with p-amino-2',4'-dichlorodiphenyl ether were longer than those of the control mice, while the same dose of zoxazolamine did not lead to paralysis in mice pretreated with BNF. p-Amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether inhibited the activity of 7-ethoxyresorufin O-deethylase from rat hepatic microsome induced by BNF in vitro by 70.0% and 50.1% respectively. These results suggest that p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450.

  19. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    Science.gov (United States)

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Cytochrome P450 genes from the aquatic midge Chironomus tentans: Atrazine-induced up-regulation of CtCYP6EX3 contributing to oxidative activation of chlorpyrifos

    Science.gov (United States)

    The open reading frames of 19 cytochrome P450 monooxygenase (CYP) genes were sequenced from Chironomus tentans, a commonly used freshwater invertebrate model. Functional analysis of CtCYP6EX3 confirmed its atrazine-induced oxidative activation for chlorpyrifos by using a nanoparticle-based RNA inter...

  1. Conformational changes of the NADPH-dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450

    DEFF Research Database (Denmark)

    Laursen, Tomas; Jensen, Kenneth; Møller, Birger Lindberg

    2011-01-01

    The NADPH-dependent cytochrome P450 reductase (CPR) is a key electron donor to eucaryotic cytochromes P450 (CYPs). CPR shuttles electrons from NADPH through the FAD and FMN-coenzymes into the iron of the prosthetic heme-group of the CYP. In the course of these electron transfer reactions, CPR und...... to serve as an effective electron transferring "nano-machine"....

  2. Expression of cytochrome P450 genes in CD34(+) hematopoietic stem and progenitor cells

    Czech Academy of Sciences Publication Activity Database

    Souček, P.; Anzenbacher, P.; Skoumalová, I.; Dvořák, Michal

    2005-01-01

    Roč. 23, č. 9 (2005), s. 1417-1422 ISSN 1066-5099 Institutional research plan: CEZ:AV0Z50520514 Keywords : CD34+ stem/progenitor cells * cytochrome P450 isoforms Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.094, year: 2005

  3. N-Heterocyclic Carbene Capture by Cytochrome P450 3A4

    Science.gov (United States)

    Jennings, Gareth K.; Ritchie, Caroline M.; Shock, Lisa S.; Lyons, Charles E.

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the dominant P450 enzyme involved in human drug metabolism, and its inhibition may result in adverse interactions or, conversely, favorably reduce the systemic elimination rates of poorly bioavailable drugs. Herein we describe a spectroscopic investigation of the interaction of CYP3A4 with N-methylritonavir, an analog of ritonavir, widely used as a pharmacoenhancer. In contrast to ritonavir, the binding affinity of N-methylritonavir for CYP3A4 is pH-dependent. At pH UV-visible spectroscopy binding studies with molecular fragments narrows the source of this pH dependence to its N-methylthiazolium fragment. The C2 proton of this group is acidic, and variable-pH resonance Raman spectroscopy tentatively assigns it a pKa of 7.4. Hence, this fragment of N-methylritonavir is expected to be readily deprotonated under physiologic conditions to yield a thiazol-2-ylidene, which is an N-heterocyclic carbene that has high-affinity for and is presumed to be subsequently captured by the heme iron. This mechanism is supported by time-dependent density functional theory with an active site model that accurately reproduces distinguishing features of the experimental UV-visible spectra of N-methylritonavir bound to CYP3A4. Finally, density functional theory calculations support that this novel interaction is as strong as the tightest-binding azaheterocycles found in P450 inhibitors and could offer new avenues for inhibitor development. PMID:27126611

  4. Identification of bottlenecks for P450 biotransformation processes

    DEFF Research Database (Denmark)

    Andersson, Marie Therese; Törnvall, Ulrika; Tufvesson, Pär

    Cytochrome P450 monooxygenases (P450 or CYP) is a group of heme-containing enzymes hydroxylating non-activated hydrocarbons in a stereospecific manner, something that is hard to achieve via classical chemistry. The importance of these reactions can be stressed by the hydroxylation of steroids, bu...... biotransformation process identifying the limiting parameters and defining relevant targets....

  5. Development of gold-immobilized P450 platform for exploring the effect of oligomer formation on P450-mediated metabolism for in vitro to in vivo drug metabolism predictions

    Science.gov (United States)

    Kabulski, Jarod L.

    The cytochrome P450 (P450) enzyme family is responsible for the biotransformation of a wide range of endogenous and xenobiotic compounds, as well as being the major metabolic enzyme in first pass drug metabolism. In vivo drug metabolism for P450 enzymes is predicted using in vitro data obtained from a reconstituted expressed P450 system, but these systems have not always been proven to accurately represent in vivo enzyme kinetics, due to interactions caused by oligomer formation. These in vitro systems use soluble P450 enzymes prone to oligomer formation and studies have shown that increased states of protein aggregation directly affect the P450 enzyme kinetics. We have developed an immobilized enzyme system that isolates the enzyme and can be used to elucidate the effect of P450 aggregation on metabolism kinetics. The long term goal of my research is to develop a tool that will help improve the assessment of pharmaceuticals by better predicting in vivo kinetics in an in vitro system. The central hypothesis of this research is that P450-mediated kinetics measured in vitro is dependent on oligomer formation and that the accurate prediction of in vivo P450-mediated kinetics requires elucidation of the effect of oligomer formation. The rationale is that the development of a P450 bound to a Au platform can be used to control the aggregation of enzymes and bonding to Au may also permit replacement of the natural redox partners with an electrode capable of supplying a constant flow of electrons. This dissertation explains the details of the enzyme attachment, monitoring substrate binding, and metabolism using physiological and electrochemical methods, determination of enzyme kinetics, and the development of an immobilized-P450 enzyme bioreactor. This work provides alternative approaches to studying P450-mediated kinetics, a platform for controlling enzyme aggregation, electrochemically-driven P450 metabolism, and for investigating the effect of protein

  6. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.

    Science.gov (United States)

    Jones, Robert T; Bakker, Saskia E; Stone, Deborah; Shuttleworth, Sally N; Boundy, Sam; McCart, Caroline; Daborn, Phillip J; ffrench-Constant, Richard H; van den Elsen, Jean M H

    2010-10-01

    Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.

  7. Fast prediction of cytochrome P450 mediated drug metabolism

    DEFF Research Database (Denmark)

    Rydberg, Patrik Åke Anders; Poongavanam, Vasanthanathan; Oostenbrink, Chris

    2009-01-01

    Cytochrome P450 mediated metabolism of drugs is one of the major determinants of their kinetic profile, and prediction of this metabolism is therefore highly relevant during the drug discovery and development process. A new rule-based method, based on results from density functional theory...... calculations, for predicting activation energies for aliphatic and aromatic oxidations by cytochromes P450 is developed and compared with several other methods. Although the applicability of the method is currently limited to a subset of P450 reactions, these reactions describe more than 90...

  8. Molecular and functional characterization of CYP6BQ23, a cytochrome P450 conferring resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus.

    Science.gov (United States)

    Zimmer, Christoph T; Bass, Chris; Williamson, Martin S; Kaussmann, Martin; Wölfel, Katharina; Gutbrod, Oliver; Nauen, Ralf

    2014-02-01

    The pollen beetle (Meligethes aeneus F.) is widespread throughout much of Europe where it is a major coleopteran pest of oilseed rape (Brassica napus). The reliance on synthetic insecticides for control, particularly the pyrethroid class, has led to the development of populations with high levels of resistance. Resistance to pyrethroids is now widespread throughout Europe and is thought to be mediated by enhanced detoxification by cytochrome P450ś and/or mutation of the pyrethroid target-site, the voltage-gated sodium channel. However, in the case of cytochrome P450 mediated detoxification, the specific enzyme(s) involved has (have) not yet been identified. In this study a degenerate PCR approach was used to identify ten partial P450 gene sequences from pollen beetle. Quantitative PCR was then used to examine the level of expression of these genes in a range of pollen beetle populations that showed differing levels of resistance to pyrethroids in bioassays. The study revealed a single P450 gene, CYP6BQ23, which is significantly and highly overexpressed (up to ∼900-fold) in adults and larvae of pyrethroid resistant strains compared to susceptible strains. CYP6BQ23 overexpression is significantly correlated with both the level of resistance and with the rate of deltamethrin metabolism in microsomal preparations of these populations. Functional recombinant expression of full length CYP6BQ23 along with cytochrome P450 reductase in an insect (Sf9) cell line showed that it is able to efficiently metabolise deltamethrin to 4-hydroxy deltamethrin. Furthermore we demonstrated by detection of 4-hydroxy tau-fluvalinate using ESI-TOF MS/MS that functionally expressed CYP6BQ23 also metabolizes tau-fluvalinate. A protein model was generated and subsequent docking simulations revealed the predicted substrate-binding mode of both deltamethrin and tau-fluvalinate to CYP6BQ23. Taken together these results strongly suggest that the overexpression of CYP6BQ23 is the primary

  9. Cytochrome P450IID6 recognized by LKM1 antibody is not exposed on the surface of hepatocytes.

    Science.gov (United States)

    Yamamoto, A M; Mura, C; De Lemos-Chiarandini, C; Krishnamoorthy, R; Alvarez, F

    1993-06-01

    LKM1 autoantibody, directed against P450IID6, is accepted as a marker of a particular type of autoimmune hepatitis, but its role in the pathogenesis of the disease is controversial. Localization of P450IID6 on the cell surface of rat hepatocytes was previously reported, suggesting that membrane-bound P450IID6 could be the target of LKM1 antibodies, thus allowing immune lysis of hepatocytes. The objective of the present study was to determine, using various methods, the cell localization of P450IID6 in human and rat hepatocytes. Incubation of rat and human hepatocytes with LKM1-positive serum showed slight, if any, cell membrane staining using immunofluorescence, immunoperoxidase and immunoelectron microscopic studies. No staining of the plasma membrane of human hepatocytes was observed when incubations were carried out with immunoaffinity-purified antibody directed against peptide 254-271, the main epitope of P450IID6 recognized by all LKM1 sera tested. Chinese hamster ovary cells, transfected with the complete P450IID6 cDNA and incubated with the supernatant from a B cell lymphoblastoid cell line prepared with the lymphocytes of a LKM1-positive patient, did not show any staining of the cell surface by immunofluorescence. Incubation of rat microsomal fraction vesicles with LKM1-positive serum, followed by protein A-gold immunoelectron microscopy, displayed a staining of almost all vesicles, confirming that P450IID6 is present on the cytoplasmic side of the microsomal membrane, which makes it unable to be expressed on the cell surface even if it were transported from the endoplasmic reticulum (ER). Sulpho NHS Biotin labelling of rat hepatocyte cell membranes did not show the presence of a 50-kD molecule that could have reacted with LKM1 antibody. DNA sequencing of exon 1 of the CYP2D6 gene of a patient positive for LKM1 antibody did not show any difference from that of the normal published sequence of the gene. This does not favour an alteration of the NH2 terminal

  10. Epidermal CYP2 family cytochromes P450

    International Nuclear Information System (INIS)

    Du Liping; Hoffman, Susan M.G.; Keeney, Diane S.

    2004-01-01

    Skin is the largest and most accessible drug-metabolizing organ. In mammals, it is the competent barrier that protects against exposure to harmful stimuli in the environment and in the systemic circulation. Skin expresses many cytochromes P450 that have critical roles in exogenous and endogenous substrate metabolism. Here, we review evidence for epidermal expression of genes from the large CYP2 gene family, many of which are expressed preferentially in extrahepatic tissues or specifically in epithelia at the environmental interface. At least 13 CYP2 genes (CYP2A6, 2A7, 2B6, 2C9, 2C18, 2C19, 2D6, 2E1, 2J2, 2R1, 2S1, 2U1, and 2W1) are expressed in skin from at least some human individuals, and the majority of these genes are expressed in epidermis or cultured keratinocytes. Where epidermal expression has been localized in situ by hybridization or immunocytochemistry, CYP2 transcripts and proteins are most often expressed in differentiated keratinocytes comprising the outer (suprabasal) cell layers of the epidermis and skin appendages. The tissue-specific transcriptional regulation of CYP2 genes in the epidermis, and in other epithelia that interface with the environment, suggests important roles for at least some CYP2 gene products in the production and disposition of molecules affecting competency of the epidermal barrier

  11. Metabolism of agrochemicals and related environmental chemicals based on cytochrome P450s in mammals and plants.

    Science.gov (United States)

    Ohkawa, Hideo; Inui, Hideyuki

    2015-06-01

    A yeast gene expression system originally established for mammalian cytochrome P450 monooxygenase cDNAs was applied to functional analysis of a number of mammalian and plant P450 species, including 11 human P450 species (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1 and CYP3A4). The human P450 species CYP1A1, CYP1A2, CYP2B6, CYP2C18 and CYP2C19 were identified as P450 species metabolising various agrochemicals and environmental chemicals. CYP2C9 and CYP2E1 specifically metabolised sulfonylurea herbicides and halogenated hydrocarbons respectively. Plant P450 species metabolising phenylurea and sulfonylurea herbicides were also identified mainly as the CYP71 family, although CYP76B1, CYP81B1 and CYP81B2 metabolised phenylurea herbicides. The transgenic plants expressing these mammalian and plant P450 species were applied to herbicide tolerance as well as phytoremediation of agrochemical and environmental chemical residues. The combined use of CYP1A1, CYP2B6 and CYP2C19 belonging to two families and three subfamilies covered a wide variety of herbicide tolerance and phytoremediation of these residues. The use of 2,4-D-and bromoxynil-induced CYP71AH11 in tobacco seemed to enhance herbicide tolerance and selectivity. © 2014 Society of Chemical Industry.

  12. CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata.

    Science.gov (United States)

    Luck, Katrin; Jia, Qidong; Huber, Meret; Handrick, Vinzenz; Wong, Gane Ka-Shu; Nelson, David R; Chen, Feng; Gershenzon, Jonathan; Köllner, Tobias G

    2017-09-01

    Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert L-tyrosine, L-tryptophan, and L-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that L-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from L-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.

  13. Cytochrome P450 polymorphism and postoperative cognitive dysfunction

    DEFF Research Database (Denmark)

    Steinmetz, J; Jespersgaard, Cathrine; Dalhoff, Kim Peder

    2012-01-01

    neuropsychological testing at one week had POCD, and 24 out of 307 (7.8%) had POCD at three months. None of the examined CYP2C19, 2D6 alleles, or various phenotypes were significantly associated with POCD. CONCLUSION: Polymorphisms in CYP2C19, or 2D6 genes do not seem to be related to the occurrence of cognitive......BACKGROUND:The etiology of postoperative cognitive dysfunction (POCD) remains unclear but toxicity of anesthetic drugs and their metabolites could be important. We aimed to assess the possible association between POCD after propofol anesthesia and various phenotypes owing to polymorphisms...... in cytochrome P450 encoding genes. METHODS:We included patients who underwent non-cardiac surgery under total intravenous anesthesia with propofol. POCD was identified using a neuropsychological test-battery administered preoperatively, one week, and three months after surgery. Genotyping of CYP2C19*2, *3, CYP2...

  14. Manipulation of P450 gene expression in tumours; a novel approach for targeted activation of bioreductive prodrugs

    International Nuclear Information System (INIS)

    Robson, T.; Yakkundi, A.; McCarthy, H.; McErlane, V.; Hughes, C.M.; Hirst, D.G.; McKeown, S.R.; Patterson, L.H.

    2003-01-01

    We are developing a gene-directed enzyme prodrug therapy (GDEPT) strategy to enhance the metabolism of a novel bioreductive drug, AQ4N. Bioreductive drugs are metabolically activated in the hypoxic cell environment allowing effective targeting of hypoxic radioresistant tumour regions. We aim to achieve additional layers of selectivity by using an X-ray inducible promoter linked to our therapeutic gene (cytochrome P450s). This strategy would enhance metabolism of the drug only within the radiation field. Furthermore, normal tissue would be unaffected as the bioreductive drug is only activated in hypoxic conditions. We have identified several human cytochrome P450s which are important for AQ4N prodrug activation, these include CYP3A4, 1A1 and 2B6. RIF1 murine tumour cells transfected with cDNA from any one of these CYPs displayed increased DNA damage and clonogenic cell kill following treatment with AQ4N under hypoxia compared to controls. We are presently testing the ability of these transfectants to enhance anti-tumour effectiveness of AQ4N in combination with radiation in vivo. We have shown that a single CYP3A4 injection using a simple non-optimized approach can increase metabolism of AQ4N and when used in combination with radiation 3 out of 4 tumours are locally controlled for > 60 days (McCarthy et al., 2002). This result is remarkable considering the large enhancement of the radiation effect achieved by adding AQ4N alone. This implies that the bioreduction of AQ4N by CYPs in this tumour system is sub-optimal and this strategy could therefore be very promising for clinical use where CYP levels are known to be variable. We are now exploring the CYP/AQ4N GDEPT strategy in combination with cyclophosphamide, which is also metabolised by CYPs and aim to link these CYPs to the radiation and hypoxia inducible WAF1 promoter for selective activation in vivo

  15. El sistema citocromo P450 y el metabolismo de xenobióticos

    Directory of Open Access Journals (Sweden)

    Julio César Rodríguez González

    Full Text Available Los organismos están constantemente expuestos a una gran variedad de xenobióticos. Las enzimas citocromo P450 participan en la fase I del metabolismo de xenobióticos, incluyendo los fármacos, y en funciones biosintéticas endógenas por reacciones de oxidación, reducción e hidrólisis. En el hombre se estima que pueden metabolizar hasta dos tercios de las drogas y la mayor parte de estas reacciones ocurre en el hígado. Estas enzimas se encuentran en todos los reinos biológicos. Actualmente se conocen más de 18 000 genes citocromo P450 organizados en familias y subfamilias según el porcentaje de identidad de secuencia de sus aminoácidos, y este número aumenta cada año con el hallazgo de nuevas secuencias del genoma. Ellas son una superfamilia de hemoproteínas monooxidasas del sistema oxidasa de función mixta localizadas en las membranas del retículo endoplasmático liso y mitocondrial interna. La diversidad de reacciones que cataliza y su amplia especificidad de sustrato lo destacan como uno de los catalizadores más diversos y versátiles conocidos y juega un papel crítico en la bioquímica, farmacología y toxicología. Se realizó una búsqueda por palabras clave en las bases de datos Pubmed y Medscape en los últimos diez años. También se consultaron sitios de Internet relacionados con investigaciones del citocromo P450 como bases de datos. Esta revisión es una actualización sobre aspectos generales del citocromo P450 y comprende una breve historia de la investigación del citocromo P450, su sistema de nomenclatura estándar; y describe su multiplicidad, la distribución a nivel de órgano y localización subcelular, estructura y función.

  16. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    Science.gov (United States)

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  17. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Alexandra Coelho

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine, an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents. A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  18. Nine co-localized cytochrome P450 genes of the CYP2N, CYP2AD, and CYP2P gene families in the mangrove killifish Kryptolebias marmoratus genome: Identification and expression in response to B[α]P, BPA, OP, and NP.

    Science.gov (United States)

    Puthumana, Jayesh; Kim, Bo-Mi; Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Jung, Jee-Hyun; Kim, Il-Chan; Hwang, Un-Ki; Lee, Jae-Seong

    2017-06-01

    The CYP2 genes are the largest and most diverse cytochrome P450 (CYP) subfamily in vertebrates. We have identified nine co-localized CYP2 genes (∼55kb) in a new cluster in the genome of the highly resilient ecotoxicological fish model Kryptolebias marmoratus. Molecular characterization, temporal and tissue-specific expression pattern, and response to xenobiotics of these genes were examined. The CYP2 gene clusters were characterized and designated CYP2N22-23, CYP2AD12, and CYP2P16-20. Gene synteny analysis confirmed that the cluster in K. marmoratus is similar to that found in other teleost fishes, including zebrafish. A gene duplication event with diverged catalytic function was observed in CYP2AD12. Moreover, a high level of divergence in expression was observed among the co-localized genes. Phylogeny of the cluster suggested an orthologous relationship with similar genes in zebrafish and Japanese medaka. Gene expression analysis showed that CYP2P19 and CYP2N20 were consecutively expressed throughout embryonic development, whereas CYP2P18 was expressed in all adult tissues, suggesting that members of each CYP2 gene family have different physiological roles even though they are located in the same cluster. Among endocrine-disrupting chemicals (EDCs), benzo[α]pyrene (B[α]P) induced expression of CYP2N23, bisphenol A (BPA) induced CYP2P18 and CYP2P19, and 4-octylphenol (OP) induced CYP2AD12, but there was no significant response to 4-nonylphenol (NP), implying differential catalytic roles of the enzyme. In this paper, we identify and characterize a CYP2 gene cluster in the mangrove killifish K. marmoratus with differing catalytic roles toward EDCs. Our findings provide insights on the roles of nine co-localized CYP2 genes and their catalytic functions for better understanding of chemical-biological interactions in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Certain tryptophan photoproducts are inhibitors of cytochrome P450-dependent mutagenicity

    International Nuclear Information System (INIS)

    Rannug, U.; Agurell, E.; Cederberg, H.; Rannug, A.

    1992-01-01

    Two photoproducts, derived from UV-irradiation of the amino acid L-tryptophan and with high Ah (TCDD) receptor binding affinity, were tested for genotoxic and antimutagenic effects. The two indolo[3,2-b]carbazole derivatives, with the molecular weights of 284 and 312, respectively, were tested in Saccharomyces cerevisiae strain D7 for mitotic gene conversion and reverse mutation and in strain RS112 for sister chromatid conversion and gene conversion. No significant (P > 0.05) genotoxic effects were found in strain D7, while strain RS112 showed a small but significant increase in the frequency of sister chromatid conversions. In Chinese hamster ovary (CHO) cells the two compounds induced a statistically significant but less than twofold increase in the frequency of sister chromatid exchanges (SCE). No mutations were detected when the compounds were tested in Salmonella tphimurium strains TA98 and TA100. However, both 284 and 312 acted as antimutagens on strain TA100+S9 in the presence of benzo(a)pyrene. The decrease in mutagenicity by the most potent compound 284 was 20 revertants/nmol. This effect could be explained by an inhibitory effect on the cytochrome P450-dependent ethoxyresorufin O-deethylase (EROD) activity as seen in rat hepatocytes. The two compounds were also tested with hamster cells expressing rat cytochrome P-4501A1. The results support the conclusion that this cytochrome P-450 isozyme is inhibited by the tryptophan photoproducts. Similar results were also seen with two other high affinity Ah receptor ligands the quinazolinocarboline alkaloids rutaecapine and dehydrorutaecarpine. 20 refs., 3 figs., 4 tabs

  20. Cytochrome P450 and P-Glycoprotein-Mediated Interactions Involving African Herbs Indicated for Common Noncommunicable Diseases

    Directory of Open Access Journals (Sweden)

    Gregory Ondieki

    2017-01-01

    Full Text Available Herbal remedies are regularly used to complement conventional therapies in the treatment of various illnesses in Africa. This may be because they are relatively cheap and easily accessible and are believed by many to be safe, cause fewer side effects, and are less likely to cause dependency. On the contrary, many herbs have been shown to alter the pharmacokinetics of coadministered allopathic medicines and can either synergize or antagonize therapeutic effects as well as altering the toxicity profiles of these drugs. Current disease burden data point towards epidemiological transitions characterised by increasing urbanization and changing lifestyles, risk factors for chronic diseases like hypertension, diabetes, and cancer which often present as multimorbidities. As a result, we highlight African herb-drug interactions (HDIs modulated via cytochrome P450 enzyme family (CYP and P-glycoprotein (P-gp and the consequences thereof in relation to antihypertensive, antidiabetic, and anticancer drugs. CYPs are enzymes which account for to up to 70% of drug metabolism while P-gp is an efflux pump that extrudes drug substrates out of cells. Consequently, regulation of the relative activity of both CYP and P-gp by African herbs influences the effective drug concentration at the site of action and modifies therapeutic outcomes.

  1. Genome-Wide Analysis, Classification, Evolution, and Expression Analysis of the Cytochrome P450 93 Family in Land Plants

    OpenAIRE

    Du, Hai; Ran, Feng; Dong, Hong-Li; Wen, Jing; Li, Jia-Na; Liang, Zhe

    2016-01-01

    Cytochrome P450 93 family (CYP93) belonging to the cytochrome P450 superfamily plays important roles in diverse plant processes. However, no previous studies have investigated the evolution and expression of the members of this family. In this study, we performed comprehensive genome-wide analysis to identify CYP93 genes in 60 green plants. In all, 214 CYP93 proteins were identified; they were specifically found in flowering plants and could be classified into ten subfamilies?CYP93A?K, with t...

  2. Molecular cloning of P450 aromatase from the leopard gecko and its expression in the ovary.

    Science.gov (United States)

    Endo, Daisuke; Park, Min Kyun

    2005-07-01

    In this study, we identified the cDNA of P450 aromatase in the leopard gecko, a lizard with temperature-dependent sex determination. The cDNA encodes a putative protein of 505 amino acids. The deduced amino acid sequence of leopard gecko aromatase cDNA showed 80% identity with that of turtles, 70% with humans and 77% with chickens. This is the first report of the identification of P450 aromatase cDNA in squamata species. It has been reported that this gene is expressed in different layers of cells in the ovary of mammalian species and avian species. Thus, we also investigated cells expressing the mRNA of this gene in the ovary of the leopard gecko by RT-PCR and in situ hybridization. The mRNA expression of leopard gecko P450 aromatase was localized in both the thecal and granulosa cell layers in the ovary. The expression in thecal and granulosa cell layers was examined in the largest follicle, second largest follicle and third largest follicle by RT-PCR. A higher level of mRNA expression was observed in the granulosa cell layer of the second largest follicle than in other cell layers. This result may reflect the characteristics of follicles in species with automonochronic ovulation.

  3. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants.

    Science.gov (United States)

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E

    2016-01-01

    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants.

  4. Insecticide-Mediated Up-Regulation of Cytochrome P450 Genes in the Red Flour Beetle (Tribolium castaneum

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2015-01-01

    Full Text Available Some cytochrome P450 (CYP genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively, permethrin (2.00- and 2.03-fold and lambda-cyhalothrin (1.73- and 1.81-fold, whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification.

  5. An indole-deficient Escherichia coli strain improves screening of cytochromes P450 for biotechnological applications.

    Science.gov (United States)

    Brixius-Anderko, Simone; Hannemann, Frank; Ringle, Michael; Khatri, Yogan; Bernhardt, Rita

    2017-05-01

    Escherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2. For purified CYP264A1 and CYP21A2, the half maximal inhibitory indole concentration was determined to be 140 and 500 μM, which is within the physiological concentration range occurring during cultivation of E. coli in complex medium. Biotransformations with C43(DE3)_∆tnaA achieved a 30% higher product formation in the case of CYP21A2 and an even fourfold increase with CYP264A1 compared with C43(DE3) cells. In whole-cell conversion based on CYP109D1, which converts indole to indigo, we could successfully avoid this reaction. Results in microplate format indicate that our newly designed strain is a suitable host for a fast and efficient screening of indole-influenced cytochromes P450 in complex medium. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  6. Cloning of cDNA encoding steroid 11β-hydroxylase (P450c11)

    International Nuclear Information System (INIS)

    Chua, S.C.; Szabo, P.; Vitek, A.; Grzeschik, K.H.; John, M.; White, P.C.

    1987-01-01

    The authors have isolated bovine and human adrenal cDNA clones encoding the adrenal cytochrome P-450 specific for 11β-hydroxylation (P450c11). A bovine adrenal cDNA library constructed in the bacteriophage λ vector gt10 was probed with a previously isolated cDNA clone corresponding to part of the 3' untranslated region of the 4.2-kilobase (kb) mRNA encoding P450c11. Several clones with 3.2-kb cDNA inserts were isolated. Sequence analysis showed that they overlapped the original probe by 300 base pairs (bp). Combined cDNA and RNA sequence data demonstrated a continuous open reading frame of 1509 bases. P450c11 is predicted to contain 479 amino acid residues in the mature protein in addition to a 24-residue amino-terminal mitochondrial signal sequence. A bovine clone was used to isolate a homologous clone with a 3.5-kb insert from a human adrenal cDNA library. A region of 1100 bp was 81% homologous to 769 bp of the coding sequence of the bovine cDNA except for a 400-bp segment presumed to be an unprocessed intron. Hybridization of the human cDNA to DNA from a panel of human-rodent somatic cell hybrid lines and in situ hybridization to metaphase spreads of human chromosomes localized the gene to the middle of the long arm of chromosome 8. These data should be useful in developing reagents for heterozygote detection and prenatal diagnosis of 11β-hydroxylase deficiency, the second most frequent cause of congenital adrenal hyperplasia

  7. Isolation of insecticide resistance-related forms of cytochrome P-450 from Drosophila melanogaster.

    OpenAIRE

    Sundseth, S S; Nix, C E; Waters, L C

    1990-01-01

    Significant purification of the ubiquitous cytochrome P-450-A and the strain-specific P-450-B from Drosophila melanogaster has been achieved by sequential chromatography on octylamino-agarose, DEAE-cellulose and hydroxyapatite. Preparations of P-450-A (specific contents of 7-9 nmol/mg) were homogeneous as determined by SDS/polyacrylamide-gel electrophoresis (PAGE) analysis. Preparations enriched for P-450-B (specific contents of 4-7 nmol/mg) contained significant amounts of P-450-A but were e...

  8. Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides.

    Science.gov (United States)

    Csernetics, Árpád; Tóth, Eszter; Farkas, Anita; Nagy, Gábor; Bencsik, Ottó; Vágvölgyi, Csaba; Papp, Tamás

    2015-02-01

    Carotenoids are natural pigments that act as powerful antioxidants and have various beneficial effects on human and animal health. Mucor circinelloides (Mucoromycotina) is a carotenoid producing zygomycetes fungus, which accumulates β-carotene as the main carotenoid but also able to produce the hydroxylated derivatives of β-carotene (i.e. zeaxanthin and β-cryptoxanthin) in low amount. These xanthophylls, together with the ketolated derivatives of β-carotene (such as canthaxanthin, echinenone and astaxanthin) have better antioxidant activity than β-carotene. In this study our aim was to modify and enhance the xanthophyll production of the M. circinelloides by expression of heterologous genes responsible for the astaxanthin biosynthesis. The crtS and crtR genes, encoding the cytochrome-P450 hydroxylase and reductase, respectively, of wild-type and astaxanthin overproducing mutant Xanthophyllomyces dendrorhous strains were amplified from cDNA and the nucleotide and the deduced amino acid sequences were compared to each other. Introduction of the crtS on autonomously replicating plasmid in the wild-type M. circinelloides resulted enhanced zeaxanthin and β-cryptoxanthin accumulation and the presence of canthaxanthin, echinenone and astaxanthin in low amount; the β-carotene hydroxylase and ketolase activity of the X. dendrorhous cytochrome-P450 hydroxylase in M. circinelloides was verified. Increased canthaxanthin and echinenone production was observed by expression of the gene in a canthaxanthin producing mutant M. circinelloides. Co-expression of the crtR and crtS genes led to increase in the total carotenoid and slight change in xanthophyll accumulation in comparison with transformants harbouring the single crtS gene.

  9. Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Frances H.

    2012-02-27

    The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical

  10. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    OpenAIRE

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme...

  11. The Schistosoma mansoni Cytochrome P450 (CYP3050A1 Is Essential for Worm Survival and Egg Development.

    Directory of Open Access Journals (Sweden)

    Peter D Ziniel

    2015-12-01

    Full Text Available Schistosomiasis affects millions of people in developing countries and is responsible for more than 200,000 deaths annually. Because of toxicity and limited spectrum of activity of alternatives, there is effectively only one drug, praziquantel, available for its treatment. Recent data suggest that drug resistance could soon be a problem. There is therefore the need to identify new drug targets and develop drugs for the treatment of schistosomiasis. Analysis of the Schistosoma mansoni genome sequence for proteins involved in detoxification processes found that it encodes a single cytochrome P450 (CYP450 gene. Here we report that the 1452 bp open reading frame has a characteristic heme-binding region in its catalytic domain with a conserved heme ligating cysteine, a hydrophobic leader sequence present as the membrane interacting region, and overall structural conservation. The highest sequence identity to human CYP450s is 22%. Double stranded RNA (dsRNA silencing of S. mansoni (SmCYP450 in schistosomula results in worm death. Treating larval or adult worms with antifungal azole CYP450 inhibitors results in worm death at low micromolar concentrations. In addition, combinations of SmCYP450-specific dsRNA and miconazole show additive schistosomicidal effects supporting the hypothesis that SmCYP450 is the target of miconazole. Treatment of developing S. mansoni eggs with miconazole results in a dose dependent arrest in embryonic development. Our results indicate that SmCYP450 is essential for worm survival and egg development and validates it as a novel drug target. Preliminary structure-activity relationship suggests that the 1-(2,4-dichlorophenyl-2-(1H-imidazol-1-ylethan-1-ol moiety of miconazole is necessary for activity and that miconazole activity and selectivity could be improved by rational drug design.

  12. Cloning, purification, crystallization and preliminary X-ray analysis of a chimeric NADPH-cytochrome P450 reductase

    International Nuclear Information System (INIS)

    Aigrain, Louise; Pompon, Denis; Truan, Gilles; Moréra, Solange

    2009-01-01

    A 2.5 Å resolution data set was collected from a crystal of a soluble chimeric form of NADPH-cytochrome P450 reductase (CPR) produced using a fusion gene composed of the yeast FMN and the human FAD domains. The chimeric protein was crystallized in a modified conformation compared with the previously solved structures. NADPH-cytochrome P450 reductase (CPR) is the favoured redox partner of microsomal cytochromes P450. This protein is composed of two flavin-containing domains (FMN and FAD) connected by a structured linker. An active CPR chimera consisting of the yeast FMN and human FAD domains has been produced, purified and crystallized. The crystals belonged to the monoclinic space group C2 and contained one molecule per asymmetric unit. Molecular replacement was performed using the published rat and yeast structures as search models. The initial electron-density maps revealed that the chimeric enzyme had crystallized in a conformation that differed from those of previously solved structures

  13. Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1.

    Directory of Open Access Journals (Sweden)

    Alexandr N Simonov

    Full Text Available Cytochrome P450c17 (P450 17A1, CYP17A1 is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions.

  14. Cycle affects imidacloprid efficiency by mediating cytochrome P450 expression in the brown planthopper Nilaparvata lugens.

    Science.gov (United States)

    Kang, K; Yang, P; Pang, R; Yue, L; Zhang, W

    2017-10-01

    Circadian clocks influence most behaviours and physiological activities in animals, including daily fluctuations in metabolism. However, how the clock gene cycle influences insects' responses to pesticides has rarely been reported. Here, we provide evidence that cycle affects imidacloprid efficacy by mediating the expression of cytochrome P450 genes in the brown planthopper (BPH) Nilaparvata lugens, a serious insect pest of rice. Survival bioassays showed that the susceptibility of BPH adults to imidacloprid differed significantly between the two time points tested [Zeitgeber Time 8 (ZT8) and ZT4]. After cloning the cycle gene in the BPH (Nlcycle), we found that Nlcycle was expressed at higher levels in the fat body and midgut, and its expression was rhythmic with two peaks. Knockdown of Nlcycle affected the expression levels and rhythms of cytochrome P450 genes as well as susceptibility to imidacloprid. The survival rates of BPH adults after treatment with imidacloprid did not significantly differ between ZT4 and ZT8 after double-stranded Nlcycle treatment. These findings can be used to improve pesticide use and increase pesticide efficiency in the field. © 2017 The Royal Entomological Society.

  15. A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation.

    Science.gov (United States)

    Liu, Zhenhua; Boachon, Benoît; Lugan, Raphaël; Tavares, Raquel; Erhardt, Mathieu; Mutterer, Jérôme; Demais, Valérie; Pateyron, Stéphanie; Brunaud, Véronique; Ohnishi, Toshiyuki; Pencik, Ales; Achard, Patrick; Gong, Fan; Hedden, Peter; Werck-Reichhart, Danièle; Renault, Hugues

    2015-12-07

    Global inspection of plant genomes identifies genes maintained in low copies across taxa and under strong purifying selection, which are likely to have essential functions. Based on this rationale, we investigated the function of the low-duplicated CYP715 cytochrome P450 gene family that appeared early in seed plants and evolved under strong negative selection. Arabidopsis CYP715A1 showed a restricted tissue-specific expression in the tapetum of flower buds and in the anther filaments upon anthesis. cyp715a1 insertion lines showed a strong defect in petal development, and transient alteration of pollen intine deposition. Comparative expression analysis revealed the downregulated expression of genes involved in pollen development, cell wall biogenesis, hormone homeostasis, and floral sesquiterpene biosynthesis, especially TPS21 and several key genes regulating floral development such as MYB21, MYB24, and MYC2. Accordingly, floral sesquiterpene emission was suppressed in the cyp715a1 mutants. Flower hormone profiling, in addition, indicated a modification of gibberellin homeostasis and a strong disturbance of the turnover of jasmonic acid derivatives. Petal growth was partially restored by the active gibberellin GA3 or the functional analog of jasmonoyl-isoleucine, coronatine. CYP715 appears to function as a key regulator of flower maturation, synchronizing petal expansion and volatile emission. It is thus expected to be an important determinant of flower-insect interaction. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  16. Influence of polyhalogenated aromatic hydrocarbons on the induction, activity, and stabilization of cytochrome P450

    International Nuclear Information System (INIS)

    Voorman, R.

    1987-01-01

    In the course of experiments evaluating the metabolism of polybrominated biphenyls by cytochrome P450 isozymes induced by 3,4,5,3',4',5'-hexabromobiphenyl (HBB), it was discovered that the inducer remained closely associated with cytochrome P450d. Subsequent purification of cytochromes from HBB treated rates revealed a 0.5:1 association of HBB to cytochrome P450d but virtually none with cytochrome P450c or cytochrome b5. Immunochemical quantitation of cytochrome P450d in the same microsomes yielded a ratio of P450d:HBB that approached unity. Measurement of cytochrome P450d estradiol 2-hydroxylase indicated non-competitive or mixed type inhibition caused by HBB at a concentration of 10-1000 nM. Inhibition was specific to cytochrome P450d since estradiol 2-hydroxylase catalyzed by cytochrome P450h was unaffected by HBB. The ability of HCB and isosafrole to stabilize cytochrome P450d, and thus indirectly influence regulation of the enzyme, was evaluated by treating rats with a dose of TCDD sufficient to produce maximum induction of cytochromes P450c and P450d via the Ah receptor, yet insufficient to bind to the enzyme. Subsequent treatment of these animals with HCB or isosafrole and a radiolabeled amino acid, revealed a significant increase in cytochrome P450d specific content relative to cytochrome P450c and significant retention of the radiolabel in P450d relative to rats treated only with TCDD

  17. Regulation of rat liver cytochrome P450j, a high affinity N-nitrosodimethylamine demethylase (NDMAD)

    International Nuclear Information System (INIS)

    Thomas, P.E.; Bandiera, S.; Maines, S.L.; Ryan, D.E.; Levin, W.

    1987-01-01

    Purified IgG from sera of rabbits immunized with homogeneous P450j was absorbed to produce monospecific anti-P450j. Results using anti-P450j in ELISA show that rat liver microsomal P450j content decreases between 3 and 6 wks of age in both sexes. Several xenobiotics (Aroclor 1254, mirex and 3-methylcholanthrene) repressed P450j levels when administered to male rats. In contrast, hepatic levels of P450j were induced by isoniazid, dimethylsulfoxide, pyrazole, 4-methylpyrazole, ethanol and chemically-induced diabetes. P450j levels were measurable in kidney, whereas this isozyme was barely detectable in lung, ovaries and testes; however, extra-hepatic P450j was inducible by isoniazid. Between 80-90% of microsomal NDMAD was inhibited by anti-P450j whether the microsomes were isolated from untreated rats or animals administered inducers or repressors of P450j. Results obtained with the reconstituted system suggest that the remaining microsomal NDMAD resistant to antibody inhibition is the result of the inaccessibility of a certain proportion of P450j due to interference by NADPH-P450 reductase. P450j content and NDMAD activity correlated well in microsomes from rats of all treatment groups. The evidence indicates that P450j is the primary, and possibly only, microsomal catalyst of NDMAD at substrate concentrations relevant to hepatocarcinogenesis induced by NDMA

  18. Pest and disease resistance enhanced by heterologous suppression of a Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2.

    Science.gov (United States)

    Smigocki, Ann C; Wilson, Dennis

    2004-12-01

    The functional role of the Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2 was investigated in transgenic plants. N. tabacum plants transformed with a sense or antisense CYP72A2 construct exhibited diminished heights, branched stems, smaller leaves and deformed flowers. Western blot analysis revealed reduced levels of a 58 kDa protein corresponding to CYP72A2, suggesting that the CYP72A2 homolog was suppressed in the sense and antisense plants. Transgenic plants had increased resistance to Manduca sexta larvae that consumed about 35 to 90 less of transgenic versus control leaves. A virulent strain of Pseudomonas syringae pv. tabaci induced a disease-limiting response followed by a delayed and decreased development of disease symptoms in the transgenics. CYP72A2 gene mediated resistance suggests that the plant-pest or -pathogen interactions may have been modified by changes in bioactive metabolite pools.

  19. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens.

    Directory of Open Access Journals (Sweden)

    Lehlohonolo Benedict Qhanya

    Full Text Available Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s, heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence. Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea, Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala, revealed the presence of numerous putative P450s ranging from 267 (A. mellea to 14 (M. osmundae. Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  20. Cytochrome P-450 complex formation in rat liver by the antibiotic tiamulin.

    Science.gov (United States)

    Witkamp, R F; Nijmeijer, S M; van Miert, A S

    1996-01-01

    Tiamulin is a semisynthetic diterpene antibiotic frequently used in farm animals. The drug has been shown to produce clinically important--often lethal--interactions with other compounds. It has been suggested that this is caused by a selective inhibition of oxidative drug metabolism via the formation of a cytochrome P-450 metabolic intermediate complex. In the present study, rats were treated orally for 6 days with tiamulin at two different doses: 40 and 226 mg/kg of body weight. For comparison, another group received 300 mg of triacetyloleandomycin (TAO) per kg, which is equivalent to the 226-mg/kg tiamulin group. Subsequently, microsomal P-450 contents, P-450 enzyme activities, metabolic intermediate complex spectra, and P-450 apoprotein concentrations were assessed. In addition, effects on individual microsomal P-450 activities were studied in control microsomes at different tiamulin and substrate concentrations. In the rats treated with tiamulin, a dose-dependent complex formation as evidenced by its absorption spectrum and an increase in cytochrome P-4503A1/2 contents as assessed by Western blotting (immunoblotting) were found. The effects were comparable to those of TAO. Tiamulin induced microsomal P-450 content, testosterone 6 beta-hydroxylation rate, erythromycin N-demethylation rate, and the ethoxyresorufin O-deethylation activity. Other activities were not affected or decreased. When tiamulin was added to microsomes of control rats, the testosterone 6 beta-hydroxylation rate and the erythromycin N-demethylation were strongly inhibited. It is concluded that tiamulin is a potent and selective inducer-inhibitor of cytochrome P-450. Though not belonging to the macrolides, the compound produces an effect on P-450 similar to those of TAO and related compounds.

  1. Human cytochrome P450 and personalized medicine.

    Science.gov (United States)

    Chen, Qi; Wei, Dongqing

    2015-01-01

    Personalized medicine has become a hot topic ascribed to the development of Human Genome Project. And currently, bioinformatics methodology plays an essential role in personal drug design. Here in this review we mainly focused on the basic introduction of the SNPs of human drug metabolic enzymes and their relationships with personalized medicine. Some common bioinformatics analysis methods and latest progresses and applications in personal drug design have also been discussed. Thus bioinformatics studies on SNPs of human CYP450 genes will contribute to indicate the most possible genes that are associated with human diseases and relevant therapeutic targets, identify and predict the drug efficacy and adverse drug response, investigate individual gene specific properties and then provide personalized and optimal clinic therapies.

  2. Oxidative metabolism of monensin in rat liver microsomes and interactions with tiamulin and other chemotherapeutic agents: evidence for the involvement of cytochrome P-450 3A subfamily.

    Science.gov (United States)

    Nebbia, C; Ceppa, L; Dacasto, M; Carletti, M; Nachtmann, C

    1999-09-01

    Monensin (MON) is an ionophore antibiotic widely used in veterinary practice as a coccidiostatic or a growth promoter. The aims of this study were to characterize the P-450 isoenzyme(s) involved in the biotransformation of the ionophore and to investigate how this process may be affected by tiamulin and other chemotherapeutic agents known to produce toxic interactions with MON when administered concurrently in vivo. In liver microsomes from untreated rats (UT) or from rats pretreated, respectively, with ethanol (ETOH), beta-naphthoflavone (betaNAF), phenobarbital (PB), pregnenolone 16alpha-carbonitrile (PCN), or dexamethasone (DEX), the rate of MON O-demethylation was the following: DEX > PCN > PB > UT = ETOH > betaNAF; similar results were obtained by measuring total MON metabolism. In addition, the extent of triacetyloleandomycin-mediated P-450 complexes was greatly reduced by the prior addition of 100 microM MON. In DEX-treated microsomes, MON O-demethylation was found to fit monophasic Michaelis-Menten kinetics (K(M) = 67.6 +/- 0.01 microM; V(max) = 4.75 +/- 0.76 nmol/min/mg protein). Tiamulin markedly inhibited this activity in an apparent competitive manner, with a calculated K(i) (Dixon plot) of 8.2 microM and an IC(50) of about 25 microM. At the latter concentration, only ketoconazole or metyrapone, which can bind P-450 3A, inhibited MON O-demethylase to a greater extent than tiamulin, whereas alpha-naphthoflavone, chloramphenicol, or sulphametasine was less effective. These results suggest that P-450 3A plays an important role in the oxidative metabolism of MON and that compounds capable of binding or inhibiting this isoenzyme could be expected to give rise to toxic interactions with the ionophore.

  3. Avian cytochrome P450 (CYP 1-3 family genes: isoforms, evolutionary relationships, and mRNA expression in chicken liver.

    Directory of Open Access Journals (Sweden)

    Kensuke P Watanabe

    Full Text Available Cytochrome P450 (CYP of chicken and other avian species have been studied primarily with microsomes or characterized by cloning and protein expression. However, the overall existing isoforms in avian CYP1-3 families or dominant isoforms in avian xenobiotic metabolism have not yet been elucidated. In this study, we aimed to clarify and classify all of the existing isoforms of CYP1-3 in avian species using available genome assemblies for chicken, zebra finch, and turkey. Furthermore, we performed qRT-PCR assay to identify dominant CYP genes in chicken liver. Our results suggested that avian xenobiotic-metabolizing CYP genes have undergone unique evolution such as CYP2C and CYP3A genes, which have undergone avian-specific gene duplications. qRT-PCR experiments showed that CYP2C45 was the most highly expressed isoform in chicken liver, while CYP2C23b was the most highly induced gene by phenobarbital. Considering together with the result of further enzymatic characterization, CYP2C45 may have a dominant role in chicken xenobiotic metabolism due to the constitutive high expression levels, while CYP2C23a and CYP2C23b can be greatly induced by chicken xenobiotic receptor (CXR activators. These findings will provide not only novel insights into avian xenobiotic metabolism, but also a basis for the further characterization of each CYP gene.

  4. Isolation and extreme sex-specific expression of cytochrome P450 genes in the bark beetle, Ips paraconfusus, following feeding on the phloem of host ponderosa pine, Pinus ponderosa.

    Science.gov (United States)

    Huber, D P W; Erickson, M L; Leutenegger, C M; Bohlmann, J; Seybold, S J

    2007-06-01

    We have identified cDNAs and characterized the expression of 13 novel cytochrome P450 genes of potential importance in host colonization and reproduction by the California fivespined ips, Ips paraconfusus. Twelve are of the Cyp4 family and one is of the Cyp9 family. Following feeding on host Pinus ponderosa phloem, bark beetle transcript levels of several of the Cyp4 genes increased or decreased in males only or in both sexes. In one instance (IparaCyp4A5) transcript accumulated significantly in females, but declined significantly in males. The Cyp9 gene (Cyp9T1) transcript levels in males were > 85 000 x higher at 8 h and > 25 000 x higher at 24 h after feeding compared with nonfed controls. Transcript levels in females were approximately 150 x higher at 24 h compared with nonfed controls. Cyp4G27 transcript was present constitutively regardless of sex or feeding and served as a better housekeeping gene than beta-actin or 18S rRNA for the real-time TaqMan polymerase chain reaction analysis. The expression patterns of Cyp4AY1, Cyp4BG1, and, especially, Cyp9T1 in males suggest roles for these genes in male-specific aggregation pheromone production. The differential transcript accumulation patterns of these bark beetle P450s provide insight into ecological interactions of I. paraconfusus with its host pines.

  5. An improved microphotometry system for measurement of cytochrome P-450 in hepatocyte cytoplasm.

    Science.gov (United States)

    Watanabe, J; Kanamura, S

    1991-05-01

    To measure cytochrome P-450 (P-450) content in hepatocyte cytoplasm, we developed a dual monochromator-equipped microphotometry system (KWSP-1). Simultaneous measurements of absorbance at 450 and 490 nm with narrow band width (0.5 nm) and small spot size (2 microns) were accomplished by this system. Corresponding fields in serial sections could be easily and rapidly identified under the Nomarski imaging mode of KWSP-1. Photometric accuracy and repeatability of wavelength setting of KWSP-1 were also satisfactory for measurement of P-450. With this system, it is thus possible to measure the extinction of P-450 from many small measuring areas and to precisely determine P-450 content in the cytoplasm of rat hepatocytes. A microphotometric method was developed using cuvette slides and two serial 10-microns thick sections (mapping method). The intracellular distribution of P-450 in individual hepatocytes could be visualized by the mapping method with KWSP-1. However, this method was not applicable to tissue sections containing hemoglobin larger than 4 microM.

  6. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene.

    Science.gov (United States)

    Cankar, Katarina; van Houwelingen, Adèle; Bosch, Dirk; Sonke, Theo; Bouwmeester, Harro; Beekwilder, Jules

    2011-01-03

    Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene synthase in yeast, led to formation of trans-nootkatol, cis-nootkatol and (+)-nootkatone. The novel enzyme was also found to catalyse a three step conversion of germacrene A to germacra-1(10),4,11(13)-trien-12-oic acid, indicating its involvement in chicory sesquiterpene lactone biosynthesis. Likewise, amorpha-4,11-diene was converted to artemisinic acid. Surprisingly, the chicory P450 has a different regio-specificity on (+)-valencene compared to germacrene A and amorpha-4,11-diene. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Genetic polymorphisms of drug-metabolizing cytochrome P450 enzymes in cynomolgus and rhesus monkeys and common marmosets in preclinical studies for humans.

    Science.gov (United States)

    Uno, Yasuhiro; Uehara, Shotaro; Yamazaki, Hiroshi

    2017-12-23

    Cynomolgus monkeys (Macaca fascicularis, Old World Monkeys) and common marmosets (Callithrix jacchus, New World Monkeys) have been widely, and expectedly, used as non-human primate models in drug development studies. Major drug-metabolizing cytochrome P450 (P450) enzymes information is now available that supports these primate species as animal models, and it is established that multiple forms of cynomolgus monkey and common marmoset P450 enzymes have generally similar substrate recognition functionality to human P450 enzymes. This research update provides information on genetic polymorphisms of P450 enzymes in cynomolgus monkey and common marmoset like human P450 enzymes. Information on rhesus monkeys (Macaca mulatta), another macaque species used in drug metabolism studies, is also included for comparison. Among a variety of cynomolgus monkey P450 variants investigated, typical examples include individual pharmacokinetic data for efavirenz and R-warfarin associated with cynomolgus monkey P450 2C9 (formerly 2C43) and 2C19 (2C75) variants, respectively, and for R-omeprazole and S-warfarin associated with marmoset P450 2C19 variants. These findings provide a foundation for understanding the individual pharmacokinetic and toxicological results in non-human primates as preclinical models and will help to further support understanding of molecular mechanisms of human P450 function. In addition to these polymorphic P450 enzymes, effects of aging on some drug clearances mediated by cynomolgus monkey and common marmoset P450 enzymes were found in elder animals or animals pretreated with rifampicin. This review describes genetic and acquired individual differences in cynomolgus monkey and common marmoset P450 enzymes involved in drug oxidation associated with pharmacological and/or toxicological effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Constitutive overexpression of cytochrome P450 associated with imidacloprid resistance in Laodelphax striatellus (Fallén).

    Science.gov (United States)

    Elzaki, Mohammed Esmail Abdalla; Zhang, Wanfang; Feng, Ai; Qiou, Xiaoyan; Zhao, Wanxue; Han, Zhaojun

    2016-05-01

    Imidacloprid is a principal insecticide for controlling rice planthoppers worldwide. Resistance to imidacloprid has been reported in a field population of Laodelphax striatellus. The present work was conducted to study the molecular mechanisms of imidacloprid resistance. An imidacloprid-resistant strain was produced by selecting a field population with imidacloprid for 24 generations. Piperonyl butoxide (PBO) showed a 1.70-fold synergistic effect. Enzyme activity assays were conducted, and cytochrome P450 monooxygenase showed 1.88-fold activity. The mRNA expression levels of 57 P450 genes were compared. Four CYP genes were found to be overexpressed and significantly different to the susceptible strain. Four strains were selected with imidacloprid for a short period, and the expression levels of ten identified detoxification genes were then compared. Only CYP353D1v2 overexpressed and was significantly different to the susceptible strain. Strong correlation was found between CYP353D1v2 expression levels and imidacloprid treatments. Additionally, gene-silencing RNAi via dsRNA feeding showed that depressing the expression of CYP353D1v2 could significantly enhance the sensitivity of L. striatellus to imidacloprid. Constitutive overexpression of four CYP genes was associated with imidacloprid resistance in long-term selection, and expression of CYP353D1v2 with imidacloprid resistance in short-term selection in L. striatellus. © 2015 Society of Chemical Industry.

  9. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2

    International Nuclear Information System (INIS)

    Kubota, Akira; Stegeman, John J.; Woodin, Bruce R.; Iwanaga, Toshihiko; Harano, Ryo; Peterson, Richard E.; Hiraga, Takeo; Teraoka, Hiroki

    2011-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced via AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by β-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: → We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. → TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. → Knockdown of each

  10. Cytochrome P450-mediated metabolic engineering: current progress and future challenges.

    Science.gov (United States)

    Renault, Hugues; Bassard, Jean-Etienne; Hamberger, Björn; Werck-Reichhart, Danièle

    2014-06-01

    Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Repellents inhibit P450 enzymes in Stegomyia (Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Gloria Isabel Jaramillo Ramirez

    Full Text Available The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES arm-in cage assay with Stegomyia (Aedes aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils.

  12. Purification, Reconstitution, and Inhibition of Cytochrome P-450 Sterol Δ22-Desaturase from the Pathogenic Fungus Candida glabrata

    Science.gov (United States)

    Lamb, David C.; Maspahy, Segula; Kelly, Diane E.; Manning, Nigel J.; Geber, Antonia; Bennett, John E.; Kelly, Steven L.

    1999-01-01

    Sterol Δ22-desaturase has been purified from a strain of Candida glabrata with a disruption in the gene encoding sterol 14α-demethylase (cytochrome P-45051; CYP51). The purified cytochrome P-450 exhibited sterol Δ22-desaturase activity in a reconstituted system with NADPH–cytochrome P-450 reductase in dilaurylphosphatidylcholine, with the enzyme kinetic studies revealing a Km for ergosta-5,7-dienol of 12.5 μM and a Vmax of 0.59 nmol of this substrate metabolized/min/nmol of P-450. This enzyme is encoded by CYP61 (ERG5) in Saccharomyces cerevisiae, and homologues have been shown in the Candida albicans and Schizosaccharomyces pombe genome projects. Ketoconazole, itraconazole, and fluconazole formed low-spin complexes with the ferric cytochrome and exhibited type II spectra, which are indicative of an interaction between the azole moiety and the cytochrome heme. The azole antifungal compounds inhibited reconstituted sterol Δ22-desaturase activity by binding to the cytochrome with a one-to-one stoichiometry, with total inhibition of enzyme activity occurring when equimolar amounts of azole and cytochrome P-450 were added. These results reveal the potential for sterol Δ22-desaturase to be an antifungal target and to contribute to the binding of drugs within the fungal cell. PMID:10390230

  13. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    Science.gov (United States)

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  14. CYTOCHROME P450-DEPENDENT METABOLISM OF TRICHLOROETHYLENE IN THE RAT KIDNEY

    Science.gov (United States)

    The metabolism of trichloroethylene (Tri) by cytochrome P450 (P450) was studied in microsomes from liver and kidney homogenates and from isolated renal proximal tubular (PT) and distal tubular (DT) cells from male Fischer 344 rats. Chloral hydrate (CH) was the only metabolite con...

  15. Insecticide resistance and cytochrome-P450 activation in unfed and blood-fed laboratory and field populations of Culex pipiens pallens.

    Science.gov (United States)

    Chang, Kyu-Sik; Kim, Heung-Chul; Klein, Terry A; Ju, Young Ran

    2017-01-01

    Understanding the mechanisms of insecticide resistance to vector mosquitoes is critical for the implementation of effective control measures. A nulliparous susceptible Culex pipiens pallens (KSCP) laboratory colony and two field strains from Paju (PAJ) and Jeonju (JEO) Korea were evaluated for susceptibility to five pesticides by microapplication techniques. Unfed PAJ and JEO females demonstrated increased resistance compared to unfed KSCP females, respectively. While blood-fed KSCP females demonstrated resistance compared to unfed PAJ and JEO females, respectively. Unfed and blood-fed groups were assayed for α- and β-esterase, glutathione S -transferases, and cytochrome P-450 (P450) enzyme activity assays. P450 activity was 58.8- and 72.8-fold higher for unfed PAJ and JEO females, respectively, than unfed KSCP females. P450 enzyme activity of KSCP females assayed 1 and 7 days after a blood meal increased by 14.5- and 11.8-fold, respectively, compared to unfed KSCP females, while PAJ and JEO females demonstrated 164.9- and 148.5- and 170.7- and 160.4-fold increased activity, respectively, compared to unfed females of each population. However, other three resistance-related metabolic enzymes showed low activation at P450 acts on elevated insecticide resistance after blood meals in resistant field populations. Our findings might reveal that suppressing of the P450 protein by artificial gene mutation increases insecticidal susceptibility of Cx . pipiens and will promise effective vector mosquito control.

  16. Dextromethorphan and debrisoquine metabolism and polymorphism of the gene for cytochrome P450 isozyme 2D50 in Thoroughbreds.

    Science.gov (United States)

    Corado, Carley R; McKemie, Daniel S; Knych, Heather K

    2016-09-01

    OBJECTIVE To characterize polymorphisms of the gene for cytochrome P450 isozyme 2D50 (CYP2D50) and the disposition of 2 CYP2D50 probe drugs, dextromethorphan and debrisoquine, in horses. ANIMALS 23 healthy horses (22 Thoroughbreds and 1 Standardbred). PROCEDURES Single-nucleotide polymorphisms (SNPs) in CYP2D50 were identified. Disposition of dextromethorphan (2 mg/kg) and debrisoquine (0.2 mg/kg) were determined after oral (dextromethorphan) or nasogastric (debrisoquine) administration to the horses. Metabolic ratios of plasma dextromethorphan and total dextrorphan (dextrorphan plus dextrorphan-O-β-glucuronide) and 4-hydroxydebrisoquine concentrations were calculated on the basis of the area under the plasma concentration-versus-time curve extrapolated to infinity for the parent drug divided by that for the corresponding metabolite. Pharmacokinetic data were used to categorize horses into the phenotypic drug-metabolism categories poor, extensive, and ultrarapid. Disposition patterns were compared among categories, and relationships between SNPs and metabolism categories were explored. RESULTS Gene sequencing identified 51 SNPs, including 27 nonsynonymous SNPs. Debrisoquine was minimally detected after oral administration. Disposition of dextromethorphan varied markedly among horses. Metabolic ratios for dextromethorphan ranged from 0.03 to 0.46 (mean, 0.12). On the basis of these data, 1 horse was characterized as a poor metabolizer, 18 were characterized as extensive metabolizers, and 3 were characterized as ultrarapid metabolizers. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that CYP2D50 is polymorphic and that the disposition of the probe drug varies markedly in horses. The polymorphisms may be related to rates of drug metabolism. Additional research involving more horses of various breeds is needed to fully explore the functional implication of polymorphisms in CYP2D50.

  17. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization.

    Science.gov (United States)

    Griffiths, Scott; Mesarich, Carl H; Saccomanno, Benedetta; Vaisberg, Abraham; De Wit, Pierre J G M; Cox, Russell; Collemare, Jérôme

    2016-06-21

    Anthraquinones are a large family of secondary metabolites (SMs) that are extensively studied for their diverse biological activities. These activities are determined by functional group decorations and the formation of dimers from anthraquinone monomers. Despite their numerous medicinal qualities, very few anthraquinone biosynthetic pathways have been elucidated so far, including the enzymatic dimerization steps. In this study, we report the elucidation of the biosynthesis of cladofulvin, an asymmetrical homodimer of nataloe-emodin produced by the fungus Cladosporium fulvum A gene cluster of 10 genes controls cladofulvin biosynthesis, which begins with the production of atrochrysone carboxylic acid by the polyketide synthase ClaG and the β-lactamase ClaF. This compound is decarboxylated by ClaH to yield emodin, which is then converted to chrysophanol hydroquinone by the reductase ClaC and the dehydratase ClaB. We show that the predicted cytochrome P450 ClaM catalyzes the dimerization of nataloe-emodin to cladofulvin. Remarkably, such dimerization dramatically increases nataloe-emodin cytotoxicity against mammalian cell lines. These findings shed light on the enzymatic mechanisms involved in anthraquinone dimerization. Future characterization of the ClaM enzyme should facilitate engineering the biosynthesis of novel, potent, dimeric anthraquinones and structurally related compound families.

  18. Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1.

    Science.gov (United States)

    Ding, Zhiping; Wen, Yucong; Yang, Baojun; Zhang, Yixi; Liu, Shuhua; Liu, Zewen; Han, Zhaojun

    2013-11-01

    Imidacloprid is a key insecticide extensively used for control of Nilaparvata lugens, and its resistance had been reported both in the laboratory selected strains and field populations. A target site mutation Y151S in two nicotinic acetylcholine receptor subunits and enhanced oxidative detoxification have been identified in the laboratory resistant strain, contributing importantly to imidacloprid resistance in N. lugens. To date, however, imidacloprid resistance in field population is primarily attributable to enhanced oxidative detoxification by over-expressed P450 monooxygenases. A resistant strain (Res), originally collected from a field population and continuously selected in laboratory with imidacloprid for more than 40 generations, had 180.8-fold resistance to imidacloprid, compared to a susceptible strain (Sus). Expression of different putative P450 genes at mRNA levels was detected and compared between Res and Sus strains, and six genes were found expressed significantly higher in Res strain than in Sus strain. CYP6AY1 was found to be the most different expressed P450 gene and its mRNA level in Res strain was 17.9 times of that in Sus strain. By expressing in E. coli cells, CYP6AY1 was found to metabolize imidacloprid efficiently with initial velocity calculated of 0.851 ± 0.073 pmol/min/pmol P450. When CYP6AY1 mRNA levels in Res strain was reduced by RNA interference, imidacloprid susceptibility was recovered. In four field populations with different resistance levels, high levels of CYP6AY1 transcript were also found. In vitro and in vivo studies provided evidences that the over-expression of CYP6AY1 was one of the key factors contributing to imidacloprid resistance in the laboratory selected strain Res, which might also be the important mechanism for imidacloprid resistance in field populations, when the target site mutation was not prevalent at present. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Functional characterisation of an engineered multidomain human P450 2E1 by molecular Lego.

    Science.gov (United States)

    Fairhead, Michael; Giannini, Silva; Gillam, Elizabeth M J; Gilardi, Gianfranco

    2005-12-01

    The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (KM=1.84+/-0.09 mM and kcat of 2.98+/-0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (KM=0.65+/-0.08 mM and kcat of 0.95+/-0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.

  20. Functional Study of Cytochrome P450 Enzymes from the Brown Planthopper (Nilaparvata lugens Stål) to Analyze Its Adaptation to BPH-Resistant Rice.

    Science.gov (United States)

    Peng, Lei; Zhao, Yan; Wang, Huiying; Song, Chengpan; Shangguan, Xinxin; Ma, Yinhua; Zhu, Lili; He, Guangcun

    2017-01-01

    Plant-insect interactions constitute a complex of system, whereby plants synthesize toxic compounds as the main defense strategy to combat herbivore assault, and insects deploy detoxification systems to cope with toxic plant compounds. Cytochrom P450s are among the main detoxification enzymes employed by insects to combat the chemical defenses of host plants. In this study, we used Nilaparvata lugens (BPH) to constitute an ideal system for studying plant-insect interactions. By feeding BPHs with artificial diets containing ethanol extracts, we show that biotype Y BPHs have a greater ability to metabolize exogenous substrates than biotype 1 BPHs. NlCPR knockdown inhibited the ability of BPHs to feed on YHY15. qRT-PCR was used to screen genes in the P450 family, and upregulation of CYP4C61, CYP6AX1 , and CYP6AY1 induced by YHY15 was investigated. When the three P450 genes were knocked down, only CYP4C61 dsRNA treatment was inhibited the ability of BPHs to feed on YHY15. These results indicate that BPH P450 enzymes are a key factor in the physiological functions of BPH when feeding on BPH-resistant rice.

  1. Steroid hydroxylations: A paradigm for cytochrome P450 catalyzed mammalian monooxygenation reactions

    International Nuclear Information System (INIS)

    Estabrook, Ronald W.

    2005-01-01

    The present article reviews the history of research on the hydroxylation of steroid hormones as catalyzed by enzymes present in mammalian tissues. The report describes how studies of steroid hormone synthesis have played a central role in the discovery of the monooxygenase functions of the cytochrome P450s. Studies of steroid hydroxylation reactions can be credited with showing that: (a) the adrenal mitochondrial enzyme catalyzing the 11β-hydroxylation of deoxycorticosterone was the first mammalian enzyme shown by O 18 studies to be an oxygenase; (b) the adrenal microsomal enzyme catalyzing the 21-hydroxylation of steroids was the first mammalian enzyme to show experimentally the proposed 1:1:1 stoichiometry (substrate:oxygen:reduced pyridine nucleotide) of a monooxygenase reaction; (c) application of the photochemical action spectrum technique for reversal of carbon monoxide inhibition of the 21-hydroxylation of 17α-OH progesterone was the first demonstration that cytochrome P450 was an oxygenase; (d) spectrophotometric studies of the binding of 17α-OH progesterone to bovine adrenal microsomal P450 revealed the first step in the cyclic reaction scheme of P450, as it catalyzes the 'activation' of oxygen in a monooxygenase reaction; (e) purified adrenodoxin was shown to function as an electron transport component of the adrenal mitochondrial monooxygenase system required for the activity of the 11β-hydroxylase reaction. Adrenodoxin was the first iron-sulfur protein isolated and purified from mammalian tissues and the first soluble protein identified as a reductase of a P450; (f) fractionation of adrenal mitochondrial P450 and incubation with adrenodoxin and a cytosolic (flavoprotein) fraction were the first demonstration of the reconstitution of a mammalian P450 monooxygenase reaction

  2. Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges.

    Science.gov (United States)

    Bhattacharya, Sukanta S; Yadav, Jagjit S

    2018-01-01

    Cytochrome P450 enzymes are a structurally conserved but functionally diverse group of heme-containing mixed function oxidases found across both prokaryotic and eukaryotic forms of the microbial world. Microbial P450s are known to perform diverse functions ranging from the synthesis of cell wall components to xenobiotic/drug metabolism to biodegradation of environmental chemicals. Conventionally, many microbial systems have been reported to mimic mammalian P450-like activation of drugs and were proposed as the in-vitro models of mammalian drug metabolism. Recent reports suggest that native or engineered forms of specific microbial P450s from these and other microbial systems could be employed for desired specific biotransformation reactions toward natural and synthetic (drug) compounds underscoring their emerging potential in drug improvement and discovery. On the other hand, microorganisms particularly fungi and actinomycetes have been shown to possess catabolic P450s with unusual potential to degrade toxic environmental chemicals including persistent organic pollutants (POPs). Wood-rotting basidiomycete fungi in particular have revealed the presence of exceptionally large P450 repertoire (P450ome) in their genomes, majority of which are however orphan (with no known function). Our pre- and post-genomic studies have led to functional characterization of several fungal P450s inducible in response to exposure to several environmental toxicants and demonstration of their potential in bioremediation of these chemicals. This review is an attempt to summarize the postgenomic unveiling of this versatile enzyme superfamily in microbial systems and investigation of their potential to synthesize new drugs and degrade persistent pollutants, among other biotechnological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.

    Science.gov (United States)

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-21

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.

  4. Induction of P450 3A1/2 and 2C6 by gemfibrozil in Sprague-Dawley rats.

    Science.gov (United States)

    Liu, Aiming; Yang, Julin; Zhao, Xin; Jiao, Xiaolan; Zhao, Weihong; Ma, Qing; Tang, Zhiyuan; Dai, Renke

    2011-01-01

    Fibrates are a group of peroxisome proliferator-activated receptor α agonists used in the treatment of dyslipidemia; however, they have been reported to cause species-related hepatocarcinogenesis and clinical myotoxicity. Gemfibrozil is one of the most commonly used fibrates, and it shows the highest risk for myotoxicity among the fibrates. The inhibitory drug-drug interaction mechanism associated with gemfibrozil has been explored recently, and the induction of human P450 3A4 and 2C8 has been reported. In this study, in vivo induction of rat P450 by gemfibrozil was studied in Sprague-Dawley rats. After the rats were dosed with gemfibrozil by oral gavage, microsomes were prepared. The metabolic activities of P450 3A1/2, 2C6, and 2D2 were assayed using probe substrates, and the systemic concentration of gemfibrozil during its administration was determined. P450 3A1/2 and 2C6 activities were induced 32-77% in the rats by gemfibrozil when the exposure concentration was in the clinical range. These data indicate that the inducibility of homologous P450 isoforms by gemfibrozil is similar in Sprague-Dawley rats and in humans. Inductive drug-drug interactions and inhibitory actions are involved in the co-administration of gemfibrozil with other drugs, which suggests the relevance for a fibrate-toxicology investigation.

  5. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Bass, C; Carvalho, R A; Oliphant, L; Puinean, A M; Field, L M; Nauen, R; Williamson, M S; Moores, G; Gorman, K

    2011-12-01

    The brown planthopper, Nilaparvata lugens, is an economically significant pest of rice throughout Asia and has evolved resistance to many insecticides including the neonicotinoid imidacloprid. The resistance of field populations of N. lugens to imidacloprid has been attributed to enhanced detoxification by cytochrome P450 monooxygenases (P450s), although, to date, the causative P450(s) has (have) not been identified. In the present study, biochemical assays using the model substrate 7-ethoxycoumarin showed enhanced P450 activity in several resistant N. lugens field strains when compared with a susceptible reference strain. Thirty three cDNA sequences encoding tentative unique P450s were identified from two recent sequencing projects and by degenerate PCR. The mRNA expression level of 32 of these was examined in susceptible, moderately resistant and highly resistant N. lugens strains using quantitative real-time PCR. A single P450 gene (CYP6ER1) was highly overexpressed in all resistant strains (up to 40-fold) and the level of expression observed in the different N. lugens strains was significantly correlated with the resistance phenotype. These results provide strong evidence for a role of CYP6ER1 in the resistance of N. lugens to imidacloprid. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  6. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Janina Zygadlo

    2016-01-01

    . For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble...... glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed...... compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons....

  7. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II.

    Science.gov (United States)

    Zanger, U M; Hauri, H P; Loeper, J; Homberg, J C; Meyer, U A

    1988-11-01

    In a subgroup of children with chronic active hepatitis, circulating autoantibodies occur that bind to liver and kidney endoplasmic reticulum (anti-liver/kidney microsome antibody type I or anti-LKM1). Anti-LKM1 titers follow the severity of the disease and the presence of these antibodies serves as a diagnostic marker for this autoimmune hepatitis type II. We demonstrate that anti-LKM1 IgGs specifically inhibit the hydroxylation of bufuralol in human liver microsomes. Using two assay systems with different selectivity for the two cytochrome P-450 isozymes catalyzing bufuralol metabolism in human liver, we show that anti-LKM1 exclusively recognizes cytochrome P-450db1. Immunopurification of the LKM1 antigen from solubilized human liver microsomes resulted in an electrophoretically homogenous protein that had the same molecular mass (50 kDa) as purified P-450db1 and an identical N-terminal amino acid sequence. Recognition of both purified P-450db1 and the immunoisolated protein on western blots by several monoclonal antibodies confirmed the identity of the LKM1 antigen with cytochrome P-450db1. Cytochrome P-450db1 has been identified as the target of a common genetic polymorphism of drug oxidation. However, the relationship between the polymorphic cytochrome P-450db1 and the appearance of anti-LKM1 autoantibodies as well as their role in the pathogenesis of chronic active hepatitis remains speculative.

  8. Optimizing the performance of streaming numerical kernels on the IBM Blue Gene/P PowerPC 450 processor

    KAUST Repository

    Malas, Tareq Majed Yasin

    2012-05-21

    Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution of partial differential equations, represents a challenge despite the regularity of memory access. Sophisticated optimization techniques are required to fully utilize the CPU. We propose a new method for constructing streaming numerical kernels using a high-level assembly synthesis and optimization framework. We describe an implementation of this method in Python targeting the IBM® Blue Gene®/P supercomputer\\'s PowerPC® 450 core. This paper details the high-level design, construction, simulation, verification, and analysis of these kernels utilizing a subset of the CPU\\'s instruction set. We demonstrate the effectiveness of our approach by implementing several three-dimensional stencil kernels over a variety of cached memory scenarios and analyzing the mechanically scheduled variants, including a 27-point stencil achieving a 1.7× speedup over the best previously published results. © The Author(s) 2012.

  9. Advances in molecular modeling of human cytochrome P450 polymorphism.

    Science.gov (United States)

    Martiny, Virginie Y; Miteva, Maria A

    2013-11-01

    Cytochrome P450 (CYP) is a supergene family of metabolizing enzymes involved in the phase I metabolism of drugs and endogenous compounds. CYP oxidation often leads to inactive drug metabolites or to highly toxic or carcinogenic metabolites involved in adverse drug reactions (ADR). During the last decade, the impact of CYP polymorphism in various drug responses and ADR has been demonstrated. Of the drugs involved in ADR, 56% are metabolized by polymorphic phase I metabolizing enzymes, 86% among them being CYP. Here, we review the major CYP polymorphic forms, their impact for drug response and current advances in molecular modeling of CYP polymorphism. We focus on recent studies exploring CYP polymorphism performed by the use of sequence-based and/or protein-structure-based computational approaches. The importance of understanding the molecular mechanisms related to CYP polymorphism and drug response at the atomic level is outlined. © 2013.

  10. Cytochrome P-450 dependent ethanol oxidation. Kinetic isotope effects and absence of stereoselectivity

    International Nuclear Information System (INIS)

    Ekstroem, G.; Norsten, C.; Cronholm, T.; Ingelman-Sundberg, M.

    1987-01-01

    Deuterium isotope effects [/sup D/(V/K)] and stereoselectivity of ethanol oxidation in cytochrome P-450 containing systems and in the xanthine-xanthine oxidase system were compared with those of yeast alcohol dehydrogenase. The isotope effects were determined by using both a noncompetitive method, including incubation of unlabeled of [1,1- 2 H 2 ] ethanol at various concentrations, and a competitive method, where 1:1 mixtures of [1- 13 C]- and [ 2 H 6 ] ethanol or [2,2,2- 2 H 3 ]- and [1,1- 2 H 2 ] ethanol were incubated and the acetaldehyde formed was analyzed by gas chromatography/mass spectrometry. The /sup D/(V/K) isotope effects of the cytochrome P-450 dependent ethanol oxidation were about 4 with liver microsomes from imidazole-, phenobarbital- or acetone-treated rabbits or with microsomes from acetone- or ethanol-treated rats. Similar isotope effects were reached with reconstituted membranes containing the rabbit ethanol-inducible cytochrome P-450 (LMeb), whereas control rat microsomes and membranes containing rabbit phenobarbital-inducible P-450 LM 2 oxidized the alcohol with /sup D/(V/K) of about 2.8 and 1.8, respectively. Addition of Fe/sup III/EDTA either to microsomes from phenobarbital-treated rabbits or to membranes containing P-450 LMeb significantly lowered the isotope effect. Incubations of all cytochrome P-450 containing systems of the xanthine-xanthine oxidase systems with (1R)- and (1S)-[1- 2 H] ethanol, revealed, taking the isotope effects into account, that 44-66% of the ethanol oxidized had lost the 1-pro-R hydrogen. The data indicate that cytochrome P-450 dependent ethanol oxidation is not stereospecific and that cleavage of the C 1 -H bond appears to be a rate-determining step in the catalysis by the ethanol-inducible form of P-450. The contribution of hydroxyl radicals in ethanol oxidation by the various enzymic systems is discussed

  11. An RNAi construct of the P450 gene CYP82D109 leads to increased resistance to Fusarium oxysporum f. sp. vasinfectum (Fov11) and increased feeding by Helicoverpa Zea larvae

    Science.gov (United States)

    The P450 CYP82D109 gene codes for an early step enzyme in the gossypol pathway in Gossypium. The terminal leaves of RNAi plants had a 90% reduction in hemigossypolone and heliocides levels, and a 70% reduction in gossypol levels compared to wild-type (WT) plants. Previous studies comparing glanded...

  12. Molecular LEGO by domain-imprinting of cytochrome P450 BM3.

    Science.gov (United States)

    Jetzschmann, K J; Yarman, A; Rustam, L; Kielb, P; Urlacher, V B; Fischer, A; Weidinger, I M; Wollenberger, U; Scheller, F W

    2018-04-01

    Electrosynthesis of the MIP nano-film after binding of the separated domains or holo-cytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the his 6 -tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The his 6 -tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode. Copyright © 2018. Published by Elsevier B.V.

  13. Insecticidal activity and expression of cytochrome P450 family 4 genes in Aedes albopictus after exposure to pyrethroid mosquito coils.

    Science.gov (United States)

    Avicor, Silas W; Wajidi, Mustafa F F; El-Garj, Fatma M A; Jaal, Zairi; Yahaya, Zary S

    2014-10-01

    Mosquito coils are insecticides commonly used for protection against mosquitoes due to their toxic effects on mosquito populations. These effects on mosquitoes could induce the expression of metabolic enzymes in exposed populations as a counteractive measure. Cytochrome P450 family 4 (CYP4) are metabolic enzymes associated with a wide range of biological activities including insecticide resistance. In this study, the efficacies of three commercial mosquito coils with different pyrethroid active ingredients were assessed and their potential to induce the expression of CYP4 genes in Aedes albopictus analyzed by real-time quantitative PCR. Coils containing 0.3 % D-allethrin and 0.005 % metofluthrin exacted profound toxic effects on Ae. albopictus, inducing high mortalities (≥90 %) compared to the 0.2 % D-allethrin reference coil. CYP4H42 and CYP4H43 expressions were significantly higher in 0.3 % D-allethrin treated mosquitoes compared to the other treated populations. Short-term (KT50) exposure to mosquito coils induced significantly higher expression of both genes in 0.005 % metofluthrin exposed mosquitoes. These results suggest the evaluated products provided better protection than the reference coil; however, they also induced the expression of metabolic genes which could impact negatively on personal protection against mosquito.

  14. Functional Study of Cytochrome P450 Enzymes from the Brown Planthopper (Nilaparvata lugens Stål to Analyze Its Adaptation to BPH-Resistant Rice

    Directory of Open Access Journals (Sweden)

    Lei Peng

    2017-11-01

    Full Text Available Plant-insect interactions constitute a complex of system, whereby plants synthesize toxic compounds as the main defense strategy to combat herbivore assault, and insects deploy detoxification systems to cope with toxic plant compounds. Cytochrom P450s are among the main detoxification enzymes employed by insects to combat the chemical defenses of host plants. In this study, we used Nilaparvata lugens (BPH to constitute an ideal system for studying plant-insect interactions. By feeding BPHs with artificial diets containing ethanol extracts, we show that biotype Y BPHs have a greater ability to metabolize exogenous substrates than biotype 1 BPHs. NlCPR knockdown inhibited the ability of BPHs to feed on YHY15. qRT-PCR was used to screen genes in the P450 family, and upregulation of CYP4C61, CYP6AX1, and CYP6AY1 induced by YHY15 was investigated. When the three P450 genes were knocked down, only CYP4C61 dsRNA treatment was inhibited the ability of BPHs to feed on YHY15. These results indicate that BPH P450 enzymes are a key factor in the physiological functions of BPH when feeding on BPH-resistant rice.

  15. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth.

    Science.gov (United States)

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-02-19

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments.

  16. Improving Delivery of Photosynthetic Reducing Power to Cytochrome P450s

    DEFF Research Database (Denmark)

    Mellor, Silas Busck

    at sustainable production of high-value and commodity products. Cytochrome P450 enzymes play key roles in the biosynthesis of important natural products. The electron carrier ferredoxin can couple P450s non-natively to photosynthetic electron supply, providing ample reducing power for catalysis. However......, photosynthetic reducing power feeds into both central and specialized metabolism, which leads to a fiercely competitive system from which to siphon reductant. This thesis explores the optimization of light-driven P450 activity, and proposes strategies to overcome the limitations imposed by competition...... for photosynthetic reducing power. Photosynthetic electron carrier proteins interact with widely different partners because they use relatively non-specific interactions. The mechanistic basis of these interactions and its impact on natural electron transfer complexes is discussed. This particular type...

  17. Status of Resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to Neonicotinoids in Iran and Detoxification by Cytochrome P450-Dependent Monooxygenases.

    Science.gov (United States)

    Basij, M; Talebi, K; Ghadamyari, M; Hosseininaveh, V; Salami, S A

    2017-02-01

    Nine Bemisia tabaci (Gennadius) populations were collected from different regions of Iran. In all nine populations, only one biotype (B biotype) was detected. Susceptibilities of these populations to imidacloprid and acetamiprid were assayed. The lethal concentration 50 values (LC 50 ) for different populations showed a significant discrepancy in the susceptibility of B. tabaci to imidacloprid (3.76 to 772.06 mg l -1 ) and acetamiprid (4.96 to 865 mg l -1 ). The resistance ratio of the populations ranged from 9.72 to 205.20 for imidacloprid and 6.38 to 174.57 for acetamiprid. The synergistic effects of piperonylbutoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) were evaluated for the susceptible (RF) and resistant (JR) populations for the determination of the involvement of cytochrome P450-dependent monooxygenase and carboxylesterase, respectively, in their resistance mechanisms. The results showed that PBO overcame the resistance of the JR population to both imidacloprid and acetamiprid, with synergistic ratios of 72.7 and 106.9, respectively. Carboxylesterase, glutathione S-transferase and cytochrome P450-dependent monooxygenase were studied biochemically, for the purpose of measuring the activity of the metabolizing enzymes in order to determine which enzymes are directly involved in neonicotinoid resistance. There was an increase in the activity of cytochrome P450-dependent monooxygenase up to 17-fold in the resistant JR population (RR = 205.20). The most plausible activity of cytochrome P450-dependent monooxygenase correlated with the resistances of imidacloprid and acetamiprid, and this suggests that cytochrome P450-dependent monooxygenase is the only enzyme system responsible for neonicotinoid resistance in the nine populations of B. tabaci.

  18. Deletion of P399E401 in NADPH cytochrome P450 oxidoreductase results in partial mixed oxidase deficiency

    International Nuclear Information System (INIS)

    Flueck, Christa E.; Mallet, Delphine; Hofer, Gaby; Samara-Boustani, Dinane; Leger, Juliane; Polak, Michel; Morel, Yves; Pandey, Amit V.

    2011-01-01

    Highlights: → Mutations in human POR cause congenital adrenal hyperplasia. → We are reporting a novel 3 amino acid deletion mutation in POR P399 E 401del. → POR mutation P399 E 401del decreased P450 activities by 60-85%. → Impairment of steroid metabolism may be caused by multiple hits. → Severity of aromatase inhibition is related to degree of in utero virilization. -- Abstract: P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399 E 401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399 E 401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17α-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399 E 401 revealed reduced stability and flexibility of the mutant. In conclusion, P399 E 401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399 E 401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.

  19. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes

    OpenAIRE

    Kumar, Santosh; Jin, Mengyao; Weemhoff, James L

    2012-01-01

    There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. O...

  20. Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration.

    Science.gov (United States)

    Cook, Jason B; Werner, David F; Maldonado-Devincci, Antoniette M; Leonard, Maggie N; Fisher, Kristen R; O'Buckley, Todd K; Porcu, Patrizia; McCown, Thomas J; Besheer, Joyce; Hodge, Clyde W; Morrow, A Leslie

    2014-04-23

    Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.

  1. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Hanafy M.; O' Neill, Paul M.; Hong, David; Finn, Robert; Henderson, Colin; Wright, Aaron T.; Cravatt, Benjamin; Hemingway, Janet; Paine, Mark J.

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the target tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.

  2. Engineering Macaca fascicularis cytochrome P450 2C20 to reduce animal testing for new drugs.

    Science.gov (United States)

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-12-01

    In order to develop in vitro methods as an alternative to P450 animal testing in the drug discovery process, two main requisites are necessary: 1) gathering of data on animal homologues of the human P450 enzymes, currently very limited, and 2) bypassing the requirement for both the P450 reductase and the expensive cofactor NADPH. In this work, P450 2C20 from Macaca fascicularis, homologue of the human P450 2C8 has been taken as a model system to develop such an alternative in vitro method by two different approaches. In the first approach called "molecular Lego", a soluble self-sufficient chimera was generated by fusing the P450 2C20 domain with the reductase domain of cytochrome P450 BM3 from Bacillus megaterium (P450 2C20/BMR). In the second approach, the need for the redox partner and also NADPH were both obviated by the direct immobilization of the P450 2C20 on glassy carbon and gold electrodes. Both systems were then compared to those obtained from the reconstituted P450 2C20 monooxygenase in presence of the human P450 reductase and NADPH using paclitaxel and amodiaquine, two typical drug substrates of the human P450 2C8. The K(M) values calculated for the 2C20 and 2C20/BMR in solution and for 2C20 immobilized on electrodes modified with gold nanoparticles were 1.9 ± 0.2, 5.9 ± 2.3, 3.0 ± 0.5 μM for paclitaxel and 1.2 ± 0.2, 1.6±0.2 and 1.4 ± 0.2 μM for amodiaquine, respectively. The data obtained not only show that the engineering of M. fascicularis did not affect its catalytic properties but also are consistent with K(M) values measured for the microsomal human P450 2C8 and therefore show the feasibility of developing alternative in vitro animal tests. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides.

    Science.gov (United States)

    Wang, Rui-Long; Zhu-Salzman, Keyan; Baerson, Scott R; Xin, Xiao-Wei; Li, Jun; Su, Yi-Juan; Zeng, Ren-Sen

    2017-04-01

    Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura, has developed resistance to a wide range of insecticides. In the present study, a novel P450 gene, CYP321B1, was cloned from S. litura. The function of CYP321B1 was assessed using RNA interference (RNAi) and monitoring resistance levels for three commonly used insecticides, including chlorpyrifos, β-cypermethrin and methomyl. The full-length complementary DNA sequence of CYP321B1 is 1814 bp long with an open reading frame of 1 488 bp encoding 495 amino acid residues. Quantitative reverse-transcriptase polymerase chain reaction analyses during larval and pupal development indicated that CYP321B1 expression was highest in the midgut of fifth-instar larvae, followed by fat body and cuticle. The expression of CYP321B1 in the midgut was up-regulated by chlorpyrifos, β-cypermethrin and methomyl with both lethal concentration at 15% (LC 15 ) (50, 100 and 150 μg/mL, respectively) and 50%(LC 50 ) dosages (100, 200 and 300 μg/mL, respectively). Addition of piperonyl butoxide (PBO) significantly increased the toxicity of chlorpyrifos, β-cypermethrin and methomyl to S. litura, suggesting a marked synergism of the three insecticides with PBO and P450-mediated detoxification. RNAi-mediated silencing of CYP321B1 further increased mortality by 25.6% and 38.9% when the fifth-instar larvae were exposed to chlorpyrifos and β-cypermethrin, respectively, at the LC 50 dose levels. The results demonstrate that CYP321B1 might play an important role in chlorpyrifos and β-cypermethrin detoxification in S. litura. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  4. Role of cytochrome P450 in drug interactions

    Directory of Open Access Journals (Sweden)

    Bibi Zakia

    2008-10-01

    Full Text Available Abstract Drug-drug interactions have become an important issue in health care. It is now realized that many drug-drug interactions can be explained by alterations in the metabolic enzymes that are present in the liver and other extra-hepatic tissues. Many of the major pharmacokinetic interactions between drugs are due to hepatic cytochrome P450 (P450 or CYP enzymes being affected by previous administration of other drugs. After coadministration, some drugs act as potent enzyme inducers, whereas others are inhibitors. However, reports of enzyme inhibition are very much more common. Understanding these mechanisms of enzyme inhibition or induction is extremely important in order to give appropriate multiple-drug therapies. In future, it may help to identify individuals at greatest risk of drug interactions and adverse events.

  5. Clinical Pharmacogenetics of Cytochrome P450-Associated Drugs in Children

    Directory of Open Access Journals (Sweden)

    Ida Aka

    2017-11-01

    Full Text Available Cytochrome P450 (CYP enzymes are commonly involved in drug metabolism, and genetic variation in the genes encoding CYPs are associated with variable drug response. While genotype-guided therapy has been clinically implemented in adults, these associations are less well established for pediatric patients. In order to understand the frequency of pediatric exposures to drugs with known CYP interactions, we compiled all actionable drug–CYP interactions with a high level of evidence using Clinical Pharmacogenomic Implementation Consortium (CPIC data and surveyed 10 years of electronic health records (EHR data for the number of children exposed to CYP-associated drugs. Subsequently, we performed a focused literature review for drugs commonly used in pediatrics, defined as more than 5000 pediatric patients exposed in the decade-long EHR cohort. There were 48 drug–CYP interactions with a high level of evidence in the CPIC database. Of those, only 10 drugs were commonly used in children (ondansetron, oxycodone, codeine, omeprazole, lansoprazole, sertraline, amitriptyline, citalopram, escitalopram, and risperidone. For these drugs, reports of the drug–CYP interaction in cohorts including children were sparse. There are adequate data for implementation of genotype-guided therapy for children for three of the 10 commonly used drugs (codeine, omeprazole and lansoprazole. For the majority of commonly used drugs with known CYP interactions, more data are required to support pharmacogenomic implementation in children.

  6. Identification of rabbit cytochromes P450 2C1 and 2C2 as arachidonic acid epoxygenases.

    Science.gov (United States)

    Laethem, R M; Koop, D R

    1992-12-01

    Microsomes prepared from COS-1 cells transiently expressing rabbit cytochromes P450 2C1 and 2C2 catalyzed the metabolism of arachidonic acid to predominantly 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) when microsomal epoxide hydrolase activity was inhibited by 0.2 mM 1,2-epoxy-3,3,3-trichloropropane. P450 2C2 catalyzed the formation of 11,12-EET and 14,15-EET at a ratio of 3.0 and also produced 19-hydroxyeicosatetraenoic acid (19-HETE). The 11,12-EET, 14,15-EET, and 19-HETE represented 48.3, 15.9, and 12.8%, respectively, of the total metabolites formed. P450 2C1 produced a similar but distinct ratio of 11,12-EET to 14,15-EET (2.0) and did not produce any detectable 19-HETE. The 11,12-EET and 14,15-EET represented 63.0 and 31.1%, respectively, of the total metabolites formed. The 8,9- and 5,6-EETs were not detected with either enzyme. The ratio of the 11,12-EET to 14,15-EET was 1.5 with P450 2CAA, a P450 arachidonic acid epoxygenase (P450 2CAA) that had an amino-terminal sequence identical to that of P450 2C2 [J. Biol. Chem. 267:5552-5559 (1992)]. P450 2C1, 2C2, and 2CAA metabolized lauric acid. The ratio of omega-1- to omega-hydroxylated laurate was 3.6, 3.4, and 2.4 for P450 2CAA, P450 2C2, and P450 2C1, respectively. Purified P450 2CAA had a slightly greater apparent molecular weight than expressed P450 2C2 on sodium dodecyl sulfate-polyacrylamide gels. The results clearly establish that rabbit P450 2C1 and 2C2 are arachidonic acid epoxygenases, and they suggest that P450 2CAA and 2C2 are very similar but may not be identical isoforms.

  7. Knockdown of NADPH-cytochrome P450 reductase results in reduced resistance to buprofezin in the small brown planthopper, Laodelphax striatellus (fallén).

    Science.gov (United States)

    Zhang, Yueliang; Wang, Yaming; Wang, Lihua; Yao, Jing; Guo, Huifang; Fang, Jichao

    2016-02-01

    NADPH-cytochrome P450 reductase (CPR) plays an important role in cytochrome P450 function, and CPR knockdown in several insects leads to increased susceptibility to insecticides. However, a putative CPR gene has not yet been fully characterized in the small brown planthopper Laodelphax striatellus, a notorious agricultural pest in rice that causes serious damage by transmitting rice stripe and rice black-streaked dwarf viruses. The objective of this study was to clone the cDNA and to knock down the expression of the gene that encodes L. striatellus CPR (LsCPR) to further determine whether P450s are involved in the resistance of L. striatellus to buprofezin. First, the full-length cDNA of LsCPR was cloned and found to contain an open reading frame (ORF) encoding a polypeptide of 679 amino acids with a calculated molecular mass and isoelectric point of 76.92kDa and 5.37, respectively. The deduced amino acid sequence shares high identity with the CPRs of other insects (98%, 97%, 75% and 68% for Sogatella furcifera, Nilaparvata lugens, Cimex lectularius and Anopheles gambiae, respectively) and possesses the characteristic features of classical CPRs, such as an N-terminal membrane anchor and conserved domains for flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) binding. Phylogenetic analysis revealed that LsCPR is located in a branch along with the CPRs of other hemipteran insects. LsCPR mRNA was detectable in all examined body parts and developmental stages of L. striatellus, as determined by real-time quantitative PCR (qPCR), and transcripts were most abundant in the adult abdomen and in first-instar nymphs and adults. Ingestion of 200μg/mL of LsCPR double-stranded RNA (dsLsCPR) by the planthopper for 5days significantly reduced the transcription level of LsCPR. Moreover, silencing of LsCPR caused increased susceptibility to buprofezin in a buprofezin-resistant (YN-BPF) strain but not in a

  8. Pyrethroid insecticide lambda-cyhalothrin induces hepatic cytochrome P450 enzymes, oxidative stress and apoptosis in rats.

    Science.gov (United States)

    Martínez, María-Aránzazu; Ares, Irma; Rodríguez, José-Luis; Martínez, Marta; Roura-Martínez, David; Castellano, Victor; Lopez-Torres, Bernardo; Martínez-Larrañaga, María-Rosa; Anadón, Arturo

    2018-08-01

    This study aimed to examine in rats the effects of the Type II pyrethroid lambda-cyhalothrin on hepatic microsomal cytochrome P450 (CYP) isoform activities, oxidative stress markers, gene expression of proinflammatory, oxidative stress and apoptosis mediators, and CYP isoform gene expression and metabolism phase I enzyme PCR array analysis. Lambda-cyhalothrin, at oral doses of 1, 2, 4 and 8mg/kg bw for 6days, increased, in a dose-dependent manner, hepatic activities of ethoxyresorufin O-deethylase (CYP1A1), methoxyresorufin O-demethylase (CYP1A2), pentoxyresorufin O-depentylase (CYP2B1/2), testosterone 7α- (CYP2A1), 16β- (CYP2B1), and 6β-hydroxylase (CYP3A1/2), and lauric acid 11- and 12-hydroxylase (CYP4A1/2). Similarly, lambda-cyhalothrin (4 and 8mg/kg bw, for 6days), in a dose-dependent manner, increased significantly hepatic CYP1A1, 1A2, 2A1, 2B1, 2B2, 2E1, 3A1, 3A2 and 4A1 mRNA levels and IL-1β, NFκB, Nrf2, p53, caspase-3 and Bax gene expressions. PCR array analysis showed from 84 genes examined (P1.5), changes in mRNA levels in 18 genes: 13 up-regulated and 5 down-regulated. A greater fold change reversion than 3-fold was observed on the up-regulated ALDH1A1, CYP2B2, CYP2C80 and CYP2D4 genes. Ingenuity Pathway Analysis (IPA) groups the expressed genes into biological mechanisms that are mainly related to drug metabolism. In the top canonical pathways, Oxidative ethanol degradation III together with Fatty Acid α-oxidation may be significant pathways for lambda-cyhalothrin. Our results may provide further understanding of molecular aspects involved in lambda-cyhalothrin-induced liver injury. Copyright © 2018. Published by Elsevier B.V.

  9. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hao, E-mail: hao.hu1@uqconnect.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Yu, Ting, E-mail: t.yu2@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arpiainen, Satu, E-mail: Satu.Juhila@orion.fi [Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu (Finland); Lang, Matti A., E-mail: m.lang@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Hakkola, Jukka, E-mail: Jukka.hakkola@oulu.fi [Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu (Finland); Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3 kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5′-Luc constructs – down to − 160 bp from the TSS – showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from − 160 to − 74 bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene – a well-known p53 activator – increased the expression of the p53 responsive positive control and the CYP2A6-5′-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5′-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. - Highlights: • CYP2A6 is an immediate target gene of p53. • Six putative p53REs located on 3 kb proximate CYP2A6 promoter region. • The region − 160 bp from TSS is highly homologous with the p53 consensus sequence. • P53 specifically bind to the p53RE on the − 160 bp region. • HNF4

  10. Modulation of the interaction between human P450 3A4 and B. megaterium reductase via engineered loops.

    Science.gov (United States)

    Castrignanò, Silvia; D'Avino, Serena; Di Nardo, Giovanna; Catucci, Gianluca; Sadeghi, Sheila J; Gilardi, Gianfranco

    2018-01-01

    Chimerogenesis involving cytochromes P450 is a successful approach to generate catalytically self-sufficient enzymes. However, the connection between the different functional modules should allow a certain degree of flexibility in order to obtain functional and catalytically efficient proteins. We previously applied the molecular Lego approach to develop a chimeric P450 3A4 enzyme linked to the reductase domain of P450 BM3 (BMR). Three constructs were designed with the connecting loop containing no glycine, 3 glycine or 5 glycine residues and showed a different catalytic activity and coupling efficiency. Here we investigate how the linker affects the ability of P450 3A4 to bind substrates and inhibitors. We measure the electron transfer rates and the catalytic properties of the enzyme also in the presence of ketoconazole as inhibitor. The data show that the construct 3A4-5GLY-BMR with the longest loop better retains the binding ability and cooperativity for testosterone, compared to P450 3A4. In both 3A4-3GLY-BMR and 3A4-5GLY-BMR, the substrate induces an increase in the first electron transfer rate and a shorter lag phase related to a domain rearrangements, when compared to the construct without Gly. These data are consistent with docking results and secondary structure predictions showing a propensity to form helical structures in the loop of the 3A4-BMR and 3A4-3GLY-BMR. All three chimeras retain the ability to bind the inhibitor ketoconazole and show an IC 50 comparable with those reported for the wild type protein. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Sex-dependent alteration of cardiac cytochrome P450 gene expression by doxorubicin in C57Bl/6 mice.

    Science.gov (United States)

    Grant, Marianne K O; Seelig, Davis M; Sharkey, Leslie C; Zordoky, Beshay N

    2017-01-01

    There is inconclusive evidence about the role of sex as a risk factor for doxorubicin (DOX)-induced cardiotoxicity. Recent experimental studies have shown that adult female rats are protected against DOX-induced cardiotoxicity. However, the mechanisms of this sexual dimorphism are not fully elucidated. We have previously demonstrated that DOX alters the expression of several cytochrome P450 (CYP) enzymes in the hearts of male rats. Nevertheless, the sex-dependent effect of DOX on the expression of CYP enzymes is still not known. Therefore, in the present study, we determined the effect of acute DOX exposure on the expression of CYP genes in the hearts of both male and female C57Bl/6 mice. Acute DOX cardiotoxicity was induced by a single intraperitoneal injection of 20 mg/kg DOX in male and female adult C57Bl/6 mice. Cardiac function was assessed 5 days after DOX exposure by trans-thoracic echocardiography. Mice were euthanized 1 day or 6 days after DOX or saline injection. Thereafter, the hearts were harvested and weighed. Heart sections were evaluated for pathological lesions. Total RNA was extracted and expression of natriuretic peptides, inflammatory and apoptotic markers, and CYP genes was measured by real-time PCR. Adult female C57Bl/6 mice were protected from acute DOX-induced cardiotoxicity as they show milder pathological lesions, less inflammation, and faster recovery from DOX-induced apoptosis and DOX-mediated inhibition of beta-type natriuretic peptide. Acute DOX exposure altered the gene expression of multiple CYP genes in a sex-dependent manner. In 24 h, DOX exposure caused male-specific induction of Cyp1b1 and female-specific induction of Cyp2c29 and Cyp2e1. Acute DOX exposure causes sex-dependent alteration of cardiac CYP gene expression. Since cardiac CYP enzymes metabolize several endogenous compounds to biologically active metabolites, sex-dependent alteration of CYP genes may play a role in the sexual dimorphism of acute DOX

  12. Rational redesign of the biodegradative enzyme cytochrome P450 cam:

    International Nuclear Information System (INIS)

    Ornstein, R.; Paulsen, M.; Bass, M.; Arnold, G.

    1991-03-01

    Cytochromes P450, a superfamily of monooxygenase enzymes present in all kingdoms of living organisms, are very versatile with respect to substrate range and catalytic functionality. Many recalcitrant halogenated hydrocarbons, on DOE sites and throughout the nation, result in serious environmental impact. Cytochromes P450 have been shown to be catalytically capable of, at least partial, dehalogenation of some such compounds. Clearly, however, their active site stereochemistry and related functional components are not well suited for this role because the rates of dehalogenation are generally rather modest. The evolution of modified active site and access channel structures may proceed very slowly if multiple genetic changes are simultaneously required for enzyme adaptation. Since each mutational event is by itself a rare event, a basic premise of our research is that designing multiple changes into an enzyme may be more timely than waiting for them to occur biologically either via natural selection or under laboratory-controlled conditions. Starting with available high-resolution x-ray crystal structures, molecular modeling and molecular dynamics simulations have been used to probe the basic structure/function principles and conformational fluctuations of the biodegradative enzyme, cytochrome P450cam (camphor hydroxylase from Pseudomonas putida) and active site mutants, to provide the fundamental understanding necessary for rational engineering of the enzyme for modified substrate specificity. In the present paper, we review our progress to data, in the area of molecular dynamics simulations and active site redesign of P450cam. 36 refs., 2 figs

  13. Relationship between hydrocarbon structure and induction of P450: effects on protein levels and enzyme activities.

    Science.gov (United States)

    Backes, W L; Sequeira, D J; Cawley, G F; Eyer, C S

    1993-12-01

    1. Treatment of male rat with the small aromatic hydrocarbons, benzene, toluene, ethylbenzene, n-propylbenzene, m-xylene, and p-xylene increased several P450-dependent activities, with ethylbenzene, m-xylene, and n-propylbenzene producing the greatest response. Hydrocarbon treatment differentially affected toluene metabolism, producing a response dependent on the metabolite monitored. In untreated rats, benzyl alcohol was the major hydroxylation product of toluene metabolism, comprising > 99% of the total metabolites formed. Hydrocarbon treatment increased the overall rate of toluene metabolism by dramatically increasing the amount of aromatic hydroxylation. Ethylbenzene, n-propylbenzene and m-xylene were the most effective inducers of aromatic hydroxylation of toluene. In contrast, production of the major toluene metabolite benzyl alcohol was increased only after treatment with m-xylene. 2. P450 2B1/2B2 levels were induced by each of the hydrocarbons examined, with the magnitude of induction increasing with increasing hydrocarbon size. P450 1A1 was also induced after hydrocarbon exposure; however, the degree of induction was smaller than that observed for P450 2B1/2B2. P450 2C11 levels were suppressed after treatment with benzene, ethylbenzene and n-propylbenzene. 3. Taken together these results display two induction patterns. The first generally corresponds to changes in the P450 2B subfamily, where activities (e.g. the aromatic hydroxylations of toluene) were most effectively induced by ethylbenzene, n-propylbenzene and m-xylene. In the second, induction was observed only after m-xylene treatment, a pattern that was found when the metabolism of the substrate was catalysed by both the P450 2B subfamily and P450 2C11. Hydrocarbons that both induced P450 2B1/2B2 and suppressed P450 2C11 (such as ethylbenzene and n-propylbenzene) showed little change in activities catalysed by both isozymes (e.g. aliphatic hydroxylation of toluene, and aniline hydroxylation

  14. Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei.

    Science.gov (United States)

    He, Ronglin; Ma, Lijuan; Li, Chen; Jia, Wendi; Li, Demao; Zhang, Dongyuan; Chen, Shulin

    2014-12-01

    Fungi grow over a relatively wide pH range and adapt to extracellular pH through a genetic regulatory system mediated by a key component PacC, which is a pH transcription regulator. The cellulase production of the filamentous fungi Trichoderma reesei is sensitive to ambient pH. To investigate the connection between cellulase expression regulation and ambient pH, an ortholog of Aspergillus nidulans pacC, Trpac1, was identified and functionally characterized using a target gene deletion strategy. Deleting Trpac1 dramatically increased the cellulase production and the transcription levels of the major cellulase genes at neutral pH, which suggested Trpac1 is involved in the regulation of cellulase production. It was further observed that the expression levels of transcription factors xyr1 and ace2 also increased in the ΔTrpac1 mutant at neutral pH. In addition, the ΔTrpac1 mutant exhibited conidiation defects under neutral and alkaline pH. These results implied that Trpac1 in involved in growth and development process and cellulase gene expression in T. reesei. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sangsoo Daniel; Antenos, Monica [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Squires, E. James [Department of Animal and Poultry Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Kirby, Gordon M., E-mail: gkirby@uoguelph.ca [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2013-07-15

    Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment of primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined. • BR

  16. Fusion to Hydrophobin HFBI Improves the Catalytic Performance of a Cytochrome P450 System

    Science.gov (United States)

    Schulz, Sebastian; Schumacher, Dominik; Raszkowski, Daniel; Girhard, Marco; Urlacher, Vlada B.

    2016-01-01

    Cytochrome P450 monooxygenases (P450) are heme-containing enzymes that oxidize a broad range of substrates in the presence of molecular oxygen and NAD(P)H. For their activity, most P450s rely on one or two redox proteins responsible for the transfer of electrons from the cofactor NAD(P)H to the heme. One of the challenges when using P450s in vitro, especially when non-physiological redox proteins are applied, is the inefficient transfer of electrons between the individual proteins resulting in non-productive consumption of NAD(P)H – referred to as uncoupling. Herein, we describe the improvement of the coupling efficiency between a P450 and its redox partner – diflavin reductase – by fusing both enzymes individually to the hydrophobin HFBI – a small self-assembling protein of the fungus Trichoderma reesei. The separated monooxygenase (BMO) and reductase (BMR) domains of P450 BM3 from Bacillus megaterium were chosen as a P450-reductase model system and individually fused to HFBI. The fusion proteins could be expressed in soluble form in Escherichia coli. When HFBI-fused BMO and BMR were mixed in vitro, substantially higher coupling efficiencies were measured as compared with the respective non-fused enzymes. Consequently, myristic acid conversion increased up to 20-fold (after 6 h) and 5-fold (after 24 h). Size exclusion chromatography demonstrated that in vitro the hydrophobin-fused enzymes build multimeric protein assemblies. Thus, the higher activity is hypothesized to be due to HFBI-mediated self-assembly arranging BMO and BMR in close spatial proximity in aqueous solution. PMID:27458582

  17. The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Liangcai Lin

    Full Text Available Fungal pathogens of plants and insects infect their hosts by direct penetration of the cuticle. Plant and insect cuticles are covered by a hydrocarbon-rich waxy outer layer that represents the first barrier against infection. However, the fungal genes that underlie insect waxy layer degradation have received little attention. Here we characterize the single cytochrome P450 monoxygenase family 52 (MrCYP52 gene of the insect pathogen Metarhizium robertsii, and demonstrate that it encodes an enzyme required for efficient utilization of host hydrocarbons. Expressing a green florescent protein gene under control of the MrCYP52 promoter confirmed that MrCYP52 is up regulated on insect cuticle as well as by artificial media containing decane (C10, extracted cuticle hydrocarbons, and to a lesser extent long chain alkanes. Disrupting MrCYP52 resulted in reduced growth on epicuticular hydrocarbons and delayed developmental processes on insect cuticle, including germination and production of appressoria (infection structures. Extraction of alkanes from cuticle prevented induction of MrCYP52 and reduced growth. Insect bioassays against caterpillars (Galleria mellonella confirmed that disruption of MrCYP52 significantly reduces virulence. However, MrCYP52 was dispensable for normal germination and appressorial formation in vitro when the fungus was supplied with nitrogenous nutrients. We conclude therefore that MrCYP52 mediates degradation of epicuticular hydrocarbons and these are an important nutrient source, but not a source of chemical signals that trigger infection processes.

  18. Roles of different forms of cytochrome P450 in the activation of the promutagen 6-aminochrysene to genotoxic metabolites in human liver microsomes.

    Science.gov (United States)

    Yamazaki, H; Mimura, M; Oda, Y; Inui, Y; Shiraga, T; Iwasaki, K; Guengerich, F P; Shimada, T

    1993-07-01

    We reported previously that the potent mutagen 6-aminochrysene is catalyzed principally by rat liver microsomal P4501A and P4502B enzymes to reactive metabolites that induce umu gene expression in O-acetyltransferase-over-expressing strain Salmonella typhimurium NM2009; the proposal was made that there are different mechanisms in the formation of reactive N-hydroxylated and diolepoxide metabolites by P450 enzymes (Yamazaki, H. and Shimada, T., Biochem. Pharmacol., 44, 913-920, 1992). Here we further examined the roles of human liver P450 enzymes and the mechanism of activation of 6-aminochrysene by rat and human P450 enzymes in the Salmonella tester strains. Liver microsomes from 18 different human samples catalyzed activation of 6-aminochrysene more efficiently in S. typhimurium NM2009 than in the original strain of S. typhimurium TA1535/pSK1002. The rates of 6-aminochrysene activation in 18 human liver samples showed good correlation to the contents of P4502B6 as well as contents of P4503A4 and the respective mono-oxygenase activities catalyzed by P4503A4. Among purified P450 enzymes examined, P4501A2 as well as P4503A4 were highly active in transforming 6-amino-chrysene to reactive metabolites, suggesting the involvement of different human P450 enzymes in the reaction. Four human samples that contained relatively high levels of particular P450 enzymes in their microsomes were selected and used for further characterization. Liver microsomes from human samples HL-13 and HL-4 that contained the highest levels of P4502B6 and P4503A4 respectively, were sensitive to the respective antibodies raised against monkey P4502B and human P4503A4; the activity in sample HL-16 having the highest level of P4501A2 was inhibited by anti-P4501A2 IgG. alpha-Naphthoflavone enhanced the activation of 6-aminochrysene very significantly in human liver microsomes enriched in P4503A4 and P4502B6 enzymes. Pentachlorophenol, an inhibitor of acetyltransferase activity, suppressed the

  19. Some mutations of exon-7 in cytochrome P450 gene 3A4 and their effect on 6beta-hydroxylation of cortisol.

    Science.gov (United States)

    Shchepotina, E G; Vavilin, V A; Goreva, O B; Lyakhovich, V V

    2006-06-01

    Analysis of variants of exon 7 sequences in cytochrome P450 gene 3A4 in a sample of Caucasoid persons was carried out. The effect of these variants on activity of CYP3A was assessed by the level of cortisol 6beta-hydroxylation. Alleles CYP3A4*5 and *17 were not detected: probably, these mutations are rare and consequently they have little effect on the character of polymorphic distribution of CYP3A4 activity in this population. The incidence of CYP3A4*2 was 5.26%. The 6betaOH-cortisol/cortisol ratio in an individual with CYP3A4*2/*2 genotype was 7.408, which corresponded to "slow metabolizer" phenotype in this sample.

  20. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques

    NARCIS (Netherlands)

    Vasanthanathan, P.; Taboureau, O.; Oostenbrink, C.; Vermeulen, N.P.; Olsen, L.; Jorgensen, F.S.

    2009-01-01

    The cytochrome P450 (P450) superfamily plays an important role in the metabolism of drug compounds, and it is therefore highly desirable to have models that can predict whether a compound interacts with a specific isoform of the P450s. In this work, we provide in silico models for classification of

  1. A fungal P450 (CYP5136A3 capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129 and Leu(324.

    Directory of Open Access Journals (Sweden)

    Khajamohiddin Syed

    Full Text Available The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs. Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9, in addition to PAHs (3-4 ring size. AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation. Structure-activity analysis based on a 3D model indicated a potential role of Trp(129 and Leu(324 in the oxidation mechanism of CYP5136A3. Replacing Trp(129 with Leu (W129L and Phe (W129F significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80% as compared to W129F which caused greater reduction in pyrene oxidation (88%. Almost complete loss of oxidation of C3-C8 APs (83-90% was observed for the W129L mutation as compared to W129F (28-41%. However, the two mutations showed a comparable loss (60-67% in C9-AP oxidation. Replacement of Leu(324 with Gly (L324G caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20-58%, and complete loss of activity toward nonylphenol (C9-AP. Collectively, the results suggest that Trp(129 and Leu(324 are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first

  2. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-02-15

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture. Thereafter the concentration decreased, reaching zero at a late-stationary phase. When the yeast was grown on a medium that contained lactose or pentoses (L-arabinose, L-rhamnose, D-ribose and D-xylose), cytochrome P-450 did not occur. When a non-fermentable energy source (glycerol, lactate or ethanol) was used, no cytochrome P-450 was detectable. Transfer of cells from D-glucose medium to ethanol medium caused a slow disappearance of cytochrome P-450, although the amount of the haemoprotein still continued to increase in the control cultures. Cytochrome P-450 appeared thus to accumulate in conditions where the rate of growth was fast and fermentation occurred. Occurrence of this haemoprotein is not necessarily linked, however, with the repression of mitochondrial haemoprotein synthesis.

  3. Phorate can reverse P450 metabolism-based herbicide resistance in Lolium rigidum.

    Science.gov (United States)

    Busi, Roberto; Gaines, Todd Adam; Powles, Stephen

    2017-02-01

    Organophosphate insecticides can inhibit specific cytochrome P450 enzymes involved in metabolic herbicide resistance mechanisms, leading to synergistic interactions between the insecticide and the herbicide. In this study we report synergistic versus antagonistic interactions between the organophosphate insecticide phorate and five different herbicides observed in a population of multiple herbicide-resistant Lolium rigidum. Phorate synergised with three different herbicide modes of action, enhancing the activity of the ALS inhibitor chlorsulfuron (60% LD 50 reduction), the VLCFAE inhibitor pyroxasulfone (45% LD 50 reduction) and the mitosis inhibitor trifluralin (70% LD 50 reduction). Conversely, phorate antagonised the two thiocarbamate herbicides prosulfocarb and triallate with a 12-fold LD 50 increase. We report the selective reversal of P450-mediated metabolic multiple resistance to chlorsulfuron and trifluralin in the grass weed L. rigidum by synergistic interaction with the insecticide phorate, and discuss the putative mechanistic basis. This research should encourage diversity in herbicide use patterns for weed control as part of a long-term integrated management effort to reduce the risk of selection of metabolism-based multiple herbicide resistance in L. rigidum. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Deletion of P399{sub E}401 in NADPH cytochrome P450 oxidoreductase results in partial mixed oxidase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Christa E., E-mail: christa.flueck@dkf.unibe.ch [Pediatric Endocrinology, Diabetology and Metabolism, University Children' s Hospital, Bern (Switzerland); Mallet, Delphine [Service d' Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France); Hofer, Gaby [Pediatric Endocrinology, Diabetology and Metabolism, University Children' s Hospital, Bern (Switzerland); Samara-Boustani, Dinane [Hopital Necker-Enfants malades, Paris (France); Leger, Juliane [Hopital Robert Debre, Paris (France); Polak, Michel [Hopital Necker-Enfants malades, Paris (France); Morel, Yves [Service d' Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France); Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, University Children' s Hospital, Bern (Switzerland)

    2011-09-09

    Highlights: {yields} Mutations in human POR cause congenital adrenal hyperplasia. {yields} We are reporting a novel 3 amino acid deletion mutation in POR P399{sub E}401del. {yields} POR mutation P399{sub E}401del decreased P450 activities by 60-85%. {yields} Impairment of steroid metabolism may be caused by multiple hits. {yields} Severity of aromatase inhibition is related to degree of in utero virilization. -- Abstract: P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399{sub E}401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399{sub E}401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17{alpha}-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399{sub E}401 revealed reduced stability and flexibility of the mutant. In conclusion, P399{sub E}401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399{sub E}401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.

  5. PaCYP78A9, a Cytochrome P450, Regulates Fruit Size in Sweet Cherry (Prunus avium L.

    Directory of Open Access Journals (Sweden)

    Xiliang Qi

    2017-12-01

    Full Text Available Sweet cherry (Prunus avium L. is an important fruit crop in which fruit size is strongly associated with commercial value; few genes associated with fruit size have, however, been identified in sweet cherry. Members of the CYP78A subfamily, a group of important cytochrome P450s, have been found to be involved in controlling seed size and development in Arabidopsis thaliana, rice, soybean, and tomato. However, the influence of CYP78A members in controlling organ size and the underlying molecular mechanisms in sweet cherry and other fruit trees remains unclear. Here, we characterized a P. avium CYP78A gene PaCYP78A9 that is thought to be involved in the regulation of fruit size and organ development using overexpression and silencing approaches. PaCYP78A9 was significantly expressed in the flowers and fruit of sweet cherry. RNAi silencing of PaCYP78A9 produced small cherry fruits and PaCYP78A9 was found to affect fruit size by mediating mesocarp cell proliferation and expansion during fruit growth and development. Overexpression of PaCYP78A9 in Arabidopsis resulted in increased silique and seed size and PaCYP78A9 was found to be highly expressed in the inflorescences and siliques of transgenic plants. Genes related to cell cycling and proliferation were downregulated in fruit from sweet cherry TRV::PaCYP78A9-silencing lines, suggesting that PaCYP78A9 is likely to be an important upstream regulator of cell cycle processes. Together, our findings indicate that PaCYP78A9 plays an essential role in the regulation of cherry fruit size and provide insights into the molecular basis of the mechanisms regulating traits such as fruit size in P. avium.

  6. The interaction of representative members from two classes of antimycotics--the azoles and the allylamines--with cytochromes P-450 in steroidogenic tissues and liver.

    Science.gov (United States)

    Schuster, I

    1985-06-01

    Spectrophotometric studies with ketoconazole, clotrimazole and miconazole show strong type-II interactions with several cytochromes P-450, particularly (Ks greater than 10(7)M-1; pH7.4; 25 degrees C) with the 11 beta-hydroxylase of adrenal mitochondria, with the 17 alpha/20 lyase of testis microsomes and with some forms of cytochromes P-450 of liver. A tight binding of the azoles also occurs to the reduced cytochromes, giving rise to an impeded CO binding to the haem iron. The binding of the azoles to 11 beta-hydroxylase and 17 alpha/20 lyase is much tighter than the binding of endogenous substrates, and consequently inhibition of steroidogenesis will occur at these sites. The metabolism of xenobiotic substrates by the cytochromes P-450 of liver will also be severely impeded. In contrast, the allylamines naftifine and SF 86-327 are type-I substrates for a small portion of cytochromes P-450 of liver microsomes only and there is no spectral evidence for binding to the cytochromes P-450 involved in steroid biosynthesis.

  7. The human genome project and novel aspects of cytochrome P450 research

    International Nuclear Information System (INIS)

    Ingelman-Sundberg, Magnus

    2005-01-01

    Currently, 57 active cytochrome P450 (CYP) genes and 58 pseudogenes are known to be present in the human genome. Among the genes discovered by initiatives in the human genome project are CYP2R1, CYP2W1, CYP2S1, CYP2U1 and CYP3A43, the latter apparently encoding a pseudoenzyme. The function, polymorphism and regulation of these genes are still to be discovered to a great extent. The polymorphism of drug metabolizing CYPs is extensive and influences the outcome of drug therapy causing lack of response or adverse drug reactions. The basis for the differences in the global distribution of the polymorphic variants is inactivating gene mutations and subsequent genetic drift. However, polymorphic alleles carrying multiple active gene copies also exist and are suggested in case of CYP2D6 to be caused by positive selection due to development of alkaloid resistance in North East Africa about 10,000-5000 BC. The knowledge about the CYP genes and their polymorphisms is of fundamental importance for effective drug therapy and for drug development as well as for understanding metabolic activation of carcinogens and other xenobiotics. Here, a short review of the current knowledge is given

  8. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.).

    Science.gov (United States)

    Li, Xiuxia; Li, Ran; Zhu, Bin; Gao, Xiwu; Liang, Pei

    2018-06-01

    The diamondback moth Plutella xylostella (L.) is the most widely distributed pest of cruciferous crops and has developed resistance to most commonly used insecticides, including chlorantraniliprole. Resistance to chlorantraniliprole is likely caused by mutations of the target, the ryanodine receptor, and/or mediated by an increase in detoxification enzyme activities. Although target-site resistance is documented in detail, resistance mediated by increased metabolism has rarely been reported. The activity of cytochrome P450 was significantly higher in two resistant P. xylostella populations than in a susceptible one. Among ten detected cytochrome P450 genes, CYP6BG1 was significantly overexpressed (over 80-fold) in a field-resistant population compared with expression in a susceptible one. Knockdown of CYP6BG1 by RNA interference dramatically reduced the 7-ethoxycoumarin-O-deethylase (7-ECOD) activity of P450 by 45.5% and increased the toxicity of chlorantraniliprole toward P. xylostella by 26.8% at 48 h postinjection of double-stranded RNA. By contrast, overexpression of CYP6BG1 in a transgenic Drosophila melanogaster line significantly decreased the toxicity of the insecticide to the transgenic flies. Overexpression of CYP6BG1 may contribute to chlorantraniliprole resistance in P. xylostella. Our findings will provide new insights into the mechanisms of resistance to diamide insecticides in other insect pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice

    International Nuclear Information System (INIS)

    Hernandez, Juan P.; Chapman, Laura M.; Kretschmer, Xiomara C.; Baldwin, William S.

    2006-01-01

    Nonylphenol (NP) is a breakdown product of nonylphenol ethoxylates, which are used in a variety of industrial, agricultural, household cleaning, and beauty products. NP is one of the most commonly found toxicants in the United States and Europe and is considered a toxicant of concern because of its long half-life. NP is an environmental estrogen that also activates the pregnane X-receptor (PXR) and in turn induces P450s. No study to date has examined the gender-specific effects of NP on hepatic P450 expression. We provided NP at 0, 50 or 75 mg/kg/day for 7 days to male and female FVB/NJ mice and compared their P450 expression profiles. Q-PCR was performed on hepatic cDNA using primers to several CYP isoforms regulated by PXR or its relative, the constitutive androstane receptor (CAR). In female mice, NP induced Cyp2b10 and Cyp2b13, and downregulated the female-specific P450s, Cyp3a41 and Cyp3a44. In contrast, male mice treated with NP showed increased expression of Cyp2a4, Cyp2b9, and Cyp2b10. Western blots confirmed induction of Cyp2b subfamily members in both males and females. Consistent with the Q-PCR data, Western blots showed dose-dependent downregulation of Cyp3a only in females and induction of Cyp2a only in males. The overall increase in female-predominant P450s in males (Cyp2a4, 2b9) and the decrease in female-predominant P450s in females (Cyp3a41, 3a44) suggest that NP is in part feminizing the P450 profile in males and masculinizing the P450 profile in females. Testosterone hydroxylation was also altered in a gender-specific manner, as testosterone 16α-hydroxylase activity was only induced in NP-treated males. In contrast, NP-treated females demonstrated a greater propensity for metabolizing zoxazolamine probably due to greater Cyp2b induction in females. In conclusion, NP causes gender-specific P450 induction and therefore exposure to NP may cause distinct pharmacological and toxicological effects in males compared to females

  10. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells.

    Science.gov (United States)

    Gray, Joshua P; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A

    2016-11-16

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H 2 O 2 . Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Immobilized Cytochrome P450 2C9 (CYP2C9): Applications for Metabolite Generation, Monitoring Protein-Protein Interactions, and Improving In-vivo Predictions Using Enhanced In-vitro Models

    Science.gov (United States)

    Wollenberg, Lance A.

    Cytochrome P450 (P450) enzymes are a family of oxoferroreductase enzymes containing a heme moiety and are well known to be involved in the metabolism of a wide variety of endogenous and xenobiotic materials. It is estimated that roughly 75% of all pharmaceutical compounds are metabolized by these enzymes. Traditional reconstituted in-vitro incubation studies using recombinant P450 enzymes are often used to predict in-vivo kinetic parameters of a drug early in development. However, in many cases, these reconstituted incubations are prone to aggregation which has been shown to affect the catalytic activity of an enzyme. Moreover, the presence of other isoforms of P450 enzymes present in a metabolic incubation, as is the case with microsomal systems, may affect the catalytic activity of an enzyme through isoform-specific protein-protein interactions. Both of these effects may result in inaccurate prediction of in-vivo drug metabolism using in-vitro experiments. Here we described the development of immobilized P450 constructs designed to elucidate the effects of aggregation and protein-protein interactions between P450 isoforms on catalytic activities. The long term objective of this project is to develop a system to control the oligomeric state of Cytochrome P450 enzymes to accurately elucidate discrepancies between in vitro reconstituted systems and actual in vivo drug metabolism for the precise prediction of metabolic activity. This approach will serve as a system to better draw correlations between in-vivo and in-vitro drug metabolism data. The central hypothesis is that Cytochrome P450 enzymes catalytic activity can be altered by protein-protein interactions occurring between Cytochrome P450 enzymes involved in drug metabolism, and is dependent on varying states of protein aggregation. This dissertation explains the details of the construction and characterization of a nanostructure device designed to control the state of aggregation of a P450 enzyme. Moreover

  12. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-01-01

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture...

  13. Metabolism of 7-ethoxycoumarin, flavanone and steroids by cytochrome P450 2C9 variants.

    Science.gov (United States)

    Uno, Tomohide; Nakano, Ryosuke; Kanamaru, Kengo; Takenaka, Shinji; Uno, Yuichi; Imaishi, Hiromasa

    2017-11-01

    CYP2C9 is a human microsomal cytochrome P450c (CYP). Much of the variation in CYP2C9 levels and activity can be attributed to polymorphisms of this gene. Wild-type CYP2C9 and mutants were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. The hydroxylase activities toward 7-ethoxycoumarin, flavanone and steroids were examined. Six CYP2C9 variants showed Soret peaks (450 nm) typical of P450 in reduced CO-difference spectra. CYP2C9.38 had the highest 7-ethoxycoumarin de-ethylase activity. All the CYP2C9 variants showed lower flavanone 6-hydroxylation activities than CYP2C9.1 (the wild-type). CYP2C9.38 showed higher activities in testosterone 6β-hydroxylation, progesterone 6β-/16α-hydroxylation, estrone 11α-hydroxylation and estradiol 6α-hydroxylation than CYP2C9.1. CYP2C9.40 showed higher testosterone 17-oxidase activity than CYP2C9.1; CYP2C9.8 showed higher estrone 16α-hydroxylase activity and CYP2C9.12 showed higher estrone 11α-hydroxylase activity. CYP2C9.9 and CYP2C9.10 showed similar activities to CYP2C9.1. These results indicate that the substrate specificity of CYP2C9.9 and CYP2C9.10 was not changed, but CYP2C9.8, CYP2C9.12 and CYP2C9.40 showed different substrate specificity toward steroids compared with CYP2C9.1; and especially CYP2C9.38 displayed diverse substrate specificities towards 7-ethoxycoumarin and steroids. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Phylogenetic and functional characterization of ten P450 genes from the CYP6AE subfamily of Helicoverpa armigera involved in xenobiotic metabolism

    DEFF Research Database (Denmark)

    Shi, Yu; Wang, Huidong; Liu, Zhi

    2018-01-01

    450s in this subfamily can metabolise imidacloprid, but with lower efficiency than Bemisia tabaci CYP6CM1vQ. CYP6AE20 had virtually no metabolic competence to these four compounds but could metabolise several model fluorogenic substrates. These results showed the broad substrate spectrum of H...

  15. Upregulation of a tonoplast-localized cytochrome P450 during petal senescence in Petunia inflata

    Directory of Open Access Journals (Sweden)

    Ishida Hiroyuki

    2006-04-01

    Full Text Available Abstract Background Gene expression in Petunia inflata petals undergoes major changes following compatible pollination. Severe flower wilting occurs reproducibly within 36 hours, providing an excellent model for investigation of petal senescence and programmed cell death. Expression of a number of genes and various enzyme activities involved in the degradation and remobilization of macromolecules have been found to be upregulated during the early stages of petal senescence. Results By performing differential display of cDNAs during Petunia inflata petal senescence, a highly upregulated gene encoding a cytochrome P450 was identified. Analysis of the complete cDNA sequence revealed that the predicted protein is a member of the CYP74C family (CYP74C9 and is highly similar to a tomato CYP74C allene oxide synthase (AOS that is known to be active on 9-hydroperoxides. Cloning of the petunia genomic DNA revealed an intronless gene with a promoter region that carries signals found in stress-responsive genes and potential binding sites for Myb transcription factors. Transcripts were present at detectable levels in root and stem, but were 40 times more abundant in flowers 36 hours after pollination. Ethylene and jasmonate treatment resulted in transitory increases in expression in detached flowers. A protein fusion of the CYP74C coding region to a C-terminal GFP was found to be located in the tonoplast. Conclusion Though oxylipins, particularly jasmonates, are known to be involved in stress responses, the role of other products of CYP74 enzymes is less well understood. The identification of a CYP74C family member as a highly upregulated gene during petal senescence suggests that additional products of fatty acid metabolism may play important roles during programmed cell death. In contrast to the chloroplast localization of AOS proteins in the CYP74A subfamily, GFP fusion data indicates that the petunia CYP74C9 enzyme is in the tonoplast. This result

  16. Chemoenzymatic elaboration of monosaccharides using engineered cytochrome P450_(BM3) demethylases

    OpenAIRE

    Lewis, Jared C.; Bastian, Sabine; Bennett, Clay S.; Fu, Yu; Mitsuda, Yuuichi; Chen, Mike M.; Greenberg, William A.; Wong, Chi-Huey; Arnold, Frances H.

    2009-01-01

    Polysaccharides comprise an extremely important class of biopolymers that play critical roles in a wide range of biological processes, but the synthesis of these compounds is challenging because of their complex structures. We have developed a chemoenzymatic method for regioselective deprotection of monosaccharide substrates using engineered Bacillus megaterium cytochrome P450 (P450_(BM3)) demethylases that provides a highly efficient means to access valuable intermediate...

  17. Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Chunhua eMa

    2016-05-01

    Full Text Available Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable.Principal Findings:A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80% were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant.Conclusion:The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.

  18. Optimizing The Performance of Streaming Numerical Kernels On The IBM Blue Gene/P PowerPC 450

    KAUST Repository

    Malas, Tareq

    2011-07-01

    Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution of partial differential equations, represents a formidable challenge despite the regularity of memory access. Sophisticated optimization techniques beyond the capabilities of modern compilers are required to fully utilize the Central Processing Unit (CPU). The aim of the work presented here is to improve the performance of streaming numerical kernels on high performance architectures by developing efficient algorithms to utilize the vectorized floating point units. The importance of the development time demands the creation of tools to enable simple yet direct development in assembly to utilize the power-efficient cores featuring in-order execution and multiple-issue units. We implement several stencil kernels for a variety of cached memory scenarios using our Python instruction simulation and generation tool. Our technique simplifies the development of efficient assembly code for the IBM Blue Gene/P supercomputer\\'s PowerPC 450. This enables us to perform high-level design, construction, verification, and simulation on a subset of the CPU\\'s instruction set. Our framework has the capability to implement streaming numerical kernels on current and future high performance architectures. Finally, we present several automatically generated implementations, including a 27-point stencil achieving a 1.7x speedup over the best previously published results.

  19. Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants.

    Science.gov (United States)

    Renault, Hugues; De Marothy, Minttu; Jonasson, Gabriella; Lara, Patricia; Nelson, David R; Nilsson, IngMarie; André, François; von Heijne, Gunnar; Werck-Reichhart, Danièle

    2017-08-01

    Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families

    Directory of Open Access Journals (Sweden)

    Yan Liangzhen

    2012-11-01

    Full Text Available Abstract Background The genomes of three major mosquito vectors of human diseases, Anopheles gambiae, Aedes aegypti, and Culex pipiens quinquefasciatus, have been previously sequenced. C. p. quinquefasciatus has the largest number of predicted protein-coding genes, which partially results from the expansion of three detoxification gene families: cytochrome P450 monooxygenases (P450, glutathione S-transferases (GST, and carboxyl/cholinesterases (CCE. However, unlike An. gambiae and Ae. aegypti, which have large amounts of gene expression data, C. p. quinquefasciatus has limited transcriptomic resources. Knowledge of complete gene expression information is very important for the exploration of the functions of genes involved in specific biological processes. In the present study, the three detoxification gene families of C. p. quinquefasciatus were analyzed for phylogenetic classification and compared with those of three other dipteran insects. Gene expression during various developmental stages and the differential expression responsible for parathion resistance were profiled using the digital gene expression (DGE technique. Results A total of 302 detoxification genes were found in C. p. quinquefasciatus, including 71 CCE, 196 P450, and 35 cytosolic GST genes. Compared with three other dipteran species, gene expansion in Culex mainly occurred in the CCE and P450 families, where the genes of α-esterases, juvenile hormone esterases, and CYP325 of the CYP4 subfamily showed the most pronounced expansion on the genome. For the five DGE libraries, 3.5-3.8 million raw tags were generated and mapped to 13314 reference genes. Among 302 detoxification genes, 225 (75% were detected for expression in at least one DGE library. One fourth of the CCE and P450 genes were detected uniquely in one stage, indicating potential developmentally regulated expression. A total of 1511 genes showed different expression levels between a parathion-resistant and a

  1. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Edi, Constant V; Djogbénou, Luc; Jenkins, Adam M; Regna, Kimberly; Muskavitch, Marc A T; Poupardin, Rodolphe; Jones, Christopher M; Essandoh, John; Kétoh, Guillaume K; Paine, Mark J I; Koudou, Benjamin G; Donnelly, Martin J; Ranson, Hilary; Weetman, David

    2014-03-01

    Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d'Ivoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with

  2. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar.

    Science.gov (United States)

    Irmisch, Sandra; Clavijo McCormick, Andrea; Günther, Jan; Schmidt, Axel; Boeckler, Gerhard Andreas; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2014-12-01

    Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  3. [Effects of electroacupuncture of "Guanyuan" (CV 4)-"Zhongji" (CV 3) on ovarian P450 arom and P450c 17alpha expression and relevant sex hormone levels in rats with polycystic ovary syndrome].

    Science.gov (United States)

    Sun, Jie; Zhao, Ji-meng; Ji, Rong; Liu, Hui-rong; Shi, Yin; Jin, Chun-lan

    2013-12-01

    To observe the effect of electroacupuncture (EA) on ovarian P 450 arom and P 450 c 17 alpha (aromatases) expression and related sex hormone levels in polycystic ovary syndrome (PCOS) rats. Thirty SD rats were randomly divided into normal control group, model group and EA group (10 rats/group). PCOS model was made by intragastric administration of letrozole at 1 mg/kg per day for consecutive 21 days. "Guanyuan" (CV 4) and "Zhongji" (CV 3) acupoints were stimulated 20 min by EA (2 mA, 2 Hz), once daily for consecutive 14 days. The damp ovarian weight was weighed and the pathological changes of the ovarian tissue were observed after H. E. staining. Ultrastructural changes of the ovarian tissue were observed by transmission electron microscope. Immunohistochemical staining was adopted to detect ovarian follicle granulosa cell P 450 arom and follicle membrane cell P 450 c 17 alpha expression. The contents of estradiol (E 2), estrone (E 1), androstenedione (ASD), testosterone (T), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the ovarian tissue were measured by ELISA. Compared with the normal group, there was a significant increase in the damp weight of both left and right ovarian tissues in the model group (P ovarian weight was remarkably reduced (P ovarian tissue such as thickening of the superficial albugineous coat of the ovary, thinning of the granular cell layer, and disappearance of the intraovular oocytes and coronaradiata under light microscope, and mitochondrion swelling, fracture or disappearance of mitochondrial cristae, and enlargement of the endoplasmic reticulum, etc. after modeling were obviously improved in the EA group. In comparison to the control group, the expression of the follicle granulosa cell P450 arom was significantly down-regulated and that of follicle membrane cell P 450 c 17 alpha was significantly upregulated in the model group (P ovarian tissues (P ovarian E 1 and E2 (P ovarian ASD, T and LH levels were notably

  4. Purification of human placental aromatase cytochrome P-450 with monoclonal antibody and its characterization

    International Nuclear Information System (INIS)

    Yoshida, Nobutaka; Osawa, Yoshio

    1991-01-01

    A simple and efficient method is described for the purification of microsomal aromatase cytochrome P-450 from human placenta. The enzyme was solubilized with Emulgen 913 and sodium cholate and subjected to chromatography on a column of Sepharose 4B couples with a specific monoclonal antibody, followed by hydroxyapatite column chromatography. The specific cytochrome P-450 content of purified aromatase was 13.1 (12-14.8) nmol/mg of protein. Aromatase assays were carried out with reconstituted systems of bovine liver P-450 reductase and dilauroyl-L-α-phosphatidylcholine with [1β- 3 H,4- 14 C]androstenedione as substrate. The total recovery of purified aromatase activity was 32.2%, and P-450 recovery was 17.6%. The very high K m value for 16α-hydroxytestosterone aromatization gives a reasonable indication that estriol is not the directly aromatized product in the fetoplacental unit of human pregnancy. The aromatase P-450 was subjected to SDS-polyacrylamide gel electrophoresis in increasing quantities. Silver stain detection techniques indicated a single band having a molecular mass of 55 kDa with greater than 97% purity. The stability analysis showed a half-life of over 4 years on storage at -80C

  5. Genome-Wide Analysis, Classification, Evolution, and Expression Analysis of the Cytochrome P450 93 Family in Land Plants.

    Directory of Open Access Journals (Sweden)

    Hai Du

    Full Text Available Cytochrome P450 93 family (CYP93 belonging to the cytochrome P450 superfamily plays important roles in diverse plant processes. However, no previous studies have investigated the evolution and expression of the members of this family. In this study, we performed comprehensive genome-wide analysis to identify CYP93 genes in 60 green plants. In all, 214 CYP93 proteins were identified; they were specifically found in flowering plants and could be classified into ten subfamilies-CYP93A-K, with the last two being identified first. CYP93A is the ancestor that was derived in flowering plants, and the remaining showed lineage-specific distribution-CYP93B and CYP93C are present in dicots; CYP93F is distributed only in Poaceae; CYP93G and CYP93J are monocot-specific; CYP93E is unique to legumes; CYP93H and CYP93K are only found in Aquilegia coerulea, and CYP93D is Brassicaceae-specific. Each subfamily generally has conserved gene numbers, structures, and characteristics, indicating functional conservation during evolution. Synonymous nucleotide substitution (dN/dS analysis showed that CYP93 genes are under strong negative selection. Comparative expression analyses of CYP93 genes in dicots and monocots revealed that they are preferentially expressed in the roots and tend to be induced by biotic and/or abiotic stresses, in accordance with their well-known functions in plant secondary biosynthesis.

  6. Polymerase chain reaction amplification fails to detect aromatase cytochrome P450 transcripts in normal human endometrium or decidua.

    Science.gov (United States)

    Bulun, S E; Mahendroo, M S; Simpson, E R

    1993-06-01

    It has been proposed that the biosynthesis of estrogens by the human endometrium may be of physiological significance during the menstrual cycle. Local estrogen production was also suggested to be important in the development of endometrial cancer; however, the presence or absence of aromatase enzyme activity in normal human endometrium is controversial. To address this issue, we used a sensitive technique capable of detecting mRNA transcripts present in only very low copy number. The polymerase chain reaction linked to reverse transcription (RT-PCR) was used to evaluate the presence or absence of aromatase cytochrome P450 (P450arom) transcripts in endometrial tissues (n = 7) and endometrial stromal cells (n = 9) under various culture conditions. RNA was isolated from four proliferative and three secretory tissue samples and from cultured endometrial stromal cells isolated from seven proliferative and two secretory endometria. Five sets of cultures were treated with medroxyprogesterone acetate (MPA), estradiol (E2), and forskolin. Additionally, RNA was isolated from decidualized endometrium obtained from a patient with tubal pregnancy. A single stranded cDNA was synthesized from total RNA using Moloney murine leukemia virus reverse transcriptase and a P450arom-specific oligonucleotide. The single stranded cDNA was used as a template for PCR and was amplified for 20-35 cycles using P450arom-specific primers. RNA from adipose tissue and placenta was amplified to provide positive controls, whereas myometrial RNA was used as a negative control. In two experiments involving two endometrial tissues and three sets of cells in culture, a rat P450arom cRNA was coamplified in each sample as an internal control to demonstrate that the remote possibility of RT-PCR failures in individual test samples cannot account for our negative results. By Southern or slot blot hybridization of the amplified fragments using human and rat P450arom-specific probes, we found no evidence for

  7. Pregnane X receptor-dependent induction of the CYP3A4 gene by o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane.

    Science.gov (United States)

    Medina-Díaz, Irma M; Arteaga-Illán, Georgina; de León, Mario Bermudez; Cisneros, Bulmaro; Sierra-Santoyo, Adolfo; Vega, Libia; Gonzalez, Frank J; Elizondo, Guillermo

    2007-01-01

    CYP3A4, the predominant cytochrome P450 (P450) expressed in human liver and intestine, contributes to the metabolism of approximately half the drugs in clinical use today. CYP3A4 catalyzes the 6beta-hydroxylation of a number of steroid hormones and is involved in the bioactivation of environmental procarcinogens. The expression of CYP3A4 is affected by several stimuli, including environmental factors such as insecticides and pesticides. The o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane (DDT) isomer of DDT comprises approximately 20% of technical grade DDT, which is an organochloride pesticide. We have recently shown that o,p'-DDT exposure increases CYP3A4 mRNA levels in HepG2 cells. To determine the mechanism by which o,p'-DDT induces CYP3A4 expression, transactivation and electrophoretic mobility shift assays were carried out, revealing that o,p'-DDT activates the CYP3A4 gene promoter through the pregnane X receptor (PXR). CYP3A4 gene promoter activation resulted in both an increase in CYP3A4 mRNA levels and an increase in the total CYP3A4 activity in HepG2 cells. We also observed induction of CYP3A4 and mouse Cyp3a11 mRNA in the intestine of CYP3A4-transgenic mice after exposure to 1 mg/kg o,p'-DDT. At higher doses, a decrease of CYP3A4 inducibility was observed together with an increase in levels of interleukin 6 mRNA, a proinflammatory cytokine that strongly represses CYP3A4 transcription. The present study indicates that regulation of other genes under PXR control may be altered by o,p'-DDT exposure.

  8. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cawley, George F.; Ardoin, Taylor G. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Backes, Wayne L. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  9. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    International Nuclear Information System (INIS)

    Reed, James R.; Cawley, George F.; Ardoin, Taylor G.; Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W.; Backes, Wayne L.

    2014-01-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  10. Transcriptomic analysis of Siberian ginseng (Eleutherococcus senticosus) to discover genes involved in saponin biosynthesis.

    Science.gov (United States)

    Hwang, Hwan-Su; Lee, Hyoshin; Choi, Yong Eui

    2015-03-14

    Eleutherococcus senticosus, Siberian ginseng, is a highly valued woody medicinal plant belonging to the family Araliaceae. E. senticosus produces a rich variety of saponins such as oleanane-type, noroleanane-type, 29-hydroxyoleanan-type, and lupane-type saponins. Genomic or transcriptomic approaches have not been used to investigate the saponin biosynthetic pathway in this plant. In this study, de novo sequencing was performed to select candidate genes involved in the saponin biosynthetic pathway. A half-plate 454 pyrosequencing run produced 627,923 high-quality reads with an average sequence length of 422 bases. De novo assembly generated 72,811 unique sequences, including 15,217 contigs and 57,594 singletons. Approximately 48,300 (66.3%) unique sequences were annotated using BLAST similarity searches. All of the mevalonate pathway genes for saponin biosynthesis starting from acetyl-CoA were isolated. Moreover, 206 reads of cytochrome P450 (CYP) and 145 reads of uridine diphosphate glycosyltransferase (UGT) sequences were isolated. Based on methyl jasmonate (MeJA) treatment and real-time PCR (qPCR) analysis, 3 CYPs and 3 UGTs were finally selected as candidate genes involved in the saponin biosynthetic pathway. The identified sequences associated with saponin biosynthesis will facilitate the study of the functional genomics of saponin biosynthesis and genetic engineering of E. senticosus.

  11. Analysis of the oxidation of short chain alkynes by flavocytochrome P450 BM3.

    Science.gov (United States)

    Waltham, Timothy N; Girvan, Hazel M; Butler, Christopher F; Rigby, Stuart R; Dunford, Adrian J; Holt, Robert A; Munro, Andrew W

    2011-04-01

    Bacillus megaterium flavocytochrome P450 BM3 (BM3) is a high activity fatty acid hydroxylase, formed by the fusion of soluble cytochrome P450 and cytochrome P450 reductase modules. Short chain (C6, C8) alkynes were shown to be substrates for BM3, with productive outcomes (i.e. alkyne hydroxylation) dependent on position of the carbon-carbon triple bond in the molecule. Wild-type P450 BM3 catalyses ω-3 hydroxylation of both 1-hexyne and 1-octyne, but is suicidally inactivated in NADPH-dependent turnover with non-terminal alkynes. A F87G mutant of P450 BM3 also undergoes turnover-dependent heme destruction with the terminal alkynes, pointing to a key role for Phe87 in controlling regioselectivity of alkyne oxidation. The terminal alkynes access the BM3 heme active site led by the acetylene functional group, since hydroxylated products are not observed near the opposite end of the molecules. For both 1-hexyne and 1-octyne, the predominant enantiomeric product formed (up to ∼90%) is the (S)-(-)-1-alkyn-3-ol form. Wild-type P450 BM3 is shown to be an effective oxidase catalyst of terminal alkynes, with strict regioselectivity of oxidation and potential biotechnological applications. The absence of measurable octanoic or hexanoic acid products from oxidation of the relevant 1-alkynes is also consistent with previous studies suggesting that removal of the phenyl group in the F87G mutant does not lead to significant levels of ω-oxidation of alkyl chain substrates.

  12. Expanding P450 catalytic reaction space through evolution and engineering

    Science.gov (United States)

    McIntosh, John A.; Farwell, Christopher C.; Arnold, Frances H.

    2014-01-01

    Advances in protein and metabolic engineering have led to wider use of enzymes to synthesize important molecules. However, many desirable transformations are not catalyzed by any known enzyme, driving interest in understanding how new enzymes can be created. The cytochrome P450 enzyme family, whose members participate in xenobiotic metabolism and natural products biosynthesis, catalyzes an impressive range of difficult chemical reactions that continues to grow as new enzymes are characterized. Recent work has revealed that P450-derived enzymes can also catalyze useful reactions previously accessible only to synthetic chemistry. The evolution and engineering of these enzymes provides an excellent case study for how to genetically encode new chemistry and expand biology’s reaction space. PMID:24658056

  13. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome

    Directory of Open Access Journals (Sweden)

    Ritland Carol

    2009-08-01

    Full Text Available Abstract Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs and full-length (FLcDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR and a cytochrome P450 (CYP720B4 from a non-arrayed genomic BAC library of white spruce (Picea glauca. Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR and 94 kbp (CYP720B4 long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs, high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene

  14. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome.

    Science.gov (United States)

    Hamberger, Björn; Hall, Dawn; Yuen, Mack; Oddy, Claire; Hamberger, Britta; Keeling, Christopher I; Ritland, Carol; Ritland, Kermit; Bohlmann, Jörg

    2009-08-06

    Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The

  15. An expression tag toolbox for microbial production of membrane bound plant cytochromes P450

    DEFF Research Database (Denmark)

    Vazquez Albacete, Dario; Cavaleiro, Mafalda; Christensen, Ulla

    2017-01-01

    of the intermediate and the final product of the pathway. Finally, the effect of a robustly performing expression tag was explored with a library of 49 different P450s from medicinal plants and nearly half of these were improved in expression by more than 2-fold. The developed toolbox serves as platform to tune P450...... tag chimeras of the model plant P450 CYP79A1 in different Escherichia coli strains. Using a high-throughput screening platform based on C-terminal GFP fusions, we identify several highly expressing and robustly performing chimeric designs. Analysis of long-term cultures by flow cytometry showed...... homogeneous populations for some of the conditions. Three chimeric designs were chosen for a more complex combinatorial assembly of a multigene pathway consisting of two P450s and a redox partner. Cells expressing these recombinant enzymes catalysed the conversion of the substrate to highly different ratios...

  16. Relation of Transcriptional Factors to the Expression and Activity of Cytochrome P450 and UDP-Glucuronosyltransferases 1A in Human Liver: Co-Expression Network Analysis.

    Science.gov (United States)

    Zhong, Shilong; Han, Weichao; Hou, Chuqi; Liu, Junjin; Wu, Lili; Liu, Menghua; Liang, Zhi; Lin, Haoming; Zhou, Lili; Liu, Shuwen; Tang, Lan

    2017-01-01

    Cytochrome P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) play important roles in the metabolism of exogenous and endogenous compounds. The gene transcription of CYPs and UGTs can be enhanced or reduced by transcription factors (TFs). This study aims to explore novel TFs involved in the regulatory network of human hepatic UGTs/CYPs. Correlations between the transcription levels of 683 key TFs and CYPs/UGTs in three different human liver expression profiles (n = 640) were calculated first. Supervised weighted correlation network analysis (sWGCNA) was employed to define hub genes among the selected TFs. The relationship among 17 defined TFs, CYPs/UGTs expression, and activity were evaluated in 30 liver samples from Chinese patients. The positive controls (e.g., PPARA, NR1I2, NR1I3) and hub TFs (NFIA, NR3C2, and AR) in the Grey sWGCNA Module were significantly and positively associated with CYPs/UGTs expression. And the cancer- or inflammation-related TFs (TEAD4, NFKB2, and NFKB1) were negatively associated with mRNA expression of CYP2C9/CYP2E1/UGT1A9. Furthermore, the effect of NR1I2, NR1I3, AR, TEAD4, and NFKB2 on CYP450/UGT1A gene transcription translated into moderate influences on enzyme activities. To our knowledge, this is the first study to integrate Gene Expression Omnibus (GEO) datasets and supervised weighted correlation network analysis (sWGCNA) for defining TFs potentially related to CYPs/UGTs. We detected several novel TFs involved in the regulatory network of hepatic CYPs and UGTs in humans. Further validation and investigation may reveal their exact mechanism of CYPs/UGTs regulation.

  17. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    Science.gov (United States)

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-04

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.

  18. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae.

    Science.gov (United States)

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J; Tittiger, Claus; Juárez, M Patricia; Mijailovsky, Sergio J; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J; Vontas, John

    2016-08-16

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of (14)C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An gambiae.

  19. Menadione Suppresses Benzo(α)pyrene-Induced Activation of Cytochromes P450 1A: Insights into a Possible Molecular Mechanism.

    Science.gov (United States)

    Sidorova, Yulia A; Perepechaeva, Maria L; Pivovarova, Elena N; Markel, Arkady L; Lyakhovich, Vyacheslav V; Grishanova, Alevtina Y

    2016-01-01

    Oxidative reactions that are catalyzed by cytochromes P450 1A (CYP1A) lead to formation of carcinogenic derivatives of arylamines and polycyclic aromatic hydrocarbons (PAHs), such as the widespread environmental pollutant benzo(α)pyrene (BP). These compounds upregulate CYP1A at the transcriptional level via an arylhydrocarbon receptor (AhR)-dependent signaling pathway. Because of the involvement of AhR-dependent genes in chemically induced carcinogenesis, suppression of this signaling pathway could prevent tumor formation and/or progression. Here we show that menadione (a water-soluble analog of vitamin K3) inhibits BP-induced expression and enzymatic activity of both CYP1A1 and CYP1A2 in vivo (in the rat liver) and BP-induced activity of CYP1A1 in vitro. Coadministration of BP and menadione reduced DNA-binding activity of AhR and increased DNA-binding activity of transcription factors Oct-1 and CCAAT/enhancer binding protein (C/EBP), which are known to be involved in negative regulation of AhR-dependent genes, in vivo. Expression of another factor involved in downregulation of CYP1A-pAhR repressor (AhRR)-was lower in the liver of the rats treated with BP and menadione, indicating that the inhibitory effect of menadione on CYP1A is not mediated by this protein. Furthermore, menadione was well tolerated by the animals: no signs of acute toxicity were detected by visual examination or by assessment of weight gain dynamics or liver function. Taken together, our results suggest that menadione can be used in further studies on animal models of chemically induced carcinogenesis because menadione may suppress tumor formation and possibly progression.

  20. Biodegradation of Cosmetics Products: A Computational Study of Cytochrome P450 Metabolism of Phthalates

    Directory of Open Access Journals (Sweden)

    Fabián G. Cantú Reinhard

    2017-11-01

    Full Text Available Cytochrome P450s are a broad class of enzymes in the human body with important functions for human health, which include the metabolism and detoxification of compounds in the liver. Thus, in their catalytic cycle, the P450s form a high-valent iron(IV-oxo heme cation radical as the active species (called Compound I that reacts with substrates through oxygen atom transfer. This work discusses the possible degradation mechanisms of phthalates by cytochrome P450s in the liver, through computational modelling, using 2-ethylhexyl-phthalate as a model substrate. Phthalates are a type of compound commonly found in the environment from cosmetics usage, but their biodegradation in the liver may lead to toxic metabolites. Experimental studies revealed a multitude of products and varying product distributions among P450 isozymes. To understand the regio- and chemoselectivity of phthalate activation by P450 isozymes, we focus here on the mechanisms of phthalate activation by Compound I leading to O-dealkylation, aliphatic hydroxylation and aromatic hydroxylation processes. We set up model complexes of Compound I with the substrate and investigated the reaction mechanisms for products using the density functional theory on models and did a molecular mechanics study on enzymatic structures. The work shows that several reaction barriers in the gas-phase are close in energy, leading to a mixture of products. However, when we tried to dock the substrate into a P450 isozyme, some of the channels were inaccessible due to unfavorable substrate positions. Product distributions are discussed under various reaction conditions and rationalized with valence bond and thermodynamic models.

  1. Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver.

    NARCIS (Netherlands)

    Oetari, S.; Sudibyo, M.; Commandeur, J.N.M.; Samhoedi, R.; Vermeulen, N.P.E.

    1996-01-01

    The stability of curcumin, as well as the interactions between curcumin and cytochrome P450s (P450s) and glutathione S-transferases (GSTs) in rat liver, were studied. Curcumin is relatively unstable in phosphate buffer at pH 7.4. The stability of curcumin was strongly improved by lowering the pH or

  2. Differentially regulated NADPH:cytochrome P450 oxidoreductases in parsley

    Science.gov (United States)

    Koopmann, Edda; Hahlbrock, Klaus

    1997-01-01

    Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H. PMID:9405720

  3. Differentially regulated NADPH: cytochrome p450 oxidoreductases in parsely

    International Nuclear Information System (INIS)

    Koopmann, E.; Hahlbrock, K.

    1997-01-01

    Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H

  4. [Immunomodulators with an 8-azasteroid structure as inducers of liver cytochrome P-450].

    Science.gov (United States)

    Kuz'mitskiĭ, B B; Dad'kov, I G; Mashkovich, A E; Stoma, O V; Slepneva, L M

    1990-01-01

    Two structural analogues of D-homo-8-azasteroids, both an immunostimulant and an immunodepressant, are inductors of the liver cytochrome P-450 in animals. This capability was shown by means of both a decrease of the hexenal sleep duration in the pharmacological test and an increase of the quantity of cytochrome P-450 and the rate of N-demethylation of aminopyrine in the biochemical assays.

  5. Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450

    International Nuclear Information System (INIS)

    Marinello, A.J.; Bansal, S.K.; Paul, B.; Koser, P.L.; Love, J.; Struck, R.F.; Gurtoo, H.L.

    1984-01-01

    The hepatic cytochrome P-450-mediated metabolism and metabolic activation of [chloroethyl-3H]cyclophosphamide [( chloroethyl-3H]CP) and [4-14C]cyclophosphamide [( 4-14C]CP) were investigated in vitro in the reconstituted system containing cytochrome P-450 isolated from phenobarbital-treated rats. In addition, hepatic microsomal binding and the hepatic microsome-mediated metabolism of [14C]acrolein, a metabolite of [4-14C]CP, were also investigated. The metabolism of [chloroethyl-3H]CP and [4-14C]CP to polar metabolites was found to depend on the presence of NADPH and showed concentration dependence with respect to cytochrome P-450 and NADPH:cytochrome P-450 reductase. Km and Vmax values were essentially similar. The patterns of inhibition by microsomal mixed-function oxidase inhibitors, anti-cytochrome P-450 antibody, and heat denaturation of the cytochrome P-450 were essentially similar, with subtle differences between [4-14C]CP and [chloroethyl-3H]CP metabolism. The in vitro metabolic activation of CP in the reconstituted system demonstrated predominant binding of [chloroethyl-3H]CP to nucleic acids and almost exclusive binding of [4-14C]CP to proteins. Gel electrophoresis-fluorography of the proteins in the reconstituted system treated with [4-14C]CP demonstrated localization of the 14C label in the cytochrome P-450 region. To examine this association further, hepatic microsomes were modified with [14C]acrolein in the presence and the absence of NADPH. The results confirmed covalent association between [14C]acrolein and cytochrome P-450 in the microsomes and also demonstrated further metabolism of [14C]acrolein, apparently to an epoxide, which is capable of binding covalently to proteins. The results of these investigations not only confirm the significance of primary metabolism but also emphasize the potential role of the secondary metabolism of cyclophosphamide in some of its toxic manifestations

  6. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders

    International Nuclear Information System (INIS)

    Lemaire, Benjamin; Kubota, Akira; O'Meara, Conor M.; Lamb, David C.; Tanguay, Robert L.; Goldstone, Jared V.; Stegeman, John J.

    2016-01-01

    Cytochrome P450 (CYP) enzymes for which there is no functional information are considered “orphan” CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to “deorphanization”, that is, identifying CYP20A1 functions and its roles in health and disease. - Highlights: • The “orphan” CYP20A1 was cloned from zebrafish and its sequence analyzed. • Knockdown of CYP20A1 reduced an optomotor response and elicited bursts of activity. • Effects of

  7. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, Benjamin; Kubota, Akira; O' Meara, Conor M. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Lamb, David C. [Institute of Life Science, Medical School, Swansea University, Swansea (United Kingdom); Tanguay, Robert L. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR (United States); Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States)

    2016-04-01

    Cytochrome P450 (CYP) enzymes for which there is no functional information are considered “orphan” CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to “deorphanization”, that is, identifying CYP20A1 functions and its roles in health and disease. - Highlights: • The “orphan” CYP20A1 was cloned from zebrafish and its sequence analyzed. • Knockdown of CYP20A1 reduced an optomotor response and elicited bursts of activity. • Effects of

  8. El citocromo P-450 y la respuesta terapéutica a los antimaláricos Cytochrome P-450 and the response to antimalarial drugs

    Directory of Open Access Journals (Sweden)

    Valentina Guzmán

    2006-01-01

    dealt with only four antimalarial drugs: amodiaquine, chloroquine, mefloquine, and proguanil. RESULTS: Some genetic factors linked to human cytochrome P-450 (mainly its polymorphism, as well as other biological and social factors (the presence of disease itself, or of inflammation and infection, the use of antimalarials in their various combinations, and the patient's nutritional status influence the behavior of this complex enzymatic system. It has only been in the last decade that the genetics of the cytochromes has been explored and that the mechanisms underlying some therapeutic interactions and aspects of drug metabolism have been uncovered, making it possible to characterize the biotransformation pathway of amodiaquine and chloroquine. Hopefully new research will help answer the questions that still remain, some of which pertain to the metabolism of other antimalarial drugs, the distribution in the population of the genetic alleles linked to the enzymes involved in their metabolism, the contribution of these genetic mutations to therapeutic failure, and the possibility of predicting the response to antimalarial therapy. CONCLUSIONS: The therapeutic response to antimalarial drugs is a multifactorial process that is poorly understood, so that it is not possible to ascribe to a specific phenotype or genotype a role in the response to antimalarial therapy. Attention should be given to biological and social factors, such as diet, nutritional status, and inflammatory and infectious processes that are often present in areas where malaria is endemic.

  9. Multivariate Modeling of Cytochrome P450 Enzymes for 4 ...

    African Journals Online (AJOL)

    Conclusion: Apart from insights into important molecular properties for CYP inhibition, the findings may also guide further investigations of novel drug candidates that are unlikely to inhibit multiple CYP sub-types. Keywords: Antimalarial, Chloroquine, Cytochrome P450, Genetic algorithm-based multiple linear regression, ...

  10. P-Link: A method for generating multicomponent cytochrome P450 fusions with variable linker length

    DEFF Research Database (Denmark)

    Belsare, Ketaki D.; Ruff, Anna Joelle; Martinez, Ronny

    2014-01-01

    Fusion protein construction is a widely employed biochemical technique, especially when it comes to multi-component enzymes such as cytochrome P450s. Here we describe a novel method for generating fusion proteins with variable linker lengths, protein fusion with variable linker insertion (P...

  11. Pharmacokinetics and Differential Regulation of Cytochrome P450 Enzymes in Type 1 Allergic Mice.

    Science.gov (United States)

    Tanino, Tadatoshi; Komada, Akira; Ueda, Koji; Bando, Toru; Nojiri, Yukie; Ueda, Yukari; Sakurai, Eiichi

    2016-12-01

    Type 1 allergic diseases are characterized by elevated production of specific immunoglobulin E (IgE) for each antigen and have become a significant health problem worldwide. This study investigated the effect of IgE-mediated allergy on drug pharmacokinetics. To further understand differential suppression of hepatic cytochrome P450 (P450) activity, we examined the inhibitory effect of nitric oxide (NO), a marker of allergic conditions. Seven days after primary sensitization (PS7) or secondary sensitization (SS7), hepatic CYP1A2, CYP2C, CYP2E1, and CYP3A activities were decreased to 45%-75% of the corresponding control; however, CYP2D activity was not downregulated. PS7 and SS7 did not change the expression levels of five P450 proteins. Disappearance of CYP1A2 and CYP2D substrates from the plasma was not significantly different between allergic mice and control mice. In contrast, the area under the curve of a CYP1A2-mediated metabolite in PS7 and SS7 mice was reduced by 50% of control values. Total clearances of a CYP2E1 substrate in PS7 and SS7 mice were significantly decreased to 70% and 50% respectively, of the control without altering plasma protein binding. Hepatic amounts of CYP1A2 and CYP2E1 substrates were enhanced by allergic induction, being responsible for each downregulated activity. NO scavenger treatment completely improved the downregulated P450 activities. Therefore, our data suggest that the onset of IgE-mediated allergy alters the pharmacokinetics of major P450-metabolic capacity-limited drugs except for CYP2D drugs. NO is highly expected to participate in regulatory mechanisms of the four P450 isoforms. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal.

    Science.gov (United States)

    Correia, Maria Almira; Sinclair, Peter R; De Matteis, Francesco

    2011-02-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers, with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biotransformation of both endo- and xenobiotics. This well-recognized functional role notwithstanding, heme also regulates P450 protein synthesis, assembly, repair, and disposal. These less well-appreciated aspects are reviewed herein.

  13. Prevention of LDL-suppression of HMG-CoA reductase (HMGR) activity by progesterone (PG): evidence for cytochrome P-450 involvement

    International Nuclear Information System (INIS)

    Sexton, R.C.; Gupta, A.; Panini, S.R.; Rudney, H.

    1987-01-01

    Incubation of rat intestinal epithelial cells (IEC-6) with PG has been reported by us to prevent the suppression of HMGR activity by LDL. In the present study, addition of LDL and PG to IEC-6 cells resulted in a 2 fold increase in cellular free cholesterol (CH) in 24 h, while HMGR activity remained elevated. PG did not affect the internalization and degradation of [ 125 I] LDL nor the accumulation of free [ 3 H] CH in cells incubated with [ 3 H-cholesteryl linoleate]-LDL. Also, PG did not affect the intracellular transport of LDL-derived [ 3 H] CH to the plasma membrane nor the efflux of the [ 3 H] CH into medium containing human high density lipoprotein. Addition of LDL to cells, in which the cellular CH was radiolabeled from [ 3 H] acetate, resulted in an increased formation of radiolabeled oxysterols, detected by HPLC, and a corresponding decrease in HMGR activity. PG attenuated both the LDL-induced formation of oxysterols and suppression of HMGR activity. PG inhibited cytochrome P-450 dependent oxidation of benzphetamine, aminopyrine and aniline by liver microsomes from phenobarbitol treated rats. These results suggest PG may prevent LDL suppression of HMGR activity in IEC-6 cells by inhibiting cytochrome P-450 dependent formation of regulatory oxysterols

  14. Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach.

    Science.gov (United States)

    Otey, Christopher R; Silberg, Jonathan J; Voigt, Christopher A; Endelman, Jeffrey B; Bandara, Geethani; Arnold, Frances H

    2004-03-01

    Recombination generates chimeric proteins whose ability to fold depends on minimizing structural perturbations that result when portions of the sequence are inherited from different parents. These chimeric sequences can display functional properties characteristic of the parents or acquire entirely new functions. Seventeen chimeras were generated from two CYP102 members of the functionally diverse cytochrome p450 family. Chimeras predicted to have limited structural disruption, as defined by the SCHEMA algorithm, displayed CO binding spectra characteristic of folded p450s. Even this small population exhibited significant functional diversity: chimeras displayed altered substrate specificities, a wide range in thermostabilities, up to a 40-fold increase in peroxidase activity, and ability to hydroxylate a substrate toward which neither parent heme domain shows detectable activity. These results suggest that SCHEMA-guided recombination can be used to generate diverse p450s for exploring function evolution within the p450 structural framework.

  15. The gntP Gene of Escherichia coli Involved in Gluconate Uptake

    DEFF Research Database (Denmark)

    Klemm, Per; Tong, S.; Nielsen, Henrik

    1996-01-01

    The gntP gene, located between the fim and uxu loci in Escherichia coli K-12, has been cloned and characterized. Nucleotide sequencing of a region encompassing the gntP gene revealed an open reading frame of 447 codons with significant homology to the Bacillus subtilis gluconate permease. Northern...

  16. Effects of fluoride and aluminum on expressions of StAR and P450scc of related steroidogenesis in guinea pigs' testis.

    Science.gov (United States)

    Dong, Chunguang; Cao, Jinling; Cao, Chunfang; Han, Yichao; Wu, Shouyan; Wang, Shaolin; Wang, Jundong

    2016-03-01

    A lot of studies have shown that fluoride and aluminum have toxic effect on male reproductive system, but the mechanism of which and the interaction between fluoride and aluminum is still unknown. This study investigated the effects of fluoride (NaF) or/and aluminum (AlCl3) on serum testosterone level, gene and protein expression levels of Steroidogenic Acute Regulatory Protein (StAR) and Cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) in the testes of guinea pigs. Fifty-two guinea pigs were divided randomly into four groups (Control, HiF, HiAl and HiF + HiAl). Fluoride (150 mg NaF/L) or/and aluminum (300 mg AlCl3/L) were orally administrated to male guinea pigs for 13 weeks. The results showed that F and Al reduced number and elevated abnormal ratio of sperm. Meanwhile, the concentrations of serum testosterone in all experimental groups were decreased. P450scc protein expression was significantly reduced in all treatment groups, and StAR expression was decreased remarkably in HiF group and HiF + HiAl group. The levels of StAR mRNA in three groups were reduced by 53.9%, 21.4% and 33.4%, respectively, while the expressions of P450scc mRNA were reduced by 67.8%, 17.0% and 47.8%. Therefore, we concluded that F induced the reduction in testosterone and sperm amount, and thus in lower fertility, which might occur as a consequence of depressed StAR and P450scc mRNA expression. There were no synergistic effects between F and Al, instead, Al weakened the toxicity of F to some extents. The results indicated that Al had antagonism effects on F. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A Transcriptional Regulatory Network Containing Nuclear Receptors and Long Noncoding RNAs Controls Basal and Drug-Induced Expression of Cytochrome P450s in HepaRG Cells.

    Science.gov (United States)

    Chen, Liming; Bao, Yifan; Piekos, Stephanie C; Zhu, Kexin; Zhang, Lirong; Zhong, Xiao-Bo

    2018-07-01

    Cytochrome P450 (P450) enzymes are responsible for metabolizing drugs. Expression of P450s can directly affect drug metabolism, resulting in various outcomes in therapeutic efficacy and adverse effects. Several nuclear receptors are transcription factors that can regulate expression of P450s at both basal and drug-induced levels. Some long noncoding RNAs (lncRNAs) near a transcription factor are found to participate in the regulatory functions of the transcription factors. The aim of this study is to determine whether there is a transcriptional regulatory network containing nuclear receptors and lncRNAs controlling both basal and drug-induced expression of P450s in HepaRG cells. Small interfering RNAs or small hairpin RNAs were applied to knock down four nuclear receptors [hepatocyte nuclear factor 1 α (HNF1 α ), hepatocyte nuclear factor 4 α (HNF4 α ), pregnane X receptor (PXR), and constitutive androstane receptor (CAR)] as well as two lncRNAs [HNF1 α antisense RNA 1 (HNF1 α -AS1) and HNF4 α antisense RNA 1 (HNF4 α -AS1)] in HepaRG cells with or without treatment of phenobarbital or rifampicin. Expression of eight P450 enzymes was examined in both basal and drug-induced levels. CAR and PXR mainly regulated expression of specific P450s. HNF1 α and HNF4 α affected expression of a wide range of P450s as well as other transcription factors. HNF1 α and HNF4 α controlled the expression of their neighborhood lncRNAs, HNF1 α -AS1 and HNF4 α -AS1, respectively. HNF1 α -AS1 and HNF4 α -AS1 was also involved in the regulation of P450s and transcription factors in diverse manners. Altogether, our study concludes that a transcription regulatory network containing the nuclear receptors and lncRNAs controls both basal and drug-induced expression of P450s in HepaRG cells. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP).

    Science.gov (United States)

    Sams, Craig; Loizou, George D; Cocker, John; Lennard, Martin S

    2004-03-07

    The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.

  19. Molecular cloning and functional characterization of multiple NADPH-cytochrome P450 reductases from Andrographis paniculata.

    Science.gov (United States)

    Lin, Huixin; Wang, Jian; Qi, Mengdie; Guo, Juan; Rong, Qixian; Tang, Jinfu; Wu, Yisheng; Ma, Xiaojing; Huang, Luqi

    2017-09-01

    Andrographis paniculata (Burm.f.) Wall. ex Nees is widely used as medicinal herb in Southern and Southeastern Asia and andrographolide is its main medicinal constituent. Based on the structure of andrographolide, it has been proposed that cytochrome P450 enzymes play vital roles on its biosynthesis. NADPH:cytochrome P450 reductase (CPR) is the most important redox partner of multiple P450s. In this study, three CPRs were identified in the genomic data of A. paniculata (namely ApCPR1, ApCPR2, and ApCPR3), and their coding regions were cloned. They varied from 62% to 70% identities to each other at the amino acid sequence level. ApCPR1 belongs to Class I of dicotyledonous CPR while both ApCPR2 and ApCPR3 are grouped to Class II. The recombinant enzymes ApCPR1 and ApCPR2 reduced cytochrome c and ferricyanide in an NADPH-dependent manner. In yeast, they supported the activity of CYP76AH1, a ferruginol-forming enzyme. However, ApCPR3 did not show any enzymatic activities either in vitro or in vivo. Quantitative real-time PCR analysis showed that both ApCPR1 and ApCPR2 expressed in all tissues examined, but ApCPR2 showed higher expression in leaves. Expression of ApCPR2 was inducible by MeJA and its pattern matched with andrographolide accumulation. Present investigation suggested ApCPR2 involves in the biosynthesis of secondary metabolites including andrographolide. Copyright © 2017. Published by Elsevier B.V.

  20. New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners.

    Science.gov (United States)

    Zhang, Wei; Liu, Yi; Yan, Jinyong; Cao, Shaona; Bai, Fali; Yang, Ying; Huang, Shaohua; Yao, Lishan; Anzai, Yojiro; Kato, Fumio; Podust, Larissa M; Sherman, David H; Li, Shengying

    2014-03-05

    Cytochrome P450 enzymes are capable of catalyzing a great variety of synthetically useful reactions such as selective C-H functionalization. Surrogate redox partners are widely used for reconstitution of P450 activity based on the assumption that the choice of these auxiliary proteins or their mode of action does not affect the type and selectivity of reactions catalyzed by P450s. Herein, we present an exceptional example to challenge this postulate. MycG, a multifunctional biosynthetic P450 monooxygenase responsible for hydroxylation and epoxidation of 16-membered ring macrolide mycinamicins, is shown to catalyze the unnatural N-demethylation(s) of a range of mycinamicin substrates when partnered with the free Rhodococcus reductase domain RhFRED or the engineered Rhodococcus-spinach hybrid reductase RhFRED-Fdx. By contrast, MycG fused with the RhFRED or RhFRED-Fdx reductase domain mediates only physiological oxidations. This finding highlights the larger potential role of variant redox partner protein-protein interactions in modulating the catalytic activity of P450 enzymes.

  1. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    Science.gov (United States)

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  2. A human cytochrome P-450 is recognized by anti-liver/kidney microsome antibodies in autoimmune chronic hepatitis.

    Science.gov (United States)

    Kiffel, L; Loeper, J; Homberg, J C; Leroux, J P

    1989-02-28

    1- Anti-liver/kidney microsome autoantibodies type 1 (anti-LKM1), observed in some children with chronic active hepatitis, were used to isolate their antigen in human liver microsomes. A protein, called P-LKM1 was thus purified. This protein was recognized by a rabbit antiserum directed against the related human cytochromes P-450 bufI and P-450 bufII. 2- A human liver microsomal protein immunoprecipitated with anti-LKM1 sera was also recognized by anti cytochromes P-450 bufI/II antibodies. 3- Anti-LKM1 antibodies potently inhibited microsomal bufuralol 1'-hydroxylation. These results displayed the possible identity between cytochrome P-450 bufI/II and LKM1 antigen.

  3. Genotype distribution of estrogen receptor-alpha, catechol-O-methyltransferase, and cytochrome P450 17 gene polymorphisms in Caucasian women with uterine leiomyomas.

    Science.gov (United States)

    Denschlag, Dominik; Bentz, Eva-Katrin; Hefler, Lukas; Pietrowski, Detlef; Zeillinger, Robert; Tempfer, Clemens; Tong, Dan

    2006-02-01

    To evaluate the association between the presence of uterine leiomyomas and three functional single nucleotide polymorphisms (SNPs) of the estrogen receptor alpha (ESR1), catechol-O-methyltransferase (COMT), and cytochrom P450 17 (CYP17A) genes, which have been described to modify the estrogen metabolism. Prospective case control study. Academic research institution. One hundred thirty women with clinically and surgically diagnosed uterine leiomyomas and 139 population controls. Peripheral venous puncture. Polymerase chain reaction and pyrosequencing were performed to genotype women with respect to the ESR1 IVS1-397 T/C (PvuII), COMT G158A, and the CYP17A 34T-->C SNPs. Comparing women with uterine leiomyomas and controls, no statistically significant differences with respect to allele frequency and genotype distribution were ascertained for ESR1 IVS 1-397 T/C (PvuII) (P=0.9 and P=0.6, respectively), COMT G158A (P=0.3 and P=0.6, respectively), and CYP17A 34T-->C (P=0.1 and P=0.5, respectively). When all two-way interactions of investigated SNPs were ascertained, no significant interactions were observed. In a multivariate model, no SNP was significantly associated with leiomyomas. Carriage of the ESR1 IVS1-397 T/C (PvuII), COMT G158A, and the CYP17A 34T-->C SNPs is not associated with the susceptibility to uterine leiomyoma in a Caucasian population.

  4. A Panel of Cytochrome P450 BM3 Variants To Produce Drug Metabolites and Diversify Lead Compounds

    Science.gov (United States)

    Sawayama, Andrew M.; Chen, Michael M. Y.; Kulanthaivel, Palaniappan; Kuo, Ming-Shang; Hemmerle, Horst; Arnold, Frances H.

    2011-01-01

    Here we demonstrate that a small panel of variants of cytochrome P450 BM3 from Bacillus megaterium covers the breadth of reactivity of human P450s by producing 12 of 13 mammalian metabolites for two marketed drugs, verapamil and astemizole, and one research compound. The most active enzymes support preparation of individual metabolites for preclinical bioactivity and toxicology evaluations. Underscoring their potential utility in drug lead diversification, engineered P450 BM3 variants also produce novel metabolites by catalyzing reactions at carbon centers beyond those targeted by animal and human P450s. Production of a specific metabolite can be improved by directed evolution of the enzyme catalyst. Some variants are more active on the more hydrophobic parent drug than on its metabolites, which limits production of multiply-hydroxylated species, a preference that appears to depend on the evolutionary history of the P450 variant. PMID:19774562

  5. [Gene polymorphism of CYP450 2C9 and VKORC1 in Chinese population and their relationships to the maintaining dosage of warfarin].

    Science.gov (United States)

    Zhang, Ya-nan; Cui, Wei; Han, Mei; Zheng, Bin; Liu, Fan; Xie, Rui-qin; Yang, Xiao-hong; Gu, Guo-qiang; Zheng, Hong-mei; Wen, Jin-kun

    2010-02-01

    To investigate the distribution of gene polymorphism of CYP450 2C9 and VKORC1-1639A/G in the Chinese population as well as the difference of genetic polymorphism between Chinese Han population and other ethnic populations. Contribution of CYP2C9 and VKORC1 genotype to the maintenance doses on warfarin was also studied. The genotype and allele frequencies were calculated and compared with those in other populations. One hundred and one patients with stable anticoagulation with warfarin under a target international normalized ratio (INR) of 2.0 to 3.0 were enrolled for studying the relationship between the CYP2C9 and VKORC1 gene polymorphism and the warfarin maintaining dosage. CYP450 2C9*3 + 1075C/A allele frequencies were:AA in 449 cases (92.2%), AC in 36 cases (7.4%) and CC in 2 cases (0.4%), respectively. VKORC1 -1639A/G allele frequencies were AA in 415 cases (85.2%), GA in 72 cases (14.8%), but GG in no case (0.0%), respectively. When linear stepwise regression analysis was used to identify factors contributing to warfarin stable dose, the final equation was: ln (D) = 0.346 + 0.017 (weight) - 0.376 (CYP450 2C9*3 + 1075C/A) + 0.148 (VKORC1-1639A/G) - 0.002 (age) (r = 0.827, P = 0.02). There existed significant gene polymorphism CYP450 2C9*3 + 1075C/A and VKORC1-1639A/G in the Chinese Han population. Both Gene polymorphisms of CYP450 2C9*3 + 1075C/A and VKORC1-1639A/G were significantly affecting the maintaining dose of warfarin in the Chinese population.

  6. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Yi-Hua [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Baker, Angela A. [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Mishin, Vladimir [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  7. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    International Nuclear Information System (INIS)

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2015-01-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  8. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Characterization of Biocatalytically Active Bacterial Strains and of Cytochrome P450 Monooxygenase Enzymes and Their Genes

    Science.gov (United States)

    Jungmann, Volker; Molnár, István; Hammer, Philip E.; Hill, D. Steven; Zirkle, Ross; Buckel, Thomas G.; Buckel, Dagmar; Ligon, James M.; Pachlatko, J. Paul

    2005-01-01

    4"-Oxo-avermectin is a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate from the natural product avermectin. Seventeen biocatalytically active Streptomyces strains with the ability to oxidize avermectin to 4"-oxo-avermectin in a regioselective manner have been discovered in a screen of 3,334 microorganisms. The enzymes responsible for this oxidation reaction in these biocatalytically active strains were found to be cytochrome P450 monooxygenases (CYPs) and were termed Ema1 to Ema17. The genes for Ema1 to Ema17 have been cloned, sequenced, and compared to reveal a new subfamily of CYPs. Ema1 to Ema16 have been overexpressed in Escherichia coli and purified as His-tagged recombinant proteins, and their basic enzyme kinetic parameters have been determined. PMID:16269732

  9. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    International Nuclear Information System (INIS)

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.; Yang, J.-J.; Chen, H.-W.

    2007-01-01

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation by n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 μM arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression

  10. Polymorphisms in genes involved in the estrogen pathway and mammographic density

    International Nuclear Information System (INIS)

    Dumas, Isabelle; Diorio, Caroline

    2010-01-01

    Single nucleotide polymorphisms (SNPs) in genes involved in the estrogen pathway appear to be associated with breast cancer risk and possibly with mammographic density (MD), but little is known of these associations among premenopausal women. This study examines the association of 11 polymorphisms in five estrogen-related genes (estrogen receptors alpha and beta (ERα, ERβ), 17β-hydroxysteroid dehydrogenase 1 (HSD17B1), catechol-O-methyltransferase (COMT), cytochrome P450 1B1 (CYP1B1)) with premenopausal MD. Effect modification of four estrogen-related factors (parity, age at menarche, hormonal derivatives use and body mass index (BMI)) on this relation is also assessed. Polymorphisms were genotyped in 741 premenopausal Caucasian women whose MD was measured in absolute density (AD, cm 2 ) and percent density using a computer-assisted method. Multivariate linear models were used to examine the associations (P trend ) and interactions (P i ). None of the SNPs showed a statistically significant association with AD. However, each additional rare allele of rs1056836 CYP1B1 was associated with a reduction in AD among nulliparous women (P trend = 0.004), while no association was observed among parous women (P trend = 0.62; P i = 0.02). An increase in the number of rare alleles of the HSD17B1 SNP (rs598126 and rs2010750) was associated with an increase in AD among women who never used hormonal derivatives (P trend = 0.06 and P trend = 0.04, respectively), but with a decrease in AD among past hormonal derivatives users (P trend = 0.04; P i = 0.02 and P trend = 0.08; P i = 0.01, respectively). Moreover, a negative association of rs598126 HSD17B1 SNP with AD was observed among women with higher BMI (>median) (P trend = 0.01; P i = 0.02). A negative association between an increased number of rare alleles of COMT rs4680 SNP and AD was limited to women who never used hormonal derivatives (P trend = 0.02; P i = 0.03) or with late age at menarche (>median) (P trend = 0.03; P i

  11. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  12. Differential effects of the enantiomers of tamsulosin and tolterodine on P-glycoprotein and cytochrome P450 3A4.

    Science.gov (United States)

    Doricakova, Aneta; Theile, Dirk; Weiss, Johanna; Vrzal, Radim

    2017-01-01

    The pregnane X receptor (PXR) is a transcription factor regulating P-glycoprotein (P-gp; ABCB1)-mediated transport and cytochrome P450 3A4 (CYP3A4)-mediated metabolism of xenobiotics thereby affecting the pharmacokinetics of many drugs and potentially modulating clinical efficacy. Thus, pharmacokinetic drug-drug interactions can arise from PXR activation. Here, we examined whether the selective α1-adrenoreceptor blocker tamsulosin or the antagonist of muscarinic receptors tolterodine affect PXR-mediated regulation of CYP3A4 and of P-gp at the messenger RNA (mRNA) and protein level in an enantiomer-specific way. In addition, the effect of tamsulosin and tolterodine on P-gp activity was evaluated. We used quantitative real-time PCR, gene reporter assay, western blotting, rhodamine efflux assay, and calcein assay for determination of expression, activity, and inhibition of P-glycoprotein. The studied compounds significantly and concentration-dependently increased PXR activity in the ABCB1-driven luciferase-based reporter gene assay. We observed much stronger induction of ABCB1 mRNA by S-tamsulosin as compared to the R or racemic form. R or racemic form of tolterodine and R-tamsulosin concentration-dependently increased P-gp protein expression; the latter also enhanced P-gp efflux function in a rhodamine-based efflux assay. R-tamsulosin and all forms of tolderodine slightly inhibited P-gp. The effect on CYP3A4 expression followed the same pattern but was much weaker. Taken together, tamsulosin and tolterodine are demonstrated to interfere with P-gp and CYP3A4 regulation in an enantiomer-specific way.

  13. Pinpointing P450s Associated with Pyrethroid Metabolism in the Dengue Vector, Aedes aegypti: Developing New Tools to Combat Insecticide Resistance

    OpenAIRE

    Stevenson, Bradley J.; Pignatelli, Patricia; Nikou, Dimitra; Paine, Mark J. I.

    2012-01-01

    Background\\ud \\ud Pyrethroids are increasingly used to block the transmission of diseases spread by Aedes aegypti such as dengue and yellow fever. However, insecticide resistance poses a serious threat, thus there is an urgent need to identify the genes and proteins associated with pyrethroid resistance in order to produce effective counter measures. In Ae. aegypti, overexpression of P450s such as the CYP9J32 gene have been linked with pyrethroid resistance. Our aim was to confirm the role of...

  14. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    Science.gov (United States)

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  15. Heterologous expression of Helicoverpa armigera cytochrome P450 CYP6B7 in Pichia pastoris and interactions of CYP6B7 with insecticides.

    Science.gov (United States)

    Zhao, Chunqing; Song, Genmiao; Duan, Hongxia; Tang, Tao; Wang, Chen; Qiu, Lihong

    2017-09-01

    Previous studies indicated that constitutive over-expression of cytochrome P450 CYP6B7 was involved in fenvalerate resistance in Helicoverpa armigera. In this study, the CYP6B7 gene from H. armigera (namely HaCYP6B7), was heterologously expressed in Pichia pastoris GS115. A vector pPICZA-HaCYP6B7 was constructed and transformed into P. pastoris GS115, the transformant of pPICZA-HaCYP6B7-GS115 was then cultured and induced by 1% (v/v) methanol and the heterologous expression of HaCYP6B7 protein in P. pastoris was confirmed by SDS-PAGE and western blot. Microsomes containing the expressed HaCYP6B7 showed activities against model substrate p-nitroanisole and 7-ethoxycoumarin, with p-nitroanisole O-demethylation (PNOD) and 7-ethoxycoumarin O-deethylation (ECOD) activities of 15.66- and 4.75-fold of the control, respectively. Moreover, it showed degradation activities against the insecticides bifenthrin, fenvalerate and chlorpyrifos, with clearance activities of 6.88-, 1.49- and 2.27-fold of the control, respectively. The interactions of HaCYP6B7 with insecticides were further confirmed by molecular docking in silico with binding scores of 5.450, 5.295 and 2.197 between putative HaCYP6B7 protein and bifenthrin, fenvalerate and chlorpyrifos, respectively. The results of present study provided more direct and important evidence on the role of HaCYP6B7 conferring pyrethroid resistance in H. armigera. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Protein and DNA technologies for functional expression of membrane-associated cytochromes P450 in bacterial cell factories

    DEFF Research Database (Denmark)

    Vazquez Albacete, Dario

    450 engineering guidelines and serves as platform to improve performance of microbial cells, thereby boosting recombinant production of complex plant P450-derived biochemicals. The knowledge generated, could guide future reconstruction of functional plant metabolic pathways leading to high valuable...... potential as medicines, fuels or food for humans. Plants conquered different environments thereby developing adaptation strategies based on the biosynthesis of a myriad of compounds. Unfortunately they are present in small amounts in plants and are too complex and to produce by organic chemical synthesis....... In most of biosynthetic pathways leading to these chemicals the cytochrome P450 enzyme family (P450s) is responsible for their final functionalization. However, the membrane-bound nature of P450s, makes their expression in microbial hosts a challenge. In order to meet the global demand for these natural...

  17. Menadione Suppresses Benzo(αpyrene-Induced Activation of Cytochromes P450 1A: Insights into a Possible Molecular Mechanism.

    Directory of Open Access Journals (Sweden)

    Yulia A Sidorova

    Full Text Available Oxidative reactions that are catalyzed by cytochromes P450 1A (CYP1A lead to formation of carcinogenic derivatives of arylamines and polycyclic aromatic hydrocarbons (PAHs, such as the widespread environmental pollutant benzo(αpyrene (BP. These compounds upregulate CYP1A at the transcriptional level via an arylhydrocarbon receptor (AhR-dependent signaling pathway. Because of the involvement of AhR-dependent genes in chemically induced carcinogenesis, suppression of this signaling pathway could prevent tumor formation and/or progression. Here we show that menadione (a water-soluble analog of vitamin K3 inhibits BP-induced expression and enzymatic activity of both CYP1A1 and CYP1A2 in vivo (in the rat liver and BP-induced activity of CYP1A1 in vitro. Coadministration of BP and menadione reduced DNA-binding activity of AhR and increased DNA-binding activity of transcription factors Oct-1 and CCAAT/enhancer binding protein (C/EBP, which are known to be involved in negative regulation of AhR-dependent genes, in vivo. Expression of another factor involved in downregulation of CYP1A-pAhR repressor (AhRR-was lower in the liver of the rats treated with BP and menadione, indicating that the inhibitory effect of menadione on CYP1A is not mediated by this protein. Furthermore, menadione was well tolerated by the animals: no signs of acute toxicity were detected by visual examination or by assessment of weight gain dynamics or liver function. Taken together, our results suggest that menadione can be used in further studies on animal models of chemically induced carcinogenesis because menadione may suppress tumor formation and possibly progression.

  18. Construction and engineering of a thermostable self-sufficient cytochrome P450

    Energy Technology Data Exchange (ETDEWEB)

    Mandai, Takao; Fujiwara, Shinsuke [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan); Imaoka, Susumu, E-mail: imaoka@kwansei.ac.jp [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan)

    2009-06-19

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates {beta}-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP{sup +} reductase (FNR): H{sub 2}N-CYP175A1-Fdx-FNR-COOH (175FR) and H{sub 2}N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V{sub max} value for {beta}-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k{sub m} values of these enzymes were similar. 175RF retained 50% residual activity even at 80 {sup o}C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.

  19. Construction and engineering of a thermostable self-sufficient cytochrome P450

    International Nuclear Information System (INIS)

    Mandai, Takao; Fujiwara, Shinsuke; Imaoka, Susumu

    2009-01-01

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates β-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP + reductase (FNR): H 2 N-CYP175A1-Fdx-FNR-COOH (175FR) and H 2 N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V max value for β-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k m values of these enzymes were similar. 175RF retained 50% residual activity even at 80 o C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.

  20. Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme.

    Science.gov (United States)

    Robin, Aélig; Roberts, Gareth A; Kisch, Johannes; Sabbadin, Federico; Grogan, Gideon; Bruce, Neil; Turner, Nicholas J; Flitsch, Sabine L

    2009-05-14

    A chimeric oxygenase, in which the P450cam domain was fused to the reductase host domains of a P450RhF from Rhodococcus sp. strain NCIMB 9784 was optimised to allow for a biotransformation at 30 mM substrate in 80% overall yield, with the linker region between P450 and FMN domain proving to be important for the effective biotransformation of (+)-camphor to 5-exo-hydroxycamphor.

  1. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga

    OpenAIRE

    Chen, Chengyu; Wang, Cuicui; Liu, Ying; Shi, Xueyan; Gao, Xiwu

    2018-01-01

    Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odor...

  2. Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions.

    Science.gov (United States)

    Wriessnegger, Tamara; Moser, Sandra; Emmerstorfer-Augustin, Anita; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Pichler, Harald

    2016-04-01

    Cytochrome P450 enzymes (CYPs) play an essential role in the biosynthesis of various natural compounds by catalyzing regio- and stereospecific hydroxylation reactions. Thus, CYP activities are of great interest in the production of fine chemicals, pharmaceutical compounds or flavors and fragrances. Industrial applicability of CYPs has driven extensive research efforts aimed at improving the performance of these enzymes to generate robust biocatalysts. Recently, our group has identified CYP-mediated hydroxylation of (+)-valencene as a major bottleneck in the biosynthesis of trans-nootkatol and (+)-nootkatone in Pichia pastoris. In the current study, we aimed at enhancing CYP-mediated (+)-valencene hydroxylation by over-expressing target genes identified through transcriptome analysis in P. pastoris. Strikingly, over-expression of the DNA repair and recombination gene RAD52 had a distinctly positive effect on trans-nootkatol formation. Combining RAD52 over-expression with optimization of whole-cell biotransformation conditions, i.e. optimized media composition and cultivation at higher pH value, enhanced trans-nootkatol production 5-fold compared to the initial strain and condition. These engineering approaches appear to be generally applicable for enhanced hydroxylation of hydrophobic compounds in P. pastoris as confirmed here for two additional membrane-attached CYPs, namely the limonene-3-hydroxylase from Mentha piperita and the human CYP2D6. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy.

    Science.gov (United States)

    Farrow, Scott C; Hagel, Jillian M; Beaudoin, Guillaume A W; Burns, Darcy C; Facchini, Peter J

    2015-09-01

    The gateway to morphine biosynthesis in opium poppy (Papaver somniferum) is the stereochemical inversion of (S)-reticuline since the enzyme yielding the first committed intermediate salutaridine is specific for (R)-reticuline. A fusion between a cytochrome P450 (CYP) and an aldo-keto reductase (AKR) catalyzes the S-to-R epimerization of reticuline via 1,2-dehydroreticuline. The reticuline epimerase (REPI) fusion was detected in opium poppy and in Papaver bracteatum, which accumulates thebaine. In contrast, orthologs encoding independent CYP and AKR enzymes catalyzing the respective synthesis and reduction of 1,2-dehydroreticuline were isolated from Papaver rhoeas, which does not accumulate morphinan alkaloids. An ancestral relationship between these enzymes is supported by a conservation of introns in the gene fusions and independent orthologs. Suppression of REPI transcripts using virus-induced gene silencing in opium poppy reduced levels of (R)-reticuline and morphinan alkaloids and increased the overall abundance of (S)-reticuline and its O-methylated derivatives. Discovery of REPI completes the isolation of genes responsible for known steps of morphine biosynthesis.

  4. Induction of rabbit lung cytochrome P450 prostaglandin in omega-hyroxylase during pregnancy: evidence for regulation at the genetic level

    International Nuclear Information System (INIS)

    Master, B.S.S.; Muerhoff, A.S.; Jackson, V.; Williams, D.E.; Waterman, M.R.; Johnson, E.F.

    1986-01-01

    The induction of a cytochrome P450 prostaglandin omega-hydroxylase (P450/sub PG omega/) isolated from pregnant rabbit lung has been shown by Western blots to be concomitant with an increase in the amount of P450 protein. Peaks in enzyme activity and P450/sub PG omega/ protein occur between the 20th and 28th days of gestation with increases of more than 100-fold compared to nonpregnant rabbits. To elucidate the mechanisms controlling induction, total cellular RNA was extracted from rabbit lungs at various days of gestation, translated in vitro using 35 S-met, and the newly synthesized P450/sub PG omega/ immunoprecipitated from the lysate. Utilizing an immunopurified goat IgG to P450/sub PG omega/, immunopellets of in vitro translation reactions charged with RNA from lungs at 6,11,19,22,25, or 28-days gestation were isolated. A single band corresponding to P450/sub PG omega/ was seen in autoradiographs of SDS-PAGE gels containing these immunopellets, but no band was visible in lanes containing immunopellets from reactions charged with RNA from nonpregnant or 1-day post-partum animals. The gestational time-dependent increase in in vitro-translated P450/sub PG omega/ suggests that control of its induction during pregnancy is at the transcriptional level. A monoclonal antibody to the P450/sub PG omega/ has been produced for the isolation of the P450/sub PG omega/ mRNA for cDNA production

  5. Time course for the modulation of hepatic cytochrome P450 after administration of ethylbenzene and its correlation with toluene metabolism.

    Science.gov (United States)

    Yuan, W; Sequeira, D J; Cawley, G F; Eyer, C S; Backes, W L

    1997-03-01

    The goal of the present study was to examine the time course for changes in P450 expression and hydrocarbon metabolism after acute treatment with the simple aromatic hydrocarbon ethylbenzene (EB) and to correlate these alterations with the changes observed in alkylbenzene metabolism. Male Holtzman rats were treated with a single intraperitoneal injection of EB, and the effects on specific P450-dependent activities, immunoreactive P450 isozyme levels, and RNA levels were measured at various times after injection. Toluene was used as the test alkylbenzene for examination of the EB-mediated changes on in vitro hydrocarbon metabolism. In untreated rats, toluene was metabolized almost entirely by aliphatic hydroxylation (to benzyl alcohol); however, in EB-treated rats, significant quantities of benzyl alcohol, o-cresol, and p-cresol were produced. Interestingly, 5-10 h after EB treatment, there was a 40% decrease in benzyl alcohol production. By 24 h, rates of benzyl alcohol formation returned to control levels, whereas there was a 7-fold increase in o-cresol and a greater that 50-fold increase in p-cresol production. The changes in the disposition of toluene were then correlated with changes in particular P450 isozymes. Several P450 isozymes were induced after EB administration. P450 2B1/2-dependent testosterone 16 beta-hydroxylation and P450 2B1/2-immunoreactive protein were elevated 30-fold after EB administration, reaching maxima by 24 h and remaining elevated 48 h after exposure. Changes in P450 2B1 and 2B2 RNA preceded those of the proteins. Similar results were observed with P450 1A1. P450 2E1 RNA levels were elevated after a single EB injection. However, the elevation in P450 2E1-dependent activities and immunoreactive protein levels preceded the changes in RNA, suggesting that multiple steps are affected by EB exposure. In contrast to the increases in some isozymes, P450 2C11 protein was rapidly suppressed (within the first 2-10 h) after hydrocarbon exposure

  6. Effects of MicroRNA-34a on the Pharmacokinetics of Cytochrome P450 Probe Drugs in Mice.

    Science.gov (United States)

    Jilek, Joseph L; Tian, Ye; Yu, Ai-Ming

    2017-05-01

    MicroRNAs (miRNAs or miRs), including miR-34a, have been shown to regulate nuclear receptor, drug-metabolizing enzyme, and transporter gene expression in various cell model systems. However, to what degree miRNAs affect pharmacokinetics (PK) at the systemic level remains unknown. In addition, miR-34a replacement therapy represents a new cancer treatment strategy, although it is unknown whether miR-34a therapeutic agents could elicit any drug-drug interactions. To address this question, we refined a practical single-mouse PK approach and investigated the effects of a bioengineered miR-34a agent on the PK of several cytochrome P450 probe drugs (midazolam, dextromethorphan, phenacetin, diclofenac, and chlorzoxazone) administered as a cocktail. This approach involves manual serial blood microsampling from a single mouse and requires a sensitive liquid chromatography-tandem mass spectrometry assay, which was able to illustrate the sharp changes in midazolam PK by ketoconazole and pregnenolone 16 α -carbonitrile as well as phenacetin PK by α -naphthoflavone and 3-methylcholanthrene. Surprisingly, 3-methylcholanthrene also decreased systemic exposure to midazolam, whereas both pregnenolone 16 α -carbonitrile and 3-methylcholanthrene largely reduced the exposure to dextromethorphan, diclofenac, and chlorzoxazone. Finally, the biologic miR-34a agent had no significant effects on the PK of cocktail drugs but caused a marginal (45%-48%) increase in systemic exposure to midazolam, phenacetin, and dextromethorphan in mice. In vitro validation of these data suggested that miR-34a slightly attenuated intrinsic clearance of dextromethorphan. These findings from single-mouse PK and corresponding mouse liver microsome models suggest that miR-34a might have minor or no effects on the PK of coadministered cytochrome P450-metabolized drugs. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Emergence of Function in P450-Proteins: A Combined Quantum Mechanical/Molecular Mechanical and Molecular Dynamics Study of the Reactive Species in the H2O2-Dependent Cytochrome P450SPα and Its Regio- and Enantioselective Hydroxylation of Fatty Acids.

    Science.gov (United States)

    Ramanan, Rajeev; Dubey, Kshatresh Dutta; Wang, Binju; Mandal, Debasish; Shaik, Sason

    2016-06-01

    This work uses combined quantum mechanical/molecular mechanical and molecular dynamics simulations to investigate the mechanism and selectivity of H2O2-dependent hydroxylation of fatty acids by the P450SPα class of enzymes. H2O2 is found to serve as the surrogate oxidant for generating the principal oxidant, Compound I (Cpd I), in a mechanism that involves homolytic O-O bond cleavage followed by H-abstraction from the Fe-OH moiety. Our results rule out a substrate-assisted heterolytic cleavage of H2O2 en route to Cpd I. We show, however, that substrate binding stabilizes the resultant Fe-H2O2 complex, which is crucial for the formation of Cpd I in the homolytic pathway. A network of hydrogen bonds locks the HO· radical, formed by the O-O homolysis, thus directing it to exclusively abstract the hydrogen atom from Fe-OH, thereby forming Cpd I, while preventing the autoxoidative reaction, with the porphyrin ligand, and the substrate oxidation. The so formed Cpd I subsequently hydroxylates fatty acids at their α-position with S-enantioselectivity. These selectivity patterns are controlled by the active site: substrate's binding by Arg241 determines the α-regioselectivity, while the Pro242 residue locks the prochiral α-CH2, thereby leading to hydroxylation of the pro-S C-H bond. Our study of the mutant Pro242Ala sheds light on potential modifications of the enzyme's active site in order to modify reaction selectivity. Comparisons of P450SPα to P450BM3 and to P450BSβ reveal that function has evolved in these related metalloenzymes by strategically placing very few residues in the active site.

  8. Assembly of dynamic P450-mediated metabolons - order versus chaos

    DEFF Research Database (Denmark)

    Bassard, Jean-Étienne André; Møller, Birger Lindberg; Laursen, Tomas

    2017-01-01

    PURPOSE OF REVIEW: We provide an overview of the current knowledge on cytochrome P450-mediated metabolism organized as metabolons and factors that facilitate their stabilization. Essential parameters will be discussed including those that are commonly disregarded using the dhurrin metabolon from ...

  9. Analysis of cellular responses to aflatoxin B1 in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    International Nuclear Information System (INIS)

    Guo Yingying; Breeden, Linda L.; Fan, Wenhong; Zhao Lueping; Eaton, David L.; Zarbl, Helmut

    2006-01-01

    Aflatoxin B1 (AFB 1 ) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB 1 is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N 7 -guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB 1 , a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB 1 that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB 1 treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB 1 -treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific transcripts cannot be explained by

  10. Identification of human genes involved in cellular responses to ionizing radiation: molecular and cellular studies of gene encoding the p68 helicase in mammalian cells

    International Nuclear Information System (INIS)

    Menaa, F.

    2003-12-01

    Cells submitted to genotoxic factors -like IR- activate several and important mechanisms such as repair, cell cycle arrest or 'apoptosis' to maintain genetic integrity. So, the damaged cells will induce many and different genes. The human transcriptome analysis by 'SSH' method in a human breast carcinoma cell line MCF7 γ-irradiated versus not irradiated, allowed to identify about one hundred genes. Among of these genes, we have focused our study on a radio-induced gene encoding the p68 helicase. In the conditions of irradiation used, our results show that the kinetic and the regulation of this gene expression differs between the nature of radiations used. Indeed, in γ-irradiated mammalian cells, ATM, a protein kinase activated by DSB and IR, is required to induce quickly P68 gene via the important transcription factor p53 stabilized by IR. In the case of UVC-irradiated cells, the P68 gene induction is late and the intracellular signalling pathway that lead to this induction is independent from the p53 protein. Finally, we show that the p68 protein under-expression is responsible for an increased radiosensitivity of MCF7 cells. Consequently, we can postulate that the p68 protein is involved in cellular responses to radiations to reduce the increased radiosensitivity of cells exposed to γ-rays. (author)

  11. Comparison of xenobiotic-metabolising human, porcine, rodent, and piscine cytochrome P450

    International Nuclear Information System (INIS)

    Burkina, Viktoriia; Rasmussen, Martin Krøyer; Pilipenko, Nadezhda; Zamaratskaia, Galia

    2017-01-01

    Highlights: • The percent identity of porcine, murine and piscine CYPs was compared with human CYPs. • Main similarities and differences were reviewed. • Understanding of molecular mechanisms of CYP system will provide further insights into the CYP regulatory processes, and responses to different factors. - Abstract: Cytochrome P450 proteins (CYP450s) are present in most domains of life and play a critical role in the metabolism of endogenous compounds and xenobiotics. The effects of exposure to xenobiotics depend heavily on the expression and activity of drug-metabolizing CYP450s, which is determined by species, genetic background, age, gender, diet, and exposure to environmental pollutants. Numerous reports have investigated the role of different vertebrate CYP450s in xenobiotic metabolism. Model organisms provide powerful experimental tools to investigate Phase I metabolism. The aim of the present review is to compare the existing data on human CYP450 proteins (1–3 families) with those found in pigs, mice, and fish. We will highlight differences and similarities and identify research gaps which need to be addressed in order to use these species as models that mimic human traits. Moreover, we will discuss the roles of nuclear receptors in the cellular regulation of CYP450 expression in select organisms.

  12. CYTOCHROME P450 REGULATION: THE INTERPLAY BETWEEN ITS HEME AND APOPROTEIN MOIETIES IN SYNTHESIS, ASSEMBLY, REPAIR AND DISPOSAL123

    OpenAIRE

    Correia, Maria Almira; Sinclair, Peter R.; De Matteis, Francesco

    2010-01-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biot...

  13. Drug-enhanced carbon monoxide production from heme by cytochrome P450 reductase

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2017-01-01

    Full Text Available Carbon monoxide (CO formed endogenously is considered to be cytoprotective, and the vast majority of CO formation is attributed to the degradation of heme by heme oxygenases-1 and -2 (HO-1, HO-2. Previously, we observed that brain microsomes containing HO-2 produced many-fold more CO in the presence of menadione and its congeners; herein we explored these observations further. We determined the effects of various drugs on CO production of rat brain microsomes and recombinant human cytochrome P450 reductase (CPR; CO was measured by gas chromatography with reductive detection. Brain microsomes of Sprague-Dawley rats or recombinant human cytochrome P450 reductase (CPR were incubated with NADPH and various drugs in closed vials in phosphate buffer at pH 7.4 and 37°C. After 15 minutes, the reaction was stopped by cooling in dry ice, and the headspace gas was analyzed for CO production using gas chromatography with reductive (mercuric oxide detection. We observed drug-enhanced CO production in the presence of both microsomes and recombinant CPR alone; the presence of HO was not required. A range of structurally diverse drugs were capable of amplifying this CO formation; these molecules had structures consistent with redox cycling capability. The addition of catalase to a reaction mixture, that contained activating drugs, inhibited the production of CO. Drug-enhanced CO formation can be catalyzed by CPR. The mechanism of CPR activation was not through classical drug-receptor mediation. Redox cycling may be involved in the drug-induced amplification of CO production by CPR through the production of reactive oxygen species.

  14. Purification and immunochemical detections of ?-naphthoflavone- and phenobarbital-induced avian cytochrome P450 enzymes

    Science.gov (United States)

    Brown, R.L.; Levi, P.E.; Hodgson, E.; Melancon, M.J.

    1996-01-01

    Livers from mallards (Anas platyrhynchos) were treated with either -naphthoflavone (50 mg/kg) or phenobarbital (70 mg/kg). Purification of induced hepatic cytochrome P450 was accomplished using both DEAE and hydroxyapatite columns, as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis separation. Polyclonal antibodies to these proteins were then produced in young male New Zealand White rabbits. ?-naphthoflavone (?NF)- and phenobarbital(PB)-treated red-winged blackbird, screech owl, European starling and lesser scaup liver microsomes were analyzed in western blots for species cross-reactivity. Although all four of these avian species exhibited cross-reactivity with antibodies to ?NF-induced mallard P450, all but the lesser scaup revealed a protein of higher molecular weight than that of the ?NF-induced mallard. In addition, only the lesser scaup exhibited cross-reactivity with the anti-PB-induced mallard P450 antibodies.

  15. Modelling of three-dimensional structures of cytochromes P450 11B1 and 11B2.

    Science.gov (United States)

    Belkina, N V; Lisurek, M; Ivanov, A S; Bernhardt, R

    2001-12-15

    The final steps of the biosynthesis of glucocorticoids and mineralocorticoids in the adrenal cortex require the action of two different cytochromes P450--CYP11B1 and CYP11B2. Homology modelling of the three-dimensional structures of these cytochromes was performed based on crystallographic coordinates of two bacterial P450s, CYP102 (P450BM-3) and CYP108 (P450terp). Principal attention was given to the modelling of the active sites and a comparison of the active site structures of CYP11B1 and CYP11B2 was performed. It can be demonstrated that key residue contacts within the active site appear to depend on the orientation of the heme. The obtained 3D structures of CYP11B1 and CYP11B2 were used for investigation of structure-function relationships of these enzymes. Previously obtained results on naturally occurring mutants and on mutants obtained by site-directed mutagenesis are discussed.

  16. Fate of free radicals generated during one-electron reductions of 4-alkyl-1,4-peroxyquinols by cytochrome P-450

    International Nuclear Information System (INIS)

    Yumibe, N.P.; Thompson, J.A.

    1988-01-01

    Free radicals resulting from the one-electron reduction and subsequent homolytic cleavage of oxygen-oxygen bonds by heme proteins are likely to be responsible for some aspects of the toxicity of organic hydroperoxides. In the present work, effects of the 4-alkyl substituent of 2,6-di-tert-butyl-4-alkyl-4-hydroperoxycytohexa-2,5-dienones on radical production were investigated with microsomal cytochrome P-450 from rat liver. Quinoxy radicals from homolysis of the peroxyquinols underwent β-scission to produce a quinone and an alkyl radical, and this process occurred with increasing frequency as the stability of the alkyl radical increased. The fate of benzyl and 2-phenylethyl radicals generated from the appropriately substituted peroxyquinols was investigated also. The former was converted to benzyl alcohol, benzaldehyde, and toluene and the latter to 2-phenylethanol, phenylacetaldehyde, ethylbenzene, styrene, and benzaldehyde. Oxygen-18 labeling studies demonstrate that 80-85% of the benzyl alcohol incorporated oxygen from the hydroperoxide and the balance from molecular oxygen. This indicates that the predominant reaction pathway involved recombination between the benzyl radical and the iron-bound hydroxyl radical of the P-450 intermediate complex. By contrast, about 50% of 2-phenylethanol from the 2-phenylethyl radical incorporated oxygen from water and the balance from O 2 . Two alternative mechanisms are proposed to explain the formation of 2-phenylethanol that contained oxygen from water and the concurrent formation of styrene: (a) oxygen exchange of the P-450 intermediate with water, followed by hydrogen abstraction and radical recombination reactions with the P-450 complex, or (b) oxidation of the radical to the 2-phenylethyl cation followed by proton elimination and hydration

  17. Suppression of cytochrome p450 reductase enhances long-term hematopoietic stem cell repopulation efficiency in mice.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Bone marrow microenvironment (niche plays essential roles in the fate of hematopoietic stem cells (HSCs. Intracellular and extracellular redox metabolic microenvironment is one of the critical factors for the maintenance of the niche. Cytochrome P450 reductase (CPR is an obligate electron donor to all microsomal cytochrome P450 enzymes (P450 or CYP, and contributes to the redox metabolic process. However, its role in maintaining HSCs is unknown. OBJECTIVE: To examine the effects of low CPR expression on HSCs function using a mouse model of globally suppressed Cpr gene expression (Cpr Low, CL mice. METHODS: Hematopoietic cell subpopulations in bone marrow (BM and peripheral blood (PB from WT and CL mice were examined for their repopulation and differentiation ability upon BM competitive transplantation and enriched HSC (LKS(+ transplantation. Effects of low CPR expression on hematopoiesis were examined by transplanting normal BM cells into CL recipients. Reactive oxygen species (ROS, cell cycle, and apoptosis in CL mice were analyzed by flow cytometry for DCF-DA fluorescence intensity, Ki67 protein, and Annexin-V, respectively. RESULTS: The levels of ROS in BM cells, HPCs and HSCs were comparable between CL and WT mice. In comparison to WT mice, the number of LT-HSCs or ST-HSCs was lower in CL mice while CMPs, GMPs and MEPs in CL mice were higher than that in WT control. Competitive transplantation assay revealed enhanced repopulation capacity of HSCs with low CPR expression, but no difference in differentiation potential upon in vitro experiments. Furthermore, lymphoid differentiation of donor cells decreased while their myeloid differentiation increased under CL microenvironment although the overall level of donor hematopoietic repopulation was not significantly altered. CONCLUSIONS: Our studies demonstrate that suppressing CPR expression enhances the repopulation efficiency of HSCs and a low CPR expression microenvironment favors

  18. The impact of Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes on suicide attempt and suicide risk-a European multicentre study on treatment-resistant major depressive disorder.

    Science.gov (United States)

    Höfer, Peter; Schosser, Alexandra; Calati, Raffaella; Serretti, Alessandro; Massat, Isabelle; Kocabas, Neslihan Aygun; Konstantinidis, Anastasios; Linotte, Sylvie; Mendlewicz, Julien; Souery, Daniel; Zohar, Joseph; Juven-Wetzler, Alzbeta; Montgomery, Stuart; Kasper, Siegfried

    2013-08-01

    Recently published data have reported associations between cytochrome P450 metabolizer status and suicidality. The aim of our study was to investigate the role of genetic polymorphisms of the cytochrome P450 genes on suicide risk and/or a personal history of suicide attempts. Two hundred forty-three major depressive disorder patients were collected in the context of a European multicentre resistant depression study and treated with antidepressants at adequate doses for at least 4 weeks. Suicidality was assessed using the Mini International Neuropsychiatric Interview and the Hamilton Rating Scale for Depression (HAM-D). Treatment response was defined as HAM-D ≤ 17 and remission as HAM-D ≤ 7 after 4 weeks of treatment with antidepressants at adequate dose. Genotyping was performed for all relevant variations of the CYP1A2 gene (*1A, *1F, *1C, *1 J, *1 K), the CYP2C9 gene (*2, *3), the CYP2C19 gene (*2, *17) and the CYP2D6 gene (*3, *4, *5, *6, *9, *19, *XN). No association between both suicide risk and personal history of suicide attempts, and the above mentioned metabolic profiles were found after multiple testing corrections. In conclusion, the investigated cytochrome gene polymorphisms do not seem to be associated with suicide risk and/or a personal history of suicide attempts, though methodological and sample size limitations do not allow definitive conclusions.

  19. Relation among cytochrome P450, AH-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    Science.gov (United States)

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P-450-associated monooxygenases and cytochrome P-450 proteins, induced up to 85-fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r-2 often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah-active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  20. Role of cytochrome P450 IA2 in acetanilide 4-hydroxylation as determined with cDNA expression and monoclonal antibodies.

    Science.gov (United States)

    Liu, G; Gelboin, H V; Myers, M J

    1991-02-01

    The role of P450 IA2 in the hydroxylation of acetanilide was examined using an inhibitory monoclonal antibody (MAb) 1-7-1 and vaccinia cDNA expression producing murine P450 IA1 (mIA1), murine P450 IA2 (mIA2), or human P450 IA2 (hIA2). Acetanilide hydroxylase (AcOH) activity was measured using an HPLC method with more than 500-fold greater sensitivity than previously described procedures. This method, which does not require the use of radioactive acetanilide, was achieved by optimizing both the gradient system and the amount of enzyme needed to achieve detection by uv light. MAb 1-7-1 inhibits up to 80% of the AcOH activity in both rat liver microsomes and cDNA expressed mouse and human P450 IA2. MAb 1-7-1, which recognizes both P450 IA1 and P450 IA2, completely inhibits the aryl hydrocarbon hydroxylase (AHH) activity of cDNA expressed in IA1. The inhibition of only 80% of the AHH activity present in MC liver microsomes by MAb 1-7-1 suggests that additional P450 forms are contributing to the overall AHH activity present in methylcholanthrene (MC)-liver microsomes as MAb 1-7-1 almost completely inhibits the AHH activity of expressed mIA1. Maximal inhibition of IA2 by 1-7-1 results in an 80% decrease in acetanilide hydroxylase activity in both liver microsomes and expressed mouse and human IA2. The capacity of MAb 1-7-1 to produce identical levels of inhibition of acetanilide hydroxylase activity in rat MC microsomes (80%) and in expressed mouse (81%) and human P450 IA2 (80%) strongly suggests that P450 IA2 is the major and perhaps the only enzyme responsible for the metabolism of acetanilide. These results demonstrate the complementary utility of monoclonal antibodies and cDNA expression for defining the contribution of specific P450 enzymes to the metabolism of a given substrate. This complementary approach allows for a more precise determination of the inhibitory capacity of MAb with respect to the metabolic capacity of the target P450.

  1. A Cytochrome P450 3A4 Biosensor Based on Generation 4.0 PAMAM Dendrimers for the Detection of Caffeine

    Directory of Open Access Journals (Sweden)

    Michael Müller

    2016-08-01

    Full Text Available Cytochromes P450 (CYP, P450 are a large family of heme-active-site proteins involved in many catalytic processes, including steroidogenesis. In humans, four primary enzymes are involved in the metabolism of almost all xenobiotics. Among these enzymes, CYP3A4 is responsible for the inactivation of the majority of used drugs which makes this enzyme an interesting target for many fields of research, especially pharmaceutical research. Since the late 1970s, attempts have been made to construct and develop electrochemical sensors for the determination of substrates. This paper is concerned with the establishment of such a CYP3A4-containing biosensor. The sensor was constructed by adsorption of alternating layers of sub-nanometer gold particle-modified PAMAM (poly-amido-amine dendrimers of generation 4.0, along with the enzyme by a layer-by-layer assembly technique. Atomic force microscopy (AFM, quartz crystal microbalance (QCM, and Fourier-transformed infrared spectroscopy (FTIR were employed to elucidate the sensor assembly. Additionally, the biosensor was tested by cyclic voltammetry using caffeine as a substrate.

  2. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens

    OpenAIRE

    Pang, Rui; Chen, Meng; Liang, Zhikun; Yue, Xiangzhao; Ge, Hu; Zhang, Wenqing

    2016-01-01

    The cytochrome P450 CYP6ER1 has been reported to play an important role in imidacloprid resistance of the brown planthopper (BPH), Nilaparvata lugens, and is overexpressed in most resistant populations. In the present study, we confirmed that CYP6ER1 expression can be induced by certain levels of imidacloprid. Developmental expression analysis revealed that CYP6ER1 was expressed highly in the adult stage, and tissue distribution analysis showed that CYP6ER1 was expressed mainly in the fat bod...

  3. Transcriptome Profiling to Identify Genes Involved in Mesosulfuron-Methyl Resistance in Alopecurus aequalis

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    2017-08-01

    Full Text Available Non-target-site resistance (NTSR to herbicides is a worldwide concern for weed control. However, as the dominant NTSR mechanism in weeds, metabolic resistance is not yet well-characterized at the genetic level. For this study, we have identified a shortawn foxtail (Alopecurus aequalis Sobol. population displaying both TSR and NTSR to mesosulfuron-methyl and fenoxaprop-P-ethyl, yet the molecular basis for this NTSR remains unclear. To investigate the mechanisms of metabolic resistance, an RNA-Seq transcriptome analysis was used to find candidate genes that may confer metabolic resistance to the herbicide mesosulfuron-methyl in this plant population. The RNA-Seq libraries generated 831,846,736 clean reads. The de novo transcriptome assembly yielded 95,479 unigenes (averaging 944 bp in length that were assigned putative annotations. Among these, a total of 29,889 unigenes were assigned to 67 GO terms that contained three main categories, and 14,246 unigenes assigned to 32 predicted KEGG metabolic pathways. Global gene expression was measured using the reads generated from the untreated control (CK, water-only control (WCK, and mesosulfuron-methyl treatment (T of R and susceptible (S. Contigs that showed expression differences between mesosulfuron-methyl-treated R and S biotypes, and between mesosulfuron-methyl-treated, water-treated and untreated R plants were selected for further quantitative real-time PCR (qRT-PCR validation analyses. Seventeen contigs were consistently highly expressed in the resistant A. aequalis plants, including four cytochrome P450 monooxygenase (CytP450 genes, two glutathione S-transferase (GST genes, two glucosyltransferase (GT genes, two ATP-binding cassette (ABC transporter genes, and seven additional contigs with functional annotations related to oxidation, hydrolysis, and plant stress physiology. These 17 contigs could serve as major candidate genes for contributing to metabolic mesosulfuron-methyl resistance; hence

  4. Cytochrome P450c17 (steroid 17α-hydroxylase/17,20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues

    International Nuclear Information System (INIS)

    Chung, B.; Picado-Leonard, J.; Haniu, M.; Bienkowski, M.; Hall, P.F.; Shively, J.E.; Miller, W.L.

    1987-01-01

    P450c17 is the single enzyme mediating both 17α-hydroxylase (steroid 17α-monooxygenase, EC 1.14.99.9) and 17,20 lyase activities in the synthesis of steroid hormones. It has been suggested that different P450c17 isozymes mediate these activities in the adrenal gland and testis. The authors sequenced 423 of the 509 amino acids (83%) of the porcine adrenal enzyme; based on this partial sequence, a 128-fold degenerate 17-mer was synthesized and used to screen a porcine adrenal cDNA library. This yielded a 380-base cloned cDNA, which in turn was used to isolate several human adrenal cDNAs. The longest of these, λ hac 17-2, is 1754 base pairs long and includes the full-length coding region, the complete 3'-untranslated region, and 41 bases of the 5'-untranslated region. This cDNA encodes a protein of 508 amino acids having a predicted molecular weight of 57,379.82. High-stringency screening of a human testicular cDNA library yielded a partial clone containing 1303 identical bases. RNA gel blots and nuclease S1-protection experiments confirm that the adrenal and testicular P450c17 mRNAs are indistinguishable. These data indicate that the testis possesses a P450c17 identical to that in the adrenal. The human amino acid sequence is 66.7% homologous to the corresponding regions of the porcine sequence, and the human cDNA and amino acid sequences are 80.1 and 70.3% homologous, respectively, to bovine adrenal P450c17 cDNA. Both comparisons indicate that a central region comprising amino acid residues 160-268 is hypervariable among these species of P450c17

  5. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene

    NARCIS (Netherlands)

    Cankar, K.; van Houwelingen, A.; Bosch, H.J.; Sonke, T.; Bouwmeester, H.; Beekwilder, J.P.

    2011-01-01

    Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene

  6. Analysis of cellular responses to aflatoxin B{sub 1} in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yingying [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Breeden, Linda L. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Fan, Wenhong [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zhao Lueping [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Eaton, David L. [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zarbl, Helmut [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States) and Fred Hutchinson Cancer Research Center, Seattle, WA (United States)]. E-mail: hzarbl@fhcrc.org

    2006-01-29

    Aflatoxin B1 (AFB{sub 1}) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB{sub 1} is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N{sup 7}-guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB{sub 1}, a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB{sub 1} that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB{sub 1} treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB{sub 1}-treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific

  7. Hepatic Metabolism of Sakuranetin and Its Modulating Effects on Cytochrome P450s and UDP-Glucuronosyltransferases

    Directory of Open Access Journals (Sweden)

    Hyesoo Jeong

    2018-06-01

    Full Text Available Sakuranetin (SKN, found in cherry trees and rice, is a flavanone with various pharmacological activities. It is biosynthesized from naringenin in rice or cherry trees, and the metabolism of SKN has been studied in non-human species. The present study aimed to investigate the metabolic pathways of SKN in human liver microsomes and identify the phase I and phase II metabolites, as well as evaluate the potential for drug–herb interactions through the modulation of drug metabolizing enzymes (DMEs. HPLC-DAD and HPLC-electrospray mass spectrometry were used to study the metabolic stability and identify the metabolites from human liver microsomes incubated with SKN. The potential of SKN to inhibit the DMEs was evaluated by monitoring the formation of a DME-specific product. The cytochrome P450 2B6 and 3A4-inductive effects were studied using promoter reporter assays in human hepatocarcinoma cells. The major pathways for SKN metabolism include B-ring hydroxylation, 5-O-demethylation, and conjugation with glutathione or glucuronic acid. The phase I metabolites were identified as naringenin and eriodictyol. SKN was found to be a UDP-glucuronosyltransferases (UGT 1A9 inhibitor, whereas it induced transactivation of the human pregnane X receptor-mediated cytochrome P450 (CYP 3A4 gene.

  8. Electroactive cytochrome P450BM3 cast polyion films on graphite electrodes

    International Nuclear Information System (INIS)

    Pardo-Jacques, Aurelie; Basseguy, Regine; Bergel, Alain

    2006-01-01

    Films of electrochemically active cytochrome P450 BM 3 were constructed on graphite electrodes using alternate assembly with polyethyleneimine (PEI). The original layer-by-layer adsorption method was slightly modified here to form so-called 'cast polyion' films. The cast polyion films were elaborated by immobilizing two successive layers of PEI and protein in very large excess with respect to a monolayer, without any intermediate washing step. Following the immobilization steps by SEM showed that uniform films of a few micrometers were deposited on the graphite surface. The electrochemically activity of the immobilized cytP450 was tested with regard to the reduction of oxygen and the one-electron reduction of the heme. Cyclic voltammetry indicated surface concentration of electrochemically active cytP450 around 0.6nmol/cm 2 , which corresponded to 5% of the total amount of protein that was consumed by the immobilisation process. Adapting the procedure to a graphite felt electrode with the view of scaling up porous electrodes for large scale synthesis increased the concentration to 0.9nmol/cm 2 . Cast polyion films may represent a simple technique to immobilize high amount of electrochemically active protein, keeping the advantage of the electrostatic interactions of the regular layer-by-layer method

  9. Neutral meson production in p-Be and p-Au collisions at 450 GeV beam energy

    NARCIS (Netherlands)

    Agakichiev, G; Appenheimer, M; Averbeck, R; Ballester, F; Baur, R; Brenschede, A; Diaz, J; Drees, A; Faschingbauer, U; Ferrero, JL; Fraenkel, Z; Franke, M; Fuchs, C; Gatti, E; Glassel, P; Gunzel, T; de los Hero, CP; Hess, F.; Holzmann, R; Irmscher, D; Jacob, C; Kuhn, W; Lenkeit, B; Löhner, H.; Marin, A; Marques, FM; Martinez, G; Metag, [No Value; Notheisen, M; Novotny, R; Olsen, LH; Schon, A; Schukraft, J; Ostendorf, R.; Panebrattsev, Y; Pfeiffer, A; Ravinovich, [No Value; Rehak, P; Sampietro, M; Schutz, Y; Shimansky, S; Shor, A; Simon, RS; Specht, HJ; Steiner, [No Value; Tapprogge, S; Tel-Zur, G; Tserruya, [No Value; Ullrich, T; Wilschut, H.; Wurm, JP; Yurevich, [No Value

    In a joint experiment the TAPS and CERES collaborations have studied the production of the neutral mesons pi degrees; eta and omega in 450 GeV p-Be and p-Au collisions at the CERN SPS. The mesons were identified by their pi degrees --> gamma gamma, eta --> gamma gamma, and omega --> pi degrees gamma

  10. Cloning, expression and characterisation of P450-Hal1 (CYP116B62) from Halomonas sp. NCIMB 172: A self-sufficient P450 with high expression and diverse substrate scope.

    Science.gov (United States)

    Porter, Joanne L; Sabatini, Selina; Manning, Jack; Tavanti, Michele; Galman, James L; Turner, Nicholas J; Flitsch, Sabine L

    2018-06-01

    Cytochrome P450 monooxygenases are able to catalyse a range of synthetically challenging reactions ranging from hydroxylation and demethylation to sulfoxidation and epoxidation. As such they have great potential for biocatalytic applications but are underutilised due to often-poor expression, stability and solubility in recombinant bacterial hosts. The use of self-sufficient P450 s with fused haem and reductase domains has already contributed heavily to improving catalytic efficiency and simplifying an otherwise more complex multi-component system of P450 and redox partners. Herein, we present a new addition to the class VII family with the cloning, sequencing and characterisation of the self-sufficient CYP116B62 Hal1 from Halomonas sp. NCIMB 172, the genome of which has not yet been sequenced. Hal1 exhibits high levels of expression in a recombinant E. coli host and can be utilised from cell lysate or used in purified form. Hal1 favours NADPH as electron donor and displays a diverse range of activities including hydroxylation, demethylation and sulfoxidation. These properties make Hal1 suitable for future biocatalytic applications or as a template for optimisation through engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Science.gov (United States)

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  12. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cruz, Albert Leo N. dela, E-mail: adelac2@tigers.lsu.edu [Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A& M College, Baton Rouge, LA 70803 (United States); Lomnicki, Slawo M., E-mail: slomni1@lsu.edu [Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A& M College, Baton Rouge, LA 70803 (United States); Backes, Wayne L., E-mail: wbacke@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2015-12-01

    Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductase and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2–CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • Particulate matter (PM) competitively inhibited CYP1A2 activity. • EPFRs were much more potent CYP1A2 inhibitors than other types of PM. • PM interacts differently with different forms of P450. • PM

  13. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis.

    Science.gov (United States)

    Ibrahim, Sulaiman S; Riveron, Jacob M; Stott, Robert; Irving, Helen; Wondji, Charles S

    2016-01-01

    Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control. Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis population from Chad, Central Africa. Using heterologous expression of P450s in Escherichia coli coupled with metabolism assays we established that the over-expressed P450 CYP6P4, located in the major pyrethroid resistance (rp1) quantitative trait locus (QTL), is responsible for resistance to Type I and Type II pyrethroid insecticides, with the exception of deltamethrin, in correlation with field resistance profile. However, CYP6P4 exhibited no metabolic activity towards non-pyrethroid insecticides, including DDT, bendiocarb, propoxur and malathion. Combining fluorescent probes inhibition assays with molecular docking simulation, we established that CYP6P4 can bind deltamethrin but cannot metabolise it. This is possibly due to steric hindrance because of the large vdW radius of bromine atoms of the dihalovinyl group of deltamethrin which docks into the heme catalytic centre. The establishment of CYP6P4 as a partial pyrethroid resistance gene explained the observed field resistance to permethrin, and its inability to metabolise deltamethrin probably explained the high mortality from deltamethrin exposure in the field populations of this Sudano-Sahelian An. arabiensis. These findings describe the heterogeneity in resistance towards insecticides, even from the same class, highlighting the need to thoroughly understand the molecular basis of resistance before implementing resistance management/control tools. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Differential Expression of Cytochrome P450 Enzymes in Normal and Tumor Tissues from Childhood Rhabdomyosarcoma

    Science.gov (United States)

    Molina-Ortiz, Dora; Camacho-Carranza, Rafael; González-Zamora, José Francisco; Shalkow-Kalincovstein, Jaime; Cárdenas-Cardós, Rocío; Ností-Palacios, Rosario; Vences-Mejía, Araceli

    2014-01-01

    Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs. PMID:24699256

  15. Cytochrome P450 induction by rifampicin in healthy subjects: determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4beta-hydroxycholesterol.

    Science.gov (United States)

    Kanebratt, K P; Diczfalusy, U; Bäckström, T; Sparve, E; Bredberg, E; Böttiger, Y; Andersson, T B; Bertilsson, L

    2008-11-01

    The Karolinska cocktail, comprising caffeine, losartan, omeprazole, and quinine, was given before and after administration of rifampicin (20, 100, or 500 mg daily) to measure induction of cytochrome P450 (P450) enzymes. Rifampicin was given for 14 days to eight healthy subjects (all of whom possessed at least one wild-type CYP2C9 and one wild-type CYP2C19 gene) in each dose group. 4beta-hydroxycholesterol was assessed as an endogenous marker of CYP3A4 induction. A fourfold induction of CYP3A4 was seen at the highest dose by both quinine:3'-hydroxyquinine and 4beta-hydroxycholesterol measurements (P Karolinska cocktail and 4beta-hydroxycholesterol can be used for an initial screening of the induction properties of a drug candidate.

  16. Polychlorinated biphenyls pattern analysis: Potential nondestructive biomarker in vertebrates for exposure to cytochrome P450-inducing organochlorines

    Energy Technology Data Exchange (ETDEWEB)

    Brink, N.W. van den; Ruiter-Dijkman, E.M. De; Broekhuizen, S.; Reijnders, P.J.H.; Bosveld, A.T.C.

    2000-03-01

    Biomarkers are valuable instruments to assess the risks from exposure of organisms to organochlorines. In general, however, these biomarkers are either destructive to the animal of interest or extremely difficult to obtain otherwise. In this paper, the authors present a nondestructive biomarker for exposure to cytochrome P450-inducing organochlorines. This marker is based on a pattern analysis of metabolizable and nonmetabolizable polychlorinated biphenyl (PCB) congeners, which occur in several kinds of tissues (and even blood) that can be obtained without serious effects on the organism involved. The fraction of metabolizable PCB congeners is negatively correlated with exposure to PCBs, which are known to induce specific P450 isoenzymes. This relation can be modeled by a logistic curve, which can be used to define critical levels of exposure. In addition, this method creates an opportunity to analyze biomarker responses in archived tissues stored at standard freezing temperatures ({minus}20 C), at which responses to established biomarkers deteriorate. Furthermore, this method facilitates attribution of the enzyme induction to certain classes of compounds.

  17. Selective inhibition by chloramphenicol of pregnenolone-16 α-carbonitrile-inducible rat liver cytochrome P-450 isozymes

    International Nuclear Information System (INIS)

    Graves, P.E.; Kaminsky, L.S.; Halpert, J.

    1986-01-01

    Pregnenolone-16 α-carbonitrile (PCN) has been shown to induce, in male rats, cytochrome P-450 isozymes responsible for the formation of R-10-hydroxywarfarin and R-dehydrowarfarin. Antibodies to the major PCN-inducible isozyme (PB/PCN-E) inhibit both activities in microsomal preparations. Recently the authors have shown that PCN treatment of female rats also induces the formation of both R-warfarin metabolites. However, in both sexes chloramphenicol (CAP) treatment selectively inhibits only the rate of formation of the R-dehydrowarfarin. A decrease in microsomal P-450 content occurs after in vivo administration of CAP to PCN-treated rats of both sexes. This is in contrast to the lack of effect of CAP on P-450 levels in phenobarbital-treated rats. Covalent binding of 14 C-CAP to microsomal protein in vitro was increased 3 to 4-fold following PCN treatment. Chromatographic evidences suggests the presence of at least two PCN-induced isozymes of similar molecular weights in both male and female rat liver microsomes. These data are consistent with the multiplicity of PCN-inducible P-450 in rat liver

  18. Altered gene regulation and potential association with metabolic resistance development to imidacloprid in the tarnished plant bug, Lygus lineolaris.

    Science.gov (United States)

    Zhu, Yu Cheng; Luttrell, Randall

    2015-01-01

    Chemical spray on cotton is almost an exclusive method for controlling tarnished plant bug (TPB), Lygus lineolaris. Frequent use of imidacloprid is a concern for neonicotinoid resistance in this key pest. Information of how and why TPB becomes less susceptible to imidacloprid is essential for effective monitoring and managing resistance. Microarray analysis of 6688 genes in imidacloprid-selected TPB (Im1500FF) revealed 955 upregulated and 1277 downregulated (≥twofold) genes in Im1500FF, with 369 and 485 of them annotated. Five P450 and nine esterase genes were significantly upregulated, and only one esterase gene and no P450 genes were downregulated. Other upregulated genes include helicases, phosphodiesterases, ATPases and kinases. Pathway analyses identified 65 upregulated cDNAs that encode 51 different enzymes involved in 62 different pathways, including P450 and esterase genes for drug and xenobiotic metabolisms. Sixty-four downregulated cDNAs code only 17 enzymes that are associated with only 23 pathways mostly related to food digestion. This study demonstrated a significant change in gene expression related to metabolic processes in imidacloprid-selected TPB, resulting in overexpression of P450 and esterase genes for potential excess detoxification and cross/multiple resistance development. The identification of these and other enzyme genes establishes a foundation to explore the complicity of potential imidacloprid resistance in TPB. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  19. The P450 CYP6Z1 confers carbamate/pyrethroid cross-resistance in a major African malaria vector beside a novel carbamate-insensitive N485I acetylcholinesterase-1 mutation.

    Science.gov (United States)

    Ibrahim, Sulaiman S; Ndula, Miranda; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2016-07-01

    Carbamates are increasingly used for vector control notably in areas with pyrethroid resistance. However, a cross-resistance between these insecticides in major malaria vectors such as Anopheles funestus could severely limit available resistance management options. Unfortunately, the molecular basis of such cross-resistance remains uncharacterized in An. funestus, preventing effective resistance management. Here, using a genomewide transcription profiling, we revealed that metabolic resistance through upregulation of cytochrome P450 genes is driving carbamate resistance. The P450s CYP6P9a, CYP6P9b and CYP6Z1 were the most upregulated detoxification genes in the multiple resistant mosquitoes. However, in silico docking simulations predicted CYP6Z1 to metabolize both pyrethroids and carbamates, whereas CYP6P9a and CYP6P9b were predicted to metabolize only the pyrethroids. Using recombinant enzyme metabolism and inhibition assays, we demonstrated that CYP6Z1 metabolizes bendiocarb and pyrethroids, whereas CYP6P9a and CYP6P9b metabolize only the pyrethroids. Other upregulated gene families in resistant mosquitoes included several cuticular protein genes suggesting a possible reduced penetration resistance mechanism. Investigation of the target-site resistance in acetylcholinesterase 1 (ace-1) gene detected and established the association between the new N485I mutation and bendiocarb resistance (odds ratio 7.3; P resistance and improve the design of effective resistance management strategies to control this malaria vector. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  20. Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors

    Science.gov (United States)

    Bonomo, Silvia; Hansen, Cecilie H.; Petrunak, Elyse M.; Scott, Emily E.; Styrishave, Bjarne; Jørgensen, Flemming Steen; Olsen, Lars

    2016-07-01

    Cytochrome P450 17A1 (CYP17A1) is an important target in the treatment of prostate cancer because it produces androgens required for tumour growth. The FDA has approved only one CYP17A1 inhibitor, abiraterone, which contains a steroidal scaffold similar to the endogenous CYP17A1 substrates. Abiraterone is structurally similar to the substrates of other cytochrome P450 enzymes involved in steroidogenesis, and interference can pose a liability in terms of side effects. Using non-steroidal scaffolds is expected to enable the design of compounds that interact more selectively with CYP17A1. Therefore, we combined a structure-based virtual screening approach with density functional theory (DFT) calculations to suggest non-steroidal compounds selective for CYP17A1. In vitro assays demonstrated that two such compounds selectively inhibited CYP17A1 17α-hydroxylase and 17,20-lyase activities with IC50 values in the nanomolar range, without affinity for the major drug-metabolizing CYP2D6 and CYP3A4 enzymes and CYP21A2, with the latter result confirmed in human H295R cells.

  1. Different structure of the complexes of two cytochrome P-450 isozymes with acetanilide by 1H-NMR relaxation and spectrophotometry.

    Science.gov (United States)

    Woldman YaYu; Weiner, L M; Lyakhovich, V V

    1993-05-28

    The functional and spectral characteristics of the interaction of acetanilide with phenobarbital- and methylcholanthrene- induced rat liver microsomes, as well as with corresponding major isozymes (cytochromes P-450b and P-450c) have been compared. The magnitude of the reverse 1st type binding spectra proved to be negatively correlated with the acetanilide oxidation on isozymes under study. The data on paramagnetic relaxation of acetanilide protons in the presence of P-450 have shown the structure of the enzyme-substrate complex to be different for two isozymes, acetanilide molecule being closer to Fe ion in the active site in the case of P-450c, which is active towards acetanilide oxidation. For the P-450c-acetanilide complex the group oxidized (phenyl) is the closest to Fe ion.

  2. High-Throughput Cytochrome P450 Cocktail Inhibition Assay for Assessing Drug-Drug and Drug-Botanical Interactions.

    Science.gov (United States)

    Li, Guannan; Huang, Ke; Nikolic, Dejan; van Breemen, Richard B

    2015-11-01

    Detection of drug-drug interactions is essential during the early stages of drug discovery and development, and the understanding of drug-botanical interactions is important for the safe use of botanical dietary supplements. Among the different forms of drug interactions that are known, inhibition of cytochrome P450 (P450) enzymes is the most common cause of drug-drug or drug-botanical interactions. Therefore, a rapid and comprehensive mass spectrometry-based in vitro high-throughput P450 cocktail inhibition assay was developed that uses 10 substrates simultaneously against nine CYP isoforms. Including probe substrates for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and two probes targeting different binding sites of CYP3A4/5, this cocktail simultaneously assesses at least as many P450 enzymes as previous assays while remaining among the fastest due to short incubation times and rapid analysis using ultrahigh pressure liquid chromatography-tandem mass spectrometry. The method was validated using known inhibitors of each P450 enzyme and then shown to be useful not only for single-compound testing but also for the evaluation of potential drug-botanical interactions using the botanical dietary supplement licorice (Glycyrrhiza glabra) as an example. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication.

    Science.gov (United States)

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Interaction of rocuronium with human liver cytochromes P450

    OpenAIRE

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-01-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver micro...

  5. Coupled motions direct electrons along human microsomal P450 Chains.

    Directory of Open Access Journals (Sweden)

    Christopher R Pudney

    2011-12-01

    Full Text Available Protein domain motion is often implicated in biological electron transfer, but the general significance of motion is not clear. Motion has been implicated in the transfer of electrons from human cytochrome P450 reductase (CPR to all microsomal cytochrome P450s (CYPs. Our hypothesis is that tight coupling of motion with enzyme chemistry can signal "ready and waiting" states for electron transfer from CPR to downstream CYPs and support vectorial electron transfer across complex redox chains. We developed a novel approach to study the time-dependence of dynamical change during catalysis that reports on the changing conformational states of CPR. FRET was linked to stopped-flow studies of electron transfer in CPR that contains donor-acceptor fluorophores on the enzyme surface. Open and closed states of CPR were correlated with key steps in the catalytic cycle which demonstrated how redox chemistry and NADPH binding drive successive opening and closing of the enzyme. Specifically, we provide evidence that reduction of the flavin moieties in CPR induces CPR opening, whereas ligand binding induces CPR closing. A dynamic reaction cycle was created in which CPR optimizes internal electron transfer between flavin cofactors by adopting closed states and signals "ready and waiting" conformations to partner CYP enzymes by adopting more open states. This complex, temporal control of enzyme motion is used to catalyze directional electron transfer from NADPH→FAD→FMN→heme, thereby facilitating all microsomal P450-catalysed reactions. Motions critical to the broader biological functions of CPR are tightly coupled to enzyme chemistry in the human NADPH-CPR-CYP redox chain. That redox chemistry alone is sufficient to drive functionally necessary, large-scale conformational change is remarkable. Rather than relying on stochastic conformational sampling, our study highlights a need for tight coupling of motion to enzyme chemistry to give vectorial electron

  6. Cytochrome P450 1B1 and 2C9 genotypes and risk of ischemic vascular disease, cancer, and chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Kaur-Knudsen, Diljit; Bojesen, Stig E; Nordestgaard, Børge G

    2012-01-01

    The aim of this review is to summarize present knowledge of genetic variation in cytochrome P450 1B1 (CYP1B1) and 2C9 (CYP2C9) genes and risk of tobacco-related cancer, female cancer, chronic obstructive pulmonary disease and ischemic vascular disease. The CYP1B1 and CYP2C9 enzymes metabolize pol...

  7. Identification of promoter polymorphisms in the cytochrome P450 CYP6AY1 linked with insecticide resistance in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Pang, R; Li, Y; Dong, Y; Liang, Z; Zhang, Y; Zhang, W

    2014-12-01

    Imidacloprid resistance in the brown planthopper, Nilaparvata lugens, is primarily the result of the over-expression of cytochrome P450 monooxygenases. Here, a field-collected strain of N. lugens was shown to be highly resistant to both imidacloprid and buprofezin. Insecticide exposure and quantitative real-time PCR revealed that its resistance was mainly associated with a cytochrome P450 gene, CYP6AY1. CYP6AY1 is known to metabolize imidacloprid but its effect on buprofezin is unclear. In the 5'-untranslated region of CYP6AY1, a novel alternative splicing was detected. After a 1990-bp promoter region was cloned, its basal luciferase activity was assessed. Furthermore, genotyping studies identified 12 variations in the promoter region that discriminated between the field-collected and control strain. Finally, survival bioassays revealed a single nucleotide polymorphism and an insertion-deletion polymorphism linked to buprofezin and imidacloprid resistance. Mutagenesis of these sites enhanced the promoter activity of CYP6AY1. These results suggest that promoter polymorphisms may affect P450-mediated multiple insecticide resistance of pests. © 2014 The Royal Entomological Society.

  8. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution.

    Science.gov (United States)

    Marez, D; Legrand, M; Sabbagh, N; Lo Guidice, J M; Spire, C; Lafitte, J J; Meyer, U A; Broly, F

    1997-06-01

    The polymorphic cytochrome P450 CYP2D6 is involved in the metabolism of various drugs of wide therapeutic use and is a presumed susceptibility factor for certain environmentally-induced diseases. Our aim was to define the mutations and alleles of the CYP2D6 gene and to evaluate their frequencies in the European population. Using polymerase chain reaction-single strand conformation polymorphism analysis, 672 unrelated subjects were screened for mutations in the 9 exons of the gene and their exon-intron boundaries. A total of 48 point mutations were identified, of which 29 were novel. Mutations 1749 G-->C, 2938 C-->T and 4268 G-->C represented 52.6%, 34.3% and 52.9% of the mutations in the total population, respectively. Of the eight detrimental mutations detected, the 1934 G-->A, the 1795 Tdel and the 2637 Adel accounted for 65.8%, 6.2% and 4.8% respectively, within the poor metabolizer subgroup. Fifty-three different alleles were characterized from the mutation pattern and by allele-specific sequencing. They are derived from three major alleles, namely the wild-type CYP2D6*1A, the functional CYP2D6*2 and the null CYP2D6*4A. Five allelic variants (CYP2D6*1A, *2, *2B, *4A and *5) account for about 87% of all alleles, while the remaining alleles occur with a frequency of 0.1%-2.7%. These data provide a solid basis for future epidemiological, clinical as well as interethnic studies of the CYP2D6 polymorphism and highlight that the described single strand conformation polymorphism method can be successfully used in designing such studies.

  9. RNA-Seq mediated root transcriptome analysis of Chlorophytum borivilianum for identification of genes involved in saponin biosynthesis.

    Science.gov (United States)

    Kumar, Sunil; Kalra, Shikha; Singh, Baljinder; Kumar, Avneesh; Kaur, Jagdeep; Singh, Kashmir

    2016-01-01

    Chlorophytum borivilianum is an important species of liliaceae family, owing to its vital medicinal properties. Plant roots are used for aphrodisiac, adaptogen, anti-aging, health-restorative and health-promoting purposes. Saponins, are considered to be the principal bioactive components responsible for the wide variety of pharmacological properties of this plant. In the present study, we have performed de novo root transcriptome sequencing of C. borivilianum using Illumina Hiseq 2000 platform, to gain molecular insight into saponins biosynthesis. A total of 33,963,356 high-quality reads were obtained after quality filtration. Sequences were assembled using various programs which generated 97,344 transcripts with a size range of 100-5,216 bp and N50 value of 342. Data was analyzed against non-redundant proteins, gene ontology (GO), and enzyme commission (EC) databases. All the genes involved in saponins biosynthesis along with five full-length genes namely farnesyl pyrophosphate synthase, cycloartenol synthase, β-amyrin synthase, cytochrome p450, and sterol-3-glucosyltransferase were identified. Read per exon kilobase per million (RPKM)-based comparative expression profiling was done to study the differential regulation of the genes. In silico expression analysis of seven selected genes of saponin biosynthetic pathway was validated by qRT-PCR.

  10. Why there is no cookbook approach to palliative care: implications of the P450 enzyme system.

    Science.gov (United States)

    Kuebler, Kim K; Varga, James; Mihelic, Ronald A

    2003-01-01

    A plethora of literature describes the impact of the P450 enzyme system, but this information is limited regarding its relevancy to nursing practice. However, oncology nurses providing palliative symptom management must have a working knowledge of the P450 enzyme system to recognize the variability that exists among individual medication reactions or why a "cookbook approach" to symptom management is not always effective and appropriate. This article describes the variations associated with medication metabolism with reference to ethnic differences. Having a basic understanding of the P450 enzyme system and, more specifically, the CYP2D6 influence on the metabolism of common medications used in palliative symptom management can help to prevent medication toxicity or underdosing, which interferes with patients' quality of life.

  11. Endocrine disruptors induce cytochrome P450 by affecting transcriptional regulation via pregnane X receptor

    International Nuclear Information System (INIS)

    Mikamo, Eriko; Harada, Shingo; Nishikawa, Jun-ichi; Nishihara, Tsutomu

    2003-01-01

    Pregnane X receptor (PXR) is a nuclear receptor that regulates the expression of genes for cytochrome P450 3A (CYP3A), multidrug resistance 1 (MDR1), and organic anion-transporting peptide 2 (OATP2). These genes control the metabolism (CYP3A subfamily) and aspects of the pharmacokinetics (MDR1 and OATP2) of both endogenous and xenobiotic compounds. Since PXR is important in understanding the actions of endocrine disruptors (EDs), we determined the ability of suspected EDs to interact with PXR. In our study, 7 of 54 xenobiotics compounds interacted with PXR, including methoxychlor and benzophenone. All of the chemicals activated PXR in vitro and induced CYP3A mRNA in the male rat liver. In addition, CYP2C11 was also induced by some PXR agonists and converted methoxychlor into xenoestrogen. These findings suggest that some EDs affect sex hormone receptor indirectly by induction of metabolic enzyme via PXR, to produce rapidly higher concentrations of effective metabolites, leading to disturbance of the endocrine system

  12. INTERACTION OF AROMATIC CYTOKININS WITH HUMAN LIVER MICROSOMAL CYTOCHROMES P450

    Czech Academy of Sciences Publication Activity Database

    Anzenbacherová, E.; Janalík, J.; Popa, Igor; Strnad, Miroslav; Anzenbacher, P.

    2005-01-01

    Roč. 149, č. 2 (2005), s. 349-351 ISSN 1213-8118 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cytokinins * Cyclin dependent kinase inhibitor * Cytochrome P450 Subject RIV: CE - Biochemistry http://publib.upol.cz/~obd/fulltext/Biomed/2005/2/349.pdf

  13. The effect of lycopene on the total cytochrome P450, CYP1A2 and CYP2E1

    Directory of Open Access Journals (Sweden)

    Melva Louisa

    2009-12-01

    Full Text Available Aim: Some carotenoids such as canthaxantin, astaxanthin and beta apo-8’-carotenal were reported to have modulatoryeffect on the cytochrome P450. The present study was conducted to investigate the effects of lycopene, a nonprovitamin A carotenoid, on microsomal cytochrome P450, CYP1A2 and CYP2E1.Methods: Total cytochrome P450 levels, CYP1A2 and CYP2E1-catalyzed reactions (acetanilide 4-hydroxylation and p-nitrophenol hydroxylation were studied in the liver microsomes of male Sprague Dawley rats. Microsomes were prepared using differential centrifugation combined with calcium aggregation method. Lycopene was orally administered in the dosages of 0, 25, 50 or 100 mg/kgBW/day for 14 days in a repeated fashion. Data were analyzed using ANOVA test.Results: Total cytochrome P450 level and acetanilide 4-hydroxylase activity were unaffected by any of the treatments. The CYP2E1 probe enzyme (p-nitrophenol hydroxylase was significantly reduced by repeated administration of 100mg/ kgBW/day lycopene (7.88 + 2.04 vs 12.26 + 2.77 n mol/min/mg prot.Conclusion: The present results suggest that lycopene does not affect the total cytochrome P450 or CYP1A2 activity but it inhibits the activity of CYP2E1 (p-nitrophenol hydroxylase in the rat. (Med J Indones 2009; 18: 233-8Keywords: lycopene, cytochrome P450, CYP1A2, CYP2E1

  14. Cloning and expression of SgCYP450-4 from Siraitia grosvenorii

    Directory of Open Access Journals (Sweden)

    Dongping Tu

    2016-10-01

    Full Text Available CYP450 plays an essential role in the development and growth of the fruits of Siraitia grosvenorii. However, little is known about the SgCYP450-4 gene in S. grosvenorii. Here, based on transcriptome data, a full-length cDNA sequence of SgCYP450-4 was cloned by reverse transcriptase-polymerase chain reaction (RT-PCR and rapid-amplification of cDNA ends (RACE strategies. SgCYP450-4 is 1677 bp in length (GenBank accession No. AEM42985.1 and contains a complete open reading frame (ORF of 1422 bp. The deduced protein was composed of 473 amino acids, the molecular weight is 54.01 kDa, the theoretical isoelectric point (PI is 8.8, and the protein was predicted to possess cytochrome P450 domains. SgCYP450-4 gene was highly expressed in root, diploid fruit and fruit treated with hormone and pollination. At 10 days after treatment with pollination and hormones, the expression of SgCYP450-4 had the highest level and then decreased over time, which was consistent with the development of fruits of S. Grosvenorii. Hormonal treatment could significantly induce the expression of SgCYP450-4. These results provide a reference for regulation of fruit development and the use of parthenocarpy to generate seedless fruit, and provide a scientific basis for the production of growth regulator application agents.

  15. Export of Cytochrome P450 105D1 to the Periplasmic Space of Escherichia coli

    OpenAIRE

    Kaderbhai, Mustak A.; Ugochukwu, Cynthia C.; Kelly, Steven L.; Lamb, David C.

    2001-01-01

    CYP105D1, a cytochrome P450 from Streptomyces griseus, was appended at its amino terminus to the secretory signal of Escherichia coli alkaline phosphatase and placed under the transcriptional control of the native phoA promoter. Heterologous expression in E. coli phosphate-limited medium resulted in abundant synthesis of recombinant CYP105D1 that was translocated across the bacterial inner membrane and processed to yield authentic, heme-incorporated P450 within the periplasmic space. Cell ext...

  16. Resonance Raman study on the structure of the active sites of microsomal cytochrome P-450 isozymes LM2 and LM4.

    Science.gov (United States)

    Hildebrandt, P; Greinert, R; Stier, A; Taniguchi, H

    1989-12-08

    , P-420, involves a severe structural rearrangement in the heme binding pocket leading to drastic changes of the vinyl group conformations. The conformational differences of the active sites in cytochromes P-450 LM2 and LM4 observed in this work contribute to the understanding of the structural basis accounting for substrate and product specificity of cytochrome P-450 isozymes.

  17. Identification of Putative Genes Involved in Limonoids Biosynthesis in Citrus by Comparative Transcriptomic Analysis

    Directory of Open Access Journals (Sweden)

    Fusheng Wang

    2017-05-01

    Full Text Available Limonoids produced by citrus are a group of highly bioactive secondary metabolites which provide health benefits for humans. Currently there is a lack of information derived from research on the genetic mechanisms controlling the biosynthesis of limonoids, which has limited the improvement of citrus for high production of limonoids. In this study, the transcriptome sequences of leaves, phloems and seeds of pummelo (Citrus grandis (L. Osbeck at different development stages with variances in limonoids contents were used for digital gene expression profiling analysis in order to identify the genes corresponding to the biosynthesis of limonoids. Pair-wise comparison of transcriptional profiles between different tissues identified 924 differentially expressed genes commonly shared between them. Expression pattern analysis suggested that 382 genes from three conjunctive groups of K-means clustering could be possibly related to the biosynthesis of limonoids. Correlation analysis with the samples from different genotypes, and different developing tissues of the citrus revealed that the expression of 15 candidate genes were highly correlated with the contents of limonoids. Among them, the cytochrome P450s (CYP450s and transcriptional factor MYB demonstrated significantly high correlation coefficients, which indicated the importance of those genes on the biosynthesis of limonoids. CiOSC gene encoding the critical enzyme oxidosqualene cyclase (OSC for biosynthesis of the precursor of triterpene scaffolds was found positively corresponding to the accumulation of limonoids during the development of seeds. Suppressing the expression of CiOSC with VIGS (Virus-induced gene silencing demonstrated that the level of gene silencing was significantly correlated to the reduction of limonoids contents. The results indicated that the CiOSC gene plays a pivotal role in biosynthesis of limonoids.

  18. Inter- and intramolecular deuterium isotope effects on the cytochrome P-450-catalyzed oxidative dehalogenation of 1,1,2,2-tetrachloroethane

    International Nuclear Information System (INIS)

    Hales, D.B.; Ho, B.; Thompson, J.A.

    1987-01-01

    The oxidation of 1,1,2,2-tetrachloroethane to dichloroacetic acid was investigated with rat liver microsomes and purified cytochrome P-450. Deuterium substitution had no effect on Km values, but both the inter- and intramolecular isotope effects (kH/kD) on Vmax were in the range 5.7-6.1. The equivalence of the inter- and intramolecular values indicates that 6.0 may be a good estimate of the intrinsic isotope effect. The intermolecular kH/kD value for the conversion of 1,1,2,2-trichloroethane and its 1- 2 H analog to chloroacetic acid was 5.5. These data, and the finding that 1 atom of 18 O was incorporated into the product when TCEA was oxidized in an 18 O 2 atmosphere, support an oxidative dechlorination mechanism that involves hydrogen atom abstraction by the P-450 intermediate oxo complex

  19. Identification and functional analysis of cytochrome P450 complement in Streptomyces virginiae IBL14

    Science.gov (United States)

    2013-01-01

    Background As well known, both natural and synthetic steroidal compounds are powerful endocrine disrupting compounds (EDCs) which can cause reproductive toxicity and affect cellular development in mammals and thus are generally regarded as serious contributors to water pollution. Streptomyces virginiae IBL14 is an effective degradative strain for many steroidal compounds and can also catalyze the C25 hydroxylation of diosgenin, the first-ever biotransformation found on the F-ring of diosgenin. Results To completely elucidate the hydroxylation function of cytochrome P450 genes (CYPs) found during biotransformation of steroids by S. virginiae IBL14, the whole genome sequencing of this strain was carried out via 454 Sequencing Systems. The analytical results of BLASTP showed that the strain IBL14 contains 33 CYPs, 7 ferredoxins and 3 ferredoxin reductases in its 8.0 Mb linear chromosome. CYPs from S. virginiae IBL14 are phylogenetically closed to those of Streptomyces sp. Mg1 and Streptomyces sp. C. One new subfamily was found as per the fact that the CYP Svu001 in S. virginiae IBL14 shares 66% identity only to that (ZP_05001937, protein identifer) from Streptomyces sp. Mg1. Further analysis showed that among all of the 33 CYPs in S. virginiae IBL14, three CYPs are clustered with ferredoxins, one with ferredoxin and ferredoxin reductase and three CYPs with ATP/GTP binding proteins, four CYPs arranged with transcriptional regulatory genes and one CYP located on the upstream of an ATP-binding protein and transcriptional regulators as well as four CYPs associated with other functional genes involved in secondary metabolism and degradation. Conclusions These characteristics found in CYPs from S. virginiae IBL14 show that the EXXR motif in the K-helix is not absolutely conserved in CYP157 family and I-helix not absolutely essential for the CYP structure, too. Experimental results showed that both CYP Svh01 and CYP Svu022 are two hydroxylases, capable of bioconverting

  20. Peroxisome proliferator-activated receptor alpha, PPARα, directly regulates transcription of cytochrome P450 CYP2C8

    Directory of Open Access Journals (Sweden)

    Maria eThomas

    2015-11-01

    Full Text Available The cytochrome P450, CYP2C8, metabolises more than 60 clinically used drugs as well as endogenous substances including retinoic acid and arachidonic acid. However predictive factors for interindividual variability in the efficacy and toxicity of CYP2C8 drug substrates are essentially lacking. Recently we demonstrated that peroxisome proliferator-activated receptor alpha (PPARα, a nuclear receptor primarily involved in control of lipid and energy homeostasis directly regulates the transcription of CYP3A4. Here we investigated the potential regulation of CYP2C8 by PPARα. Two linked intronic SNPs in PPARα (rs4253728, rs4823613 previously associated with hepatic CYP3A4 status showed significant association with CYP2C8 protein level in human liver samples (N=150. Furthermore, siRNA-mediated knock-down of PPARα in HepaRG human hepatocyte cells resulted in up to ~60% and ~50% downregulation of CYP2C8 mRNA and activity, while treatment with the PPARα agonist WY14,643 lead to an induction by >150% and >100%, respectively. Using chromatin immunoprecipitation scanning assay we identified a specific upstream gene region that is occupied in vivo by PPARα. Electromobility shift assay demonstrated direct binding of PPARα to a DR-1 motif located at positions -2762/-2775bp upstream of the CYP2C8 transcription start site. We further validated the functional activity of this element using luciferase reporter gene assays in HuH7 cells. Moreover, based on our previous studies we demonstrated that WNT/β-catenin acts as a functional inhibitor of PPARα-mediated inducibility of CYP2C8 expression. In conclusion, our data suggest direct involvement of PPARα in both constitutive and inducible regulation of CYP2C8 expression in human liver, which is further modulated by WNT/ β-catenin pathway. PPARA gene polymorphism could have a modest influence on CYP2C8 phenotype.

  1. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli.

    Science.gov (United States)

    Biggs, Bradley Walters; Lim, Chin Giaw; Sagliani, Kristen; Shankar, Smriti; Stephanopoulos, Gregory; De Mey, Marjan; Ajikumar, Parayil Kumaran

    2016-03-22

    Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature's favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities.

  2. Catalytic diversity and homotropic allostery of two Cytochrome P450 monooxygenase like proteins from Trichoderma brevicompactum.

    Science.gov (United States)

    Hussain, Razak; Kumari, Indu; Sharma, Shikha; Ahmed, Mushtaq; Khan, Tabreiz Ahmad; Akhter, Yusuf

    2017-12-01

    Trichothecenes are the secondary metabolites produced by Trichoderma spp. Some of these molecules have been reported for their ability to stimulate plant growth by suppressing plant diseases and hence enabling Trichoderma spp. to be efficiently used as biocontrol agents in modern agriculture. Many of the proteins involved in the trichothecenes biosynthetic pathway in Trichoderma spp. are encoded by the genes present in the tri cluster. Tri4 protein catalyzes three consecutive oxygenation reaction steps during biosynthesis of isotrichodiol in the trichothecenes biosynthetic pathway, while tri11 protein catalyzes the C4 hydroxylation of 12, 13-epoxytrichothec-9-ene to produce trichodermol. In the present study, we have homology modelled the three-dimensional structures of tri4 and tri11 proteins. Furthermore, molecular dynamics simulations were carried out to elucidate the mechanism of their action. Both tri4 and tri11 encode for cytochrome P450 monooxygenase like proteins. These data also revealed effector-induced allosteric changes on substrate binding at an alternative binding site and showed potential homotropic negative cooperativity. These analyses also showed that their catalytic mechanism relies on protein-ligand and protein-heme interactions controlled by hydrophobic and hydrogen-bonding interactions which orient the complex in optimal conformation within the active sites.

  3. The catalytic function of cytochrome P450 is entwined with its membrane-bound nature [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Carlo Barnaba

    2017-05-01

    Full Text Available Cytochrome P450, a family of monooxygenase enzymes, is organized as a catalytic metabolon, which requires enzymatic partners as well as environmental factors that tune its complex dynamic. P450 and its reducing counterparts—cytochrome P450-reductase and cytochrome b5—are membrane-bound proteins located in the cytosolic side of the endoplasmic reticulum. They are believed to dynamically associate to form functional complexes. Increasing experimental evidence signifies the role(s played by both protein-protein and protein-lipid interactions in P450 catalytic function and efficiency. However, the biophysical challenges posed by their membrane-bound nature have severely limited high-resolution understanding of the molecular interfaces of these interactions. In this article, we provide an overview of the current knowledge on cytochrome P450, highlighting the environmental factors that are entwined with its metabolic function. Recent advances in structural biophysics are also discussed, setting up the bases for a new paradigm in the study of this important class of membrane-bound enzymes.

  4. Lack of evidence for metabolism of p-phenylenediamine by human hepatic cytochrome P450 enzymes

    International Nuclear Information System (INIS)

    Stanley, Lesley A.; Skare, Julie A.; Doyle, Edward; Powrie, Robert; D'Angelo, Diane; Elcombe, Clifford R.

    2005-01-01

    p-Phenylenediamine (PPD) is a widely used ingredient in permanent hair dyes; however, little has been published on its metabolism, especially with respect to hepatic cytochrome P450 (CYP)-mediated oxidation. This is regarded as a key step in the activation of carcinogenic arylamines that ultimately leads to the development of bladder cancer. Most epidemiology studies show no significant association between personal use of hair dyes and bladder cancer, but one recent study reported an increased risk of bladder cancer in women who were frequent users of permanent hair dyes. The aim of the present study was to use intact human hepatocytes, human liver microsomes, and heterologously expressed human CYPs to determine whether PPD is metabolised by hepatic CYPs to form an N-hydroxylamine. p-Phenylenediamine was N-acetylated by human hepatocytes to form N-acetylated metabolites, but there was no evidence for the formation of mono-oxygenated metabolites or for enzyme-mediated covalent binding of 14 C-PPD to microsomal protein. In contrast, 2-aminofluorene underwent CYP-mediated metabolism to ≥4 different hydroxylated metabolites. The lack of evidence for hepatic CYP-mediated metabolism of PPD is inconsistent with the hypothesis that this compound plays a causal role in the development of bladder cancer via a mode of action involving hepatic metabolism to an N-hydroxyarylamine

  5. A Novel Semi-biosynthetic Route for Artemisinin Production Using Engineered Substrate-Promiscuous P450BM3

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Jeffrey; Yoshikuni, Yasuo; Fisher, Karl; Woolard, Frank; Ockey, Denise; McPhee, Derek; Renninger, Neil; Chang, Michelle; Baker, David; Keasling, Jay

    2009-11-30

    Production of fine heterologus pathways in microbial hosts is frequently hindered by insufficient knowledge of the native metabolic pathway and its cognate enzymes; often the pathway is unresolved and enzymes lack detailed characterization. An alternative paradigm to using native pathways is de novo pathway design using well-characterized, substrate-promiscuous enzymes. We demonstrate this concept using P450BM3 from Bacillus megaterium. Using a computer model, we illustrate how key P450BM3 activ site mutations enable binding of non-native substrate amorphadiene, incorporating these mutations into P450BM3 enabled the selective oxidation of amorphadiene arteminsinic-11s,12-epoxide, at titers of 250 mg L"1 in E. coli. We also demonstrate high-yeilding, selective transformations to dihydroartemisinic acid, the immediate precursor to the high value anti-malarial drug artemisinin.

  6. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450.

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-05-01

    The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a(fl/fl);alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Flvcr1a(fl/fl);alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1a(fl/fl);alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. In Situ Proteolysis for Crystallization of Membrane Bound Cytochrome P450 17A1 and 17A2 Proteins from Zebrafish.

    Science.gov (United States)

    Lei, Li; Egli, Martin

    2016-04-01

    Fish and human cytochrome P450 (P450) 17A1 catalyze both steroid 17α-hydroxylation and 17α,20-lyase reactions. Fish P450 17A2 catalyzes only 17α-hydroxylation. Both enzymes are microsomal-type P450s, integral membrane proteins that bind to the membrane through their N-terminal hydrophobic segment, the signal anchor sequence. The presence of this N-terminal region renders expression of full-length proteins challenging or impossible. For some proteins, variable truncation of the signal anchor sequence precludes expression or results in poor expression levels. To crystallize P450 17A1 and 17A2 in order to gain insight into their different activities, we used an alternative N-terminal sequence to boost expression together with in situ proteolysis. Key features of our approach to identify crystallizable P450 fragments were the use of an N-terminal leader sequence, a screen composed of 12 proteases to establish optimal cleavage, variations of protease concentration in combination with an SDS-PAGE assay, and analysis of the resulting fragments using Edman sequencing. Described in this unit are protocols for vector preparation, expression, purification, and in situ proteolytic crystallization of two membrane-bound P450 proteins. Copyright © 2016 John Wiley & Sons, Inc.

  8. Functional Analysis of the Unique Cytochrome P450 of the Liver Fluke Opisthorchis felineus.

    Directory of Open Access Journals (Sweden)

    Mariya Y Pakharukova

    2015-12-01

    Full Text Available The basic metabolic cytochrome P450 (CYP system is essential for biotransformation of sterols and xenobiotics including drugs, for synthesis and degradation of signaling molecules in all living organisms. Most eukaryotes including free-living flatworms have numerous paralogues of the CYP gene encoding heme monooxygenases with specific substrate range. Notably, by contrast, the parasitic flatworms have only one CYP gene. The role of this enzyme in the physiology and biochemistry of helminths is not known. The flukes and tapeworms are the etiologic agents of major neglected tropical diseases of humanity. Three helminth infections (Opisthorchis viverrini, Clonorchis sinensis and Schistosoma haematobium are considered by the International Agency for Research on Cancer (IARC as definite causes of cancer. We focused our research on the human liver fluke Opisthorchis felineus, an emerging source of biliary tract disease including bile duct cancer in Russia and central Europe. The aims of this study were (i to determine the significance of the CYP activity for the morphology and survival of the liver fluke, (ii to assess CYP ability to metabolize xenobiotics, and (iii to localize the CYP activity in O. felineus tissues. We observed high constitutive expression of CYP mRNA (Real-time PCR in O. felineus. This enzyme metabolized xenobiotics selective for mammalian CYP2E1, CYP2B, CYP3A, but not CYP1A, as determined by liquid chromatography and imaging analyses. Tissue localization studies revealed the CYP activity in excretory channels, while suppression of CYP mRNA by RNA interference was accompanied by morphological changes of the excretory system and increased mortality rates of the worms. These results suggest that the CYP function is linked to worm metabolism and detoxification. The findings also suggest that the CYP enzyme is involved in vitally important processes in the organism of parasites and is a potential drug target.

  9. Preferential hydroxylation over epoxidation catalysis by a horseradish peroxidase mutant: a cytochrome P450 mimic.

    Science.gov (United States)

    de Visser, Sam P

    2007-10-25

    Density functional theory calculations are presented on the catalytic properties of a horseradish peroxidase mutant whereby the axial nitrogen atom is replaced by phosphorus. This mutant has never been studied experimentally and only one theoretical report on this system is known (de Visser, S. P. J. Phys. Chem. B 2006, 110, 20759-20761). Thus, a one-atom substitution in horseradish peroxidase changes the properties of the catalytic center of the enzyme to more cytochrome P450-type qualities. In particular, the phosphorus-substituted horseradish peroxidase mutant reacts with substrates via a unique reactivity pattern, whereby alkanes are regioselectively hydroxylated even in the presence of a double bond. Reaction barriers of propene epoxidation and hydroxylation are almost identical to ones observed for a cytochrome P450 catalyst and significantly higher than those obtained for a horseradish peroxidase catalyst. It is shown that the regioselectivity difference is entropy and thermally driven and that the electron-transfer processes that occur during the reaction mechanism follow cytochrome P450-type patterns in the hydroxylation reaction.

  10. Comparison of basal and induced cytochromes P450 in 6 species of waterfowl

    Science.gov (United States)

    Melancon, M.J.; Rattner, B.A.; Hoffman, D.J.; Beeman, D.; Day, D.; Custer, T.

    1999-01-01

    Cytochrome P450-associated monooxygenase activities were measured in control and prototype inducer-treated mallard duck, black duck, wood duck, lesser scaup, Canada goose and mute swan. Ages of the birds ranged from pipping embryos (that were treated approximately 3 days before pipping) to adults. Three or more of the following hepatic microsomal monooxygenases were assayed in each species: Benzyloxyresorufin-O-dealkylase (BROD), Ethoxyresorufin-O-dealkylase (EROD), methoxyresorufin-O-dealkylase (MROD), and pentoxyresorufin-O-dealkylase (PROD). Baseline activities differed between species, but because of differences in ages, sources of the eggs or birds, and diets, these cannot be viewed as absolute differences. The cytochrome P450 inducers utilized were beta-naphthoflavone (BNF), 3-methylcholanthrene (3MC) and phenobarbital (PB). In general, there was little response to PB; only lesser scaup were induced to greater than three times control level and most species were well under this. Responses to BNF and 3MC occurred in each species studied, but differed in which of the monooxygenases was most induced (absolute values and ratios to control values) and in relative induction between species. BROD frequently had an induction ratio EROD. Overall, lesser scaup were the most responsive, canada geese the least responsive, and the other species intermediate in responsiveness to the cytochrome P450 inducers studied.

  11. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Directory of Open Access Journals (Sweden)

    Yuanjun Li

    2016-08-01

    Full Text Available Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones, which include the xanthanolides. To date, the biogenesis of xanthanolides, especiallytheir downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that were highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of sesquiterpene lactones are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  12. Photosystem I from plants as a bacterial cytochrome P450 surrogate electron donor

    DEFF Research Database (Denmark)

    Jensen, Kenneth; Johnston, Jonathan B.; Montellano, Paul R. Ortiz de

    2012-01-01

    The ability of cytochrome P450 enzymes to catalyze highly regio- and stereospecific hydroxylations makes them attractive alternatives to approaches based on chemical synthesis but they require expensive cofactors, e.g. NAD(P)H, which limits their commercial potential. Ferredoxin (Fdx) is a multif...

  13. Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation

    Directory of Open Access Journals (Sweden)

    Steinmetz André

    2010-09-01

    Full Text Available Abstract Background Plants of the Huperziaceae family, which comprise the two genera Huperzia and Phlegmariurus, produce various types of lycopodium alkaloids that are used to treat a number of human ailments, such as contusions, swellings and strains. Huperzine A, which belongs to the lycodine type of lycopodium alkaloids, has been used as an anti-Alzheimer's disease drug candidate. Despite their medical importance, little genomic or transcriptomic data are available for the members of this family. We used massive parallel pyrosequencing on the Roche 454-GS FLX Titanium platform to generate a substantial EST dataset for Huperzia serrata (H. serrata and Phlegmariurus carinatus (P. carinatus as representative members of the Huperzia and Phlegmariurus genera, respectively. H. serrata and P. carinatus are important plants for research on the biosynthesis of lycopodium alkaloids. We focused on gene discovery in the areas of bioactive compound biosynthesis and transcriptional regulation as well as genetic marker detection in these species. Results For H. serrata, 36,763 unique putative transcripts were generated from 140,930 reads totaling over 57,028,559 base pairs; for P. carinatus, 31,812 unique putative transcripts were generated from 79,920 reads totaling over 30,498,684 base pairs. Using BLASTX searches of public databases, 16,274 (44.3% unique putative transcripts from H. serrata and 14,070 (44.2% from P. carinatus were assigned to at least one protein. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG orthology annotations revealed that the functions of the unique putative transcripts from these two species cover a similarly broad set of molecular functions, biological processes and biochemical pathways. In particular, a total of 20 H. serrata candidate cytochrome P450 genes, which are more abundant in leaves than in roots and might be involved in lycopodium alkaloid biosynthesis, were found based on the comparison of H

  14. Effects of Cytochrome P 450 Inhibitors on Itraconazole and Fluconazole Induced Cytotoxicity in Hepatocytes

    International Nuclear Information System (INIS)

    Somchit, N.; Ngee, C.S.; Yaakob, A.; Ahmad, Z.; Zakaria, Z.A.

    2009-01-01

    Itraconazole and fluconazole have been reported to induce hepatotoxicity in patients. The present study was designed to investigate the role of cytochrome P450 inhibitors, SKF 525A, and curcumin pretreatment on the cytotoxicity of antifungal drugs fluconazole and itraconazole. For 3 consecutive days, female rats were administered daily SKF 525A or curcumin (5 and 25?mg/kg). Control rats received an equivalent amount of dosed vehicle. The animals were anaesthetised 24 hours after receiving the last dose for liver perfusion. Hepatocytes were then exposed to various concentrations of antifungal drugs. In vitro incubation of hepatocytes with itraconazole revealed significantly lower viability when compared to fluconazole as assessed by lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase activities. The cytotoxicity of itraconazole was enhanced when incubated with hepatocytes pretreated with SKF 525A. SKF 525A had no effects on the cytotoxicity of fluconazole. Curcumin failed to either increase or decrease the cytotoxicity of both antifungal drugs. ATP levels also showed significant decrease in both itraconazole and fluconazole incubated hepatocytes. However, SKF 525A pretreated hepatocytes had significantly lower ATP levels after itraconazole incubations. Collectively, these results confirm the involvement of cytochrome P450 in the cytoprotection in itraconazole induced hepatocyte toxicity. Differences of the effects of SKF 525A on the cytotoxicity induced by itraconazole and fluconazole may be due to the differences on the metabolism of each antifungal drug in vivo.

  15. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver.

    Science.gov (United States)

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo

    2015-12-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Electrochemistry of Canis familiaris cytochrome P450 2D15 with gold nanoparticles: An alternative to animal testing in drug discovery.

    Science.gov (United States)

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco

    2015-10-01

    This work reports for the first time the direct electron transfer of the Canis familiaris cytochrome P450 2D15 on glassy carbon electrodes to provide an analytical tool as an alternative to P450 animal testing in the drug discovery process. Cytochrome P450 2D15, that corresponds to the human homologue P450 2D6, was recombinantly expressed in Escherichia coli and entrapped on glassy carbon electrodes (GC) either with the cationic polymer polydiallyldimethylammonium chloride (PDDA) or in the presence of gold nanoparticles (AuNPs). Reversible electrochemical signals of P450 2D15 were observed with calculated midpoint potentials (E1/2) of −191 ± 5 and −233 ± 4 mV vs. Ag/AgCl for GC/PDDA/2D15 and GC/AuNPs/2D15, respectively. These experiments were then followed by the electro-catalytic activity of the immobilized enzyme in the presence of metoprolol. The latter drug is a beta-blocker used for the treatment of hypertension and is a specific marker of the human P450 2D6 activity. Electrocatalysis data showed that only in the presence of AuNps the expected α-hydroxy-metoprolol product was present as shown by HPLC. The successful immobilization of the electroactive C. familiaris cytochrome P450 2D15 on electrode surfaces addresses the ever increasing demand of developing alternative in vitromethods for amore detailed study of animal P450 enzymes' metabolism, reducing the number of animals sacrificed in preclinical tests.

  17. Substrate binding in the active site of cytochrome P450cam

    NARCIS (Netherlands)

    Swart, M.; Groenhof, A.R.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    We have studied the binding of camphor in the active site of cytochrome P450cam with density functional theory (DFT) calculations. A strong hydrogen bond (>6 kcal/mol) to a tyrosine residue (Tyr96) is observed, that may account for the high specificity of the reaction taking place. The DFT

  18. Structure, dynamics, and function of the monooxygenase P450 BM-3: insights from computer simulations studies

    International Nuclear Information System (INIS)

    Roccatano, Danilo

    2015-01-01

    The monooxygenase P450 BM-3 is a NADPH-dependent fatty acid hydroxylase enzyme isolated from soil bacterium Bacillus megaterium. As a pivotal member of cytochrome P450 superfamily, it has been intensely studied for the comprehension of structure–dynamics–function relationships in this class of enzymes. In addition, due to its peculiar properties, it is also a promising enzyme for biochemical and biomedical applications. However, despite the efforts, the full understanding of the enzyme structure and dynamics is not yet achieved. Computational studies, particularly molecular dynamics (MD) simulations, have importantly contributed to this endeavor by providing new insights at an atomic level regarding the correlations between structure, dynamics, and function of the protein. This topical review summarizes computational studies based on MD simulations of the cytochrome P450 BM-3 and gives an outlook on future directions. (topical review)

  19. Changes in cytochrome P450 gene expression and enzyme activity induced by xenobiotics in rabbits in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Orsolya Palócz

    2017-06-01

    Full Text Available As considerable inter-species differences exist in xenobiotic metabolism, developing new pharmaceutical therapies for use in different species is fraught with difficulties. For this reason, very few medicines have been registered for use in rabbits, despite their importance in inter alia meat and fur production. We have developed a rapid and sensitive screening system for drug safety in rabbits based on cytochrome P450 enzyme assays, specifically CYP1A1, CYP1A2 and CYP3A6, employing an adaptation of the luciferin-based clinical assay currently used in human drug screening. Short-term (4-h cultured rabbit primary hepatocytes were treated with a cytochrome inducer (phenobarbital and 2 inhibitors (alpha-naphthoflavone and ketoconazole. In parallel, and to provide verification, New Zealand white rabbits were dosed with 80 mg/kg phenobarbital or 40 mg/kg ketoconazole for 3 d. Ketoconazole significantly increased CYP3A6 gene expression and decreased CYP3A6 activity both in vitro and in vivo. CYP1A1 activity was decreased by ketoconazole in vitro and increased in vivo. This is the first report of the inducer effect of ketoconazole on rabbit cytochrome isoenzymes in vivo. Our data support the use of a luciferin-based assay in short-term primary hepatocytes as an appropriate tool for xenobiotic metabolism assays and short-term toxicity testing in rabbits.

  20. Heat-shock protein (Hsp70) and cytochrome P-450 (CYP1A) in the white mullet Mugil curema (Pisces:Mugilidae) as biomarkers to assess environmental quality in coastal lagoons.

    Science.gov (United States)

    Rios-Sicairos, Julian; Betancourt-Lozano, Miguel; Leal-Tarin, Beatriz; Hernandez-Cornejo, Rubi; Aguilar-Zarate, Gabriela; Garcia-De-La-Parra, Luz Maria; Gutierrez, Jesus N; Marquez-Rocha, Facundo; Garcia-Gasca, Alejandra

    2010-01-01

    Biomarkers have been useful tools to monitor some effects of pollution in coastal environments. Hepatic expression of heat-shock protein 70 (Hsp70) and cytochrome P450 1A (CYP1A) were analyzed in white mullet (Mugil curema) by RT-PCR from July, 2005 until July, 2006 in three coastal lagoons located in the southern Gulf of California, Mexico. These three coastal systems receive contaminants derived from local anthropogenic activities. Heat-shock proteins function to maintain protein integrity in the presence of stressors (such as heat or chemicals) and can be used as biomarkers of homeostatic alterations in polluted environments, whereas cytochrome P450 family members participate in steroid hormone synthesis and metabolism, and in xenobiotic transformation as a detoxification mechanism. The expression levels of both genes showed consistency in time and space, and presented a high overall correlation (r = 0.731, P < 0.001). Regardless of a high individual variability, both genes presented higher expression levels in the Urias Estuary (P < 0.001 and P < 0.05 for CYP1A and Hsp70, respectively), which was considered the most polluted among the three systems, especially during the rainy season (summer to fall). Gene expression levels were significantly associated with non-halogenated hydrocarbon concentrations in sediments during the sampling period (r = 0.686, P = 0.019 for CYP1A and r = 0.91, P < 0.001 for Hsp70), suggesting that both genes respond to chemicals in the environment. The results indicate that Mugil curema is a good candidate species to implement biomonitoring programs in tropical coastal environments.

  1. A theoretical study on the metabolic activation of paracetamol by cytochrome P-450 : indications for a uniform oxidation mechanism

    NARCIS (Netherlands)

    Koymans, L.; Lenthe, J.H.; Van de Straat, R; Donné-Op den Kelder, G M; Vermeulen, N P

    1989-01-01

    The cytochrome P-450 mediated activation of paracetamol (PAR) to the reactive electrophilic intermediate N-acetyl-p-benzoquinone imine (NAPQI) has been studied by use of SV 6-31G ab initio energy calculations and spin distributions. A simplified model for cytochrome P-450 has been used by

  2. Clinical, genetic, and enzymatic characterization of P450 oxidoreductase deficiency in four patients.

    LENUS (Irish Health Repository)

    Sahakitrungruang, Taninee

    2009-12-01

    P450 oxidoreductase (POR) deficiency causes disordered steroidogenesis; severe mutations cause genital ambiguity in both sexes plus the Antley-Bixler skeletal malformation syndrome, whereas mild mutations can cause adult infertility.

  3. Occupation of the cytochrome P450 substrate pocket by diverse compounds at general anesthesia concentrations.

    Science.gov (United States)

    LaBella, F S; Stein, D; Queen, G

    1998-10-02

    Each of a diverse array of compounds, at concentrations reported to effect general anesthesia, when added to liver microsomes, forms a complex with cytochromes P450 to generate, with reference to a cuvette containing microsomes only, a characteristic absorbance-difference spectrum. This spectrum results from a change in the electron-spin state of the heme iron atom induced upon entry by the anesthetic molecule into the enzyme catalytic pocket. The difference spectrum, representing the anesthetic-P450 complex, is characteristic of substances that are substrates for the enzyme. For the group of compounds as a whole, the magnitudes of the absorbance-difference spectra vary only about twofold, although the anesthetic potencies vary by several orders of magnitude. The dissociation constants (Ks), calculated from absorbance data and representing affinities of the anesthetics for P450, agree closely with the respective EC50 (concentration that effects anesthesia in 50% of individuals) values, and with the respective Ki (concentration that inhibits P450 catalytic activities half-maximally) values reported by us previously. The absorbance complex resulting from the occupation of the catalytic pocket by endogenous substrates, androstenedione and arachidonic acid, is inhibited, competitively, by anesthetics. Occupation of and perturbation of the heme catalytic pocket by anesthetic, as monitored by the absorbance-difference spectrum, is rapidly reversible. The presumed in vivo consequences of perturbation by general anesthetics of heme proteins is suppression of the generation of chemical signals that determine cell sensitivity and response.

  4. Characterization and expression profile of the ovarian cytochrome P-450 aromatase (cyp19A1) gene during thermolabile sex determination in Pejerrey, Odontesthes bonariensis

    Science.gov (United States)

    Karube, M.; Fernandino, J.I.; Strobl-Mazzulla, P.; Strussmann, C.A.; Yoshizaki, G.; Somoza, G.M.; Patino, R.

    2007-01-01

    Cytochrome P450 aromatase (cyp19) is an enzyme that catalyzes the conversion of androgens to estrogens and may play a role in temperature- dependent sex determination (TSD) of reptiles, amphibians, and fishes. In this study, the ovarian P450 aromatase form (cyp19A1) of pejerrey Odontesthes bonariensis, a teleost with marked TSD, was cloned and its expression profile evaluated during gonadal differentiation at feminizing (17??C, 100% females), mixed-sex producing (24 and 25??C, 73.3 and 26.7% females, respectively), and masculinizing (29??C, 0% females) temperatures. The deduced cyp19A1 amino acid sequence shared high identity (>77.8%) with that from other teleosts but had low identity (<61.8%) with brain forms (cyp19A2), including that of pejerrey itself. The tissue distribution analysis of cyp19A1 mRNA in adult fish revealed high expression in the ovary. Semi-quantitative reverse transcription polymerase chain reaction analysis of the bodies of larvae revealed that cyp19A1 expression increased before the appearance of the first histological signs of ovarian differentiation at the feminizing temperature but remained low at the masculinizing temperature. The expression levels at mixed-sex producing temperatures were bimodal rather than intermediate, showing low and high modal values similar to those at the feminizing and masculinizing temperatures, respectively. The population percentages of high and low expression levels at intermediate temperatures were proportional to the percentage of females and males, respectively, and high levels were first observed at about the time of sex differentiation of females. These results suggest that cyp19A1 is involved in the process of ovarian formation and possibly also in the TSD of pejerrey. ?? 2007 Wiley-Liss, Inc.

  5. Expression profiling identifies genes involved in emphysema severity

    Directory of Open Access Journals (Sweden)

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  6. n-Alkane and clofibrate, a peroxisome proliferator, activate transcription of ALK2 gene encoding cytochrome P450alk2 through distinct cis-acting promoter elements in Candida maltosa

    International Nuclear Information System (INIS)

    Kogure, Takahisa; Takagi, Masamichi; Ohta, Akinori

    2005-01-01

    The ALK2 gene, encoding one of the n-alkane-hydroxylating cytochromes P450 in Candida maltosa, is induced by n-alkanes and a peroxisome proliferator, clofibrate. Deletion analysis of this gene's promoter revealed two cis-acting elements-an n-alkane-responsive element (ARE2) and a clofibrate-responsive element (CRE2)-that partly overlap in sequence but have distinct functions. ARE2-mediated activation responded to n-alkanes but not to clofibrate and was repressed by glucose. CRE2-mediated activation responded to polyunsaturated fatty acids and steroid hormones as well as to peroxisome proliferators but not to n-alkanes, and it was not repressed by glucose. Both elements mediated activation by oleic acid. Mutational analysis demonstrated that three CCG sequences in CRE2 were critical to the activation by clofibrate as well as to the in vitro binding of a specific protein to this element. These findings suggest that ALK2 is induced by peroxisome proliferators and steroid hormones through a specific CRE2-mediated regulatory mechanism

  7. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector.

    Science.gov (United States)

    Ibrahim, Sulaiman S; Riveron, Jacob M; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J I; Wondji, Charles S

    2015-10-01

    Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies.

  8. Metabolic activity and mRNA levels of human cardiac CYP450s involved in drug metabolism.

    Directory of Open Access Journals (Sweden)

    Veronique Michaud

    2010-12-01

    Full Text Available Tissue-specific expression of CYP450s can regulate the intracellular concentration of drugs and explain inter-subject variability in drug action. The overall objective of our study was to determine in a large cohort of samples, mRNA levels and CYP450 activity expressed in the human heart.CYP450 mRNA levels were determined by RTPCR in left ventricular samples (n = 68 of explanted hearts from patients with end-stage heart failure. Samples were obtained from ischemic and non-ischemic hearts. In some instances (n = 7, samples were available from both the left and right ventricles. A technique for the preparation of microsomes from human heart tissue was developed and CYP450-dependent activity was determined using verapamil enantiomers as probe-drug substrates.Our results show that CYP2J2 mRNA was the most abundant isoform in all human heart left ventricular samples tested. Other CYP450 mRNAs of importance were CYP4A11, CYP2E1, CYP1A1 and CYP2C8 mRNAs while CYP2B6 and CYP2C9 mRNAs were present at low levels in only some of the hearts analyzed. CYP450 mRNAs did not differ between ischemic and non-ischemic hearts and appeared to be present at similar levels in the left and right ventricles. Incubation of verapamil with heart microsomes led to the formation of nine CYP450-dependent metabolites: a major finding was the observation that stereoselectivity was reversed compared to human liver microsomes, in which the R-enantiomer is metabolized to a greater extent.This study determined cardiac mRNA levels of various CYP450 isozymes involved in drug metabolism and demonstrated the prevalent expression of CYP2J2 mRNA. It revealed that cardiomyocytes can efficiently metabolize drugs and that cardiac CYP450s are highly relevant with regard to clearance of drugs in the heart. Our results support the claim that drug metabolism in the vicinity of a drug effector site can modulate drug effects.

  9. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects.

    Science.gov (United States)

    Zhou, Y; Ingelman-Sundberg, M; Lauschke, V M

    2017-10-01

    Genetic polymorphisms in cytochrome P450 (CYP) genes can result in altered metabolic activity toward a plethora of clinically important medications. Thus, single nucleotide variants and copy number variations in CYP genes are major determinants of drug pharmacokinetics and toxicity and constitute pharmacogenetic biomarkers for drug dosing, efficacy, and safety. Strikingly, the distribution of CYP alleles differs considerably between populations with important implications for personalized drug therapy and healthcare programs. To provide a global distribution map of CYP alleles with clinical importance, we integrated whole-genome and exome sequencing data from 56,945 unrelated individuals of five major human populations. By combining this dataset with population-specific linkage information, we derive the frequencies of 176 CYP haplotypes, providing an extensive resource for major genetic determinants of drug metabolism. Furthermore, we aggregated this dataset into spectra of predicted functional variability in the respective populations and discuss the implications for population-adjusted pharmacological treatment strategies. © 2017 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  10. Autoantibodies against Cytochrome P450 Side-Chain Cleavage Enzyme in Dogs (Canis lupus familiaris) Affected with Hypoadrenocorticism (Addison's Disease).

    Science.gov (United States)

    Boag, Alisdair M; Christie, Michael R; McLaughlin, Kerry A; Syme, Harriet M; Graham, Peter; Catchpole, Brian

    2015-01-01

    Canine hypoadrenocorticism likely arises from immune-mediated destruction of adrenocortical tissue, leading to glucocorticoid and mineralocorticoid deficiency. In humans with autoimmune Addison's disease (AAD) or autoimmune polyendocrine syndrome (APS), circulating autoantibodies have been demonstrated against enzymes associated with adrenal steroid synthesis. The current study investigates autoantibodies against steroid synthesis enzymes in dogs with spontaneous hypoadrenocorticism. Coding regions of canine CYP21A2 (21-hydroxylase; 21-OH), CYP17A1 (17-hydroxylase; 17-OH), CYP11A1 (P450 side-chain cleavage enzyme; P450scc) and HSD3B2 (3β hydroxysteroid dehydrogenase; 3βHSD) were amplified, cloned and expressed as 35S-methionine radiolabelled recombinant protein. In a pilot study, serum samples from 20 dogs with hypoadrenocorticism and four unaffected control dogs were screened by radio-immunoprecipitation assay. There was no evidence of reactivity against 21-OH, 17-OH or 3βHSD, but five dogs with hypoadrenocorticism showed immunoreactivity to P450scc compared with controls. Serum samples were subsequently obtained from 213 dogs diagnosed with hypoadrenocorticism and 110 dogs from a hospital control population. Thirty control dogs were randomly selected to establish a threshold for antibody positivity (mean + 3 × standard deviation). Dogs with hypoadrenocorticism were more likely to be P450scc autoantibody positive than hospital controls (24% vs. 1.2%, respectively; p = 0.0016). Sex was significantly associated with the presence of P450scc autoantibodies in the case population, with 30% of females testing positive compared with 17% of males (p = 0.037). Significant associations with breed (p = 0.015) and DLA-type (DQA1*006:01 allele; p = 0.017) were also found. This cross-sectional study indicates that P450scc autoantibodies are present in a proportion of dogs affected with hypoadrenocorticism.

  11. Autoantibodies against Cytochrome P450 Side-Chain Cleavage Enzyme in Dogs (Canis lupus familiaris Affected with Hypoadrenocorticism (Addison's Disease.

    Directory of Open Access Journals (Sweden)

    Alisdair M Boag

    Full Text Available Canine hypoadrenocorticism likely arises from immune-mediated destruction of adrenocortical tissue, leading to glucocorticoid and mineralocorticoid deficiency. In humans with autoimmune Addison's disease (AAD or autoimmune polyendocrine syndrome (APS, circulating autoantibodies have been demonstrated against enzymes associated with adrenal steroid synthesis. The current study investigates autoantibodies against steroid synthesis enzymes in dogs with spontaneous hypoadrenocorticism. Coding regions of canine CYP21A2 (21-hydroxylase; 21-OH, CYP17A1 (17-hydroxylase; 17-OH, CYP11A1 (P450 side-chain cleavage enzyme; P450scc and HSD3B2 (3β hydroxysteroid dehydrogenase; 3βHSD were amplified, cloned and expressed as 35S-methionine radiolabelled recombinant protein. In a pilot study, serum samples from 20 dogs with hypoadrenocorticism and four unaffected control dogs were screened by radio-immunoprecipitation assay. There was no evidence of reactivity against 21-OH, 17-OH or 3βHSD, but five dogs with hypoadrenocorticism showed immunoreactivity to P450scc compared with controls. Serum samples were subsequently obtained from 213 dogs diagnosed with hypoadrenocorticism and 110 dogs from a hospital control population. Thirty control dogs were randomly selected to establish a threshold for antibody positivity (mean + 3 × standard deviation. Dogs with hypoadrenocorticism were more likely to be P450scc autoantibody positive than hospital controls (24% vs. 1.2%, respectively; p = 0.0016. Sex was significantly associated with the presence of P450scc autoantibodies in the case population, with 30% of females testing positive compared with 17% of males (p = 0.037. Significant associations with breed (p = 0.015 and DLA-type (DQA1*006:01 allele; p = 0.017 were also found. This cross-sectional study indicates that P450scc autoantibodies are present in a proportion of dogs affected with hypoadrenocorticism.

  12. Significance of cytochrome P450 system responses and levels of bile fluorescent aromatic compounds in marine wildlife following oil spills

    International Nuclear Information System (INIS)

    Lee, R.F.; Anderson, J.W.

    2005-01-01

    The relationships among cytochrome P450 induction in marine wildlife species, levels of fluorescent aromatic compounds (FAC) in their bile, the chemical composition of the inducing compounds, the significance of the exposure pathway, and any resulting injury, as a consequence of exposure to crude oil following a spill, are reviewed. Fish collected after oil spills often show increases in cytochrome P450 system activity, cytochrome P4501A (CYP1A) and bile fluorescent aromatic compounds (FAC), that are correlated with exposure to polycyclic aromatic hydrocarbons (PAH) in the oil. There is also some evidence for increases in bile FAC and induction of cytochrome P450 in marine birds and mammals after oil spills. However, when observed, increases in these exposure indicators are transitory and generally decrease to background levels within one year after the exposure. Laboratory studies have shown induction of cytochrome P450 systems occurs after exposure of fish to crude oil in water, sediment or food. Most of the PAH found in crude oil (dominantly 2- and 3-ring PAH) are not strong inducers of cytochrome P450. Exposure to the 4-ring chrysenes or the photooxidized products of the PAH may account for the cytochrome P450 responses in fish collected from oil-spill sites. The contribution of non-spill background PAH, particularly combustion-derived (pyrogenic) PAH, to bile FAC and cytochrome P450 system responses can be confounding and needs to be considered when evaluating oil spill effects. The ubiquity of pyrogenic PAH makes it important to fully characterize all sources of PAH, including PAH from natural resources, e.g. retene, in oil spill studies. In addition, such parameters as species, sex, age, ambient temperature and season need to be taken into account. While increases in fish bile FAC and cytochrome P450 system responses, can together, be sensitive general indicators of PAH exposure after an oil spill, there is little unequivocal evidence to suggest a linkage to

  13. The Gymnosperm Cytochrome P450 CYP750B1 Catalyzes Stereospecific Monoterpene Hydroxylation of (+)-Sabinene in Thujone Biosynthesis in Western Redcedar1[OPEN

    Science.gov (United States)

    Blaukopf, Markus; Yuen, Macaire M.S.; Withers, Stephen G.; Mattsson, Jim; Russell, John H.; Bohlmann, Jörg

    2015-01-01

    Western redcedar (WRC; Thuja plicata) produces high amounts of oxygenated thujone monoterpenoids associated with resistance against herbivore feeding, particularly ungulate browsing. Thujones and other monoterpenoids accumulate in glandular structures in the foliage of WRC. Thujones are produced from (+)-sabinene by sabinol and sabinone. Using metabolite analysis, enzyme assays with WRC tissue extracts, cloning, and functional characterization of cytochrome P450 monooxygenases, we established that trans-sabin-3-ol but not cis-sabin-3-ol is the intermediate in thujone biosynthesis in WRC. Based on transcriptome analysis, full-length complementary DNA cloning, and characterization of expressed P450 proteins, we identified CYP750B1 and CYP76AA25 as the enzymes that catalyze the hydroxylation of (+)-sabinene to trans-sabin-3-ol. Gene-specific transcript analysis in contrasting WRC genotypes producing high and low amounts of monoterpenoids, including a glandless low-terpenoid clone, as well as assays for substrate specificity supported a biological role of CYP750B1 in α- and β-thujone biosynthesis. This P450 belongs to the apparently gymnosperm-specific CYP750 family and is, to our knowledge, the first member of this family to be functionally characterized. In contrast, CYP76AA25 has a broader substrate spectrum, also converting the sesquiterpene farnesene and the herbicide isoproturon, and its transcript profiles are not well correlated with thujone accumulation. PMID:25829465

  14. Identification of Phytophthora sojae genes involved in asexual ...

    Indian Academy of Sciences (India)

    ual sporulation or germination. But molecular details about asexual spore development in P. sojae are limited (Tyler et al. 2006). In the present study, to understand the molecular basis of asexual spore development in P. sojae, we investigated gene expression changes involved in asexual sporulation after ul- traviolet (UV) ...

  15. Prodrug-activating Gene Therapy with Rabbit Cytochrome P450 4B1/4-Ipomeanol or 2-Aminoanthracene System in Glioma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Lee, Tae Sup; Kim, Sung Joo; Kim, Kwang Il; Lee, Yong Jin; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)

    2010-09-15

    We determined the cytotoxic properties of cytochrome P450 4B1 (CYP4B1) activated 4-ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) in rat glioma to verify the CYP4B1/4-ipo or 2-AA system for prodrug-activating gene therapy. The cyp4B1 cDNA was cloned into pcDNA3.1/ Hygro from rabbit lung total RNA (pcDAN-cyp4B1). Lentiviral vector encoding firefly luciferase (fLuc) was infected into C6 (rat glioma), and the fLuc-expressing cell was selected (C6-L). After transfection with pcDNA-cyp4B1 vector into C6-L, the single clone expressing cyp4B1 gene was selected (C6-CL). Prodrug for various concentrations of 4-ipo or 2-AA was treated for 72 h and 96 h. The cell survival rate of C6-CL was determined using MTT assay and trypan-blue dye exclusion methods. By RT-PCR analysis, fLuc and CYP4B1 expression was detected in C6-CL, but not in C6. MTT assay and trypan-blue dye exclusion showed that IC'5'0 of C6-CL was 0.3 mM and <0.01 mM after 4-ipo or 2-AA treatment at 96 h or 72 h exposure, respectively. Cell survivals of C6-CL were more rapidly reduced after treatment with 4-ipo or 2-AA than those of C6-L cells. The cell survival rate with MTT and trypan-blue dye exclusion assay was well correlated with fLuc activity in C6-CL cells. Conclusions CYP4B1-based prodrug-activating gene therapy may have the potential to treat glioma and the cytotoxic effects of CYP4B1 enzyme activated 4-ipo or 2-AA in C6, and could be clearly determined by bioluminescent activity in C6-CL.

  16. Food Polyphenol Apigenin Inhibits the Cytochrome P450 Monoxygenase Branch of the Arachidonic Acid Cascade.

    Science.gov (United States)

    Steuck, Maryvonne; Hellhake, Stefan; Schebb, Nils Helge

    2016-11-30

    The product of cytochrome P450 monooxygenase (P450) ω-hydroxylation of arachidonic acid (AA), 20- hydroxyeicosatetraenoic acid (HETE), is a potent vasoconstrictor. Utilizing microsomes as well as individual CYP4 isoforms we demonstrate here that flavonoids can block 20-HETE formation. Apigenin inhibits CYP4F2 with an IC 50 value of 4.6 μM and 20-HETE formation in human liver and kidney microsomes at 2.4-9.8 μM. Interestingly, the structurally similar naringenin shows no relevant effect on the formation of 20-HETE. Based on these in vitro data, it is impossible to evaluate if a relevant blockade of 20-HETE formation can result in humans from intake of polyphenols with the diet. However, the potency of apigenin is comparable to those of P450 inhibitors such as ketoconazole. Moreover, an IC 50 value in the micromolar range is also described for the inhibition of CYP-mediated drug metabolism leading to food-drug interactions. The modulation of the arachidonic acid cascade by food polyphenols therefore warrants further investigation.

  17. Control by substrate of the cytochrome p450-dependent redox machinery: mechanistic insights.

    Science.gov (United States)

    Hlavica, Peter

    2007-08-01

    Based on initial studies with bacterial CYP101A1, a popular concept emerged predicting that substrate-induced low-to-high spin conversion of P450s is universally associated with shifts of the midpoint potential to a more positive value to maximize rates of electron transfer and metabolic turnover. However, evaluation of the plethora of observations with pro- and eukaryotic hemoproteins suggests a caveat as to generalization of this principle. Thus, some P450s are inherently high-spin, so that there is no need for a supportive substrate-triggered impulse to electron flow. With other enzymes, high-spin content is not consonant with reductive activity, and spin transition as such is not essential to sustaining substrate oxidation. Also, with certain proteins the low-spin conformer is reduced as swift as the high-spin entity. Moreover, there is not regularly a linear relationship between high-spin level and anodic shift of the reduction potential. Similarly, in given cases turnover may proceed despite insignificant or even lacking substrate-provoked alterations in the redox behaviour. Thus, folding of the disparate and sometimes conflicting data into a harmonized overall picture is a lingering problem. Apart from direct perturbation of the electrochemical properties, substrate docking may entail changes in enzyme conformation such as to favour productive complexation with redox partners or modulate electron transfer conduits within preformed donor/acceptor adducts, resulting in elevated ease of flow of reducing equivalents. Substrate-steered ordering of the oligomeric aggregation state of P450s is likely to impose steric constraints on heterodimers, causing one component to more readily align with electron carriers. Careful uncovering of electrochemical mechanisms in these systems will be fruitful to tailoring of novel bioenergetic machines and redox chains via redox-inspired protein engineering or molecular Lego, capable of generating products of interest or degrading

  18. Identification and Characterization of the Gene CYP340W1 from Plutella xylostella and Its Possible Involvement in Resistance to Abamectin.

    Science.gov (United States)

    Gao, Xue; Yang, Jiaqiang; Xu, Baoyun; Xie, Wen; Wang, Shaoli; Zhang, Youjun; Yang, Fengshan; Wu, Qingjun

    2016-03-18

    Abamectin has been used to control the diamondback moth, Plutella xylostella (P. xylostella), which is a major agricultural pest that can rapidly develop resistance against insecticides including abamectin. Although cytochrome P450 has been confirmed to play an important role in resistance in P. xylostella, the specific P450 genes associated with the resistance are unclear. The full-length cDNA of the cytochrome P450 gene CYP340W1 was cloned and characterized in the present study. The cDNA assembly yielded a sequence of 1929 bp, containing the open reading frame (ORF) 1491 bp and encodes a 496-amino acid peptide. CYP340W1 was expressed in all P. xylostella developmental stages but its expression level was highest in larvae and especially in the heads of larvae. The expression of CYP340W1 was significantly higher in an abamectin-resistant strain (ABM-R) than in its susceptible counterpart (ABM-S). In addition, expression of CYP340W1 was increased when the ABM-R strain was exposed to abamectin. When injected into third-stage ABM-R larvae, CYP340W1 dsRNA significantly reduced CYP340W1 expression at 6 h and reduced expression by 83% at 12 h. As a consequence of RNAi, the mortality of the injected abamectin-resistant larvae increased after a 48-h exposure to abamectin. The results indicate that the overexpression of CYP340W1 plays an important role in abamectin resistance in P. xylostella.

  19. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. Methods We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1afl/fl;alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Results Flvcr1afl/fl;alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1afl/fl;alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. Conclusions In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. PMID:24486949

  20. Effect of fumonisin B1 on rat hepatic P450 system

    NARCIS (Netherlands)

    Spotti, M.; Maas, R.F.M.; Nijs, C.M. de; Fink-Gremmels, J.

    2000-01-01

    The effects of the mycotoxin fumonisin B1 (FB1) on the hepatic cytochrome P450 system were investigated in male rats dosed daily by oral gavage with 3 mg FB1 per kg body weight for 9 consecutive days. FB1 treatment resulted in a reduced weight gain. At the same time, CYP2E activity was increased,

  1. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes

    Science.gov (United States)

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was fo...

  2. Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain.

    Science.gov (United States)

    Arouri, Rabeh; Le Goff, Gaelle; Hemden, Hiethem; Navarro-Llopis, Vicente; M'saad, Mariem; Castañera, Pedro; Feyereisen, René; Hernández-Crespo, Pedro; Ortego, Félix

    2015-09-01

    The withdrawal of malathion in the European Union in 2009 resulted in a large increase in lambda-cyhalothrin applications for the control of the Mediterranean fruit fly, Ceratitis capitata, in Spanish citrus crops. Spanish field populations of C. capitata have developed resistance to lambda-cyhalothrin (6-14-fold), achieving LC50 values (129-287 ppm) higher than the recommended concentration for field treatments (125 ppm). These results contrast with the high susceptibility to lambda-cyhalothrin found in three Tunisian field populations. We have studied the mechanism of resistance in the laboratory-selected resistant strain W-1Kλ (205-fold resistance). Bioassays with synergists showed that resistance was almost completely suppressed by the P450 inhibitor PBO. The study of the expression of 53 P450 genes belonging to the CYP4, CYP6, CYP9 and CYP12 families in C. capitata revealed that CYP6A51 was overexpressed (13-18-fold) in the resistant strain. The W-1Kλ strain also showed high levels of cross-resistance to etofenprox (240-fold) and deltamethrin (150-fold). Field-evolved resistance to lambda-cyhalothrin has been found in C. capitata. Metabolic resistance mediated by P450 appears to be the main resistance mechanism in the resistant strain W-1Kλ. The levels of cross-resistance found may compromise the effectiveness of other pyrethroids for the control of this species. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  3. Spaceflight Effects on Cytochrome P450 Content in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Natalia Moskaleva

    Full Text Available Hard conditions of long-term manned spaceflight can affect functions of many biological systems including a system of drug metabolism. The cytochrome P450 (CYP superfamily plays a key role in the drug metabolism. In this study we examined the hepatic content of some P450 isoforms in mice exposed to 30 days of space flight and microgravity. The CYP content was established by the mass-spectrometric method of selected reaction monitoring (SRM. Significant changes in the CYP2C29, CYP2E1 and CYP1A2 contents were detected in mice of the flight group compared to the ground control group. Within seven days after landing and corresponding recovery period changes in the content of CYP2C29 and CYP1A2 returned to the control level, while the CYP2E1 level remained elevated. The induction of enzyme observed in the mice in the conditions of the spaceflight could lead to an accelerated biotransformation and change in efficiency of pharmacological agents, metabolizing by corresponding CYP isoforms. Such possibility of an individual pharmacological response to medication during long-term spaceflights and early period of postflight adaptation should be taken into account in space medicine.

  4. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth

    OpenAIRE

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-01-01

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementat...

  5. Inhibition selectivity of grapefruit juice components on human cytochromes P450.

    Science.gov (United States)

    Tassaneeyakul, W; Guo, L Q; Fukuda, K; Ohta, T; Yamazoe, Y

    2000-06-15

    Five compounds including furanocoumarin monomers (bergamottin, 6', 7'-dihydroxybergamottin (DHB)), furanocoumarin dimers (4-¿¿6-hydroxy-71-¿(1-hydroxy-1-methyl)ethyl-4-methyl-6-(7-oxo-7H- furo¿3,2-g1benzopyran-4-yl)-4-hexenyl]oxy]-3,7-dimethyl- 2-octenyl]oxy]-7H-furo[3,2-g]¿1benzopyran-7-one (GF-I-1) and 4-¿¿6-hydroxy-7¿¿4-methyl-1-(1-methylethenyl)-6-(7-oxo-7H-furo¿3, 2-g1benzopyran-4-yl)-4-hexenylŏxy-3, 7-dimethyl-2-octenylŏxy-7H-furo¿3,2-g1benzopyran-7-one (GF-I-4)), and a sesquiterpene nootkatone have been isolated from grapefruit juice and screened for their inhibitory effects toward human cytochrome P450 (P450) forms using selective substrate probes. Addition of ethyl acetate extract of grapefruit juice into an incubation mixture resulted in decreased activities of CYP3A4, CYP1A2, CYP2C9, and CYP2D6. All four furanocoumarins clearly inhibited CYP3A4-catalyzed nifedipine oxidation in concentration- and time-dependent manners, suggesting that these compounds are mechanism-based inhibitors of CYP3A4. Of the furanocoumarins investigated, furanocoumarin dimers, GF-I-1 and GF-I-4, were the most potent inhibitors of CYP3A4. Inhibitor concentration required for half-maximal rate of inactivation (K(I)) values for bergamottin, DHB, GF-I-1, and GF-I-4 were calculated, respectively, as 40.00, 5. 56, 0.31, and 0.13 microM, whereas similar values were observed on their inactivation rate constant at infinite concentration of inhibitor (k(inact), 0.05-0.08 min(-1)). Apparent selectivity toward CYP3A4 does occur with the furanocoumarin dimers. In contrast, bergamottin showed rather stronger inhibitory effect on CYP1A2, CYP2C9, CYP2C19, and CYP2D6 than on CYP3A4. DHB inhibited CYP3A4 and CYP1A2 activities at nearly equivalent potencies. Among P450 forms investigated, CYP2E1 was the least sensitive to the inhibitory effect of furanocoumarin components. A sesquiterpene nootkatone has no significant effect on P450 activities investigated except for CYP2A6 and CYP2C19

  6. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans

    NARCIS (Netherlands)

    Lammers, Laureen A.; Achterbergh, Roos; de Vries, Emmely M.; van Nierop, F. Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R.; Boelen, Anita; Romijn, Johannes A.; Mathôt, Ron A. A.

    2015-01-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug

  7. Identification of putative substrates for cynomolgus monkey cytochrome P450 2C8 by substrate depletion assays with 22 human P450 substrates and inhibitors.

    Science.gov (United States)

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2016-07-01

    Cynomolgus monkeys are widely used in drug developmental stages as non-human primate models. Previous studies used 89 compounds to investigate species differences associated with cytochrome P450 (P450 or CYP) function that reported monkey specific CYP2C76 cleared 19 chemicals, and homologous CYP2C9 and CYP2C19 metabolized 17 and 30 human CYP2C9 and/or CYP2C19 substrates/inhibitors, respectively. In the present study, 22 compounds selected from viewpoints of global drug interaction guidances and guidelines were further evaluated to seek potential substrates for monkey CYP2C8, which is highly homologous to human CYP2C8 (92%). Amodiaquine, montelukast, quercetin and rosiglitazone, known as substrates or competitive inhibitors of human CYP2C8, were metabolically depleted by recombinant monkey CYP2C8 at relatively high rates. Taken together with our reported findings of the slow eliminations of amodiaquine and montelukast by monkey CYP2C9, CYP2C19 and CYP2C76, the present results suggest that these at least four chemicals may be good marker substrates for monkey CYP2C8. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Single molecule activity measurements of cytochrome P450 oxidoreductase reveal the existence of two discrete functional states

    DEFF Research Database (Denmark)

    Laursen, Tomas; Singha, Aparajita; Rantzau, Nicolai

    2014-01-01

    450 enzymes. Measurements and statistical analy-sis of individual catalytic turnover cycles shows POR to sample at least two major functional states. This phenotype may underlie regulatory interactions with different cytochromes P450 but to date remained masked in bulk kinetics. To ensure that we...

  9. Identification of the Full 46 Cytochrome P450 (CYP) Complement and Modulation of CYP Expression in Response to Water-Accommodated Fractions of Crude Oil in the Cyclopoid Copepod Paracyclopina nana.

    Science.gov (United States)

    Han, Jeonghoon; Won, Eun-Ji; Kim, Hui-Su; Nelson, David R; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-06-02

    The 46 cytochrome P450 (CYP) gene superfamily was identified in the marine copepod Paracyclopina nana after searching an RNA-seq database and comparing it with other copepod CYP gene families. To annotate the 46 Pn-CYP genes, a phylogenetic analysis of CYP genes was performed using a Bayesian method. Pn-CYP genes were separated into five different clans: CYP2, CYP3, CYP20, CYP26, and mitochondrial. Among these, the principal Pn-CYP genes involved in detoxification were identified by comparing them with those of the copepod Tigriopus japonicus and were examined with respect to their responses to exposure to a water-accommodated fraction (WAF) of crude oil and to the alkylated forms of two polycyclic aromatic hydrocarbons (PAHs; phenanthrene and fluorene). The expression of two Pn-CYP3027 genes (CYP3027F1 and CYP3027F2) was increased in response to WAF exposure and also was upregulated in response to the two alkylated PAHs. In particular, Pn-CYP3027F2 showed the most notable increase in response to 80% WAF exposure. These two responsive CYP genes (Pn-CYP3027F1 and CYP3027F2) were also phylogenetically clustered into the same clade of the WAF- and alkylated PAH-specific CYP genes of the copepod T. japonicus, suggesting that these CYP genes would be those chiefly involved in detoxification in response to WAF exposure in copepods. In this paper, we provide information on the copepod P. nana CYP gene superfamily and also speculate on its potential role in the detoxification of PAHs in marine copepods. Despite the nonlethality of WAF, Pn-CYP3027F2 was rapidly and significantly upregulated in response to WAF that may serve as a useful biomarker of 40% or higher concentration of WAF exposure. This paper will be helpful to better understand the molecular mechanistic events underlying the metabolism of environmental toxicants in copepods.

  10. Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam.

    Science.gov (United States)

    Rydzewski, J; Nowak, W

    2016-04-12

    In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand-protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [ Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015 , 143 ( 12 ), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam-camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.

  11. Role of active oxygen species in the photodestruction of microsomal cytochrome P-450 and associated monooxygenases by hematoporphyrin derivative in rats

    International Nuclear Information System (INIS)

    Das, M.; Dixit, R.; Mukhtar, H.; Bickers, D.R.

    1985-01-01

    The cytochrome P-450 in hepatic microsomes prepared from rats pretreated with hematoporphyrin derivative was shown to be rapidly destroyed in the presence of long-wave ultraviolet light. The photocatalytic destruction of the heme-protein was dependent on both the dose of ultraviolet light and of hematoporphyrin derivative administered to the animals. The destructive reaction was accompanied by increased formation of cytochrome P-420, loss of microsomal heme content, and diminished catalytic activity of cytochrome P-450-dependent monooxygenases such as aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase. The specificity of the effect on cytochrome P-450 was confirmed by the observation that other heme-containing moieties such as myoglobin and cytochrome c were not susceptible to photocatalytic destruction. The destruction of cytochrome P-450 was a photodynamic process requiring oxygen since quenchers of singlet oxygen, including 2,5-dimethylfuran, histidine, and beta-carotene, each substantially diminished the reaction. Scavengers of superoxide anion such as superoxide dismutase and of H 2 O 2 such as catalase did not protect against photodestruction of cytochrome P-450, whereas inhibitors of the hydroxyl radical, including benzoate, mannitol, and ethyl alcohol, did afford protection. These results indicate that lipid-rich microsomal membranes and the heme-protein cytochrome P-450 embedded therein are potential targets of injury in cells exposed to hematoporphyrin derivative photosensitization

  12. Ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome P450 enzymes.

    Science.gov (United States)

    Serron, S C; Dwivedi, N; Backes, W L

    2000-05-01

    Small aromatic hydrocarbons cause changes in oxidative metabolism by modulating the levels of cytochrome P450 enzymes, with the changes in these enzymes being responsible for qualitative changes in aromatic hydrocarbon metabolism. The goal of this study was to determine if exposure to the small alkylbenzene ethylbenzene (EB) leads to an increase in hepatic free radical production. Male F344 rats were treated with ip injections of EB (10 mmol/kg) and compared to corn oil controls. Hepatic free radical production was examined by measuring the conversion of 2',7'-dichlorofluorescin diacetate (DCFH-DA) to its fluorescent product 2',7'-dichlorofluorescein (DCF). A significant elevation of fluorescent DCF production was observed after treatment with EB, despite the lack of effect on overall cytochrome P450 levels. This process was shown to be inhibitable by metyrapone, an inhibitor of P450. DCF production was also inhibited by catalase, suggesting that hydrogen peroxide (H(2)O(2)) is one of the reactive oxygen intermediates involved in EB-mediated reactive oxygen species (ROS) formation. Interestingly, superoxide dismutase (SOD) did not inhibit DCF production in corn oil-treated rats but was an effective inhibitor in the EB-treated groups. In an effort to determine if the increase in ROS production was related to changes in specific P450 enzymes, DCF production was measured in the presence of anti-CYP2B, anti-CYP2C11, anti-CYP2E1, and anti-CYP3A2 inhibitory antibodies. Anti-CYP2B antibodies inhibited DCF production in EB-treated, but not corn oil groups, which is consistent with the low constitutive levels of this enzyme and its induction by EB. The data also demonstrate that CYP2B contributes to ROS production. Anti-CYP2C11 did not influence DCF production in either group. ROS formation in corn oil-treated rats as well as in ethylbenzene-treated rats was also inhibited with antibodies to anti-CYP2E1 and anti-CYP3A2. These results suggest that CYP2C11 does not appear to

  13. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene

    OpenAIRE

    Cankar, K.; Houwelingen, van, A.M.M.L.; Bosch, H.J.; Sonke, Th.; Bouwmeester, H.J.; Beekwilder, M.J.

    2011-01-01

    Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene synthase in yeast, led to formation of trans-nootkatol, cis-nootkatol and (+)-nootkatone. The novel enzyme was also found to catalyse a three step conversion of germacrene A to germacra-1(10),4,11(13)-tr...

  14. Cytochrome P450-mediated metabolism of tumour promoters modifies the inhibition of intercellular communication: a modified assay for tumour promotion

    DEFF Research Database (Denmark)

    Vang, Ole; Wallin, H.; Doehmer, J.

    1993-01-01

    The role of metabolism of tumour promoters on the inhibition of intercellular communication was investigated in a modified V79 metabolic cooperation system. V79 cells, which stably express different rat cytochrome P450 enzymes (CYP1A1, CYP1A2 or CYP2B1), were used in the metabolic cooperation assay...... B1 and 4-nitrobiphenyl, did not inhibit metabolic cooperation in either V79 cells expressing or cells not expressing cytochrome P450. We conclude that cytochrome P450-associated metabolism plays an important role in the inhibition of gap junctional intercellular communication of some tumour...... promoters. The modified metabolic cooperation assay presented here is valuable for detecting some inhibitory chemicals which have been 'false negative' in previous assays for gap junctional intercellular communication. The assay also discloses that cytochrome P450 metabolism alters intercellular...

  15. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis Flowers[W][OPEN

    Science.gov (United States)

    Ginglinger, Jean-François; Boachon, Benoit; Höfer, René; Paetz, Christian; Köllner, Tobias G.; Miesch, Laurence; Lugan, Raphael; Baltenweck, Raymonde; Mutterer, Jérôme; Ullmann, Pascaline; Beran, Franziska; Claudel, Patricia; Verstappen, Francel; Fischer, Marc J.C.; Karst, Francis; Bouwmeester, Harro; Miesch, Michel; Schneider, Bernd; Gershenzon, Jonathan; Ehlting, Jürgen; Werck-Reichhart, Danièle

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined. PMID:24285789

  16. Human Cytochrome P450 3A4 as a Biocatalyst: Effects of the Engineered Linker in Modulation of Coupling Efficiency in 3A4-BMR Chimeras.

    Science.gov (United States)

    Degregorio, Danilo; D'Avino, Serena; Castrignanò, Silvia; Di Nardo, Giovanna; Sadeghi, Sheila J; Catucci, Gianluca; Gilardi, Gianfranco

    2017-01-01

    Human liver cytochrome P450 3A4 is the main enzyme involved in drug metabolism. This makes it an attractive target for biocatalytic applications, such as the synthesis of pharmaceuticals and drug metabolites. However, its poor solubility, stability and low coupling have limited its application in the biotechnological context. We previously demonstrated that the solubility of P450 3A4 can be increased by creating fusion proteins between the reductase from Bacillus megaterium BM3 (BMR) and the N-terminally modified P450 3A4 (3A4-BMR). In this work, we aim at increasing stability and coupling efficiency by varying the length of the loop connecting the two domains to allow higher inter-domain flexibility, optimizing the interaction between the domains. Starting from the construct 3A4-BMR containing the short linker Pro-Ser-Arg, two constructs were generated by introducing a 3 and 5 glycine hinge (3A4-3GLY-BMR and 3A4-5GLY-BMR). The three fusion proteins show the typical absorbance at 450 nm of the reduced heme-CO adduct as well as the correct incorporation of the FAD and FMN cofactors. Each of the three chimeric proteins were more stable than P450 3A4 alone. Moreover, the 3A4-BMR-3-GLY enzyme showed the highest NADPH oxidation rate in line with the most positive reduction potential. On the other hand, the 3A4-BMR-5-GLY fusion protein showed a V max increased by 2-fold as well as a higher coupling efficiency when compared to 3A4-BMR in the hydroxylation of the marker substrate testosterone. This protein also showed the highest rate value of cytochrome c reduction when this external electron acceptor is used to intercept electrons from BMR to P450. The data suggest that the flexibility and the interaction between domains in the chimeric proteins is a key parameter to improve turnover and coupling efficiency. These findings provide important guidelines in engineering catalytically self-sufficient human P450 for applications in biocatalysis.

  17. When genome-based approach meets the ‘old but good’: revealing genes involved in the antibacterial activity of Pseudomonas sp. P482 against soft rot pathogens.

    Directory of Open Access Journals (Sweden)

    Dorota Magdalena Krzyżanowska

    2016-05-01

    Full Text Available Dickeya solani and Pectobacterium carotovorum subsp. brasili¬ense are recently established species of bacterial plant pathogens causing black leg and soft rot of many vegetables and ornamental plants. Pseudomonas sp. strain P482 inhibits the growth of these pathogens, a desired trait considering the limited measures to combat these diseases. In this study, we determined the genetic background of the antibacterial activity of P482, and established the phylogenetic position of this strain.Pseudomonas sp. P482 was classified as Pseudomonas donghuensis. Genome mining revealed that the P482 genome does not contain genes determining the synthesis of known antimicrobials. However, the ClusterFinder algorithm, designed to detect atypical or novel classes of secondary metabolite gene clusters, predicted 18 such clusters in the genome. Screening of a Tn5 mutant library yielded an antimicrobial negative transposon mutant. The transposon insertion was located in a gene encoding an HpcH/HpaI aldolase/citrate lyase family protein. This gene is located in a hypothetical cluster predicted by the ClusterFinder, together with the downstream homologues of four nfs genes, that confer production of a nonfluorescent siderophore by P. donghuensis HYST. Site-directed inactivation of the HpcH/HpaI aldolase gene, the adjacent short chain dehydrogenase gene, as well as a homologue of an essential nfs cluster gene, all abolished the antimicrobial activity of the P482, suggesting their involvement in a common biosynthesis pathway. However, none of the mutants showed a decreased siderophore yield, neither was the antimicrobial activity of the wild type P482 compromised by high iron bioavailability.A genomic region comprising the nfs cluster and three upstream genes is involved in the antibacterial activity of P. donghuensis P482 against D. solani and P. carotovorum subsp. brasiliense. The genes studied are unique to the two known P. donghuensis strains. This study

  18. Evidence for induction of cytochrome P-450I in patients with tropical chronic pancreatitis.

    Science.gov (United States)

    Chaloner, C; Sandle, L N; Mohan, V; Snehalatha, C; Viswanathan, M; Braganza, J M

    1990-06-01

    Theophylline kinetics, as an in vivo probe for the potentially toxic cytochrome P-450I pathway of drug metabolism, were studied in 11 healthy volunteers and 11 patients with calcific chronic pancreatitis at Madras, South India. Theophylline clearance was faster in the patients than controls [median 69 (range 39-114) vs 45 (33-56) ml h-1 kg-1, p = 0.003]. In keeping with this finding, detailed social histories identified a higher exposure level in the patients to xenobiotics that are inducers of cytochrome P-450I and/or yield reactive metabolites upon processing thereby (score 7, 4-11 vs 3, 2-9, p = 0.002). However, the concentration of D-glucaric acid in urine, as a marker of phase II conjugating pathways of drug metabolism, was similar in patients and controls. This pattern of drug metabolism could predispose to oxidant stress: hence micronutrient antioxidant supplements may have therapeutic (or even prophylactic) value in tropical chronic pancreatitis.

  19. Electrochemistry of Cytochrome P450 BM3 in Sodium Dodecyl Sulfate Films

    Science.gov (United States)

    Udit, Andrew K.; Hill, Michael G.; Gray, Harry B.

    2008-01-01

    Direct electrochemistry of the cytochrome P450 BM3 heme domain (BM3) was achieved by confining the protein within sodium dodecyl sulfate (SDS) films on the surface of basal-plane graphite (BPG) electrodes. Cyclic voltammetry revealed the heme FeIII/II redox couple at −330 mV (vs. Ag/AgCl, pH 7.4). Up to 10 V/s, the peak current was linear with scan rate, allowing us to treat the system as surface-confined within this regime. The standard heterogeneous rate constant determined at 10 V/s was estimated to be 10 s−1. Voltammograms obtained for the BM3-SDS-BPG system in the presence of dioxygen exhibited catalytic waves at the onset of FeIII reduction. The altered heme reduction potential of the BM3-SDS-graphite system indicates that SDS is likely bound in the enzyme active-site region. Compared to other P450-surfactant systems, we find redox potentials and electron transfer rates that differ by ~ 100 mV and > 10-fold, respectively, indicating that the nature of the surfactant environment has a significant effect on the observed heme redox properties. PMID:17129070

  20. 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47) decreases progesterone synthesis through cAMP-PKA pathway and P450scc downregulation in mouse Leydig tumor cells

    International Nuclear Information System (INIS)

    Han, Xiumei; Tang, Rong; Chen, Xiaojiao; Xu, Bo; Qin, Yufeng; Wu, Wei; Hu, Yanhui; Xu, Bin; Song, Ling; Xia, Yankai; Wang, Xinru

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) are commonly used as flame retardants in textiles, plastics and electronics and represent a group of persistent environmental contaminants. They have been found to accumulate in human and marine mammals. Previous studies have shown that PBDEs have endocrine-disrupting properties and reproductive toxicity. However, the mechanisms under the reproductive disruptions are still not well understood. In this study, we explored the effects of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) on progesterone biosynthesis and possible mechanisms in mouse Leydig tumor cells (mLTC-1). Our results showed that BDE-47 could reduce progesterone production and decrease the intracellular cAMP level induced by hCG or forskolin. These suggested that BDE-47 decreasing progesterone production in mLTC-1 cells may be associated with the decline of intracellular cAMP level. Moreover, our data also indicated that the site G protein in cAMP-PKA pathway may be involved in this process. Furthermore, the addition of cAMP analog, 8-Br-cAMP, could not reverse the decrease of progesterone biosynthesis, indicating that a post-cAMP site (or sites) might be involved into the BDE-47-decreased progesterone production. In addition, we found BDE-47 reduced the activity of P450 side chain cleavage enzyme (P450scc), which was companied with the decline of P450scc mRNA and protein level in mLTC-1 cells. Put all together, these results suggested that progesterone synthesis decrease induced by BDE-47 may be associated with attenuation of cAMP generation and reduction of P450scc activity.

  1. Radical Intermediates in the Catalytic Oxidation of Hydrocarbons by Bacterial and Human Cytochrome P450 Enzymes†

    OpenAIRE

    Jiang, Yongying; He, Xiang; Ortiz de Montellano, Paul R.

    2006-01-01

    Cytochromes P450cam and P450BM3 oxidize α- and β-thujone into multiple products, including 7-hydroxy-α-(or β-)thujone, 7,8-dehydro-α-(or β-)thujone, 4-hydroxy-α-(or β-)thujone, 2-hydroxy α-(or β-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 ± 0.3 × ...

  2. Cytochrome P450 Bioconjugate as a Nanovehicle for Improved Chemotherapy Treatment.

    Science.gov (United States)

    Quester, Katrin; Juarez-Moreno, Karla; Secundino, Isamel; Roseinstein, Yvonne; Alejo, Karla P; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2017-05-01

    Cancer is still a growing public health problem, especially breast cancer that is one of the most important cancers in women. Chemotherapy, even though a successful treatment, is accompanied by severe side effects. Moreover, most of the drugs used for chemotherapy are administered as prodrugs and need to be transformed to the active form by cytochromes P450 (CYPs). In addition, increasing numbers of cancer tissues show lower CYP activity than the surrounding healthy tissues in which prodrugs are preferentially activated causing cytotoxicity. Here, the design of a functionalized cytochrome P450 bioconjugate is reported as nanovehicle for the enzyme direct delivery to the tumor tissue in order to improve the local drug activation. MCF-7 breast cancer cells are treated with CYP-polyethylene glycol bioconjugate functionalized folic acid, where it activates the prodrug tamoxifen and significantly reduces the dose of tamoxifen needed to kill the tumor cells. The CYP bioconjugate covered with polyethylene glycol shows no immunogenic activity. The advantages of increasing the site-specific CYP activity in tumor tissues are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Genome mining in Sorangium cellulosum So ce56: identification and characterization of the homologous electron transfer proteins of a myxobacterial cytochrome P450.

    Science.gov (United States)

    Ewen, Kerstin Maria; Hannemann, Frank; Khatri, Yogan; Perlova, Olena; Kappl, Reinhard; Krug, Daniel; Hüttermann, Jürgen; Müller, Rolf; Bernhardt, Rita

    2009-10-16

    Myxobacteria, especially members of the genus Sorangium, are known for their biotechnological potential as producers of pharmaceutically valuable secondary metabolites. The biosynthesis of several of those myxobacterial compounds includes cytochrome P450 activity. Although class I cytochrome P450 enzymes occur wide-spread in bacteria and rely on ferredoxins and ferredoxin reductases as essential electron mediators, the study of these proteins is often neglected. Therefore, we decided to search in the Sorangium cellulosum So ce56 genome for putative interaction partners of cytochromes P450. In this work we report the investigation of eight myxobacterial ferredoxins and two ferredoxin reductases with respect to their activity in cytochrome P450 systems. Intriguingly, we found not only one, but two ferredoxins whose ability to sustain an endogenous So ce56 cytochrome P450 was demonstrated by CYP260A1-dependent conversion of nootkatone. Moreover, we could demonstrate that the two ferredoxins were able to receive electrons from both ferredoxin reductases. These findings indicate that S. cellulosum can alternate between different electron transport pathways to sustain cytochrome P450 activity.

  4. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions

    Directory of Open Access Journals (Sweden)

    Paul P. Kelly

    2015-09-01

    Full Text Available Cytochrome P450 monooxygenases are useful biocatalysts for C–H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.

  5. Influence of acute and chronic administration of methadone hydrochloride on NADPH-cytochrome c reductase and cytochrome P-450 of mouse liver microsomes.

    Science.gov (United States)

    Datta, R K; Johnson, E A; Bhattacharjee, G; Stenger, R J

    1976-03-01

    Administration of a single acute dose (20 mg/kg body weight) of methadone hydrochloride to both male and female mice increased the specific activity of NADPH-cytochrome c reductase and did not change much the content of cytochrome P-450 of their liver microsomes. Administration of multiple acute doses of methadone in male mice increased the specific activity of cytochrome c reductase and the content of cytochrome P-450 of their liver microsomes. Chronic administration of progressively increasing doses of methadone (up to 40 mg/kg body weight) to male mice increased the specific activity of c reductase. Similar chronic administration of methadone up to 28 mg/kg body weight also increased the microsomal content of P-450, but with higher doses of methadone, the content of P-450 declined and finally dropped slightly below control levels. The levels of c reductase activity and P-450 content returned to normal about two weeks after discontinuation of methadone administration.

  6. Mode of Antifungal Drugs Interaction with Cytochrome P- 450

    Directory of Open Access Journals (Sweden)

    M- Mahmodian

    1991-07-01

    Full Text Available Computer was used to identify the interactions of substrates and antifungal drugs with the enzyme, Cytochrome P-450; and then Molplot.bas computer program was applied to get three dimensional figures of 5-hydroxy camphor.oxidation products of camphor analogues, and antifungal drugs.Cartesian characteristics of atoms building molecules, are taken from Buildz. for program, which can calculate X,Y,Z coordinates of atoms by Zmatrix data. The other program which can calculate X,Y,Z coordinates, using fractional characteristics, is the Coord, for program that, gives our cartesian characteristics of the atoms of molecule, then by using these data, we obtain three dimensional figures and distance between active atoms in compounds under consideration. Results show that distance between two oxygen atoms in 5-exo-hydroxy- camphor and the other compounds obtained from oxidation of camphor analogues, with the distance of two oxygen atoms in antifungal compounds under discussion are equal. Therefore, we can conclude that, the antifungal molecule also interacts with enzyme's active site, by its own sites, in a similar manner to the 5-hydroxy camphor molecule, which is:"n1. Nitrogen atom (N of Imidazole and Triazole ring in antifungal molecule with Iron atom in heam molecule belonging to Cytochrome P-450 enzyme, are coordinated."n2. The other atoms such as : 0,S or N in structure of the antifungal drug are coordinated with hydrogen atom of hydroxyl group belong ing to Tyr-96 in the structure of enzyme, forming hydrogen bonding.

  7. Drug metabolism by cytochrome p450 enzymes: what distinguishes the pathways leading to substrate hydroxylation over desaturation?

    Science.gov (United States)

    Ji, Li; Faponle, Abayomi S; Quesne, Matthew G; Sainna, Mala A; Zhang, Jing; Franke, Alicja; Kumar, Devesh; van Eldik, Rudi; Liu, Weiping; de Visser, Sam P

    2015-06-15

    Cytochrome P450 enzymes are highly versatile biological catalysts in our body that react with a broad range of substrates. Key functions in the liver include the metabolism of drugs and xenobiotics. One particular metabolic pathway that is poorly understood relates to the P450 activation of aliphatic groups leading to either hydroxylation or desaturation pathways. A DFT and QM/MM study has been carried out on the factors that determine the regioselectivity of aliphatic hydroxylation over desaturation of compounds by P450 isozymes. The calculations establish multistate reactivity patterns, whereby the product distributions differ on each of the spin-state surfaces; hence spin-selective product formation was found. The electronic and thermochemical factors that determine the bifurcation pathways were analysed and a model that predicts the regioselectivity of aliphatic hydroxylation over desaturation pathways was established from valence bond and molecular orbital theories. Thus, the difference in energy of the OH versus the OC bond formed and the π-conjugation energy determines the degree of desaturation products. In addition, environmental effects of the substrate binding pocket that affect the regioselectivities were identified. These studies imply that bioengineering P450 isozymes for desaturation reactions will have to include modifications in the substrate binding pocket to restrict the hydroxylation rebound reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Generalized cytochrome P450-mediated oxidation and oxygenation reactions in aromatic substrates with activated N-H, O-H, C-H, or S-H substituents

    NARCIS (Netherlands)

    Koymans, L.; Donné-Op den Kelder, G M; te Koppele, J.M.; Vermeulen, N P

    1. The general mechanism of metabolic oxidation of substrates by cytochromes P450 (P450s) appears to consist of sequential one-electron oxidation steps rather than of a single concerted transfer of activated oxygen species from P450 to substrates. 2. In case of the acetanilides paracetamol (PAR),

  9. Species-related exposure of phase II metabolite gemfibrozil 1-O-β-glucuronide between human and mice: A net induction of mouse P450 activity was revealed.

    Science.gov (United States)

    Luo, Min; Dai, Manyun; Lin, Hante; Xie, Minzhu; Lin, Jiao; Liu, Aiming; Yang, Julin

    2017-12-01

    Gemfibrozil is a fibrate drug used widely for dyslipidemia associated with atherosclerosis. Clinically, both gemfibrozil and its phase II metabolite gemfibrozil 1-O-β-glucuronide (gem-glu) are involved in drug-drug interaction (DDI). But the DDI risk caused by gem-glu between human and mice has not been compared. In this study, six volunteers were recruited and took a therapeutic dose of gemfibrozil for 3 days for examination of the gemfibrozil and gem-glu level in human. Male mice were fed a gemfibrozil diet (0.75%) for 7 days, following which a cocktail-based inhibitory DDI experiment was performed. Plasma samples and liver tissues from mice were collected for determination of gemfibrozil, gem-glu concentration and cytochrome p450 enzyme (P450) induction analysis. In human, the molar ratio of gem-glu/gemfibrozil was 15% and 10% at the trough concentration and the concentration at 1.5 h after the 6th dose. In contrast, this molar ratio at steady state in mice was 91%, demonstrating a 6- to 9-fold difference compared with that in human. Interestingly, a net induction of P450 activity and in vivo inductive DDI potential in mice was revealed. The P450 activity was not inhibited although the gem-glu concentration was high. These data suggested species difference of relative gem-glu exposure between human and mice, as well as a net inductive DDI potential of gemfibrozil in mouse model. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Systematic study of low-mass electron pair production in p-Be and p-Au collisions at 450 GeV/c

    NARCIS (Netherlands)

    Agakichiev, G; Appenheimer, M; Averbeck, R; Ballester, F; Baur, R; Brenschede, A; Diaz, J; Drees, A; Faschingbauer, U; Ferrero, JL; Fraenkel, Z; Franke, M; Fuchs, C; Gatti, E; Glassel, P; Gunzel, T; de los Heros, CP; Hess, F; Holzmann, R; Iourevitch, [No Value; Irmscher, D; Jacob, C; Kuhn, W; Lenkeit, B; Löhner, H.; Marin, A; Marques, FM; Martinez, G; Metag, [No Value; Notheisen, M; Novotny, R; Olsen, LH; Ostendorf, R; Panebrattsev, Y; Pfeiffer, A; Ravinovich, [No Value; Rehak, P; Sampietro, M; Schon, A; Schukraft, J; Schutz, Y; Shimansky, S; Shor, A; Simon, RS; Specht, HJ; Steiner, [No Value; Tapprogge, S; Tel-Zur, G; Tserruya, [No Value; Ullrich, T; Wilschut, H.; Wurm, JP

    In a joint effort the CERES/NA45 and TAPS collaborations have measured low-mass electron pairs in p-Be and p-Au collisions at 450 GeV/c at the CERN SPS. In the range covered up to approximate to 1.5 GeV/c(2) the mass spectra from p-Be and p-Au collisions are well explained by electron pairs from

  11. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile

    Directory of Open Access Journals (Sweden)

    Eugenia Elefterios Venizelos Bezirtzoglou

    2012-09-01

    Full Text Available Cytochromes P450 (CYPs enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80% followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450 cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status.

  12. 44 CFR 19.450 - Athletics.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Athletics. 19.450 Section 19.450 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND... hockey, football, basketball, and other sports the purpose or major activity of which involves bodily...

  13. Relationships among cytochromes P450 and dioxin equivalents in pipping heron embryos from Virginia, the Great Lakes and San Francisco Bay

    Science.gov (United States)

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillett, D.E.

    1993-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from undisturbed (Chincoteague National Wildlife Refuge, VA) and industrialized (Cat Island, Green Bay, WI; San Francisco Bay, CA) locations. Hepatic P450 associated monooxygenases (AHH, EROD, BROD, ECOD) and P450 proteins (CYP1A, CYP2B) were induced up to 85-fold, and were associated with burdens of total PCBs and 11 AHH-active PCB congeners. Dioxin equivalents (TCDD-EQs) of sample extracts, derived by bioassay (H4I1E rat hepatoma cell) and mathematically (product of PCB congener concentration and relative TCDD potency), revealed greatest TCDD-EQs in Cat Island samples. TCDD-EQs were associated with P450s, especially BROD, EROD and CYP1A (r2 = 0.35 to 0.66). TCDD-EQs derived by bioassay were highly correlated with TCDD-EQs derived mathematically (r2 = 0.58 to 0.67) . Multiple regressions were also performed to investigate relationships among P450s and PCB congeners. In summary, these data demonstrate that hepatic P450s of heron embryos are biomarkers of exposure to dioxin-like compounds and provide further evidence that this species has considerable value for assessing wetland and estuarine contamination.

  14. Curcumin Prevents Aflatoxin B1 Hepatoxicity by Inhibition of Cytochrome P450 Isozymes in Chick Liver

    Directory of Open Access Journals (Sweden)

    Ni-Ya Zhang

    2016-11-01

    Full Text Available This study was designed to establish if Curcumin (CM alleviates Aflatoxin B1 (AFB1-induced hepatotoxic effects and to determine whether alteration of the expression of cytochrome P450 (CYP450 isozymes is involved in the regulation of these effects in chick liver. One-day-old male broilers (n = 120 were divided into four groups and used in a two by two factorial trial in which the main factors included supplementing AFB1 (< 5 vs. 100 μg/kg and CM (0 vs. 150 mg/kg in a corn/soybean-based diet. Administration of AFB1 induced liver injury, significantly decreasing albumin and total protein concentrations and increasing alanine aminotransferase and aspartate aminotransferase activities in serum, and induced hepatic histological lesions at week 2. AFB1 also significantly decreased hepatic glutathione peroxidase, catalase, and glutathione levels, while increasing malondialdehyde, 8-hydroxydeoxyguanosine, and exo-AFB1-8,9-epoxide (AFBO-DNA concentrations. In addition, the mRNA and/or activity of enzymes responsible for the bioactivation of AFB1 into AFBO—including CYP1A1, CYP1A2, CYP2A6, and CYP3A4—were significantly induced in liver microsomes after 2-week exposure to AFB1. These alterations induced by AFB1 were prevented by CM supplementation. Conclusively, dietary CM protected chicks from AFB1-induced liver injury, potentially through the synergistic actions of increased antioxidant capacities and inhibition of the pivotal CYP450 isozyme-mediated activation of AFB1 to toxic AFBO.

  15. Prediction of activation energies for hydrogen abstraction by cytochrome p450

    DEFF Research Database (Denmark)

    Olsen, Lars; Rydberg, Patrik; Rod, Thomas Holm

    2006-01-01

    We have estimated the activation energy for hydrogen abstraction by compound I in cytochrome P450 for a diverse set of 24 small organic substrates using state-of-the-art density functional theory (B3LYP). We then show that these results can be reproduced by computationally less demanding methods,...... of the less demanding methods are applied to study the CYP3A4 metabolism of progesterone and dextromethorphan....

  16. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    Science.gov (United States)

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  17. Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation.

    Science.gov (United States)

    Zhang, Yingying; Zhang, Baichen; Yan, Dawei; Dong, Weixin; Yang, Weibing; Li, Qun; Zeng, Longjun; Wang, Jianjun; Wang, Linyou; Hicks, Leslie M; He, Zuhua

    2011-07-01

    The rice gene ELONGATED UPPERMOST INTERNODE1 (EUI1) encodes a P450 monooxygenase that epoxidizes gibberellins (GAs) in a deactivation reaction. The Arabidopsis genome contains a tandemly duplicated gene pair ELA1 (CYP714A1) and ELA2 (CYP714A2) that encode EUI homologs. In this work, we dissected the functions of the two proteins. ELA1 and ELA2 exhibited overlapping yet distinct gene expression patterns. We showed that while single mutants of ELA1 or ELA2 exhibited no obvious morphological phenotype, simultaneous elimination of ELA1 and ELA2 expression in ELA1-RNAi/ela2 resulted in increased biomass and enlarged organs. By contrast, transgenic plants constitutively expressing either ELA1 or ELA2 were dwarfed, similar to those overexpressing the rice EUI gene. We also discovered that overexpression of ELA1 resulted in a severe dwarf phenotype, while overexpression of ELA2 gave rise to a breeding-favored semi-dwarf phenotype in rice. Consistent with the phenotypes, we found that the ELA1-RNAi/ela2 plants increased amounts of biologically active GAs that were decreased in the internodes of transgenic rice with ELA1 and ELA2 overexpression. In contrast, the precursor GA(12) slightly accumulated in the transgenic rice, and GA(19) highly accumulated in the ELA2 overexpression rice. Taken together, our study strongly suggests that the two Arabidopsis EUI homologs subtly regulate plant growth most likely through catalyzing deactivation of bioactive GAs similar to rice EUI. The two P450s may also function in early stages of the GA biosynthetic pathway. Our results also suggest that ELA2 could be an excellent tool for molecular breeding for high yield potential in cereal crops. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  18. 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4-dihydropyridines

    International Nuclear Information System (INIS)

    Lee, J.S.; Jacobsen, N.E.; Ortiz de Montellano, P.R.

    1988-01-01

    Rat liver microsomal cytochrome P-450 oxidizes the 4-methyl, 4-ethyl (DDEP), and 4-isopropyl derivatives of 3,5-bis(carbethoxy)-2,6-dimethyl-1,4,-dihydropyridine to mixtures of the corresponding 4-alkyl and 4-dealkyl pyridines. A fraction of the total microsomal enzyme is destroyed in the process. The 4-dealkyl to 4-alkyl pyridine metabolite ratio, the extent of cytochrome P-450 destruction, and the rate of spin-trapped radical accumulation are correlated in a linear inverse manner with the homolytic or heterolytic bond energies of the 4-alkyl groups of the 4-alkyl-1,4-dihydropyridines. No isotope effects are observed on the pyridine matabolite ratio, the destruction of cytochrome P-450, or the formation of ethyl radicals when [4- 2 H]DDEP is used instead of DDEP. N-Methyl- and N-ethyl-DDEP undergo N-dealkylation rather than aromatization but N-phenyl-DDEP is oxidized to a mixture of the 4-ethyl and 4-deethyl N-phenylpyridinium metabolites. In contrast to the absence of an isotope effect in the oxidation of DDEP, the 4-deethyl to 4-ethyl N-phenylpyridinium metabolite ratio increases 6-fold when N-phenyl[4- 2 H]DDEP is used. The results support the hypothesis that cytochrome P-450 catalyzes the oxidation of dihydropyridines to radical cations and show that the radical cations decay to nonradical products by multiple, substituent-dependent, mechanisms

  19. Mechanism-based inactivation of cytochrome P-450 dependent benzo[a]pyrene hydroxylase activity by acetylenic and olefinic polycyclic arylhydrocarbons

    International Nuclear Information System (INIS)

    Gan, L.S.

    1986-01-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxygenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene (EP), 3-ethynylperylene (EPL), cis- and trans-1-(2-bromo-vinyl)pyrene (c-BVP and t-BVP), and 1-allylpyrene (AP) serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene (BP) hydroxylase, while 1-vinyl-pyrene (VP) and phenyl 1-pyrenyl acetylene (PPA) do not cause a detectable suicide inhibition of the BP hydroxylase. The mechanism-based loss of BP hydroxylase activity caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes. In the presence of NADPH, 3 H-labeled EP covalently attached to P-450 isozymes with a measured stoichiometry of one mole of EP per mole of the P-450 heme. The results of the effects of these aryl derivatives in the mammalian cell-mediated mutagenesis assay and toxicity assay show that none of the compounds examined nor any of the their metabolites produced in the incubation system are cytotoxic to V79 cells

  20. Cytochrome P450 CYP89A9 Is Involved in the Formation of Major Chlorophyll Catabolites during Leaf Senescence in Arabidopsis[W][OA

    Science.gov (United States)

    Christ, Bastien; Süssenbacher, Iris; Moser, Simone; Bichsel, Nicole; Egert, Aurelie; Müller, Thomas; Hörtensteiner, Stefan

    2013-01-01

    Nonfluorescent chlorophyll catabolites (NCCs) were described as products of chlorophyll breakdown in Arabidopsis thaliana. NCCs are formyloxobilin-type catabolites derived from chlorophyll by oxygenolytic opening of the chlorin macrocycle. These linear tetrapyrroles are generated from their fluorescent chlorophyll catabolite (FCC) precursors by a nonenzymatic isomerization inside the vacuole of senescing cells. Here, we identified a group of distinct dioxobilin-type chlorophyll catabolites (DCCs) as the major breakdown products in wild-type Arabidopsis, representing more than 90% of the chlorophyll of green leaves. The molecular constitution of the most abundant nonfluorescent DCC (NDCC), At-NDCC-1, was determined. We further identified cytochrome P450 monooxygenase CYP89A9 as being responsible for NDCC accumulation in wild-type Arabidopsis; cyp89a9 mutants that are deficient in CYP89A9 function were devoid of NDCCs but accumulated proportionally higher amounts of NCCs. CYP89A9 localized outside the chloroplasts, implying that FCCs occurring in the cytosol might be its natural substrate. Using recombinant CYP89A9, we confirm FCC specificity and show that fluorescent DCCs are the products of the CYP89A9 reaction. Fluorescent DCCs, formed by this enzyme, isomerize to the respective NDCCs in weakly acidic medium, as found in vacuoles. We conclude that CYP89A9 is involved in the formation of dioxobilin-type catabolites of chlorophyll in Arabidopsis. PMID:23723324

  1. Identifying Cytochrome P450 Functional Networks and Their Allosteric Regulatory Elements

    Science.gov (United States)

    2013-12-03

    based on physiochemical features not captured by residue co-evolution. In all the networks we characterized, it was evident that some residues were...corresponding iron and sulphur related parameters, were obtained from Bathelt et al. [46]. These parameters are based on QM/MM calculations and have been...2007) Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 282: 14348-14355. doi

  2. Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar.

    Science.gov (United States)

    Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L

    2010-08-01

    Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.

  3. Similar substrate specificity of cynomolgus monkey cytochrome P450 2C19 to reported human P450 2C counterpart enzymes by evaluation of 89 drug clearances.

    Science.gov (United States)

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-12-01

    Cynomolgus monkeys are used widely in preclinical studies as non-human primate species. The amino acid sequence of cynomolgus monkey cytochrome P450 (P450 or CYP) 2C19 is reportedly highly correlated to that of human CYP2C19 (92%) and CYP2C9 (93%). In the present study, 89 commercially available compounds were screened to find potential substrates for cynomolgus monkey CYP2C19. Of 89 drugs, 34 were metabolically depleted by cynomolgus monkey CYP2C19 with relatively high rates. Among them, 30 compounds have been reported as substrates or inhibitors of, either or both, human CYP2C19 and CYP2C9. Several compounds, including loratadine, showed high selectivity to cynomolgus monkey CYP2C19, and all of these have been reported as human CYP2C19 and/or CYP2C9 substrates. In addition, cynomolgus monkey CYP2C19 formed the same loratadine metabolite as human CYP2C19, descarboethoxyloratadine. These results suggest that cynomolgus monkey CYP2C19 is generally similar to human CYP2C19 and CYP2C9 in its substrate recognition functionality. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Daily fluctuation of hepatic P450 monooxygenase activities in male rats is controlled by the suprachiasmatic nucleus but remains unaffected by adrenal hormones.

    Science.gov (United States)

    Furukawa, T; Manabe, S; Watanabe, T; Sehata, S; Sharyo, S; Okada, T; Mori, Y

    1999-09-01

    Hepatic P450 monooxygenase activities, which strongly influence the efficacy and/or toxicity of drugs, are known to fluctuate daily. We also know that the P450 activities assessed by measurement of 7-alkoxycoumarin O-dealkylase (ACD) activities fluctuate daily, with apparently high values during the dark period in male rats. However, there is little knowledge about the factors that regulate daily fluctuation of P450 monooxygenase activities. In the present study using rats, we induced lesions in the suprachiasmatic nucleus (SCN) of the brain, the known site of the body's internal clock, and examined the effects on the daily fluctuation of the ACD activities to clarify the relationship between the SCN and the daily fluctuation of P450 monooxygenase activities. In addition, adrenalectomy was performed to re-evaluate the influence of adrenal hormones on the P450 activities. Our results indicated that daily fluctuations of the hepatic ACD activities were completely eliminated in the SCN-lesioned rats. However, the ACD activities in the adrenalectomized rats showed apparent daily fluctuations with high values during the dark period and low values during the light period. Therefore, this study demonstrated that the daily fluctuation of the hepatic P450 monooxygenase activities in male rats is controlled by the SCN but remains unaffected by the adrenal hormones.

  5. The P450 enzyme Shade mediates the hydroxylation of ecdysone to 20-hydroxyecdysone in the Colorado potato beetle, Leptinotarsa decemlineata.

    Science.gov (United States)

    Kong, Y; Liu, X-P; Wan, P-J; Shi, X-Q; Guo, W-C; Li, G-Q

    2014-10-01

    Ecdysone 20-monooxygenase (E20MO), a cytochrome P450 monooxygenase (CYP314A1), catalyses the conversion of ecdysone (E) to 20-hydroxyecdysone (20E). We report here the cloning and characterization of the Halloween gene Shade (Shd) encoding E20MO in the Colorado potato beetle, Leptinotarsa decemlineata. LdSHD has five conserved motifs typical of insect P450s, ie the Helix-C, Helix-I, Helix-K, PxxFxPE/DRF (PERF) and heme-binding motifs. LdShd was expressed in developing eggs, the first to fourth instars, wandering larvae, pupae and adults, with statistically significant fluctuations. Its mRNA was ubiquitously distributed in the head, thorax and abdomen. The recombinant LdSHD protein expressed in Spodoptera frugiperda 9 (Sf9) cells catalysed the conversion of E to 20E. Dietary introduction of double-stranded RNA (dsRNA) of LdShd into the second instar larvae successfully knocked down the LdShd expression level, decreased the mRNA level of the ecdysone receptor (LdEcR) gene, caused larval lethality, delayed development and affected pupation. Moreover, ingestion of LdShd-dsRNA by the fourth instars also down-regulated LdShd and LdEcR expression, reduced the 20E titre, and negatively influenced pupation. Introduction of 20E and a nonsteroidal ecdysteroid agonist halofenozide into the LdShd-dsRNA-ingested second instars, and of halofenozide into the LdShd-dsRNA-ingested fourth instars almost completely relieved the negative effects on larval performance. Thus, LdSHD functions to regulate metamorphotic processes by converting E to 20E in a coleopteran insect species Le. decemlineata. © 2014 The Royal Entomological Society.

  6. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner.

    Science.gov (United States)

    Amorós, M; Estruch, F

    2001-03-01

    Saccharomyces cerevisiae possesses several transcription factors involved in the transcriptional activation of stress-induced genes. Among them, the heat shock factor (Hsf1p) and the zinc finger proteins of the general stress response (Msn2p and Msn4p) have been shown to play a major role in stress protection. Some heat shock protein (HSP) genes contain both heat shock elements (HSEs) and stress response elements (STREs), suggesting the involvement of both transcription factors in their regulation. Analysis of the stress-induced expression of two of these genes, HSP26 and HSP104, reveals that the contribution of Hsf1p and Msn2/4p is different depending on the gene and the stress condition.

  7. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica.

    OpenAIRE

    Feyereisen, R; Koener, J F; Farnsworth, D E; Nebert, D W

    1989-01-01

    A cDNA expression library from phenobarbital-treated house fly (Musca domestica) was screened with rabbit antisera directed against partially purified house fly cytochrome P-450. Two overlapping clones with insert lengths of 1.3 and 1.5 kilobases were isolated. The sequence of a 1629-base-pair (bp) cDNA was obtained, with an open reading frame (nucleotides 81-1610) encoding a P-450 protein of 509 residues (Mr = 58,738). The insect P-450 protein contains a hydrophobic NH2 terminus and a 22-res...

  8. P450 Pharmacogenetics in Indigenous North American Populations

    Directory of Open Access Journals (Sweden)

    Lindsay M. Henderson

    2018-02-01

    Full Text Available Indigenous North American populations, including American Indian and Alaska Native peoples in the United States, the First Nations, Métis and Inuit peoples in Canada and Amerindians in Mexico, are historically under-represented in biomedical research, including genomic research on drug disposition and response. Without adequate representation in pharmacogenetic studies establishing genotype-phenotype relationships, Indigenous populations may not benefit fully from new innovations in precision medicine testing to tailor and improve the safety and efficacy of drug treatment, resulting in health care disparities. The purpose of this review is to summarize and evaluate what is currently known about cytochrome P450 genetic variation in Indigenous populations in North America and to highlight the importance of including these groups in future pharmacogenetic studies for implementation of personalized drug therapy.

  9. Genes Involved in Human Ribosome Biogenesis areTranscriptionally Upregulated in Colorectal Cancer

    DEFF Research Database (Denmark)

    Mansilla, Francisco; Lamy, Philippe; Ørntoft, Torben Falck

    2009-01-01

    Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p<10-3) when compared to normal mucosa. Overexpression was independent of microsate......Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p... of microsatellite status. The promoters of the genes studied showed a significant enrichment for several transcription factor binding sites. There was a significant correlation between the number of binding site targets for these transcription factors and the observed gene transcript upregulation. The upregulation...

  10. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved

    International Nuclear Information System (INIS)

    Merini, Luciano J.; Bobillo, Cecilia; Cuadrado, Virginia; Corach, Daniel; Giulietti, Ana M.

    2009-01-01

    Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg -1 of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P 450 or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P 450 . Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding. - Finding of a novel atrazine-tolerant species, as a potential candidate for phytoremediating herbicide-contaminated agriculture soils and elucidation of the mechanisms involved in tolerance.

  11. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved

    Energy Technology Data Exchange (ETDEWEB)

    Merini, Luciano J. [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Bobillo, Cecilia [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Cuadrado, Virginia [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Corach, Daniel [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Giulietti, Ana M., E-mail: agiule@ffyb.uba.a [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina)

    2009-11-15

    Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg{sup -1} of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P{sub 450} or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P{sub 450}. Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding. - Finding of a novel atrazine-tolerant species, as a potential candidate for phytoremediating herbicide-contaminated agriculture soils and elucidation of the mechanisms involved in tolerance.

  12. Cytochrome P450 2E1 gene polymorphisms/haplotypes and anti-tuberculosis drug-induced hepatitis in a Chinese cohort.

    Directory of Open Access Journals (Sweden)

    Shaowen Tang

    Full Text Available The pathogenic mechanism of anti-tuberculosis (anti-TB drug-induced hepatitis is associated with drug metabolizing enzymes. No tagging single-nucleotide polymorphisms (tSNPs of cytochrome P450 2E1(CYP2E1 in the risk of anti-TB drug-induced hepatitis have been reported. The present study was aimed at exploring the role of tSNPs in CYP2E1 gene in a population-based anti-TB treatment cohort.A nested case-control study was designed. Each hepatitis case was 14 matched with controls by age, gender, treatment history, disease severity and drug dosage. The tSNPs were selected by using Haploview 4.2 based on the HapMap database of Han Chinese in Beijing, and detected by using TaqMan allelic discrimination technology.Eighty-nine anti-TB drug-induced hepatitis cases and 356 controls were included in this study. 6 tSNPs (rs2031920, rs2070672, rs915908, rs8192775, rs2515641, rs2515644 were genotyped and minor allele frequencies of these tSNPs were 21.9%, 23.0%, 19.1%, 23.6%, 20.8% and 44.4% in the cases and 20.9%, 22.7%, 18.9%, 23.2%, 18.2% and 43.2% in the controls, respectively. No significant difference was observed in genotypes or allele frequencies of the 6 tSNPs between case group and control group, and neither of haplotypes in block 1 nor in block 2 was significantly associated with the development of hepatitis.Based on the Chinese anti-TB treatment cohort, we did not find a statistically significant association between genetic polymorphisms of CYP2E1 and the risk of anti-TB drug-induced hepatitis. None of the haplotypes showed a significant association with the development of hepatitis in Chinese TB population.

  13. Cytochrome b5 and epoxide hydrolase contribute to benzo[a]pyrene-DNA adduct formation catalyzed by cytochrome P450 1A1 under low NADPH:P450 oxidoreductase conditions

    International Nuclear Information System (INIS)

    Stiborová, Marie; Moserová, Michaela; Černá, Věra; Indra, Radek; Dračínský, Martin; Šulc, Miroslav; Henderson, Colin J.; Wolf, C. Roland; Schmeiser, Heinz H.; Phillips, David H.; Frei, Eva; Arlt, Volker M.

    2014-01-01

    In previous studies we had administered benzo[a]pyrene (BaP) to genetically engineered mice (HRN) which do not express NADPH:cytochrome P450 oxidoreductase (POR) in hepatocytes and observed higher DNA adduct levels in livers of these mice than in wild-type mice. To elucidate the reason for this unexpected finding we have used two different settings for in vitro incubations; hepatic microsomes from control and BaP-pretreated HRN mice and reconstituted systems with cytochrome P450 1A1 (CYP1A1), POR, cytochrome b 5 , and epoxide hydrolase (mEH) in different ratios. In microsomes from BaP-pretreated mice, in which Cyp1a1 was induced, higher levels of BaP metabolites were formed, mainly of BaP-7,8-dihydrodiol. At a low POR:CYP1A1 ratio of 0.05:1 in the reconstituted system, the amounts of BaP diones and BaP-9-ol formed were essentially the same as at an equimolar ratio, but formation of BaP-3-ol was ∼1.6-fold higher. Only after addition of mEH were BaP dihydrodiols found. Two BaP-DNA adducts were formed in the presence of mEH, but only one when CYP1A1 and POR were present alone. At a ratio of POR:CYP1A1 of 0.05:1, addition of cytochrome b 5 increased CYP1A1-mediated BaP oxidation to most of its metabolites indicating that cytochrome b 5 participates in the electron transfer from NADPH to CYP1A1 required for enzyme activity of this CYP. BaP-9-ol was formed even by CYP1A1 reconstituted with cytochrome b 5 without POR. Our results suggest that in livers of HRN mice Cyp1a1, cytochrome b 5 and mEH can effectively activate BaP to DNA binding species, even in the presence of very low amounts of POR

  14. Pyrethroid insecticides: Isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor

    International Nuclear Information System (INIS)

    Yang Dongfang; Wang Xiliang; Chen Yitzai; Deng Ruitang; Yan Bingfang

    2009-01-01

    Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity.

  15. Strain-specific variation in a soilborne phytopathogenic fungus for the expression of genes involved in pH signal transduction pathway, pathogenesis and saprophytic survival in response to environmental pH changes.

    Science.gov (United States)

    Daval, Stéphanie; Lebreton, Lionel; Gracianne, Cécile; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Marchi, Muriel; Gazengel, Kévin; Sarniguet, Alain

    2013-12-01

    The soilborne fungus Gaeumannomyces graminis var. tritici (Ggt) causes take-all, a wheat root disease. In an original strain-specific way, a previous study indicates that inside the Ggt species, some strains grow preferentially at acidic pH and other strains at neutral/alkaline pH. The most important mechanism for a fungal response to the environmental pH is the Pal pathway which integrates the products of the six pal genes and the transcription factor PacC. To evaluate whether the Ggt strain-specific growth in function of the ambient pH is mediated via the Pal pathway, a transcriptional study of the genes encoding this pathway was carried out. This study provided the first evidence that the pH signalling pathway similar to those described in other fungi operated in Ggt. The pacC gene was induced at neutral pH whatever the strain. In an original way, the expression of Ggt genes coding for the different Pal proteins depended on the strain and on the ambient pH. In the strain growing better at acidic pH, few pal genes were pH-regulated, and some were overexpressed at neutral pH when regulated. In the strain growing better at neutral pH, underexpression of most of the pal genes at neutral pH occurred. The strains displayed higher gene expression in the ambient pH that unfavoured their growth as if it was a compensation system. All pH taken together, a globally weaker Pal transcript level occurred in the strains that were less sensitive to acidic pH, and on the contrary, the strain growing better on neutral pH showed higher Pal mRNA levels. The expression of genes involved in pathogenesis and saprophytic growth was also regulated by the ambient pH and the strain: each gene displayed a specific pH-regulation that was similar between strains. But all pH taken together, the global transcript levels of four out of six genes were higher in the strain growing better on neutral pH. Altogether, for the first time, the results show that inside a species, conditions affecting

  16. Study on the cytochrome P-450- and glutathione-dependent biotransformation of trichloroethylene in humans

    NARCIS (Netherlands)

    Bloemen, L. J.; Monster, A. C.; Kezic, S.; Commandeur, J. N.; Veulemans, H.; Vermeulen, N. P.; Wilmer, J. W.

    2001-01-01

    To investigate in humans the contribution of the cytochrome P-450- and glutathione-dependent biotransformation of trichloroethylene (TRI) under controlled repeated exposure in volunteers, and under occupational conditions. Volunteers were exposed to TRI, using repeated 15 min exposures at 50 and 100

  17. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A.

    Science.gov (United States)

    Yang, Mengquan; You, Wenjing; Wu, Shiwen; Fan, Zhen; Xu, Baofu; Zhu, Mulan; Li, Xuan; Xiao, Youli

    2017-03-22

    Huperzia serrata (H. serrata) is an economically important traditional Chinese herb with the notably medicinal value. As a representative member of the Lycopodiaceae family, the H. serrata produces various types of effectively bioactive lycopodium alkaloids, especially the huperzine A (HupA) which is a promising drug for Alzheimer's disease. Despite their medicinal importance, the public genomic and transcriptomic resources are very limited and the biosynthesis of HupA is largely unknown. Previous studies on comparison of 454-ESTs from H. serrata and Phlegmariurus carinatus predicted putative genes involved in lycopodium alkaloid biosynthesis, such as lysine decarboxylase like (LDC-like) protein and some CYP450s. However, these gene annotations were not carried out with further biochemical characterizations. To understand the biosynthesis of HupA and its regulation in H. serrata, a global transcriptome analysis on H. Serrata tissues was performed. In this study, we used the Illumina Highseq4000 platform to generate a substantial RNA sequencing dataset of H. serrata. A total of 40.1 Gb clean data was generated from four different tissues: root, stem, leaf, and sporangia and assembled into 181,141 unigenes. The total length, average length, N50 and GC content of unigenes were 219,520,611 bp, 1,211 bp, 2,488 bp and 42.51%, respectively. Among them, 105,516 unigenes (58.25%) were annotated by seven public databases (NR, NT, Swiss-Prot, KEGG, COG, Interpro, GO), and 54 GO terms and 3,391 transcription factors (TFs) were functionally classified, respectively. KEGG pathway analysis revealed that 72,230 unigenes were classified into 21 functional pathways. Three types of candidate enzymes, LDC, CAO and PKS, responsible for the biosynthesis of precursors of HupA were all identified in the transcripts. Four hundred and fifty-seven CYP450 genes in H. serrata were also analyzed and compared with tissue-specific gene expression. Moreover, two key classes of CYP450 genes BBE

  18. Brain Gene Expression is Influenced by Incubation Temperature During Leopard Gecko (Eublepharis macularius) Development.

    Science.gov (United States)

    Pallotta, Maria Michela; Turano, Mimmo; Ronca, Raffaele; Mezzasalma, Marcello; Petraccioli, Agnese; Odierna, Gaetano; Capriglione, Teresa

    2017-06-01

    Sexual differentiation (SD) during development results in anatomical, metabolic, and physiological differences that involve not only the gonads, but also a variety of other biological structures, such as the brain, determining differences in morphology, behavior, and response in the breeding season. In many reptiles, whose sex is determined by egg incubation temperature, such as the leopard gecko, Eublepharis macularius, embryos incubated at different temperatures clearly differ in the volume of brain nuclei that modulate behavior. Based on the premise that "the developmental decision of gender does not flow through a single gene", we performed an analysis on E. macularius using three approaches to gain insights into the genes that may be involved in brain SD during the thermosensitive period. Using quantitative RT-PCR, we studied the expression of genes known to be involved in gonadal SD such as WNT4, SOX9, DMRT1, Erα, Erβ, GnRH, P450 aromatase, PRL, and PRL-R. Then, further genes putatively involved in sex dimorphic brain differentiation were sought by differential display (DDRT-PCR) and PCR array. Our findings indicate that embryo exposure to different sex determining temperatures induces differential expression of several genes that are involved not only in gonadal differentiation (PRL-R, Wnt4, Erα, Erβ, p450 aromatase, and DMRT1), but also in neural differentiation (TN-R, Adora2A, and ASCL1) and metabolic pathways (GP1, RPS15, and NADH12). These data suggest that the brains of SDT reptiles might be dimorphic at birth, thus behavioral experiences in postnatal development would act on a structure already committed to male or female. © 2017 Wiley Periodicals, Inc.

  19. Understanding uncoupling in the multiredox centre P450 3A4-BMR model system.

    Science.gov (United States)

    Degregorio, Danilo; Sadeghi, Sheila J; Di Nardo, Giovanna; Gilardi, Gianfranco; Solinas, Sandro P

    2011-01-01

    Understanding the uncoupling at the haem active site and/or at the level of multidomain electron transfer is an important element in cytochrome P450 chemistry. Here a chimeric model system consisting of human cytochrome P450 3A4 and the soluble reductase domain of CYP102A1 from Bacillus megaterium (BMR) is used to study the relationship between electron transfer and the coupling efficiency in substrate monoxygenation. Several regulatory features were considered. FAD and FMN added to apoenzyme in oversaturating concentrations influence neither formaldehyde production nor coupling efficiency. The optimal conditions of coupling efficiency depended only on the NADPH concentration. The pH (8.0) and ionic strength (50 mM potassium phosphate) were found to modulate the level of coupling, indicating an influence over the formation of a productive interaction between the BMR and the haem domain. Overall, uncoupling is found to be an intrinsic property of the haem domain, and the covalent linkage of the reductase in a single polypeptide chain has little influence over the activity coupled to product formation.

  20. Isolation and expression of cytochrome P450 genes in the antennae and gut of pine beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) following exposure to host monoterpenes

    Science.gov (United States)

    Claudia Cano-Ramirez; Maria Fernanda Lopez; Ana K. Cesar-Ayala; Veronica Pineda-Martinez; Brian T. Sullivan; Gerardo and Zuniga

    2013-01-01

    Bark beetles oxidize the defensive monoterpenes of their host trees both to detoxify them and convert them into components of their pheromone system. This oxidation is catalyzed by cytochrome P450 enzymes and occurs in different tissues of the insect, including the gut (i.e., the site where the beetle's pheromones are produced and accumulated) and the antennae (i....