WorldWideScience

Sample records for p1451-enabled smart power

  1. Innovative P1451-Enabled Smart Power IVHM Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has expressed a requirement for advanced Smart Sensors to support new systems for harsh environments. Power systems are an integral component of virtually any...

  2. IEEE 1451.2 based Smart sensor system using ADuc847

    Science.gov (United States)

    Sreejithlal, A.; Ajith, Jose

    IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.

  3. Smart Sensor Network for Aircraft Corrosion Monitoring

    Science.gov (United States)

    2010-02-01

    Network Elements – Hub, Network capable application processor ( NCAP ) – Node, Smart transducer interface module (STIM)  Corrosion Sensing and...software Transducer software Network Protocol 1451.2 1451.3 1451.5 1451.6 1451.7 I/O Node -processor Power TEDS Smart Sensor Hub ( NCAP ) IEEE 1451.0 and

  4. IT-Enabled Integration of Renewables: A Concept for the Smart Power Grid

    Directory of Open Access Journals (Sweden)

    Sauter Thilo

    2011-01-01

    Full Text Available The wide utilisation of information and communication technologies is hoped to enable a more efficient and sustainable operation of electric power grids. This paper analyses the benefits of smart power grids for the integration of renewable energy resources into the existing grid infrastructure. Therefore, the concept of a smart power grid is analysed, and it is shown that it covers more than for example, time-of-use energy tariffs. Further, the communication technologies used for smart grids are discussed, and the challenge of interoperability between the smart grid itself and its active contributors such as functional buildings is shown. A significant share of electrical energy demand is and will be constituted by large functional buildings that are mostly equipped with automation systems and therefore enable a relatively simple IT integration into smart grids. This large potential of thermal storages and flexible consumption processes might be a future key to match demand and supply under the presence of a high share of fluctuating generation from renewables.

  5. Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid

    Science.gov (United States)

    Yao, Tong

    In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, micro synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using Hinfinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID

  6. Smart Grid enabled heat pumps

    DEFF Research Database (Denmark)

    Carmo, Carolina; Detlefsen, Nina; Nielsen, Mads Pagh

    2014-01-01

    The transition towards a 100 % fossil-free energy system, while achieving extreme penetration levels of intermittent wind and solar power in electricity generation, requires demand-side technologies that are smart (intermittency-friendly) and efficient. The integration of Smart Grid enabling...... with an empirical study in order to achieve a number of recommendations with respect to technology concepts and control strategies that would allow residential vapor-compression heat pumps to support large-scale integration of intermittent renewables. The analysis is based on data gathered over a period of up to 3...

  7. Cyber security and vulnerability of 'smart' power grids

    OpenAIRE

    Jovanović, Slobodan

    2012-01-01

    Smart power grids deliver electric energy from generation to consumers using two-way Smart Meter technology (smart meters), enabling remote control of consumer energy use. However, smart power grids are increasingly very attractive targets for hackers and terrorists. This paper discusses the key characteristics of cyber security/vulnerability of smart power grids, and their communication architecture, and their vulnerability points. Then, it describes guidelines which are needed to be impleme...

  8. Smart grid communication-enabled intelligence for the electric power grid

    CERN Document Server

    Bush, Stephen F

    2014-01-01

    This book bridges the divide between the fields of power systems engineering and computer communication through the new field of power system information theory. Written by an expert with vast experience in the field, this book explores the smart grid from generation to consumption, both as it is planned today and how it will evolve tomorrow. The book focuses upon what differentiates the smart grid from the ""traditional"" power grid as it has been known for the last century. Furthermore, the author provides the reader with a fundamental understanding of both power systems and communication ne

  9. Democratized electronics to enable smart living for all

    KAUST Repository

    Hussain, Muhammad Mustafa; Nassar, Joanna M.; Khan, S. M.; Saikh, S. F.; Sevilla, Galo T.; Kutbee, Arwa T.; Bahabry, Rabab R.; Babatain, Wedyan; Muslem, A. S.; Nour, Maha A.; Wicaksono, I.; Mishra, Kush

    2017-01-01

    With the increased global population, smart living is an increasingly important criteria to ensure equal opportunities for all. Therefore, what is Smart Living? The first time when we tossed this terminology seven years back, we thought reducing complexities in human life. Today we believe it more. However, smart living for all complicates the technological need further. As by all, we mean any age group, any academic background and any financial condition. Although electronics are powerful today and have enabled our digital world, many as of today have not experienced that progress. Going forward while we realize more and more electronics in our daily life, the most important question would be how. Here we show, a heterogeneous integration approach to integrate low-cost high performance interactive electronic system which are physically compliant. We are redesigning electronics to redefine its purposes to reconfigure life for all to enable smart living.

  10. Democratized electronics to enable smart living for all

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-12-25

    With the increased global population, smart living is an increasingly important criteria to ensure equal opportunities for all. Therefore, what is Smart Living? The first time when we tossed this terminology seven years back, we thought reducing complexities in human life. Today we believe it more. However, smart living for all complicates the technological need further. As by all, we mean any age group, any academic background and any financial condition. Although electronics are powerful today and have enabled our digital world, many as of today have not experienced that progress. Going forward while we realize more and more electronics in our daily life, the most important question would be how. Here we show, a heterogeneous integration approach to integrate low-cost high performance interactive electronic system which are physically compliant. We are redesigning electronics to redefine its purposes to reconfigure life for all to enable smart living.

  11. Smart Sensors Enable Smart Air Conditioning Control

    Directory of Open Access Journals (Sweden)

    Chin-Chi Cheng

    2014-06-01

    Full Text Available In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants’ information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans’ intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It’s also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  12. Safety analysis results for the control rod banks withdrawal event at a full power of the SMART-P

    International Nuclear Information System (INIS)

    Yang, S. H.; Chung, Y. J.; Kim, H. C.; Zee, S. Q.

    2005-01-01

    For the validation of the 330 MWt SMART (System-integrated Modular Advanced ReacTor), a detailed design for the SMART-P has been accomplished by KAERI. In the SMART-P design similar to the SMART design, the soluble boron free design is adapted. This concept results in a larger reactivity worth of the control rod bank compared to that of the commercial pressurized water reactor. Moreover, in the SMART-P design, the control rod banks are fairly well inserted into the core, even at a full power condition. Therefore, accidents related to the reactivity anomalies have been evaluated as crucial events when compared to the other initiating events. In this paper, safety analysis for the control rod banks withdrawal event at a full power of the SMART-P has been accomplished by considering various initial conditions, different withdrawal times of the control rod banks and the reactivity feedback. To perform the safety analysis, the TASS/SMR (Transients And Setpoint Simulation/Small and Medium Reactor) code for a system response and SSF-1 correlation for a CHFR (Critical Heat Flux Ratio) have been used

  13. Enabling Technologies for Smart Grid Integration and Interoperability of Electric Vehicles

    DEFF Research Database (Denmark)

    Martinenas, Sergejus

    Conventional, centralized power plants are being replaced by intermittent, distributed renewable energy sources, thus raising the concern about the stability of the power grid in its current state. All the while, electrification of all forms of transportation is increasing the load...... for successful EV integration into the smart grid, as a smart, mobile distributed energy resource. The work is split into three key topics: enabling technologies, grid service applications and interoperability issues. The current state of e-mobility technologies is surveyed. Technologies and protocols...... EVs to not only mitigate their own effects on the grid, but also provide value to grid operators, locally as well as system wide. Finally, it is shown that active integration of EVs into the smart grid, is not only achievable, but is well on its way to becoming a reality....

  14. Trends and Potentials of the Smart Grid Infrastructure: From ICT Sub-System to SDN-Enabled Smart Grid Architecture

    Directory of Open Access Journals (Sweden)

    Jaebeom Kim

    2015-10-01

    Full Text Available Context and situational awareness are key features and trends of the smart grid and enable adaptable, flexible and extendable smart grid services. However, the traditional hardware-dependent communication infrastructure is not designed to identify the flow and context of data, and it focuses only on packet forwarding using a pre-defined network configuration profile. Thus, the current network infrastructure may not dynamically adapt the various business models and services of the smart grid system. To solve this problem, software-defined networking (SDN is being considered in the smart grid, but the design, architecture and system model need to be optimized for the smart grid environment. In this paper, we investigate the state-of-the-art smart grid information subsystem, communication infrastructure and its emerging trends and potentials, called an SDN-enabled smart grid. We present an abstract business model, candidate SDN applications and common architecture of the SDN-enabled smart grid. Further, we compare recent studies into the SDN-enabled smart grid depending on its service functionalities, and we describe further challenges of the SDN-enabled smart grid network infrastructure.

  15. Smart Grid Enabled EVSE

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-12

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  16. Design and implementation of smart web sensors

    Directory of Open Access Journals (Sweden)

    Jevtić Nenad J.

    2015-01-01

    Full Text Available This paper presents the design and implementation of the smart web sensors. The paper briefly describes the concept of automatic configuration based on electronic specifications in industrial measurement and control systems as well as in distributed systems based on the OGC SWE family of standards. The model for the implementation of Plug and Play sensor in accordance with the IEEE 1451 family of standards is analyzed in detail. Special attention is paid to the network connectivity of analog sensors in accordance with IEEE 1451.4. The practical implementation of the 1451.4 compatible network processor for RTD temperature sensors and adequate software support for 1451.4 TEDS generation, are included in the paper.

  17. Smart Grid Enabled L2 EVSE for the Commercial Market

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, John [Eaton Corporation, Arden, NC (United States); Pugh, Jerry [Eaton Corporation, Arden, NC (United States)

    2015-03-31

    In 2011, the DOE issued Funding Opportunity DE-FOA-0000554 as a means of addressing two major task areas identified by the Grid Integration Tech Team (GITT) that would help transition Electric vehicles from a market driven by early adopters and environmental supporters to a market with mainstream volumes. Per DE-FOA-0000554, these tasks were: To reduce the cost of Electric Vehicle Supply Equipment (EVSE), thereby increasing the likelihood of the build out of EV charging infrastructure. The goal of increasing the number of EVSE available was to ease concerns over range anxiety, and promote the adoption of electric vehicles: To allow EV loads to be managed via the smart grid, thereby maintaining power quality, reliability and affordability, while protecting installed distribution equipment. In December of that year, the DOE awarded one of the two contracts targeted toward commercial EVSE to Eaton, and in early 2012, we began in earnest the process of developing a Smart Grid Enable L2 EVSE for the Commercial Market (hereafter known as the DOE Charger). The design of the Smart Grid Enabled L2 EVSE was based primarily on the FOA requirements along with input from the Electric Transportation Infrastructure product line (hereafter ETI) marketing team who aided in development of the customer requirements.

  18. Power systems signal processing for smart grids

    CERN Document Server

    Ribeiro, Paulo Fernando; Ribeiro, Paulo Márcio; Cerqueira, Augusto Santiago

    2013-01-01

    With special relation to smart grids, this book provides clear and comprehensive explanation of how Digital Signal Processing (DSP) and Computational Intelligence (CI) techniques can be applied to solve problems in the power system. Its unique coverage bridges the gap between DSP, electrical power and energy engineering systems, showing many different techniques applied to typical and expected system conditions with practical power system examples. Surveying all recent advances on DSP for power systems, this book enables engineers and researchers to understand the current state of the art a

  19. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.

    Science.gov (United States)

    Zhao, Kun; Wang, Zhong Lin; Yang, Ya

    2016-09-27

    Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.

  20. Compliance and Functional Testing of IEEE 1451.1 for NCAP-to-NCAP Communications in a Sensor Network

    Science.gov (United States)

    Figueroa, Jorge; Gurkan, Deniz; Yuan, X.; Benhaddou, D.; Liu, H.; Singla, A.; Franzl, R.; Ma, H.; Bhatt, S.; Morris, J.; hide

    2008-01-01

    Distributed control in a networked environment is an irreplaceable feature in systems with remote sensors and actuators. Although distributed control was not originally designed to be networked, usage of off-the-shelf networking technologies has become so prevalent that control systems are desired to have access mechanisms similar to computer networks. However, proprietary transducer interfaces for network communications and distributed control overwhelmingly dominate this industry. Unless the lack of compatibility and interoperability among transducers is resolved, the mature level of access (that computer networking can deliver) will not be achieved in such networked distributed control systems. Standardization of networked transducer interfaces will enable devices from different manufacturers to talk to each other and ensure their plug-and-play capability. One such standard is the suite of IEEE 1451 for sensor network communication and transducer interfaces. The suite not only provides a standard interface for smart transducers, but also outlines the connection of an NCAP (network capable application processor) and transducers (through a transducer interface module TIM). This paper presents the design of the compliance testing of IEEE 1451.1 (referred to as Dot1) compatible NCAP-to-NCAP communications on a link-layer independent medium. The paper also represents the first demonstration of NCAP-to-NCAP communications with Dot1 compatibility: a tester NCAP and an NCAP under test (NUT).

  1. Multicoil resonance-based parallel array for smart wireless power delivery.

    Science.gov (United States)

    Mirbozorgi, S A; Sawan, M; Gosselin, B

    2013-01-01

    This paper presents a novel resonance-based multicoil structure as a smart power surface to wirelessly power up apparatus like mobile, animal headstage, implanted devices, etc. The proposed powering system is based on a 4-coil resonance-based inductive link, the resonance coil of which is formed by an array of several paralleled coils as a smart power transmitter. The power transmitter employs simple circuit connections and includes only one power driver circuit per multicoil resonance-based array, which enables higher power transfer efficiency and power delivery to the load. The power transmitted by the driver circuit is proportional to the load seen by the individual coil in the array. Thus, the transmitted power scales with respect to the load of the electric/electronic system to power up, and does not divide equally over every parallel coils that form the array. Instead, only the loaded coils of the parallel array transmit significant part of total transmitted power to the receiver. Such adaptive behavior enables superior power, size and cost efficiency then other solutions since it does not need to use complex detection circuitry to find the location of the load. The performance of the proposed structure is verified by measurement results. Natural load detection and covering 4 times bigger area than conventional topologies with a power transfer efficiency of 55% are the novelties of presented paper.

  2. AEP smart grid demo : virtual power plant simulation

    International Nuclear Information System (INIS)

    Riggins, M.

    2010-01-01

    This power point presentation described a virtual power plant simulation study conducted by American Electric Power (AEP), a utility with over 5.4 million customers. The simulation study was conducted in order to enable the installation of smart meters as well as to ensure remote monitoring and control of distribution line devices and energy resources. The simulation study assessed the functionality and performance of a fully integrated smart grid using real system and device information and data. The simulations were also used to optimize power costs and plant efficiency. Energy resources simulated in the study included battery installations, photovoltaic (PV) systems, natural gas-fired reciprocating engines, hybrid electric vehicles, community energy storage systems, and wind turbines. The study also assessed the regional market structure. The impacts of various protocols and standards were assessed in order to determine control system requirement and evaluate constraints and energy efficiency targets. The simulation included regional power system, station transformers, and distribution circuit breakers. Various automation schemes were considered, as well as an integrated VAR control concept. Community energy storage unit specifications were also discussed. tabs., figs.

  3. SmartCop: Enabling Smart Traffic Violations Ticketing in Vehicular Named Data Networks

    Directory of Open Access Journals (Sweden)

    Syed Hassan Ahmed

    2016-01-01

    Full Text Available Recently, various applications for Vehicular Ad hoc Networks (VANETs have been proposed and smart traffic violation ticketing is one of them. On the other hand, the new Information-Centric Networking (ICN architectures have emerged and been investigated into VANETs, such as Vehicular Named Data Networking (VNDN. However, the existing applications in VANETs are not suitable for VNDN paradigm due to the dependency on a “named content” instead of a current “host-centric” approach. Thus, we need to design the emerging and new architectures for VNDN applications. In this paper, we propose a smart traffic violation ticketing (TVT system for VNDN, named as SmartCop, that enables a cop vehicle (CV to issue tickets for traffic violation(s to the offender(s autonomously, once they are in the transmission range of that CV. The ticket issuing delay, messaging cost, and percentage of violations detected for varying number of vehicles, violators, CVs, and vehicles speeds are estimated through simulations. In addition, we provide a road map of future research directions for enabling safe driving experience in future cars aided with VNDN technology.

  4. 50 CFR 14.51 - Inspection of wildlife.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Inspection of wildlife. 14.51 Section 14.51 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  5. Development of alarm logics for critical function monitoring in SMART-P reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Seung Hwan; Hur, Seop; Seo, Jae Kwang; Lee, Tae Ho; Park, Cheon Tae; Kang, Han Ok

    2003-04-01

    The alarm logics for the critical functions of SMART-P reactor are developed, which are based on the those of Korean Standard Nuclear power Plant(KSNP). The SMART-P reactor is an integral typed nuclear power plant and has the some different design features compared to those of KSNP. It, however, has the similar features in critical functions because it is a kind of pressurized water reactor. The alarm logics for Critical Function Monitoring System(CFMS) in SMART-P are developed from those for CFMS in KSNP. The alarm logics of CFMS in only the primary loop are, therefore, developed, though the general CFMS covered the status of primary and secondary loop including the features of the containment. The specific setpoint of related variables related to the alarm logics will be developed after the specific designs of SMART-P are finished. In appendix, we describe the conceptual architecture and variables of display screens on CFMS according to the developed alarm logics.

  6. Strategies for Power Line Communications Smart Metering Network Deployment

    Directory of Open Access Journals (Sweden)

    Alberto Sendin

    2014-04-01

    Full Text Available Smart Grids are becoming a reality all over the world. Nowadays, the research efforts for the introduction and deployment of these grids are mainly focused on the development of the field of Smart Metering. This emerging application requires the use of technologies to access the significant number of points of supply (PoS existing in the grid, covering the Low Voltage (LV segment with the lowest possible costs. Power Line Communications (PLC have been extensively used in electricity grids for a variety of purposes and, of late, have been the focus of renewed interest. PLC are really well suited for quick and inexpensive pervasive deployments. However, no LV grid is the same in any electricity company (utility, and the particularities of each grid evolution, architecture, circumstances and materials, makes it a challenge to deploy Smart Metering networks with PLC technologies, with the Smart Grid as an ultimate goal. This paper covers the evolution of Smart Metering networks, together with the evolution of PLC technologies until both worlds have converged to project PLC-enabled Smart Metering networks towards Smart Grid. This paper develops guidelines over a set of strategic aspects of PLC Smart Metering network deployment based on the knowledge gathered on real field; and introduces the future challenges of these networks in their evolution towards the Smart Grid.

  7. Smart Items, Fog and Cloud Computing as Enablers of Servitization in Healthcare

    Directory of Open Access Journals (Sweden)

    Vladimir STANTCHEV

    2015-02-01

    Full Text Available In this article we argue that smart items and cloud computing can be powerful enablers of servitization as business trend. This is exemplified by an application scenario in healthcare that was developed in the context of the OpSIT-Project in Germany. We present a three-level architecture for a smart healthcare infrastructure. The approach is based on a service-oriented architecture and extends established architectural approaches developed previously at our group. More specifically, it integrates a role model, a layered cloud computing architecture, as well as a fog- computing-informed paradigm in order to provide a viable architecture for healthcare and elderly-care applications. The integration of established paradigms is beneficial with respect to providing adequate quality of service and governance (e.g., data privacy and compliance. It has been verified by expert interviews with healthcare specialists and IT professionals. To further demonstrate the validity of this architectural model, we provide an example use-case as a template for any kind of smart sensor-based healthcare infrastructure.

  8. SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System.

    Science.gov (United States)

    Xiao, Changjiang; Chen, Nengcheng; Li, Dandan; Lv, You; Gong, Jianya

    2016-12-30

    Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web-enabled smart cultural relics management system (SCRMS). In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID) is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics.

  9. Associations between [18F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample.

    Science.gov (United States)

    La Joie, Renaud; Bejanin, Alexandre; Fagan, Anne M; Ayakta, Nagehan; Baker, Suzanne L; Bourakova, Viktoriya; Boxer, Adam L; Cha, Jungho; Karydas, Anna; Jerome, Gina; Maass, Anne; Mensing, Ashley; Miller, Zachary A; O'Neil, James P; Pham, Julie; Rosen, Howard J; Tsai, Richard; Visani, Adrienne V; Miller, Bruce L; Jagust, William J; Rabinovici, Gil D

    2018-01-23

    To assess the relationships between fluid and imaging biomarkers of tau pathology and compare their diagnostic utility in a clinically heterogeneous sample. Fifty-three patients (28 with clinical Alzheimer disease [AD] and 25 with non-AD clinical neurodegenerative diagnoses) underwent β-amyloid (Aβ) and tau ([ 18 F]AV1451) PET and lumbar puncture. CSF biomarkers (Aβ 42 , total tau [t-tau], and phosphorylated tau [p-tau]) were measured by multianalyte immunoassay (AlzBio3). Receiver operator characteristic analyses were performed to compare discrimination of Aβ-positive AD from non-AD conditions across biomarkers. Correlations between CSF biomarkers and PET standardized uptake value ratios (SUVR) were assessed using skipped Pearson correlation coefficients. Voxelwise analyses were run to assess regional CSF-PET associations. [ 18 F]AV1451-PET cortical SUVR and p-tau showed excellent discrimination between Aβ-positive AD and non-AD conditions (area under the curve 0.92-0.94; ≤0.83 for other CSF measures), and reached 83% classification agreement. In the full sample, cortical [ 18 F]AV1451 was associated with all CSF biomarkers, most strongly with p-tau ( r = 0.75 vs 0.57 for t-tau and -0.49 for Aβ 42 ). When restricted to Aβ-positive patients with AD, [ 18 F]AV1451 SUVR correlated modestly with p-tau and t-tau (both r = 0.46) but not Aβ 42 ( r = 0.02). On voxelwise analysis, [ 18 F]AV1451 correlated with CSF p-tau in temporoparietal cortices and with t-tau in medial prefrontal regions. Within AD, Mini-Mental State Examination scores were associated with [ 18 F]AV1451-PET, but not CSF biomarkers. [ 18 F]AV1451-PET and CSF p-tau had comparable value for differential diagnosis. Correlations were robust in a heterogeneous clinical group but attenuated (although significant) in AD, suggesting that fluid and imaging biomarkers capture different aspects of tau pathology. This study provides Class III evidence that, in a clinical sample of patients with a variety

  10. Powering the planet : smart meters : a practitioner's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W. [Siemens Canada Ltd., Burnaby, BC (Canada)

    2006-07-01

    The role of smart metering as an energy solution to increased demand was discussed from the perspective of Siemens Canada Ltd. Global megatrends such as increased urbanization, resource scarcity and a greater focus on environmental issues is changing the energy landscape, and many electricity industry leaders are now recognizing the importance of integrated energy solutions. Electric power supply will need to combine economy with security and environmental concern, particularly as utility operations plan up to 10 years in advance of current peak requirements. It is expected that smart metering can postpone capital investment through supply and demand balancing, and will also be used by utilities to remove subsidy and increase customer accountability. While smart metering may seem to respond to environmental requirements and pressures, it is not yet known whether smart metering will change customer behaviour significantly or reduce energy costs. However, the alignment between retail and distribution may create regional advantages by enabling more advanced product offerings in load management and profiling. While smart metering is a proven technology, market operation and back office processes have yet to be determined. Segmentation may prove to be a critical implementation factor which will require an in-depth evaluation of geography; technology; consumption; conservation; and payback. Data availability must be balanced with communications costs. Low cost, low functionality smart meters will enable centralized control. Low cost online communications can allow remote operation of the meter point including real time functions. It was concluded that a centralized scheme operation will enable all points to be managed within a single portfolio, and create significant cost reduction opportunities in meter operations. Rather than investing in complicated technology that may become obsolete, Siemens will rely instead on the creation of a service model that will allow

  11. Advanced Power Electronics and Smart Inverters | Grid Modernization | NREL

    Science.gov (United States)

    Advanced Power Electronics and Smart Inverters Advanced Power Electronics and Smart Inverters , into the electric distribution system requires advanced power electronics, or smart inverters, that . Contact Sudipta Chakraborty Power Electronics Team Lead sudipta.chakraborty@nrel.gov | 303-384-7093

  12. Smart Power e Diplomacia Pública da RPC perante os BRIC

    OpenAIRE

    Martins, Marco António Gonçalves Barbas Batista

    2011-01-01

    Importa analisar a influência chinesa enquanto BRIC, nomeadamente no desenvolvimento de uma nova estratégica que integra a combinação do hard power com o soft power, denominada de smart power e enquadrada no âmbito da diplomacia pública.

  13. SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System

    Directory of Open Access Journals (Sweden)

    Changjiang Xiao

    2016-12-01

    Full Text Available Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web–enabled smart cultural relics management system (SCRMS. In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics.

  14. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  15. ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT

    Science.gov (United States)

    Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, KC

    2017-01-01

    Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies. PMID:28649678

  16. Development of regulatory policy for SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. H.; Lee, Y. H.; Moo, Philip; Koh, B. J.; Son, M. K.; Han, G. H.; Kim, D. H. [Korea Association for Nuclear Technology, Daejeon (Korea, Republic of)

    2004-06-15

    KAERI promoted the construction of a research reactor, SMART-P, the reduced scale of SMART, with intent to demonstrate the safety and performance of SMART. According to this progress, the development of regulatory process for SMART-P became necessary. The establishment of regulatory policy, based on the current regulatory guidelines as well as technical aspect, became essential matters. Considering the on-going small and medium size reactors in near future, the selection of the appropriate measure in the existing regulatory process to SMART-P is very important. Thus the schematic study for the applicable licensing procedure and regulatory requirements suitable for SMART-P is required.

  17. Development of regulatory policy for SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. H.; Moon, S. H.; Lee, Y. H.; Son, M. K.; Han, K. H.; Kim, D. H. [Korea Association for Nuclear Technology, Taejon (Korea, Republic of)

    2003-06-15

    KAERI promoted the construction of a research reactor, SMART-P, the reduced scale of SMART, with intent to demonstrate the safety and performance of SMART. According to this progress, the development of regulatory process for SMART-P became necessary. The establishment of regulatory policy, based on the current regulatory guidelines as well as technical aspect, became essential matters. Considering the on-going small and medium size reactors m near future, the selection of the appropriate measure in the existing regulatory process to SMART-P is very important. Thus the schematic study for the applicable licensing procedure and regulatory requirements suitable for SMART-P is required.

  18. Agent-Based Architectures and Algorithms for Energy Management in Smart Grids. Application to Smart Power Generation and Residential Demand Response

    International Nuclear Information System (INIS)

    Roche, Robin

    2012-01-01

    Due to the convergence of several profound trends in the energy sector, smart grids are emerging as the main paradigm for the modernization of the electric grid. Smart grids hold many promises, including the ability to integrate large shares of distributed and intermittent renewable energy sources, energy storage and electric vehicles, as well as the promise to give consumers more control on their energy consumption. Such goals are expected to be achieved through the use of multiple technologies, and especially of information and communication technologies, supported by intelligent algorithms. These changes are transforming power grids into even more complex systems, that require suitable tools to model, simulate and control their behaviors. In this dissertation, properties of multi-agent systems are used to enable a new systemic approach to energy management, and allow for agent-based architectures and algorithms to be defined. This new approach helps tackle the complexity of a cyber-physical system such as the smart grid by enabling the simultaneous consideration of multiple aspects such as power systems, the communication infrastructure, energy markets, and consumer behaviors. The approach is tested in two applications: a 'smart' energy management system for a gas turbine power plant, and a residential demand response system. An energy management system for gas turbine power plants is designed with the objective to minimize operational costs and emissions, in the smart power generation paradigm. A gas turbine model based on actual data is proposed, and used to run simulations with a simulator specifically developed for this problem. A meta-heuristic achieves dynamic dispatch among gas turbines according to their individual characteristics. Results show that the system is capable of operating the system properly while reducing costs and emissions. The computing and communication requirements of the system, resulting from the selected architecture, are

  19. Enabling smart retail settings via mobile augmented reality shopping apps

    OpenAIRE

    Dacko, Scott

    2017-01-01

    Retail settings are being challenged to become smarter and provide greater value to both consumers and retailers. An increasingly recognised approach having potential for enabling smart retail is mobile augmented reality (MAR) apps. In this research, we seek to describe and discover how, why and to what extent MAR apps contribute to smart retail settings by creating additional value to customers as well as benefiting retailers. In particular, by adopting a retail customer experience perspecti...

  20. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zipperer, A. [Colorado State Univ., Fort Collins, CO (United States); Aloise-Young, P. A. [Colorado State Univ., Fort Collins, CO (United States); Suryanarayanan, S. [Colorado State Univ., Fort Collins, CO (United States); Zimmerle, D. [Colorado State Univ., Fort Collins, CO (United States); Roche, R. [Univ. of Technology, Belfort-Montebeliard (France); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bauleo, P. [Fort Collins Utilities, CO (United States)

    2013-08-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and trans-forming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electricity grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  1. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zipperer, Adam; Aloise-Young, Patricia A.; Suryanarayanan, Siddharth; Roche, Robin; Earle, Lieko; Christensen, Dane; Bauleo, Pablo; Zimmerle, Daniel

    2013-11-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and transforming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electric grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  2. Microwave Power for Smart Membrane Actuators

    Science.gov (United States)

    Choi, Sang H.; Song, Kyo D.; Golembiewski, Walter T.; Chu, Sang-Hyon; King, Glen C.

    2002-01-01

    The concept of microwave-driven smart membrane actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. A large, ultra-light space structure, such as solar sails and Gossamer spacecrafts, requires a distribution of power into individual membrane actuators to control them in an effective way. A patch rectenna array with a high voltage output was developed to drive smart membrane actuators. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is developed and tested for networking a rectenna/actuator patch array. For the future development, the PAD circuit could be imbedded into a single embodiment of rectenna and actuator array with the thin-film microcircuit embodiment. Preliminary design and fabrication of PAD circuitry that consists of a sixteen nodal elements were made for laboratory testing.

  3. Characteristics of Core Thermal-Hydraulic Design of SMART-P

    International Nuclear Information System (INIS)

    Hwang, Dae-Hyun; Seo, Kyong-Won; Kim, Tae-Wan; Lee, Chung-Chan

    2006-01-01

    The SMART (System-Integrated Modular Advanced ReacTor) is an integral-type advanced light water reactor which is purposed to be utilized as an energy source for sea water desalination as well as a small scale power generation. A prototype of this reactor, named SMART-P, has been studied at KAERI in order to demonstrate the relevant technologies incorporated in the SMART design. Due to the closed-channel type fuel assemblies and low mass velocity in the reactor core, the thermal hydraulic design features of SMART-P revealed fairly different characteristics in comparison with existing PWRs. The allowable operating region of the core, from the aspect of the thermal integrity of the fuel, should be primarily limited by two design parameters; critical heat flux (CHF) and fuel temperature. The occurrence of CHF may cause a sudden increase of the cladding temperature which eventually results in the fuel failure. The fuel temperature limit is relevant to a fuel failure mechanism such as a fuel centerline melting or a phase change of metallic fuels. Two phase flow instability is also an important design parameter since a flow oscillation may trigger a CHF or mechanical vibration of the channel. The characteristics of important thermal-hydraulic design parameters have been investigated for the SMART-P core with the closed-channel type fuel assemblies which contained non-square arrayed SSF (Self-sustained Square Finned) fuel rods

  4. Smart power. Great leaders know when hard power is not enough.

    Science.gov (United States)

    Nye, Joseph S

    2008-11-01

    The next U.S. administration will face enormous challenges to world peace, the global economy, and the environment. Exercising military and economic muscle alone will not bring peace and prosperity. According to Nye, a former U.S. government official and a former dean at Harvard University's John F. Kennedy School of Government, the next president must be able to combine hard power, characterized by coercion, and what Nye calls "soft" power, which relies instead on attraction. The result is smart power, a tool great leaders use to mobilize people around agendas that look beyond current problems. Hard power is often necessary, Nye explains. In the 1990s, when the Taliban was providing refuge to Al Oaeda, President Clinton tried---and failed--to solve the problem diplomatically instead of destroying terrorist havens in Afghanistan. In other situations, however, soft power is more effective, though it has been too often overlooked. In Iraq, Nye argues, the use of soft power could draw young people toward something other than terrorism. "I think that there's an awakening to the need for soft power as people look at the crisis in the Middle East and begin to realize that hard power is not sufficient to resolve it," he says. Solving today's global problems will require smart power--a judicious blend of the other two powers. While there are notable examples of men who have used smart power--Teddy Roosevelt, for instance--it's much more difficult for women to lead with smart power, especially in the United States, where women feel pressure to prove that they are not "soft." Only by exercising smart power, Nye says, can the next president of the United States set a new tone for U.S. foreign policy in this century.

  5. PowerMatching City : A unique smart grid project

    NARCIS (Netherlands)

    dr. C.J. Wiekens

    2014-01-01

    In this presentation, the smart grid project 'PowerMatching City' is introduced. PowerMatching City is a living lab demonstration of the future energy system. In PowerMatching City the connected households are equipped with a mix of decentralized energy sources, hybrid heat pumps, smart appliances,

  6. SMART-P MMIS Software Development by Considering the Software License for Nuclear Power Plants and the Development Cost

    International Nuclear Information System (INIS)

    Suh, Yong Suk; Park, Jae Hong; Park, Heui Youn; Son, Ki Sung; Lee, Ki Hyun; Kim, Hyeon Soo

    2005-01-01

    The acceptance criteria of software for safety system functions in NPPs (Nuclear Power Plants) are as follows: 1) acceptable plans should be prepared to control the software development activities, 2) the plans should be followed in an acceptable software life cycle, and 3) the process should produce acceptable design outputs. The KINS (Korea Institute of Nuclear Safety) recommended that the software life cycle should be established based on the IEEE Std 1074 with a supplementary requirement of a software safety analysis. The KINS emphasized that the software should be developed to show its high qualities. This paper identifies the major requirements to achieve the software license from the KINS and presents the major facts reflected in the SMART-P (System-integrated Modular Advanced ReacTor-Pilot) MMIS (Man-Machine Interface Systems) which is being developed by KAERI and targeted to start operation in 2010. This paper also addresses major concerns on the development of a safety critical software and the facts reflected in the SMART-P MMIS

  7. A Pervasive Social Networking Application: I-NFC enabled Florist Smart Advisor

    Science.gov (United States)

    Swee Wen, Khoo; Mahinderjit Singh, Manmeet

    2016-11-01

    Location based service is an information and entertainment service, accessible with mobile devices through the mobile network and utilizing the ability to make use of the geographical position of the mobile device. NFC location based service is using one of the modes of NFC such as peer-to-peer, reader/writer, and card emulation to obtain the information of the object and then get the location of the object. In this paper, the proposed solution is I- NFC-enabled Pervasive Social Networking apps for florists. It combines the NFC location based service with Online Social Network (OSN). In addition, a smart advisor in the system to provide output in making their own decision while purchasing products.The development of the system demonstrates that a designed commerce site is provided which enable a communication between NFC-enabled smartphone, NFC-enabled application and OSN. GPS functionalities also implemented to provide map and location of business services. Smart advisor also designed to provide information for users who do not have ideas what to purchase.

  8. Development of MCP transient operation strategy for the SMART-P

    International Nuclear Information System (INIS)

    Yoo, S. E.; Choi, B. S.; Kang, H. O.; Yoon, J. H.; Ji, S. K.

    2003-01-01

    SMART-P MCP(Main Coolant Pump) transient operation strategies are developed. A Modular Modeling System (MMS) computer code is used for the evaluation of the developed operation strategies. In the SMART-P, normal operating modes are classified into MCP high speed(3600 rpm) mode and MCP low speed mode. Also, natural circulation mode is defined as a performance test case. MCP operation transients occur when changing modes from one to another, and system parameters(core power, system pressure, temperature) are having transients. These transients affect on system performance and, in some cases, limit system operation. In this study, MCP operation strategies are developed and obtained acceptable results

  9. Experimental studies on thermal hydraulic responses for transient operations of the SMART-P

    International Nuclear Information System (INIS)

    Choi, K.Y.; Park, H.S.; Cho, S.; Park, C.K.; Lee, S.J.; Song, C.H.; Chung, M.K.

    2005-01-01

    Full text of publication follows: Thermal hydraulic responses for transient operations of the SMART-P are experimentally investigated by using a integral effect test facility. This test facility (VISTA) has been constructed to simulate the SMART-P, which is a pilot plant of the SMART. The SMART-P is an advanced modular integral type pressurized water reactor (65 MWt) whose major RCS components, such as main coolant pumps, helical-coiled tube bundle steam generators and pressurizers, are contained in a reactor vessel. This integral design approach eliminates the large coolant loop piping, thus eliminates the occurrence of a large break LOCA. Passive Residual Heat Removal System (PRHRS) is installed to prevent overheating and over-pressurization of the primary system during accidental conditions. The PRHRS of the SMART-P removes the core decay heat by natural circulation of the two-phase fluid. The VISTA facility is a full height and 1/96 volume scaled test facility with respect to the SMART-P and will be used to understand the thermal-hydraulic responses following transients and finally to verify the system design of the SMART-P. The experimental data from the VISTA facility will be essential to system designers to resolve open issues relevant to the design of the SMART-P. The full functional control logics are implanted into the VISTA facility to cope with abnormal transients. The core of the facility can be selectively controlled by either a T-control or a T+N control method. The T-control method is a control method to adjust the core power according to the core exit coolant temperature and is designed to be used for high primary coolant flow conditions. On the other hand, the T+N control method is for low primary coolant flow conditions and it uses core exit temperature as well as core power itself as control inputs. The thermal hydraulic responses are carefully investigated according to different core control methods. Several experiments have been performed to

  10. Evaluation of specific activity in the primary circuit of SMART-P

    International Nuclear Information System (INIS)

    Kim, Ah Young; Choi, Byung Seon; Kim, Seong Hoon; Yoon, Ju Hyeon; Zee, Sung Qunn

    2005-01-01

    SMART-P is a soluble boron free reactor, and the ammonia is used as a pH reagent. The titanium alloy, which has a high corrosion resistance, is chosen as a steam generator tube material. Despite these design features to achieve the corrosion reduction, it is expected that SMART-P exhibits a relatively high specific activity in the coolant due to the lack of purification during the power operation. The main reason for the high specific activity is the activation and transportation of the corrosion products that released from the primary circuit surfaces. The objective of this work is to analyze the corrosion product activity in the primary circuit of SMART-P using a multi-region model, KORA. This model, which is incorporated with the mass and activity transport between the dissolved corrosion products in the coolant and the surface, describes the specific activity of corrosion products in coolant and on the surfaces according to the operation modes

  11. Power Line Communications for Smart Grid Applications

    Directory of Open Access Journals (Sweden)

    Lars Torsten Berger

    2013-01-01

    Full Text Available Power line communication, that is, using the electricity infrastructure for data transmission, is experiencing a renaissance in the context of Smart Grid. Smart Grid objectives include the integration of intermittent renewable energy sources into the electricity supply chain, securing reliable electricity delivery, and using the existing electrical infrastructure more efficiently. This paper surveys power line communications (PLCs in the context of Smart Grid. The specifications G3-PLC, PRIME, HomePlug Green PHY, and HomePlug AV2, and the standards IEEE 1901/1901.2 and ITU-T G.hn/G.hnem are discussed.

  12. Incorporating Semantic Knowledge into Dynamic Data Processing for Smart Power Grids

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qunzhi; Simmhan, Yogesh; Prasanna, Viktor

    2012-11-15

    Semantic Web allows us to model and query time-invariant or slowly evolving knowledge using ontologies. Emerging applications in Cyber Physical Systems such as Smart Power Grids that require continuous information monitoring and integration present novel opportunities and challenges for Semantic Web technologies. Semantic Web is promising to model diverse Smart Grid domain knowledge for enhanced situation awareness and response by multi-disciplinary participants. However, current technology does pose a performance overhead for dynamic analysis of sensor measurements. In this paper, we combine semantic web and complex event processing for stream based semantic querying. We illustrate its adoption in the USC Campus Micro-Grid for detecting and enacting dynamic response strategies to peak power situations by diverse user roles. We also describe the semantic ontology and event query model that supports this. Further, we introduce and evaluate caching techniques to improve the response time for semantic event queries to meet our application needs and enable sustainable energy management.

  13. A smart mobile pouch as a biomechanical energy harvester towards self-powered smart wireless power transfer applications.

    Science.gov (United States)

    Chandrasekhar, Arunkumar; Alluri, Nagamalleswara Rao; Sudhakaran, M S P; Mok, Young Sun; Kim, Sang-Jae

    2017-07-20

    A Smart Mobile Pouch Triboelectric Nanogenerator (SMP-TENG) is introduced as a promising eco-friendly approach for scavenging biomechanical energy for powering next generation intelligent devices and smart phones. This is a cost-effective and robust method for harvesting energy from human motion, by utilizing worn fabrics as a contact material. The SMP-TENG is capable of harvesting energy in two operational modes: lateral sliding and vertical contact and separation. Moreover, the SMP-TENG can also act as a self-powered emergency flashlight and self-powered pedometer during normal human motion. A wireless power transmission setup integrated with SMP-TENG is demonstrated. This upgrades the traditional energy harvesting device into a self-powered wireless power transfer SMP-TENG. The wirelessly transferred power can be used to charge a Li-ion battery and light LEDs. The SMP-TENG opens a wide range of opportunities in the field of self-powered devices and low maintenance energy harvesting systems for portable and wearable electronic gadgets.

  14. Smart metering and in-home energy feedback; enabling a low carbon life style

    Energy Technology Data Exchange (ETDEWEB)

    Elburg, Henk van (SenterNovem (Netherlands)). e-mail: h.van.elburg@senternovem.nl

    2009-07-01

    Backed by raising energy demands, volatile oil prices and threat of climate change, the use of automated meter management (AMM), often referred to as 'smart metering', is rapidly gaining momentum across the world. Europe is expected to become a world leading centre of this development, thanks to the European Services Directive (ESD) of the European Commission. This Directive requires energy suppliers to provide consumers with competitively priced, accurate individual (smart) meters with information on time-of-use and accurate billing. Large scale deployments of smart meters have already been decided in Italy (Sweden) and The Netherlands. Serious considerations of implementing full smart metering penetration take place in countries like France, Ireland, Denmark and Finland. Oddly enough from an energy efficient life style point of view, a residential smart metering coverage alone does not automatically mean successful consumer involvement in general and enabling a lower carbon lifestyle in particular. These advantages require additional automation technologies 'beyond the meter', such as intuitive, aesthetic and affordable in-house displays and customized applications on web pages, cell phone or TV. To accelerate the development of contemporary 'add-on' information systems to keep pace with the deployment of smart meters, the technical and commercial in-home feedback innovations are being permanently reviewed in a worldwide selection of pioneering countries. At the eceee 2009 poster session, the latest insights regarding in-home communication to facilitate a modern energy efficient lifestyle will be revealed and an appealing, trendy and above all enabling in-house device will be presented.

  15. The advanced smart grid edge power driving sustainability

    CERN Document Server

    Carvallo, Andres

    2011-01-01

    Placing emphasis on practical ""how-to"" guidance, this cutting-edge resource provides you with a first-hand, insider's perspective on the advent and evolution of smart grids in the 21st century (smart grid 1.0). You gain a thorough understanding of the building blocks that comprise basic smart grids, including power plant, transmission substation, distribution, and meter automation. Moreover, this forward-looking volume explores the next step of this technology's evolution. It provides a detailed explanation of how an advanced smart grid incorporates demand response with smart appliances and

  16. Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.

    Science.gov (United States)

    Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong

    2018-06-04

    In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.

  17. Sensor Transmission Power Schedule for Smart Grids

    Science.gov (United States)

    Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.

    2017-11-01

    Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).

  18. Profitability of smart grid solutions applied in power grid

    Directory of Open Access Journals (Sweden)

    Katić Nenad A.

    2016-01-01

    Full Text Available The idea of a Smart Grid solution has been developing for years, as complete solution for a power utility, consisting of different advanced technologies aimed at improving of the efficiency of operation. The trend of implementing various smart systems continues, e.g. Energy Management Systems, Grid Automation Systems, Advanced Metering Infrastructure, Smart power equipment, Distributed Energy Resources, Demand Response systems, etc. Futhermore, emerging technologies, such as energy storages, electrical vehicles or distributed generators, become integrated in distribution networks and systems. Nowadays, the idea of a Smart Grid solution becomes more realistic by full integration of all advanced operation technologies (OT within IT environment, providing the complete digitalization of an Utility (IT/OT integration. The overview of smart grid solutions, estimation of investments, operation costs and possible benefits are presented in this article, with discusison about profitability of such systems.

  19. A Smart Home Test Bed for Undergraduate Education to Bridge the Curriculum Gap from Traditional Power Systems to Modernized Smart Grids

    Science.gov (United States)

    Hu, Qinran; Li, Fangxing; Chen, Chien-fei

    2015-01-01

    There is a worldwide trend to modernize old power grid infrastructures to form future smart grids, which will achieve efficient, flexible energy consumption by using the latest technologies in communication, computing, and control. Smart grid initiatives are moving power systems curricula toward smart grids. Although the components of smart grids…

  20. Reliability modeling and analysis of smart power systems

    CERN Document Server

    Karki, Rajesh; Verma, Ajit Kumar

    2014-01-01

    The volume presents the research work in understanding, modeling and quantifying the risks associated with different ways of implementing smart grid technology in power systems in order to plan and operate a modern power system with an acceptable level of reliability. Power systems throughout the world are undergoing significant changes creating new challenges to system planning and operation in order to provide reliable and efficient use of electrical energy. The appropriate use of smart grid technology is an important drive in mitigating these problems and requires considerable research acti

  1. Cognitive Spectrum Sharing: An Enabling Wireless Communication Technology for a Wide Use of Smart Systems

    Directory of Open Access Journals (Sweden)

    Romano Fantacci

    2016-05-01

    Full Text Available A smart city is an environment where a pervasive, multi-service network is employed to provide citizens improved living conditions as well as better public safety and security. Advanced communication technologies are essential to achieve this goal. In particular, an efficient and reliable communication network plays a crucial role in providing continue, ubiquitous, and reliable interconnections among users, smart devices, and applications. As a consequence, wireless networking appears as the principal enabling communication technology despite the necessity to face severe challenges to satisfy the needs arising from a smart environment, such as explosive data volume, heterogeneous data traffic, and support of quality of service constraints. An interesting approach for meeting the growing data demand due to smart city applications is to adopt suitable methodologies to improve the usage of all potential spectrum resources. Towards this goal, a very promising solution is represented by the Cognitive Radio technology that enables context-aware capability in order to pursue an efficient use of the available communication resources according to the surrounding environment conditions. In this paper we provide a review of the characteristics, challenges, and solutions of a smart city communication architecture, based on the Cognitive Radio technology, by focusing on two new network paradigms—namely, Heterogeneous Network and Machines-to-Machines communications—that are of special interest to efficiently support smart city applications and services.

  2. Market aspects of smart power grids development

    Directory of Open Access Journals (Sweden)

    Maciej Makowski

    2012-03-01

    Full Text Available Smart Grids herald a revolution in the power sector. The centralized and passive power grid model known for over a century is before our very eyes assuming a completely brand new shape: of an active and dynamic network with an increasingly relevant role of consumers – prosumers, who are offered brand new products and services. Such an active development is possible due to a number of factors, such as: 1. Synergy of ICT with power engineering – these disciplines are becoming an indispensable element of the modern power grid’s operation, 2. The European Union’s regulations in the area of reduction of CO2 emission and improved energy efficiency, as well as identification of Smart Grids as one of the optimum tools, 3. Growth, thanks to continuously increasing expenditures, public awareness of the purchase and rational use of energy. However, the Smart Grid development and ICT implementation in the power sector also carry a risk in the matter of setting up system and process links between the systems of concerned energy market players, which should be mitigated by development of technical standards, methods and principles of good cooperation between the concerned parties. Mitigation of the risk, and as a consequence, effective Smart Grids development will provide conditions for dynamic development of new roles and mechanisms on the energy market. Offering modern products and services to consumers and prosumers, and effective implementation on a national scale of demand management mechanisms will be a source of multidimensional benefits of a functional and financial nature, and will also have a positive impact on the National Lower Grid’s security.

  3. Design criteria of primary coolant chemistry in SMART-P

    International Nuclear Information System (INIS)

    Choi, Byung Seon; Kim, Ah Young; Kim, Seong Hoon; Yoon, Ju Hyeon; Zee, Sung Qunn

    2005-01-01

    SMART-P differs significantly from commercially designed PWRs. Materials inventories used in SMART-P differ from that at PWRs. All surfaces of the primary circuit with the primary coolant are either made from or plated with stainless steel. The material of steam generator (SG) is also different from that of the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. Also, SMART-P primary coolant technology differs from that in PWRs: ammonia is used as a pH raising agent and hydrogen formed due to radiolytic processes is kept in specific range by ammonia dosing. Nevertheless, main objectives of the SMART-P primary coolant are the same as at PWRs: to assure primary system pressure boundary integrity, fuel cladding integrity and to minimize out-of-core radiation buildup. The objective of this work is to introduce the design criteria for the primary water chemistry for SMART-P from the viewpoint of the system characteristics and the chemical design concept

  4. Interplay Between Energy-Market Dynamics and Physical Stability of a Smart Power Grid

    Science.gov (United States)

    Picozzi, Sergio; Mammoli, Andrea; Sorrentino, Francesco

    2013-03-01

    A smart power grid is being envisioned for the future which, among other features, should enable users to play the dual role of consumers as well as producers and traders of energy, thanks to emerging renewable energy production and energy storage technologies. As a complex dynamical system, any power grid is subject to physical instabilities. With existing grids, such instabilities tend to be caused by natural disasters, human errors, or weather-related peaks in demand. In this work we analyze the impact, upon the stability of a smart grid, of the energy-market dynamics arising from users' ability to buy from and sell energy to other users. The stability analysis of the resulting dynamical system is performed assuming different proposed models for this market of the future, and the corresponding stability regions in parameter space are identified. We test our theoretical findings by comparing them with data collected from some existing prototype systems.

  5. A Brief Survey on the Advancement of Smart Grid

    OpenAIRE

    Chandra Mukherjee,; Pratibha Bharti

    2014-01-01

    The Smart Grid, regarded as the next generation power grid, uses two-way communication of electricity and information to create a widely distributed automated energy delivery network. In this article, a review work on different aspects on the enabling technologies for the Smart Grid is being presented. Infrastructure of Smart Grid can be broadly classified into three terms namely the smart infrastructure system, the smart management system, and the smart protection system. We ...

  6. Smart grid in Denmark 2.0. Implementing three key recommendations from the Smart Grid Network. [DanGrid]; Smart Grid i Danmark 2.0. Implementering af tre centrale anbefalinger fra Smart Grid netvaerket

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    In 2011 the Smart Grid Network, established by the Danish Climate and Energy minister in 2010, published a report which identifies 35 recommendations for implementing smart grid in Denmark. The present report was prepared by the Danish Energy Association and Energinet.dk and elaborates three of these recommendations: Concept for controlling the power system; Information model for the dissemination of data; Roadmap for deployment of smart grid. Concept of Smart Grid: The concept mobilizes and enables electric power demand response and production from smaller customers. This is done by customers or devices connected to the power system modify their behavior to meet the needs of the power system. The concept basically distinguishes between two different mechanisms to enable flexibility. One is the use of price signals (variable network tariffs and electricity prices), which gives customers a financial incentive to move their electricity consumption and production to times when it is of less inconvenience to the power system. The second is flexibility products, where a pre-arranged and well-specified performance - for example, a load reduction in a defined network area - can be activated as required by grid operators and / or Energinet.dk at an agreed price. Information Model for Disseminating Data: The future power system is complex with a large number of physical units, companies and individuals are actively involved in the power system. Similarly, the amount of information needed to be collected, communicated and processed grows explosively, and it is therefore essential to ensure a well-functioning IT infrastructure. A crucial element is a standardized information model in the Danish power system. The concept therefore indicates to use international standards to define an information model. Roadmap Focusing on Grid Companies' Role: There is a need to remove two key barriers. The first barrier is that the existing regulation does not support the grid using

  7. High-power VCSELs for smart munitions

    Science.gov (United States)

    Geske, Jon; MacDougal, Michael; Cole, Garrett; Snyder, Donald

    2006-08-01

    The next generation of low-cost smart munitions will be capable of autonomously detecting and identifying targets aided partly by the ability to image targets with compact and robust scanning rangefinder and LADAR capabilities. These imaging systems will utilize arrays of high performance, low-cost semiconductor diode lasers capable of achieving high peak powers in pulses ranging from 5 to 25 nanoseconds in duration. Aerius Photonics is developing high-power Vertical-Cavity Surface-Emitting Lasers (VCSELs) to meet the needs of these smart munitions applications. The authors will report the results of Aerius' development program in which peak pulsed powers exceeding 60 Watts were demonstrated from single VCSEL emitters. These compact packaged emitters achieved pulse energies in excess of 1.5 micro-joules with multi kilo-hertz pulse repetition frequencies. The progress of the ongoing effort toward extending this performance to arrays of VCSEL emitters and toward further improving laser slope efficiency will be reported.

  8. Electrical Market Management Considering Power System Constraints in Smart Distribution Grids

    Directory of Open Access Journals (Sweden)

    Poria Hasanpor Divshali

    2016-05-01

    Full Text Available Rising demand, climate change, growing fuel costs, outdated power system infrastructures, and new power generation technologies have made renewable distribution generators very attractive in recent years. Because of the increasing penetration level of renewable energy sources in addition to the growth of new electrical demand sectors, such as electrical vehicles, the power system may face serious problems and challenges in the near future. A revolutionary new power grid system, called smart grid, has been developed as a solution to these problems. The smart grid, equipped with modern communication and computation infrastructures, can coordinate different parts of the power system to enhance energy efficiency, reliability, and quality, while decreasing the energy cost. Since conventional distribution networks lack smart infrastructures, much research has been recently done in the distribution part of the smart grid, called smart distribution grid (SDG. This paper surveys contemporary literature in SDG from the perspective of the electricity market in addition to power system considerations. For this purpose, this paper reviews current demand side management methods, supply side management methods, and electrical vehicle charging and discharging techniques in SDG and also discusses their drawbacks. We also present future research directions to tackle new and existing challenges in the SDG.

  9. Demand response driven load pattern elasticity analysis for smart households

    NARCIS (Netherlands)

    Paterakis, N.G.; Catalao, J.P.S.; Tascikaraoglu, A.; Bakirtzis, A.G.; Erdinc, O.

    2015-01-01

    The recent interest in smart grid vision enables several smart applications in different parts of the power grid structure, where specific importance should be given to the demand side. As a result, changes in load patterns due to demand response (DR) activities at end-user premises, such as smart

  10. Power systems signal processing for smart grids

    NARCIS (Netherlands)

    Ribeiro, P.F.; Duque, C.A.; Da Silveira, P.M.; Cerqueira, A.S.

    2013-01-01

    With special relation to smart grids, this book provides clear and comprehensive explanation of how Digital Signal Processing (DSP) and Computational Intelligence (CI) techniques can be applied to solve problems in the power system. Its unique coverage bridges the gap between DSP, electrical power

  11. The Early Diffusion of Smart Meters in the US Electric Power Industry

    Science.gov (United States)

    Strong, Derek Ryan

    The impact of new technologies within and across industries is only felt through their widespread diffusion, yet studies of technology diffusion are scarce compared to other aspects of the innovation process. The electric power industry is one industry that is currently undergoing substantial change as a result of both technological and institutional innovations. In this dissertation I examine the economic rationale for the adoption of smart meters by electric power utilities and the relationship between smart meters and the evolving electric power industry. I contribute to empirical research on technology diffusion by studying the early diffusion of smart meters in the US electric power industry. Using a panel dataset and econometric models, I analyze the determinants of both the interfirm and intrafirm diffusion of smart meters in the United States. The empirical findings suggest multiple drivers of smart meter diffusion. Policy and regulatory support have had a significant, positive impact on adoption but have not been the only relevant determinants. The findings also suggest that utility characteristics and some combination of learning, cost reductions, and technology standards have been important determinants affecting smart meter diffusion. I also explore the policy implications resulting from this analysis for enhancing the diffusion of smart meters. The costs and benefits of adopting smart meters have been more uncertain than initially thought, suggesting that some policy support for adoption was premature. The coordination of policies is also necessary to achieve the full benefits of using smart meters.

  12. The assessment of technological and safety aspects of small power reactor SMART

    International Nuclear Information System (INIS)

    Antariksawan, A.R.; Ekariansyah, Andi S.; Sony, D.T.; Suharno; Hastowo, Hudi

    2002-01-01

    This paper describes and discusses the technology and safety of small nuclear power plant SMART. The reactor SMART produces 300 MWth of power is cooled and moderated with light water and integral PWR type developed by KAERI. At present, the development activities had reached the end of basic design stage. The concept design of reactor SMART is based on safety enhancement, economic competitiveness and high performance. The fuel is uranium oxide with approximately 5% w/o enrichment. The safety characteristics of the core are shown with low power density around 62.6 W/cc, high negative reactivity coefficient, and high shutdown and thermal margin. Besides the inherent safety characteristics, SMART is equipped with engineered safety features and severe accident management system which are in compliance with the IAEA recommendations. The application of SMART for dual-purpose produces 90 Mwe and 40,000 to fresh water a day. Based on the technology and core characteristics of the reactor SMART, it is very interesting to be deeply assessed

  13. Multimodal correlation of dynamic [18F]-AV-1451 perfusion PET and neuronal hypometabolism in [18F]-FDG PET.

    Science.gov (United States)

    Hammes, Jochen; Leuwer, Isabel; Bischof, Gérard N; Drzezga, Alexander; van Eimeren, Thilo

    2017-12-01

    Cerebral glucose metabolism measured with [18F]-FDG PET is a well established marker of neuronal dysfunction in neurodegeneration. The tau-protein tracer [18F]-AV-1451 PET is currently under evaluation and shows promising results. Here, we assess the feasibility of early perfusion imaging with AV-1451 as a substite for FDG PET in assessing neuronal injury. Twenty patients with suspected neurodegeneration underwent FDG and early phase AV-1451 PET imaging. Ten one-minute timeframes were acquired after application of 200 MBq AV-1451. FDG images were acquired on a different date according to clinical protocol. Early AV-1451 timeframes were coregistered to individual FDG-scans and spatially normalized. Voxel-wise intermodal correlations were calculated on within-subject level for every possible time window. The window with highest pooled correlation was considered optimal. Z-transformed deviation maps (ZMs) were created from both FDG and early AV-1451 images, comparing against FDG images of healthy controls. Regional patterns and extent of perfusion deficits were highly comparable to metabolic deficits. Best results were observed in a time window from 60 to 360 s (r = 0.86). Correlation strength ranged from r = 0.96 (subcortical gray matter) to 0.83 (frontal lobe) in regional analysis. ZMs of early AV-1451 and FDG images were highly similar. Perfusion imaging with AV-1451 is a valid biomarker for assessment of neuronal dysfunction in neurodegenerative diseases. Radiation exposure and complexity of the diagnostic workup could be reduced significantly by routine acquisition of early AV-1451 images, sparing additional FDG PET.

  14. Multimodal correlation of dynamic [18F]-AV-1451 perfusion PET and neuronal hypometabolism in [18F]-FDG PET

    International Nuclear Information System (INIS)

    Hammes, Jochen; Leuwer, Isabel; Bischof, Gerard N.; Drzezga, Alexander; Eimeren, Thilo van

    2017-01-01

    Cerebral glucose metabolism measured with [18F]-FDG PET is a well established marker of neuronal dysfunction in neurodegeneration. The tau-protein tracer [18F]-AV-1451 PET is currently under evaluation and shows promising results. Here, we assess the feasibility of early perfusion imaging with AV-1451 as a substite for FDG PET in assessing neuronal injury. Twenty patients with suspected neurodegeneration underwent FDG and early phase AV-1451 PET imaging. Ten one-minute timeframes were acquired after application of 200 MBq AV-1451. FDG images were acquired on a different date according to clinical protocol. Early AV-1451 timeframes were coregistered to individual FDG-scans and spatially normalized. Voxel-wise intermodal correlations were calculated on within-subject level for every possible time window. The window with highest pooled correlation was considered optimal. Z-transformed deviation maps (ZMs) were created from both FDG and early AV-1451 images, comparing against FDG images of healthy controls. Regional patterns and extent of perfusion deficits were highly comparable to metabolic deficits. Best results were observed in a time window from 60 to 360 s (r = 0.86). Correlation strength ranged from r = 0.96 (subcortical gray matter) to 0.83 (frontal lobe) in regional analysis. ZMs of early AV-1451 and FDG images were highly similar. Perfusion imaging with AV-1451 is a valid biomarker for assessment of neuronal dysfunction in neurodegenerative diseases. Radiation exposure and complexity of the diagnostic workup could be reduced significantly by routine acquisition of early AV-1451 images, sparing additional FDG PET. (orig.)

  15. Long Lifetime DC-Link Voltage Stabilization Module for Smart Grid Application

    DEFF Research Database (Denmark)

    Wang, Huai; Chung, Henry; Liu, Wenchao

    2012-01-01

    Power converters enable efficient and flexible control and conversion of electric energy among different smart grid players (i.e. producers, energy storage systems, and loads). One of the expected features of smart grid is that it will be more reliable compared to conventional grid. However, power...... converters are one kind of the lifetime limiting components applied in smart grid. One of the major causes is the malfunction of electrolytic capacitors (E-Caps) which are widely used for stabilizing the dc-link voltage in various types of power converters applied in smart grid. A dc-link module is therefore...

  16. The SMART Platform: early experience enabling substitutable applications for electronic health records

    Science.gov (United States)

    Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S

    2012-01-01

    Objective The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. Materials and methods The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers—health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it—marshal data sources and present data simply, reliably, and consistently to apps. Results The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Conclusion Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges. PMID:22427539

  17. Uncertainty Evaluation for SMART Synthesized Power Distribution

    International Nuclear Information System (INIS)

    Cho, J. Y.; Song, J. S.; Lee, C. C.; Park, S. Y.; Kim, K. Y.; Lee, K. H.

    2010-07-01

    This report performs the uncertainty analysis for the SMART synthesis power distribution generated by a SSUN (SMART core SUpporting system coupled by Nuclear design code) code. SSUN runs coupled with the MASTER neutronics code and generates the core 3-D synthesis power distribution by using DPCM3D. The MASTER code plays a role to provide the DPCM3D constants to the SSUN code for the current core states. The uncertainties evaluated in this report are the form of 95%/95% probability/confidence one-sided tolerance limits and can be used in conjunction with Technical Specification limits on these quantities to establish appropriate LCO (Limiting Conditions of Operation) and LSSS (Limiting Safety System Settings) limits. This report is applicable to SMART nuclear reactor using fixed rhodium detector systems. The unknown true power distribution should be given for the uncertainty evaluation of the synthesis power distribution. This report produces virtual distributions for the true power distribution by imposing the CASMO-3/MASTER uncertainty to the MASTER power distribution. Detector signals are generated from these virtual distribution and the DPCM3D constants are from the MASTER power distribution. The SSUN code synthesizes the core 3-D power distribution by using these detector signals and the DPCM3D constants. The following summarizes the uncertainty evaluation procedure for the synthesis power distribution. (1) Generation of 3-D power distribution by MASTER -> Determination of the DPCM3D constants. (2) Generation of virtual power distribution (assumed to be true power distribution) -> Generation of detector signals. (3) Generation of synthesis power distribution. (4) Uncertainty evaluation for the synthesis power distribution. Chi-Square normality test rejects the hypothesis of normal distribution for the synthesis power error distribution. Therefore, the KRUSKAL WALLIS test and the non-parametric statistics are used for data pooling and the tolerance limits. The

  18. An organization structure analysis for BC Hydro, Power Smart

    OpenAIRE

    Lellis, Leandro Bianchi

    2006-01-01

    Power Smart is BC Hydro’s demand-side management (DMS) initiative to encourage energy efficiency by its customers. Currently, they are in the midst of a very significant program redesign to influence their largest transmission voltage customers to use energy efficiently without the capability to award a capital incentive. From their internal operating model perspective, Power Smart is considering moving from an audit based function to a more consultative role. This project aims to provide and...

  19. A Smart Power Electronic Multiconverter for the Residential Sector.

    Science.gov (United States)

    Guerrero-Martinez, Miguel Angel; Milanes-Montero, Maria Isabel; Barrero-Gonzalez, Fermin; Miñambres-Marcos, Victor Manuel; Romero-Cadaval, Enrique; Gonzalez-Romera, Eva

    2017-05-26

    The future of the grid includes distributed generation and smart grid technologies. Demand Side Management (DSM) systems will also be essential to achieve a high level of reliability and robustness in power systems. To do that, expanding the Advanced Metering Infrastructure (AMI) and Energy Management Systems (EMS) are necessary. The trend direction is towards the creation of energy resource hubs, such as the smart community concept. This paper presents a smart multiconverter system for residential/housing sector with a Hybrid Energy Storage System (HESS) consisting of supercapacitor and battery, and with local photovoltaic (PV) energy source integration. The device works as a distributed energy unit located in each house of the community, receiving active power set-points provided by a smart community EMS. This central EMS is responsible for managing the active energy flows between the electricity grid, renewable energy sources, storage equipment and loads existing in the community. The proposed multiconverter is responsible for complying with the reference active power set-points with proper power quality; guaranteeing that the local PV modules operate with a Maximum Power Point Tracking (MPPT) algorithm; and extending the lifetime of the battery thanks to a cooperative operation of the HESS. A simulation model has been developed in order to show the detailed operation of the system. Finally, a prototype of the multiconverter platform has been implemented and some experimental tests have been carried out to validate it.

  20. Adapting a commercial power system simulator for smart grid based system study and vulnerability assessment

    Science.gov (United States)

    Navaratne, Uditha Sudheera

    The smart grid is the future of the power grid. Smart meters and the associated network play a major role in the distributed system of the smart grid. Advance Metering Infrastructure (AMI) can enhance the reliability of the grid, generate efficient energy management opportunities and many innovations around the future smart grid. These innovations involve intense research not only on the AMI network itself but as also on the influence an AMI network can have upon the rest of the power grid. This research describes a smart meter testbed with hardware in loop that can facilitate future research in an AMI network. The smart meters in the testbed were developed such that their functionality can be customized to simulate any given scenario such as integrating new hardware components into a smart meter or developing new encryption algorithms in firmware. These smart meters were integrated into the power system simulator to simulate the power flow variation in the power grid on different AMI activities. Each smart meter in the network also provides a communication interface to the home area network. This research delivers a testbed for emulating the AMI activities and monitoring their effect on the smart grid.

  1. Survey of cyber security issues in smart grids

    Science.gov (United States)

    Chen, Thomas M.

    2010-04-01

    The future smart grid will enable cost savings and lower energy use by means of smart appliances and smart meters which support dynamic load management and real-time monitoring of energy use and distribution. The introduction of two-way communications and control into power grid introduces security and privacy concerns. This talk will survey the security and privacy issues in smart grids using the NIST reference model, and relate these issues to cyber security in the Internet.

  2. Low-Power Smart Imagers for Vision-Enabled Sensor Networks

    CERN Document Server

    Fernández-Berni, Jorge; Rodríguez-Vázquez, Ángel

    2012-01-01

    This book presents a comprehensive, systematic approach to the development of vision system architectures that employ sensory-processing concurrency and parallel processing to meet the autonomy challenges posed by a variety of safety and surveillance applications.  Coverage includes a thorough analysis of resistive diffusion networks embedded within an image sensor array. This analysis supports a systematic approach to the design of spatial image filters and their implementation as vision chips in CMOS technology. The book also addresses system-level considerations pertaining to the embedding of these vision chips into vision-enabled wireless sensor networks.  Describes a system-level approach for designing of vision devices and  embedding them into vision-enabled, wireless sensor networks; Surveys state-of-the-art, vision-enabled WSN nodes; Includes details of specifications and challenges of vision-enabled WSNs; Explains architectures for low-energy CMOS vision chips with embedded, programmable spatial f...

  3. Service-oriented advanced metering infrastructure for smart grids

    NARCIS (Netherlands)

    Chen, S.; Lukkien, J.J.; Zhang, L.

    2011-01-01

    Advanced Metering Infrastructure (AMI) enables smart grids to involve power consumers in the business process of power generation transmission, distribution and consumption. However, the participant of consumers challenges the current power systems with system integration and cooperation and

  4. Service-oriented advanced metering infrastructure for smart grids

    NARCIS (Netherlands)

    Chen, S.; Lukkien, J.J.; Zhang, L.

    2010-01-01

    Advanced Metering Infrastructure (AMI) enables smart grids to involve power consumers in the business process of power generation, transmission, distribution and consumption. However, the participant of consumers challenges the current power systems with system integration and cooperation and

  5. Enabling Smart Grid Cosimulation Studies: Rapid Design and Development of the Technologies and Controls

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Timothy M.; Kadavil, Rahul; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay; Chong, Edwin K. P.; Hale, Elaine

    2016-03-01

    The 21st century electric power grid is transforming with an unprecedented increase in demand and increase in new technologies. In the United States Energy Independence and Security Act of 2007, Title XIII sets the tenets for modernizing the electricity grid through what is known as the 'Smart Grid Initiative.' This initiative calls for increased design, deployment, and integration of distributed energy resources, smart technologies and appliances, and advanced storage devices. The deployment of these new technologies requires rethinking and re-engineering the traditional boundaries between different electric power system domains.

  6. GeoCF - Smart Power Maps - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Chris [GeoCF LLC, Austin, TX (United States)

    2017-12-21

    GeoCF has greatly enhanced the utility-scale solar siting platform, Smart Power Maps, through the help of the DOE Solar Energy Technologies Office. It is now available for the entire country and includes an improved user interface and additional layers such as topology, soils, comprehensive floodplains, parcels, imagery, wells, pipelines, and more. As well, users can now draw and save maps and perform drastically improved and more relevant hydrological, transmission, and financial analyzes. Smart Power Maps has played a pivotal role in supporting the development of otherwise unknown or hard to locate ideal locations for large solar farms in the United States.

  7. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases.

    Science.gov (United States)

    Vermeiren, Céline; Motte, Philippe; Viot, Delphine; Mairet-Coello, Georges; Courade, Jean-Philippe; Citron, Martin; Mercier, Joël; Hannestad, Jonas; Gillard, Michel

    2018-02-01

    Lilly/Avid's AV-1451 is one of the most advanced tau PET tracers in the clinic. Although results obtained in Alzheimer's disease patients are compelling, discrimination of tracer uptake in healthy individuals and patients with supranuclear palsy (PSP) is less clear as there is substantial overlap of signal in multiple brain regions. Moreover, accurate quantification of [ 18 F]AV-1451 uptake in Alzheimer's disease may not be possible. The aim of the present study was to characterize the in vitro binding of AV-1451 to understand and identify potential off-target binding that could explain the poor discrimination observed in PSP patients. [ 3 H]AV-1451 and AV-1451 were characterized in in vitro binding assays using recombinant and native proteins/tissues from postmortem samples of controls and Alzheimer's disease and PSP patients. [ 3 H]AV-1451 binds to multiple sites with nanomolar affinities in brain homogenates and to tau fibrils isolated from Alzheimer's disease or PSP patients. [ 3 H]AV-1451 also binds with similarly high affinities in brain homogenates devoid of tau pathology. This unexpected binding was demonstrated to be because of nanomolar affinities of [ 3 H]AV-1451 for monoamine oxidase A and B enzymes. High affinity of AV-1451 for monoamine oxidase proteins may limit its utility as a tau PET tracer in PSP and Alzheimer's disease because of high levels of monoamine oxidase expression in brain regions also affected by tau deposition, especially if monoamine oxidase levels change over time or with a treatment intervention. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  8. Smart grid fundamentals of design and analysis

    CERN Document Server

    Momoh, James

    2012-01-01

    The book is written as primer hand book for addressing the fundamentals of smart grid. It provides the working definition the functions, the design criteria and the tools and techniques and technology needed for building smart grid. The book is needed to provide a working guideline in the design, analysis and development of Smart Grid. It incorporates all the essential factors of Smart Grid appropriate for enabling the performance and capability of the power system. There are no comparable books which provide information on the how to of the design and analysis. The book prov.

  9. Photo and pH dual-responsive polydiacetylene smart nanocontainer

    International Nuclear Information System (INIS)

    Li, Jingguo; Yu, Zhiqiang; Jiang, Hao; Zou, Gang; Zhang, Qijin

    2012-01-01

    Herein, a novel smart nanocontainer was developed by incorporating photo-responsive azobenzene derivative/cyclodextrin (Azo–CD) supramolecular complex into pH-responsive polydiacetylene (PDA) vesicles matrix. The designed nanocontainer exhibited excellent cell-toxicity, and the controlled release property response to external photo and pH stimuli. The photo-controlled inclusion and exclusion reaction between α-cyclodextrin (α-CD) and azobenzene moiety were used to act as the driving force to induce photo-triggered controlled release behavior of the designed nanocontainer. Moreover, the pH-responsive PDA vesicle matrix endowed the designed system with a controlled release property upon pH variation. The facile preparation procedures and their efficiency of response to the external stimuli render the novel smart nanocontainer potential candidate for future applications in remote controlled drug release. -- Graphical abstract: Herein, we developed a novel smart nanocontainer comprising the azobenzene derivative/cyclodextrin supramolecular complex and polydiacetylene vesicles, which exhibited excellent biocompatibility, and controlled release property response to external photo and pH stimuli. Highlights: ► We developed a novel dual-responsive smart polydiacetylene nanocontainer. ► The azobenzene/cyclodextrin complex was introduced into polydiacetylene vesicles. ► The designed nanocontainer exhibited excellent biocompatibility and stability. ► 365 and 435 nm light irradiations are used to realize photo controlled release. ► The smart nanocontainer exhibited controlled release property upon pH variation.

  10. Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision

    DEFF Research Database (Denmark)

    Lynggaard, Per; Skouby, Knud Erik

    2016-01-01

    The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world’s population will live their lives in smart homes and in smart cities...... the “smart” vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the “big challenges” and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits......% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants....

  11. Preliminary design of smart fuel

    International Nuclear Information System (INIS)

    Kim, Y.; Ha, D.; Park, S.; Nahm, K.; Lee, K.; Kim, J.

    2007-01-01

    SMART (System-integrated Modular Advanced Reactor) is a novel light water rector with a modular, integral primary system configuration. This concept has been developing a 660 MWt by Korean Nuclear Power Industry Group with KAERI. SMART is being developed for use as an energy source for small-scale power generation and seawater desalination. Although the design of SMART is based on the current pressurized water reactor technology, new technologies such as enhanced safety, and passive safety have been applied, and system simplification and modularization, innovations in manufacturing and installation technologies have been implemented culminating in a design that has enhanced safety and economy, and is environment -friendly. In this paper described the preliminary design of the nuclear Fuel for this SMART, the design concept and the characteristics of SMART Fuel. In specially this paper describe the optimization of grid span adjustment to improve the thermal performance of the SMART Fuel as well as to improve the seismic resistance performance of the SMART Fuel, it is not easy to improve the both performance simultaneously because of design parameter of each performance inversely proportional. SMART Fuel enable to extra-long extended fuel cycle length and resistance of proliferation, enhanced safety, improved economics and reduced nuclear waste

  12. Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision.

    Science.gov (United States)

    Lynggaard, Per; Skouby, Knud Erik

    2016-11-02

    The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world's population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the "smart" vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the "big challenges" and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants.

  13. The CEESA Smart Energy Systems Approach for Denmark and Europe

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    grids etc. In contrast, the Smart Energy System focuses on merging the electricity, heating and transport sectors, in combination with various intra-hour, hourly, daily, seasonal and biannual storage options, to create the flexibility necessary to integrate large penetrations of fluctuating renewable...... energy. The development and design of coherent Smart Energy Systems as an integrated part of achieving future 100% renewable energy and transport solutions. To enable this, the Smart Energy System must have a number of appropriate infrastructures i.e. smart electricity grids, smart thermal grids...... (district heating and cooling), smart gas grids and other fuel infrastructures. It enables fluctuating renewable energy (such as wind, solar, wave power and low value heat sources) to utilise new sources of flexibility such as solid, gaseous, and liquid fuel storage, thermal storage and heat pumps...

  14. Use of Smart Sensors in the Measurement of Power Quality

    Directory of Open Access Journals (Sweden)

    A. Moreno-Muñoz

    2008-03-01

    Full Text Available Today’s businesses depend heavily on electrical services for lighting, general power, computer hardware and communications hardware. With the generalized use of sophisticated electronic devices, industries are shifting toward almost entirely electronic IT systems. PQ events are of increasing concern for the economy because today’s equipment, particularly computers and automated manufacturing devices, is highly sensitive to such imperfections. Traditionally the control and supervision of a plant distribution network has mainly been focused on the protection of the network. Relatively little attention has been focused on the quality of the electrical energy. Metering technologies and communications systems have advanced to enable the development of web-based sensors. Power Quality is one area where these smart sensors can be very valuable. This paper investigates the challenges and possibilities in the development of distributed PQ measurement systems. This paper describes the challenges and lessons learned from this work.

  15. The social dynamics of smart grids

    NARCIS (Netherlands)

    Naus, Joeri

    2017-01-01

    <p>In international climate and energy policy the development of smart grids features as a critical new step in the transition towards a sustainable energy future. Smart grids enable two-way energy and information exchange between households and energy providers. Drawing on social practice theories,

  16. Power system SCADA and smart grids

    CERN Document Server

    Thomas, Mini S

    2015-01-01

    Power System SCADA and Smart Grids brings together in one concise volume the fundamentals and possible application functions of power system supervisory control and data acquisition (SCADA). The text begins by providing an overview of SCADA systems, evolution, and use in power systems and the data acquisition process. It then describes the components of SCADA systems, from the legacy remote terminal units (RTUs) to the latest intelligent electronic devices (IEDs), data concentrators, and master stations, as well as:Examines the building and practical implementation of different SCADA systemsOf

  17. Development of a smart type motor operated valve for nuclear power plants

    Science.gov (United States)

    Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo

    2005-12-01

    In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.

  18. Social-economic valorisation of smart power grids. Joint synthesis of contributions

    International Nuclear Information System (INIS)

    2017-07-01

    This synthesis of contributions made by RTE, Enedis and the ADEeF summarises the main lessons from analyses performed by these actors (operators of public power distribution networks and of the public power transport network) on the economic value of smart grids. A whole set of functions of these smart grids has been examined, regarding observability of production, dynamic assessment of transit capacities, provisional management of the distribution network, dynamic self-healing of incidents, centralised dynamic adjustment of voltage, dynamic local regulation of reactive power, production controllability of renewable production, cut-off and modulation of industrial and tertiary consumption and of residential consumption, and storage. Assessments show that smart grid based solutions would bring an economic value which justifies their deployment, and associated investments

  19. Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision

    Directory of Open Access Journals (Sweden)

    Per Lynggaard

    2016-11-01

    Full Text Available The world is entering a new era, where Internet-of-Things (IoT, smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world’s population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the “smart” vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the “big challenges” and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants.

  20. Consumer-oriented smart grid for energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mrazovac, Bojan; Bjelica, Milan Z.; Teslic, Nikola; Papp, Istvan; Temerinac, Miodrag [RT-RK Institute for Computer Based Systems, Novi Sad (Serbia)

    2012-07-01

    The global market faces a large expansion of available solutions for residential power management and energy conservation that can be easily integrated into the smart grid. Unfortunately, most of these solutions lack the capability to make automated power saving decisions which do not require a user to intervene. In this paper we present an intelligent device-level energy monitoring and managing platform for the residential use. The platform is mainly based on interactive wireless electrical infrastructure, smart outlets and smart light switches, which provide low installation costs. As opposed to conventional smart home solutions that utilize a complex set of sensors for human detection, user awareness is achieved without specific sensor devices, only by analyzing and quantifying radio signal strength variations at the inputs of radio transceivers, embedded in smart nodes. The automation is achieved by interpreting user-defined behavioural patterns, which enable the platform to be used for various setups of an environment. The platform intelligently controls power consumption of appliances, contributing to energy savings in the household. (orig.)

  1. Multimodal correlation of dynamic [{sup 18}F]-AV-1451 perfusion PET and neuronal hypometabolism in [{sup 18}F]-FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Hammes, Jochen; Leuwer, Isabel [University Hospital Cologne, Multimodal Neuroimaging Group, Department of Nuclear Medicine, Cologne (Germany); Bischof, Gerard N. [University Hospital Cologne, Multimodal Neuroimaging Group, Department of Nuclear Medicine, Cologne (Germany); INM-3, Research Center Juelich, Juelich (Germany); Drzezga, Alexander [University Hospital Cologne, Multimodal Neuroimaging Group, Department of Nuclear Medicine, Cologne (Germany); German Center for Neurodegeneration (DZNE), Berlin (Germany); Eimeren, Thilo van [University Hospital Cologne, Multimodal Neuroimaging Group, Department of Nuclear Medicine, Cologne (Germany); INM-3, Research Center Juelich, Juelich (Germany); German Center for Neurodegeneration (DZNE), Berlin (Germany)

    2017-12-15

    Cerebral glucose metabolism measured with [18F]-FDG PET is a well established marker of neuronal dysfunction in neurodegeneration. The tau-protein tracer [18F]-AV-1451 PET is currently under evaluation and shows promising results. Here, we assess the feasibility of early perfusion imaging with AV-1451 as a substite for FDG PET in assessing neuronal injury. Twenty patients with suspected neurodegeneration underwent FDG and early phase AV-1451 PET imaging. Ten one-minute timeframes were acquired after application of 200 MBq AV-1451. FDG images were acquired on a different date according to clinical protocol. Early AV-1451 timeframes were coregistered to individual FDG-scans and spatially normalized. Voxel-wise intermodal correlations were calculated on within-subject level for every possible time window. The window with highest pooled correlation was considered optimal. Z-transformed deviation maps (ZMs) were created from both FDG and early AV-1451 images, comparing against FDG images of healthy controls. Regional patterns and extent of perfusion deficits were highly comparable to metabolic deficits. Best results were observed in a time window from 60 to 360 s (r = 0.86). Correlation strength ranged from r = 0.96 (subcortical gray matter) to 0.83 (frontal lobe) in regional analysis. ZMs of early AV-1451 and FDG images were highly similar. Perfusion imaging with AV-1451 is a valid biomarker for assessment of neuronal dysfunction in neurodegenerative diseases. Radiation exposure and complexity of the diagnostic workup could be reduced significantly by routine acquisition of early AV-1451 images, sparing additional FDG PET. (orig.)

  2. A smart-card-enabled privacy preserving E-prescription system.

    Science.gov (United States)

    Yang, Yanjiang; Han, Xiaoxi; Bao, Feng; Deng, Robert H

    2004-03-01

    Within the overall context of protection of health care information, privacy of prescription data needs special treatment. First, the involvement of diverse parties, especially nonmedical parties in the process of drug prescription complicates the protection of prescription data. Second, both patients and doctors have privacy stakes in prescription, and their privacy should be equally protected. Third, the following facts determine that prescription should not be processed in a truly anonymous manner: certain involved parties conduct useful research on the basis of aggregation of prescription data that are linkable with respect to either the patients or the doctors; prescription data has to be identifiable in some extreme circumstances, e.g., under the court order for inspection and assign liability. In this paper, we propose an e-prescription system to address issues pertaining to the privacy protection in the process of drug prescription. In our system, patients' smart cards play an important role. For one thing, the smart cards are implemented to be portable repositories carrying up-to-date personal medical records and insurance information, providing doctors instant data access crucial to the process of diagnosis and prescription. For the other, with the secret signing key being stored inside, the smart card enables the patient to sign electronically the prescription pad, declaring his acceptance of the prescription. To make the system more realistic, we identify the needs for a patient to delegate his signing capability to other people so as to protect the privacy of information housed on his card. A strong proxy signature scheme achieving technologically mutual agreements on the delegation is proposed to implement the delegation functionality.

  3. The Role of Smart Meters in Enabling Real-Time Energy Services for Households: The Italian Case

    Directory of Open Access Journals (Sweden)

    Alessandro Pitì

    2017-02-01

    Full Text Available The Smart Meter (SM is an essential tool for successful balancing the demand-offer energy curve. It allows the linking of the consumption and production measurements with the time information and the customer’s identity, enabling the substitution of flat-price billing with smarter solutions, such as Time-of-Use or Real-Time Pricing. In addition to sending data to the energy operators for billing and monitoring purposes, Smart Meters must be able to send the same data to customer devices in near-real-time conditions, enabling new services such as instant energy awareness and home automation. In this article, we review the ongoing situation in Europe regarding real-time services for the final customers. Then, we review the architectural and technological options that have been considered for the roll-out phase of the Italian second generation of Smart Meters. Finally, we identify a collection of use cases, along with their functional and performance requirements, and discuss what architectures and communications technologies can meet these requirements.

  4. Wind power integration in island-based smart grid projects : A comparative study between Jeju Smart Grid Test-bed and Smart Grid Gotland

    OpenAIRE

    Piehl, Hampus

    2014-01-01

    Smart grids seem to be the solution to use energy from renewable and intermittent energy sources in an efficient manner. There are many research projects around the world and two of them are Jeju Smart Grid Test-bed and Smart Grid Gotland. They have in common that they are both island-based projects and connected to the Powergrid on the mainland by HVDC-link. The purpose of this thesis is to compare the two projects and find out what challenges and strategies they have related to wind power i...

  5. Predictive Smart Grid Control with Exact Aggregated Power Constraints

    DEFF Research Database (Denmark)

    Trangbæk, K; Petersen, Mette Højgaard; Bendtsen, Jan Dimon

    2012-01-01

    of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the flexibility of a large number of power producing and/or power consuming units. The load variations on the grid arise on one hand from varying......This chapter deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high-level MPC controller, a second level of so-called aggregators,which reduces the computational and communication related load on the high-level control, and a lower level...... consumption, and on the other hand from natural variations in power production from e.g. wind turbines. The consumers represent energy-consuming units such as heat pumps, car batteries etc. These units obviously have limits on how much power and energy they can consume at any given time, which impose...

  6. Energy-efficient digital and wireless IC design for wireless smart sensing

    Science.gov (United States)

    Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong

    2017-10-01

    Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.

  7. The rise of smart customers. How consumer power will change the global power and utilities business. What consumers think

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-15

    Smart technology puts unprecedented power in the hands of consumers to manage and control their energy use. In time, this will fundamentally shift the balance of customer relations. It seems the era of a one-way relationship - where a utility delivers energy to domestic consumers, end of story - is over. Most power and utility businesses are currently treating the smart transition as an infrastructure upgrade, focusing chiefly on the technology and on fulfilling regulatory obligations. So far, the customer perspective and need for consumer education have not figured prominently in smart implementation programs. But following customer resistance to implementations in the US and Australia, the sector has been alerted to further challenges. Consumers' newfound power to say 'no' is one that the industry is not used to dealing with. Power and utility businesses must learn from the mistakes made so far. They need customer buy-in before they can exploit the host of new business opportunities that smart technology could provide. To explore the sector's readiness to respond to the present cycle of change, we asked domestic energy consumers how they viewed their relationship with energy providers. We wanted to know if they understood the benefits of smart metering, as well as their appetite for smart energy services.

  8. Smart power grids 2011

    CERN Document Server

    Keyhani, Ali

    2012-01-01

    Electric power systems are experiencing significant changes at the worldwide scale in order to become cleaner, smarter, and more reliable. This edited book examines a wide range of topics related to these changes, which are primarily caused by the introduction of information technologies, renewable energy penetration, digitalized equipment, new operational strategies, and so forth. The emphasis will be put on the modeling and control of smart grid systems. This book addresses research topics such as high efficiency transforrmers, wind turbines and generators, fuel cells, or high speed turbines

  9. Utilizing Smart Textiles-Enabled Sensorized Toy and Playful Interactions for Assessment of Psychomotor Development on Children

    Directory of Open Access Journals (Sweden)

    Mario Vega-Barbas

    2015-01-01

    Full Text Available Emerging pervasive technologies like smart textiles make it possible to develop new and more accessible healthcare services for patients independently of their location or time. However, none of these new e-health solutions guarantee a complete user acceptance, especially in cases requiring extensive interaction between the user and the solution. So far, researchers have focused their efforts on new interactions techniques to improve the perception of privacy and confidence of the people using e-health services. In this way, the use of smart everyday objects arises as an interesting approach to facilitate the required interaction and increase user acceptance. Such Smart Daily Objects together with smart textiles provide researchers with a novel way to introduce sophisticated sensor technology in the daily life of people. This work presents a sensorized smart toy for assessment of psychomotor development in early childhood. The aim of this work is to design, develop, and evaluate the usability and playfulness of a smart textile-enabled sensorized toy that facilitates the user engagement in a personalized monitoring healthcare activity. To achieve this objective the monitoring is based on a smart textile sensorized toy as catalyzer of acceptance and multimodal sensing sources to monitor psychomotor development activities during playtime.

  10. Development of the core safety regulation technology for the SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Kim, Do Sam; Lee, Kyeong Taek; Park, Young Ryoung; Lee, Gil Soo; Kim, Jong Woon; Yun, Sung Hwan; Lee, Jae Jun; Lee, Myung Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2003-06-15

    As the SMART-P is different from existing general reactors, new regulation technology is required to understand and assess the SMART-P for its regulatory reviews. One of the these technologies is related to the core design analysis. Because the SMART-P used metallic fuels, this study also collects general metallic nuclear fuel data and SMART-P's metallic fuel data from the materials studied by KAERI. The core design methodologies of KWU, ABB-CE, Westinghouse, Studsvik, Scandpower, US NRC and domestic research centers were investigated. Specially, The Hellios lattice core was studied for hexagonal nuclear fuel assembly calculation. Also, the VVER-1000 benchmark problem was analyzed by the PARCS code which has been developed by U.S. NRC. In this study, a AFEN-based computing code KORDAX os developed for the regulatory review of the SMART-P. KORDAX which is a nodal code using AFEN method dose not use transverse integration and this it can give higher accuracy results. Also, Because KORDAX is useful for hexagonal core and uses a method different with the core design code of the SMART-P developed by KAERI, it is judged that KORDAX can be an independent and reliable regulation verification code. In the next year study, HELIOS will be further studied as a core lattice code, and a hexagonal kinetics code which is based on AFEN method will be developed more systematically.

  11. Conceptualizing smart service systems

    DEFF Research Database (Denmark)

    Beverungen, Daniel; Müller, Oliver; Matzner, Martin

    2017-01-01

    Recent years have seen the emergence of physical products that are digitally networked with other products and with information systems to enable complex business scenarios in manufacturing, mobility, or healthcare. These “smart products”, which enable the co-creation of “smart service” that is b......Recent years have seen the emergence of physical products that are digitally networked with other products and with information systems to enable complex business scenarios in manufacturing, mobility, or healthcare. These “smart products”, which enable the co-creation of “smart service......” that is based on monitoring, optimization, remote control, and autonomous adaptation of products, profoundly transform service systems into what we call “smart service systems”. In a multi-method study that includes conceptual research and qualitative data from in-depth interviews, we conceptualize “smart...... service” and “smart service systems” based on using smart products as boundary objects that integrate service consumers’ and service providers’ resources and activities. Smart products allow both actors to retrieve and to analyze aggregated field evidence and to adapt service systems based on contextual...

  12. Efficient logistics enabled by smart solutions in tunneling

    Directory of Open Access Journals (Sweden)

    Zakaria Dakhli

    2017-12-01

    Full Text Available While logistics comprises an important part of tunneling costs, it is generally not considered a lever of performance but rather a constraint to a project's progress. This study presents some insights on how smart technology can impact the tunneling industry. The impact is even greater because of the complexity of the tunneling supply chain, and smart technology could help support this process. Finally, we discuss how the nature of the tunneling industry invites stakeholders to develop a common understanding of the project prior to construction to successfully deploy smart technology during the use or maintenance phase. Keywords: Smart technology, Logistics, Underground space, Supply chain, Construction, Lean construction

  13. NCBI nr-aa BLAST: CBRC-PCAP-01-1451 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PCAP-01-1451 ref|NP_001138972.1| bitter taste receptor Cafa-T2R38 [Canis lupus... familiaris] dbj|BAE80335.1| bitter taste receptor [Canis lupus familiaris] NP_001138972.1 1e-109 62% ...

  14. A smart dust biosensor powered by kinesin motors.

    Science.gov (United States)

    Fischer, Thorsten; Agarwal, Ashutosh; Hess, Henry

    2009-03-01

    Biosensors can be miniaturized by either injecting smaller volumes into micro- and nanofluidic devices or immersing increasingly sophisticated particles known as 'smart dust' into the sample. The term 'smart dust' originally referred to cubic-millimetre wireless semiconducting sensor devices that could invisibly monitor the environment in buildings and public spaces, but later it also came to include functional micrometre-sized porous silicon particles used to monitor yet smaller environments. The principal challenge in designing smart dust biosensors is integrating transport functions with energy supply into the device. Here, we report a hybrid microdevice that is powered by ATP and relies on antibody-functionalized microtubules and kinesin motors to transport the target analyte into a detection region. The transport step replaces the wash step in traditional double-antibody sandwich assays. Owing to their small size and autonomous function, we envision that large numbers of such smart dust biosensors could be inserted into organisms or distributed into the environment for remote sensing.

  15. SMART-ITEM: IoT-Enabled Smart Living

    OpenAIRE

    Kor, A; Pattinson, C; Yanovsky, M; Kharchenko, V

    2017-01-01

    The main goal of this proposed project is to harness the emerging IoT technology to empower elderly population to self-manage their own health, stay active, healthy, and independent as long as possible within a smart and secured living environment. An integrated open-sourced IoT ecosystem will be developed. It will encompass the entire data lifecycle which involves the following processes: data acquisition, data transportation; data integration, processing, manipulation and computation; visua...

  16. Guest Editorial Special Issue on Power Quality in Smart Grids

    DEFF Research Database (Denmark)

    Guerrero, Josep M.

    2017-01-01

    -healing from power disturbances, efficient energy management, automation based on ICT and advanced metering infrastructures (smart metering), integration of distributed power generation, renewable energy resources and storage units as well as high power quality and reliability. In this regard, the concept...

  17. Exact Power Constraints in Smart Grid Control

    DEFF Research Database (Denmark)

    Trangbæk, K; Petersen, Mette Højgaard; Bendtsen, Jan Dimon

    2011-01-01

    This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The objective is to accommodate load variations on the grid, arising from varying consumption and natural variations in the power production e.g. from wind turbines. This balancing between supply and demand...

  18. A Smart Home Center Platform Solution Based on Smart Mirror

    Directory of Open Access Journals (Sweden)

    Deng Xibo

    2017-01-01

    Full Text Available With the popularization of the concept of smart home, people have raised requirements on the experience of smart living. A smart home platform center solution is put forward in order to solve the intelligent interoperability and information integration of smart home, which enable people to have a more intelligent and convenient life experience. This platform center is achieved through the Smart Mirror. The Smart Mirror refers to a smart furniture, on the basis of the traditional concept of mirror, combining Raspberry Pi, the application of one-way mirror imaging principle, the touch-enabled design, voice and video interaction. Smart Mirror can provide a series of intelligent experience for the residents, such as controlling all the intelligent furniture through Smart Mirror; accessing and displaying the weather, time, news and other life information; monitoring the home environment; remote interconnection operation.

  19. Smart Energy Management of Multiple Full Cell Powered Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  20. Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision

    OpenAIRE

    Lynggaard, Per; Skouby, Knud Erik

    2016-01-01

    The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world’s population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that...

  1. Smart grids and e-mobility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the third European Conference at 17th-18th October, 2011 in Munich (Federal Republic of Germany) the following lectures and posters were presented: (1) Market and billing models for electric mobility (M. Bolczek); (2) Optimal pooling of electric vehicles for ancillary markets under consideration of uncertain parameters (T. Pollok); (3) Introducing human factors psychology to vehicle-to-grid technologies (U. Hahnel); (4) The role of smart sensor networks for voltage monitoring in smart grids (P. Stoea); (5) Evaluating the impacts of electric vehicles and micro-generation in distribution networks (F. Soares); (6) Electric cars as energy storages - case study from Nordic Country (J. Lussia); (7) Are battery electric vehicles competitive? - The development of a customer value-based model (R. Colmon); (8) Technical and commercial protocol for different bidirectional integration topologies (P. Benoit); (9) The use of electric vehicles in Greece: A case study (C. Ioakimidis); (10) Fast charging station business analysis (J. Borges); (11) Power distribution networks: Intelligent substations (S2G) (M.E. Hervas); (12) Optimal design and energy management of decentralized PV-power supply units with short-term and long-term energy storage path (T. Bocklisch); (13) Easy grid analysis method for a central observing and controlling system in the low voltage grid for E-Mobility and renewable integration (A. Schuser); (14) Smart grids and EU data protection law - What is the legal framework? (J. Hladjk); (15) Smart integration of electric vehicles (A. Niesse); (16) Smart standards for smart grid devices (G. Kaestle); (17) Driving ambition: Bridging the gap between electric vehicles and smart metering (A. Galdos); (18) Analysis of an electric vehicle agent based management model (P. Papadopoulos); (19) Assessing the potential of electric vehicles and photovoltaics in a smart-grid environment in Brazil (R. Ruether); (20) Opportunities and challenges with large scale

  2. Development of auditing technology for accident analysis of SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Kim, H. C.; Bae, K. H.; Lee, Y. J.; Chung, Y. J.; Jeong, J. J. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-06-15

    The objective of this project is to develop thermal hydraulic models of the regulatory auditing codes for the application of SMART-P integrated reactor. The current year fall under the first step of the 3 year project, and the main researches were focused on identifying the candidate thermal hydraulic models for improvement. Well known PIRT methodology has been applied to identify model improvement items. As a part of PIRT process, the identification of SMART-P system and compenent has been performed. The scenario of each key accident and phenonema have been identified. To identify SMART-P thermal-hydraulic characteristics, preliminary calculation has been performed and identify the applicability and inprovement items of current auditing code, RELAP5.

  3. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.

    Directory of Open Access Journals (Sweden)

    Liping Zhang

    Full Text Available In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.

  4. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.

    Science.gov (United States)

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.

  5. Bandwidth Analysis of Smart Meter Network Infrastructure

    DEFF Research Database (Denmark)

    Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2014-01-01

    Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... devices in their costumers household e.g. heat pumps. With these smart services, utility companies can do load balancing on the grid by shifting load using resources the customers have. The problem investigated in this paper is what bandwidth require-ments can be expected when implementing such network...... to utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...

  6. Smart material-based radiation sources

    Science.gov (United States)

    Kovaleski, Scott

    2014-10-01

    From sensors to power harvesters, the unique properties of smart materials have been exploited in numerous ways to enable new applications and reduce the size of many useful devices. Smart materials are defined as materials whose properties can be changed in a controlled and often reversible fashion by use of external stimuli, such as electric and magnetic fields, temperature, or humidity. Smart materials have been used to make acceleration sensors that are ubiquitous in mobile phones, to make highly accurate frequency standards, to make unprecedentedly small actuators and motors, to seal and reduce friction of rotating shafts, and to generate power by conversion of either kinetic or thermal energy to electrical energy. The number of useful devices enabled by smart materials is large and continues to grow. Smart materials can also be used to generate plasmas and accelerate particles at small scales. The materials discussed in this talk are from non-centrosymmetric crystalline classes including piezoelectric, pyroelectric, and ferroelectric materials, which produce large electric fields in response to external stimuli such as applied electric fields or thermal energy. First, the use of ferroelectric, pyroelectric and piezoelectric materials for plasma generation and particle acceleration will be reviewed. The talk will then focus on the use of piezoelectric materials at the University of Missouri to construct plasma sources and electrostatic accelerators for applications including space propulsion, x-ray imaging, and neutron production. The basic concepts of piezoelectric transformers, which are analogous to conventional magnetic transformers, will be discussed, along with results from experiments over the last decade to produce micro-thrusters for space propulsion and particle accelerators for x-ray and neutron production. Support from ONR, AFOSR, and LANL.

  7. Smart Grid in Denmark. Appendix report; Smart Grid i Danmark. Bilagsrapport

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Electricity consumption and electricity production in Denmark will change significantly in future years. Electricity customers will demand new services in line with that they replace oil furnaces with electric heat pumps and the traditional petrol car with an electric car. The electricity sector must be ready to deliver those services with the same high delivery reliability as before. This must happen in a situation where power generation is increasingly coming from renewable energy. The purpose of the present analysis was to describe and analyse the specific challenges facing the electricity system in the next 15 to 25 years. Energinet.dk and the Danish Energy Association has analysed the part of the Smart Grid that enables an efficient interaction between wind power production, heat pumps in residential buildings as well as electric and plug-in hybrid cars. The appendix report describes the following issues: Scenarios for the power system's future loads; Optimisation of the power distribution grid for the future; Electro technical challenges in the future power grid; Components for handling the future challenges; Value of power system deliveries through establishing a Smart Grid; Economic analyses. (ln)

  8. Synergisms between smart metering and smart grid; Synergien zwischen Smart Metering und Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Peter [IDS GmbH, Ettlingen (Germany)

    2010-04-15

    With the implementation of a smart metering solution, it is not only possible to acquire consumption data for billing but also to acquire relevant data of the distribution grid for grid operation. There is still a wide gap between the actual condition and the target condition. Synergies result from the use of a common infrastructure which takes account both of the requirements of smart metering and of grid operation. An open architecture also enables the future integration of further applications of the fields of smart grid and smart home. (orig.)

  9. Integrating decentralized electrically powered thermal supply systems into a Smart Grid

    OpenAIRE

    Hasselmann, Maike; Beier, Carsten

    2015-01-01

    The goal of the project “Smart Region Pellworm” is the establishment and operation of a smart grid with a hybrid energy storage system on the German island of Pellworm. One part of the project is the integration of power-to-heat appliances into the smart grid for demand side management purposes. This paper deals with the prerequisites and lessons learned from the integration of electric night storage heaters into Pellworm's energy management system. Special focus lies on the development of a ...

  10. Big Data Analytics for Dynamic Energy Management in Smart Grids

    OpenAIRE

    Diamantoulakis, Panagiotis D.; Kapinas, Vasileios M.; Karagiannidis, George K.

    2015-01-01

    The smart electricity grid enables a two-way flow of power and data between suppliers and consumers in order to facilitate the power flow optimization in terms of economic efficiency, reliability and sustainability. This infrastructure permits the consumers and the micro-energy producers to take a more active role in the electricity market and the dynamic energy management (DEM). The most important challenge in a smart grid (SG) is how to take advantage of the users' participation in order to...

  11. Technical Research on the Electric Power Big Data Platform of Smart Grid

    OpenAIRE

    Ruiguang MA; Haiyan Wang; Quanming Zhang; Yuan Liang

    2017-01-01

    Through elaborating on the associated relationship among electric power big data, cloud computing and smart grid, this paper put forward general framework of electric power big data platform based on the smart grid. The general framework of the platform is divided into five layers, namely data source layer, data integration and storage layer, data processing and scheduling layer, data analysis layer and application layer. This paper makes in-depth exploration and studies the integrated manage...

  12. An Energy Management Service for the Smart Office

    Directory of Open Access Journals (Sweden)

    Cristina Rottondi

    2015-10-01

    Full Text Available The evolution of the electricity grid towards the smart grid paradigm is fostering the integration of distributed renewable energy sources in smart buildings: a combination of local power generation, battery storage and controllable loads can greatly increase the energetic self-sufficiency of a smart building, enabling it to maximize the self-consumption of photovoltaic electricity and to participate in the energy market, thus taking advantage of time-variable tariffs to achieve economic savings. This paper proposes an energy management infrastructure specifically tailored for a smart office building, which relies on measured data and on forecasting algorithms to predict the future patterns of both local energy generation and power loads. The performance is compared to the optimal energy usage scheduling, which would be obtained assuming the exact knowledge of the future energy production and consumption trends, showing gaps below 10% with respect to the optimum.

  13. Development of a program for evaluating the temperature of SMART-P fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Jin Sik; Lee, Byung Ho; Koo, Yang Hyun; Oh, Je Yong; Yim, Jeong Sik; Sohn, Dong Seong

    2003-11-01

    A code for evaluating the temperature of SMART-P fuel rod has been developed. Finite Element (FE) method is adopted for the developed code sharing the user subroutines which has been prepared for the ABAQUS commercial FE code. The developed program for SMART-P fuel rod corresponds to a nonlinear transient heat transfer problem, and uses a sparse matrix solver for FE equations during iterations at every time step. The verifications of the developed program were conducted using the ABAQUS code. Steady state and transient problems were analyzed for 1/8 rod model due to the symmetry of the fuel rod and full model. From the evaluation of temperature for the 1/8 rod model at steady state, maximal error of 0.18 % was present relative to the ABAQUS result. Analysis for the transient problem using the fuel rod model resulted in the same as the variation of centerline temperature from the ABAQUS code during a hypothetical power transient. Also, given a power depression in fuel meat as a function of burnup, its effect on the centerline temperature was more precisely evaluated by the developed program compared to the ABAQUS code. The distribution of heat flux for the entire cross section and surface was almost identical for the two codes.

  14. Power Admission Control with Predictive Thermal Management in Smart Buildings

    DEFF Research Database (Denmark)

    Yao, Jianguo; Costanzo, Giuseppe Tommaso; Zhu, Guchuan

    2015-01-01

    This paper presents a control scheme for thermal management in smart buildings based on predictive power admission control. This approach combines model predictive control with budget-schedulability analysis in order to reduce peak power consumption as well as ensure thermal comfort. First...

  15. An Embedded System in Smart Inverters for Power Quality and Safety Functionality

    Directory of Open Access Journals (Sweden)

    Rafael Real-Calvo

    2016-03-01

    Full Text Available The electricity sector is undergoing an evolution that demands the development of a network model with a high level of intelligence, known as a Smart Grid. One of the factors accelerating these changes is the development and implementation of renewable energy. In particular, increased photovoltaic generation can affect the network’s stability. One line of action is to provide inverters with a management capacity that enables them to act upon the grid in order to compensate for these problems. This paper describes the design and development of a prototype embedded system able to integrate with a photovoltaic inverter and provide it with multifunctional ability in order to analyze power quality and operate with protection. The most important subsystems of this prototype are described, indicating their operating fundamentals. This prototype has been tested with class A protocols according to IEC 61000-4-30 and IEC 62586-2. Tests have also been carried out to validate the response time in generating orders and alarm signals for protections. The highlights of these experimental results are discussed. Some descriptive aspects of the integration of the prototype in an experimental smart inverter are also commented upon.

  16. An integrated model for long-term power generation planning toward future smart electricity systems

    International Nuclear Information System (INIS)

    Zhang, Qi; Mclellan, Benjamin C.; Tezuka, Tetsuo; Ishihara, Keiichi N.

    2013-01-01

    Highlights: • An integrated model for planning future smart electricity systems was developed. • The model consists of an optimization model and an hour-by-hour simulation model. • The model was applied to Tokyo area, Japan in light of the Fukushima Accident. • Paths to best generation mixes of smart electricity systems were obtained. • Detailed hourly operation patterns in smart electricity systems were obtained. - Abstract: In the present study, an integrated planning model was developed to find economically/environmentally optimized paths toward future smart electricity systems with high level penetration of intermittent renewable energy and new controllable electric devices at the supply and demand sides respectively for regional scale. The integrated model is used to (i) plan the best power generation and capacity mixes to meet future electricity demand subject to various constraints using an optimization model; (ii) obtain detailed operation patterns of power plants and new controllable electric devices using an hour-by-hour simulation model based on the obtained optimized power generation mix. As a case study, the model was applied to power generation planning in the Tokyo area, Japan, out to 2030 in light of the Fukushima Accident. The paths toward best generation mixes of smart electricity systems in 2030 based on fossil fuel, hydro power, nuclear and renewable energy were obtained and the feasibility of the integrated model was proven

  17. A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework

    Science.gov (United States)

    Hernández, Luis; Baladrón, Carlos; Aguiar, Javier M.; Calavia, Lorena; Carro, Belén; Sánchez-Esguevillas, Antonio; Cook, Diane J.; Chinarro, David; Gómez, Jorge

    2012-01-01

    One of the main challenges of today's society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc.) have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid) applications.

  18. A survey on the contributions of power electronics to smart grid systems

    OpenAIRE

    COLAK ILHAMI; KABALCI Ersan; FULLI Gianluca; LAZAROU STAVROS

    2014-01-01

    The smart grid (SG) as a research area is advancing dealing with a wider range of topics such as power systems, energy generation and telecommunication. The conventional utility grid used to operate in a passive mode absorbing energy from the substations and delivering it to the customers. This approach is well developed but the needs of the state-of-the-art technology require a bidirectional flow of power and data. Nevertheless, smart grid systems provide more flexible, reliable, sustainable...

  19. SmartCampusAAU

    DEFF Research Database (Denmark)

    Hansen, Rene; Thomsen, Bent; Thomsen, Lone Leth

    2013-01-01

    This paper describes SmartCampusAAU - an open, extendable platform that supports the easy creation of indoor location based systems. SmartCampusAAU offers an app and backend that can be used to enable indoor positioning and navigation in any building. The SmartCampusAAU app is available on all ma...... major mobile platforms (Android, iPhone and Windows Phone) and supports both device- and infrastructure-based positioning. SmartCampusAAU also offers a publicly available OData backend that allows researchers to share radio map and location tracking data.......This paper describes SmartCampusAAU - an open, extendable platform that supports the easy creation of indoor location based systems. SmartCampusAAU offers an app and backend that can be used to enable indoor positioning and navigation in any building. The SmartCampusAAU app is available on all...

  20. The rise of smart customers. How consumer power will change the global power and utilities business. What the sector thinks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    This report is the second in a two-part study, geared to helping power and utilities companies adapt their business strategies and customer handling in a new smart world. It explores the views of power and utilities leaders across 12 countries on how smart might change consumers' needs and behaviors, what new services they plan to offer and where they see the strongest new opportunities and competitors. We also compare these results with those of the first study, which examined the views of consumers and their appetite for new smart services.

  1. Economical regulation power through load shifting with smart energy appliances

    NARCIS (Netherlands)

    Vlot, M.C.; Knigge, J.D.; Slootweg, J.G.

    2013-01-01

    This paper considers the technical and economical feasibility of the introduction of automated demand response from domestic smart appliances in a European setting as a means to create a significant amount of regulating power. Simplified power-time flexibility models for appliances are introduced on

  2. Smart grid security

    Energy Technology Data Exchange (ETDEWEB)

    Cuellar, Jorge (ed.) [Siemens AG, Muenchen (Germany). Corporate Technology

    2013-11-01

    The engineering, deployment and security of the future smart grid will be an enormous project requiring the consensus of many stakeholders with different views on the security and privacy requirements, not to mention methods and solutions. The fragmentation of research agendas and proposed approaches or solutions for securing the future smart grid becomes apparent observing the results from different projects, standards, committees, etc, in different countries. The different approaches and views of the papers in this collection also witness this fragmentation. This book contains the following papers: 1. IT Security Architecture Approaches for Smart Metering and Smart Grid. 2. Smart Grid Information Exchange - Securing the Smart Grid from the Ground. 3. A Tool Set for the Evaluation of Security and Reliability in Smart Grids. 4. A Holistic View of Security and Privacy Issues in Smart Grids. 5. Hardware Security for Device Authentication in the Smart Grid. 6. Maintaining Privacy in Data Rich Demand Response Applications. 7. Data Protection in a Cloud-Enabled Smart Grid. 8. Formal Analysis of a Privacy-Preserving Billing Protocol. 9. Privacy in Smart Metering Ecosystems. 10. Energy rate at home Leveraging ZigBee to Enable Smart Grid in Residential Environment.

  3. Towards a framework of smart city diplomacy

    Science.gov (United States)

    Mursitama, T. N.; Lee, L.

    2018-03-01

    This article addresses the impact of globalization on the contemporary society, particularly the role of the city that is becoming increasingly important. Three distinct yet intertwine aspects such as decentralization, technology, and para diplomacy become antecedent of competitiveness of the city. A city has more power and authority in creating wealth and prosperity of the society by utilizing technology. The smart city, in addition to the importance of technology as enabler, we argue that possessing the sophisticated technology and apply it towards the matter is not enough. The smart city needs to build smart diplomacy at the sub-national level. In this article, we extend the discussion about smart city by proposing a new framework of smart city diplomacy as one way to integrate information technology, public policy and international relations which will be the main contribution to literature and practice.

  4. VDE congress 2012 Smart Grid. Intelligent energy supply of the future. Lectures; VDE-Kongress 2012 Smart Grid. Intelligente Energieversorgung der Zukunft. Kongressbeitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The optimal design of the process of energy production and power distribution conserving resources requires an intensive interdisciplinary cooperation between engineers of different disciplines. A major challenge for a functioning, nationwide infrastructure comes along that will result in new business models and business processes. The VDE Congress 'Smart Grids' on 5th to 6th November 2012 at the International Congress Center Stuttgart (Federal Republic of Germany) enables an intensive knowledge exchange due to the following six topics: Smart home; intelligent load management; smart metering and business models; network infrastructure; smart grid applications / services; society and resources. The range of presentations from overview lectures to specialist presentations on important aspects of the smart grid is a particular feature of this event.

  5. Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable

    International Nuclear Information System (INIS)

    Kim, In-Ho; Jung, Hyung-Jo; Koo, Jeong-Hoi

    2010-01-01

    This paper investigates the effectiveness of a self-powered smart damping system consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) device in reducing cable vibrations. The proposed smart damping system incorporates an EMI device, which is capable of converting vibration energy into useful electrical energy. Thus, the incorporated EMI device can be used as an alternative power source for the MR damper, making it a self-powering system. The primary goal of this experimental study is to evaluate the performance of the proposed smart damping system using a full-scale, 44.7 m long, high-tension cable. To this end, an EMI part and an MR damper were designed and manufactured. Using a cable test setup in a laboratory setting, a series of tests were performed to evaluate the effectiveness of the self-powered smart damping system in reducing free vibration responses of the cable. The performances of the proposed smart damping system are compared with those of an equivalent passive system. Moreover, the damping characteristics of the smart damping system and the passive system are compared. The experimental results show that the self-powered smart damping system outperforms the passive control cases in reducing the vibrations of the cable. The results also show that the EMI can operate the smart damping system as a sole power source, demonstrating the feasibility of the self-powering capability of the system

  6. Smart Grid as advanced technology enabler of demand response

    Energy Technology Data Exchange (ETDEWEB)

    Gellings, C.W.; Samotyj, M. [Electric Power Research Institute (EPRI), Palo Alto, CA (United States)

    2013-11-15

    Numerous papers and articles presented worldwide at different conferences and meetings have already covered the goals, objectives, architecture, and business plans of Smart Grid. The number of electric utilities worldwide has followed up with demonstration and deployment efforts. Our initial assumptions and expectations of Smart Grid functionality have been confirmed. We have indicated that Smart Grid will fulfill the following goals: enhance customer service, improve operational efficiency, enhance demand response and load control, transform customer energy use behavior, and support new utility business models. For the purpose of this paper, we shall focus on which of those above-mentioned Smart Grid functionalities are going to facilitate the ever-growing need for enhanced demand response and load control.

  7. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid.

    Science.gov (United States)

    Byambasuren, Bat-Erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-02-19

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  8. Lessons learned about [F-18]-AV-1451 off-target binding from an autopsy-confirmed Parkinson's case.

    Science.gov (United States)

    Marquié, Marta; Verwer, Eline E; Meltzer, Avery C; Kim, Sally Ji Who; Agüero, Cinthya; Gonzalez, Jose; Makaretz, Sara J; Siao Tick Chong, Michael; Ramanan, Prianca; Amaral, Ana C; Normandin, Marc D; Vanderburg, Charles R; Gomperts, Stephen N; Johnson, Keith A; Frosch, Matthew P; Gómez-Isla, Teresa

    2017-10-19

    [F-18]-AV-1451 is a novel positron emission tomography (PET) tracer with high affinity to neurofibrillary tau pathology in Alzheimer's disease (AD). PET studies have shown increased tracer retention in patients clinically diagnosed with dementia of AD type and mild cognitive impairment in regions that are known to contain tau lesions. In vivo uptake has also consistently been observed in midbrain, basal ganglia and choroid plexus in elderly individuals regardless of their clinical diagnosis, including clinically normal whose brains are not expected to harbor tau pathology in those areas. We and others have shown that [F-18]-AV-1451 exhibits off-target binding to neuromelanin, melanin and blood products on postmortem material; and this is important for the correct interpretation of PET images. In the present study, we further investigated [F-18]-AV-1451 off-target binding in the first autopsy-confirmed Parkinson's disease (PD) subject who underwent antemortem PET imaging. The PET scan showed elevated [F-18]-AV-1451 retention predominantly in inferior temporal cortex, basal ganglia, midbrain and choroid plexus. Neuropathologic examination confirmed the PD diagnosis. Phosphor screen and high resolution autoradiography failed to show detectable [F-18]-AV-1451 binding in multiple brain regions examined with the exception of neuromelanin-containing neurons in the substantia nigra, leptomeningeal melanocytes adjacent to ventricles and midbrain, and microhemorrhages in the occipital cortex (all reflecting off-target binding), in addition to incidental age-related neurofibrillary tangles in the entorhinal cortex. Additional legacy postmortem brain samples containing basal ganglia, choroid plexus, and parenchymal hemorrhages from 20 subjects with various neuropathologic diagnoses were also included in the autoradiography experiments to better understand what [F-18]-AV-1451 in vivo positivity in those regions means. No detectable [F-18]-AV-1451 autoradiographic binding was

  9. An Informatics Approach to Demand Response Optimization in Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Simmhan, Yogesh; Aman, Saima; Cao, Baohua; Giakkoupis, Mike; Kumbhare, Alok; Zhou, Qunzhi; Paul, Donald; Fern, Carol; Sharma, Aditya; Prasanna, Viktor K

    2011-03-03

    Power utilities are increasingly rolling out “smart” grids with the ability to track consumer power usage in near real-time using smart meters that enable bidirectional communication. However, the true value of smart grids is unlocked only when the veritable explosion of data that will become available is ingested, processed, analyzed and translated into meaningful decisions. These include the ability to forecast electricity demand, respond to peak load events, and improve sustainable use of energy by consumers, and are made possible by energy informatics. Information and software system techniques for a smarter power grid include pattern mining and machine learning over complex events and integrated semantic information, distributed stream processing for low latency response,Cloud platforms for scalable operations and privacy policies to mitigate information leakage in an information rich environment. Such an informatics approach is being used in the DoE sponsored Los Angeles Smart Grid Demonstration Project, and the resulting software architecture will lead to an agile and adaptive Los Angeles Smart Grid.

  10. SBLOCA analysis to set-up the long term cooling plan for the SMART-P

    International Nuclear Information System (INIS)

    Bae, K. H.; Lee, G. H.; Lee, J.; Kim, H. C.; Zee, S. Q.

    2005-01-01

    SMART-P is a pilot plant of the SMART (System-integrated Modular Advanced ReacTor) producing a maximum thermal power of 65.5 MW. Different from the conventional loop type PWRs, the SMART-P contains the reactor coolant and the major primary circuit components, such as the core, two Main Coolant Pumps (MCPs), twelve SG cassettes, and the PZR in a single Reactor Pressure Vessel (RPV). Due to this integral arrangement of the primary system, only the small branch line break or leak through a component penetrating the RPV is postulated. Also, the reactor building spray system is not adopted in the SMART-P design. Thus, the energy released into the reactor building is removed by the condensation on the surface of the passive heat sinks and is transferred to the reactor building sump. After a Small Break Loss of Coolant Accident (SBLOCA), the Reactor Coolant System (RCS) pressure decreases rapidly. When the PZR pressure reaches the low-pressure reactor trip setpoint, the control rods drop into the core and decrease the core power rapidly. Simultaneously with the reactor trip, the MCPs start to coastdown, the main steam and feedwater isolation valves are closed, and the Passive Residual Heat Removal System (PRHRS) is connected to the secondary side of the SG. As the RCS pressure decreases to the safety injection actuation setpoint, a safety injection pump starts to deliver the cold coolant from the RWST to the RPV. Afterwards, the Safety Injection System (SIS) and PRHRS cool the RCS to the hot shutdown condition (200 .deg. C). When the RWST level reaches a low-level setpoint, Recirculation Actuation Signal (RAS) is generated, which transfers the suction of the SIS from the RWST to the reactor building sump. Long Term Cooling (LTC) operation after a SBLOCA is continued until the plant reaches a safe temperature level by using the SIS and PRHRS. In the SMART-P, the normal Shutdown Cooling System (SCS) is designed to cool the RCS from the hot shutdown condition (200 .deg. C

  11. Pittsburgh Compound B and AV-1451 positron emission tomography assessment of molecular pathologies of Alzheimer's disease in progressive supranuclear palsy.

    Science.gov (United States)

    Whitwell, Jennifer L; Ahlskog, J Eric; Tosakulwong, Nirubol; Senjem, Matthew L; Spychalla, Anthony J; Petersen, Ronald C; Jack, Clifford R; Lowe, Val J; Josephs, Keith A

    2018-03-01

    Little is known about Alzheimer's disease molecular proteins, beta-amyloid and paired helical filament (PHF) tau, in progressive supranuclear palsy (PSP). Recent techniques have been developed to allow for investigations of these proteins in PSP. We determined the frequency of beta-amyloid deposition in PSP, and whether beta-amyloid deposition in PSP is associated with PHF-tau deposition pattern, or clinical features. Thirty probable PSP participants underwent MRI, [ 18 F]AV-1451 PET and Pittsburgh compound B (PiB) PET. Apolipoprotein (APOE) genotyping was also performed. A global PiB standard-uptake value ratio (SUVR) was calculated. AV-1451 SUVRs were calculated for a set of Alzheimer's disease (AD)-related regions and a set of PSP-related regions. Voxel-level analyses were conducted to assess for differences in AV-1451 uptake patterns and MRI atrophy between PiB(+) and PiB(-) cases compared to 60 normal PiB(-) controls. Statistical testing for correlations and associations between variables of interest were also performed. Twelve subjects (40%) showed beta-amyloid deposition. Higher PiB SUVR correlated with older age but not with AV-1451 SUVR in the AD- or PSP-related regions. Higher AV-1451 SUVR in AD-related regions was associated with higher AV-1451 SUVR in PSP-related regions. We found little evidence for beta-amyloid related differences in clinical metrics, proportion of APOE e4 carriers, pattern of AV-1451 uptake, or pattern of atrophy. Beta-amyloid deposition occurs in a relatively high proportion of PSP subjects. Unlike in Alzheimer's disease, however, there is little evidence that beta-amyloid, and PHF-tau, play a significant role in neurodegeneration in PSP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The energy aware smart home

    OpenAIRE

    Jahn, M.; Jentsch, M.; Prause, C.R.; Pramudianto, F.; Al-Akkad, A.; Reiners, R.

    2010-01-01

    In this paper, we present a novel smart home system integrating energy efficiency features. The smart home application is built on top of Hydra, a middleware framework that facilitates the intelligent communication of heterogeneous embedded devices through an overlay P2P network. We interconnect common devices available in private households and integrate wireless power metering plugs to gain access to energy consumption data. These data are used for monitoring and analyzing consumed energy o...

  13. Smart Home and Smart City Solutions enabled by 5G, IoT, AAI and CoT Services

    DEFF Research Database (Denmark)

    Skouby, Knud Erik; Lynggaard, Per

    2014-01-01

    Future 5G technologies are expected to connect the world from the largest megacities to the smallest internet of things in an always online fashion. Such a connected hierarchy must combine the smart cities, the smart homes, and the internet of things into one large coherent infrastructure...... such as interconnected internet of things, smart homes with artificial intelligence, and a platform for new combined smart home and smart city services based on big-data....

  14. IEEE 1451.1 Standard and XML Web Services: a Powerful Combination to Build Distributed Measurement and Control Systems

    OpenAIRE

    Viegas, Vítor; Pereira, José Dias; Girão, P. Silva

    2006-01-01

    In 2005, we presented the NCAP/XML, a prototype of NCAP (Network Capable Application Processor) that runs under the .NET Framework and makes available its functionality through a set of Web Services using XML (eXtended Markup Language). Giving continuity to this project, it is time to explain how to use the NCAP/XML to build a Distributed Measurement and Control System (DMCS) compliant with the 1451.1 Std. This paper is divided in two main parts: in the first part, we present the new software...

  15. A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework

    Directory of Open Access Journals (Sweden)

    David Chinarro

    2012-08-01

    Full Text Available One of the main challenges of today’s society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc. have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid applications.

  16. Hard, Soft or Smart Power: Conceptual Discussion or Strategic Definition?

    OpenAIRE

    Brito, Brígida

    2010-01-01

    The reflection presented here summarizes the discussions around conceptual differences, advantages, and risks associated with strategies inherent to Hard Power and Soft Power, as well as the emergent concept of Smart Power. The opportunity for this reflection was provided by the participation in the conference “Hard Vs. Soft Power: Foreign Policy Strategies in Contemporary International Relations” organised by the Academy for Cultural Diplomacy, at Cambridge University, in June 2010.

  17. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid

    Directory of Open Access Journals (Sweden)

    Bat-erdene Byambasuren

    2016-02-01

    Full Text Available Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  18. Impact of stand-by energy losses in electronic devices on smart network performance

    OpenAIRE

    Mandić-Lukić Jasmina S.; Pantović Vladan S.; Vasiljević Željko S.

    2012-01-01

    Limited energy resources and environmental concerns due to ever increasing energy consumption, more and more emphasis is being put on energy savings. Smart networks are promoted worldwide as a powerful tool used to improve the energy efficiency through consumption management, as well as to enable the distributed power generation, primarily based on renewable energy sources, to be optimally explored. To make it possible for the smart networks to function, a large number of electronic dev...

  19. Assessment of demand-response-driven load pattern elasticity using a combined approach for smart households

    NARCIS (Netherlands)

    Paterakis, N.G.; Tascikaraoglu, A.; Erdinç, O.; Bakirtzis, A.G.; Catalaõ, J.P.S.

    2016-01-01

    The recent interest in the smart grid vision and the technological advancement in the communication and control infrastructure enable several smart applications at different levels of the power grid structure, while specific importance is given to the demand side. As a result, changes in load

  20. Smart Grid Integration Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Troxell, Wade [Colorado State Univ., Fort Collins, CO (United States)

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3

  1. Intelligent Sensors for Integrated Systems Health Management (ISHM)

    Science.gov (United States)

    Schmalzel, John L.

    2008-01-01

    IEEE 1451 Smart Sensors contribute to a number of ISHM goals including cost reduction achieved through: a) Improved configuration management (TEDS); and b) Plug-and-play re-configuration. Intelligent Sensors are adaptation of Smart Sensors to include ISHM algorithms; this offers further benefits: a) Sensor validation. b) Confidence assessment of measurement, and c) Distributed ISHM processing. Space-qualified intelligent sensors are possible a) Size, mass, power constraints. b) Bus structure/protocol.

  2. Transforming Ordinary Buildings into Smart Buildings via Low-Cost, Self-Powering Wireless Sensors & Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Philip [Case Western Reserve Univ., Cleveland, OH (United States)

    2017-06-09

    The research objective of this project is to design and demonstrate a low-cost, compact, easy-to-deploy, maintenance-free sensor node technology, and a network of such sensors, which enable the monitoring of multiphysical parameters and can transform today’s ordinary buildings into smart buildings with environmental awareness. We develop the sensor node and network via engineering and integration of existing technologies, including high-efficiency mechanical energy harvesting, and ultralow-power integrated circuits (ICs) for sensing and wireless communication. Through integration and innovative power management via specifically designed low-power control circuits for wireless sensing applications, and tailoring energy-harvesting components to indoor applications, the target products will have smaller volume, higher efficiency, and much lower cost (in both manufacturing and maintenance) than the baseline technology. Our development and commercialization objective is to create prototypes for our target products under the CWRU-Intwine collaboration.

  3. Facilitating sustainability through smart network design in combination with virtual power plant operation

    NARCIS (Netherlands)

    El Bakari, K.; Kling, W.L.

    2010-01-01

    While smart grids are considered as an outcome to integrate a high penetration level of dispersed generation (DG) in the power system, most distribution networks are still passive controlled. To accelerate the transition towards smart grids network operators can take two important steps: 1.

  4. Co-Simulation of Detailed Whole Building with the Power System to Study Smart Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    Makhmalbaf, Atefe; Fuller, Jason C.; Srivastava, Viraj; Ciraci, Selim; Daily, Jeffrey A.

    2014-12-24

    Modernization of the power system in a way that ensures a sustainable energy system is arguably one of the most pressing concerns of our time. Buildings are important components in the power system. First, they are the main consumers of electricity and secondly, they do not have constant energy demand. Conventionally, electricity has been difficult to store and should be consumed as it is generated. Therefore, maintaining the demand and supply is critical in the power system. However, to reduce the complexity of power models, buildings (i.e., end-use loads) are traditionally modeled and represented as aggregated “dumb” nodes in the power system. This means we lack effective detailed whole building energy models that can support requirements and emerging technologies of the smart power grid. To gain greater insight into the relationship between building energy demand and power system performance, it is important to constitute a co-simulation framework to support detailed building energy modeling and simulation within the power system to study capabilities promised by the modern power grid. This paper discusses ongoing work at Pacific Northwest National Laboratory and presents underlying tools and framework needed to enable co-simulation of building, building energy systems and their control in the power system to study applications such as demand response, grid-based HVAC control, and deployment of buildings for ancillary services. The optimal goal is to develop an integrated modeling and simulation platform that is flexible, reusable, and scalable. Results of this work will contribute to future building and power system studies, especially those related to the integrated ‘smart grid’. Results are also expected to advance power resiliency and local (micro) scale grid studies where several building and renewable energy systems transact energy directly. This paper also reviews some applications that can be supported and studied using the framework introduced

  5. Economic MPC for Power Management in the Smart Grid

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Edlund, Kristian; Jørgensen, John Bagterp

    2011-01-01

    To increase the amount of green energy (e.g. solar and wind) significantly a new intelligent electrical infrastructure is needed. We must not only control the production of electricity but also the consumption in an efficient and proactive manner. This future intelligent grid is in Europe known...... as the SmartGrid. In this paper we demonstrate the use of Economic Model Predictive Control to operate a portfolio of power generators and consumers such that the cost of producing the required power is minimized. With conventional coal and gas fired power generators representing the controllable power...

  6. CERISE - Combining energy and spatial information standards as enabler for smart grids - TKI smart grid project : TKISG01010 - D4.1 Semantic mappings to harmonize energy, geo and government-related information models. Work package 40

    NARCIS (Netherlands)

    Steen, M.; Knibbe, F.; Quak, C.W.; Janssen, P.; Stap, R.; Daniele, L.

    2015-01-01

    Version 1.0 - Final The CERISE-SG project (Combining Energy and Geo information standards as enabler for Smart Grids) focuses on interoperability with a special interest in the information exchanges between smart grids and their surroundings. We hereby focus on the exchange of information to and

  7. Novel Simulation Approaches for Smart Grids

    Directory of Open Access Journals (Sweden)

    Eleftherios Tsampasis

    2016-06-01

    Full Text Available The complexity of the power grid, in conjunction with the ever increasing demand for electricity, creates the need for efficient analysis and control of the power system. The evolution of the legacy system towards the new smart grid intensifies this need due to the large number of sensors and actuators that must be monitored and controlled, the new types of distributed energy sources that need to be integrated and the new types of loads that must be supported. At the same time, integration of human-activity awareness into the smart grid is emerging and this will allow the system to monitor, share and manage information and actions on the business, as well as the real world. In this context, modeling and simulation is an invaluable tool for system behavior analysis, energy consumption estimation and future state prediction. In this paper, we review current smart grid simulators and approaches for building and user behavior modeling, and present a federated smart grid simulation framework, in which building, control and user behavior modeling and simulation are decoupled from power or network simulators and implemented as discrete components. This framework enables evaluation of the interactions between the communication infrastructure and the power system taking into account the human activities, which are at the focus of emerging energy-related applications that aim to shape user behavior. Validation of the key functionality of the proposed framework is also presented.

  8. ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement.

    Science.gov (United States)

    Xiao, Jian; Zou, Xiang; Xu, Wenyao

    2017-09-26

    "Smart Pavement" is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor-ePave-to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system's performance and explore the trade-off.

  9. Enabling Wind Power Nationwide

    Energy Technology Data Exchange (ETDEWEB)

    Jose Zayas, Michael Derby, Patrick Gilman and Shreyas Ananthan,

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  10. Building Automation Networks for Smart Grids

    Directory of Open Access Journals (Sweden)

    Peizhong Yi

    2011-01-01

    Full Text Available Smart grid, as an intelligent power generation, distribution, and control system, needs various communication systems to meet its requirements. The ability to communicate seamlessly across multiple networks and domains is an open issue which is yet to be adequately addressed in smart grid architectures. In this paper, we present a framework for end-to-end interoperability in home and building area networks within smart grids. 6LoWPAN and the compact application protocol are utilized to facilitate the use of IPv6 and Zigbee application profiles such as Zigbee smart energy for network and application layer interoperability, respectively. A differential service medium access control scheme enables end-to-end connectivity between 802.15.4 and IP networks while providing quality of service guarantees for Zigbee traffic over Wi-Fi. We also address several issues including interference mitigation, load scheduling, and security and propose solutions to them.

  11. Power-managed smart lighting using a semantic interoperability architecture

    NARCIS (Netherlands)

    Bhardwaj, S.; Syed, Aly; Ozcelebi, T.; Lukkien, J.J.

    2011-01-01

    We present a power-managed smart lighting system that allows collaboration of Consumer Electronics (CE) lighting-devices and corresponding system architectures provided by different CE suppliers. In the example scenario, the rooms of a building are categorized as low- and highpriority, each category

  12. Smart and Intelligent Sensors

    Science.gov (United States)

    Lansaw, John; Schmalzel, John; Figueroa, Jorge

    2009-01-01

    John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.Better approaches are needed to simplify sensor integration and help reduce life-cycle costs. 1.Smarter sensors. Sensor integration should be a matter of "plug-and-play" making sensors easier to add to a system. Sensors that implement new standards can help address this problem; for example, IEEE STD 1451.4 defines transducer electronic data sheet (TEDS) templates for commonly used sensors such as bridge elements and thermocouples. When a 1451.4 compliant smart sensor is connected to a system that can read the TEDS memory, all information needed to configure the data acquisition system can be uploaded. This reduces the amount of labor required and helps minimize configuration errors. 2.Intelligent sensors. Data received from a sensor be scaled, linearized; and converted to engineering units. Methods to reduce sensor processing overhead at the application node are needed. Smart sensors using low-cost microprocessors with integral data acquisition and communication support offer the means to add these capabilities. Once a processor is embedded, other features can be added; for example, intelligent sensors can make

  13. Energy Storage System Control Algorithm by Operating Target Power to Improve Energy Sustainability of Smart Home

    Directory of Open Access Journals (Sweden)

    Byeongkwan Kang

    2018-01-01

    Full Text Available As energy issues are emerging around the world, a variety of smart home technologies aimed at realizing zero energy houses are being introduced. Energy storage system (ESS for smart home energy independence is increasingly gaining interest. However, limitations exist in that most of them are controlled according to time schedules or used in conjunction with photovoltaic (PV generation systems. In consideration of load usage patterns and PV generation of smart home, this study proposes an ESS control algorithm that uses constant energy of energy network while making maximum use of ESS. Constant energy means that the load consumes a certain amount of power under all conditions, which translates to low variability. The proposed algorithm makes a smart home a load of energy network with low uncertainty and complexity. The simulation results show that the optimal ESS operating target power not only makes the smart home use power constantly from the energy network, but also maximizes utilization of the ESS. In addition, since the smart home is a load that uses constant energy, it has the advantage of being able to operate an efficient energy network from the viewpoint of energy providers.

  14. Power-managed smart lighting using a semantic interoperability architecture

    NARCIS (Netherlands)

    Bhardwaj, S.; Syed, Aly; Ozcelebi, T.; Lukkien, J.J.

    2011-01-01

    This paper presents a power-managed smart lighting system that allows collaboration of lighting consumer electronics (CE) devices and corresponding system architectures provided by different CE suppliers. In the example scenario, the rooms of a building are categorized as low and high priority, each

  15. Development of Android based Smart Power Saving System

    Science.gov (United States)

    Gupta, Ashutosh; Kumar, Pradeep; Ghosh, Tathagata; Bhawna, Shruthi. S.

    2017-08-01

    An android based smart power saving system has been presented in this paper. For this purpose, an application is developed for controlling the intensity of an AC supply using a dimmer circuit in android platform and to monitor the current flow on different intensity level a current sensor is used in the circuit. Dimmer circuit provides a 16-different intensity level to control the flow of current and help in power saving. The system is very simple and robust as it is based on android platform.

  16. Analysis and improvement of security of energy smart grids

    International Nuclear Information System (INIS)

    Halimi, Halim

    2014-01-01

    The Smart grid is the next generation power grid, which is a new self-healing, self-activating form of electricity network, and integrates power-flow control, increased quality of electricity, and energy reliability, energy efficiency and energy security using information and communication technologies. Communication networks play a critical role in smart grid, as the intelligence of smart grid is built based on information exchange across the power grid. Its two-way communication and electricity flow enable to monitor, predict and manage the energy usage. To upgrade an existing power grid into a smart grid, it requires an intelligent and secure communication infrastructure. Because of that, the main goal of this dissertation is to propose new architecture and implementation of algorithms for analysis and improvement of the security and reliability in smart grid. In power transmission segments of smart grid, wired communications are usually adopted to ensure robustness of the backbone power network. In contrast, for a power distribution grid, wireless communications provide many benefits such as low cost high speed links, easy setup of connections among different devices/appliances, and so on. Wireless communications are usually more vulnerable to security attacks than wired ones. Developing appropriate wireless communication architecture and its security measures is extremely important for a smart grid system. This research addresses physical layer security in a Wireless Smart Grid. Hence a defense Quorum- based algorithm is proposed to ensure physical security in wireless communication. The new security architecture for smart grid that supports privacy-preserving, data aggregation and access control is defined. This architecture consists of two parts. In the first part we propose to use an efficient and privacy-preserving aggregation scheme (EPPA), which aggregates real-time data of consumers by Local Gateway. During aggregation the privacy of consumers is

  17. Tweeting : Smart meters raise awareness of energy consumption in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-11-15

    The University of Mississippi (UM) will monitor, analyze and report on energy consumption in its campus buildings in real-time using SmartSynch Smart Meters. The technology uses smart meter data to help identify a detailed pattern of electricity usage with the objective of finding methods to alter behaviour to reduce electricity usage and carbon emissions. SmartSynch installed 16 Smart Meters on campus with additional deployments being planned. The technology will enable the university to monitor energy consumption, track building power performance over time, compare building energy usage, and review the impact of the weather on energy use while reducing its carbon footprint. Additionally, UM will use Facebook, Twitter and an RSS feed to provide regular public updates on its buildings' energy consumption based on SmartSynch Smart Meter data. Each building will have its own profile on the social networking sites. 1 ref., 1 fig.

  18. Tweeting : Smart meters raise awareness of energy consumption in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2009-11-15

    The University of Mississippi (UM) will monitor, analyze and report on energy consumption in its campus buildings in real-time using SmartSynch Smart Meters. The technology uses smart meter data to help identify a detailed pattern of electricity usage with the objective of finding methods to alter behaviour to reduce electricity usage and carbon emissions. SmartSynch installed 16 Smart Meters on campus with additional deployments being planned. The technology will enable the university to monitor energy consumption, track building power performance over time, compare building energy usage, and review the impact of the weather on energy use while reducing its carbon footprint. Additionally, UM will use Facebook, Twitter and an RSS feed to provide regular public updates on its buildings' energy consumption based on SmartSynch Smart Meter data. Each building will have its own profile on the social networking sites. 1 ref., 1 fig.

  19. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  20. Research of Smart Payment System of Power Grid Using Strongly Sub-feasible SQP Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Fang

    2017-01-01

    Full Text Available With the continuous development and perfection of “Internet + Electricity”, the regional grid operation has gradually realized the Internet-based automation. In order to improve the smart level of regional grid operation, this paper analyzes the status quo of power grid terminal in Fujian local power (group company, and introduces the strongly sub-feasible sequence quadratic programming (SQP. The smart payment system based on strongly sub-feasible SQP algorithm is described by its structure, function and implementation process. Through the information technology to improve the efficiency of the service, so that payment staff and smart terminal of self-service payment system has been information between the interactive mode, the actual operation effect is good.

  1. Smart Grid Development Issues for Terrestrial and Space Applications

    Science.gov (United States)

    Soeder, James F.

    2014-01-01

    The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.

  2. High Voltage Smart Power Module For Fault-Tolerant Launcher Applications

    Directory of Open Access Journals (Sweden)

    Richard Debrouwere

    2017-01-01

    This paper presents the design of a low cost and highly integrated smart power module (SPM intended to be used into launchers applications, embedding technologies and components from automotive world and being mainly producible by large-scale industry.

  3. Smart Power: New power integrated circuit technologies and their applications

    Science.gov (United States)

    Kuivalainen, Pekka; Pohjonen, Helena; Yli-Pietilae, Timo; Lenkkeri, Jaakko

    1992-05-01

    Power Integrated Circuits (PIC) is one of the most rapidly growing branches of the semiconductor technology. The PIC markets has been forecast to grow from 660 million dollars in 1990 to 1658 million dollars in 1994. It has even been forecast that at the end of the 1990's the PIC markets would correspond to the value of the whole semiconductor production in 1990. Automotive electronics will play the leading role in the development of the standard PIC's. Integrated motor drivers (36 V/4 A), smart integrated switches (60 V/30 A), solenoid drivers, integrated switch-mode power supplies and regulators are the latest standard devices of the PIC manufactures. ASIC (Application Specific Integrated Circuits) PIC solutions are needed for the same reasons as other ASIC devices: there are no proper standard devices, a company has a lot of application knowhow, which should be kept inside the company, the size of the product must be reduced, and assembly costs are wished to be reduced by decreasing the number of discrete devices. During the next few years the most probable ASIC PIC applications in Finland will be integrated solenoid and motor drivers, an integrated electronic lamp ballast circuit and various sensor interface circuits. Application of the PIC technologies to machines and actuators will strongly be increased all over the world. This means that various PIC's, either standard PIC's or full custom ASIC circuits, will appear in many products which compete with the corresponding Finnish products. Therefore the development of the PIC technologies must be followed carefully in order to immediately be able to apply the latest development in the smart power technologies and their design methods.

  4. Role of proactive behaviour enabled by advanced computational intelligence and ICT in Smart Energy Grids

    NARCIS (Netherlands)

    Nguyen, P.H.; Kling, W.L.; Ribeiro, P.F.; Venayagamoorthy, G.K.; Croes, R.

    2013-01-01

    Significant increase in renewable energy production and new forms of consumption has enormous impact to the electrical power grid operation. A Smart Energy Grid (SEG) is needed to overcome the challenge of a sustainable and reliable energy supply by merging advanced ICT and control techniques to

  5. Advanced smart tungsten alloys for a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  6. Application of epidemic algorithms for smart grids control

    International Nuclear Information System (INIS)

    Krkoleva, Aleksandra

    2012-01-01

    Smart Grids are a new concept for electricity networks development, aiming to provide economically efficient and sustainable power system by integrating effectively the actions and needs of the network users. The thesis addresses the Smart Grids concept, with emphasis on the control strategies developed on the basis of epidemic algorithms, more specifically, gossip algorithms. The thesis is developed around three Smart grid aspects: the changed role of consumers in terms of taking part in providing services within Smart Grids; the possibilities to implement decentralized control strategies based on distributed algorithms; and information exchange and benefits emerging from implementation of information and communication technologies. More specifically, the thesis presents a novel approach for providing ancillary services by implementing gossip algorithms. In a decentralized manner, by exchange of information between the consumers and by making decisions on local level, based on the received information and local parameters, the group achieves its global objective, i. e. providing ancillary services. The thesis presents an overview of the Smart Grids control strategies with emphasises on new strategies developed for the most promising Smart Grids concepts, as Micro grids and Virtual power plants. The thesis also presents the characteristics of epidemic algorithms and possibilities for their implementation in Smart Grids. Based on the research on epidemic algorithms, two applications have been developed. These applications are the main outcome of the research. The first application enables consumers, represented by their commercial aggregators, to participate in load reduction and consequently, to participate in balancing market or reduce the balancing costs of the group. In this context, the gossip algorithms are used for aggregator's message dissemination for load reduction and households and small commercial and industrial consumers to participate in maintaining

  7. POWER THEFT PREVENTION USING SMART METER WITH GSM TECHNIQUE

    OpenAIRE

    S.L.Narnaware#1, P.R.Mandape#2, L.R.Sarate#3 ,A.C.Lokhande#4

    2018-01-01

    Electricity theft is a major concern for the utilities. With the advent of smart meters, the frequency of collecting household energy consumption data has increased, making it possible for advanced data analysis, which was not possible earlier. In developing countries like India, power theft is one of the most prevalent issues which not only cause economic losses but also irregular supply of electricity. It hampers functioning of industries and factories, due to shortage of power supplied to...

  8. Assessment of Extent and Role of Tau in Subcortical Vascular Cognitive Impairment Using 18F-AV1451 Positron Emission Tomography Imaging.

    Science.gov (United States)

    Kim, Hee Jin; Park, Seongbeom; Cho, Hanna; Jang, Young Kyoung; San Lee, Jin; Jang, Hyemin; Kim, Yeshin; Kim, Ko Woon; Ryu, Young Hoon; Choi, Jae Yong; Moon, Seung Hwan; Weiner, Michael W; Jagust, William J; Rabinovici, Gil D; DeCarli, Charles; Lyoo, Chul Hyoung; Na, Duk L; Seo, Sang Won

    2018-05-14

    Amyloid-β (Aβ), tau, and cerebral small vessel disease (CSVD), which occasionally coexist, are the most common causes of cognitive impairments in older people. However, whether tau is observed in patients with subcortical vascular cognitive impairment (SVCI), as well as its associations with Aβ and CSVD, are not yet established. More importantly, the role of tau underlying cognitive impairments in SVCI is unknown. To investigate the extent and the role of tau in patients with SVCI using 18F-AV1451, which is a new ligand to detect neurofibrillary tangles in vivo. This cross-sectional study recruited 64 patients with SVCI from June 2015 to December 2016 at Samsung Medical Center, Seoul, Korea. The patients had significant ischemia on brain magnetic resonance imaging, defined as periventricular white matter hyperintensity at least 10 mm and deep white matter hyperintensity at least 25 mm. We excluded 3 patients with SVCI owing to segmentation error during AV1451 positron emission tomography analysis. We calculated CSVD scores based on the volumes of white matter hyperintensities, numbers of lacunes, and microbleeds using magnetic resonance imaging data. The presence of Aβ was assessed using fluorine 18-labeled (18F) florbetaben positron emission tomography. Tau was measured using 18F-AV1451 positron emission tomography. We determined the spreading order of tau by sorting the regional frequencies of cortical involvement. We evaluated the complex associations between Aβ, CSVD, AV1451 uptake, and cognition in patients with SVCI. Of the 61 patients with SVCI, 44 (72.1%) were women and the mean (SD) age was 78.7 (6.3) years. Patients with SVCI, especially patients with Aβ-negative SVCI, showed higher AV1451 uptake in the inferior temporal areas compared with normal control individuals. In patients with SVCI, Aβ positivity and CSVD score were each independently associated with increased AV1451 uptake in the medial temporal and inferior temporal regions, respectively

  9. A Review of Systems and Technologies for Smart Homes and Smart Grids

    OpenAIRE

    Lobaccaro, Gabriele; Carlucci, Salvatore; Löfström, Erica

    2016-01-01

    In the actual era of smart homes and smart grids, advanced technological systems that allow the automation of domestic tasks are developing rapidly. There are numerous technologies and applications that can be installed in smart homes today. They enable communication between home appliances and users, and enhance home appliances’ automation, monitoring and remote control capabilities. This review article, by introducing the concept of the smart home and the advent of the smart grid, investiga...

  10. Development of Auditing Technology for Accident Analysis of SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, Y. J.; Jeong, J. J.; Kim, H. C.; Chung, Y. J.; Bae, K. H

    2006-02-15

    The objective of this project is to develop thermal hydraulic models of the regulatory auditing codes for the application of SMART-P integrated reactor. At initial period, PIRT has been performed to identify the model deficiencies and determine the priority of model improvements. The identified thermal hydraulic models has been implemented to RELAP5/MOD3.3 auditing code according to the PIRT ranking. The input model for SMART-P has been developed with consistent to the current design status documents and checked by independent reviewer as Q/A procedure.The evaluation of experimental availabilities and code collapsible has been done by expert group and summarized as validation matrix forms. The experimental data of VISTA, which is the only integral effect test facility, were used to validate the improved model. The safety analysis has been demonstrated for the essential accident scenario. The validation and demonstration show that the developed models are applicable to utilize in reliable and independent auditing for SMART design certification.

  11. Smart grid

    International Nuclear Information System (INIS)

    Choi, Dong Bae

    2001-11-01

    This book describes press smart grid from basics to recent trend. It is divided into ten chapters, which deals with smart grid as green revolution in energy with introduction, history, the fields, application and needed technique for smart grid, Trend of smart grid in foreign such as a model business of smart grid in foreign, policy for smart grid in U.S.A, Trend of smart grid in domestic with international standard of smart grid and strategy and rood map, smart power grid as infrastructure of smart business with EMS development, SAS, SCADA, DAS and PQMS, smart grid for smart consumer, smart renewable like Desertec project, convergence IT with network and PLC, application of an electric car, smart electro service for realtime of electrical pricing system, arrangement of smart grid.

  12. Challenging 'smart' in smart city strategies

    DEFF Research Database (Denmark)

    Sandvik, Kjetil; Knudsen, Jacob

    and development. Focusing on processes of citizen participation and co-creation as the main driving force, we introduce a concept of 'smart city at eye level'. The introduction of new media technology and new media uses need to emerge from a profound understanding of the wants, needs and abilities of the citizens......Smart city strategies concern the improvement of economic and political efficiency and the enabling of social, cultural and urban development (Hollands 2008) and covers a variety of fields from improving infrastructures, social and cultural development, resilience strategies (e.g. green energy......), improving schools, social welfare institutions, public and private institutions etc. The 'smart' in smart city strategies implies that these efforts are accomplished by the introduction and embedding of smart media technology into the very fabric of society. This is often done in a top-down and technology...

  13. Smart Energy 2012. How smart is the way towards the turnaround in the energy policy; Smart Energy 2012. Wie smart ist der Weg zur Energiewende?

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, Uwe; Kunold, Ingo (eds.)

    2012-07-01

    The contribution under consideration contains fifteen contributions of well-known authors from commercial enterprises, public institutions and universities on smart energy: (1) Smart grids, but surely (Claudia Eckert); (2) Requirements concerning the further development of data protection and data security as part of the technological change (Reinhold Harnisch); (3) Standardization in the smart grid (Harald Orlamuender); (4) IEC 61850 - The standard for energy automation (Georg Harnischmacher); (5) Smart City, the intelligent grid in the city (Michael Laskowski); (6) IKT is a basis for a real smart power distribution system (Justus Bross); (7) Power transparency and optimized building optimization by means of a holistic automation concepts (Joerg Wollert); (8) Distributed architecture for a balancing aggregation of consumption and generation of power in private households (Kilian Hemmeboehle); (9) Development of an e-energy market place and first experiences from the field test in the E-DeMa project (Bernd Werner); (10) Smart metering rollout pilot ''30,000er'' (Axel Lauterkorn); (11) Experiences with the connexion and communication to smart meters in the project eTelligence (Guenter Pistoor); (12) Smart Phoenix - Intelligent energy networks in Dortmund (Roland Brueggemann); (13) Smart planning (C. Engels); Intelligent house control by means of smart metering (Sabine Wieland); (14) Dynamic billing of energy and value-added service in the networked home (Frank C. Bormann).

  14. Integration of IEEE 1451 and HL7 exchanging information for patients' sensor data.

    Science.gov (United States)

    Kim, Wooshik; Lim, Suyoung; Ahn, Jinsoo; Nah, Jiyoung; Kim, Namhyun

    2010-12-01

    HL7 (Health Level 7) is a standard developed for exchanging incompatible healthcare information generated from programs or devices among heterogenous medical information systems. At present, HL7 is growing as a global standard. However, the HL7 standard does not support effective methods for treating data from various medical sensors, especially from mobile sensors. As ubiquitous systems are growing, HL7 must communicate with various medical transducers. In the area of sensor fields, IEEE 1451 is a group of standards for controlling transducers and for communicating data from/to various transducers. In this paper, we present the possibility of interoperability between the two standards, i.e., HL7 and IEEE 1451. After we present a method to integrate them and show the preliminary results of this approach.

  15. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  16. Power system voltage stability and agent based distribution automation in smart grid

    Science.gov (United States)

    Nguyen, Cuong Phuc

    2011-12-01

    Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and

  17. Monitoring of a micro-smart grid: Power consumption data of some machineries of an agro-industrial test site.

    Science.gov (United States)

    Fabrizio, Enrico; Biglia, Alessandro; Branciforti, Valeria; Filippi, Marco; Barbero, Silvia; Tecco, Giuseppe; Mollo, Paolo; Molino, Andrea

    2017-02-01

    For the management of a (micro)-smart grid it is important to know the patters of the load profiles and of the generators. In this article the power consumption data obtained through a monitoring activity developed on a micro-smart grid in an agro-industrial test-site are presented. In particular, this reports the synthesis of the monitoring results of 5 loads (5 industrial machineries for crop micronization, corncob crashing and other similar processes). How these data were used within a monitoring and managing scheme of a micro-smart grid can be found in (E. Fabrizio, V. Branciforti, A. Costantino, M. Filippi, S. Barbero, G. Tecco, P. Mollo, A. Molino, 2017) [1]. The data can be useful for other researchers in order to create benchmarks of energy use input appropriate energy demand values in optimization tools for the industrial sector.

  18. Smart Cities as Organizational Fields: A Framework for Mapping Sustainability-Enabling Configurations

    Directory of Open Access Journals (Sweden)

    Paul Pierce

    2017-08-01

    Full Text Available Despite the impressive growth of smart city initiatives worldwide, an organizational theory of smart city has yet to be developed, and we lack models addressing the unprecedented organizational and management challenges that emerge in smart city contexts. Traditional models are often of little use, because smart cities pursue different goals than traditional organizations, are based on networked, cross-boundary activity systems, rely on distributed innovation processes, and imply adaptive policy-making. Complex combinations of factors may lead to vicious or virtuous cycles in smart city initiatives, but we know very little about how these factors may be identified and mapped. Based on an inductive study of a set of primary and secondary sources, we develop a framework for the configurational analysis of smart cities viewed as place-specific organizational fields. This framework identifies five key dimensions in the configurations of smart city fields; these five dimensions are mapped through five sub-frameworks, which can be used both separately as well as for an integrated analysis. Our contribution is conceived to support longitudinal studies, natural experiments and comparative analyses on smart city fields, and to improve our understanding of how different combinations of factors affect the capability of smart innovations to translate into city resilience, sustainability and quality of life. In addition, our results suggest that new forms of place-based entrepreneurship constitute the engine that allows for the dynamic collaboration between government, citizens and research centers in successful smart city organizational fields.

  19. SLAE-CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies.

    Science.gov (United States)

    Ma, Jing; Wang, Qiang; Zhao, Zhibiao

    2017-06-28

    In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE-CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE-CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE-CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology.

  20. SLAE–CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies

    Science.gov (United States)

    Ma, Jing; Wang, Qiang; Zhao, Zhibiao

    2017-01-01

    In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE–CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE–CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE–CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology. PMID:28657577

  1. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    OpenAIRE

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-01-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem i...

  2. High-speed narrowband PLC - High-performance Access Powerline Communication structures in smart grid; High-Speed Narrowband PLC. Leistungsfaehige Access-Powerline-Kommunikationsstrukturen im Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Offner, Georg [devolo AG, Aachen (Germany)

    2012-07-01

    The smart grid provides a stable operation of a decentralized power system which is fed more and more by small providers by means of solar technology and wind power technology. Furthermore, commercial and private clients profit from the smart grid, as they may capture information about their current consumption in real time or can obtain these data from the Internet. The author of the contribution under consideration presents new approaches to access powerline communications that enable efficient communication between IPv6 based household meter and network station. The contribution under consideration describes the technologies used as well as practical experiences and initial results from field tests. Here insights from the integration of G3-PLC are in the foreground.

  3. Head to head comparison of [18F] AV-1451 and [18F] THK5351 for tau imaging in Alzheimer's disease and frontotemporal dementia

    International Nuclear Information System (INIS)

    Jang, Young Kyoung; Kim, Hee Jin; Jang, Hyemin; Lyoo, Chul Hyoung; Cho, Hanna; Park, Seongbeom; Oh, Seung Jun; Oh, Minyoung; Kim, Jae Seung; Ryu, Young Hoon; Choi, Jae Yong; Rabinovici, Gil D.; Moon, Seung Hwan; Lee, Jin San; Jagust, William J.; Na, Duk L.; Seo, Sang Won

    2018-01-01

    Tau accumulation is a core pathologic change in various neurodegenerative diseases including Alzheimer's disease and frontotemporal lobar degeneration-tau. Recently, tau positron emission tomography tracers such as [ 18 F] AV-1451 and [ 18 F] THK5351 have been developed to detect tau deposition in vivo. In the present study, we performed a head to head comparison of these two tracers in Alzheimer's disease and frontotemporal dementia cases and aimed to investigate which tracers are better suited to image tau in these disorders. A cross-sectional study was conducted using a hospital-based sample at a tertiary referral center. We recruited eight participants (two Alzheimer's disease, four frontotemporal dementia and two normal controls) who underwent magnetic resonance image, amyloid positron emission tomography with [ 18 F]-Florbetaben and tau positron emission tomography with both THK5351 and AV-1451. To measure regional AV1451 and THK5351 uptakes, we used the standardized uptake value ratios by dividing mean activity in target volume of interest by mean activity in the cerebellar hemispheric gray matter. Although THK5351 and AV-1451 uptakes were highly correlated, cortical uptake of AV-1451 was more striking in Alzheimer's disease, while cortical uptake of THK5351 was more prominent in frontotemporal dementia. THK5351 showed higher off-target binding than AV-1451 in the white matter, midbrain, thalamus, and basal ganglia. AV-1451 is more sensitive and specific to Alzheimer's disease type tau and shows lower off-target binding, while THK5351 may mirror non-specific neurodegeneration. (orig.)

  4. Nanogenerators for self-powering nanosystems and piezotronics for smart MEMS/NEMS

    KAUST Repository

    Wang, Zhong Lin

    2011-01-01

    Two new fields are introduced to MEMS/NEMS: a nanogenerator that harvests mechanical energy for powering nanosystems, and strained induced piezotronics for smart MEMS. Fundamentally, due to the polarization of ions in a crystal that has non

  5. Charging electric vehicles from solar energy : Power converter, charging algorithm and system design

    NARCIS (Netherlands)

    Chandra Mouli, G.R.

    2018-01-01

    <p class="MsoNormal">Electric vehicles are only sustainable if the electricity used to charge them comes from renewable sources and not from fossil fuel based power plants. The goal of this PhD thesis is to develop a highly efficient, V2G-enabled smart charging system for electric vehicles at

  6. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks.

    Science.gov (United States)

    de Araújo, Paulo Régis C; Filho, Raimir Holanda; Rodrigues, Joel J P C; Oliveira, João P C M; Braga, Stephanie A

    2018-04-24

    At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations.

  7. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Paulo Régis C. de Araújo

    2018-04-01

    Full Text Available At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs. In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations.

  8. SMART POWER TURBINE

    Energy Technology Data Exchange (ETDEWEB)

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was

  9. Smart Home Hacking

    OpenAIRE

    Kodra, Suela

    2016-01-01

    Smart Home is an intelligent home equipped with devices and communications systems that enables the residents to connect and control their home appliances and systems. This technology has changed the way a consumer interacts with his home, enabling more control and convenience. Another advantage of this technology is the positive impact it has on savings on energy and other resources. However, despite the consumer's excitement about smart home, security and privacy have shown to be the strong...

  10. A Cloud Associated Smart Grid Admin Dashboard

    Directory of Open Access Journals (Sweden)

    P. Naveen

    2018-02-01

    Full Text Available Intelligent smart grid system undertakes electricity demand in a sustainable, reliable, economical and environmentally friendly manner. As smart grid involves, it has the liability of meeting the changing consumer needs on the day-to-day basis. Modern energy consumers like to vivaciously regulate their consumption patterns more competently and intelligently than current provided ways. To fulfill the consumers’ needs, smart meters and sensors make the grid infrastructure more efficient and resilient in energy data collection and management even with the ever-changing renewable power generation. Though cloud acts as an outlet for the energy consumers to retrieve energy data from the grid, the information systems available are technically constrained and not user-friendly. Hence, a simple technology enabled utility-consumer interactive information system in the form of a dashboard is presented to cater the electric consumer needs.

  11. Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging

    Science.gov (United States)

    Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin

    2014-06-01

    Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging.

  12. Preliminary Study of Printed Circuit Heat Exchanger (PCHE) for various power conversion systems for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jinsu; Baik, Seungjoon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The steam-Rankine cycle was the most widely used power conversion system for a nuclear power plant. The size of the heat exchanger is important for the modulation. Such a challenge was conducted by Kang et al. They change the steam generator type for the SMART from helical type heat exchanger to Printed Circuit Heat Exchanger (PCHE). Recently, there has been a growing interest in the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle as the most promising power conversion system. The reason is high efficiency with simple layout and compact power plant due to small turbomachinery and compact heat exchanger technology. That is why the SCO{sub 2} Brayton cycle can enhance the existing advantages of Small Modular Reactor (SMR) like SMART, such as reduction in size, capital cost, and construction period. Thermal hydraulic and geometric parameters of a PCHE for the S-CO{sub 2} power cycle coupled to SMART. The results show that the water - CO{sub 2} printed circuit heat exchanger size is smaller than printed circuit steam generator for the superheated steam Rankine cycle. This results show the potential benefit of using the S-CO-2 Brayton power cycle to a water-cooled small modular reactor.

  13. Towards a smart home framework

    OpenAIRE

    Alam, Muddasser; Alan, Alper; Rogers, Alex; Ramchurn, Sarvapali D.

    2013-01-01

    We present our Smart Home Framework (SHF) which simplifies the modelling, prototyping and simulation of smart infrastructure (i.e., smart home and smart communities). It provides the buildings blocks (e.g., home appliances) that can be extended and assembled together to build a smart infrastructure model to which appropriate AI techniques can be applied. This approach enables rapid modelling where new research initiatives can build on existing work.

  14. Health-Enabled Smart Sensor Fusion Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It has been proven that the combination of smart sensors with embedded metadata and wireless technologies present real opportunities for significant improvements in...

  15. Desain dan Aplikasi Internet of Thing (IoT untuk Smart Grid Power Sistem

    Directory of Open Access Journals (Sweden)

    Nur Asyik Hidayatullah

    2017-04-01

    Full Text Available Jaringan listrik cerdas atau yang lebih dikenal dengan istilah Smart Grid merupakan salah satu bentuk transformasi dan reformasi teknologi di industri ketenagalistrikan. Smart Grid adalah jaringan energi listrik modern yang secara cerdas dapat mengintegrasikan jaringan listrik dengan perangkat komunikasi yang mendukung pembangkit dan jaringan transmisi distribusi listrik menjadi lebih atraktif, komunikatif dan berkualitas. Smart Grid juga mampu untuk mencegah dan mengisolasi gangguan dengan cepat serta menyajikan informasi data kelistrikan secara real time. Sedangkan Internet of Thing (IoT adalah sebuah metode yang bertujuan untuk memaksimalkan manfaat dari konektivitas internet untuk melakukan transfer dan pemrosesan data-data atau informasi melalui sebuah jaringan internet secara nirkabel, virtual dan otonom. IoT secara teknis dapat mendorong dalam mengembangkan jaringan smart grid dengan mengintegrasikan insfrastruktur utama power sistem mulai dari sisi pembangkit sampai dengan konsumen akhir melalui wireless sensor network secara otomatis. Dengan pemanfaatan IoT diharapkan dapat meningkatkan keandalan sistem informasi dari jaringan listrik serta meningkatkan efisiensi terhadap insfrastruktur listrik yang sudah tersedia. Artikel ini akan menyajikan konsep teknologi smart grid, internet of thing dan membahas model desain dan aplikasi IoT di jaringan smart grid.

  16. Enabling secure and privacy preserving communications in smart grids

    CERN Document Server

    Li, Hongwei

    2014-01-01

    This brief focuses on the current research on security and privacy preservation in smart grids. Along with a review of the existing works, this brief includes fundamental system models, possible frameworks, useful performance, and future research directions. It explores privacy preservation demand response with adaptive key evolution, secure and efficient Merkle tree based authentication, and fine-grained keywords comparison in the smart grid auction market. By examining the current and potential security and privacy threats, the author equips readers to understand the developing issues in sma

  17. A comparative analysis of the domestic and foreign licensing processes for power and non-power reactors

    International Nuclear Information System (INIS)

    Joe, J. C.; Youn, Y. K.; Kim, W. S.; Kim, H. J.

    2003-01-01

    The System-integrated Modular Advanced Reactor (SMART), a small to medium sized integral type Pressurized Water Reactor (PWR) has been developed in Korea. Now, SMART-P, a 1/5 scaled-down of the SMART, is being developed for the purpose of demonstrating the safety and performance of SMART design. The SMART-P is a first-of-a-kind reactor which is utilized for the research and development of a power reactor. Since the licensing process of such a reactor is not clearly specified in the current Atomic Energy Act, a comparative survey and analysis of domestic and foreign licensing processes for power and non-power reactors has been carried out to develop the rationale and technical basis for establishing the licensing process of such a reactor. The domestic and foreign licensing processes of power and non-power reactors have been surveyed and compared, including those of the U.S.A., Japan, France, U.K., Canada, and IAEA. The general trends in nuclear reactor classification, licensing procedures, regulatory technical requirements, and other licensing requirements and regulations have been investigated. The results of this study will be used as the rationale and technical basis for establishing the licensing process of reactors at development stage such as SMART-P

  18. Smart Distribution Boxes, Complete Energy Management

    Energy Technology Data Exchange (ETDEWEB)

    Platise, Uros

    2010-09-15

    Present households demand side management implementations are turning conventional appliances into smart ones to support auto demand (AutoDR) response function. Present concept features a direct link between the power meters and appliances. In this paper new concept and example of implementation of a so-called Smart Distribution Box (SmartDB) is represented for complete energy and power management. SmartDBs, as an intermediate layer, are extending smart grid power meter functionality to support AutoDR with fast and guaranteed response times, distributed power sources, and besides provide full control over energy management and extra safety functions to the consumers.

  19. The British public’s perception of the UK smart metering initiative: Threats and opportunities

    International Nuclear Information System (INIS)

    Buchanan, Kathryn; Banks, Nick; Preston, Ian; Russo, Riccardo

    2016-01-01

    Consumer acceptance of smart meters remains crucial in achieving the potential carbon emission reductions offered by advanced metering infrastructures. Given this, the present research used deliberative focus groups to examine what is needed to secure acceptance and engagement from domestic consumers with services, products and ‘offers’ in smarter power systems. Our findings suggest that consumers are able to identify not just threats relating to smart metering initiatives but opportunities as well. In particular, our focus group participants responded positively to the idea of an automated system that could be used to achieve energy savings in combination with time-of-use tariffs. We conclude by outlining suggestions for policy recommendations that may help consumer acceptance of smart meter enabled services be more readily achieved. - Highlights: •We examine consumer acceptance of smart metering initiatives using focus groups. •Consumers perceive both threats and opportunities in smart metering initiatives. •Threats include; autonomy issues, privacy concerns and mistrust of suppliers. •Opportunities include: accurate billing and enablement of future ICT services. •Consumers responded positively to the idea of automated energy management.

  20. Advanced HVAC System for Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Whalen, Scott A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-06

    Rocky Research (Boulder City, NV) has developed an advanced roof top air conditioning unit (RTU) with the potential for providing smart grid functions such as regulation services and PV integration. The RTU contains advanced technologies that have been demonstrated to enable 1) improved coefficient of performance (COP) during start-up transients, 2) improved steady-state efficiency, and 3) blending of DC and AC power with high conversion efficiency. Technologies incorporated by Rocky Research include a pulsing thermal expansion valve (PTXV) to dynamically optimize refrigerant flow, a variable frequency drive (VFD) for the compressor, and on-board integrated power conversion electronics for inverting and blending DC and AC power.

  1. Modélisation et simulation d’une architecture d’entreprise - Application aux Smart Grids

    OpenAIRE

    SEGHIRI , Rachida

    2016-01-01

    In this thesis, we propose a framework that facilitates modeling Enterprise Architectures (EA) by automating analysis, prediction, and simulation, in order to address the key issue of business/IT alignment. We present our approach in the context of Smart Grids, which are power grids enabled with Information and Communication Technologies. Extensive studies try to foresee the impact of Smart Grids on electric components, telecommunication infrastructure, and industrial automation and IT. Howev...

  2. An Analysis of Security and Privacy Issues in Smart Grid Software Architectures on Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Simmhan, Yogesh; Kumbhare, Alok; Cao, Baohua; Prasanna, Viktor K.

    2011-07-09

    Power utilities globally are increasingly upgrading to Smart Grids that use bi-directional communication with the consumer to enable an information-driven approach to distributed energy management. Clouds offer features well suited for Smart Grid software platforms and applications, such as elastic resources and shared services. However, the security and privacy concerns inherent in an information rich Smart Grid environment are further exacerbated by their deployment on Clouds. Here, we present an analysis of security and privacy issues in a Smart Grids software architecture operating on different Cloud environments, in the form of a taxonomy. We use the Los Angeles Smart Grid Project that is underway in the largest U.S. municipal utility to drive this analysis that will benefit both Cloud practitioners targeting Smart Grid applications, and Cloud researchers investigating security and privacy.

  3. Photovoltaic Impact Assessment of Smart Inverter Volt-VAR Control on Distribution System Conservation Voltage Reduction and Power Quality

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baggu, Murali [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nguyen, Andu [SolarCity, San Mateo, CA (United States); Walinga, Sarah [SolarCity, San Mateo, CA (United States); McCarty, Michael [SolarCity, San Mateo, CA (United States); Bell, Frances [SolarCity, San Mateo, CA (United States)

    2016-12-01

    This report presents an impact assessment study of distributed photovoltaic (PV) with smart inverter Volt-VAR control on conservation voltage reduction (CVR) energy savings and distribution system power quality. CVR is a methodology of flattening and lowering a distribution system voltage profile in order to conserve energy. Traditional CVR relies on operating utility voltage regulators and switched capacitors. However, with the increased penetration of distributed PV systems, smart inverters provide the new opportunity to control local voltage and power factor by regulating the reactive power output, leading to a potential increase in CVR energy savings. This report proposes a methodology to implement CVR scheme by operating voltage regulators, capacitors, and autonomous smart inverter Volt-VAR control in order to achieve increased CVR benefit. Power quality is an important consideration when operating a distribution system, especially when implementing CVR. It is easy to measure the individual components that make up power quality, but a comprehensive method to incorporate all of these values into a single score has yet to be undertaken. As a result, this report proposes a power quality scoring mechanism to measure the relative power quality of distribution systems using a single number, which is aptly named the 'power quality score' (PQS). Both the CVR and PQS methodologies were applied to two distribution system models, one obtained from the Hawaiian Electric Company (HECO) and another obtained from Pacific Gas and Electric (PG&E). These two models were converted to the OpenDSS platform using previous model conversion tools that were developed by NREL. Multiple scenarios including various PV penetration levels and smart inverter densities were simulated to analyze the impact of smart inverter Volt-VAR support on CVR energy savings and feeder power quality. In order to analyze the CVR benefit and PQS, an annual simulation was conducted for each

  4. Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging

    Science.gov (United States)

    Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin

    2014-01-01

    Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging. PMID:24953037

  5. Smart Home Test Bed: Examining How Smart Homes Interact with the Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-01

    This fact sheet highlights the Smart Home Test Bed capability at the Energy Systems Integration Facility. The National Renewable Energy Laboratory (NREL) is working on one of the new frontiers of smart home research: finding ways for smart home technologies and systems to enhance grid operations in the presence of distributed, clean energy technologies such as photovoltaics (PV). To help advance this research, NREL has developed a controllable, flexible, and fully integrated Smart Home Test Bed.

  6. Hydro One smart meter/smart grid : realizing the vision

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, R. [Hydro One Networks Inc., Toronto, ON (Canada)

    2010-07-01

    Ontario's Hydro One Networks has been installing smart meters as part of its smart grid plan since 2007. The smart grid plan forms part of the utility's overall aim to create an energy conservation culture across the province. The utility now has over 1 million installed meters over a 640,000{sup 2} km territory. The smart grid planning team has adopted the use of an upgraded open protocol standards-based communications as part of its 2-way high bandwidth network. The utility is using a 1.8 Ghz worldwide interoperability for microwave access (WiMAX) spectrum designed specifically for the protection of electric utility infrastructure. The utility is now incorporating proof-of-concept applications including automated reclosers, remote terminal units, demand management devices and mobile technologies for use in its smart grid procedures. Various smart zone business scenarios were also described in this power point presentation, as well as details of Hydro One's integration plans for vendors and other power systems. tabs., figs.

  7. Medium- and long-term electric power demand forecasting based on the big data of smart city

    Science.gov (United States)

    Wei, Zhanmeng; Li, Xiyuan; Li, Xizhong; Hu, Qinghe; Zhang, Haiyang; Cui, Pengjie

    2017-08-01

    Based on the smart city, this paper proposed a new electric power demand forecasting model, which integrates external data such as meteorological information, geographic information, population information, enterprise information and economic information into the big database, and uses an improved algorithm to analyse the electric power demand and provide decision support for decision makers. The data mining technology is used to synthesize kinds of information, and the information of electric power customers is analysed optimally. The scientific forecasting is made based on the trend of electricity demand, and a smart city in north-eastern China is taken as a sample.

  8. Head to head comparison of [{sup 18}F] AV-1451 and [{sup 18}F] THK5351 for tau imaging in Alzheimer's disease and frontotemporal dementia

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Young Kyoung; Kim, Hee Jin; Jang, Hyemin [Sungkyunkwan University School of Medicine, Department of Neurology, Samsung Medical Center, Seoul (Korea, Republic of); Neuroscience Center, Samsung Medical Center, Seoul (Korea, Republic of); Lyoo, Chul Hyoung; Cho, Hanna [Yonsei University College of Medicine, Department of Neurology, Gangnam Severance Hospital, Seoul (Korea, Republic of); Park, Seongbeom [Sungkyunkwan University School of Medicine, Department of Neurology, Samsung Medical Center, Seoul (Korea, Republic of); Oh, Seung Jun; Oh, Minyoung; Kim, Jae Seung [University of Ulsan College of Medicine, Department of Nuclear Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ryu, Young Hoon; Choi, Jae Yong [Yonsei University College of Medicine, Department of Nuclear Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of); Rabinovici, Gil D. [University of California, San Francisco, Memory and Aging Center, San Francisco, CA (United States); University of California, Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA (United States); Moon, Seung Hwan [Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Lee, Jin San [Kyung Hee University Hospital, Department of Neurology, Seoul (Korea, Republic of); Jagust, William J. [University of California, Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Center of Functional Imaging, Berkeley, CA (United States); Na, Duk L. [Sungkyunkwan University School of Medicine, Department of Neurology, Samsung Medical Center, Seoul (Korea, Republic of); Neuroscience Center, Samsung Medical Center, Seoul (Korea, Republic of); Sungkyunkwan University, Department of Health Sciences and Technology, SAIHST, Seoul (Korea, Republic of); Seo, Sang Won [Sungkyunkwan University School of Medicine, Department of Neurology, Samsung Medical Center, Seoul (Korea, Republic of); Neuroscience Center, Samsung Medical Center, Seoul (Korea, Republic of); Sungkyunkwan University, Department of Health Sciences and Technology, SAIHST, Seoul (Korea, Republic of); Sungkyunkwan University, Department of Clinical Research Design and Evaluation, SAIHST, Seoul (Korea, Republic of)

    2018-03-15

    Tau accumulation is a core pathologic change in various neurodegenerative diseases including Alzheimer's disease and frontotemporal lobar degeneration-tau. Recently, tau positron emission tomography tracers such as [{sup 18}F] AV-1451 and [{sup 18}F] THK5351 have been developed to detect tau deposition in vivo. In the present study, we performed a head to head comparison of these two tracers in Alzheimer's disease and frontotemporal dementia cases and aimed to investigate which tracers are better suited to image tau in these disorders. A cross-sectional study was conducted using a hospital-based sample at a tertiary referral center. We recruited eight participants (two Alzheimer's disease, four frontotemporal dementia and two normal controls) who underwent magnetic resonance image, amyloid positron emission tomography with [{sup 18}F]-Florbetaben and tau positron emission tomography with both THK5351 and AV-1451. To measure regional AV1451 and THK5351 uptakes, we used the standardized uptake value ratios by dividing mean activity in target volume of interest by mean activity in the cerebellar hemispheric gray matter. Although THK5351 and AV-1451 uptakes were highly correlated, cortical uptake of AV-1451 was more striking in Alzheimer's disease, while cortical uptake of THK5351 was more prominent in frontotemporal dementia. THK5351 showed higher off-target binding than AV-1451 in the white matter, midbrain, thalamus, and basal ganglia. AV-1451 is more sensitive and specific to Alzheimer's disease type tau and shows lower off-target binding, while THK5351 may mirror non-specific neurodegeneration. (orig.)

  9. Socioeconomic assessment of smart grids. Summary

    International Nuclear Information System (INIS)

    2015-07-01

    In September of 2013, the President of France identified smart grids as an important part of the country's industrial strategy, given the opportunities and advantages they can offer French industry, and asked the Chairman of the RTE Management Board to prepare a road-map outlining ways to support and accelerate smart grid development. This road-map, prepared in cooperation with stakeholders from the power and smart grids industries, identifies ten actions that can be taken in priority to consolidate the smart grids sector and help French firms play a leading role in the segment. These priorities were presented to the President of France on 7 May 2014. Action items 5 and 6 of the road-map on smart grid development relate, respectively, to the quantification of the value of smart grid functions from an economic, environmental and social (impact on employment) standpoint and to the large-scale deployment of some of the functions. Two tasks were set out in the 'Smart Grids' plan for action item 5: - Create a methodological framework that, for all advanced functions, allows the quantification of benefits and costs from an economic, environmental and social (effect on jobs) standpoint; - Quantify, based on this methodological framework, the potential benefits of a set of smart grid functions considered sufficiently mature to be deployed on a large scale in the near future. Having a methodology that can be applied in the same manner to all solutions, taking into account their impacts on the environment and employment in France, will considerably add to and complement the information drawn from demonstration projects. It will notably enable comparisons of benefits provided by smart grid functions and thus help give rise to a French smart grids industry that is competitive. At first, the smart grids industry was organised around demonstration projects testing different advanced functions within specific geographic areas. These projects covered a wide enough

  10. Socioeconomic assessment of smart grids - Summary

    International Nuclear Information System (INIS)

    Janssen, Tanguy

    2015-07-01

    In September of 2013, the President of France identified smart grids as an important part of the country's industrial strategy, given the opportunities and advantages they can offer French industry, and asked the Chairman of the RTE Management Board to prepare a road-map outlining ways to support and accelerate smart grid development. This road-map, prepared in cooperation with stakeholders from the power and smart grids industries, identifies ten actions that can be taken in priority to consolidate the smart grids sector and help French firms play a leading role in the segment. These priorities were presented to the President of France on 7 May 2014. Action items 5 and 6 of the road-map on smart grid development relate, respectively, to the quantification of the value of smart grid functions from an economic, environmental and social (impact on employment) standpoint and to the large-scale deployment of some of the functions. Two tasks were set out in the 'Smart Grids' plan for action item 5: - Create a methodological framework that, for all advanced functions, allows the quantification of benefits and costs from an economic, environmental and social (effect on jobs) standpoint; - Quantify, based on this methodological framework, the potential benefits of a set of smart grid functions considered sufficiently mature to be deployed on a large scale in the near future. Having a methodology that can be applied in the same manner to all solutions, taking into account their impacts on the environment and employment in France, will considerably add to and complement the information drawn from demonstration projects. It will notably enable comparisons of benefits provided by smart grid functions and thus help give rise to a French smart grids industry that is competitive. At first, the smart grids industry was organised around demonstration projects testing different advanced functions within specific geographic areas. These projects covered a wide enough

  11. Enabling affordable and efficiently deployed location based smart home systems.

    Science.gov (United States)

    Kelly, Damian; McLoone, Sean; Dishongh, Terry

    2009-01-01

    With the obvious eldercare capabilities of smart environments it is a question of "when", rather than "if", these technologies will be routinely integrated into the design of future houses. In the meantime, health monitoring applications must be integrated into already complete home environments. However, there is significant effort involved in installing the hardware necessary to monitor the movements of an elder throughout an environment. Our work seeks to address the high infrastructure requirements of traditional location-based smart home systems by developing an extremely low infrastructure localisation technique. A study of the most efficient method of obtaining calibration data for an environment is conducted and different mobile devices are compared for localisation accuracy and cost trade-off. It is believed that these developments will contribute towards more efficiently deployed location-based smart home systems.

  12. Investigation of two-phase flow instability under SMART-P core conditions

    International Nuclear Information System (INIS)

    Hwang, Dae Hyun; Lee, Chung Chan

    2005-01-01

    An integral-type advanced light water reactor, named SMART-P, is being continuously studied at KAERI. The reactor core consists of hundreds of closed-channel type fuel assemblies with vertical upward flows. The upper and lower parts of the fuel assembly channels are connected to the common heads. The constant pressure drop imposed on the channel is responsible for the occurrence of density wave oscillations under local boiling and/or natural circulation conditions. The fuel assembly channel with oscillatory flow is highly susceptible to experience the CHF which may cause the fuel failure due to a sudden increase of the cladding temperature. Thus, prevention of the flow instability is an important criterion for the SMART-P core design. Experimental and analytical studies have been conducted in order to investigate the onset of flow instability (OFI) under SMART core conditions. The parallel channel oscillations were observed in a high pressure water-loop test facility. A linear stability analysis model in the frequency-domain was developed for the prediction of the marginal stability boundary (MSB) in the parallel boiling channels

  13. An Effective Wormhole Attack Defence Method for a Smart Meter Mesh Network in an Intelligent Power Grid

    Directory of Open Access Journals (Sweden)

    Jungtaek Seo

    2012-08-01

    Full Text Available Smart meters are one of the key components of intelligent power grids. Wireless mesh networks based on smart meters could provide customer-oriented information on electricity use to the operational control systems, which monitor power grid status and estimate electric power demand. Using this information, an operational control system could regulate devices within the smart grid in order to provide electricity in a cost-efficient manner. Ensuring the availability of the smart meter mesh network is therefore a critical factor in securing the soundness of an intelligent power system. Wormhole attacks can be one of the most difficult-to-address threats to the availability of mesh networks, and although many methods to nullify wormhole attacks have been tried, these have been limited by high computational resource requirements and unnecessary overhead, as well as by the lack of ability of such methods to respond to attacks. In this paper, an effective defense mechanism that both detects and responds to wormhole attacks is proposed. In the proposed system, each device maintains information on its neighbors, allowing each node to identify replayed packets. The effectiveness and efficiency of the proposed method is analyzed in light of additional computational message and memory complexities.

  14. Integration of heterogeneous industrial consumers to provide regulating power to the smart grid

    DEFF Research Database (Denmark)

    Rahnama, Samira; Stoustrup, Jakob; Rasmussen, Henrik

    2013-01-01

    In this paper, we propose a framework to utilize the flexibility of consumers in the future smart grid with a high share of fluctuating power. Focus is on industrial cases, where a total power consumption of a few number of consumers are large enough in order to bid in the market. Heterogeneous...

  15. Smart metering. Conformance tests for electricity meters; Smart Metering. Konformitaetstests an Stromzaehlern

    Energy Technology Data Exchange (ETDEWEB)

    Bormann, Matthias; Pongratz, Siegfried [VDE Pruef- und Zertifizierungsinstitut, Offenbach (Germany)

    2012-07-01

    Introduction of communication technologies into today's energy network enables the interworking between the domains of smart metering, smart grid, smart home and e-mobility as well as the creation and provisioning of new innovative services such as efficient load adjustment. Due to this convergence the new energy networks are becoming increasingly complex. Ensuring the interworking between all network elements (e.g. electricity meters, gateways) in these smart energy networks is of utmost importance. To this end conformance and interoperability tests have to be defined to ensure that services work as expected. (orig.)

  16. Implementation of the smart grid for Canadian electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, R. [Continental Automated Buildings Association, Ottawa, ON (Canada)

    2009-07-01

    The Continental Automated Buildings Association (CABA) provides a knowledge-based forum for the advancement of automation technology and integrated systems in the construction industry. This presentation discussed 2-way communications and advanced control systems designed to enable smart grid applications in buildings. The integration of IT and energy technologies will involve a network of switches, routers, and software devices with unique internet protocol (IP) addresses. Technologies will include sensors, meters, smart components, and power electronics, which will be integrated with building automation systems and building energy management tools. Added benefits of intelligent building technologies will include improved high speed internet and voice communications systems. An oBIX ethernet architecture was proposed to address the many protocols and standards required for smart building applications. Technology usage and purchase plans that consumers are now considering include smart telephony, telepresence, and intelligent bathrooms. It was concluded that the use of intelligent technologies in buildings will reduce energy consumption levels and greenhouse gas (GHG) emissions. tabs., figs.

  17. Multi-agent approach for power system in a smart grid protection context

    DEFF Research Database (Denmark)

    Abedini, Reza; Pinto, Tiago; Morais, Hugo

    2013-01-01

    electricity markets and in the other hand with increasing penetration of Distributed Generation (DG) because of environment issues and diminishing in fossil fuel reserves and its price growth, made microgrid more attractive. Micro grids are considers as partial of SmartGrid system to accommodate DGs as well......With increasing penetration of electricity application in society and the need of majority of appliance to electricity, high level of reliability becomes more essential; in one hand with deregulation of electricity market in production, transmission and distribution and emerge of competitive...... proposes a new approach for protection in a Microgrid environment as a part of SmartGrid: Multi-agent system to Protections Coordination (MAS-ProteC) which integrated in MASGriP (Multi-Agent Smart Grid Platform), providing protection services within network operation in SmartGrid in electricity market...

  18. Recursive Pyramid Algorithm-Based Discrete Wavelet Transform for Reactive Power Measurement in Smart Meters

    Directory of Open Access Journals (Sweden)

    Mahin K. Atiq

    2013-09-01

    Full Text Available Measurement of the active, reactive, and apparent power is one of the most fundamental tasks of smart meters in energy systems. Recently, a number of studies have employed the discrete wavelet transform (DWT for power measurement in smart meters. The most common way to implement DWT is the pyramid algorithm; however, this is not feasible for practical DWT computation because it requires either a log N cascaded filter or O (N word size memory storage for an input signal of the N-point. Both solutions are too expensive for practical applications of smart meters. It is proposed that the recursive pyramid algorithm is more suitable for smart meter implementation because it requires only word size storage of L × Log (N-L, where L is the length of filter. We also investigated the effect of varying different system parameters, such as the sampling rate, dc offset, phase offset, linearity error in current and voltage sensors, analog to digital converter resolution, and number of harmonics in a non-sinusoidal system, on the reactive energy measurement using DWT. The error analysis is depicted in the form of the absolute difference between the measured and the true value of the reactive energy.

  19. Development of auditing technology for accident analysis of SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, Y. J.; Jeong, J. J.; Kim, H. C.; Chung, Y. J.; Bae, K. H

    2004-06-15

    The objective of this project is to develop thermal hydraulic models of the regulatory auditing codes for the application of SMART-P integrated reactor. The current year fall under the 2nd step of the 3 year project, and the main researches were focused on developing thermal hydraulic models and improving the auditing code according to the PIRT ranking. The input model for SMART-P has been developed with consistent to the current design status documents. The calculation note has been developed with consistent to the current design status documents. The calculation note has been also prepared and checked by independent reviewer as Q/A procedure. The evaluation of experimental availabilities and code collapsible has been done by expert group and summarized as validation matrix forms. The matric would be utilized as the basis of code assessment in next year.

  20. A Review of Systems and Technologies for Smart Homes and Smart Grids

    Directory of Open Access Journals (Sweden)

    Gabriele Lobaccaro

    2016-05-01

    Full Text Available In the actual era of smart homes and smart grids, advanced technological systems that allow the automation of domestic tasks are developing rapidly. There are numerous technologies and applications that can be installed in smart homes today. They enable communication between home appliances and users, and enhance home appliances’ automation, monitoring and remote control capabilities. This review article, by introducing the concept of the smart home and the advent of the smart grid, investigates technologies for smart homes. The technical descriptions of the systems are presented and point out advantages and disadvantages of each technology and product today available on the market. Barriers, challenges, benefits and future trends regarding the technologies and the role of users have also been discussed.

  1. Considerations and code for partial volume correcting [18F]-AV-1451 tau PET data

    Directory of Open Access Journals (Sweden)

    Suzanne L. Baker

    2017-12-01

    Full Text Available [18F]-AV-1451 is a leading tracer used with positron emission tomography (PET to quantify tau pathology. However, [18F]-AV-1451 shows “off target” or non-specific binding, which we define as binding of the tracer in unexpected areas unlikely to harbor aggregated tau based on autopsy literature [1]. Along with caudate, putamen, pallidum and thalamus non-specific binding [2,3], we have found binding in the superior portion of the cerebellar gray matter, leading us to use inferior cerebellar gray as the reference region. We also addressed binding in the posterior portion of the choroid plexus. PET signal unlikely to be associated with tau also occurs in skull, meninges and soft tissue (see e.g. [4]. We refer to [18F]-AV-1451 binding in the skull and meninges as extra-cortical hotspots (ECH and find them near lateral and medial orbitofrontal, lateral occipital, inferior and middle temporal, superior and inferior parietal, and inferior cerebellar gray matter. Lastly, the choroid plexus also shows non-specific binding that bleeds into hippocampus. We are providing the code (http://www.runmycode.org/companion/view/2798 used to create different regions of interest (ROIs that we then used to perform Partial Volume Correction (PVC using the Rousset geometric transfer matrix method (GTM, [5]. This method was used in the companion article, “Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer's Disease” ([6], DOI 10.1016/j.neuroimage.2017.05.058.

  2. Kinetic Modeling of the Tau PET Tracer 18F-AV-1451 in Human Healthy Volunteers and Alzheimer Disease Subjects.

    Science.gov (United States)

    Barret, Olivier; Alagille, David; Sanabria, Sandra; Comley, Robert A; Weimer, Robby M; Borroni, Edilio; Mintun, Mark; Seneca, Nicholas; Papin, Caroline; Morley, Thomas; Marek, Ken; Seibyl, John P; Tamagnan, Gilles D; Jennings, Danna

    2017-07-01

    18 F-AV-1451 is currently the most widely used of several experimental tau PET tracers. The objective of this study was to evaluate 18 F-AV-1451 binding with full kinetic analysis using a metabolite-corrected arterial input function and to compare parameters derived from kinetic analysis with SUV ratio (SUVR) calculated over different imaging time intervals. Methods: 18 F-AV-1451 PET brain imaging was completed in 16 subjects: 4 young healthy volunteers (YHV), 4 aged healthy volunteers (AHV), and 8 Alzheimer disease (AD) subjects. Subjects were imaged for 3.5 h, with arterial blood samples obtained throughout. PET data were analyzed using plasma and reference tissue-based methods to estimate the distribution volume, binding potential (BP ND ), and SUVR. BP ND and SUVR were calculated using the cerebellar cortex as a reference region and were compared across the different methods and across the 3 groups (YHV, AHV, and AD). Results: AD demonstrated increased 18 F-AV-1451 retention compared with YHV and AHV based on both invasive and noninvasive analyses in cortical regions in which paired helical filament tau accumulation is expected in AD. A correlation of R 2 > 0.93 was found between BP ND (130 min) and SUVR-1 at all time intervals. Cortical SUVR curves reached a relative plateau around 1.0-1.2 for YHV and AHV by approximately 50 min, but increased in AD by up to approximately 20% at 110-130 min and approximately 30% at 160-180 min relative to 80-100 min. Distribution volume (130 min) was lower by 30%-35% in the YHV than AHV. Conclusion: Our data suggest that although 18 F-AV-1451 SUVR curves do not reach a plateau and are still increasing in AD, an SUVR calculated over an imaging window of 80-100 min (as currently used in clinical studies) provides estimates of paired helical filament tau burden in good correlation with BP ND , whereas SUVR sensitivity to regional cerebral blood changes needs further investigation. © 2017 by the Society of Nuclear Medicine and

  3. Smart — STATCOM control strategy implementation in wind power plants

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Christian; Cantarellas, Antoni Mir; Miranda, H.

    2012-01-01

    High penetration of wind energy into the grid may introduce stability and power quality problems due to the fluctuating nature of the wind and the increasing complexity of the power system. By implementing advanced functionalities in power converters, it is possible to improve the performance...... of the wind farm and also to provide grid support, as it is required by the grid codes. One of the main compliance difficulties that can be found in such power plants are related to reactive power compensation and to keep the harmonics content between the allowed limits, even if the power of the WPP...... converters is increasing. This paper deals with an advanced control strategy design of a three-level converter performing STATCOM and Active Filter functionalities. The proposed system is called Smart-STATCOM since it has the capability of self-controlling reactive power and harmonic voltages at the same...

  4. Simple meters get smart? Cost benefit analysis of smart metering infrastructure

    International Nuclear Information System (INIS)

    Van Gerwen, R.J.F.; Jaarsma, S.A.; Koenis, F.T.C.

    2005-08-01

    The Dutch Ministry of Economic Affairs requested a cost-benefit analysis of the large scale introduction of a smart meter infrastructure for gas and electricity consumption by small consumers. The questions asked in the study need to be answered in order to enable a well-founded evaluation of the implementation of smart meters. [mk] [nl

  5. SMART core power control method by coolant temperature variation

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Cho, Byung Oh

    2001-08-01

    SMART is a soluble boron-free integral type pressurized water reactor. Its moderator temperature coefficient (MTC) is strongly negative throughout the cycle. The purpose of this report is how to utilize the primary coolant temperature as a second reactivity control system using the strong negative MTC. The reactivity components associated with reactor power change are Doppler reactivity due to fuel temperature change, moderator temperature reactivity and xenon reactivity. Doppler reactivity and moderator temperature reactivity take effects almost as soon as reactor power changes. On the other hand, xenon reactivity change takes more than several hours to reach an equilibrium state. Therefore, coolant temperature at equilibrium state is chosen as the reference temperature. The power dependent reference temperature line is limited above 50% power not to affect adversely in reactor safety. To compensate transient xenon reactivity, coolant temperature operating range is expanded. The suggested coolant temperature operation range requires minimum control rod motion for 50% power change. For smaller power changes such as 25% power change, it is not necessary to move control rods to assure that fuel design limits are not exceeded

  6. Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home.

    Science.gov (United States)

    Carabalona, Roberta; Grossi, Ferdinando; Tessadri, Adam; Castiglioni, Paolo; Caracciolo, Antonio; de Munari, Ilaria

    2012-01-01

    Brain-computer interface (BCI) systems aim to enable interaction with other people and the environment without muscular activation by the exploitation of changes in brain signals due to the execution of cognitive tasks. In this context, the visual P300 potential appears suited to control smart homes through BCI spellers. The aim of this work is to evaluate whether the widely used character-speller is more sustainable than an icon-based one, designed to operate smart home environment or to communicate moods and needs. Nine subjects with neurodegenerative diseases and no BCI experience used both speller types in a real smart home environment. User experience during BCI tasks was evaluated recording concurrent physiological signals. Usability was assessed for each speller type immediately after use. Classification accuracy was lower for the icon-speller, which was also more attention demanding. However, in subjective evaluations, the effect of a real feedback partially counterbalanced the difficulty in BCI use. Since inclusive BCIs require to consider interface sustainability, we evaluated different ergonomic aspects of the interaction of disabled users with a character-speller (goal: word spelling) and an icon-speller (goal: operating a real smart home). We found the first one as more sustainable in terms of accuracy and cognitive effort.

  7. Using smart meter to monitor the energy consumption of home appliances

    International Nuclear Information System (INIS)

    Dong, M.; Xu, W.

    2010-01-01

    A smart meter provides the foundation for the smart grid, which represent the future electric system in terms of communications, sensors and automation to improve the flexibility, reliability and efficiency of power systems. Smart meters are installed at the utility-customer interface point to provide real-time power usage and price data to each electricity user. The purpose is to create customer awareness on electricity consumption and help users to conserve energy. Smart meters are being deployed throughout North America to replace most traditional meters. However, this paper discussed a major technical gap of the smart meter. Existing smart meters do not provide households with enough feedback needed to achieve effective energy saving. In order to support the energy conservation effort of a customer, the whole house energy data must be displayed on minute or second basis, and it must also be broken down into individual appliance levels. The data of an appliance's energy usage is the most useful information for users to modify their actions and conserve energy. This paper proposed to make the smart meter capable of reporting the overall consumption of a household, as well as monitoring how individual appliances use electricity. It presented a method on using different appliance signatures to identify appliances and make energy estimations on their respective consumptions. Paired with time-of-use or other real time pricing mechanisms, the method enables customers to save energy. This paper also demonstrated how to implement an algorithm on the smart meter platform. Future work will focus on making the algorithm more accurate and faster, and on integrating the smart meter with an appliance energy monitoring system. 21 refs., 6 tabs., 3 figs.

  8. Smart houses for a smart grid

    Energy Technology Data Exchange (ETDEWEB)

    Kok, J.K.; Warmer, C.J. [ECN Efficiency and Infrastructure, Petten (Netherlands); Karnouskos, S.; Weidlich, A. [SAP Research, Karlsruhe Institute of Technology, (Germany); Nestle, D.; Strauss, P. [The Institut fuer Solare Energieversorgungstechnik ISET, University of Kassel, Kassel (Germany); Dimeas, A.; Hatziargyriou, N. [Institute Computers Communications Systems ICCS, National Technical University of Athens NTUA, Athens (Greece); Buchholz, B.; Drenkard, S. [MVV Energie, Berlin (Germany); Lioliou, V. [Public Power Corporation PPC, Athens (Greece)

    2009-08-15

    Innovative technologies and concepts will emerge as we move towards a more dynamic, service-based, market-driven infrastructure, where energy efficiency and savings can be facilitated by interactive distribution networks. A new generation of fully interactive Information and Communication Technologies (ICT) infrastructure has to be developed to support the optimal exploitation of the changing, complex business processes and to enable the efficient functioning of the deregulated energy market for the benefit of citizens and businesses. The architecture of such distributed system landscapes must be designed and validated, standards need to be created and widely supported, and comprehensive, reliable IT applications will need to be implemented. The collaboration between a smart house and a smart grid is a promising approach which, with the help of ICT can fully unleash the capabilities of the smart electricity network.

  9. Miniaturised wireless smart tag for optical chemical analysis applications.

    Science.gov (United States)

    Steinberg, Matthew D; Kassal, Petar; Tkalčec, Biserka; Murković Steinberg, Ivana

    2014-01-01

    A novel miniaturised photometer has been developed as an ultra-portable and mobile analytical chemical instrument. The low-cost photometer presents a paradigm shift in mobile chemical sensor instrumentation because it is built around a contactless smart card format. The photometer tag is based on the radio-frequency identification (RFID) smart card system, which provides short-range wireless data and power transfer between the photometer and a proximal reader, and which allows the reader to also energise the photometer by near field electromagnetic induction. RFID is set to become a key enabling technology of the Internet-of-Things (IoT), hence devices such as the photometer described here will enable numerous mobile, wearable and vanguard chemical sensing applications in the emerging connected world. In the work presented here, we demonstrate the characterisation of a low-power RFID wireless sensor tag with an LED/photodiode-based photometric input. The performance of the wireless photometer has been tested through two different model analytical applications. The first is photometry in solution, where colour intensity as a function of dye concentration was measured. The second is an ion-selective optode system in which potassium ion concentrations were determined by using previously well characterised bulk optode membranes. The analytical performance of the wireless photometer smart tag is clearly demonstrated by these optical absorption-based analytical experiments, with excellent data agreement to a reference laboratory instrument. © 2013 Elsevier B.V. All rights reserved.

  10. Transient analysis on the SMART-P anticipated transients without scram

    International Nuclear Information System (INIS)

    Yang, S. H.; Bae, K. H.; Kim, H. C.; Zee, S. Q.

    2005-01-01

    Anticipated transients without scram (ATWS) are anticipated operational occurrences accompanied by a failure of an automatic reactor trip when required. Although the occurrence probability of the ATWS events is considerably low, these events can result in unacceptable consequences, i.e. the pressurization of the reactor coolant system (RCS) up to an unacceptable range and a core-melting situation. Therefore, the regulatory body requests the installation of a protection system against the ATWS events. According to the request, a diverse protection system (DPS) is installed in the SMART-P (System-integrated Modular Advanced ReacTor-Pilot). This paper presents the results of the transient analysis performed to identify the performance of the SMART-P against the ATWS. In the analysis, the TASS/SMR (Transients And Setpoint Simulation/Small and Medium Reactor) code is applied to identify the thermal hydraulic response of the RCS during the transients

  11. Review of modular power converters solutions for smart transformer in distribution system

    DEFF Research Database (Denmark)

    Alzola, Rafael Pena; Gohil, Ghanshyamsinh Vijaysinh; Mathe, Laszlo

    2013-01-01

    While the use of power electronics based Smart Transformer (ST) is becoming a reality in traction applications, and it has been considered as an interesting option for interfacing different transmission systems, the possibility to use it in distribution systems is still considered futuristic. Rep...

  12. Smart Energy 2011. Smart Grid or the future of power industry; Smart Energy 2011. Smart Grid oder die Zukunft der Energiewirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, Uwe; Kunold, Ingo (eds.)

    2011-07-01

    The demand for smart grids, energy information networks, smart metering, new tariffs offering incentives for load shifting to household customers and load reduction options to energy providers are discussed increasingly. The privacy protection of customers being threatened by detailed consumption profiles also needs attention. Practitioners and researches from enterprises and research institutions present results from their field of work in nine papers. This book mainly focusses on three topics: 'Energy 2020', 'Data protection and data security within smart grids' and 'Smart grid and energy information networks'. On the one hand this volume addresses researchers and practitioners from enterprises and research institutions, on the other hand teachers and students dealing with questions concerning the energy market of the future. (orig.)

  13. Approach for smart application to desalination and power generation

    International Nuclear Information System (INIS)

    Chang Moon Hee; Kim Si-Hwan

    1998-01-01

    A 330 MWt integral reactor, SMART, and an integrated nuclear seawater desalination system coupled with SMART are currently under conceptual development at KAERI. The SMART will provide energy to the desalination system either in the form of heat or electricity, or both. The integrated nuclear desalination system aims to produce about 40,000 m 3 /day potable water from seawater for demonstration purposes. The remaining energy produced by SMART will be converted into electrical energy. Several important factors are especially considered in the process of SMART and its application system development. The development emphasizes the adoption of technically proven and advanced technology, measures to secure the safety and reliability of the reactor system, consideration of the desalination process for coupling with SMART, a licensing strategy for SMART and the integrated nuclear desalination system, and international cooperation for promoting nuclear desalination with the SMART development program. The current effort to establish the concept of SMART and its application for desalination is being pursued intensively to secure the safety and reliability of SMART, to prove the implemented concepts/technology considering the coupling with the desalination process, and to formulate an optimum licensing approach. This paper aims to present the technical and strategic approach of SMART and its application system. (author)

  14. Development of Integral Effect Test Facility P and ID and Technical Specification for SMART Fluid System

    International Nuclear Information System (INIS)

    Lee, Sang Il; Jung, Y. H.; Yang, H. J.; Song, S. Y.; Han, O. J.; Lee, B. J.; Kim, Y. A.; Lim, J. H.; Park, K. W.; Kim, N. G.

    2010-01-01

    SMART integral test loop is the thermal hydraulic test facility with a high pressure and temperature for simulating the major systems of the prototype reactor, SMART-330. The objective of this project is to conduct the basic design for constructing SMART ITL. The major results of this project include a series of design documents, technical specifications and P and ID. The results can be used as the fundamental materials for making the detailed design which is essential for manufacturing and installing SMART ITL

  15. Reducing Carbon Dioxide Emissions from Electricity Sector Using Smart Electric Grid Applications

    Directory of Open Access Journals (Sweden)

    Lamiaa Abdallah

    2013-01-01

    Full Text Available Approximately 40% of global CO2 emissions are emitted from electricity generation through the combustion of fossil fuels to generate heat needed to power steam turbines. Burning these fuels results in the production of carbon dioxide (CO2—the primary heat-trapping, “greenhouse gas” responsible for global warming. Applying smart electric grid technologies can potentially reduce CO2 emissions. Electric grid comprises three major sectors: generation, transmission and distribution grid, and consumption. Smart generation includes the use of renewable energy sources (wind, solar, or hydropower. Smart transmission and distribution relies on optimizing the existing assets of overhead transmission lines, underground cables, transformers, and substations such that minimum generating capacities are required in the future. Smart consumption will depend on the use of more efficient equipment like energy-saving lighting lamps, enabling smart homes and hybrid plug-in electric vehicles technologies. A special interest is given to the Egyptian case study. Main opportunities for Egypt include generating electricity from wind and solar energy sources and its geographical location that makes it a perfect center for interconnecting electrical systems from the Nile basin, North Africa, Gulf, and Europe. Challenges include shortage of investments, absence of political will, aging of transmission and distribution infrastructure, and lack of consumer awareness for power utilization.

  16. Smart market. From smart grid to the intelligent energy market

    International Nuclear Information System (INIS)

    Aichele, Christian; Doleski, Oliver D.

    2014-01-01

    Dare more market. - The design of this postulate provides an important contribution to the success of the German energy transition. The Bundesnetzagentur has shown with its highly regarded benchmark paper on smart grids and markets leads the way towards more market in the energy sector. The therein required differentiation in a network and market sphere contributes to greater transparency on the consumer side and enables a gid releaving shift in energy consumption. The book focuses on actors and roles in the modified market circumstances as well as components and products of a future Smart Markets. Finally, to the reader concrete business models are offered. Authors from science and practice give in this book answers on how the interaction of Smart Grid and Smart Market works. [de

  17. Smart Fabrics Technology Development

    Science.gov (United States)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  18. For smart electric grids

    International Nuclear Information System (INIS)

    Tran Thiet, Jean-Paul; Leger, Sebastien; Bressand, Florian; Perez, Yannick; Bacha, Seddik; Laurent, Daniel; Perrin, Marion

    2012-01-01

    The authors identify and discuss the main challenges faced by the French electric grid: the management of electricity demand and the needed improvement of energy efficiency, the evolution of consumer's state of mind, and the integration of new production capacities. They notably outline that France have been living until recently with an electricity abundance, but now faces the highest consumption peaks in Europe, and is therefore facing higher risks of power cuts. They also notice that the French energy mix is slowly evolving, and outline the problems raised by the fact that renewable energies which are to be developed, are decentralised and intermittent. They propose an overview of present developments of smart grids, and outline their innovative characteristics, challenges raised by their development and compare international examples. They show that smart grids enable a better adapted supply and decentralisation. A set of proposals is formulated about how to finance and to organise the reconfiguration of electric grids, how to increase consumer's responsibility for peak management and demand management, how to create the conditions of emergence of a European market of smart grids, and how to support self-consumption and the building-up of an energy storage sector

  19. Power management and frequency regulation for microgrid and smart grid: A real-time demand response approach

    Science.gov (United States)

    Pourmousavi Kani, Seyyed Ali

    Future power systems (known as smart grid) will experience a high penetration level of variable distributed energy resources to bring abundant, affordable, clean, efficient, and reliable electric power to all consumers. However, it might suffer from the uncertain and variable nature of these generations in terms of reliability and especially providing required balancing reserves. In the current power system structure, balancing reserves (provided by spinning and non-spinning power generation units) usually are provided by conventional fossil-fueled power plants. However, such power plants are not the favorite option for the smart grid because of their low efficiency, high amount of emissions, and expensive capital investments on transmission and distribution facilities, to name a few. Providing regulation services in the presence of variable distributed energy resources would be even more difficult for islanded microgrids. The impact and effectiveness of demand response are still not clear at the distribution and transmission levels. In other words, there is no solid research reported in the literature on the evaluation of the impact of DR on power system dynamic performance. In order to address these issues, a real-time demand response approach along with real-time power management (specifically for microgrids) is proposed in this research. The real-time demand response solution is utilized at the transmission (through load-frequency control model) and distribution level (both in the islanded and grid-tied modes) to provide effective and fast regulation services for the stable operation of the power system. Then, multiple real-time power management algorithms for grid-tied and islanded microgrids are proposed to economically and effectively operate microgrids. Extensive dynamic modeling of generation, storage, and load as well as different controller design are considered and developed throughout this research to provide appropriate models and simulation

  20. Test-driven modeling and development of cloud-enabled cyber-physical smart systems

    DEFF Research Database (Denmark)

    Munck, Allan; Madsen, Jan

    2017-01-01

    Embedded products currently tend to evolve into large and complex smart systems where products are enriched with services through clouds and other web technologies. The complex characteristics of smart systems make it very difficult to guarantee functionality, safety, security and performance...

  1. Smart market. From smart grid to the intelligent energy market; Smart Market. Vom Smart Grid zum intelligenten Energiemarkt

    Energy Technology Data Exchange (ETDEWEB)

    Aichele, Christian [Hochschule Kaiserslautern, Zweibruecken (Germany). Fachbereich Betriebswirtschaft; Doleski, Oliver D. (ed.)

    2014-07-01

    Dare more market. - The design of this postulate provides an important contribution to the success of the German energy transition. The Bundesnetzagentur has shown with its highly regarded benchmark paper on smart grids and markets leads the way towards more market in the energy sector. The therein required differentiation in a network and market sphere contributes to greater transparency on the consumer side and enables a gid releaving shift in energy consumption. The book focuses on actors and roles in the modified market circumstances as well as components and products of a future Smart Markets. Finally, to the reader concrete business models are offered. Authors from science and practice give in this book answers on how the interaction of Smart Grid and Smart Market works. [German] Mehr Markt wagen. - Die Ausgestaltung dieses Postulats liefert einen wichtigen Beitrag zum Gelingen der deutschen Energiewende. Die Bundesnetzagentur hat mit ihrem vielbeachteten Eckpunktepapier zu intelligenten Netzen und Maerkten diesen Weg in Richtung mehr Markt in der Energiewirtschaft gewiesen. Die darin geforderte Differenzierung in eine Netz- und Marktsphaere traegt zu mehr Transparenz auf der Verbraucherseite bei und ermoeglicht eine netzentlastende Verlagerung des Energieverbrauchs. Das Buch beleuchtet Akteure und Rollen im geaenderten Marktumfeld ebenso wie Komponenten und Produkte eines zukuenftigen Smart Markets. Schliesslich werden dem Leser konkrete Geschaeftsmodelle angeboten. Autoren aus Wissenschaft und Praxis geben in diesem Buch Antworten darauf, wie das Zusammenspiel von Smart Grid und Smart Market funktioniert.

  2. A Smart Cage With Uniform Wireless Power Distribution in 3D for Enabling Long-Term Experiments With Freely Moving Animals.

    Science.gov (United States)

    Mirbozorgi, S Abdollah; Bahrami, Hadi; Sawan, Mohamad; Gosselin, Benoit

    2016-04-01

    This paper presents a novel experimental chamber with uniform wireless power distribution in 3D for enabling long-term biomedical experiments with small freely moving animal subjects. The implemented power transmission chamber prototype is based on arrays of parallel resonators and multicoil inductive links, to form a novel and highly efficient wireless power transmission system. The power transmitter unit includes several identical resonators enclosed in a scalable array of overlapping square coils which are connected in parallel to provide uniform power distribution along x and y. Moreover, the proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution along the z axis. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and ease its operation by avoiding the need for active detection and control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a size of 27×27×16 cm(3).

  3. Detection of pH-induced aggregation of "smart" gold nanoparticles with photothermal optical coherence tomography.

    Science.gov (United States)

    Xiao, Peng; Li, Qingyun; Joo, Yongjoon; Nam, Jutaek; Hwang, Sekyu; Song, Jaejung; Kim, Sungjee; Joo, Chulmin; Kim, Ki Hean

    2013-11-01

    We report the feasibility of a novel contrast agent, namely "smart" gold nanoparticles (AuNPs), in the detection of cancer cells with photothermal optical coherence tomography (PT-OCT). "Smart" AuNPs form aggregation in low pH condition, which is typical for cancer cells, and this aggregation results in a shift of their absorption spectrum. A PT-OCT system was developed to detect this pH-induced aggregation by combining an OCT light source and a laser with 660 nm in wavelength for photothermal excitation. Optical detection of pH-induced aggregation was tested with solution samples at two different pH conditions. An increase in optical path length (OPL) variation was measured at mild acidic condition, while there was not much change at neutral condition. Detection of cancer cells was tested with cultured cell samples. HeLa and fibroblast cells, as cancer and normal cells respectively, were incubated with "smart" gold nanoparticles and measured with PT-OCT. An elevated OPL variation signal was detected with the HeLa cells while not much of a signal was detected with the fibroblast cells. With the novel optical property of "smart" AuNPs and high sensitivity of PT-OCT, this technique is promising for cancer cell detection.

  4. Energy efficient refrigeration and flexible power consumption in a smart grid

    Energy Technology Data Exchange (ETDEWEB)

    Gybel Hovgaard, T.; Larsen, Lars F.S. (Danfoss Refrigeration and A/C Controls, Nordborg (Denmark)); Halvgaard, R.; Bagterp Joergensen, J. (Technical Univ. of Denmark (DTU). DTU Informatics, Kgs. Lyngby (Denmark))

    2011-05-15

    Refrigeration and heating systems consume substantial amounts of energy worldwide. However, due to the thermal capacity there is a potential for storing 'coldness' or heat in the system. This feature allows for implementation of different load shifting and shedding strategies in order to optimize the operation energywise, but without compromising the original cooling and indoor climate quality. In this work we investigate the potential of such a strategy and its ability to significantly lower the cost related to operating systems such as supermarket refrigeration and heat pumps for residential houses. With modern Economic Model Predictive Control (MPC) methods we make use of weather forecasts and predictions of varying electricity prices to apply more load to the system when the thermodynamic cycle is most efficient, and to consume larger shares of the electricity when the demand and thereby the prices are low. The ability to adjust power consumption according to the demands on the power grid is a highly wanted feature in a future Smart Grid. Efficient utilization of greater amounts of renewable energy calls for solutions to control the power consumption such that it increases when an energy surplus is available and decreases when there is a shortage. This should happen almost instantly to accommodate intermittent energy sources as e.g. wind turbines. We expect our power management solution to render systems with thermal storage capabilities suitable for flexible power consumption. The aggregation of several units will contribute significantly to the shedding of total electricity demand. Using small case studies we demonstrate the potential for utilizing daily variations to deliver a power efficient cooling or heating and for the implementation of Virtual Power Plants in Smart Grid scenarios. (Author)

  5. Towards smart environments using smart objects.

    Science.gov (United States)

    Sedlmayr, Martin; Prokosch, Hans-Ulrich; Münch, Ulli

    2011-01-01

    Barcodes, RFID, WLAN, Bluetooth and many more technologies are used in hospitals. They are the technological bases for different applications such as patient monitoring, asset management and facility management. However, most of these applications exist side by side with hardly any integration and even interoperability is not guaranteed. Introducing the concept of smart objects inspired by the Internet of Things can improve the situation by separating the capabilities and functions of an object from the implementing technology such as RFID or WLAN. By aligning technological and business developments smart objects have the power to transform a hospital from an agglomeration of technologies into a smart environment.

  6. The smart energy world from a competition point of view. An interaction between smart customers, smart market and smart grids; Die Smarte Energiewelt aus wettbewerblicher Sicht. Ein Zusammenspiel aus Smarten Kunden, Smart Market und Smarten Netzen

    Energy Technology Data Exchange (ETDEWEB)

    Wiechmann, Holger [EnBW Vertrieb GmbH, Stuttgart (Germany)

    2012-07-01

    Everybody is talking about the ''Energiewende, the Smart Energy World and about ''Smart Market / Smart Grids'', but almost no one knows, what it exactly means. But the ''Energiewende'' is already coming. The entire energy sector and particularly the elctricity industry are evolving towards decentralized structures mainly based on renewable energies. Not only the growth in fluctuating power generation from renewable energy sources like wind and photovoltaic but also their consumption on a local basis are calling for new ways of decentralized managing energy and for further developed market rules. The interaction of all stakeholders (customer, market players, grid operators, authorities) in a Smart Market/Smart Grid environment is required to successfully implement an efficient ''Energiewende''. Derived from the different interests of these stakeholders, the paper describes a system and roles within this system. It shows how Smart Market and Smart Grid can interact corresponding to the guidelines of German Regulator recently published. (orig.)

  7. Economic evaluation of the integrated SMART desalination plant

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Lee, Man Kye; Yeo, Ji Won; Kim, Hee Chul; Chang, Moon Hee

    2001-04-01

    In this study, an economic evaluation methodology of the integrated SMART desalination plant was established and the economic evaluation of SMART was performed. The plant economics was evaluated with electricity generation costs calculated using approximate estimates of SMART cost data and the result was compared with the result calculated using the SMART design data and estimated bulk materials. In addition, a series of sensitivity studies on the power generation cost was performed for the main economic parameters of SMART Power credit method was used for the economic analysis of the integrated SMART desalination plant. Power credit method is a widely used economic analysis method for the cogeneration plant when the major portion of the energy is used for the electricity generation. In the case of using SMART fot power generation only, the result shows that the electricity generation cost of SMART is higher than that of the alternative power options. However, it can be competitive with the other power options in the limited cases, especially with the gas fired combined plant. In addition, an economic analysis of the integrated SMART desalination plant coupled with MED was performed. The calculated water production cost is in the range of 0.56 approx. 0.88($/m 3 ) for the plant availability of 80% or higher, which is close to the study results presented by the various other countries. This indicates that SMART can be considered as a competitive choice for desalination among various alternative energy sources

  8. Economic evaluation of the integrated SMART desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Lee, Man Kye; Yeo, Ji Won; Kim, Hee Chul; Chang, Moon Hee

    2001-04-01

    In this study, an economic evaluation methodology of the integrated SMART desalination plant was established and the economic evaluation of SMART was performed. The plant economics was evaluated with electricity generation costs calculated using approximate estimates of SMART cost data and the result was compared with the result calculated using the SMART design data and estimated bulk materials. In addition, a series of sensitivity studies on the power generation cost was performed for the main economic parameters of SMART Power credit method was used for the economic analysis of the integrated SMART desalination plant. Power credit method is a widely used economic analysis method for the cogeneration plant when the major portion of the energy is used for the electricity generation. In the case of using SMART fot power generation only, the result shows that the electricity generation cost of SMART is higher than that of the alternative power options. However, it can be competitive with the other power options in the limited cases, especially with the gas fired combined plant. In addition, an economic analysis of the integrated SMART desalination plant coupled with MED was performed. The calculated water production cost is in the range of 0.56 approx. 0.88($/m{sup 3}) for the plant availability of 80% or higher, which is close to the study results presented by the various other countries. This indicates that SMART can be considered as a competitive choice for desalination among various alternative energy sources.

  9. Impact of stand-by energy losses in electronic devices on smart network performance

    Directory of Open Access Journals (Sweden)

    Mandić-Lukić Jasmina S.

    2012-01-01

    Full Text Available Limited energy resources and environmental concerns due to ever increasing energy consumption, more and more emphasis is being put on energy savings. Smart networks are promoted worldwide as a powerful tool used to improve the energy efficiency through consumption management, as well as to enable the distributed power generation, primarily based on renewable energy sources, to be optimally explored. To make it possible for the smart networks to function, a large number of electronic devices is needed to operate or to be in their stand-by mode. The consumption of these devices is added to the consumption of many other electronic devices already in use in households and offices, thus giving rise to the overall power consumption and threatening to counteract the primary function of smart networks. This paper addresses the consumption of particular electronic devices, with an emphasis placed on their thermal losses when in stand-by mode and their total share in the overall power consumption in certain countries. The thermal losses of electronic devices in their stand-by mode are usually neglected, but it seems theoretically possible that a massive increase in their number can impact net performance of the future smart networks considerably so that above an optimum level of energy savings achieved by their penetration, total consumption begins to increase. Based on the current stand-by energy losses from the existing electronic devices, we propose that the future penetration of smart networks be optimized taking also into account losses from their own electronic devices, required to operate in stand-by mode.

  10. Final report SmartProofS. Results of projects of the SmartProofS program; Eindrapport SmartProofS. Projectresultaten van het SmartProofS programma

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoorik, P.; Westerga, R. [Energy Valley, Groningen (Netherlands)

    2011-05-15

    The SmartProofs program aims to develop tools which must show that the principle of a Smart Power System (SPS) works and how. An SPS can ensure that the supply and demand of electricity in the grid is balanced, even in case more decentralized energy techniques will be put into use. This final report summarizes the main results and conclusions of the SmartProofs program. As part of the SPS program attention is paid to the impacts on the girds, the effects of centralized and decentralized management, disaster resilience, pricing models, potential benefits of control and new business models [Dutch] Het SmartProofs programma heeft tot doel om een concept van een Smart Power System (SPS) te ontwikkelen waarmee kan worden aangetoond dat het principe van een SPS werkt en op welke manier. Een SPS kan zorgen dat het aanbod van elektriciteit op het net op elk moment van de dag overeenkomt met de vraag, ook als er straks veel meer decentrale energietechnieken gebruikt worden waarmee zowel de vraag als het aanbod van elektriciteit onvoorspelbaar wordt. Dit eindrapport geeft een overzicht van de belangrijkste resultaten en conclusies van het SmartProofs programma. Het programma heeft in de werkpakketten deelvraagstukken rondom SmartProofS onderzocht rondom de effecten op onze energienetten, de effecten van zowel centrale- als decentrale aansturing, disaster resilience, prijsmodellen, mogelijke baten van aansturing en nieuwe business modellen.

  11. Modelling the smart farm

    Directory of Open Access Journals (Sweden)

    Michael J. O'Grady

    2017-09-01

    Full Text Available Smart farming envisages the harnessing of Information and Communication Technologies as an enabler of more efficient, productive, and profitable farming enterprises. Such technologies do not suffice on their own; rather they must be judiciously combined to deliver meaningful information in near real-time. Decision-support tools incorporating models of disparate farming activities, either on their own or in combination with other models, offer one popular approach; exemplars include GPFARM, APSIM, GRAZPLAN amongst many others. Such models tend to be generic in nature and their adoption by individual farmers is minimal. Smart technologies offer an opportunity to remedy this situation; farm-specific models that can reflect near real-time events become tractable using such technologies. Research on the development, and application of farm-specific models is at a very early stage. This paper thus presents an overview of models within the farming enterprise; it then reviews the state-of the art in smart technologies that promise to enable a new generation of enterprise-specific models that will underpin future smart farming enterprises.

  12. Solution for the future smart energy system: A polygeneration plant based on reversible solid oxide cells and biomass gasification producing either electrofuel or power

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Clausen, Lasse R.

    2018-01-01

    price scenario and bio-SNG price. A system that can select the production or consumption of electricity depending on the market price enables constant operation all year round. This results in a higher net present value for the system and may lead to a positive return on investment, given...... the appropriate market price of electricity and bio-SNG. However, the techno-economic analysis revealed that the district heating product may be important for the economic feasibility of the polygeneration plant. This system may offer solutions in a smart energy system connecting electrofuel, heat, and power...

  13. BIPV-powered smart windows utilizing photovoltaic and electrochromic devices.

    Science.gov (United States)

    Ma, Rong-Hua; Chen, Yu-Chia

    2012-01-01

    A BIPV-powered smart window comprising a building-integrated photovoltaic (BIPV) panel and an all-solid-state electrochromic (EC) stack is proposed. In the proposed device, the output voltage of the BIPV panel varies in accordance with the intensity of the incident light and is modulated in such a way as to generate the EC stack voltage required to maintain the indoor illuminance within a specified range. Two different EC stacks are fabricated and characterized, namely one stack comprising ITO/WO(3)/Ta(2)O(5)/ITO and one stack comprising ITO/WO(3)/lithium-polymer electrolyte/ITO. It is shown that of the two stacks, the ITO/WO(3)/lithium-polymer electrolyte/ITO stack has a larger absorptance (i.e., approximately 99% at a driving voltage of 3.5 V). The experimental results show that the smart window incorporating an ITO/WO(3)/lithium-polymer electrolyte/ITO stack with an electrolyte thickness of 1.0 μm provides an indoor illuminance range of 750-1,500 Lux under typical summertime conditions in Taiwan.

  14. BIPV-Powered Smart Windows Utilizing Photovoltaic and Electrochromic Devices

    Directory of Open Access Journals (Sweden)

    Yu-Chia Chen

    2011-12-01

    Full Text Available A BIPV-powered smart window comprising a building-integrated photovoltaic (BIPV panel and an all-solid-state electrochromic (EC stack is proposed. In the proposed device, the output voltage of the BIPV panel varies in accordance with the intensity of the incident light and is modulated in such a way as to generate the EC stack voltage required to maintain the indoor illuminance within a specified range. Two different EC stacks are fabricated and characterized, namely one stack comprising ITO/WO3/Ta2O5/ITO and one stack comprising ITO/WO3/lithium-polymer electrolyte/ITO. It is shown that of the two stacks, the ITO/WO3/lithium-polymer electrolyte/ITO stack has a larger absorptance (i.e., approximately 99% at a driving voltage of 3.5 V. The experimental results show that the smart window incorporating an ITO/WO3/lithium-polymer electrolyte/ITO stack with an electrolyte thickness of 1.0 μm provides an indoor illuminance range of 750–1,500 Lux under typical summertime conditions in Taiwan.

  15. Consideration of the impacts of a smart neighborhood load on transformer aging

    NARCIS (Netherlands)

    Paterakis, N.G.; Pappi, I.N.; Erdinç, O.; Godina, R.; Rodrigues, E.M.G.; Catalão, J.P.S.

    2016-01-01

    Smart grid solutions with enabling technologies such as energy management systems (EMSs) and smart meters promote the vision of smart households, which also allows for active demand side in the residential sector. These technologies enable the control of residential consumption, local small-scale

  16. Realisering af Smart City/Smart House i Nordjylland

    DEFF Research Database (Denmark)

    Lindgren, Peter; Saghaug, Kristin Margrethe

    2008-01-01

    beskriver tankerne, visionerne og perspektiverne i forhold til at realisere Smart House-konceptet i Region Nordjylland. Smart House-tankerne er baseret på at bygge smarte huse og smarte byggekomponenter til fremtidens brugere, hvor den nyeste teknologi indenfor byggematerialer kombineres med nye værdier....... Formålet med Smart House Nordjylland er at flytte byggeindustriens og forskernes fokus fra en indbyrdes konkurrence lokalt til et udviklende innovationssamarbejde, som sigter mod det globale marked. På denne måde kan regionen skabe et udstillingsvindue indenfor fremtidens byggeri gennem en interaktion...

  17. Nanophotonics-enabled smart windows, buildings and wearables

    Science.gov (United States)

    Smith, Geoff; Gentle, Angus; Arnold, Matthew; Cortie, Michael

    2016-06-01

    Design and production of spectrally smart windows, walls, roofs and fabrics has a long history, which includes early examples of applied nanophotonics. Evolving nanoscience has a special role to play as it provides the means to improve the functionality of these everyday materials. Improvement in the quality of human experience in any location at any time of year is the goal. Energy savings, thermal and visual comfort indoors and outdoors, visual experience, air quality and better health are all made possible by materials, whose "smartness" is aimed at designed responses to environmental energy flows. The spectral and angle of incidence responses of these nanomaterials must thus take account of the spectral and directional aspects of solar energy and of atmospheric thermal radiation plus the visible and color sensitivity of the human eye. The structures required may use resonant absorption, multilayer stacks, optical anisotropy and scattering to achieve their functionality. These structures are, in turn, constructed out of particles, columns, ultrathin layers, voids, wires, pure and doped oxides, metals, polymers or transparent conductors (TCs). The need to cater for wavelengths stretching from 0.3 to 35 μm including ultraviolet-visible, near-infrared (IR) and thermal or Planck radiation, with a spectrally and directionally complex atmosphere, and both being dynamic, means that hierarchical and graded nanostructures often feature. Nature has evolved to deal with the same energy flows, so biomimicry is sometimes a useful guide.

  18. A wireless sensor enabled by wireless power.

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  19. Embedded Systems for Smart Appliances and Energy Management

    CERN Document Server

    Neumann, Peter; Mahlknecht, Stefan

    2013-01-01

    This book provides a comprehensive introduction to embedded systems for smart appliances and energy management, bringing together for the first time a multidisciplinary blend of topics from embedded systems, information technology and power engineering.  Coverage includes challenges for future resource distribution grids, energy management in smart appliances, micro energy generation, demand response management, ultra-low power stand by, smart standby and communication networks in home and building automation.   Provides a comprehensive, multidisciplinary introduction to embedded systems for smart appliances and energy management; Equips researchers and engineers with information required to succeed in designing energy management for smart appliances; Includes coverage of resource distribution grids, energy management in smart appliances, micro energy generation, demand response management, ultra-low power stand by, smart standby and communication networks in home and building automation.  

  20. Preliminary evaluation of pin power distribution for fuel assemblies of SMART by MCNP

    International Nuclear Information System (INIS)

    Kim, Kyo Youn

    1998-08-01

    Monte Carlo transport code MCNP can describe an object sophisticately by use of three-dimensional modelling and can adopt a continuous energy cross-section library. Therefore MCNP has been widely utilized in the field of radiation physics to estimate fluxes and dose rates for nuclear facilities and to review results from conventional methods such a as discrete ordinates method and point kernel method. The Monte Carlo method has recently been introduced to estimated the neutron multiplication factor and pin power distribution in the fuel assembly of a reactor core. The operating thermal power of SMART core is 330 MWt and there are 57 fuel assemblies in the core. In this study it was assumed that the core has 4 types of fuel assemblies. In this study, MCNP4a was used to perform to estimate criticality and normalized pin power distribution in a fuel assembly of SMART core. The results from MCNP4a calculations are able to be used review those from nuclear design/analysis code. It is very complicated to pick up interested data from MCNP output list and to normalize pin power distribution in a fuel assembly because MCNP is not only a nuclear design/analysis code. In this study a program FAPIN was developed to generated a generate a normalized pin power distribution from the MCNP output list. (author). 11 refs

  1. SmartGrid: Future networks for New Zealand power systems incorporating distributed generation

    International Nuclear Information System (INIS)

    Nair, Nirmal-Kumar C.; Zhang Lixi

    2009-01-01

    The concept of intelligent electricity grids, which primarily involves the integration of new information and communication technologies with power transmission lines and distribution cables, is being actively explored in the European Union and the United States. Both developments share common technological developmental goals but also differ distinctly towards the role of distributed generation for their future electrical energy security. This paper looks at options that could find relevance to New Zealand (NZ), in the context of its aspiration of achieving 90% renewable energy electricity generation portfolio by 2025. It also identifies developments in technical standardization and industry investments that facilitate a pathway towards an intelligent or smart grid development for NZ. Some areas where policy can support research in NZ being a 'fast adapter' to future grid development are also listed. This paper will help policy makers quickly review developments surrounding SmartGrid and also identify its potential to support NZ Energy Strategy in the electricity infrastructure. This paper will also help researchers and power system stakeholders for identifying international standardization, projects and potential partners in the area of future grid technologies.

  2. Smart Card

    Directory of Open Access Journals (Sweden)

    Floarea NASTASE

    2006-01-01

    Full Text Available Reforms in electronic business have presented new opportunities to use smart card technology as an enabling tool. The network-centric applications, where resources are located throughout the Internet and access to them is possible from any location, require authenticated access and secured transactions. Smart cards represent an ideal solution: they offers an additional layer of electronic security and information assurance for user authentication, confidentiality, non-repudiation, information integrity, physical access control to facilities, and logical access control to an computer systems.

  3. Energy Efficient Refrigeration and Flexible Power Consumption in a Smart Grid

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Halvgaard, Rasmus; Larsen, Lars F.S.

    2011-01-01

    . With modern Economic Model Predictive Control (MPC) methods we make use of weather forecasts and predictions of varying electricity prices to apply more load to the system when the thermodynamic cycle is most efficient, and to consume larger shares of the electricity when the demand and thereby the prices...... are low. The ability to adjust power consumption according to the demands on the power grid is a highly wanted feature in a future Smart Grid. Efficient utilization of greater amounts of renewable energy calls for solutions to control the power consumption such that it increases when an energy surplus...... is available and decreases when there is a shortage. This should happen almost instantly to accommodate intermittent energy sources as e.g. wind turbines. We expect our power management solution to render systems with thermal storage capabilities suitable for flexible power consumption. The aggregation...

  4. A Review on Development Practice of Smart Grid Technology in China

    Science.gov (United States)

    Han, Liu; Chen, Wei; Zhuang, Bo; Shen, Hongming

    2017-05-01

    Smart grid has become an inexorable trend of energy and economy development worldwide. Since the development of smart grid was put forward in China in 2009, we have obtained abundant research results and practical experiences as well as extensive attention from international community in this field. This paper reviews the key technologies and demonstration projects on new energy connection forecasts; energy storage; smart substations; disaster prevention and reduction for power transmission lines; flexible DC transmission; distribution automation; distributed generation access and micro grid; smart power consumption; the comprehensive demonstration of power distribution and utilization; smart power dispatching and control systems; and the communication networks and information platforms of China, systematically, on the basis of 5 fields, i.e., renewable energy integration, smart power transmission and transformation, smart power distribution and consumption, smart power dispatching and control systems and information and communication platforms. Meanwhile, it also analyzes and compares with the developmental level of similar technologies abroad, providing an outlook on the future development trends of various technologies.

  5. Towards Interoperable IoT Deployments inSmart Cities - How project VITAL enables smart, secure and cost- effective cities

    OpenAIRE

    Schiele , Gregor; Soldatos , John; Mitton , Nathalie

    2014-01-01

    International audience; IoT-based deployments in smart cities raise several challenges, especially in terms of interoperability. In this paper, we illustrate semantic interoperability solutions for IoT systems. Based on these solutions, we describe how the FP7 VITAL project aims to bridge numerous silo IoT deployments in smart cities through repurposing and reusing sensors and data streams across multiple applications without carelessly compromising citizens’ security and privacy. This approa...

  6. Prognostics-Enabled Power Supply for ADAPT Testbed, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop's role is to develop electronic prognostics for sensing power systems in support of NASA/Ames ADAPT testbed. The prognostic enabled power systems from...

  7. Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations.

    Science.gov (United States)

    Khalifa, Tarek; Abdrabou, Atef; Shaban, Khaled; Gaouda, A M

    2018-05-11

    Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids.

  8. Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations

    Directory of Open Access Journals (Sweden)

    Tarek Khalifa

    2018-05-01

    Full Text Available Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids.

  9. A simulation model for aligning smart home networks and deploying smart objects

    DEFF Research Database (Denmark)

    Lynggaard, Per

    Smart homes use sensor based networks to capture activities and offer learned services to the user. These smart home networks are challenging because they mainly use wireless communication at frequencies that are shared with other services and equipments. One of the major challenges...... is the interferences produced by WiFi access points in smart home networks which are expensive to overcome in terms of battery energy. Currently, different method exists to handle this. However, they use complex mechanisms such as sharing frequencies, sharing time slots, and spatial reuse of frequencies. This paper...... introduces a unique concept which saves battery energy and lowers the interference level by simulating the network alignment and assign the necessary amount of transmit power to each individual network node and finally, deploy the smart objects. The needed transmit powers are calculated by the presented...

  10. An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning.

    Science.gov (United States)

    Yang, Geng; Deng, Jia; Pang, Gaoyang; Zhang, Hao; Li, Jiayi; Deng, Bin; Pang, Zhibo; Xu, Juan; Jiang, Mingzhe; Liljeberg, Pasi; Xie, Haibo; Yang, Huayong

    2018-01-01

    Surface electromyography signal plays an important role in hand function recovery training. In this paper, an IoT-enabled stroke rehabilitation system was introduced which was based on a smart wearable armband (SWA), machine learning (ML) algorithms, and a 3-D printed dexterous robot hand. User comfort is one of the key issues which should be addressed for wearable devices. The SWA was developed by integrating a low-power and tiny-sized IoT sensing device with textile electrodes, which can measure, pre-process, and wirelessly transmit bio-potential signals. By evenly distributing surface electrodes over user's forearm, drawbacks of classification accuracy poor performance can be mitigated. A new method was put forward to find the optimal feature set. ML algorithms were leveraged to analyze and discriminate features of different hand movements, and their performances were appraised by classification complexity estimating algorithms and principal components analysis. According to the verification results, all nine gestures can be successfully identified with an average accuracy up to 96.20%. In addition, a 3-D printed five-finger robot hand was implemented for hand rehabilitation training purpose. Correspondingly, user's hand movement intentions were extracted and converted into a series of commands which were used to drive motors assembled inside the dexterous robot hand. As a result, the dexterous robot hand can mimic the user's gesture in a real-time manner, which shows the proposed system can be used as a training tool to facilitate rehabilitation process for the patients after stroke.

  11. Application of smart cards in physical and information security systems

    International Nuclear Information System (INIS)

    Dreifus, H.N.

    1988-01-01

    Smart Cards, integrated circuits embedded into credit cards, have been proposed for many computer and physical security applications. The cards have shown promise in improving both the security and monitoring of systems ranging from computer network identification through physical protection and access control. With the increasing computational power embedded within these cards, advanced encryption techniques such as public key cryptography can now be realized, enabling more sophisticated uses

  12. Disrupt, Coerce, Legitimize, Attract: The Four Dimensions of Russian Smart Power

    Science.gov (United States)

    2017-03-31

    baby food , sleeping bags and generators”29 coincided with the appearance of large formations of well-armed, highly organized but anonymous “little...effective in maintaining a semi-permeable echo-chamber of Russian public support by limiting the cross- contamination of deliberately contradictory...completes the application of Russian Smart Power. The reaction to the downing of Malaysia Airlines flight 17 on 17 July, 2014 by a Russian BUK SA

  13. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Al [PSE& G; Stuby, Rick [Petra Solar

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  14. Evaluation of a fast power demand response strategy using active and passive building cold storages for smart grid applications

    International Nuclear Information System (INIS)

    Cui, Borui; Wang, Shengwei; Yan, Chengchu; Xue, Xue

    2015-01-01

    Highlights: • A fast power demand response strategy is developed for smart grid applications. • The developed strategy can provide immediate and stepped power demand reduction. • The demand reduction and building indoor temperature can be predicted accurately. • The demand reduction during the DR event is stable. - Abstract: Smart grid is considered as a promising solution in improving the power reliability and sustainability where demand response is one important ingredient. Demand response (DR) is a set of demand-side activities to reduce or shift electricity use to improve the electric grid efficiency and reliability. This paper presents the investigations on the power demand alternation potential for buildings involving both active and passive cold storages to support the demand response of buildings connected to smart grids. A control strategy is developed to provide immediate and stepped power demand reduction through shutting chiller(s) down when requested. The primary control objective of the developed control strategy is to restrain the building indoor temperature rise as to maintain indoor thermal comfort within certain level during the DR event. The chiller power reduction is also controlled under certain power reduction set-point. The results show that stepped and significant power reduction can be achieved through shutting chiller(s) down when requested. The power demand reduction and indoor temperature during the DR event can be also predicted accurately. The power demand reduction is stable which is predictable for the system operators

  15. Smart Home Dashboard. The intelligent energy management; Smart Home Dashboard. Das intelligente Energiemanagement

    Energy Technology Data Exchange (ETDEWEB)

    Stopczynski, Martin; Ghiglieri, Marco [Technische Univ. Darmstadt (Germany). Fachgebiet Sicherheit in der Informationstechnik

    2012-07-01

    Due to an increasingly smarter environment, however smart home components are used in households. A variety of household appliances can be monitored and controlled by smart plugs. An advantage of this development is the individual investigation of devices in terms of individual power consumption. However, the usability of the end user side also increases proportional to the number of existing devices. A possible access of external market participants is not currently implemented without major security problems. The authors of the contribution under consideration report on the Smart Home Dashboard, which provides a comprehensive power management. The smart home dashboard is intuitively operable and meets current safety standards. The aim of this paper is: (1) Adjustment of the handling of the recorded data to the current privacy policy; (2) Enforcement of the privacy of the end user by means of the implementation of smart grid protection objectives; (3) Providing a secure access for remote participants.

  16. Smart signal processing for an evolving electric grid

    Science.gov (United States)

    Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.

    2015-12-01

    Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.

  17. Data transmission through power line of smart transmitter

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Kang, Hyun Gook; Seong, Poong Hyun

    1996-01-01

    In this study, the method to use the phase shift keying (PSK) communication technique in smart transmitter is presented. In nuclear applications, smart transmitters for various parameters are expected to improve the accuracy of measurement and to reduce the load of calibration work. The capability of communication in field level is the most important merit of the smart transmitter. The most popular method is using of digital and analog techniques simultaneously - transmitting measurements from the field at 4-20mA while modulating the current to carry digital information in both directions over the same twisted pairs. Conventional smart transmitters use the frequency shift keying (FSK) method for digital communication. Generally, however, the FSK method has the speed limit at 1200 bps. Amount of information to transmit becomes increasing as the processing technique is improved. The PSK method is noticeable alternative for high speed digital communication, but it has non-zero DC component. In order to use the PSK method in the field transmission with smart transmitter, the method to remove the DC component is studied in this work

  18. Deploying 5G-technologies in smart city and smart home wireless sensor networks with interferences

    DEFF Research Database (Denmark)

    Lynggaard, Per; Skouby, Knud Erik

    2015-01-01

    communication in an Internet of Things (5G) contexts. In this paper we discuss some of the key challenges that exist in the smart city and smart home networks in the light of possible 5G-solutions. Focus is on deploying cognitive radio technologies (5G) which enables the smart city networks to support......Deploying 5G technologies in a combination of smart homes and smart city opens for a new ecosystem with big potentials. The potentials lie in the creation of an advanced ICT infrastructure with support for connected and entangled services possibilities including technologies for efficient...... interconnected infrastructure elements, to handle big-data from the smart homes, and to be compatible with existing infrastructures. The considered cognitive radio technology is based on pre-coded OFDM which offers the needed flexibility to deal with the key challenges found in the smart home networks. Thus...

  19. Energy Optimization and Management of Demand Response Interactions in a Smart Campus

    Directory of Open Access Journals (Sweden)

    Antimo Barbato

    2016-05-01

    Full Text Available The proposed framework enables innovative power management in smart campuses, integrating local renewable energy sources, battery banks and controllable loads and supporting Demand Response interactions with the electricity grid operators. The paper describes each system component: the Energy Management System responsible for power usage scheduling, the telecommunication infrastructure in charge of data exchanging and the integrated data repository devoted to information storage. We also discuss the relevant use cases and validate the framework in a few deployed demonstrators.

  20. Privacy-Preserving Smart Metering with Authentication in a Smart Grid

    Directory of Open Access Journals (Sweden)

    Jun Beom Hur

    2015-12-01

    Full Text Available The traditional security objectives of smart grids have been availability, integrity, and confidentiality. However, as the grids incorporate smart metering and load management, user and corporate privacy is increasingly becoming an issue in smart grid networks. Although transmitting current power consumption levels to the supplier or utility from each smart meter at short intervals has an advantage for the electricity supplier’s planning and management purposes, it threatens user privacy by disclosing fine-grained consumption data and usage behavior to utility providers. In this study, we propose a distributed incremental data aggregation scheme where all smart meters on an aggregation path are involved in routing the data from the source meter to the collection unit. User privacy is preserved by symmetric homomorphic encryption, which allows smart meters to participate in the aggregation without seeing any intermediate or final result. Aggregated data is further integrated with an aggregate signature to achieve data integrity and smart meter authentication in such a way that dishonest or fake smart meters cannot falsify data en route. Only the collection unit can obtain the aggregated data and verify its integrity while the individual plain data are not exposed to the collection unit. Therefore, user privacy and security are improved for the smart metering in a smart grid network.

  1. What is a smart grid?

    NARCIS (Netherlands)

    Kumar, A.

    2017-01-01

    The Indian Smart Grid Forum defines a smart grid as "a power system capable of two-way communication between all the entities of the network-generation, transmission, distribution and the consumers". Like most work on smart grids, this view is also mainly technical. This paper aims to progress the

  2. The role of smart metering and decentralized electricity storage for smart grids: The importance of positive externalities

    International Nuclear Information System (INIS)

    Römer, Benedikt; Reichhart, Philipp; Kranz, Johann; Picot, Arnold

    2012-01-01

    Because of its fluctuating nature, the feed-in of renewable energy sources into low-voltage distribution grids complicates the balancing of demand and supply. This carries the risk of grid instabilities causing damage to electronic devices and power outages, which eventually lead to deadweight losses. In principle, the problems arising from fluctuating feed-in can be solved by increasing demand elasticity or decoupling generation and consumption; for the first, an advanced metering infrastructure and, for the second, decentralized electricity storage are considered core enablers. However, to date, the diffusion of these future smart grids’ core components is low. The present study provides new insights for understanding and overcoming diffusion barriers. For this purpose, a qualitative research approach was chosen. The most important stakeholders as well as related private costs and benefits are identified. The findings show that both of these smart grid components are widely considered beneficial to society by experts. However, because the numerous private benefits are widely distributed among distinct players, socially desired investments are hampered by positive externalities. The importance of well-designed and consistent regulatory and legal frameworks that provide economic incentives to involved stakeholders is highlighted in the results. - Highlights: ► Smart meters and decentralized storages are important components of smart grids. ► Both components are widely seen as beneficial to society. ► Identification of the most important stakeholders and their investment incentives. ► Omission of societal desirable actions due to positive externalities. ► Measures to foster diffusion of smart grid key components.

  3. Smart grids and power systems efficiency: regulatory tools and demand-side management impacts

    International Nuclear Information System (INIS)

    Bergaentzle, Claire

    2015-01-01

    The physical architecture of electricity grids and the organizational structure of power systems implemented after the reforms have traditionally be achieved according to the characteristics of the transmission infrastructures and power mixes. However, the new challenges related to energy transition favor a greater participation of decentralized generation and final consumers to system exploitation and competitive markets. This latter participation is made possible thanks to recent innovations in the fields of communication and remote control technologies. Significant evolutions are expected in power industries that share common characteristics. First, these evolutions suppose massive capital investments to modernize and adapt current power distribution grids. Second, it is expected the activation of distribution grids and final consumers will unleash substantial unexploited economic efficiency gains as well as impose new constraints. Taking these simple facts as a starting point, the objective of the thesis is twofold. In the first place, we provide a theoretical analysis of the regulatory instruments that monitor the system operators' expenses. Relying on the literature, we aim at characterizing what regulatory tools and incitation are suitable for investing in smart grids technologies. Since it is necessary to compare theoretical formulation to facts, we use an empirical approach that allows us to designate key benefits pursued by the development of smart grids and to compare our theoretical results with practical regulatory applications. Our findings eventually allow us to formulate recommendations. In the second place, the thesis focuses on the impacts of demand-side management during peak periods. We structure our approach around two general observations. Large benefits should be generated in lowering substantially peak demand. However, such situation also creates losses of profit for generators. We provide an estimation of efficiency gains and revenue losses

  4. Reliability evaluation of smart distribution grids

    OpenAIRE

    Kazemi, Shahram

    2011-01-01

    The term "Smart Grid" generally refers to a power grid equipped with the advanced technologies dedicated for purposes such as reliability improvement, ease of control and management, integrating of distributed energy resources and electricity market operations. Improving the reliability of electric power delivered to the end users is one of the main targets of employing smart grid technologies. The smart grid investments targeted for reliability improvement can be directed toward the generati...

  5. Power supply-demand balance in a Smart Grid : An information sharing model for a market mechanism

    NARCIS (Netherlands)

    Larsen, Gunn K. H.; van Foreest, Nicky D.; Scherpen, Jacquelien M. A.

    2014-01-01

    In the future, global energy balance of a Smart Grid system can be achieved by its agents deciding on their own power demand and production (locally) and the exchange of these decisions. In this paper, we develop a network model that describes how the information of power imbalance of individual

  6. Simulation of demand-response power management in smart city

    Science.gov (United States)

    Kadam, Kshitija

    Smart Grids manage energy efficiently through intelligent monitoring and control of all the components connected to the electrical grid. Advanced digital technology, combined with sensors and power electronics, can greatly improve transmission line efficiency. This thesis proposed a model of a deregulated grid which supplied power to diverse set of consumers and allowed them to participate in decision making process through two-way communication. The deregulated market encourages competition at the generation and distribution levels through communication with the central system operator. A software platform was developed and executed to manage the communication, as well for energy management of the overall system. It also demonstrated self-healing property of the system in case a fault occurs, resulting in an outage. The system not only recovered from the fault but managed to do so in a short time with no/minimum human involvement.

  7. Innovative testing and measurement solutions for smart grid

    CERN Document Server

    Huang, Qi; Yi, Jianbo; Zhen, Wei

    2015-01-01

    Focuses on sensor applications and smart meters in the newly developing interconnected smart grid Focuses on sensor applications and smart meters in the newly developing interconnected smart grid Presents the most updated technological developments in the measurement and testing of power systems within the smart grid environment Reflects the modernization of electric utility power systems with the extensive use of computer, sensor, and data communications technologies, providing benefits to energy consumers and utility companies alike The leading author heads a group of researchers focusing on

  8. Si and SiC Schottky diodes in smart power circuits: a comparative study by I-V-T and C-V measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hadzi-Vukovic, J [Infineon Technologies, Siemensstrasse 2, 9500 Villach (Austria); Jevtic, M [Institute for Physics, Pregrevica 118, 11080 Zemun (Serbia and Montenegro); Rothleitner, H [Infineon Technologies, Siemensstrasse 2, 9500 Villach (Austria); Croce, P Del [Infineon Technologies, Siemensstrasse 2, 9500 Villach (Austria)

    2005-01-01

    In this paper we analyze a possibility of manufacturing and implementation of Schottky diodes in the smart power circuits. Three different Schottky diodes, in three different technologies, are realized in Si and SiC processes. The electrical characterizations with I-V-T and C-V measurements are done for all structures. It is shown that Si based Schottky diodes also are suitable to be integrated in the typical smart power circuits.

  9. Si and SiC Schottky diodes in smart power circuits: a comparative study by I-V-T and C-V measurements

    International Nuclear Information System (INIS)

    Hadzi-Vukovic, J; Jevtic, M; Rothleitner, H; Croce, P Del

    2005-01-01

    In this paper we analyze a possibility of manufacturing and implementation of Schottky diodes in the smart power circuits. Three different Schottky diodes, in three different technologies, are realized in Si and SiC processes. The electrical characterizations with I-V-T and C-V measurements are done for all structures. It is shown that Si based Schottky diodes also are suitable to be integrated in the typical smart power circuits

  10. Smart energy management system

    Science.gov (United States)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  11. Autonomous smart sensor network for full-scale structural health monitoring

    Science.gov (United States)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  12. Solution-Processed Smart Window Platforms Based on Plasmonic Electrochromics

    KAUST Repository

    Abbas, Sara

    2018-04-30

    Electrochromic smart windows offer a viable route to reducing the consumption of buildings energy, which represents about 30% of the worldwide energy consumption. Smart windows are far more compelling than current static windows in that they can dynamically modulate the solar spectrum depending on climate and lighting conditions or simply to meet personal preferences. The latest generation of smart windows relies on nominally transparent metal oxide nanocrystal materials whose chromism can be electrochemically controlled using the plasmonic effect. Plasmonic electrochromic materials selectively control the near infrared (NIR) region of the solar spectrum, responsible for solar heat, without affecting the visible transparency. This is in contrast to conventional electrochromic materials which block both the visible and NIR and thus enables electrochromic devices to reduce the energy consumption of a building or a greenhouse in warm climate regions due to enhancements of both visible lighting and heat blocking. Despite this edge, this technology can benefit from important developments, including low-cost solution-based manufacturing on flexible substrates while maintaining durability and coloration efficiency, demonstration of independent control in the NIR and visible spectra, and demonstration of self-powering capabilities. This thesis is focused on developing low-temperature and all-solution processed plasmonic electrochromic devices and dual-band electrochromic devices. We demonstrate new device fabrication approaches in terms of materials and processes which enhance electrochromic performance all the while maintaining low processing temperatures. Scalable fabrication methods are used to highlight compatibility with high throughput, continuous roll-to-roll fabrication on flexible substrates. In addition, a dualband plasmonic electrochromic device was developed by combining the plasmonic layer with a conventional electrochromic ion storage layer. This enables

  13. Evaluating the enablers in solar power developments in the current scenario using fuzzy DEMATEL

    DEFF Research Database (Denmark)

    Luthra, Sunil; Govindan, Kannan; Kharb, Ravinder K.

    2016-01-01

    Determining solar power initiatives and developments for a country as large as India is difficult due to the involvement of different enablers. The decisions of these enablers will influence the formulation of strategies to encourage solar power development in India. The present research work...... critically analyzes Indian solar power developments to recognize and to evaluate key enablers that will encourage greater usage in Indias current scenario. A literature review that explores the Indian solar power sector is included, with a focus on need potential, and an examination of the key enablers....... This work identifies sixteen solar power enablers based on relevant literature and experts inputs. To evaluate and to categorize the recognized solar power development key enablers, a fuzzy Decision Making Trial and Evaluation Laboratory (DEMATEL) based methodology is utilized. The fuzzy DEMATEL approach...

  14. Electricity Markets, Smart Grids and Smart Buildings

    Science.gov (United States)

    Falcey, Jonathan M.

    A smart grid is an electricity network that accommodates two-way power flows, and utilizes two-way communications and increased measurement, in order to provide more information to customers and aid in the development of a more efficient electricity market. The current electrical network is outdated and has many shortcomings relating to power flows, inefficient electricity markets, generation/supply balance, a lack of information for the consumer and insufficient consumer interaction with electricity markets. Many of these challenges can be addressed with a smart grid, but there remain significant barriers to the implementation of a smart grid. This paper proposes a novel method for the development of a smart grid utilizing a bottom up approach (starting with smart buildings/campuses) with the goal of providing the framework and infrastructure necessary for a smart grid instead of the more traditional approach (installing many smart meters and hoping a smart grid emerges). This novel approach involves combining deterministic and statistical methods in order to accurately estimate building electricity use down to the device level. It provides model users with a cheaper alternative to energy audits and extensive sensor networks (the current methods of quantifying electrical use at this level) which increases their ability to modify energy consumption and respond to price signals The results of this method are promising, but they are still preliminary. As a result, there is still room for improvement. On days when there were no missing or inaccurate data, this approach has R2 of about 0.84, sometimes as high as 0.94 when compared to measured results. However, there were many days where missing data brought overall accuracy down significantly. In addition, the development and implementation of the calibration process is still underway and some functional additions must be made in order to maximize accuracy. The calibration process must be completed before a reliable

  15. Electricity usage scheduling in smart building environments using smart devices.

    Science.gov (United States)

    Lee, Eunji; Bahn, Hyokyung

    2013-01-01

    With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%.

  16. Efficient energy consumption and operation management in a smart building with microgrid

    International Nuclear Information System (INIS)

    Zhang, Di; Shah, Nilay; Papageorgiou, Lazaros G.

    2013-01-01

    Highlights: • An MILP model is formulated for energy consumption scheduling in a smart building. • Domestic appliances from multiple smart homes are considered. • Equipment operation and power consumption tasks starting time are scheduled. • Results from two examples indicate cost savings and power peak reduction. • Peak demand charge scheme is adopted to reduce the peak demand from grid. - Abstract: Microgrid works as a local energy provider for domestic buildings to reduce energy expenses and gas emissions by utilising distributed energy resources (DERs). The rapid advances in computing and communication capabilities enable the concept smart buildings become possible. Most energy-consuming household tasks do not need to be performed at specific times but rather within a preferred time. If these types of tasks can be coordinated among multiple homes so that they do not all occur at the same time yet still satisfy customers’ requirement, the energy cost and power peak demand could be reduced. In this paper, the optimal scheduling of smart homes’ energy consumption is studied using a mixed integer linear programming (MILP) approach. In order to minimise a 1-day forecasted energy consumption cost, DER operation and electricity-consumption household tasks are scheduled based on real-time electricity pricing, electricity task time window and forecasted renewable energy output. Peak demand charge scheme is also adopted to reduce the peak demand from grid. Two numerical examples on smart buildings of 30 homes and 90 homes with their own microgrid indicate the possibility of cost savings and electricity consumption scheduling peak reduction through the energy consumption and better management of DER operation

  17. Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology

    Science.gov (United States)

    Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu

    2013-08-01

    From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.

  18. Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power

    International Nuclear Information System (INIS)

    Wang Jianhui; Liu Cong; Ton, Dan; Zhou Yan; Kim, Jinho; Vyas, Anantray

    2011-01-01

    This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced. - Research highlights: → A unit commitment model is used to simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). → Different PHEV charging scenarios are simulated on the Illinois power system → Load shifting and shaving enabled by DR programs are also modeled. → The simulation results show that the operating cost can be reduced with DR and optimal PHEV charging.

  19. Thermal battery with CO2 compression heat pump: Techno-economic optimization of a high-efficiency Smart Grid option for buildings

    DEFF Research Database (Denmark)

    Blarke, Morten; Yazawa, Kazuaki; Shakouri, Ali

    2012-01-01

    Increasing penetration levels of wind and solar power in the energy system call for the development of Smart Grid enabling technologies. As an alternative to expensive electro-chemical and mechanical storage options, the thermal energy demand in buildings offers a cost-effective option for interm......Increasing penetration levels of wind and solar power in the energy system call for the development of Smart Grid enabling technologies. As an alternative to expensive electro-chemical and mechanical storage options, the thermal energy demand in buildings offers a cost-effective option....... In a proof-of-concept case study, the TB replaces an existing electric resistance heater used for hot water production and an electric compressor used for air refrigeration in a central air conditioning system. A mathematical model for least-cost unit dispatch is developed. Heat pump cycle components...

  20. Economic Assessment of SMART Deployment in Korea using DEEP 5.1

    International Nuclear Information System (INIS)

    Han, Kyu-dong; Roh, Myung-sub

    2015-01-01

    SMART is designed to produce 330MW thermal energy and 40,000m 3 /day desalinated water with enhanced safety system. The design acquired the standard design certification from Nuclear Safety and Security Commission (NSSC) for the first time in the world. Nonetheless, SMART is estimated to have a higher cost of energy compared to other power sources, so investors were restrained from ploughing their asset into construction of the first unit as a demonstration plant. Such a dismal economic outlook discouraged Korean nuclear power industry and potential purchasers from deploying SMART. In this study, economic assessments were conducted to figure out economic competitiveness of SMART. Desalination Economics Evaluation Program (DEEP) software which was developed and distributed by International Atomic Energy Agency (IAEA) was used to analyze the cost of electricity and water of SMART and other power plants. This study set out to evaluate the economic competitiveness of deploying SMART in Korea. This implies that controlling overnight construction cost is a key factor of the economic competitiveness of SMART. SMART is appropriate for small-medium sized remote electricity demand, so a related case study was conducted. A comparison of economic value between SMART and other alternative power sources were conducted using DEEP software. The alternative power sources were coal power plant and combined cycle gas turbine plant. Assuming those power plants generates certain amount of water to be fairly compared with SMART, DEEP software calculated SMART should be built with maximum 9,000-10,000 $/kWe construction cost. Compared to the plants with CCS facility, allowance of SMART construction cost increases to be 11,000-12,000 $/kWe. Another assumption was considered to highlight the merit of SMART which emits almost zero carbon compounds. Applying carbon tax to the previous study, LCOE of SMART and other power sources was calculated. The result shows that overnight construction

  1. Economic Assessment of SMART Deployment in Korea using DEEP 5.1

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyu-dong; Roh, Myung-sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    SMART is designed to produce 330MW thermal energy and 40,000m{sup 3}/day desalinated water with enhanced safety system. The design acquired the standard design certification from Nuclear Safety and Security Commission (NSSC) for the first time in the world. Nonetheless, SMART is estimated to have a higher cost of energy compared to other power sources, so investors were restrained from ploughing their asset into construction of the first unit as a demonstration plant. Such a dismal economic outlook discouraged Korean nuclear power industry and potential purchasers from deploying SMART. In this study, economic assessments were conducted to figure out economic competitiveness of SMART. Desalination Economics Evaluation Program (DEEP) software which was developed and distributed by International Atomic Energy Agency (IAEA) was used to analyze the cost of electricity and water of SMART and other power plants. This study set out to evaluate the economic competitiveness of deploying SMART in Korea. This implies that controlling overnight construction cost is a key factor of the economic competitiveness of SMART. SMART is appropriate for small-medium sized remote electricity demand, so a related case study was conducted. A comparison of economic value between SMART and other alternative power sources were conducted using DEEP software. The alternative power sources were coal power plant and combined cycle gas turbine plant. Assuming those power plants generates certain amount of water to be fairly compared with SMART, DEEP software calculated SMART should be built with maximum 9,000-10,000 $/kWe construction cost. Compared to the plants with CCS facility, allowance of SMART construction cost increases to be 11,000-12,000 $/kWe. Another assumption was considered to highlight the merit of SMART which emits almost zero carbon compounds. Applying carbon tax to the previous study, LCOE of SMART and other power sources was calculated. The result shows that overnight

  2. The often neglected yet crucial element in smart grid strategies

    Energy Technology Data Exchange (ETDEWEB)

    DiMarco, T. [Utility Industry Global Marketing Security, New York, NY (United States); Smith, W. [Intergraph Corp., Huntsville, AL (United States)

    2008-11-15

    Smart grids consist of automation technology that includes selfhealing networks, intelligent applications, and smart meters to improve load management. Electric utilities can benefit from making the transition from existing infrastructure to leading edge smart grid technology which offers better reliability and reduced maintenance costs. The smart grid improves the efficiency of electrical transmission and distribution, whether it involves carbon policies, grid modernization, renewable energy sources or smart end-use devices for the customer. Smart grids are expected to improve scheduling efficiency, dispatch management, transmission line surveillance and cyber security by enabling faster and better decisions from the control room. However, a smart grid control center is prone to human error. Operators must monitor data, locate work crews, analyze power system reports, and survey real-time transmission line data. They must choose optimal network configurations, whether it is to control voltage or to manage system restart following an outage. To do so, they need a system that will allow them to speed their analysis and take action. The true value of a smart grid is being able to see and control several critical applications in one unified system. A common operating picture improves overall situational awareness, reduces costs and increases efficiency in grid operations. The control center of the future will have 2D and 3D graphical visualization of complex real-time data to improve situational awareness, with multiple layers of information, including outages, distribution automation, geographic information systems, network analysis, and workforce management in a unified system. 1 fig.

  3. A Stochastic Operational Planning Model for Smart Power Systems

    Directory of Open Access Journals (Sweden)

    Sh. Jadid

    2014-12-01

    Full Text Available Smart Grids are result of utilizing novel technologies such as distributed energy resources, and communication technologies in power system to compensate some of its defects. Various power resources provide some benefits for operation domain however, power system operator should use a powerful methodology to manage them. Renewable resources and load add uncertainty to the problem. So, independent system operator should use a stochastic method to manage them. A Stochastic unit commitment is presented in this paper to schedule various power resources such as distributed generation units, conventional thermal generation units, wind and PV farms, and demand response resources. Demand response resources, interruptible loads, distributed generation units, and conventional thermal generation units are used to provide required reserve for compensating stochastic nature of various resources and loads. In the presented model, resources connected to distribution network can participate in wholesale market through aggregators. Moreover, a novel three-program model which can be used by aggregators is presented in this article. Loads and distributed generation can contract with aggregators by these programs. A three-bus test system and the IEEE RTS are used to illustrate usefulness of the presented model. The results show that ISO can manage the system effectively by using this model

  4. Educating the smart city: Schooling smart citizens through computational urbanism

    Directory of Open Access Journals (Sweden)

    Ben Williamson

    2015-11-01

    Full Text Available Coupled with the ‘smart city’, the idea of the ‘smart school’ is emerging in imaginings of the future of education. Various commercial, governmental and civil society organizations now envisage education as a highly coded, software-mediated and data-driven social institution. Such spaces are to be governed through computational processes written in computer code and tracked through big data. In an original analysis of developments from commercial, governmental and civil society sectors, the article examines two interrelated dimensions of an emerging smart schools imaginary: (1 the constant flows of digital data that smart schools depend on and the mobilization of analytics that enable student data to be used to anticipate and shape their behaviours; and (2 the ways that young people are educated to become ‘computational operatives’ who must ‘learn to code’ in order to become ‘smart citizens’ in the governance of the smart city. These developments constitute an emerging educational space fabricated from intersecting standards, technologies, discourses and social actors, all infused with the aspirations of technical experts to govern the city at a distance through both monitoring young people as ‘data objects’ and schooling them as active ‘computational citizens’ with the responsibility to compute the future of the city.

  5. From Smart Metering to Smart Grid

    Science.gov (United States)

    Kukuča, Peter; Chrapčiak, Igor

    2016-06-01

    The paper deals with evaluation of measurements in electrical distribution systems aimed at better use of data provided by Smart Metering systems. The influence of individual components of apparent power on the power loss is calculated and results of measurements under real conditions are presented. The significance of difference between the traditional and the complex evaluation of the electricity consumption efficiency by means of different definitions of the power factor is illustrated.

  6. Semantic Information Modeling for Emerging Applications in Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qunzhi; Natarajan, Sreedhar; Simmhan, Yogesh; Prasanna, Viktor

    2012-04-16

    Smart Grid modernizes power grid by integrating digital and information technologies. Millions of smart meters, intelligent appliances and communication infrastructures are under deployment allowing advanced IT applications to be developed to secure and manage power grid operations. Demand response (DR) is one such emerging application to optimize electricity demand by curtailing/shifting power load when peak load occurs. Existing DR approaches are mostly based on static plans such as pricing policies and load shedding schedules. However, improvements to power management applications rely on data emanating from existing and new information sources with the growth of Smart Grid information space. In particular, dynamic DR algorithms depend on information from smart meters that report interval-based power consumption measurement, HVAC systems that monitor buildings heat and humidity, and even weather forecast services. In order for emerging Smart Grid applications to take advantage of the diverse data influx, extensible information integration is required. In this paper, we develop an integrated Smart Grid information model using Semantic Web techniques and present case studies of using semantic information for dynamic DR. We show the semantic model facilitates information integration and knowledge representation for developing the next generation Smart Grid applications.

  7. Association of In Vivo [18F]AV-1451 Tau PET Imaging Results With Cortical Atrophy and Symptoms in Typical and Atypical Alzheimer Disease.

    Science.gov (United States)

    Xia, Chenjie; Makaretz, Sara J; Caso, Christina; McGinnis, Scott; Gomperts, Stephen N; Sepulcre, Jorge; Gomez-Isla, Teresa; Hyman, Bradley T; Schultz, Aaron; Vasdev, Neil; Johnson, Keith A; Dickerson, Bradford C

    2017-04-01

    Previous postmortem studies have long demonstrated that neurofibrillary tangles made of hyperphosphorylated tau proteins are closely associated with Alzheimer disease clinical phenotype and neurodegeneration pattern. Validating these associations in vivo will lead to new diagnostic tools for Alzheimer disease and better understanding of its neurobiology. To examine whether topographical distribution and severity of hyperphosphorylated tau pathologic findings measured by fluorine 18-labeled AV-1451 ([18F]AV-1451) positron emission tomographic (PET) imaging are linked with clinical phenotype and cortical atrophy in patients with Alzheimer disease. This observational case series, conducted from July 1, 2012, to July 30, 2015, in an outpatient referral center for patients with neurodegenerative diseases, included 6 patients: 3 with typical amnesic Alzheimer disease and 3 with atypical variants (posterior cortical atrophy, logopenic variant primary progressive aphasia, and corticobasal syndrome). Patients underwent [18F]AV-1451 PET imaging to measure tau burden, carbon 11-labeled Pittsburgh Compound B ([11C]PiB) PET imaging to measure amyloid burden, and structural magnetic resonance imaging to measure cortical thickness. Seventy-seven age-matched controls with normal cognitive function also underwent structural magnetic resonance imaging but not tau or amyloid PET imaging. Tau burden, amyloid burden, and cortical thickness. In all 6 patients (3 women and 3 men; mean age 61.8 years), the underlying clinical phenotype was associated with the regional distribution of the [18F]AV-1451 signal. Furthermore, within 68 cortical regions of interest measured from each patient, the magnitude of cortical atrophy was strongly correlated with the magnitude of [18F]AV-1451 binding (3 patients with amnesic Alzheimer disease, r = -0.82; P localizing and quantifying hyperphosphorylated tau in vivo, results of tau PET imaging will likely serve as a key biomarker that links a

  8. Smart Grid Applications for a Practical Implementation of IP over Narrowband Power Line Communications

    Directory of Open Access Journals (Sweden)

    Noelia Uribe-Pérez

    2017-11-01

    Full Text Available Currently, Advanced Metering Infrastructure (AMI systems have equipped the low voltage section with a communication system that is being used mainly for metering purposes, but it can be further employed for additional applications related to the Smart Grid (SG concept. This paper explores the potential applications beyond metering of the available channel in a Power Line Communication-based AMI system. To that end, IP has been implemented over Narrow Band-Power Line Communication (NB-PLC in a real microgrid, which includes an AMI system. A thorough review of potential applications for the SG that might be implemented for this representative case is included in order to provide a realistic analysis of the potentiality of NB-PLC beyond smart metering. The results demonstrate that existing AMI systems based on NB-PLC have the capacity to implement additional applications such as remote commands or status signals, which entails an added value for deployed AMI systems.

  9. Hybrid data acquisition and processing strategies with increased throughput and selectivity: pSMART analysis for global qualitative and quantitative analysis.

    Science.gov (United States)

    Prakash, Amol; Peterman, Scott; Ahmad, Shadab; Sarracino, David; Frewen, Barbara; Vogelsang, Maryann; Byram, Gregory; Krastins, Bryan; Vadali, Gouri; Lopez, Mary

    2014-12-05

    Data-dependent acquisition (DDA) and data-independent acquisition strategies (DIA) have both resulted in improved understanding of proteomics samples. Both strategies have advantages and disadvantages that are well-published, where DDA is typically applied for deep discovery and DIA may be used to create sample records. In this paper, we present a hybrid data acquisition and processing strategy (pSMART) that combines the strengths of both techniques and provides significant benefits for qualitative and quantitative peptide analysis. The performance of pSMART is compared to published DIA strategies in an experiment that allows the objective assessment of DIA performance with respect to interrogation of previously acquired MS data. The results of this experiment demonstrate that pSMART creates fewer decoy hits than a standard DIA strategy. Moreover, we show that pSMART is more selective, sensitive, and reproducible than either standard DIA or DDA strategies alone.

  10. Interference Effects Redress over Power-Efficient Wireless-Friendly Mesh Networks for Ubiquitous Sensor Communications across Smart Cities.

    Science.gov (United States)

    Santana, Jose; Marrero, Domingo; Macías, Elsa; Mena, Vicente; Suárez, Álvaro

    2017-07-21

    Ubiquitous sensing allows smart cities to take control of many parameters (e.g., road traffic, air or noise pollution levels, etc.). An inexpensive Wireless Mesh Network can be used as an efficient way to transport sensed data. When that mesh is autonomously powered (e.g., solar powered), it constitutes an ideal portable network system which can be deployed when needed. Nevertheless, its power consumption must be restrained to extend its operational cycle and for preserving the environment. To this end, our strategy fosters wireless interface deactivation among nodes which do not participate in any route. As we show, this contributes to a significant power saving for the mesh. Furthermore, our strategy is wireless-friendly, meaning that it gives priority to deactivation of nodes receiving (and also causing) interferences from (to) the rest of the smart city. We also show that a routing protocol can adapt to this strategy in which certain nodes deactivate their own wireless interfaces.

  11. Enabling active and healthy ageing decision support systems with the smart collection of TV usage patterns.

    Science.gov (United States)

    Billis, Antonis S; Batziakas, Asterios; Bratsas, Charalampos; Tsatali, Marianna S; Karagianni, Maria; Bamidis, Panagiotis D

    2016-03-01

    Smart monitoring of seniors behavioural patterns and more specifically activities of daily living have attracted immense research interest in recent years. Development of smart decision support systems to support the promotion of health smart homes has also emerged taking advantage of the plethora of smart, inexpensive and unobtrusive monitoring sensors, devices and software tools. To this end, a smart monitoring system has been used in order to extract meaningful information about television (TV) usage patterns and subsequently associate them with clinical findings of experts. The smart TV operating state remote monitoring system was installed in four elderly women homes and gathered data for more than 11 months. Results suggest that TV daily usage (time the TV is turned on) can predict mental health change. Conclusively, the authors suggest that collection of smart device usage patterns could strengthen the inference capabilities of existing health DSSs applied in uncontrolled settings such as real senior homes.

  12. Security Policies for Mitigating the Risk of Load Altering Attacks on Smart Grid Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, Tatyana; AlMajali, Anas; Neuman, Clifford

    2015-04-01

    While demand response programs implement energy efficiency and power quality objectives, they bring potential security threats to the Smart Grid. The ability to influence load in a system enables attackers to cause system failures and impacts the quality and integrity of power delivered to customers. This paper presents a security mechanism to monitor and control load according to a set of security policies during normal system operation. The mechanism monitors, detects, and responds to load altering attacks. We examined the security requirements of Smart Grid stakeholders and constructed a set of load control policies enforced by the mechanism. We implemented a proof of concept prototype and tested it using the simulation environment. By enforcing the proposed policies in this prototype, the system is maintained in a safe state in the presence of load drop attacks.

  13. Using a Commercial Framework to Implement and Enhance the IEEE 1451.1 Standard

    OpenAIRE

    Viegas, Vítor; Pereira, José Dias; Girão, P. Silva

    2005-01-01

    In 1999, the 1451.1 Std was published defining a common object model and interface specification to develop open, multi-vendor distributed measurement and control systems. However, despite the well-known advantages of the model, few have been the initiatives to implement it. In this paper we describe the implementation of a NCAP – Network Capable Application Processor, in a well-known and well-proven infrastructure: the Microsoft .NET Framework. The choice of a commercial framework was part o...

  14. New Materials = New Expressive Powers: Smart Material Interfaces and Arts, experience via smart materials

    NARCIS (Netherlands)

    Minuto, A.; Pittarello, Fabio; Nijholt, Antinus

    2014-01-01

    It is not easy for a growing artist to find his poetry. Smart materials could be an answer for those who are looking for new forms of art. Smart Material Interfaces (SMI) define a new interaction paradigm based on dynamic modications of the innovative materials' properties. SMI can be applied in

  15. PC and monitor night status: Power management enabling and manual turn-off

    International Nuclear Information System (INIS)

    Nordman, Bruce; Meier, Alan; Piette, Mary Ann

    1998-01-01

    While office equipment accounts for about 7 percent of commercial building energy use, this reflects considerable energy savings from the use of automatic power management. Most of these savings were gained through the use of low-power modes that meet the criteria of the U.S. EPA's Energy Star program. Despite this success, there are large amounts of additional savings that could be gained if all equipment capable of power management use were enabled and functioning. A considerable portion of equipment is not enabled for power management at all, enabled only partially, or is enabled but prevented from functioning. Additional savings could be gained if more equipment were turned off at night manually. We compiled results from 17 studies from the office equipment literature addressing PCs and monitors. Some factors important for annual energy use, such as power levels, have been documented elsewhere and are not covered. We review methods for estimating office equipment use patterns and energy use, and present findings on night status-power management and manual turn-off rates. In early studies, PC power management was often found to function in 25 percent or less of the Energy Star compliant units (10 percent of all PCs). However, recent assessments have found higher rates, and we estimate that for Energy Star models, 35 percent of PC CPUs and 65 percent of PC monitors are enabled for power management. While the data lack statistical rigor, they can be used to estimate the magnitude of current and potential power management savings, which we did for major types of office equipment. The data also make clear that the topic of enabling rates, and the factors which influence them, deserve greater scrutiny

  16. Electricity Consumption Clustering Using Smart Meter Data

    Directory of Open Access Journals (Sweden)

    Alexander Tureczek

    2018-04-01

    Full Text Available Electricity smart meter consumption data is enabling utilities to analyze consumption information at unprecedented granularity. Much focus has been directed towards consumption clustering for diversifying tariffs; through modern clustering methods, cluster analyses have been performed. However, the clusters developed exhibit a large variation with resulting shadow clusters, making it impossible to truly identify the individual clusters. Using clearly defined dwelling types, this paper will present methods to improve clustering by harvesting inherent structure from the smart meter data. This paper clusters domestic electricity consumption using smart meter data from the Danish city of Esbjerg. Methods from time series analysis and wavelets are applied to enable the K-Means clustering method to account for autocorrelation in data and thereby improve the clustering performance. The results show the importance of data knowledge and we identify sub-clusters of consumption within the dwelling types and enable K-Means to produce satisfactory clustering by accounting for a temporal component. Furthermore our study shows that careful preprocessing of the data to account for intrinsic structure enables better clustering performance by the K-Means method.

  17. An Enhanced LoRaWAN Security Protocol for Privacy Preservation in IoT with a Case Study on a Smart Factory-Enabled Parking System.

    Science.gov (United States)

    You, Ilsun; Kwon, Soonhyun; Choudhary, Gaurav; Sharma, Vishal; Seo, Jung Taek

    2018-06-08

    The Internet of Things (IoT) utilizes algorithms to facilitate intelligent applications across cities in the form of smart-urban projects. As the majority of devices in IoT are battery operated, their applications should be facilitated with a low-power communication setup. Such facility is possible through the Low-Power Wide-Area Network (LPWAN), but at a constrained bit rate. For long-range communication over LPWAN, several approaches and protocols are adopted. One such protocol is the Long-Range Wide Area Network (LoRaWAN), which is a media access layer protocol for long-range communication between the devices and the application servers via LPWAN gateways. However, LoRaWAN comes with fewer security features as a much-secured protocol consumes more battery because of the exorbitant computational overheads. The standard protocol fails to support end-to-end security and perfect forward secrecy while being vulnerable to the replay attack that makes LoRaWAN limited in supporting applications where security (especially end-to-end security) is important. Motivated by this, an enhanced LoRaWAN security protocol is proposed, which not only provides the basic functions of connectivity between the application server and the end device, but additionally averts these listed security issues. The proposed protocol is developed with two options, the Default Option (DO) and the Security-Enhanced Option (SEO). The protocol is validated through Burrows⁻Abadi⁻Needham (BAN) logic and the Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. The proposed protocol is also analyzed for overheads through system-based and low-power device-based evaluations. Further, a case study on a smart factory-enabled parking system is considered for its practical application. The results, in terms of network latency with reliability fitting and signaling overheads, show paramount improvements and better performance for the proposed protocol compared with the two

  18. An Enhanced LoRaWAN Security Protocol for Privacy Preservation in IoT with a Case Study on a Smart Factory-Enabled Parking System

    Directory of Open Access Journals (Sweden)

    Ilsun You

    2018-06-01

    Full Text Available The Internet of Things (IoT utilizes algorithms to facilitate intelligent applications across cities in the form of smart-urban projects. As the majority of devices in IoT are battery operated, their applications should be facilitated with a low-power communication setup. Such facility is possible through the Low-Power Wide-Area Network (LPWAN, but at a constrained bit rate. For long-range communication over LPWAN, several approaches and protocols are adopted. One such protocol is the Long-Range Wide Area Network (LoRaWAN, which is a media access layer protocol for long-range communication between the devices and the application servers via LPWAN gateways. However, LoRaWAN comes with fewer security features as a much-secured protocol consumes more battery because of the exorbitant computational overheads. The standard protocol fails to support end-to-end security and perfect forward secrecy while being vulnerable to the replay attack that makes LoRaWAN limited in supporting applications where security (especially end-to-end security is important. Motivated by this, an enhanced LoRaWAN security protocol is proposed, which not only provides the basic functions of connectivity between the application server and the end device, but additionally averts these listed security issues. The proposed protocol is developed with two options, the Default Option (DO and the Security-Enhanced Option (SEO. The protocol is validated through Burrows–Abadi–Needham (BAN logic and the Automated Validation of Internet Security Protocols and Applications (AVISPA tool. The proposed protocol is also analyzed for overheads through system-based and low-power device-based evaluations. Further, a case study on a smart factory-enabled parking system is considered for its practical application. The results, in terms of network latency with reliability fitting and signaling overheads, show paramount improvements and better performance for the proposed protocol compared with

  19. Smart power and foreign policy of the People's Republic of China: the case of Central America

    Directory of Open Access Journals (Sweden)

    Manuel Villegas Mendoza

    2016-02-01

    Full Text Available This paper presents the most relevant aspects of the academic debate on smart power, in order to apply this concept to analyze the foreign policy of the Republic of China on Latin America and the Caribbean, but especially to Central America; where the dispute between China and Taiwan for international recognition is evident. It is argued that the smart power of China to Central America is expressed in the attractiveness of having privileged access to the Chinese market and its funding programs and official development assistance. While this country has a large presence in Latin America and the Caribbean, in Central America such influence is counteracted in the light of the close relationship that all Central American countries except Costa Rica, maintain with Taiwan. Based on the development of China as a world power, it is expected that this condition changed, so that this country would increase its influence in Central America.

  20. Photoresponsive Smart Coloration Electrochromic Supercapacitor.

    Science.gov (United States)

    Yun, Tae Gwang; Kim, Donghyuk; Kim, Yong Ho; Park, Minkyu; Hyun, Seungmin; Han, Seung Min

    2017-08-01

    Electrochromic devices have been widely adopted in energy saving applications by taking advantage of the electrode coloration, but it is critical to develop a new electrochromic device that can undergo smart coloration and can have a wide spectrum in transmittance in response to input light intensity while also functioning as a rechargeable energy storage system. In this study, a photoresponsive electrochromic supercapacitor based on cellulose-nanofiber/Ag-nanowire/reduced-graphene-oxide/WO 3 -composite electrode that is capable of undergoing "smart" reversible coloration while simultaneously functioning as a reliable energy-storage device is developed. The fabricated device exhibits a high coloration efficiency of 64.8 cm 2 C -1 and electrochemical performance with specific capacitance of 406.0 F g -1 , energy/power densities of 40.6-47.8 Wh kg -1 and 6.8-16.9 kW kg -1 . The electrochromic supercapacitor exhibits excellent cycle reliability, where 75.0% and 94.1% of its coloration efficiency and electrochemical performance is retained, respectively, beyond 10 000 charge-discharge cycles. Cyclic fatigue tests show that the developed device is mechanically durable and suitable for wearable electronics applications. The smart electrochromic supercapacitor system is then integrated with a solar sensor to enable photoresponsive coloration where the transmittance changes in response to varying light intensity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. LTE delay assessment for real-time management of future smart grids

    NARCIS (Netherlands)

    Jorguseski, L.; Zhang, H.; Chrysalos, M.; Golinski, M.; Toh, Y.

    2017-01-01

    This study investigates the feasibility of using Long Term Evolution (LTE), for the real-time state estimation of the smart grids. This enables monitoring and control of future smart grids. The smart grid state estimation requires measurement reports from different nodes in the smart grid and

  2. Safety awareness educational topics for the construction of power transmission systems with smart grid technologies

    Directory of Open Access Journals (Sweden)

    Bryan Hubbard

    2013-09-01

    Full Text Available Power transmission facilities in the U.S. are undergoing a transformation due to the increased use of distributed generation sources such as wind and solar power.  The current power grid system is also antiquated and in need of substantial retrofits to make it more efficient and reliable.  The new energy transmission system being designed and built to optimize power delivery is known as “Smart Grid”.  The increased activity in the construction of power transmission facilities and installation of new technologies into the current power system raises potential safety concerns.  Existing construction management curriculum may include general information about safety training, but does not typically include information about this specialized sector.  The objective of this study was to work with industry to identify key safety topics appropriate for inclusion in an introductory industrial construction course.  Results of interviews with industry identified numerous hazards that are not typically covered in typical construction curricula.  A joint undergraduate and graduate course in industrial construction was created to address these and additional concepts. A survey of the students was performed to determine the effectiveness of the course and also to determine their thoughts about the smart grid technologies and safety training. Information on electrical system hazards is presented along with results of the student surveys.

  3. Smart Grid Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Craig [National Rural Electric Cooperative Association, Arlington, VA (United States); Carroll, Paul [National Rural Electric Cooperative Association, Arlington, VA (United States); Bell, Abigail [National Rural Electric Cooperative Association, Arlington, VA (United States)

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  4. Smart grid in China

    DEFF Research Database (Denmark)

    Sommer, Simon; Ma, Zheng; Jørgensen, Bo Nørregaard

    2015-01-01

    China is planning to transform its traditional power grid in favour of a smart grid, since it allows a more economically efficient and a more environmentally friendly transmission and distribution of electricity. Thus, a nationwide smart grid is likely to save tremendous amounts of resources...

  5. Smart meter status report from Toronto

    International Nuclear Information System (INIS)

    O'Brien, D.

    2006-01-01

    An update of Toronto Hydro's smart metering program was presented. Electricity demand is expected to keep increasing, and there is presently insufficient generation to match supply needs in Ontario. The smart metering program was introduced to aid in the Ontario government's energy conservation strategy, as well as to address peak supply problems that have led to power outages. It is expected that the smart metering program will reduce provincial peak supply by 5 per cent, as the meters support both time-of-use rates and critical peak pricing. Over 800,000 smart meters will be supplied to customers by 2007, and all 4.3 million homes in Toronto will have a smart meter by 2010. In order to meet targets for 2010, the utility will continue to install more 15,000 meters each month for the next 4 years. While the Ontario government has planned and coordinated the rollout and developed smart metering specifications and standards, Toronto Hydro is responsible for the purchase, installation, operation and maintenance of the meters. Advance testing of each meter is needed to ensure billing accuracy, and customer education on meter use is also. The complexity of the metering program has led the utility to establish a rigid project management process. Customer education pilot program are currently being conducted. Experience gained during the earlier phases of the program have enabled the utility to select appropriate metering systems based on density, topography and physical conditions. Project expenditures have been within budget due to improved project estimating and planning. The metering program has been conducted in tandem with the utility's peakSAVER program, a residential and small commercial load control program that has been successful in reducing summer peak demand by cycling air conditioners without causing discomfort. It was concluded that the utility will continue with its mass deployment of smart meters, and is currently preparing its call center to handled

  6. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-09-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.

  7. Decentral Smart Grid Control

    Science.gov (United States)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  8. Decentral Smart Grid Control

    International Nuclear Information System (INIS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals. (paper)

  9. Smart house-based optimal operation of thermal unit commitment for a smart grid considering transmission constraints

    Science.gov (United States)

    Howlader, Harun Or Rashid; Matayoshi, Hidehito; Noorzad, Ahmad Samim; Muarapaz, Cirio Celestino; Senjyu, Tomonobu

    2018-05-01

    This paper presents a smart house-based power system for thermal unit commitment programme. The proposed power system consists of smart houses, renewable energy plants and conventional thermal units. The transmission constraints are considered for the proposed system. The generated power of the large capacity renewable energy plant leads to the violated transmission constraints in the thermal unit commitment programme, therefore, the transmission constraint should be considered. This paper focuses on the optimal operation of the thermal units incorporated with controllable loads such as Electrical Vehicle and Heat Pump water heater of the smart houses. The proposed method is compared with the power flow in thermal units operation without controllable loads and the optimal operation without the transmission constraints. Simulation results show the validation of the proposed method.

  10. A low-power CMOS smart temperature sensor for RFID application

    International Nuclear Information System (INIS)

    Xie Liangbo; Liu Jiaxin; Wang Yao; Wen Guangjun

    2014-01-01

    This paper presents the design and implement of a CMOS smart temperature sensor, which consists of a low power analog front-end and a 12-bit low-power successive approximation register (SAR) analog-to-digital converter (ADC). The analog front-end generates a proportional-to-absolute-temperature (PTAT) voltage with MOSFET circuits operating in the sub-threshold region. A reference voltage is also generated and optimized in order to minimize the temperature error and the 12-bit SAR ADC is used to digitize the PTAT voltage. Using 0.18 μm CMOS technology, measurement results show that the temperature error is −0.69/+0.85 °C after one-point calibration over a temperature range of −40 to 100 °C. Under a conversion speed of 1K samples/s, the power consumption is only 2.02 μW while the chip area is 230 × 225 μm 2 , and it is suitable for RFID application. (semiconductor integrated circuits)

  11. "Smart pebble" design for environmental monitoring applications

    Science.gov (United States)

    Valyrakis, Manousos; Pavlovskis, Edgars

    2014-05-01

    Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, while focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions. "Smart pebble" allows for a wider range of environmental sensors (e.g. for environmental/pollutant monitoring) to be incorporated so as to extend the range of its application, enabling accurate environmental monitoring which is required to ensure infrastructure resilience and preservation of ecological health.

  12. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    Energy Technology Data Exchange (ETDEWEB)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  13. Long Island Smart Energy Corridor

    Energy Technology Data Exchange (ETDEWEB)

    Mui, Ming [Long Island Power Authority, Uniondale, NY (United States)

    2015-02-04

    The Long Island Power Authority (LIPA) has teamed with Stony Brook University (Stony Brook or SBU) and Farmingdale State College (Farmingdale or FSC), two branches of the State University of New York (SUNY), to create a “Smart Energy Corridor.” The project, located along the Route 110 business corridor on Long Island, New York, demonstrated the integration of a suite of Smart Grid technologies from substations to end-use loads. The Smart Energy Corridor Project included the following key features: -TECHNOLOGY: Demonstrated a full range of smart energy technologies, including substations and distribution feeder automation, fiber and radio communications backbone, advanced metering infrastructure (AM”), meter data management (MDM) system (which LIPA implemented outside of this project), field tools automation, customer-level energy management including automated energy management systems, and integration with distributed generation and plug-in hybrid electric vehicles. -MARKETING: A rigorous market test that identified customer response to an alternative time-of-use pricing plan and varying levels of information and analytical support. -CYBER SECURITY: Tested cyber security vulnerabilities in Smart Grid hardware, network, and application layers. Developed recommendations for policies, procedures, and technical controls to prevent or foil cyber-attacks and to harden the Smart Grid infrastructure. -RELIABILITY: Leveraged new Smart Grid-enabled data to increase system efficiency and reliability. Developed enhanced load forecasting, phase balancing, and voltage control techniques designed to work hand-in-hand with the Smart Grid technologies. -OUTREACH: Implemented public outreach and educational initiatives that were linked directly to the demonstration of Smart Grid technologies, tools, techniques, and system configurations. This included creation of full-scale operating models demonstrating application of Smart Grid technologies in business and residential

  14. Smart Homes for Older People: Positive Aging in a Digital World

    Directory of Open Access Journals (Sweden)

    Tony Barnett

    2012-06-01

    Full Text Available Smart homes are homes with technologically advanced systems to enable domestic task automation, easier communication, and higher security. As an enabler of health and well-being enhancement, smart homes have been geared to accommodate people with special needs, especially older people. This paper examines the concept of “smart home” in a technologically driven society and its multi-functional contribution to the enhancement of older people’s lives. Discussion then focuses on the challenges in the use of smart homes among older people such as accessibility and ethical issues. Finally, some implications and recommendations are provided.

  15. Smart grids clouds, communications, open source, and automation

    CERN Document Server

    Bakken, David

    2014-01-01

    The utilization of sensors, communications, and computer technologies to create greater efficiency in the generation, transmission, distribution, and consumption of electricity will enable better management of the electric power system. As the use of smart grid technologies grows, utilities will be able to automate meter reading and billing and consumers will be more aware of their energy usage and the associated costs. The results will require utilities and their suppliers to develop new business models, strategies, and processes.With an emphasis on reducing costs and improving return on inve

  16. Volttron: An Agent Platform for the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Haack, Jereme N.; Akyol, Bora A.; Carpenter, Brandon J.; Tews, Cody W.; Foglesong, Lance W.

    2013-05-06

    VOLLTRON platform enables the deployment of intelligent sensors and controllers in the smart grid and provides a stable, secure and flexible framework that expands the sensing and control capabilities. VOLTTRON platform provides services fulfilling the essential requirements of resource management and security for agent operation in the power grid. The facilities provided by the platform allow agent developers to focus on the implementation of their agent system and not on the necessary "plumbing' code. For example, a simple collaborative demand response application was written in less than 200 lines of Python.

  17. Smart street lighting : The advantages of LED street lighting and a smart control system in Uppsala municipality

    OpenAIRE

    Sjöberg, Inga; Gidén Hember, Amanda; Wallerström, Carolina

    2017-01-01

    The purpose of this bachelor thesis is to examine how LED street lights and a smart street light control system can reduce the energy consumption, costs and in extension the CO2 equivalents in a geographically delimited area. In 2015 the municipality of Sala installed LED armatures connected to a smart control system in the whole municipality. The smart control system enables for instance adjustment of the light intensity at specific times during the day and a supervision of the street light ...

  18. Sensors 4.0 – smart sensors and measurement technology enable Industry 4.0

    Directory of Open Access Journals (Sweden)

    A. Schütze

    2018-05-01

    Full Text Available Industrie 4.0 or the Industrial Internet of Things (IIoT are two terms for the current (revolution seen in industrial automation and control. Everything is getting smarter and data generated at all levels of the production process are used to improve product quality, flexibility, and productivity. This would not be possible without smart sensors, which generate the data and allow further functionality from self-monitoring and self-configuration to condition monitoring of complex processes. In analogy to Industry 4.0, the development of sensors has undergone distinctive stages culminating in today's smart sensors or Sensor 4.0. This paper briefly reviews the development of sensor technology over the last 2 centuries, highlights some of the potential that can be achieved with smart sensors and data evaluation, and discusses success requirements for future developments. In addition to magnetic sensor technologies which allow self-test and self-calibration and can contribute to many applications due to their wide spectrum of measured quantities, the paper discusses condition monitoring as a primary paradigm for introducing smart sensors and data analysis in manufacturing processes based on two projects performed in our group.

  19. Design of Fast Response Smart Electric Vehicle Charging Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Chynoweth, Joshua; Qiu, Charlie; Chu, Chi-Cheng; Gadh, Rajit

    2013-11-25

    The response time of the smart electrical vehicle (EV) charging infrastructure is the key index of the system performance. The traffic between the smart EV charging station and the control center dominates the response time of the smart charging stations. To accelerate the response of the smart EV charging station, there is a need for a technology that collects the information locally and relays it to the control center periodically. To reduce the traffic between the smart EV charger and the control center, a Power Information Collector (PIC), capable of collecting all the meters power information in the charging station, is proposed and implemented in this paper. The response time is further reduced by pushing the power information to the control center. Thus, a fast response smart EV charging infrastructure is achieved to handle the shortage of energy in the local grid.

  20. Hierarchical Control Architecture for Demand Response in Smart Grid Scenario

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    , a number of issues, including DR enabling technologies, control strategy, and control architecture, are still under discussion. This paper outlines novel control requirements based on the categorization of existing DR techniques. More specifically, the roles and responsibilities of smart grid actors...... effective tool for optimum asset utilization and to avoid or delay the need for new infrastructure investment. Furthermore, most of the power networks are under the process of reconfiguration to realize the concept of smart grid and are at the transforming stage to support various forms of DR. However...... for every DR category are allotted and their mode of interactions to coordinate individual as well as coordinative goals is described. Next, hierarchical control architecture (HCA) is developed for the overall coordination of control strategies for individual DR categories. The involved issues are discussed...

  1. CtOS Enabler

    OpenAIRE

    Crespo Cepeda, Rodrigo; El Yamri El Khatibi, Meriem; Carrera García, Juan Manuel

    2015-01-01

    Las Smart Cities son, indudablemente, el futuro próximo de la tecnología al que nos acercamos cada día, lo que se puede observar en la abundancia de dispositivos móviles entre la población, que informatizan la vida cotidiana mediante el uso de la geolocalización y la información. Pretendemos unir estos dos ámbitos con CtOS Enabler para crear un estándar de uso que englobe todos los sistemas de Smart Cities y facilite a los desarrolladores de dicho software la creación de nuevas herramientas. ...

  2. Home, Smart Home

    DEFF Research Database (Denmark)

    Hansen, Ellen Kathrine; Olesen, Gitte Gylling Hammershøj; Mullins, Michael

    2013-01-01

    The article places focus on how smart technologies integrated in a one family- home and particular the window offer unique challenges and opportunities for designing buildings with the best possible environments for people and nature. Toward an interdisciplinary approach, we address the interaction...... between daylight defined in technical terms and daylight defined in aesthetic, architectural terms. Through field-tests of a Danish carbon-neutral home and an analysis of five key design parameters, we explore the contradictions and potentials in smart buildings, using the smart window as example of how...... to the energy design is central. The study illuminates an approach of the design of smart houses as living organisms by connecting technology with the needs of the occupants with the power and beauty of daylight....

  3. Smart Circuit Breaker Communication Infrastructure

    Directory of Open Access Journals (Sweden)

    Octavian Mihai MACHIDON

    2017-11-01

    Full Text Available The expansion of the Internet of Things has fostered the development of smart technologies in fields such as power transmission and distribution systems (as is the Smart Grid and also in regard to home automation (the Smart Home concept. This paper addresses the network communication infrastructure for a Smart Circuit Breaker system, a novel application at the edge of the two afore-mentioned systems (Smart Grid and Smart Home. Such a communication interface has high requirements from functionality, performance and security point of views, given the large amount of distributed connected elements and the real-time information transmission and system management. The paper describes the design and implementation of the data server, Web interface and the embedded networking capabilities of the smart circuit breakers, underlining the protocols and communication technologies used.

  4. SmartCityWare

    DEFF Research Database (Denmark)

    Mohamed, Nader; Al-Jaroodi, Jameela; Jawhar, Imad

    2017-01-01

    Smart cities are becoming a reality. Various aspects of modern cities are being automated and integrated with information and communication technologies to achieve higher functionality, optimized resources utilization, and management, and improved quality of life for the residents. Smart cities...... rely heavily on utilizing various software, hardware, and communication technologies to improve the operations in areas, such as healthcare, transportation, energy, education, logistics, and many others, while reducing costs and resources consumption. One of the promising technologies to support...... technology is Fog Computing, which extends the traditional Cloud Computing paradigm to the edge of the network to enable localized and real-time support for operating-enhanced smart city services. However, proper integration and efficient utilization of CoT and Fog Computing is not an easy task. This paper...

  5. Semantic Approach to Smart Home Data Aggregation Multi-sensor Data Processing for Smart Environments

    Directory of Open Access Journals (Sweden)

    Fano Ramparany

    2016-04-01

    Full Text Available One salient feature of data produced by the IoT is its heterogeneity. Despite this heterogeneity, future IoT applications including Smart Home, Smart City, Smart Energy services, will require that all data be easily compared, correlated and merged, and that interpretation of this resulting aggregate into higher level context better matches people needs and requirements. In this paper we propose a framework based on semantic technologies for aggregating IoT data. Our approach has been assessed in the domain of the Smart Home with real data provided by Orange Homelive solution. We show that our approach enables simple reasoning mechanisms to be conducted on the aggregated data, so that contexts such as the presence, activities of people as well as abnormal situations requiring corrective actions, be inferred.

  6. Smart grid security innovative solutions for a modernized grid

    CERN Document Server

    Skopik, Florian

    2015-01-01

    The Smart Grid security ecosystem is complex and multi-disciplinary, and relatively under-researched compared to the traditional information and network security disciplines. While the Smart Grid has provided increased efficiencies in monitoring power usage, directing power supplies to serve peak power needs and improving efficiency of power delivery, the Smart Grid has also opened the way for information security breaches and other types of security breaches. Potential threats range from meter manipulation to directed, high-impact attacks on critical infrastructure that could bring down regi

  7. Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems

    DEFF Research Database (Denmark)

    Gandoman, Foad H.; Ahmadi, Abdollah; Sharaf, Adel M.

    2018-01-01

    In the last two decades, emerging use of renewable and distributed energy sources in electricity grid has created new challenges for the utility regarding the power quality, voltage stabilization and efficient energy utilization. Power electronic converters are extensively utilized to interface...... the power quality. Also, distributed FACTSs play an important role in improving the power factor, energy utilization, enhancing the power quality, and ensuring efficient energy utilization and energy management in smart grids with renewable energy sources. This paper presents a literature survey of FACTS...... technology tools and applications for power quality and efficient renewable energy system utilization....

  8. Inkjet-printed "Zero-Power" Wireless Sensor and Power Management Nodes for IoT and "Smart Skin" Applications

    OpenAIRE

    Traille, A.; Georgiadis, Apostolos; Collado, Ana; Kawahara, Y.; Aubert, H.; Tentzeris, M.M.

    2014-01-01

    Nanotechnology and inkjet-printed flexible electronics, sensor and power management (PMU) nodes fabricated on paper, plastic and other polymer substrates are introduced as a sustainable ultra-low-cost solution for the first paradigms of Internet of Things (IoT), “Smart Skins” and “Zero-Power” applications. The paper will cover examples from the state-of-the-art of fully integrated wireless sensor modules on paper or flexible polymers. We will demonstrate numerous 3D multilayer paper-based and...

  9. Fuel Consumption Analysis and Optimization of a Sustainable Energy System for a 100% Renewables Smart House

    DEFF Research Database (Denmark)

    Craciun, Vasile Simion; Blarke, Morten; Trifa, Viorel

    2012-01-01

    and a feasibility study of a sustainable energy system for a 100% renewables smart house (SH) in Denmark is presented. Due to the continuous increasing penetration levels of wind and solar power in today’s energy system call for the development of high efficiency optimizations and Smart Grid (SG) enabling options....... In case of renewable energies, one main challenge is the discontinuity of generation which can be solved with planning and control optimization methods. The results of the economic analysis and the feasibility of the sustainable energy system for a 100% renewables SH show that this could be possible...

  10. A flexible control strategy of plug-in electric vehicles operating in seven modes for smoothing load power curves in smart grid

    International Nuclear Information System (INIS)

    Khemakhem, Siwar; Rekik, Mouna; Krichen, Lotfi

    2017-01-01

    Plug-in electric vehicles (PEVs) seem to be an interesting new electrical load for improving the reliability of smart grid. The purpose of this work is to investigate a supervision strategy based on regulated charging of PEVs in order to guarantee an optimized power management of the system and consequently a flatter power demand curve. The system mainly includes PEVs powered by a Lithium-ion battery ensuring the charging and discharging operations of these PEVs at home and a daily load power demanded by home appliances. The purpose of the considered strategy is to detect the connection status of each PEV and to establish the priority order between these PEVs with certain flexibility which results in managing the PEVs through seven operating modes. The response of the control algorithm enables to ensure the power flow exchange between the PEVs and the electrical grid, especially at rush hours, and to minimize load power variance aiming to achieve the smoothness for the power demand curve and to reduce the stress of the electrical grid. The simulation results are presented in order to illustrate the efficiency of this power control approach. - Highlights: • A flexible power management algorithm of Plug-in electric vehicle is proposed. • This control can be applied for any home equipped with two PEVs. • The response is to ensure the power flow exchange between PEVs and power grid. • The main contribution is to achieve the smoothness for the daily power demand curve.

  11. Information and Communication Technology and Electric Vehicles — Paving the Way towards a Smart Community

    Science.gov (United States)

    Mase, Kenichi

    A smart community can be considered an essential component to realize a sustainable, low-carbon, and disaster-tolerant society, thereby providing a base for community inhabitants to lead a simple, healthy, and energy-saving way of life as well as ensuring safety, security, and a high quality-of-life in the community. In particular, a smart community can be essential for senior citizens in an aging society. Smart community enablers such as information and communication technology (ICT) and electric vehicles (EVs) can perform essential roles to realize a smart community. With regard to ICT, the necessity of a dedicated wireless sensor backbone has been identified. With regard to EV, a small-sized EV with one or two seats (Mini-EV) has been identified as an emerging player to support personal daily mobility in an aged society. The Mini-EV may be powered by a solar battery, thereby mitigating vehicular maintenance burden for the elderly. It is essential to realize a dependable ICT network and communication service for a smart community. In the study, we present the concept of trans-locatable design to achieve this goal. The two possible roles of EVs in contributing to a dependable ICT network are highlighted; these include EV charging of the batteries of the base stations in the network, and the creation of a Mini-EV based ad-hoc network that can enable applications such as safe driving assistance and secure neighborhoods.

  12. A smart refrigerator of smart grids; Een slimme koelkast voor slimme netten

    Energy Technology Data Exchange (ETDEWEB)

    Pennings, M.C. [NXP Semiconductors, Eindhoven (Netherlands)

    2011-04-15

    Building Brains has been set up by TNO as a cooperative and started September 21, 2009. The aim of the project was to answer the question how the energy consumption in the Netherlands can be reduced by 50% up to 2030 or how the built environment can be made energy-neutral. This issue of the magazine is dedicated to Building Brains project. One of the research topics of the BuiLding Brains program was smart grids. A smart grid is an electricity net augmented with ICT. Smart grids have several advantages like balance supply and demand and peak shaving. ECN, the Energy research Centre of the NetherLands, has developed a smart grid technology: PowerMatcher. NXP semiconductors has developed a prototype of a smart refrigerator by adding a low-cost microcontroller and an RF transceiver to an existing fridge, and developed a deeply embedded PowerMatcher agent. [Dutch] Building Brains is een door TNO opgezet samenwerkingsproject dat op 21 september 2009 van start ging. Het doel van het project is antwoord te geven op de vraag hoe tot 2030 het energiegebruik in Nederland kan worden gehalveerd of hoe de gebouwde omgeving energieneutraal kan worden gemaakt. Deze aflevering van het tijdschrift TVVL is vrijwel geheel gewijd aan het Building Brains project. De titel koelkast is ontwikkeld door NXP-semiconductors in werkpakket 3 van het kenniswerkersproject Building Brains. De koelkast is gebaseerd op de PowerMatcher-technologie van ECN. De oplossing is kosteneffectief (initieel en operationeel) en gerealiseerd met bestaande NXP-chips.

  13. Designing, developing, and facilitating smart cities urban design to IoT solutions

    CERN Document Server

    Tragos, Elias; Pöhls, Henrich; Kapovits, Adam; Bassi, Alessandro

    2017-01-01

    This book discusses how smart cities strive to deploy and interconnect infrastructures and services to guarantee that authorities and citizens have access to reliable and global customized services. The book addresses the wide range of topics present in the design, development and running of smart cities, ranging from big data management, Internet of Things, and sustainable urban planning. The authors cover - from concept to practice – both the technical aspects of smart cities enabled primarily by the Internet of Things and the socio-economic motivations and impacts of smart city development. The reader will find smart city deployment motivations, technological enablers and solutions, as well as state of the art cases of smart city implementations and services. · Provides a single compendium of the technological, political, and social aspects of smart cities; · Discusses how the successful deployment of smart Cities requires a unified infrastructure to support the diverse set of applications that can be ...

  14. Preserving Smart Objects Privacy through Anonymous and Accountable Access Control for a M2M-Enabled Internet of Things

    Science.gov (United States)

    Hernández-Ramos, José L.; Bernabe, Jorge Bernal; Moreno, M. Victoria; Skarmeta, Antonio F.

    2015-01-01

    As we get into the Internet of Things era, security and privacy concerns remain as the main obstacles in the development of innovative and valuable services to be exploited by society. Given the Machine-to-Machine (M2M) nature of these emerging scenarios, the application of current privacy-friendly technologies needs to be reconsidered and adapted to be deployed in such global ecosystem. This work proposes different privacy-preserving mechanisms through the application of anonymous credential systems and certificateless public key cryptography. The resulting alternatives are intended to enable an anonymous and accountable access control approach to be deployed on large-scale scenarios, such as Smart Cities. Furthermore, the proposed mechanisms have been deployed on constrained devices, in order to assess their suitability for a secure and privacy-preserving M2M-enabled Internet of Things. PMID:26140349

  15. Preserving Smart Objects Privacy through Anonymous and Accountable Access Control for a M2M-Enabled Internet of Things

    Directory of Open Access Journals (Sweden)

    José L. Hernández-Ramos

    2015-07-01

    Full Text Available As we get into the Internet of Things era, security and privacy concerns remain as the main obstacles in the development of innovative and valuable services to be exploited by society. Given the Machine-to-Machine (M2M nature of these emerging scenarios, the application of current privacy-friendly technologies needs to be reconsidered and adapted to be deployed in such global ecosystem. This work proposes different privacy-preserving mechanisms through the application of anonymous credential systems and certificateless public key cryptography. The resulting alternatives are intended to enable an anonymous and accountable access control approach to be deployed on large-scale scenarios, such as Smart Cities. Furthermore, the proposed mechanisms have been deployed on constrained devices, in order to assess their suitability for a secure and privacy-preserving M2M-enabled Internet of Things.

  16. Preserving Smart Objects Privacy through Anonymous and Accountable Access Control for a M2M-Enabled Internet of Things.

    Science.gov (United States)

    Hernández-Ramos, José L; Bernabe, Jorge Bernal; Moreno, M Victoria; Skarmeta, Antonio F

    2015-07-01

    As we get into the Internet of Things era, security and privacy concerns remain as the main obstacles in the development of innovative and valuable services to be exploited by society. Given the Machine-to-Machine (M2M) nature of these emerging scenarios, the application of current privacy-friendly technologies needs to be reconsidered and adapted to be deployed in such global ecosystem. This work proposes different privacy-preserving mechanisms through the application of anonymous credential systems and certificateless public key cryptography. The resulting alternatives are intended to enable an anonymous and accountable access control approach to be deployed on large-scale scenarios, such as Smart Cities. Furthermore, the proposed mechanisms have been deployed on constrained devices, in order to assess their suitability for a secure and privacy-preserving M2M-enabled Internet of Things.

  17. Unlocking the EUR53 billion savings from smart meters in the EU. How increasing the adoption of dynamic tariffs could make or break the EU's smart grid investment

    International Nuclear Information System (INIS)

    Faruqui, Ahmad; Hledik, Ryan; Harris, Dan

    2010-01-01

    We estimate the cost of installing smart meters in the EU to be EUR51 billion, and that operational savings will be worth between EUR26 and 41 billion, leaving a gap of EUR10-25 billion between benefits and costs. Smart meters can fill this gap because they enable the provision of dynamic pricing, which reduces peak demand and lowers the need for building and running expensive peaking power plants. The present value of savings in peaking infrastructure could be as high as EUR67 billion for the EU if policy-makers can overcome barriers to consumers adopting dynamic tariffs, but only EUR14 billion otherwise. We outline a number of ways to increase the adoption of dynamic tariffs. (author)

  18. Blockchain for Smart Grid Resilience: Exchanging Distributed Energy at Speed, Scale and Security

    Energy Technology Data Exchange (ETDEWEB)

    Mylrea, Michael E.; Gourisetti, Sri Nikhil Gup

    2017-09-18

    Blockchain may help solve several complex problems related to integrity and trustworthiness of rapid, distributed, complex energy transactions and data exchanges. In a move towards resilience, blockchain commoditizes trust and enables automated smart contracts to support auditable multiparty transactions based on predefined rules between distributed energy providers and customers. Blockchain based smart contracts also help remove the need to interact with third-parties, facilitating the adoption and monetization of distributed energy transactions and exchanges, both energy flows as well as financial transactions. This may help reduce transactive energy costs and increase the security and sustainability of distributed energy resource (DER) integration, helping to remove barriers to a more decentralized and resilient power grid.

  19. Prevention of Information Leakage by Photo-Coupling in Smart Card

    Science.gov (United States)

    Shen, Sung-Shiou; Chiu, Jung-Hui

    Advances in smart card technology encourages smart card use in more sensitive applications, such as storing important information and securing application. Smart cards are however vulnerable to side channel attacks. Power consumption and electromagnetic radiation of the smart card can leak information about the secret data protected by the smart card. Our paper describes two possible hardware countermeasures that protect against side channel information leakage. We show that power analysis can be prevented by adopting photo-coupling techniques. This method involves the use of LED with photovoltaic cells and photo-couplers on the power, reset, I/O and clock lines of the smart card. This method reduces the risk of internal data bus leakage on the external data lines. Moreover, we also discuss the effectiveness of reducing electromagnetic radiation by using embedded metal plates.

  20. Real-Time Pricing Strategy Based on the Stability of Smart Grid for Green Internet of Things

    Directory of Open Access Journals (Sweden)

    Huwei Chen

    2017-01-01

    Full Text Available The ever increasing demand of energy efficiency and the strong awareness of environment have led to the enhanced interests in green Internet of things (IoTs. How to efficiently deliver power, especially, with the smart grid based on the stability of network becomes a challenge for green IoTs. Therefore, in this paper we present a novel real-time pricing strategy based on the network stability in the green IoTs enabled smart grid. Firstly, the outage is analyzed by considering the imbalance of power supply and demand as well as the load uncertainty. Secondly, the problem of power supply with multiple-retailers is formulated as a Stackelberg game, where the optimal price can be obtained with the maximal profit for retailers and users. Thirdly, the stability of price is analyzed under the constraints. In addition, simulation results show the efficiency of the proposed strategy.

  1. Noncontact power/interrogation system for smart structures

    Science.gov (United States)

    Spillman, William B., Jr.; Durkee, S.

    1994-05-01

    The field of smart structures has been largely driven by the development of new high performance designed materials. Use of these materials has been generally limited due to the fact that they have not been in use long enough for statistical data bases to be developed on their failure modes. Real time health monitoring is therefore required for the benefits of structures using these materials to be realized. In this paper a non-contact method of powering and interrogating embedded electronic and opto-electronic systems is described. The technique utilizes inductive coupling between external and embedded coils etched on thin electronic circuit cards. The technique can be utilized to interrogate embedded sensors and to provide > 250 mW for embedded electronics. The system has been successfully demonstrated with a number of composite and plastic materials through material thicknesses up to 1 cm. An analytical description of the system is provided along with experimental results.

  2. Research Advance in Smart Metamaterials

    Directory of Open Access Journals (Sweden)

    YU Xiang-long

    2016-07-01

    Full Text Available Metamaterials, man-made materials, enable us to design our own "atoms", and thereby to create materials with unprecedented effective properties that have not yet been found in nature. Smart metamaterial is one of those that is an intelligent perceptive to the changes from external environments and simultaneously having the capability to respond to thermal and mechanical stimuli. This paper can provide a review on these smart metamaterials in perspective of science, engineering and industrial products. We divide smart metamaterials according to what they are tuning into: optical, mechanical, thermal and coupled smart metamaterials. The rest of two techniques we addressed are modelling/simulation and fabrication/gene engineering. All of these types smart materials presented here are associated with at least five fundamental research: coupled mechanism of multi-physics fields, man-made design for atom/molecular, metamaterials coupled with natural materials, tunability of metamaterials, and mechanism of sensing metamaterials. Therefore, we give a systematic overview of various potential smart metamaterials together with the upcoming challenges in the intriguing and promising research field.

  3. Efficient and Privacy-Aware Power Injection over AMI and Smart Grid Slice in Future 5G Networks

    Directory of Open Access Journals (Sweden)

    Yinghui Zhang

    2017-01-01

    Full Text Available Smart grid is critical to the success of next generation of power grid, which is expected to be characterized by efficiency, cleanliness, security, and privacy. In this paper, aiming to tackle the security and privacy issues of power injection, we propose an efficient and privacy-aware power injection (EPPI scheme suitable for advanced metering infrastructure and 5G smart grid network slice. In EPPI, each power storage unit first blinds its power injection bid and then gives the blinded bid together with a signature to the local gateway. The gateway removes a partial blind factor from each blinded bid and then sends to the utility company aggregated bid and signature by using a novel aggregation technique called hash-then-addition. The utility company can get the total amount of collected power at each time slot by removing a blind factor from the aggregated bid. Throughout the EPPI system, both the gateway and the utility company cannot know individual bids and hence user privacy is preserved. In particular, EPPI allows the utility company to check the integrity and authenticity of the collected data. Finally, extensive evaluations indicate that EPPI is secure and privacy-aware and it is efficient in terms of computation and communication cost.

  4. Analysis for a PRHRS Condensation Heat Exchanger of the SMART-P Plant

    International Nuclear Information System (INIS)

    Lee, Kwon-Yeong; Kim, Moo Hwan

    2007-01-01

    When an emergency such as the unavailability of feedwater or the loss of off-site power arises with SMART-P, the PRHRS passively removes the core decay heat via natural convection. The system is connected to the feedwater and steam pipes and consists of a heat exchanger submerged in a refueling water tank, a compensation tank, and check and isolation valves. The heat exchanger removes the heat from the reactor coolant system through a steam generator via condensation heat transfer to water in the refueling water tank. The compensating tank is pressurized using a nitrogen gas to make up the water volume change in the PRHRS. Before PRHRS operation, nitrogen may be dissolved in the cooling water of the PRHRS. Therefore, during PRHRS operation, nitrogen gas might be generated due to evaporation in the steam generator, which will act as a noncondensable gas in the condensation heat exchanger. The main objective of the present study was to assess the design of a PRHRS condensation heat exchanger (PRHRS HX) by investigating its heat transfer characteristics

  5. Smart Grid Security A Smart Meter-Centric Perspective

    DEFF Research Database (Denmark)

    Vigo, Roberto; Yuksel, Ender; Ramli, Carroline Dewi Puspa Kencana

    2012-01-01

    , leading to what is known as the Smart Grid. The development of this Cyber-Physical System introduces new security issues, thus calling for efforts in studying possible attacks and devising suitable countermeasures. In this paper, we review a generic model for the Smart Grid, and present possible attacks......The electricity grid is a key infrastructure for our society, therefore its security is a critical public concern. This physical system is becoming more and more complex as it is coupled with a cyber layer carrying information about power usage and control instructions for intelligent appliances...

  6. Social Internet of Vehicles for Smart Cities

    Directory of Open Access Journals (Sweden)

    Leandros A. Maglaras

    2016-02-01

    Full Text Available Digital devices are becoming increasingly ubiquitous and interconnected. Their evolution to intelligent parts of a digital ecosystem creates novel applications with so far unresolved security issues. A particular example is a vehicle. As vehicles evolve from simple means of transportation to smart entities with new sensing and communication capabilities, they become active members of a smart city. The Internet of Vehicles (IoV consists of vehicles that communicate with each other and with public networks through V2V (vehicle-to-vehicle, V2I (vehicle-to-infrastructure and V2P (vehicle-to-pedestrian interactions, which enables both the collection and the real-time sharing of critical information about the condition on the road network. The Social Internet of Things (SIoT introduces social relationships among objects, creating a social network where the participants are not humans, but intelligent objects. In this article, we explore the concept of the Social Internet of Vehicles (SIoV, a network that enables social interactions both among vehicles and among drivers. We discuss technologies and components of the SIoV, possible applications and issues of security, privacy and trust that are likely to arise.

  7. Stochastic control and real options valuation of thermal storage-enabled demand response from flexible district energy systems

    OpenAIRE

    Kitapbayev, Yerkin; Moriarty, John; Mancarella, Pierluigi

    2014-01-01

    In district energy systems powered by Combined Heat and Power (CHP) plants, thermal storage can significantly increase CHP flexibility to respond to real time market signals and therefore improve the business case of such demand response schemes in a Smart Grid environment. However, main challenges remain as to what is the optimal way to control inter-temporal storage operation in the presence of uncertain market prices, and then how to value the investment into storage as flexibility enabler...

  8. Capacity enhancement and flexible operation of unified power quality conditioner in smart and microgrid network

    OpenAIRE

    Khadem, Shafiuzzaman Khan; Basu, Malabika; Conlon, Michael F.

    2018-01-01

    This paper presents a new approach to design Unified Power Quality Conditioner (UPQC), termed as distributed UPQC (D-UPQC), for smart or microgrid network where capacity enhancement and flexible operation of UPQC are the important issues. This paper shows the possibility of capacity enhancement and operational flexibility of UPQC through a coordinated control of existing resources. This UPQC consists of a single unit series active power filter (APFse) and multiple shunt APF (APFsh) units in a...

  9. Smart grids opportunities, developments, and trends

    CERN Document Server

    Ali, A B M Shawkat

    2013-01-01

    This book provides up to date knowledge, research results, and innovations in smart grids spanning design, implementation, analysis and evaluation of smart grid solutions to the challenging problems in all areas of the power industry.

  10. Communication technologies in smart grid

    Directory of Open Access Journals (Sweden)

    Miladinović Nikola

    2013-01-01

    Full Text Available The role of communication technologies in Smart Grid lies in integration of large number of devices into one telecommunication system. This paper provides an overview of the technologies currently in use in electric power grid, that are not necessarily in compliance with the Smart Grid concept. Considering that the Smart Grid is open to the flow of information in all directions, it is necessary to provide reliability, protection and security of information.

  11. Fast Performance Computing Model for Smart Distributed Power Systems

    Directory of Open Access Journals (Sweden)

    Umair Younas

    2017-06-01

    Full Text Available Plug-in Electric Vehicles (PEVs are becoming the more prominent solution compared to fossil fuels cars technology due to its significant role in Greenhouse Gas (GHG reduction, flexible storage, and ancillary service provision as a Distributed Generation (DG resource in Vehicle to Grid (V2G regulation mode. However, large-scale penetration of PEVs and growing demand of energy intensive Data Centers (DCs brings undesirable higher load peaks in electricity demand hence, impose supply-demand imbalance and threaten the reliability of wholesale and retail power market. In order to overcome the aforementioned challenges, the proposed research considers smart Distributed Power System (DPS comprising conventional sources, renewable energy, V2G regulation, and flexible storage energy resources. Moreover, price and incentive based Demand Response (DR programs are implemented to sustain the balance between net demand and available generating resources in the DPS. In addition, we adapted a novel strategy to implement the computational intensive jobs of the proposed DPS model including incoming load profiles, V2G regulation, battery State of Charge (SOC indication, and fast computation in decision based automated DR algorithm using Fast Performance Computing resources of DCs. In response, DPS provide economical and stable power to DCs under strict power quality constraints. Finally, the improved results are verified using case study of ISO California integrated with hybrid generation.

  12. Values in the Smart Grid: The co-evolving political economy of smart distribution

    International Nuclear Information System (INIS)

    Hall, Stephen; Foxon, Timothy J.

    2014-01-01

    Investing in smart grid infrastructure is a key enabler for the transition to low carbon energy systems. Recent work has characterised the costs and benefits of individual “smart” investments. The political economy of the UK electricity system, however, has co-evolved such that there is a mismatch between where benefits accrue and where costs are incurred, leading to a problem of value capture and redeployment. Further, some benefits of smart grids are less easy to price directly and can be classified as public goods, such as energy security and decarbonisation. This paper builds on systemic treatments of energy system transitions to characterise the co-evolution of value capture and structural incentives in the electricity distribution system, drawing on semi-structured interviews and focus groups undertaken with smart grid stakeholders in the UK. This leads to an identification of municipal scale values that may be important for business models for the delivery of smart infrastructure. Municipalities may thus pursue specific economic opportunities through smart grid investment. This supports recent practical interest in an expanded role for municipalities as partners and investors in smart grid infrastructures. - Highlights: • Smart grid investments can benefit municipal economic development. • Drawing on urban political economy we describe these values. • New values alter the smart grid investment problem. • New integration of urban policy and DNOs are proposed by this research. • Socio-technical approaches are enhanced by urban political economy and vice versa

  13. OOK power model based dynamic error testing for smart electricity meter

    International Nuclear Information System (INIS)

    Wang, Xuewei; Chen, Jingxia; Jia, Xiaolu; Zhu, Meng; Yuan, Ruiming; Jiang, Zhenyu

    2017-01-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%. (paper)

  14. OOK power model based dynamic error testing for smart electricity meter

    Science.gov (United States)

    Wang, Xuewei; Chen, Jingxia; Yuan, Ruiming; Jia, Xiaolu; Zhu, Meng; Jiang, Zhenyu

    2017-02-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%.

  15. Wireless Communications in Smart Grid

    Science.gov (United States)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  16. Plug-in electric vehicle (PEV) smart charging module

    Science.gov (United States)

    Harper, Jason; Dobrzynski, Daniel S.

    2017-09-12

    A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. The smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.

  17. Open architecture of smart sensor suites

    Science.gov (United States)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  18. Unlocking the Euro 53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU's smart grid investment

    Energy Technology Data Exchange (ETDEWEB)

    Faruqui, Ahmad, E-mail: ahmad.faruqui@brattle.co [Brattle Group, 353 Sacramento Street, Suite 1140, San Francisco, CA 94111 (United States); Harris, Dan, E-mail: Dan.Harris@brattle.co [Via Pozzuoli 7, Scala B3, Rome 00182 (Italy); Hledik, Ryan, E-mail: Ryan.Hledik@brattle.co [Brattle Group, 353 Sacramento Street, Suite 1140, San Francisco, CA 94111 (United States)

    2010-10-15

    We estimate the cost of installing smart meters in the EU to be Euro 51 billion, and that operational savings will be worth between Euro 26 and 41 billion, leaving a gap of Euro 10-25 billion between benefits and costs. Smart meters can fill this gap because they enable the provision of dynamic pricing, which reduces peak demand and lowers the need for building and running expensive peaking power plants. The present value of savings in peaking infrastructure could be as high as Euro 67 billion for the EU if policy-makers can overcome barriers to consumers adopting dynamic tariffs, but only Euro 14 billion otherwise. We outline a number of ways to increase the adoption of dynamic tariffs.

  19. A PSA study for the SMART basic design

    International Nuclear Information System (INIS)

    Han, Sang Hoon; Kim, H. C.; Yang, S. H.; Lee, D. J.

    2002-03-01

    SMART (System-Integrated Modular Advanced Reactor) is under development that is an advanced integral type small and medium category nuclear power reactor with the rated thermal power of 330 MW. A Probabilistic Safety Analysis (PSA) for the SMART basic design has been performed to evaluate the safety and optimize the design. Currently, the basic design is done and the detailed design is not available for the SMART, we made several assumptions about the system design before performing the PSA. The scope of the PSA was limited to the Level-1 internal full power PSA. The level-2 and 3 PSA, the external PSA, and the low power/shutdown PSA will be performed in the final design stage

  20. Smart Garment Fabrics to Enable Non-Contact Opto-Physiological Monitoring.

    Science.gov (United States)

    Iakovlev, Dmitry; Hu, Sijung; Hassan, Harnani; Dwyer, Vincent; Ashayer-Soltani, Roya; Hunt, Chris; Shen, Jinsong

    2018-03-29

    Imaging photoplethysmography (iPPG) is an emerging technology used to assess microcirculation and cardiovascular signs by collecting backscattered light from illuminated tissue using optical imaging sensors. The aim of this study was to study how effective smart garment fabrics could be capturing physiological signs in a non-contact mode. The present work demonstrates a feasible approach of, instead of using conventional high-power illumination sources, integrating a grid of surface-mounted light emitting diodes (LEDs) into cotton fabric to spotlight the region of interest (ROI). The green and the red LEDs (525 and 660 nm) placed on a small cotton substrate were used to locally illuminate palm skin in a dual-wavelength iPPG setup, where the backscattered light is transmitted to a remote image sensor through the garment fabric. The results show that the illuminations from both wavelength LEDs can be used to extract heart rate (HR) reaching an accuracy of 90% compared to a contact PPG probe. Stretching the fabric over the skin surface alters the morphology of iPPG signals, demonstrating a significantly higher pulsatile amplitude in both channels of green and red illuminations. The skin compression by the fabric could be potentially utilised to enhance the penetration of illumination into cutaneous microvascular beds. The outcome could lead a new avenue of non-contact opto-physiological monitoring and assessment with functional garment fabrics.

  1. Integration of utilities infrastructures in a future internet enabled smart city framework.

    Science.gov (United States)

    Sánchez, Luis; Elicegui, Ignacio; Cuesta, Javier; Muñoz, Luis; Lanza, Jorge

    2013-10-25

    Improving efficiency of city services and facilitating a more sustainable development of cities are the main drivers of the smart city concept. Information and Communication Technologies (ICT) play a crucial role in making cities smarter, more accessible and more open. In this paper we present a novel architecture exploiting major concepts from the Future Internet (FI) paradigm addressing the challenges that need to be overcome when creating smarter cities. This architecture takes advantage of both the critical communications infrastructures already in place and owned by the utilities as well as of the infrastructure belonging to the city municipalities to accelerate efficient provision of existing and new city services. The paper highlights how FI technologies create the necessary glue and logic that allows the integration of current vertical and isolated city services into a holistic solution, which enables a huge forward leap for the efficiency and sustainability of our cities. Moreover, the paper describes a real-world prototype, that instantiates the aforementioned architecture, deployed in one of the parks of the city of Santander providing an autonomous public street lighting adaptation service. This prototype is a showcase on how added-value services can be seamlessly created on top of the proposed architecture.

  2. Integration of Utilities Infrastructures in a Future Internet Enabled Smart City Framework

    Directory of Open Access Journals (Sweden)

    Luis Sánchez

    2013-10-01

    Full Text Available Improving efficiency of city services and facilitating a more sustainable development of cities are the main drivers of the smart city concept. Information and Communication Technologies (ICT play a crucial role in making cities smarter, more accessible and more open. In this paper we present a novel architecture exploiting major concepts from the Future Internet (FI paradigm addressing the challenges that need to be overcome when creating smarter cities. This architecture takes advantage of both the critical communications infrastructures already in place and owned by the utilities as well as of the infrastructure belonging to the city municipalities to accelerate efficient provision of existing and new city services. The paper highlights how FI technologies create the necessary glue and logic that allows the integration of current vertical and isolated city services into a holistic solution, which enables a huge forward leap for the efficiency and sustainability of our cities. Moreover, the paper describes a real-world prototype, that instantiates the aforementioned architecture, deployed in one of the parks of the city of Santander providing an autonomous public street lighting adaptation service. This prototype is a showcase on how added-value services can be seamlessly created on top of the proposed architecture.

  3. Integration of Utilities Infrastructures in a Future Internet Enabled Smart City Framework

    Science.gov (United States)

    Sánchez, Luis; Elicegui, Ignacio; Cuesta, Javier; Muñoz, Luis; Lanza, Jorge

    2013-01-01

    Improving efficiency of city services and facilitating a more sustainable development of cities are the main drivers of the smart city concept. Information and Communication Technologies (ICT) play a crucial role in making cities smarter, more accessible and more open. In this paper we present a novel architecture exploiting major concepts from the Future Internet (FI) paradigm addressing the challenges that need to be overcome when creating smarter cities. This architecture takes advantage of both the critical communications infrastructures already in place and owned by the utilities as well as of the infrastructure belonging to the city municipalities to accelerate efficient provision of existing and new city services. The paper highlights how FI technologies create the necessary glue and logic that allows the integration of current vertical and isolated city services into a holistic solution, which enables a huge forward leap for the efficiency and sustainability of our cities. Moreover, the paper describes a real-world prototype, that instantiates the aforementioned architecture, deployed in one of the parks of the city of Santander providing an autonomous public street lighting adaptation service. This prototype is a showcase on how added-value services can be seamlessly created on top of the proposed architecture. PMID:24233072

  4. Smart Learning Adoption in Employees and HRD Managers

    Science.gov (United States)

    Lee, Junghwan; Zo, Hangjung; Lee, Hwansoo

    2014-01-01

    The innovation of online technologies and the rapid diffusion of smart devices are changing workplace learning environment. Smart learning, as emerging learning paradigm, enables employees' learning to take place anywhere and anytime. Workplace learning studies, however, have focused on traditional e-learning environment, and they have failed…

  5. NB-PLC channel modelling with cyclostationary noise addition & OFDM implementation for smart grid

    Science.gov (United States)

    Thomas, Togis; Gupta, K. K.

    2016-03-01

    Power line communication (PLC) technology can be a viable solution for the future ubiquitous networks because it provides a cheaper alternative to other wired technology currently being used for communication. In smart grid Power Line Communication (PLC) is used to support communication with low rate on low voltage (LV) distribution network. In this paper, we propose the channel modelling of narrowband (NB) PLC in the frequency range 5 KHz to 500 KHz by using ABCD parameter with cyclostationary noise addition. Behaviour of the channel was studied by the addition of 11KV/230V transformer, by varying load location and load. Bit error rate (BER) Vs signal to noise ratio SNR) was plotted for the proposed model by employing OFDM. Our simulation results based on the proposed channel model show an acceptable performance in terms of bit error rate versus signal to noise ratio, which enables communication required for smart grid applications.

  6. Hazards in smart grids. Smart meters can open the door to hackers; Gefahren im intelligenten Stromnetz. Smart Meter als Einfallstor fuer Hacker-Angriffe

    Energy Technology Data Exchange (ETDEWEB)

    Gerretz, Dirk [Covisint Emea Compuware GmbH, Neu-Isenburg (Germany)

    2011-10-31

    Smart grid, smart meter, smart home: Increasingly, intelligent technologies are introduced in the energy sector. The merging of power grids and data grids is costly and requires high investments in areas that are far from the key business and key competence of public utilities. Reliable protection of smart meters is a particular challenge as unauthorized access or manipulation may result in great financial and reputational damage. Prior to introducting smart meters, utilities should decide if they want to introduce the necessary safety technologies themselves, including hardware, software, and know-how, or if they want to rely on solutions provided by experienced market partners. They offer open, expandable and scalable platforms for comprehensive identity management and safe data exchange that have been tested in practice in several branches of industry.

  7. Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum

    Science.gov (United States)

    Davy, Nicholas C.; Sezen-Edmonds, Melda; Gao, Jia; Lin, Xin; Liu, Amy; Yao, Nan; Kahn, Antoine; Loo, Yueh-Lin

    2017-08-01

    Current smart window technologies offer dynamic control of the optical transmission of the visible and near-infrared portions of the solar spectrum to reduce lighting, heating and cooling needs in buildings and to improve occupant comfort. Solar cells harvesting near-ultraviolet photons could satisfy the unmet need of powering such smart windows over the same spatial footprint without competing for visible or infrared photons, and without the same aesthetic and design constraints. Here, we report organic single-junction solar cells that selectively harvest near-ultraviolet photons, produce open-circuit voltages eclipsing 1.6 V and exhibit scalability in power generation, with active layers (10 cm2) substantially larger than those typical of demonstration organic solar cells (0.04-0.2 cm2). Integration of these solar cells with a low-cost, polymer-based electrochromic window enables intelligent management of the solar spectrum, with near-ultraviolet photons powering the regulation of visible and near-infrared photons for natural lighting and heating purposes.

  8. Smart Grid Technologies: Trends and Perspectives

    Directory of Open Access Journals (Sweden)

    Buran Anna

    2017-01-01

    Full Text Available The study explores the role of Smart Grid technologies, giving sustainable, reliable and safe energy. These technologies will provide an economic benefit to the government, the investors and the consumers. The paper overviews global trends and perspectives of using Smart Grid technologies in Russia and in other countries. The Smart Grid concept is especially important for Russia, because there are many power supply problems in the energy sector. This study is expected to be important for researchers and engineers studying Smart Grid technologies.

  9. Development of a smart DC grid model

    Energy Technology Data Exchange (ETDEWEB)

    Dalimunthe, Amty Ma’rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia; Joni, I. Made, E-mail: imadejoni@phys.unpad.ac.id [Lab. of Instrumentation System and Functional Material Processing, Physics Department, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang KM21, Jatinangor 45363, Jawa Barat (Indonesia)

    2016-03-11

    Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for a renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become ‘smart’. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.

  10. Development of a smart DC grid model

    International Nuclear Information System (INIS)

    Dalimunthe, Amty Ma’rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia; Joni, I. Made

    2016-01-01

    Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for a renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become ‘smart’. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.

  11. A Study of Smart Power Control Algorithm Using RF Communication in Smart Home Environment

    OpenAIRE

    Su-hong Shin; Kyoung-hwa Do; Byoung-soo Koh

    2013-01-01

    Today’s technologies in the IT area face the era of combination and convergence of technologies in many different areas. Through the natural interaction between people and devices in the environment where various kinds of devices are connected over a single network, they have been developing from human-oriented service technologies to smart and futuristic home technologies. Smart home technology is one of them. It is a technology of establishing a digital home in which various kinds of home a...

  12. Light-induced spatial control of pH-jump reaction at smart gel interface.

    Science.gov (United States)

    Techawanitchai, Prapatsorn; Ebara, Mitsuhiro; Idota, Naokazu; Aoyagi, Takao

    2012-11-01

    We proposed here a 'smart' control of an interface movement of proton diffusion in temperature- and pH-responsive hydrogels using a light-induced spatial pH-jump reaction. A photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (NBA) was integrated into poly(N-isopropylacrylamide-o-2-carboxyisopropylacrylamide) (P(NIPAAm-co-CIPAAm)) hydrogels. NBA-integrated hydrogels demonstrated quick release of proton upon UV irradiation, allowing the pH inside the gel to decrease below the pK(a) of P(NIPAAm-co-CIPAAm) within a minute. The NBA-integrated gel was shown to shrink rapidly upon UV irradiation without polymer "skin layer" formation due to a uniform decrease of pH inside the gel. Spatial control of gel shrinking was also created by irradiating UV light to a limited region of the gel through a photomask. The interface of proton diffusion ("active interface") gradually moved toward non-illuminated area. The apparent position of "active interface", however, did not change remarkably above the LCST, while protons continuously diffused outward direction. This is because the "active interface" also moved inward direction as gel shrank above the LCST. As a result, slow movement of the apparent interface was observed. The NBA-integrated gel was also successfully employed for the controlled release of an entrapped dextran in a light controlled manner. This system is highly promising as smart platforms for triggered and programmed transportation of drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The Evolution of the Internet Community and the"Yet-to-Evolve" Smart Grid Community: Parallels and Lessons-to-be-Learned

    Energy Technology Data Exchange (ETDEWEB)

    McParland, Charles

    2009-11-06

    The Smart Grid envisions a transformed US power distribution grid that enables communicating devices, under human supervision, to moderate loads and increase overall system stability and security. This vision explicitly promotes increased participation from a community that, in the past, has had little involvement in power grid operations -the consumer. The potential size of this new community and its member's extensive experience with the public Internet prompts an analysis of the evolution and current state of the Internet as a predictor for best practices in the architectural design of certain portions of the Smart Grid network. Although still evolving, the vision of the Smart Grid is that of a community of communicating and cooperating energy related devices that can be directed to route power and modulate loads in pursuit of an integrated, efficient and secure electrical power grid. The remaking of the present power grid into the Smart Grid is considered as fundamentally transformative as previous developments such as modern computing technology and high bandwidth data communications. However, unlike these earlier developments, which relied on the discovery of critical new technologies (e.g. the transistor or optical fiber transmission lines), the technologies required for the Smart Grid currently exist and, in many cases, are already widely deployed. In contrast to other examples of technical transformations, the path (and success) of the Smart Grid will be determined not by its technology, but by its system architecture. Fortunately, we have a recent example of a transformative force of similar scope that shares a fundamental dependence on our existing communications infrastructure - namely, the Internet. We will explore several ways in which the scale of the Internet and expectations of its users have shaped the present Internet environment. As the presence of consumers within the Smart Grid increases, some experiences from the early growth of the

  14. HOUSe-KEEPER, A Vendor-independent Architecture for Easy Management of Smart Homes

    OpenAIRE

    Seigneur, Jean-Marc

    2001-01-01

    Home-networking is gaining momentum. In a couple of months, Windows XP will be launched with the connected home experience as one of its core areas of interest. In the medium term at least, there will be more than one home networking "middleware" in a smart home, a home populated with smart, e.g., Web-enabled or network-enabled, devices. Nevertheless, the home system will have to present a global and complete view of smart devices in the home without excluding devices from one or more d...

  15. Smart roadside initiative : user manual.

    Science.gov (United States)

    2015-09-01

    This document provides the user instructions for the Smart Roadside Initiative (SRI) applications including mobile and web-based SRI applications. These applications include smartphone-enabled information exchange and notification, and software compo...

  16. Simulation-Based Approach for Studying the Balancing of Local Smart Grids with Electric Vehicle Batteries

    Directory of Open Access Journals (Sweden)

    Juhani Latvakoski

    2015-07-01

    Full Text Available Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2 emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid– and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV

  17. Preliminary Study on the Establishment of Regulatory Infrastructure for a Commercial SMART Licensing

    International Nuclear Information System (INIS)

    Yune, Young Gill; Roh, Kyung Wan; Kang, Dong Gu; Kim, Hho Jung; Jo, Jong Chull

    2007-01-01

    The SMART, an integral type of PWR with the capacity of 330MWth, has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating in Korea since early 1990s. The basic design of the SMART had been completed in 2002. For the demonstration of the safety and performance of the SMART, a project to construct a 1/5 scaled-down prototype reactor with capacity of 65MWth, called as SMART-P(SMART Pilot Plant), has been performed from 2002 to 2006. However, in 2006, the project to construct the SMART-P was replaced with a preliminary project to develop a commercial SMART in order to advance commercialization of the SMART. Since the SMART is the first commercial reactor adopting the integral design concept and new system/components such as passive residual heat removal system, canned motor pump, and helical tube steam generator in Korea, some verification tests need to be performed to demonstrate the safety and performance of the SMART. Also, since several new design computer codes that have not yet been confirmed by the regulatory body are expected to be used in the design, some validation tests should be performed to demonstrate their applicability for important accident phenomena. In order to carry out the SMART development project satisfactorily and to prevent any undesirable delay of licensing process, it is necessary to establish a well-planned verification test program in advance through the early identification of the scope and items of the verification tests. Also, the issues for which either policy decision-makings or detailed technical evaluations are needed should be identified in an early stage of design, and the regulatory positions for the issues should be provided either timely or in advance. Advance identification of regulatory requirements/guides to be amended or newly developed enables to provide regulatory directions for such items in the early stage of design. The objective of this paper is to introduce the current

  18. Preliminary Study on the Establishment of Regulatory Infrastructure for a Commercial SMART Licensing

    Energy Technology Data Exchange (ETDEWEB)

    Yune, Young Gill; Roh, Kyung Wan; Kang, Dong Gu; Kim, Hho Jung; Jo, Jong Chull [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-10-15

    The SMART, an integral type of PWR with the capacity of 330MWth, has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating in Korea since early 1990s. The basic design of the SMART had been completed in 2002. For the demonstration of the safety and performance of the SMART, a project to construct a 1/5 scaled-down prototype reactor with capacity of 65MWth, called as SMART-P(SMART Pilot Plant), has been performed from 2002 to 2006. However, in 2006, the project to construct the SMART-P was replaced with a preliminary project to develop a commercial SMART in order to advance commercialization of the SMART. Since the SMART is the first commercial reactor adopting the integral design concept and new system/components such as passive residual heat removal system, canned motor pump, and helical tube steam generator in Korea, some verification tests need to be performed to demonstrate the safety and performance of the SMART. Also, since several new design computer codes that have not yet been confirmed by the regulatory body are expected to be used in the design, some validation tests should be performed to demonstrate their applicability for important accident phenomena. In order to carry out the SMART development project satisfactorily and to prevent any undesirable delay of licensing process, it is necessary to establish a well-planned verification test program in advance through the early identification of the scope and items of the verification tests. Also, the issues for which either policy decision-makings or detailed technical evaluations are needed should be identified in an early stage of design, and the regulatory positions for the issues should be provided either timely or in advance. Advance identification of regulatory requirements/guides to be amended or newly developed enables to provide regulatory directions for such items in the early stage of design. The objective of this paper is to introduce the current

  19. A Hilbert Transform-Based Smart Sensor for Detection, Classification, and Quantification of Power Quality Disturbances

    Directory of Open Access Journals (Sweden)

    Roque A. Osornio-Rios

    2013-04-01

    Full Text Available Power quality disturbance (PQD monitoring has become an important issue due to the growing number of disturbing loads connected to the power line and to the susceptibility of certain loads to their presence. In any real power system, there are multiple sources of several disturbances which can have different magnitudes and appear at different times. In order to avoid equipment damage and estimate the damage severity, they have to be detected, classified, and quantified. In this work, a smart sensor for detection, classification, and quantification of PQD is proposed. First, the Hilbert transform (HT is used as detection technique; then, the classification of the envelope of a PQD obtained through HT is carried out by a feed forward neural network (FFNN. Finally, the root mean square voltage (Vrms, peak voltage (Vpeak, crest factor (CF, and total harmonic distortion (THD indices calculated through HT and Parseval’s theorem as well as an instantaneous exponential time constant quantify the PQD according to the disturbance presented. The aforementioned methodology is processed online using digital hardware signal processing based on field programmable gate array (FPGA. Besides, the proposed smart sensor performance is validated and tested through synthetic signals and under real operating conditions, respectively.

  20. Intelligent and robust optimization frameworks for smart grids

    Science.gov (United States)

    Dhansri, Naren Reddy

    A smart grid implies a cyberspace real-time distributed power control system to optimally deliver electricity based on varying consumer characteristics. Although smart grids solve many of the contemporary problems, they give rise to new control and optimization problems with the growing role of renewable energy sources such as wind or solar energy. Under highly dynamic nature of distributed power generation and the varying consumer demand and cost requirements, the total power output of the grid should be controlled such that the load demand is met by giving a higher priority to renewable energy sources. Hence, the power generated from renewable energy sources should be optimized while minimizing the generation from non renewable energy sources. This research develops a demand-based automatic generation control and optimization framework for real-time smart grid operations by integrating conventional and renewable energy sources under varying consumer demand and cost requirements. Focusing on the renewable energy sources, the intelligent and robust control frameworks optimize the power generation by tracking the consumer demand in a closed-loop control framework, yielding superior economic and ecological benefits and circumvent nonlinear model complexities and handles uncertainties for superior real-time operations. The proposed intelligent system framework optimizes the smart grid power generation for maximum economical and ecological benefits under an uncertain renewable wind energy source. The numerical results demonstrate that the proposed framework is a viable approach to integrate various energy sources for real-time smart grid implementations. The robust optimization framework results demonstrate the effectiveness of the robust controllers under bounded power plant model uncertainties and exogenous wind input excitation while maximizing economical and ecological performance objectives. Therefore, the proposed framework offers a new worst-case deterministic

  1. Smart grids. Socioeconomic value and optimal flexibility portfolios - Summary

    International Nuclear Information System (INIS)

    2017-06-01

    Even by 2030, the management of the electricity consumption peaks will remain the main economic value for smart grid flexibility solutions in France. The economic potential of smart grid flexibility solutions increases with the rising needs for new capacities to ensure the security of supply. This need could be covered by a mix of different smart grid solutions (battery storage, pumped hydroelectric power stations, demand response by industrial or residential consumers). Flexibility solutions, even connected to the distribution network, can moderate reinforcements of the transmission network. The economic benefits are significant: smart grid solutions can be deployed for the benefit of consumers and can support the energy transition. The implementation of smart grid solutions in France can lightly reduce the GHG emissions of the French power system, even if the life cycles of equipments are taken into account in the analysis. Battery storage: in the next years, a solution that should no longer be limited to a niche market. Residential demand response: a deployment reflecting the heterogeneity of consumers and the different development stages of demand response solutions (smart meters, 'DR boxes'...). Demand response in the industry or tertiary sector: a 'no regret' option for the management of consumption peaks. Wind power controllability: a 'no regret' option to moderate investments in the network. The socio-economic assessment of smart grid solutions summarised in this report provides new information about the issues associated with the development of smart grid flexibilities in the French power system. It can now be used to assess the most efficient level of development of various smart grid solutions, taking into account the effects of competition between the different solutions in accessing the sources of value

  2. Smart Grid Interoperability Maturity Model Beta Version

    Energy Technology Data Exchange (ETDEWEB)

    Widergren, Steven E.; Drummond, R.; Giroti, Tony; Houseman, Doug; Knight, Mark; Levinson, Alex; longcore, Wayne; Lowe, Randy; Mater, J.; Oliver, Terry V.; Slack, Phil; Tolk, Andreas; Montgomery, Austin

    2011-12-02

    The GridWise Architecture Council was formed by the U.S. Department of Energy to promote and enable interoperability among the many entities that interact with the electric power system. This balanced team of industry representatives proposes principles for the development of interoperability concepts and standards. The Council provides industry guidance and tools that make it an available resource for smart grid implementations. In the spirit of advancing interoperability of an ecosystem of smart grid devices and systems, this document presents a model for evaluating the maturity of the artifacts and processes that specify the agreement of parties to collaborate across an information exchange interface. You are expected to have a solid understanding of large, complex system integration concepts and experience in dealing with software component interoperation. Those without this technical background should read the Executive Summary for a description of the purpose and contents of the document. Other documents, such as checklists, guides, and whitepapers, exist for targeted purposes and audiences. Please see the www.gridwiseac.org website for more products of the Council that may be of interest to you.

  3. From SMART to agent systems development

    OpenAIRE

    Ashri, R; Luck, M; d'Inverno, M

    2005-01-01

    In order for agent-oriented software engineering to prove effective it must use principled notions of agents and enabling specification and reasoning, while still considering routes to practical implementation. This paper deals with the issue of individual agent specification and construction, departing from the conceptual basis provided by the smart agent framework. smart offers a descriptive specification of an agent architecture but omits consideration of issues relating to\\ud construction...

  4. Ammonia chemistry at SMART

    International Nuclear Information System (INIS)

    Na, J. W.; Seong, G. W.; Lee, E. H.; Kim, W. C.; Choi, B. S.; Kim, J. P.; Lee, D. J.

    1999-01-01

    Ammonia is used as the pH control agent of primary water at SMART (System-integrated Modular Advanced ReacTor). Some of this ammonia is decomposed to hydrogen and nitrogen by radiation in the reactor core. The produced hydrogen gas is used for the removal of dissolved oxygen in the coolant. Some of nitrogen gas in pressurizer is dissolved into the primary water. Because ammonia, hydrogen and nitrogen which is produced by ammonia radiolysis are exist in the coolant at SMART, ammonia chemistry at SMART is different with lithium-boron chemistry at commercial PWR. In this study, the pH characteristics of ammonia and the solubility characteristics of hydrogen and nytrogen were analyzed for the management of primary water chemistry at SMART

  5. SMART II : the spot market agent research tool version 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    North, M. J. N.

    2000-12-14

    Argonne National Laboratory (ANL) has worked closely with Western Area Power Administration (Western) over many years to develop a variety of electric power marketing and transmission system models that are being used for ongoing system planning and operation as well as analytic studies. Western markets and delivers reliable, cost-based electric power from 56 power plants to millions of consumers in 15 states. The Spot Market Agent Research Tool Version 2.0 (SMART II) is an investigative system that partially implements some important components of several existing ANL linear programming models, including some used by Western. SMART II does not implement a complete model of the Western utility system but it does include several salient features of this network for exploratory purposes. SMART II uses a Swarm agent-based framework. SMART II agents model bulk electric power transaction dynamics with recognition for marginal costs as well as transmission and generation constraints. SMART II uses a sparse graph of nodes and links to model the electric power spot market. The nodes represent power generators and consumers with distinct marginal decision curves and varying investment capital as well individual learning parameters. The links represent transmission lines with individual capacities taken from a range of central distribution, outlying distribution and feeder line types. The application of SMART II to electric power systems studies has produced useful results different from those often found using more traditional techniques. Use of the advanced features offered by the Swarm modeling environment simplified the creation of the SMART II model.

  6. Next-Generation Shipboard DC Power System

    DEFF Research Database (Denmark)

    Jin, Zheming; Sulligoi, Giorgio; Cuzner, Rob

    2016-01-01

    sources (RES) are commonly recognized as the major driven force of the revolution, the outburst of customer electronics and new kinds of household electronics is also powering this change. In this context, dc power distribution technologies have made a comeback and keep gaining a commendable increase...... in research interests and industrial applications. In addition, the concept of flexible and smart distribution has also been proposed, which tends to exploit distributed generation and pack the distributed RESs and local electrical loads as an independent and self-sustainable entity, namely microgrid....... At present, the research of dc microgrid has investigated and developed a series of advanced methods in control, management and objective-oriented optimization, which would found the technical interface enabling the future applications in multiple industrial areas, such as smart buildings, electric vehicles...

  7. Performance of neutron polarimeter SMART-NPOL

    International Nuclear Information System (INIS)

    Noji, S.; Miki, K.; Yako, K.; Kawabata, T.; Kuboki, H.; Sakai, H.; Sekiguchi, K.; Suda, K.

    2007-01-01

    The neutron polarimeter SMART-NPOL has been constructed at the RIKEN Accelerator Research Facility for measuring polarization correlations of proton-neutron systems. The SMART-NPOL system consists of 12 parallel neutron counter planes of two dimensionally position-sensitive plastic scintillators with a size of 60x60x3.0cm 3 . Polarimetry measurements were made using the analyzing power of the H1(n-vector,n)H1 reaction occurring in the plastic scintillators. The effective analyzing power of SMART-NPOL was measured with polarized neutrons from the zero-degree Li6(d-vector,n-vector) reaction with an incident deuteron energy of 135MeV/A. The effective analyzing power thus obtained was 0.26±0.01 stat ±0.03 syst and the double scattering efficiency was 1.1x10 -3

  8. Semantic connections: exploring and manipulating connections in smart spaces

    NARCIS (Netherlands)

    Vlist, van der B.J.J.; Niezen, G.; Hu, J.; Feijs, L.M.G.

    2010-01-01

    In envisioned smart environments, enabled by ubiquitous computing technologies, electronic objects will be able to interconnect and interoperate. How will users of such smart environments make sense of the connections that are made and the information that is exchanged? This Internet of Things could

  9. The Three-Phase Power Router and Its Operation with Matrix Converter toward Smart-Grid Applications

    Directory of Open Access Journals (Sweden)

    Alexandros Kordonis

    2015-04-01

    Full Text Available A power router has been recently developed for both AC and DC applications that has the potential for smart-grid applications. This study focuses on three-phase power switching through the development of an experimental setup which consists of a three-phase direct AC/AC matrix converter with a power router attached to its output. Various experimental switching scenarios with the loads connected to different input sources were investigated. The crescent introduction of decentralized power generators throughout the power-grid obligates us to take measurements for a better distribution and management of the power. Power routers and matrix converters have great potential to succeed this goal with the help of power electronics devices. In this paper, a novel experimental three-phase power switching was achieved and the advantages of this operation are presented, such as on-demand and constant power supply at the desired loads.

  10. Research on data collection key technology of smart electric energy meters

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Mouhailiu; Renheng, Xu

    2018-02-01

    In recent years, smart electric energy meters are demand at 70 million to 90 million with the strong smart grid construction every year in China. However, there are some issues in smart electric energy meters data collection such as the interference of environment, low collection efficiency and inability to work when the power is off. In order to solve these issues above, it uses the RFID communication technology to collect the numbers and electric energy information of smart electric energy meters on the basis of the existing smart electric energy meters, and the related data collection communication experiments were made. The experimental result shows that the electric information and other data batch collection of RFID smart electric energy meters are realized in power and power off. It improves the efficiency and the overall success rate is 99.2% within 2 meters. It provides a new method for smart electric energy meters data collection.

  11. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    OpenAIRE

    Kwangsoo Kim; Seong-il Jin

    2015-01-01

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network co...

  12. The role of natural gas in smart grids

    NARCIS (Netherlands)

    Bliek, F.W.; Noort, A. van den; Roossien, B.; Kamphuis, I.G.; Wit, J. de; Velde, J. van der; Eijgelaar, M.

    2011-01-01

    PowerMatching City (see ref. (Bliek et al., 2010)) is a living lab smart grid demonstration that shows the feasibility of a market based smart grid optimization methodology. It allows simultaneous optimization of multiple goals of the various stakeholders in a smart grid: in-home optimization,

  13. An Energy-Saving Concept of the Smart Building Power Grid with Separated Lines for Standby Devices

    Directory of Open Access Journals (Sweden)

    Dmytro Zubov

    2016-09-01

    Full Text Available Standby power takes 5-10 % of the residential electricity around the world. Some countries lose more than 14 % of the total electricity used in the residential sector. Hence, a new energysaving concept that could help to decrease the power losses is discussed in this paper. Firstly, the two power lines of infrastructure for continuously connected equipment and for standby devices is proposed for new smart buildings. Secondly, the segmented infrastructure with unified hardwareunits is proposed for existing smart buildings (the new one can apply this principle as well. The contactors (i.e. unified hardware units consist of the NodeMcu Lua ESP8266 WiFi IoTdevelopment board, ACS712T ELC-30A current sensor, and the Songle relay. The automatic mode is based on three steps: measurement of the current using ACS712T ELC-30A sensor in all segments except the root; switching off the relays with the current less than or equal to any number in the historical data; switching off the root contactor if all the descendent relays (i.e. contactors are switched off. Second step represents the linear classification with sliding window in machine learning. The software consists of two parts, low-level Arduino sketches and high-level C# Windows form app. They are connected by MQTT broker Mosquitto. The proposed concept was successfully tested using a prototype with three segments, one of which includes smart lighting. The payback period is of approximately one month and a half for the whole-building switch concept.

  14. Smart Grids and Distributed Generation

    Directory of Open Access Journals (Sweden)

    Dorin BICĂ

    2018-06-01

    Full Text Available This paper describes the main characteristics of Smart Grids and distributed generation. Smart Grids can be defined as a modernization of the power system so it monitors, protects and automatically optimizes the operation of its interconnected elements (power plants, transmission and distribution system, industrial and residential loads. Distributed generation (DG refers to the production of electricity near the consumption place using renewable energy sources. A load flow analysis is performed for the IEEE14 system in which a DG source (a 5MW wind turbine is added that is on-grid or off-grid. The power losses are determined for these two cases.

  15. The smart alternative : securing and strengthening our nation's vulnerable electric grid

    International Nuclear Information System (INIS)

    Nahigian, K.R.

    2008-01-01

    This article explained the concept of the next generation of electrical power grids known as the Smart Grid, which allows the possibility to either reallocate electricity during times of crisis or peak demand or prevent power disruptions through proactive diagnosis. The author examined the security, economic and environmental benefits of implementing the Smart Grid during a time of rising energy prices and desire for energy independence. The Smart Grid uses advanced communications and information technologies to create a modern transmission and distribution network that facilitates the integration of alternative energy sources such as wind and solar power, as well as energy-efficient technologies such as plug-in hybrid vehicles. The author emphasized that implementing the Smart Grid grid is also vital to strengthening America's resilience and security since a more robust energy infrastructure will ensure the reliable flow of electricity in the event of a crisis. In addition to promoting energy efficiency, the Smart Grid offers economic benefits, such as reducing the billions of dollars lost each year by American businesses on power outages. A Smart Grid could also open lucrative new markets for smart technologies. 2 figs

  16. Commissioning of an Integral Effect Test Loop for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyunsik; Bae, Hwang; Kim, Dongeok; Min, Kyoungho; Shin, Yongcheol; Ko, Yungjoo; Yi, Sungjae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    An integral-effect test loop for SMART, SMART-ITL (or FESTA), has been constructed at KAERI. Its height was preserved and its flow area and volume were scaled down to 1/49 compared with the prototype plant, SMART. The ratio of the hydraulic diameter is 1/7. The SMART is a 330 MW thermal power reactor, and its core exit temperature and PZR pressure are 323 .deg. C and 15 MPa during a normal working condition, respectively. The maximum power of the core heater in the SMART-ITL is 30% of the scaled full power. As shown in Fig. 1, the SMART-ITL consists of a primary system including a reactor pressure vessel with a pressurizer, four steam generators and four main coolant pumps, a secondary system, a safety system, and an auxiliary system. The SMART-ITL facility will be used to investigate the integral performance of the inter-connected components and possible thermal-hydraulic phenomena occurring in the SMART design, to validate its safety for various design basis events and broad transient scenarios, and to validate the related thermal-hydraulic models of the safety analysis codes. The scenarios include small-break loss-of coolant accident (SBLOCA) scenarios, complete loss of RCS flowrate (CLOF), steam generator tube rupture (SGTR), feedwater line break (FLB), and main steam line break (MSLB). The role of SMART-ITL will be extended to examine and verify the normal, abnormal, and emergency operating procedures required during the construction and export phases of SMART. After an extensive series of commissioning tests in 2012, the SMART-ITL facility is now in operation. In this paper, the major test results acquired during the commissioning tests will be discussed.

  17. An evaluation of selection criteria on primary water chemistry parameters for SMART

    International Nuclear Information System (INIS)

    Choi, B. S.; Kim, S. H.; Yun, J. H.; Bae, Y. Y.; Gee, S. G.

    2003-01-01

    The selection criteria on the primary water chemistry of SMART by comparing the chemical design features with those of the current operating PWRs is analyzed. The most essential differences in water chemistry between the PWRs and SMART reactor is characterized by the presence of boron in water. SMART is boron free reactor, and the ammonia is used as a pH reagent. In SMART reactor hydrogen gas is not added to the primary coolant, but is normally generated from the radiolysis of ammonia of the coolant passes through the core. Ammonia is added once per shift because SMART reactor has no letdown and charging system during power operation. Because of these competing processes, the concentrations of hydrogen, nitrogen and ammonia in the primary coolant are steady state concentrations, which depend on the decomposition/combination rate of ammonia. Ammonia chemistry in SMART reactor has many advantages in that no hydrogen gas injection is needed to control the dissolved oxygen in primary coolant because of spontaneous generation of hydrogen and nitrogen produced by the reaction of ammonia decomposition

  18. Highly-Integrated Hydraulic Smart Actuators and Smart Manifolds for High-Bandwidth Force Control

    Directory of Open Access Journals (Sweden)

    Victor Barasuol

    2018-06-01

    Full Text Available Hydraulic actuation is the most widely used alternative to electric motors for legged robots and manipulators. It is often selected for its high power density, robustness and high-bandwidth control performance that allows the implementation of force/impedance control. Force control is crucial for robots that are in contact with the environment, since it enables the implementation of active impedance and whole body control that can lead to a better performance in known and unknown environments. This paper presents the hydraulic Integrated Smart Actuator (ISA developed by Moog in collaboration with IIT, as well as smart manifolds for rotary hydraulic actuators. The ISA consists of an additive-manufactured body containing a hydraulic cylinder, servo valve, pressure/position/load/temperature sensing, overload protection and electronics for control and communication. The ISA v2 and ISA v5 have been specifically designed to fit into the legs of IIT’s hydraulic quadruped robots HyQ and HyQ-REAL, respectively. The key features of these components tackle 3 of today’s main challenges of hydraulic actuation for legged robots through: (1 built-in controllers running inside integrated electronics for high-performance control, (2 low-leakage servo valves for reduced energy losses, and (3 compactness thanks to metal additive manufacturing. The main contributions of this paper are the derivation of the representative dynamic models of these highly integrated hydraulic servo actuators, a control architecture that allows for high-bandwidth force control and their experimental validation with application-specific trajectories and tests. We believe that this is the first work that presents additive-manufactured, highly integrated hydraulic smart actuators for robotics.

  19. Implementing a High-Assurance Smart-Card OS

    Science.gov (United States)

    Karger, Paul A.; Toll, David C.; Palmer, Elaine R.; McIntosh, Suzanne K.; Weber, Samuel; Edwards, Jonathan W.

    Building a high-assurance, secure operating system for memory constrained systems, such as smart cards, introduces many challenges. The increasing power of smart cards has made their use feasible in applications such as electronic passports, military and public sector identification cards, and cell-phone based financial and entertainment applications. Such applications require a secure environment, which can only be provided with sufficient hardware and a secure operating system. We argue that smart cards pose additional security challenges when compared to traditional computer platforms. We discuss our design for a secure smart card operating system, named Caernarvon, and show that it addresses these challenges, which include secure application download, protection of cryptographic functions from malicious applications, resolution of covert channels, and assurance of both security and data integrity in the face of arbitrary power losses.

  20. NFC-Based User Interface for Smart Environments

    Directory of Open Access Journals (Sweden)

    Susanna Spinsante

    2015-01-01

    Full Text Available The physical support of a home automation system, joined with a simplified user-system interaction modality, may allow people affected by motor impairments or limitations, such as elderly and disabled people, to live safely and comfortably at home, by improving their autonomy and facilitating the execution of daily life tasks. The proposed solution takes advantage of the Near Field Communications technology, which is simple and intuitive to use, to enable advanced user interaction. The user can perform normal daily activities, such as lifting a gate or closing a window, through a device enabled to read NFC tags containing the commands for the home automation system. A passive Smart Panel is implemented, composed of multiple Near Field Communications tags properly programmed, to enable the execution of both individual commands and so-called scenarios. The work compares several versions of the proposed Smart Panel, differing for interrogation and composition of the single command, number of tags, and dynamic user interaction model, at a parity of the number of commands to issue. Main conclusions are drawn from the experimental results, about the effective adoption of Near Field Communications in smart assistive environments.

  1. Smart grid as a service: a discussion on design issues.

    Science.gov (United States)

    Chao, Hung-Lin; Tsai, Chen-Chou; Hsiung, Pao-Ann; Chou, I-Hsin

    2014-01-01

    Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as "smart" as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system.

  2. Peak-load shaving in smart homes via online scheduling

    DEFF Research Database (Denmark)

    Costanzo, Giuseppe Tommaso; Kheir, J.; Guchuan Zhu

    2011-01-01

    This paper addresses the problem of load-shaving in Smart Homes in view of improving energy efficiency in Smart Grids. An architecture of home power management systems, allowing the separation of domestic power load control from grid dynamics, is introduced. In this framework, the operation...

  3. Cognitive Radio for Smart Grid: Theory, Algorithms, and Security

    Directory of Open Access Journals (Sweden)

    Raghuram Ranganathan

    2011-01-01

    Full Text Available Recently, cognitive radio and smart grid are two areas which have received considerable research impetus. Cognitive radios are intelligent software defined radios (SDRs that efficiently utilize the unused regions of the spectrum, to achieve higher data rates. The smart grid is an automated electric power system that monitors and controls grid activities. In this paper, the novel concept of incorporating a cognitive radio network as the communications infrastructure for the smart grid is presented. A brief overview of the cognitive radio, IEEE 802.22 standard and smart grid, is provided. Experimental results obtained by using dimensionality reduction techniques such as principal component analysis (PCA, kernel PCA, and landmark maximum variance unfolding (LMVU on Wi-Fi signal measurements are presented in a spectrum sensing context. Furthermore, compressed sensing algorithms such as Bayesian compressed sensing and the compressed sensing Kalman filter is employed for recovering the sparse smart meter transmissions. From the power system point of view, a supervised learning method called support vector machine (SVM is used for the automated classification of power system disturbances. The impending problem of securing the smart grid is also addressed, in addition to the possibility of applying FPGA-based fuzzy logic intrusion detection for the smart grid.

  4. Customized smart grids, a practical test. No standard solution in sight; Massgeschneiderte Smart Grids im Praxistest. Keine einheitliche Loesung in Sicht

    Energy Technology Data Exchange (ETDEWEB)

    Mrosik, Jan [Siemens AG (Germany). Bereich Energy Automation

    2011-09-05

    Smart grids are viewed as a universal solution to the increasingly complex problems of power supply. It is correct that smart grids will be indispensable in future power supply, it is wrong to assume that there will be a standardized and universal solution. Customized systems are required as grids tend to differ greatly.

  5. Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph

    Science.gov (United States)

    Ghamari, M.; Aguilar, C.; Soltanpur, C.; Nazeran, H.

    2017-01-01

    This paper presents the design, fabrication, and testing of a wireless heart rate (HR) monitoring device based on photoplethysmography (PPG) and smart devices. PPG sensors use infrared (IR) light to obtain vital information to assess cardiac health and other physiologic conditions. The PPG data that are transferred to a computer undergo further processing to derive the Heart Rate Variability (HRV) signal, which is analyzed to generate quantitative markers of the Autonomic Nervous System (ANS). The HRV signal has numerous monitoring and diagnostic applications. To this end, wireless connectivity plays an important role in such biomedical instruments. The photoplethysmograph consists of an optical sensor to detect the changes in the light intensity reflected from the illuminated tissue, a signal conditioning unit to prepare the reflected light for further signal conditioning through amplification and filtering, a low-power microcontroller to control and digitize the analog PPG signal, and a Bluetooth module to transmit the digital data to a Bluetooth-based smart device such as a tablet. An Android app is then used to enable the smart device to acquire and digitally display the received analog PPG signal in real-time on the smart device. This article is concluded with the prototyping of the wireless PPG followed by the verification procedures of the PPG and HRV signals acquired in a laboratory environment. PMID:28959119

  6. Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph.

    Science.gov (United States)

    Ghamari, M; Aguilar, C; Soltanpur, C; Nazeran, H

    2016-03-01

    This paper presents the design, fabrication, and testing of a wireless heart rate (HR) monitoring device based on photoplethysmography (PPG) and smart devices. PPG sensors use infrared (IR) light to obtain vital information to assess cardiac health and other physiologic conditions. The PPG data that are transferred to a computer undergo further processing to derive the Heart Rate Variability (HRV) signal, which is analyzed to generate quantitative markers of the Autonomic Nervous System (ANS). The HRV signal has numerous monitoring and diagnostic applications. To this end, wireless connectivity plays an important role in such biomedical instruments. The photoplethysmograph consists of an optical sensor to detect the changes in the light intensity reflected from the illuminated tissue, a signal conditioning unit to prepare the reflected light for further signal conditioning through amplification and filtering, a low-power microcontroller to control and digitize the analog PPG signal, and a Bluetooth module to transmit the digital data to a Bluetooth-based smart device such as a tablet. An Android app is then used to enable the smart device to acquire and digitally display the received analog PPG signal in real-time on the smart device. This article is concluded with the prototyping of the wireless PPG followed by the verification procedures of the PPG and HRV signals acquired in a laboratory environment.

  7. Ubiquitous Robotic Technology for Smart Manufacturing System.

    Science.gov (United States)

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  8. Design Features of the SMART Water Chemistry

    International Nuclear Information System (INIS)

    Byung Seon Choi; Seong Hoon Kim; Juhyeon Yoon; Doo Jeong Lee; Yoon Yeong Bae; Sung Kyun Zee

    2004-01-01

    The design features for the primary water chemistry for the SMART are introduced from the viewpoint of the system characteristics and the chemical design concept. The most essential differences in water chemistry between the commercially operating PWRs and SMART are characterized by the presence of boron in the water and the operating mode of the purification system. SMART is a soluble boron free reactor, and the ammonia is used as a pH reagent. The material for SMART steam generator is also different from the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. In SMART hydrogen gas which suppresses a generation of oxidizing species by the radiolysis processes in the reactors is not added to the primary coolant, but is normally generated from the radiolysis of the ammonia as the coolant passes through the core. Ammonia is added once per shift because SMART reactor has no letdown and charging system during power operation. Because of these competing processes, the concentrations of hydrogen, nitrogen and ammonia in the primary coolant are in equilibrium, which depend on the decomposition and/or combination rate of the ammonia. The level of permissible oxygen concentration in the primary coolant can be ensured by both suppression of the water radiolysis through maintaining a high enough hydrogen concentration in the primary coolant and by a restriction of the oxygen ingress into the primary coolant with the makeup water. The ammonia chemistry in SMART reactor eliminates the need for hydrogen injection for the control of the dissolved oxygen in the primary coolant because of spontaneous generation of hydrogen and nitrogen produced by the reaction of the ammonia decomposition. (authors)

  9. Distributor pricing approaches enabled in Smart Grid to differentiate delivery service quality

    Directory of Open Access Journals (Sweden)

    Zhongwei Jake Zhang

    2014-12-01

    Full Text Available Industry practitioners who advocate retail competition and Demand-side Participation now look for approaches to link both initiatives through distributor pricing. As distributors incrementally convert more traditional assets into Smart Grid assets, they also need to consider different pricing approaches to recover the investment costs and meet the regulatory business requirements. Small electricity consumers need incentives to take part in these initiatives but their delivery service quality should also be closely guarded. Hence this paper addresses the above needs as a whole and investigates a set of distributor pricing approaches with Smart Grid technologies. Pricing of network and non-network based solutions should follow the incremental basis, such as the long run average incremental cost (LRAIC. The benefit of deferring network investment is calculated and should be passed to consumers as peak pricing rebate. A concept of reliability premium (RP based on load point reliability index is proposed, through which customers can express their preference of service quality and adjust their network tariff payment accordingly. A service delivery model is also proposed to utilize the savings from wholesale market trading to compensate for the downgraded service when loads are controlled. The IEEE 123-node distribution test feeder and the IEEE distribution system for RBTS Bus No. 2 are simulated, and solved using General Algebraic Modeling System (GAMS to demonstrate the proposed distributor pricing approaches in Smart Grid.

  10. Wide-area situation awareness in electric power grid

    Science.gov (United States)

    Greitzer, Frank L.

    2010-04-01

    Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

  11. Automated wireless monitoring system for cable tension using smart sensors

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jongwoong; Cho, Soojin; Spencer, Billie F.; Yun, Chung-Bang

    2013-04-01

    Cables are critical load carrying members of cable-stayed bridges; monitoring tension forces of the cables provides valuable information for SHM of the cable-stayed bridges. Monitoring systems for the cable tension can be efficiently realized using wireless smart sensors in conjunction with vibration-based cable tension estimation approaches. This study develops an automated cable tension monitoring system using MEMSIC's Imote2 smart sensors. An embedded data processing strategy is implemented on the Imote2-based wireless sensor network to calculate cable tensions using a vibration-based method, significantly reducing the wireless data transmission and associated power consumption. The autonomous operation of the monitoring system is achieved by AutoMonitor, a high-level coordinator application provided by the Illinois SHM Project Services Toolsuite. The monitoring system also features power harvesting enabled by solar panels attached to each sensor node and AutoMonitor for charging control. The proposed wireless system has been deployed on the Jindo Bridge, a cable-stayed bridge located in South Korea. Tension forces are autonomously monitored for 12 cables in the east, land side of the bridge, proving the validity and potential of the presented tension monitoring system for real-world applications.

  12. Using Smart Meters Data for Energy Management Operations and Power Quality Monitoring in a Microgrid

    DEFF Research Database (Denmark)

    Palacios-Garcia, Emilio J.; Diaz, Enrique Rodriguez; Anvari-Moghaddam, Amjad

    2017-01-01

    purposes, integrating HAN/BAN communications, alarms and power quality indicators in some cases. All those characteristics make this widely spread equipment a free, accurate and flexible source of information that can replace expensive and dedicated devices. Therefore, this paper presents the integration...... of a commercial advanced metering infrastructure (AMI) in the context of a smart building with an energy management system (EMS). Furthermore, power quality monitoring based on this AMI is explained. All the details regarding the implementation in a laboratory scale application, as well as the obtained results...

  13. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    Science.gov (United States)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  14. Varm på Smart Grid

    OpenAIRE

    Poulsen, Asta Hooge; Nørtoft, Jeppe Nothlev; Buchard, Martin Visby; Rasmussen, Steffen Hesselbjerg

    2016-01-01

    Described in this project is energy planning for a specific case, International Student City of Copenhagen (ISCC) and through that the Studentcity. Focus of the project is to make the Studentcity compatible with future Smart Grid, as well as creating a solution, which is economically and environmentally profitable for ISCC. This is done in an addition to the conversion of the Danish energy system to renewable energy. It is necessary to build a resilient energy system, which can withstand chan...

  15. Co-designing smart tourism

    DEFF Research Database (Denmark)

    Liburd, Janne J.; Nielsen, Tanja K.; Heape, Chris

    2017-01-01

    Emerging theories of smart tourism are chiefly concerned with how Internet Communication Technology and Big Data can influence marketing, product and destination development. The risk being that an overt focus on formal outcomes, namely technology, products and services, diverts attention from how...... things and operations are actually achieved. This paper challenges the notions of smart and value co-creation by introducing tourism co-design as a learning and experiment driven development process. Tourism co-design leverages the communicative interaction between people and enables tourism operators...... to change their practices. Based on fieldwork in the northern part of Denmark we explore how smart tourism can become smarter through tourism co-design processes. We argue that a shift is needed from: How can we efficiently achieve a more or less known goal? To: How can we effectively explore and give sense...

  16. Building smart cities analytics, ICT, and design thinking

    CERN Document Server

    Stimmel, Carol L

    2015-01-01

    The term "smart city" defines the new urban environment, one that is designed for performance through information and communication technologies. Given that the majority of people across the world will live in urban environments within the next few decades, it's not surprising that massive effort and investment is being placed into efforts to develop strategies and plans for achieving "smart" urban growth. Building Smart Cities: Analytics, ICT, and Design Thinking explains the technology and a methodology known as design thinking for building smart cities. Information and communications technologies form the backbone of smart cities. A comprehensive and robust data analytics program enables the right choices to be made in building these cities. Design thinking helps to create smart cities that are both livable and able to evolve. This book examines all of these components in the context of smart city development and shows how to use them in an integrated manner. Using the principles of design thinking to refr...

  17. Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters

    International Nuclear Information System (INIS)

    Krishnamurti, Tamar; Schwartz, Daniel; Davis, Alexander; Fischhoff, Baruch; Bruine de Bruin, Wändi; Lave, Lester; Wang, Jack

    2012-01-01

    With the enactment of the 2009 American Recovery and Reinvestment Act, U.S. President Obama made a public commitment to a new approach to energy production and transmission in the United States. It features installing smart meters and related technologies in residential homes, as part of transforming the current electrical grid into a “smart grid.” Realizing this transformation requires consumers to accept these new technologies and take advantage of the opportunities that they create. We use methods from behavioral decision research to understand consumer beliefs about smart meters, including in-depth mental models interviews and a follow-up survey with a sample of potential smart meter customers of a major U.S. mid-Atlantic electricity utility. In both the surveys and the interviews, most respondents reported wanting smart meters. However, these preferences were often based on erroneous beliefs regarding their purpose and function. Respondents confused smart meters with in-home displays and other enabling technologies, while expecting to realize immediate savings. They also perceived risks, including less control over their electricity usage, violations of their privacy, and increased costs. We discuss the policy implications of our results. - Highlights: ► We outline normative risks and benefits of smart meters from scientific literature. ► We examine consumer perceptions of smart meters via interviews and surveys. ► Smart meter desire stems from consumer misconceptions about purpose and function. ► Appropriate communications may prevent consumer protests against the smart grid.

  18. EU data protection and smart metering. Legal boundary conditions; EU-Datenschutz und Smart Metering. Rechtliche Rahmenbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Hladjk, Joerg [Praxisgruppe European Data Protection and Privacy, Hunton and Williams, Bruessel (Belgium)

    2011-07-01

    With the introduction of smart metering, the problem of data protection arises. The independent Article 29 Data Protection Group of the European Commission drew up an expert opinion with the intention of explaining the applicable EU data protection regulations for the smart metering technology in the power supply sector. (orig.)

  19. Towards Knowledge Management for Smart Manufacturing.

    Science.gov (United States)

    Feng, Shaw C; Bernstein, William Z; Hedberg, Thomas; Feeney, Allison Barnard

    2017-09-01

    The need for capturing knowledge in the digital form in design, process planning, production, and inspection has increasingly become an issue in manufacturing industries as the variety and complexity of product lifecycle applications increase. Both knowledge and data need to be well managed for quality assurance, lifecycle-impact assessment, and design improvement. Some technical barriers exist today that inhibit industry from fully utilizing design, planning, processing, and inspection knowledge. The primary barrier is a lack of a well-accepted mechanism that enables users to integrate data and knowledge. This paper prescribes knowledge management to address a lack of mechanisms for integrating, sharing, and updating domain-specific knowledge in smart manufacturing. Aspects of the knowledge constructs include conceptual design, detailed design, process planning, material property, production, and inspection. The main contribution of this paper is to provide a methodology on what knowledge manufacturing organizations access, update, and archive in the context of smart manufacturing. The case study in this paper provides some example knowledge objects to enable smart manufacturing.

  20. SMART-NPA evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Lee, G. H.; Yoon, H. Y.; Kim, H. C. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-05-01

    SMART(System-integrated Modular Advanced ReacTor) is a 330 MWt integral reactor which is currently under development at Korea Atomic Energy Research Institute for desalination and electricity generation. SMART-NPA is the second user interface part of TASS/SMR in order to improve GUI(Graphic User Interface). Using SMART-NPA the analyzer not only can see the running status of SMART but make change of major SMART parameters. TASS/SMR, the calculation part, was written in Fortran whereas the first user interface part, called TASSWin, was written in Visual C{sup ++}. For these reason, the ActiveX control was chosen as the solution of SMART-NPA development. The five ActiveX controls were built in Visual Basic. They were Overview, Primary, Secondary, PRHRS and Control Panel ActiveX controls. They were contained in tab control, and can easily selected by user. They could communicate with TASSWin using many interface functions. The graph screens were also developed for the display of major variable's trend. The purpose of this report is the verification of SMART-NPA. The input decks were 100-200-100% power maneuvering operation, Feed Line Break Accident and user's input on Control Panel. The results of SMART-NPA for these cases were compared with the results of TASS/SMR stand alone version. The comparison results were same respectively. And all screens of SMART-NPA reflected the calculated results of TASS/SMR very well. That means SMART-NPA was calculated results of TASS/SMR very well. That means SMART-NPA was verified. 9 refs., 30 figs., 4 tabs. (Author)

  1. A Semantics-Rich Information Technology Architecture for Smart Buildings

    Directory of Open Access Journals (Sweden)

    Dario Bonino

    2014-11-01

    Full Text Available The design of smart homes, buildings and environments currently suffers from a low maturity of available methodologies and tools. Technologies, devices and protocols strongly bias the design process towards vertical integration, and more flexible solutions based on separation of design concerns are seldom applied. As a result, the current landscape of smart environments is mostly populated by defectively designed solutions where application requirements (e.g., end-user functionality are too often mixed and intertwined with technical requirements (e.g., managing the network of devices. A mature and effective design process must, instead, rely on a clear separation between the application layer and the underlying enabling technologies, to enable effective design reuse. The role of smart gateways is to enable this separation of concerns and to provide an abstracted view of available automation technology to higher software layers. This paper presents a blueprint for the information technology (IT architecture of smart buildings that builds on top of established software engineering practices, such as model-driven development and semantic representation, and that avoids many pitfalls inherent in legacy approaches. The paper will also present a representative use case where the approach has been applied and the corresponding modeling and software tools.

  2. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays.

    Science.gov (United States)

    Park, Jihun; Kim, Joohee; Kim, So-Yun; Cheong, Woon Hyung; Jang, Jiuk; Park, Young-Geun; Na, Kyungmin; Kim, Yun-Tae; Heo, Jun Hyuk; Lee, Chang Young; Lee, Jung Heon; Bien, Franklin; Park, Jang-Ung

    2018-01-01

    Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user's vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user's external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display.

  3. NSTAR Smart Grid Pilot

    Energy Technology Data Exchange (ETDEWEB)

    Rabari, Anil [NSTAR Electric, Manchester, NH (United States); Fadipe, Oloruntomi [NSTAR Electric, Manchester, NH (United States)

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  4. Advanced Metering Infrastructure based on Smart Meters

    Science.gov (United States)

    Suzuki, Hiroshi

    By specifically designating penetrations rates of advanced meters and communication technologies, devices and systems, this paper introduces that the penetration of advanced metering is important for the future development of electric power system infrastructure. It examines the state of the technology and the economical benefits of advanced metering. One result of the survey is that advanced metering currently has a penetration of about six percent of total installed electric meters in the United States. Applications to the infrastructure differ by type of organization. Being integrated with emerging communication technologies, smart meters enable several kinds of features such as, not only automatic meter reading but also distribution management control, outage management, remote switching, etc.

  5. Smart Inverter Control and Operation for Distributed Energy Resources

    Science.gov (United States)

    Tazay, Ahmad F.

    The motivation of this research is to carry out the control and operation of smart inverters and voltage source converters (VSC) for distributed energy resources (DERs) such as photovoltaic (PV), battery, and plug-in hybrid electric vehicles (PHEV). The main contribution of the research includes solving a couple of issues for smart grids by controlling and implementing multifunctions of VSC and smart inverter as well as improving the operational scheme of the microgrid. The work is mainly focused on controlling and operating of smart inverter since it promises a new technology for the future microgrid. Two major applications of the smart inverter will be investigated in this work based on the connection modes: microgrid at grid-tied mode and autonomous mode. In grid-tied connection, the smart inverter and VSC are used to integrate DER such as Photovoltaic (PV) and battery to provide suitable power to the system by controlling the supplied real and reactive power. The role of a smart inverter at autonomous mode includes supplying a sufficient voltage and frequency, mitigate abnormal condition of the load as well as equally sharing the total load's power. However, the operational control of the microgrid still has a major issue on the operation of the microgrid. The dissertation is divided into two main sections which are: 1. Low-level control of a single smart Inverter. 2. High-level control of the microgrid. The first part investigates a comprehensive research for a smart inverter and VSC technology at the two major connections of the microgrid. This involves controlling and modeling single smart inverter and VSC to solve specific issues of microgrid as well as improve the operation of the system. The research provides developed features for smart inverter comparing with a conventional voltage sourced converter (VSC). The two main connections for a microgrid have been deeply investigated to analyze a better way to develop and improve the operational procedure of

  6. Allocation of Power Meters for Online Load Distribution Estimation in Smart Grids

    DEFF Research Database (Denmark)

    Kouzelis, Konstantinos; Diaz de Cerio Mendaza, Iker; Bak-Jensen, Birgitte

    2015-01-01

    The electrification of heating and transportation along with the penetration of renewable energy in electricity networks has necessitated the evolution of low voltage distribution grids into smart grids. Contemporary, smart grids are realised by smart meter installations to electricity end users...

  7. Reconciling privacy and efficient utility management in smart cities

    OpenAIRE

    Rebollo Monedero, David; Bartoli, Andrea; Hernández Serrano, Juan; Forné Muñoz, Jorge; Soriano Ibáñez, Miguel

    2014-01-01

    A key aspect in the design of smart cities is, undoubtedly, a plan for the efficient management of utilities, enabled by technologies such as those entailing smart metering of the residential consumption of electricity, water or gas. While one cannot object to the appealing advantages of smart metering, the privacy risks posed by the submission of frequent, data-rich measurements cannot simply remain overlooked. The objective of this paper is to provide a general perspective on the contrastin...

  8. An end-user perspective on smart home energy systems in the PowerMatching City demonstration project

    NARCIS (Netherlands)

    Geelen, Daphne; Vos-Vlamings, Manon; Filippidou, Faidra; van den Noort, Albert; van Grootel, Maike; Moll, Henri C.; Reinders, Angèle; Keyson, David

    In discussions on smart grids, it is often stated that residential end-users will play a more active role in the management of the electric power system. Experience in practice on how to empower end-users for such a role is however limited. This paper presents a field study in the first phase of the

  9. An end-user perspective on smart home energy systems in the PowerMatching City demonstration project

    NARCIS (Netherlands)

    Geelen, D.V.; Vos-Vlamings, M.; Fillippidou, F.; van den Noort, A.; van Grootel, M.; Moll, H.; Reinders, Angelina H.M.E.; Keyson, D.

    2013-01-01

    In discussions on smart grids, it is often stated that residential end-users will play a more active role in the management of the electric power system. Experience in practice on how to empower end-users for such a role is however limited. This paper presents a field study in the first phase of the

  10. The role of Smart Grids to foster energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Moura, P.S.; De Almeida, A.T. [Institute of Systems and Robotics, University of Coimbra, Coimbra (Portugal); Lopez, G.L.; Moreno, J.I. [Universidad Carlos III de Madrid, Leganes (Spain)

    2013-11-15

    The traditional electricity grid has remained the same for most of last century, without major architectural improvements. However, its requirements, guidelines and goals do have changed, especially during the last few years, driven by the sustainability in energy generation and energy efficiency principles. Thus, taking greenhouse gases emissions and CO2 footprint reduction as key objectives and information and communications technologies as key enabler technologies, a novel and revolutionary electric grid paradigm, the so-called Smart Grid, is emerging, in which energy efficiency and renewable generation play a central role. This paper presents an overview on the main requirements and features of Smart Grids to integrate energy efficiency, on the work done and to be done, on the enabler technologies, as well as on the expected impacts and the main benefits Smart Grids will bring.

  11. Improving reservoir performance using new 'smart' well technology

    International Nuclear Information System (INIS)

    Roggensack, W.D.; Matthews, C.M.

    1997-01-01

    The technologies that were available in the past to improve reservoir performance include 3-D seismic, coiled tubing, horizontal wells, and PCP's. Future enabling technologies will also include multi-lateral wells, 'smart' wells, underbalanced drilling, and downhole fluids processing. A description of 'smart' well technology was given, defined as well completions which facilitate downhole monitoring and control of production to achieve maximum reserves recovery. The current development for 'smart' wells is focused on offshore and subsea wells for marginal field development and work-over mitigation, with the emphasis in system design for production control of horizontal and multi-lateral wells. Basic 'smart' well configuration, instrumentation and monitoring systems, applications of 'smart' well technology in the Western Canadian Sedimentary Basin, and future developments and applications for the technology in general, were also discussed. 30 figs

  12. The role of smart grids in integrating renewable energy

    Directory of Open Access Journals (Sweden)

    Ali MEKKAOUI

    2017-06-01

    Full Text Available In this paper a novel model of smart grid connected photovoltaic / wind turbine hybrid system is developed. A Smart Grid has been presented in MATLAB/SIMULINK environment to see the approach for analysis of power exchange. Analysis of this last, gives the exact idea to know the range of maximum permissible loads that can be connected to their relevant bus bars. This paper presents the variation of Active Power with varying load angle in context with small signal analysis. The Smart Grid, regarded as the future generation power grid, uses two-way flow of electricity and information to create a widely distributed automated energy delivery network.

  13. Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a system with either smart or dumb electric vehicles

    DEFF Research Database (Denmark)

    Kiviluoma, Juha; Meibom, Peter

    2011-01-01

    The article estimates the costs of plug-in electric vehicles (EVs) in a future power system as well as the benefits from smart charging and discharging EVs (smart EVs). To arrive in a good estimate, a generation planning model was used to create power plant portfolios, which were operated in a more...... detailed unit commitment and dispatch model. In both models the charging and discharging of EVs is optimised together with the rest of the power system. Neither the system cost nor the market price of electricity for EVs turned out to be high (36–263 €/vehicle/year in the analysed scenarios). Most...

  14. Smart Demand Response Based on Smart Homes

    Directory of Open Access Journals (Sweden)

    Jingang Lai

    2015-01-01

    Full Text Available Smart homes (SHs are crucial parts for demand response management (DRM of smart grid (SG. The aim of SHs based demand response (DR is to provide a flexible two-way energy feedback whilst (or shortly after the consumption occurs. It can potentially persuade end-users to achieve energy saving and cooperate with the electricity producer or supplier to maintain balance between the electricity supply and demand through the method of peak shaving and valley filling. However, existing solutions are challenged by the lack of consideration between the wide application of fiber power cable to the home (FPCTTH and related users’ behaviors. Based on the new network infrastructure, the design and development of smart DR systems based on SHs are related with not only functionalities as security, convenience, and comfort, but also energy savings. A new multirouting protocol based on Kruskal’s algorithm is designed for the reliability and safety of the SHs distribution network. The benefits of FPCTTH-based SHs are summarized at the end of the paper.

  15. Applying Smart Grid Technology For Reducing Electric Energy Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Roy

    2010-09-15

    In recent years the term 'Smart Grid' has become a widely used buzz word with respect to the operation of Electric Power Systems. One analysis has suggested that a Smart Grid could potentially reduce annual energy consumption in the USA by 56 to 203 billion kWh in 2030, corresponding to a 1.2 to 4.3% reduction in projected retail electricity sales in 2030. This paper discusses some of the smart grid technologies pertaining to the operation of electric power distribution networks.

  16. Nanogenerators for self-powering nanosystems and piezotronics for smart MEMS/NEMS

    KAUST Repository

    Wang, Zhong Lin

    2011-01-01

    Two new fields are introduced to MEMS/NEMS: a nanogenerator that harvests mechanical energy for powering nanosystems, and strained induced piezotronics for smart MEMS. Fundamentally, due to the polarization of ions in a crystal that has non-central symmetry, such as ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a stress. The principle of harvesting irregular mechanical energy by the nanogenerator relies on the piezopotenital driven transient flow of electrons in external load, which can be resulted from body motion, muscle stretching, breathing, tiny mechanical vibration/disturbance, sonic wave etc. As of today, a gentle straining can output 1-3 V at an instant output power of ∼2 μW from an integrated nanogenerator of a very thin sheet of 1 cm2 in size. This technology has the potential applications for power MEMS/NEMS that requires a power in the μW to mW range. Furthermore, we have replaced the externally applied gate voltage to a CMOS field effect transistor by the strain induced piezopotential as a "gate" voltage to tune/control the charge transport from source to drain. The devices fabricated by this principle are called piezotronics, with applications in strain/force/pressure triggered/controlled electronic devices, sensors and logic units.

  17. Smart Power Supply Systems for Mission Critical Facilities

    Science.gov (United States)

    Hirose, Keiichi; Babasaki, Tadatoshi

    To develop the advanced and rich life, and the also economy and social activity continuously, various types of energy are necessary. At the same time, to protect the global environment and to prevent the depletion of natural resources, the effective and moreover efficient use of energy is becoming important. Electric power is one of the most important forms of energy for our life and society. This paper describes topics and survey results of technical trends regarding the electric power supply systems which are playing a core role as the important infrastructure to support the emergence of information-oriented society. Specifically, the power supply systems that enhance high power quality and reliability (PQR) are important for the steady growth of information and communication services. The direct current (DC) power, which has been used for telecommunications power systems and information and communications technologies (ICT), enables existing utilities' grid and distributed energy resources to keep a balance between supply and demand of small-scaled power systems or microgirds. These techniques are expected to be part of smartgrid technologies and facilitate the installation of distributed generators in mission critical facilities.

  18. Smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting devices

    Science.gov (United States)

    Ghasemi-Nejhad, Mehrdad N.; Menendez, Michael; Minei, Brenden; Wong, Kyle; Gabrick, Caton; Thornton, Matsu; Ghorbani, Reza

    2016-04-01

    This paper explains the development of smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting, or Deployable Disaster Devices (D3), where wind turbines and solar panels are developed in modular forms, which can be tied together depending on the needed power. The D3 packages/units can be used: (1) as a standalone unit in case of a disaster where no source of power is available, (2) for a remote location such as a farm, camp site, or desert (3) for a community that converts energy usage from fossil fuels to Renewable Energy (RE) sources, or (4) in a community system as a source of renewable energy for grid-tie or off-grid operation. In Smart D3 system, the power is generated (1) for consumer energy needs, (2) charge storage devices (such as batteries, capacitors, etc.), (3) to deliver power to the network when the smart D3 nano-grid is tied to the network and when the power generation is larger than consumption and storage recharge needs, or (4) to draw power from the network when the smart D3 nano-grid is tied to the network and when the power generation is less than consumption and storage recharge needs. The power generated by the Smart D3 systems are routed through high efficiency inverters for proper DC to DC or DC to AC for final use or grid-tie operations. The power delivery from the D3 is 220v AC, 110v AC and 12v DC provide proper power for most electrical and electronic devices worldwide. The power supply is scalable, using a modular system that connects multiple units together. This are facilitated through devices such as external Input-Output or I/O ports. The size of the system can be scaled depending on how many accessory units are connected to the I/O ports on the primary unit. The primary unit is the brain of the system allowing for smart switching and load balancing of power input and smart regulation of power output. The Smart D3 systems are protected by ruggedized weather proof casings allowing for operation

  19. THE ENIGMATIC CORE L1451-mm: A FIRST HYDROSTATIC CORE? OR A HIDDEN VeLLO?

    Energy Technology Data Exchange (ETDEWEB)

    Pineda, Jaime E.; Goodman, Alyssa A.; Bourke, Tyler; Foster, Jonathan B.; Robitaille, Thomas; Kauffmann, Jens [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Arce, Hector G.; Tanner, Joel [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Schnee, Scott [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Tafalla, Mario [Observatorio Astronomico Nacional (IGN), Alfonso XII 3, E-28014 Madrid (Spain); Caselli, Paola [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Anglada, Guillem, E-mail: jaime.pineda@manchester.ac.uk [Instituto de Astrofisica de Andalucia, CSIC, Apartado 3004, E-18080 Granada (Spain)

    2011-12-20

    We present the detection of a dust continuum source at 3 mm (CARMA) and 1.3 mm (Submillimeter Array, SMA), and {sup 12}CO (2-1) emission (SMA) toward the L1451-mm dense core. These detections suggest a compact object and an outflow where no point source at mid-infrared wavelengths is detected using Spitzer. An upper limit for the dense core bolometric luminosity of 0.05 L{sub Sun} is obtained. By modeling the broadband spectral energy distribution and the continuum interferometric visibilities simultaneously, we confirm that a central source of heating is needed to explain the observations. This modeling also shows that the data can be well fitted by a dense core with a young stellar object (YSO) and a disk, or by a dense core with a central first hydrostatic core (FHSC). Unfortunately, we are not able to decide between these two models, which produce similar fits. We also detect {sup 12}CO (2-1) emission with redshifted and blueshifted emission suggesting the presence of a slow and poorly collimated outflow, in opposition to what is usually found toward YSOs but in agreement with prediction from simulations of an FHSC. This presents the best candidate, so far, for an FHSC, an object that has been identified in simulations of collapsing dense cores. Whatever the true nature of the central object in L1451-mm, this core presents an excellent laboratory to study the earliest phases of low-mass star formation.

  20. THE ENIGMATIC CORE L1451-mm: A FIRST HYDROSTATIC CORE? OR A HIDDEN VeLLO?

    International Nuclear Information System (INIS)

    Pineda, Jaime E.; Goodman, Alyssa A.; Bourke, Tyler; Foster, Jonathan B.; Robitaille, Thomas; Kauffmann, Jens; Arce, Héctor G.; Tanner, Joel; Schnee, Scott; Tafalla, Mario; Caselli, Paola; Anglada, Guillem

    2011-01-01

    We present the detection of a dust continuum source at 3 mm (CARMA) and 1.3 mm (Submillimeter Array, SMA), and 12 CO (2-1) emission (SMA) toward the L1451-mm dense core. These detections suggest a compact object and an outflow where no point source at mid-infrared wavelengths is detected using Spitzer. An upper limit for the dense core bolometric luminosity of 0.05 L ☉ is obtained. By modeling the broadband spectral energy distribution and the continuum interferometric visibilities simultaneously, we confirm that a central source of heating is needed to explain the observations. This modeling also shows that the data can be well fitted by a dense core with a young stellar object (YSO) and a disk, or by a dense core with a central first hydrostatic core (FHSC). Unfortunately, we are not able to decide between these two models, which produce similar fits. We also detect 12 CO (2-1) emission with redshifted and blueshifted emission suggesting the presence of a slow and poorly collimated outflow, in opposition to what is usually found toward YSOs but in agreement with prediction from simulations of an FHSC. This presents the best candidate, so far, for an FHSC, an object that has been identified in simulations of collapsing dense cores. Whatever the true nature of the central object in L1451-mm, this core presents an excellent laboratory to study the earliest phases of low-mass star formation.

  1. A novel minimum cost maximum power algorithm for future smart home energy management.

    Science.gov (United States)

    Singaravelan, A; Kowsalya, M

    2017-11-01

    With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  2. The task of the Smart Grid Network. Summary and recommendations; Denmark; Smart Grid Netvaerkets arbejde. Sammenfatning og anbefalinger

    Energy Technology Data Exchange (ETDEWEB)

    Lidegaard, M.

    2011-10-15

    The Smart Grid Network was established in 2010 by the Danish climate and energy minister tasked with developing recommendations for future actions and initiatives that make it possible to handle up to 50% electricity from wind energy in the power system in 2020. The present report presents a summary of the network's main recommendations. Smart Grid will not be realized without ensuring reasonable conditions for actors in the system. It is essential to establish a clear market model with clear roles and responsibilities. Additionally there is a need for development and implementation of a future communication and control concept, which makes it possible to achieve the best possible interaction between the management of power system, power generation and electricity consumption. The future demands that both the commercial and technical data communications paths and systems will be expanded and supplemented with connections for significantly more renewable energy production at all levels in the grid. And most importantly there must be established entirely new interoperable communication structures for both commercial and technical utilization of the consumption part of the power system. In order to realize an effective deployment of Smart Grid in 2020 with up to 50 % of renewable energy production there is a need to implement a number of initiatives. The Smart Grid Network identifies nine main recommendations. (LN)

  3. Data Distribution Service-Based Interoperability Framework for Smart Grid Testbed Infrastructure

    Directory of Open Access Journals (Sweden)

    Tarek A. Youssef

    2016-03-01

    Full Text Available This paper presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discovery feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS.

  4. Making the Grid "Smart" Through "Smart" Microgrids: Real-Time Power Management of Microgrids with Multiple Distributed Generation Sources Using Intelligent Control

    Energy Technology Data Exchange (ETDEWEB)

    Nehrir, M. Hashem [Montana State Univ., Bozeman, MT (United States)

    2016-10-20

    In this Project we collaborated with two DOE National Laboratories, Pacific Northwest National Lab (PNNL) and Lawrence Berkeley National Lab (LBL). Dr. Hammerstrom of PNNL initially supported our project and was on the graduate committee of one of the Ph.D. students (graduated in 2014) who was supported by this project. He is also a committee member of a current graduate student of the PI who was supported by this project in the last two years (August 2014-July 2016). The graduate student is now supported be the Electrical and Computer Engineering (ECE) Department at Montana State University (MSU). Dr. Chris Marney of LBL provided actual load data, and the software WEBOPT developed at LBL for microgrid (MG) design for our project. NEC-Labs America, a private industry, also supported our project, providing expert support and modest financial support. We also used the software “HOMER,” originally developed at the National Renewable Energy Laboratory (NREL) and the most recent version made available to us by HOMER Energy, Inc., for MG (hybrid energy system) unit sizing. We compared the findings from WebOpt and HOMER and designed appropriately sized hybrid systems for our case studies. The objective of the project was to investigate real-time power management strategies for MGs using intelligent control, considering maximum feasible energy sustainability, reliability and efficiency while, minimizing cost and undesired environmental impact (emissions). Through analytic and simulation studies, we evaluated the suitability of several heuristic and artificial-intelligence (AI)-based optimization techniques that had potential for real-time MG power management, including genetic algorithms (GA), ant colony optimization (ACO), particle swarm optimization (PSO), and multi-agent systems (MAS), which is based on the negotiation of smart software-based agents. We found that PSO and MAS, in particular, distributed MAS, were more efficient and better suited for our work. We

  5. Performance of LTE for smart grid communications

    NARCIS (Netherlands)

    Karagiannis, Georgios; Pham, G.T.; Nguyen, A.D.; Heijenk, Geert; Haverkort, Boudewijn R.H.M.; Campfens, F.; Fischbach, K.; Krieger, U.R.

    The next generation power grid (the “Smart Grid‿) aims to minimize environmental impact, enhance markets, improve reliability and service, and reduce costs and improve efficiency of electricity distribution. One of the main protocol frameworks used in Smart Grids is IEC 61850. Together with the

  6. Smart Cities as Cyber-Physical Social Systems

    Directory of Open Access Journals (Sweden)

    Christos G. Cassandras

    2016-06-01

    Full Text Available The emerging prototype for a Smart City is one of an urban environment with a new generation of innovative services for transportation, energy distribution, healthcare, environmental monitoring, business, commerce, emergency response, and social activities. Enabling the technology for such a setting requires a viewpoint of Smart Cities as cyber-physical systems (CPSs that include new software platforms and strict requirements for mobility, security, safety, privacy, and the processing of massive amounts of information. This paper identifies some key defining characteristics of a Smart City, discusses some lessons learned from viewing them as CPSs, and outlines some fundamental research issues that remain largely open.

  7. Integrative solutions for intelligent energy management. Smart metering, smart home, smart grid; Integrative Loesungsansaetze fuer ein intelligentes Energiemanagement. Smart Metering, Smart Home and Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Achim [Hager Vertriebsgesellschaft mbH und Co. KG, Blieskastel (Germany). Marketing

    2011-07-01

    Smart Metering, Smart Home, Smart Grid - these key words significantly determine the current debate about intelligent energy management, or new energy concepts. The author of the contribution under consideration describes the interactions between Smart Metering, Smart Home and Smart Grids and the technical connection of these interactions. Thus, the compact tebis KNX demovea server connects Windows computer and the Internet with the building automation based on KNX. The technically simple combination of smart metering and smart home via Hager radio tower of the building automation provides an access to key energy data for an intelligent load management.

  8. Design of an Open Smart Energy Gateway for Smart Meter Data Management

    Energy Technology Data Exchange (ETDEWEB)

    Page, Janie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McParland, Chuck [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Czarnecki, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-01

    With the widespread deployment of electronic interval meters, commonly known as smart meters, came the promise of real-time data on electric energy consumption. Recognizing an opportunity to provide consumers access to their near real-time energy consumption data directly from their installed smart meter, we designed a mechanism for capturing those data for consumer use via an open smart energy gateway (OpenSEG). By design, OpenSEG provides a clearly defined boundary for equipment and data ownership. OpenSEG is an open-source data management platform to enable better data management of smart meter data. Effectively, it is an information architecture designed to work with the ZigBee Smart Energy Profile 1.x (SEP 1.x). It was specifically designed to reduce cyber-security risks and provide secure information directly from smart meters to consumers in near real time, using display devices already owned by the consumers. OpenSEG stores 48 hours of recent consumption data in a circular cache using a format consistent with commonly available archived (not real-time) consumption data such as Green Button, which is based on the Energy Services Provider Interface (ESPI) data standard. It consists of a common XML format for energy usage information and a data exchange protocol to facilitate automated data transfer upon utility customer authorization. Included in the design is an application program interface by which users can acquire data from OpenSEG for further post processing. A sample data display application is included in the initial software product. The data display application demonstrates that OpenSEG can help electricity use data to be retrieved from a smart meter and ported to a wide variety of user-owned devices such as cell phones or a user-selected database. This system can be used for homes, multi-family buildings, or small commercial buildings in California.

  9. A Brief Review of the Need for Robust Smart Wireless Sensor Systems for Future Propulsion Systems, Distributed Engine Controls, and Propulsion Health Management

    Science.gov (United States)

    Hunter, Gary W.; Behbahani, Alireza

    2012-01-01

    Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.

  10. A DISTRIBUTED SMART HOME ARTIFICIAL INTELLIGENCE SYSTEM

    DEFF Research Database (Denmark)

    Lynggaard, Per

    2013-01-01

    A majority of the research performed today explore artificial intelligence in smart homes by using a centralized approach where a smart home server performs the necessary calculations. This approach has some disadvantages that can be overcome by shifting focus to a distributed approach where...... the artificial intelligence system is implemented as distributed as agents running parts of the artificial intelligence system. This paper presents a distributed smart home architecture that distributes artificial intelligence in smart homes and discusses the pros and cons of such a concept. The presented...... distributed model is a layered model. Each layer offers a different complexity level of the embedded distributed artificial intelligence. At the lowest layer smart objects exists, they are small cheap embedded microcontroller based smart devices that are powered by batteries. The next layer contains a more...

  11. A novel multi-agent decentralized win or learn fast policy hill-climbing with eligibility trace algorithm for smart generation control of interconnected complex power grids

    International Nuclear Information System (INIS)

    Xi, Lei; Yu, Tao; Yang, Bo; Zhang, Xiaoshun

    2015-01-01

    Highlights: • Proposing a decentralized smart generation control scheme for the automatic generation control coordination. • A novel multi-agent learning algorithm is developed to resolve stochastic control problems in power systems. • A variable learning rate are introduced base on the framework of stochastic games. • A simulation platform is developed to test the performance of different algorithms. - Abstract: This paper proposes a multi-agent smart generation control scheme for the automatic generation control coordination in interconnected complex power systems. A novel multi-agent decentralized win or learn fast policy hill-climbing with eligibility trace algorithm is developed, which can effectively identify the optimal average policies via a variable learning rate under various operation conditions. Based on control performance standards, the proposed approach is implemented in a flexible multi-agent stochastic dynamic game-based smart generation control simulation platform. Based on the mixed strategy and average policy, it is highly adaptive in stochastic non-Markov environments and large time-delay systems, which can fulfill automatic generation control coordination in interconnected complex power systems in the presence of increasing penetration of decentralized renewable energy. Two case studies on both a two-area load–frequency control power system and the China Southern Power Grid model have been done. Simulation results verify that multi-agent smart generation control scheme based on the proposed approach can obtain optimal average policies thus improve the closed-loop system performances, and can achieve a fast convergence rate with significant robustness compared with other methods

  12. Smart Distribution Systems

    Directory of Open Access Journals (Sweden)

    Yazhou Jiang

    2016-04-01

    Full Text Available The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. A comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD, is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs is introduced. Future research in a smart distribution environment is proposed.

  13. Deliverable 1.1 Smart grid scenario

    DEFF Research Database (Denmark)

    Korman, Matus; Ekstedt, Mathias; Gehrke, Oliver

    2015-01-01

    The purpose of the SALVAGE project is to develop better support for managing and designing a secure future smart grid. This approach includes cyber security technologies dedicated to power grid operation as well as support for the migration to the future smart grid solutions, including the legacy...... of ICT that necessarily will be part of it. The objective is further to develop cyber security technology and methodology optimized with the particular needs and context of the power industry, something that is to a large extent lacking in general cyber security best practices and technologies today...

  14. BİYOMETRIC FINGER PRINT USED AND APPLIED ON SMART CARD

    Directory of Open Access Journals (Sweden)

    Makbule KARAKÜLAH

    2004-04-01

    Full Text Available During the last years, the authors are trying to integrate biometrics, inside a smart card. In this study the first step, as in every biometric system is to obtain an image of the user's fingerprint. After this, a preprocessing algorithm is applied, which enables feature extraction to obtain the location and type of all minutiae. The minutiae are ridges and valleys of the fingerprint. We researched these minutiae which are used with smart cards. A lot of smart card readers /writers were used for data writing and reading. Fingerprint minutiae and identify information were wrote on smart cards successfully using development kits (smart cards of fingerprint and so were identified.

  15. Technology comparison of wireless of control networks for smart home and smart metering applications; Technologievergleich drahtloser Steuernetzwerke fuer Smart Home und Smart Metering Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Langhammer, N.; Kays, R. [Technische Univ. Dortmund (Germany). Lehrstuhl fuer Kommunikationstechnik

    2012-07-01

    Smart grid power systems require a continuous communication technology networking at all levels of the hierarchy. In addition to large industrial consumers in the higher network levels, components in low voltage networks must be integrated into the smart grid. The realization of a robust control network for smart home and smart metering applications in the residential environment requires a major challenge. Due to the easy upgradeability and the great flexibility, the utilization of wireless technologies is very attractive. In practice, however, many different standards are competing. Examples for this include IEEE 802.15.4 and Konnex-RF. A tendency towards a de-facto standard is not yet in sight. In addition, the individual performance of the various technologies is difficult to estimate due to the large variety of parameters. This complicates the selection and commitment to a particular technology. However, in order to make a decision, the authors of the contribution under consideration report on an objective comparison of the new communication technology layers of the current wireless control networks. As a comparison, the parameters of reliable indoor coverage and the expected energy consumption are used.

  16. Development and evaluation of a novel smart device-based application for burn assessment and management.

    Science.gov (United States)

    Godwin, Zachary; Tan, James; Bockhold, Jennifer; Ma, Jason; Tran, Nam K

    2015-06-01

    We have developed a novel software application that provides a simple and interactive Lund-Browder diagram for automatic calculation of total body surface area (TBSA) burned, fluid formula recommendations, and serial wound photography on a smart device platform. The software was developed for the iPad (Apple, Cupertino, CA) smart device platforms. Ten burns ranging from 5 to 95% TBSA were computer generated on a patient care simulator using Adobe Photoshop CS6 (Adobe, San Jose, CA). Burn clinicians calculated the TBSA first using a paper-based Lund-Browder diagram. Following a one-week "washout period", the same clinicians calculated TBSA using the smart device application. Simulated burns were presented in a random fashion and clinicians were timed. Percent TBSA burned calculated by Peregrine vs. the paper-based Lund-Browder were similar (29.53 [25.57] vs. 28.99 [25.01], p=0.22, n=7). On average, Peregrine allowed users to calculate burn size significantly faster than the paper form (58.18 [31.46] vs. 90.22 [60.60]s, p<0.001, n=7). The smart device application also provided 5 megapixel photography capabilities, and acute burn resuscitation fluid calculator. We developed an innovative smart device application that enables accurate and rapid burn size assessment to be cost-effective and widely accessible. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  17. Designing components using smartMOVE electroactive polymer technology

    Science.gov (United States)

    Rosenthal, Marcus; Weaber, Chris; Polyakov, Ilya; Zarrabi, Al; Gise, Peter

    2008-03-01

    Designing components using SmartMOVE TM electroactive polymer technology requires an understanding of the basic operation principles and the necessary design tools for integration into actuator, sensor and energy generation applications. Artificial Muscle, Inc. is collaborating with OEMs to develop customized solutions for their applications using smartMOVE. SmartMOVE is an advanced and elegant way to obtain almost any kind of movement using dielectric elastomer electroactive polymers. Integration of this technology offers the unique capability to create highly precise and customized motion for devices and systems that require actuation. Applications of SmartMOVE include linear actuators for medical, consumer and industrial applications, such as pumps, valves, optical or haptic devices. This paper will present design guidelines for selecting a smartMOVE actuator design to match the stroke, force, power, size, speed, environmental and reliability requirements for a range of applications. Power supply and controller design and selection will also be introduced. An overview of some of the most versatile configuration options will be presented with performance comparisons. A case example will include the selection, optimization, and performance overview of a smartMOVE actuator for the cell phone camera auto-focus and proportional valve applications.

  18. Basic design report of SMART

    International Nuclear Information System (INIS)

    Chang, M. H.; Yeo, J. W.; Zee, Q. S.; Lee, D. J.; Park, K. B.; Koo, I. S.; Kim, H. C.; Kim, J. I.

    2002-03-01

    KAERI has been developing a 330MWt integral reactor, SMART and its application system since 1997. SMART is being developed for use as an energy source for small-scale power generation and seawater desalination. The SMART system can produce portable water of 40.000m 3 /day using the MED-TVC desalination process and about 90MW of electricity. Although the design of SMART is based on the current pressurized water reactor technology, new technologies such as inherent safety and passive safety have been applied, and system simplification and modularization, innovations in manufacturing and installation technologies have been implemented culminating in a design that has enhanced safety and economy, and is environment-friendly. The objective of this design report is to provide the overall information on the basic design of SMART NSSS, and the applied technologies. The information covers mainly NSSS design with some information on the desalination system. For the secondary system, only the information directly related to the coupling with NSSS are covered

  19. Online condition monitoring to enable extended operation of nuclear power plants

    International Nuclear Information System (INIS)

    Meyer, Ryan Michael; Bond, Leonard John; Ramuhalli, Pradeep

    2012-01-01

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption of online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components. (author)

  20. Novel algorithm for aggregated demand response strategy for smart distribution network

    NARCIS (Netherlands)

    Babar, M.; Ahamed, I.; Shah, A.; Al-Ammar, E.A.; Malik, N.H.

    2013-01-01

    Advancement in demand side management strategies enables smart grid to cope with the ever increasing energy demand and provide economic benefit to all of it's stakeholders. Moreover, emerging concept of smart pricing and advances in load control can provide new business opportunities for demand side