WorldWideScience

Sample records for p-type transparent conductive

  1. P-type transparent conducting oxides

    Science.gov (United States)

    Zhang, Kelvin H. L.; Xi, Kai; Blamire, Mark G.; Egdell, Russell G.

    2016-09-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d 10 orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu+-based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr3+-based oxides (3d 3) and post-transition metal oxides with lone pair state (ns 2). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

  2. Infrared Transparent Spinel Films with p -Type Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Charles F.; Exarhos, Gregory J.; Ferris, Kim F.; Engelhard, Mark H.; Stewart, Donald C.

    2001-11-29

    Spinel oxide films containing at least two transition metal cations were found to exhibit p-type conductivity with high optical transparency from the visible to wavelengths near 15 micrometers. Resistivities as low as 0.003 ohm-cm were measured on 100 nm thick rf sputter deposited films that contained nickel and cobalt. Optical spectra, Raman scattering and XPS measurements indicated the valency of nickel localized on octahedral sites within the spinel lattice determines these properties. Electronic band structure calculations corroborated the experimental results. A resistivity minimum was found at the composition NiCo2O4 deposited from aqueous or alcoholic solutions followed by subsequent annealing at 400 degrees C in air. Solution deposited films richer in nickel than this stoichiometry always were found to phase separate into nickel oxide and a spinel phase with concomitant loss in conductivity. However, the phase stability region could be extended to higher nickel contents when rf-sputter deposition techniques were used. Sputter deposited spinel films having a nickel to cobalt ratio less than 2 were found to exhibit the highest conductivity. Results suggest that the phase stability region for these materials can be extended through appropriate choice of deposition conditions. A possible mechanism that promotes high conductivity in this system is thought to be charge transfer between the resident di- and trivalent cations that may be assisted by the magnetic nature of the oxide film.

  3. Theoretical prediction of p-type transparent conductivity in Zn-doped TiO2.

    Science.gov (United States)

    Han, Xiaoping; Shao, Guosheng

    2013-06-28

    It is very difficult and yet extremely important to fill the wide technological gap in developing transparent conducting oxides (TCOs) that exhibit excellent p-type conducting characteristics. Here, on the basis of extensive first-principles calculations, we discover for the first time potentially promising p-type transparent conductivity in Zn-doped TiO2 under oxygen rich conditions. Efforts have been made to elaborate the effects of possible defects and their interaction with Zn doping on the p-type transparent conductivity. This work offers a fundamental road map for cost-effective development of p-type TCOs based on TiO2, which is a cheap and stable material system of large natural resources.

  4. Method for producing high carrier concentration p-Type transparent conducting oxides

    Science.gov (United States)

    Li, Xiaonan; Yan, Yanfa; Coutts, Timothy J.; Gessert, Timothy A.; Dehart, Clay M.

    2009-04-14

    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  5. Perovskite Sr-doped LaCrO3 as a new p-type transparent conducting oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongliang; Du, Yingge; Papadogianni, Alexandra; Bierwagen, Oliver; Sallis, Shawn; Piper, Louis F. J.; Bowden, Mark E.; Shutthanandan, V.; Sushko, Petr; Chambers, Scott A.

    2015-09-16

    Transparent conducting oxides (TCOs) constitute a unique class of materials which combine the seemingly mutually exclusive properties of electrical conductivity and optical transparency in a single material. TCOs are useful for a wide range of applications including solar cells, displays, light emitting diodes and transparent electronics. Simple post-transition metal oxides such as ZnO, In2O3 and SnO2 are wide gap insulators in which the ionic character generates an oxygen 2p-derived valence band (VB) and a metal s-derived conduction band (CB), resulting in large optical band gaps (>3.0 eV) and excellent n-type conductivity when donor doped. In contrast, the development of efficient p-type TCOs remains a global materials challenge. Converting n-type oxides to p-type analogs by acceptor doping is extremely difficult and these materials display poor conductivity.

  6. p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation.

    Science.gov (United States)

    Chen, Le; Yang, Jinhui; Klaus, Shannon; Lee, Lyman J; Woods-Robinson, Rachel; Ma, Jie; Lum, Yanwei; Cooper, Jason K; Toma, Francesca M; Wang, Lin-Wang; Sharp, Ian D; Bell, Alexis T; Ager, Joel W

    2015-08-05

    Achieving stable operation of photoanodes used as components of solar water splitting devices is critical to realizing the promise of this renewable energy technology. It is shown that p-type transparent conducting oxides (p-TCOs) can function both as a selective hole contact and corrosion protection layer for photoanodes used in light-driven water oxidation. Using NiCo2O4 as the p-TCO and n-type Si as a prototypical light absorber, a rectifying heterojunction capable of light driven water oxidation was created. By placing the charge separating junction in the Si using a np(+) structure and by incorporating a highly active heterogeneous Ni-Fe oxygen evolution catalyst, efficient light-driven water oxidation can be achieved. In this structure, oxygen evolution under AM1.5G illumination occurs at 0.95 V vs RHE, and the current density at the reversible potential for water oxidation (1.23 V vs RHE) is >25 mA cm(-2). Stable operation was confirmed by observing a constant current density over 72 h and by sensitive measurements of corrosion products in the electrolyte. In situ Raman spectroscopy was employed to investigate structural transformation of NiCo2O4 during electrochemical oxidation. The interface between the light absorber and p-TCO is crucial to produce selective hole conduction to the surface under illumination. For example, annealing to produce more crystalline NiCo2O4 produces only small changes in its hole conductivity, while a thicker SiOx layer is formed at the n-Si/p-NiCo2O4 interface, greatly reducing the PEC performance. The generality of the p-TCO protection approach is demonstrated by multihour, stable, water oxidation with n-InP/p-NiCo2O4 heterojunction photoanodes.

  7. Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells.

    Science.gov (United States)

    Xu, Xiaojie; Bullock, James; Schelhas, Laura T; Stutz, Elias Z; Fonseca, Jose J; Hettick, Mark; Pool, Vanessa L; Tai, Kong Fai; Toney, Michael F; Fang, Xiaosheng; Javey, Ali; Wong, Lydia Helena; Ager, Joel W

    2016-03-09

    P-type transparent conducting films of nanocrystalline (CuS)x:(ZnS)1-x were synthesized by facile and low-cost chemical bath deposition. Wide angle X-ray scattering (WAXS) and high resolution transmission electron microscopy (HRTEM) were used to evaluate the nanocomposite structure, which consists of sub-5 nm crystallites of sphalerite ZnS and covellite CuS. Film transparency can be controlled by tuning the size of the nanocrystallites, which is achieved by adjusting the concentration of the complexing agent during growth; optimal films have optical transmission above 70% in the visible range of the spectrum. The hole conductivity increases with the fraction of the covellite phase and can be as high as 1000 S cm(-1), which is higher than most reported p-type transparent materials and approaches that of n-type transparent materials such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) synthesized at a similar temperature. Heterojunction p-(CuS)x:(ZnS)1-x/n-Si solar cells were fabricated with the nanocomposite film serving as a hole-selective contact. Under 1 sun illumination, an open circuit voltage of 535 mV was observed. This value compares favorably to other emerging heterojunction Si solar cells which use a low temperature process to fabricate the contact, such as single-walled carbon nanotube/Si (370-530 mV) and graphene/Si (360-552 mV).

  8. The low resistive and transparent Al-doped SnO{sub 2} films: p-type conductivity, nanostructures and photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Benouis, C.E. [Department of Material Technology, Physics Faculty, USTOMB University, BP1505 Oran (Algeria); Benhaliliba, M., E-mail: mbenhaliliba@gmail.com [Department of Material Technology, Physics Faculty, USTOMB University, BP1505 Oran (Algeria); Mouffak, Z. [Department of Electrical and Computer Engineering California State University, Fresno, CA (United States); Avila-Garcia, A. [Cinvestav-IPN, Dept. Ingeniería Eléctrica-SEES, Apdo. Postal 14-740, 07000 México, D.F. (Mexico); Tiburcio-Silver, A. [ITT-DIE, Apdo, Postal 20, Metepec 3, 52176 Estado de Mexico (Mexico); Ortega Lopez, M.; Romano Trujillo, R. [Centro de Investigación en Dispositivos Semiconductores, Instituto de Ciencias-BUAP, 14 Sur y Av. San Claudio, C.U. Puebla, Pue. (Mexico); Ocak, Y.S. [Dicle University, Education Faculty, Science Department, 21280 Diyarbakir (Turkey)

    2014-08-01

    Highlights: • Low resistive and high transparency Al doped SnO{sub 2} films. • Films are deposited onto ITO substrate by spray pyrolysis. • Nanostructured films are revealed. • p-Type conductivity is exhibited. • Photoluminescence of films is studied. - Abstract: In this work, we study the crystalline structure, surface morphology, transmittance, optical bandgap and n/p type inversion of tin oxide (SnO{sub 2}). The Nanostructured films of Al-doped SnO{sub 2} were successfully produced onto ITO-coated glass substrates via the spray pyrolysis method at a deposition temperature of 300 °C. A (1 0 1) and (2 1 1)-oriented tetragonal crystal structure was confirmed by X-ray patterns; and grain sizes varied within the range 8−42 nm. The films were polycrystalline, showing a high transparency in the visible (VIS) and infrared (IR) spectra. The optical bandgap was estimated to be around 3.4 eV. The atomic force microscopy (AFM) analysis showed the nanostructures consisting of nanotips, nanopatches, nanopits and nanobubbles. The samples exhibited high conductivity that ranged from 0.55 to 10{sup 4} (S/cm) at ambient and showed an inversion from n to p-type as well as a degenerate semiconductor characters with a bulk concentration reaching 1.7 x 10{sup 19} cm{sup −3}. The photoluminescence measurements reveal the detection of violet, green and yellow emissions.

  9. Structural, electrical and optical properties of p-type transparent conducting SnO{sub 2}:Al film derived from thermal diffusion of Al/SnO{sub 2}/Al multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J. [Key Laboratory of Silicate Materials Science and Engineering (Wuhan University of Technology), Ministry of Education, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070 (China); Zhao, X.J., E-mail: opluse@whut.edu.cn [Key Laboratory of Silicate Materials Science and Engineering (Wuhan University of Technology), Ministry of Education, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070 (China); Ni, J.M.; Tao, H.Z. [Key Laboratory of Silicate Materials Science and Engineering (Wuhan University of Technology), Ministry of Education, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070 (China)

    2010-11-15

    Highly transparent, p-type conducting SnO{sub 2}:Al films derived from thermal diffusion of a sandwich structure Al/SnO{sub 2}/Al multilayer thin films deposited on quartz substrate have been prepared by direct current and radio-frequency magnetron sputtering using Al and SnO{sub 2} targets. The deposited films were annealed at various temperatures for different durations. The effect of thermal diffusing temperature and time on the structural, electrical and optical performances of SnO{sub 2}:Al films has been studied. X-ray diffraction results show that all p-type conducting films possessed polycrystalline SnO{sub 2} with tetragonal rutile structure. Hall-effect results indicate that 450 deg. C for 4 h were the optimum annealing parameters for p-type SnO{sub 2}:Al films, resulting in a relatively high hole concentration of 7.2 x 10{sup 18} cm{sup -3} and a low resistivity of 0.81 {Omega} cm. The transmission of the p-type SnO{sub 2}:Al films was above 80%.

  10. Infrared absorption and visible transparency in heavily doped p-type BaSnO3

    Science.gov (United States)

    Li, Yuwei; Sun, Jifeng; Singh, David J.

    2017-01-01

    The recent experimental work shows that perovskite BaSnO3 can be heavily doped by K to become a stable p-type semiconductor. Here, we find that p-type perovskite BaSnO3 retains transparency for visible light while absorbing strongly in the infrared below 1.5 eV. The origin of the remarkable optical transparency even with heavy doping is that the interband transitions that are enabled by empty states at the top of the valence band are concentrated mainly in the energy range from 0.5 to 1.5 eV, i.e., not extending past the near IR. In contrast to n-type, the Burstein-Moss shift is slightly negative, but very small reflecting the heavier valence bands relative to the conduction bands.

  11. High-throughput search of ternary chalcogenides for p-type transparent electrodes

    Science.gov (United States)

    Shi, Jingming; Cerqueira, Tiago F. T.; Cui, Wenwen; Nogueira, Fernando; Botti, Silvana; Marques, Miguel A. L.

    2017-01-01

    Delafossite crystals are fascinating ternary oxides that have demonstrated transparent conductivity and ambipolar doping. Here we use a high-throughput approach based on density functional theory to find delafossite and related layered phases of composition ABX2, where A and B are elements of the periodic table, and X is a chalcogen (O, S, Se, and Te). From the 15 624 compounds studied in the trigonal delafossite prototype structure, 285 are within 50 meV/atom from the convex hull of stability. These compounds are further investigated using global structural prediction methods to obtain their lowest-energy crystal structure. We find 79 systems not present in the materials project database that are thermodynamically stable and crystallize in the delafossite or in closely related structures. These novel phases are then characterized by calculating their band gaps and hole effective masses. This characterization unveils a large diversity of properties, ranging from normal metals, magnetic metals, and some candidate compounds for p-type transparent electrodes. PMID:28266587

  12. High-throughput search of ternary chalcogenides for p-type transparent electrodes

    Science.gov (United States)

    Shi, Jingming; Cerqueira, Tiago F. T.; Cui, Wenwen; Nogueira, Fernando; Botti, Silvana; Marques, Miguel A. L.

    2017-03-01

    Delafossite crystals are fascinating ternary oxides that have demonstrated transparent conductivity and ambipolar doping. Here we use a high-throughput approach based on density functional theory to find delafossite and related layered phases of composition ABX2, where A and B are elements of the periodic table, and X is a chalcogen (O, S, Se, and Te). From the 15 624 compounds studied in the trigonal delafossite prototype structure, 285 are within 50 meV/atom from the convex hull of stability. These compounds are further investigated using global structural prediction methods to obtain their lowest-energy crystal structure. We find 79 systems not present in the materials project database that are thermodynamically stable and crystallize in the delafossite or in closely related structures. These novel phases are then characterized by calculating their band gaps and hole effective masses. This characterization unveils a large diversity of properties, ranging from normal metals, magnetic metals, and some candidate compounds for p-type transparent electrodes.

  13. P-type conductivity in annealed strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D., E-mail: mattmcc@wsu.edu [Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2814 (United States)

    2015-12-15

    Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO{sub 3}, or STO) samples that were annealed at 1200°C. Room-temperature mobilities above 100 cm{sup 2}/V s were measured, an order of magnitude higher than those for electrons (5-10 cm{sup 2}/V s). Average hole densities were in the 10{sup 9}-10{sup 10} cm{sup −3} range, consistent with a deep acceptor.

  14. Nanostructured p-type semiconducting transparent oxides: promising materials for nano-active devices and the emerging field of "transparent nanoelectronics".

    Science.gov (United States)

    Banerjee, Arghya; Chattopadhyay, Kalyan K

    2008-01-01

    Transparent conducting oxides (TCO) with p-type semiconductivity have recently gained renewed interest for the fabrication of all-oxide transparent junctions, having potential applications in the emerging field of 'Transparent' or 'Invisible Electronics'. This kind of transparent junctions can be used as a "functional" window, which will transmit visible portion of solar radiation, but generates electricity by the absorption of the UV part. Therefore, these devices can be used as UV shield as well as UV cells. In this report, a brief review on the research activities on various p-TCO materials is furnished along-with the fabrication of different transparent p-n homojunction, heterojunction and field-effect transistors. Also the reason behind the difficulties in obtaining p-TCO materials and possible solutions are discussed in details. Considerable attention is given in describing the various patent generations on the field of p-TCO materials as well as transparent p-n junction diodes and light emitting devices. Also, most importantly, a detailed review and patenting activities on the nanocrystalline p-TCO materials and transparent nano-active device fabrication are furnished with considerable attention. And finally, a systematic description on the fabrication and characterization of nanocrystalline, p-type transparent conducting CuAlO(2) thin film, deposited by cost-effective low-temperature DC sputtering technique, by our group, is furnished in details. These p-TCO micro/nano-materials have wide range of applications in the field of optoelectronics, nanoelectronics, space sciences, field-emission displays, thermoelectric converters and sensing devices.

  15. A Density Functional Theory Study of Doped Tin Monoxide as a Transparent p-type Semiconductor

    KAUST Repository

    Bianchi Granato, Danilo

    2012-05-01

    In the pursuit of enhancing the electronic properties of transparent p-type semiconductors, this work uses density functional theory to study the effects of doping tin monoxide with nitrogen, antimony, yttrium and lanthanum. An overview of the theoretical concepts and a detailed description of the methods employed are given, including a discussion about the correction scheme for charged defects proposed by Freysoldt and others [Freysoldt 2009]. Analysis of the formation energies of the defects points out that nitrogen substitutes an oxygen atom and does not provide charge carriers. On the other hand, antimony, yttrium, and lanthanum substitute a tin atom and donate n-type carriers. Study of the band structure and density of states indicates that yttrium and lanthanum improves the hole mobility. Present results are in good agreement with available experimental works and help to improve the understanding on how to engineer transparent p-type materials with higher hole mobilities.

  16. Record mobility in transparent p-type tin monoxide films and devices by phase engineering

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso

    2013-06-25

    Here, we report the fabrication of nanoscale (15 nm) fully transparent p-type SnO thin film transistors (TFT) at temperatures as low as 180 C with record device performance. Specifically, by carefully controlling the process conditions, we have developed SnO thin films with a Hall mobility of 18.71 cm2 V-1 s-1 and fabricated TFT devices with a linear field-effect mobility of 6.75 cm2 V-1 s -1 and 5.87 cm2 V-1 s-1 on transparent rigid and translucent flexible substrates, respectively. These values of mobility are the highest reported to date for any p-type oxide processed at this low temperature. We further demonstrate that this high mobility is realized by careful phase engineering. Specifically, we show that phase-pure SnO is not necessarily the highest mobility phase; instead, well-controlled amounts of residual metallic tin are shown to substantially increase the hole mobility. A detailed phase stability map for physical vapor deposition of nanoscale SnO is constructed for the first time for this p-type oxide. © 2013 American Chemical Society.

  17. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    Science.gov (United States)

    Du, Juan; Xia, Congxin; Liu, Yaming; Li, Xueping; Peng, Yuting; Wei, Shuyi

    2017-04-01

    More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm2 V-1 s-1, which is much higher than that of MoS2 monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  18. Cation Defects and Conductivity in Transparent Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Exarhos, Gregory J.; Windisch, Charles F.; Ferris, Kim F.; Owings, Robert R.

    2007-10-24

    High quality doped zinc oxide and mixed transition metal spinel oxide films have been deposited by means of sputter deposition from metal and metal oxide targets, and by spin casting from aqueous or alcoholic precursor solutions. Deposition conditions and post-deposition processing are found to alter cation oxidation states and their distributions in both oxide materials resulting in marked changes to both optical transmission and electrical response. For ZnO, partial reduction of the neat or doped material by hydrogen treatment of the heated film or by electrochemical processing renders the oxide n-type conducting. Continued reduction was found to diminish conductivity. In contrast, oxidation of the infrared transparent p-type spinel conductors typified by NiCo2O4 was found to increase conductivity. The disparate behavior of these two materials is caused in part by the sign of the charge carrier and by the existence of two different charge transport mechanisms that are identified as free carrier conduction and polaron hopping. While much work has been reported concerning structure/property relationships in the free carrier conducting oxides, there is a significantly smaller body of information on transparent polaron conductors. In this paper, we identify key parameters that promote conductivity in mixed metal spinel oxides and compare their behavior with that of the free carrier TCO’s.

  19. Raman spectra of p-type transparent semiconducting Cr{sub 2}O{sub 3}:Mg

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Karsten, E-mail: fleisck@tcd.ie; Caffrey, David; Farrell, Leo; Norton, Emma; Mullarkey, Daragh; Arca, Elisabetta; Shvets, Igor V.

    2015-11-02

    We present an analysis of the Raman spectra of p-type transparent conducting Cr{sub 2}O{sub 3}:Mg grown by various techniques including spray pyrolysis, pulsed laser deposition, molecular beam epitaxy and reactive magnetron sputtering. The best performing films show a distinct broad range Raman signature related to defect-induced vibrational modes not seen in stoichiometric, undoped material. Our comparative study demonstrates that Raman spectroscopy can quantify unwanted dopant clustering in the material at high Mg concentrations, while also being sensitive to the Mg incorporation site. By correlating the Raman signature to the electrical properties of the films, growth processes can be optimised to give the best conducting films and the local defect structure for effective p-type doping can be studied. - Highlights: • Mg doping in Cr{sub 2}O{sub 3} can lead to dopant clustering in MgCr{sub 2}O{sub 4} phase. • Post-annealing in oxygen can dissolve these clusters improving doping. • High oxygen pressures during growth can prevent dopant clustering. • Raman spectroscopy is a powerful tool to assist growth optimization in p-type oxides.

  20. Study of p-type AlN-doped SnO2 thin films and its transparent devices

    Science.gov (United States)

    Wu, Y. J.; Liu, Y. S.; Hsieh, C. Y.; Lee, P. M.; Wei, Y. S.; Liao, C. H.; Liu, C. Y.

    2015-02-01

    The electrical properties of transparent Al-doped tin oxide (SnO2), N-doped SnO2, and AlN-doped SnO2 thin films were studied. The Al-doped tin oxide (SnO2) thin films all show n-type conduction regardless the annealing condition. The n-type conduction of the as-deposited N-doped SnO2, and AlN-doped SnO2 thin films could be converted to p-type conduction by annealing the films at an elevated temperature of 450 °C. XPS analysis verified that the substitution of N ions in the O ion sites in the annealed N-doped SnO2 and AlN-doped SnO2 thin films were responsible for the n-p conduction transition. The conduction of the annealed N-doped SnO2 and AlN-doped SnO2 thin films could be converted back to n-type conduction by thermally annealing the films at higher temperature, over 450 °C. The p-n conduction transition is related with the outgassing of N ions in the p-type N-doped SnO2 and AlN-doped SnO2 thin films. Remarkably, we found that the Al content can retard the outgassing of N ions in the p-type N-doped SnO2 and AlN-doped SnO2 thin films and prolong the p-n conduction transition temperature above 600 °C. XPS analysis revealed that the formation of the Snsbnd Nsbnd Al bond improved the stability of the N ions in the AlN-doped SnO2 thin films. I-V curve of the p-type AlN-doped SnO2/n-type fluorine-doped SnO2 junction exhibited clear p-n junction characteristics, a low leakage current under the revised bias (1.13 × 10-5 A at -5 V), and a low turn-on voltage (3.24 V). p-Type AlN-doped SnO2/n-type fluorine-doped SnO2 junction exhibited excellent transmittance (over 90%) in the visible region (470-750 nm).

  1. Electroforming-free resistive switching memory effect in transparent p-type tin monoxide

    KAUST Repository

    Hota, M. K.

    2014-04-14

    We report reproducible low bias bipolar resistive switching behavior in p-type SnO thin film devices without extra electroforming steps. The experimental results show a stable resistance ratio of more than 100 times, switching cycling performance up to 180 cycles, and data retention of more than 103 s. The conduction mechanism varied depending on the applied voltage range and resistance state of the device. The memristive switching is shown to originate from a redox phenomenon at the Al/SnO interface, and subsequent formation/rupture of conducting filaments in the bulk of the SnO layer, likely involving oxygen vacancies and Sn interstitials.

  2. Transparent conducting silver nanowire networks

    CERN Document Server

    van de Groep, Jorik; Polman, Albert; 10.1021/nl301045a

    2013-01-01

    We present a transparent conducting electrode composed of a periodic two-dimensional network of silver nanowires. Networks of Ag nanowires are made with wire diameters of 45-110 nm and pitch of 500, 700 and 1000 nm. Anomalous optical transmission is observed, with an averaged transmission up to 91% for the best transmitting network and sheet resistances as low as 6.5 {\\Omega}/sq for the best conducting network. Our most dilute networks show lower sheet resistance and higher optical transmittance than an 80 nm thick layer of ITO sputtered on glass. By comparing measurements and simulations we identify four distinct physical phenomena that govern the transmission of light through the networks: all related to the excitation of localized surface plasmons and surface plasmon polaritons on the wires. The insights given in this paper provide the key guidelines for designing high-transmittance and low-resistance nanowire electrodes for optoelectronic devices, including thin-film solar cells. For these latter, we disc...

  3. Completely transparent ohmic electrode on p-type AlGaN for UV LEDs with core-shell Cu@alloy nanosilk network (Conference Presentation)

    Science.gov (United States)

    Cai, Duanjun; Wang, Huachun; Huang, Youyang; Wu, Chenping; Chen, Xiaohong; Gao, Na; Wei, Tongbo T.; Wang, Junxi; Li, Shuping; Kang, Junyong

    2016-09-01

    Metal nanowire networks hold a great promise, which have been supposed the only alternative to ITO as transparent electrodes for their excellent performance in touch screen, LED and solar cell. It is well known that the difficulty in making transparent ohmic electrode to p-type high-Al-content AlGaN conducting layer has highly constrained the further development of UV LEDs. On the IWN-2014, we reported the ohmic contact to n, p-GaN with direct graphene 3D-coated Cu nanosilk network and the fabrication of complete blue LED. On the ICNS-2015, we reported the ohmic contact to n-type AlGaN conducting layer with Cu@alloy nanosilk network. Here, we further demonstrate the latest results that a novel technique is proposed for fabricating transparent ohmic electrode to high-Al-content AlGaN p-type conducting layer in UV LEDs using Cu@alloy core-shell nanosilk network. The superfine copper nanowires (16 nm) was synthesized for coating various metals such as Ni, Zn, V or Ti with different work functions. The transmittance showed a high transparency (> 90%) over a broad wavelength range from 200 to 3000 nm. By thermal annealing, ohmic contact was achieved on p-type Al0.5Ga0.5N layer with Cu@Ni nanosilk network, showing clearly linear I-V curve. By skipping the p-type GaN cladding layer, complete UV LED chip was fabricated and successfully lit with bright emission at 276 nm.

  4. Improvement of transparent conducting materials by metallic grids on transparent conductive oxides

    NARCIS (Netherlands)

    Deelen, J. van; Klerk, L.A.; Barink, M.; Rendering, H.; Voorthuijzen, P.; Hovestad, A.

    2013-01-01

    The trade-off between transparency and conductivity in transparent conductors used in optoelectronic devices is a major bottleneck towards higher device performances. Grid deposition on transparent conductive oxides was demonstrated using electrochemical deposition, which has the advantage of a high

  5. Luminance behavior of lithium-doped ZnO nanowires with p-type conduction characteristics.

    Science.gov (United States)

    Ko, Won Bae; Lee, Jun Seok; Lee, Sang Hyo; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Park, Young Jun; Kim, Hyun Jung; Hong, Jin Pyo

    2013-09-01

    The present study describes the room-temperature cathodeluminescence (CL) and temperature-dependent photoluminescence (PL) properties of p-type lithium (Li)-doped zinc oxide (ZnO) nanowires (NWs) grown by hydrothermal doping and post-annealing processes. A ZnO thin film was used as a seed layer in NW growth. The emission wavelengths and intensities of undoped ZnO NWs and p-type Li-doped ZnO NWs were analyzed for comparison. CL and PL observations of post-annealed p-type Li-doped ZnO NWs clearly exhibited a dominant sharp band-edge emission. Finally, a n-type ZnO thin film/p-type annealed Li-doped ZnO NW homojunction diode was prepared to confirm the p-type conduction of annealed Li-doped ZnO NWs as well as the structural properties measured by transmission electron microscopy.

  6. Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors

    KAUST Repository

    Caraveo-Frescas, J. A.

    2013-11-25

    p-type tin monoxide (SnO) nanowire field-effect transistors with stable enhancement mode behavior and record performance are demonstrated at 160 °C. The nanowire transistors exhibit the highest field-effect hole mobility (10.83 cm2 V−1 s−1) of any p-type oxide semiconductor processed at similar temperature. Compared to thin film transistors, the SnO nanowire transistors exhibit five times higher mobility and one order of magnitude lower subthreshold swing. The SnO nanowire transistors show three times lower threshold voltages (−1 V) than the best reported SnO thin film transistors and fifteen times smaller than p-type Cu 2O nanowire transistors. Gate dielectric and process temperature are critical to achieving such performance.

  7. Transparent Conducting Oxides—An Up-To-Date Overview

    Directory of Open Access Journals (Sweden)

    Andreas Stadler

    2012-04-01

    Full Text Available Transparent conducting oxides (TCOs are electrical conductive materials with comparably low absorption of electromagnetic waves within the visible region of the spectrum. They are usually prepared with thin film technologies and used in opto-electrical apparatus such as solar cells, displays, opto-electrical interfaces and circuitries. Here, based on a modern database-system, aspects of up-to-date material selections and applications for transparent conducting oxides are sketched, and references for detailed information are given. As n-type TCOs are of special importance for thin film solar cell production, indium-tin oxide (ITO and the reasonably priced aluminum-doped zinc oxide (ZnO:Al, are discussed with view on preparation, characterization and special occurrences. For completion, the recently frequently mentioned typical p-type delafossite TCOs are described as well, providing a variety of references, as a detailed discussion is not reasonable within an overview publication.

  8. EDITORIAL: On display with transparent conducting films On display with transparent conducting films

    Science.gov (United States)

    Demming, Anna

    2012-03-01

    by a researcher in the early 1930s, 'It is obvious that if the dyes used for selective staining in ordinary microscopical work are supplemented by substances which cause a particular detail of the structure to fluoresce with a specific colour in ultraviolet light, then many strings will be added to the bow of the practical microscopist' [3]. More recently, emphasis on the role of plasmons—collective oscillations of electrons in nanoscale metal structures—has received considerable research attention. Plasmons enhance the local electromagnetic field and can lead to increased fluorescence rates from nearby fluorophores depending on the efficiency of the counteracting process, non-radiative transfer [4]. Flat ITO films have been used extensively in photovoltaic studies as transparent electrodes [5]. Over the past few years, nanowire structures have recently been used to increase the surface area of the interface between dye and oxide in dye-sensitized solar cells [6]. A collaboration of researchers in China and Australia has recently extended the innovation of the nanowire structure to the ITO electrode [7]. Using cyclic voltammetry the researchers confirmed that using a 3D ITO-nanowire electrode significantly enhanced the reaction current. Despite its attractive properties, alternatives to ITO are now in high demand. The rise in devices requiring flat electronic displays has begun to overwhelm the legitimacy of using such a rare element as indium for transparent conducting films. ITO is also brittle, causing problems for flexible displays. Films of carbon nanotubes have been proposed for transparent conducting films but improvements to the sheet resistance are needed before they can compete with the performance of ITO. The effects of HNO3 treatment on the resistivity of carbon nanotube films has attracted some debate in the community, and stimulated the work of Ji-Beom Yoo and colleagues in Korea [8]. Their results suggest that p-type doping has a larger effect on

  9. Transparent conducting materials: Overview and recent results

    NARCIS (Netherlands)

    Deelen, J. van; Illiberi, A.; Hovestad, A.; Barbu, I.; Klerk, L.; Buskens, P.

    2012-01-01

    An overview of different transparent conductors is given. In addition, atmospheric pressure CVD of ZnO resulted in conductivities below 1 mΩ cm for a temperature of 480°C, whereas at a process temperature of 200°C a value of 2 mΩ cm was obtained. Also atmospheric pressure spatial ALD was used to

  10. Chemical fabrication of p-type Cu{sub 2}O transparent thin film using molecular precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Hiroki [Research Institute of Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); Suzuki, Tatsuya [Department of Applied Chemistry and Chemical Engineering, Graduate School of Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); Hara, Hiroki; Mochizuki, Chihiro; Takano, Ichiro; Honda, Tohru [Research Institute of Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); Sato, Mitsunobu, E-mail: lccsato@cc.kogakuin.ac.jp [Research Institute of Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2012-11-15

    A transparent p-type Cu{sub 2}O thin film of 50 nm thickness was successfully fabricated by means of a solution-based process involving the thermal reaction of molecular precursor films spin-coated on a Na-free glass substrate. The precursor solution was prepared by the reaction of an isolated Cu{sup 2+} complex of ethylenediamine-N, N, N Prime , N Prime -tetraacetic acid with dibutylamine in ethanol. The Cu{sub 2}O thin films resulting from heat treatment of the precursor film at 450 Degree-Sign C for 10 min in Ar gas at a flow rate of 1.0 L min{sup -1} were characterized by X-ray diffraction which indicated a precise cubic lattice cell parameter of a = 0.4265(2) nm, with a crystallite size of 8(2) nm. X-ray photoelectron spectroscopy peaks, attributable to the O 1s and Cu 2p{sub 3/2} level of the Cu{sub 2}O film were found at 532.6 eV and 932.4 eV, respectively. An average grain size of the deposited Cu{sub 2}O particles of ca. 200 nm was observed via field-emission scanning electron microscopy. The optical band edge evaluated from the absorption spectrum of the Cu{sub 2}O transparent thin film was 2.3 eV, assuming a direct-transition semiconductor. Hall Effect measurements of the thin film indicated that the single-phase Cu{sub 2}O thin film is a typical p-type semiconductor, with a hole concentration of 1.7 Multiplication-Sign 10{sup 16} cm{sup -3} and hole mobility of 4.8 cm{sup 2} V{sup -1} s{sup -1} at ambient temperature. The activation energy from the valence band to the acceptor level determined from an Arrhenius plot was 0.34 eV. The adhesion strength of the thin film on the Na-free glass substrate was also determined as a critical load (Lc1) of 2.0 N by means of a scratch test. The method described is the first example of fabrication and characterization of a p-type Cu{sub 2}O transparent thin film by a wet process. -- Graphical abstract: The p-type Cu{sub 2}O transparent thin film was facilely fabricated on a Na-free grass substrate by a solution based

  11. Novel transparent conducting oxide technology for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, P.T.; Sutton, P.A.; Gardener, M.; Wakefield, G.

    2005-07-01

    This report outlines the development of both n- and p-type transparent Conducting Oxide (TCO) materials and the demonstrated feasibility of economic production of TCO films by deposition techniques. Descriptions are given of the four main tasks of the project with Task A concentrating on material design and synthesis covering the new precursor to zinc oxide thin films and selection of polymers for formulation; Task B dealing with film formation involving film deposition by spin coating, screen printing, inkjet printing, dip coating and chemical vapour deposition; Task C concerning performance evaluation; and Task D examining manufacturing process development. The prospects for commercialisation are explored and recommendation for future work are considered.

  12. Fabrication of p-type conductivity in SnO{sub 2} thin films through Ga doping

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, Chien-Yie, E-mail: cytsay@fcu.edu.tw; Liang, Shan-Chien

    2015-02-15

    Highlights: • P-type Ga-doped SnO{sub 2} semiconductor films were prepared by sol-gel spin coating. • Optical bandgaps of the SnO{sub 2}:Ga films are narrower than that of the SnO{sub 2} film. • SnO{sub 2}:Ga films exhibited p-type conductivity as Ga doping content higher than 10%. • A p-n heterojunction composed of p-type SnO{sub 2}:Ga and n-type ZnO:Al was fabricated. - Abstract: P-type transparent tin oxide (SnO{sub 2}) based semiconductor thin films were deposited onto alkali-free glass substrates by a sol-gel spin-coating method using gallium (Ga) as acceptor dopant. In this study, we investigated the influence of Ga doping concentration ([Ga]/[Sn] + [Ga] = 0%, 5%, 10%, 15%, and 20%) on the structural, optical and electrical properties of SnO{sub 2} thin films. XRD analysis results showed that dried Ga-doped SnO{sub 2} (SnO{sub 2}:Ga) sol-gel films annealed in oxygen ambient at 520 °C for 1 h exhibited only the tetragonal rutile phase. The average optical transmittance of as-prepared thin film samples was higher than 87.0% in the visible light region; the optical band gap energy slightly decreased from 3.92 eV to 3.83 eV with increases in Ga doping content. Hall effect measurement showed that the nature of conductivity of SnO{sub 2}:Ga thin films changed from n-type to p-type when the Ga doping level was 10%, and when it was at 15%, Ga-doped SnO{sub 2} thin films exhibited the highest mean hole concentration of 1.70 × 10{sup 18} cm{sup -3}. Furthermore, a transparent p-SnO{sub 2}:Ga (Ga doping level of 15%)/n-ZnO:Al (Al doping level of 2%) heterojunction was fabricated on alkali-free glass. The I-V curve measurement for the p-n heterojunction diode showed a typical rectifying characteristic with a forward turn-on voltage of 0.65 V.

  13. Nitrogen-monoxide gas-sensing properties of transparent p-type copper-oxide nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soojeong; Kim, Hyojin; Kim, Dojin [Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-15

    We report the nitrogen-monoxide (NO) gas-sensing properties of transparent p-type copper-oxide (CuO) nanorod arrays synthesized by using the hydrothermal method with a CuO nanoparticle seed layer deposited on a glass substrate via sputtering process. We synthesized polycrystalline CuO nanorods measuring 200 to 300 nm in length and 20 to 30 nm in diameter for three controlled molarity ratios of 1:1, 1:2 and 1:4 between copper nitrate trihydrate [Cu(NO{sub 2}){sub 2}·3H{sub 2}O] and hexamethylenetetramine (C{sub 6}H{sub 12}N{sub 4}). The crystal structures and morphologies of the synthesized CuO nanorod arrays were examined using grazing incidence X-ray diffraction and scanning electron microscopy. The gas-sensing measurements for NO gas in dry air indicated that the CuO nanorodarray-based gas sensors synthesized under hydrothermal condition at a molarity ratio of 1:2 showed the best gas sensing response to NO gas. These CuO nanorod-array gas sensors exhibited a highly sensitive response to NO gas, with a maximum sensitivity of about 650% for 10 ppm NO in dry air at an operating temperature of 100 .deg. C. These transparent p-type CuO nanorod-array gas sensors have shown a reversible and reliable response to NO gas over a range of operating temperatures. These results indicate certain potential use of p-type oxide semiconductor CuO nanorods as sensing materials for several types of gas sensors, including p - n junction gas sensors.

  14. Change in the electrical conductivity of SnO{sub 2} crystal from n-type to p-type conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Villamagua, Luis, E-mail: luis.villamagua@tyndall.ie [Grupo de Fisicoquímica de Materiales, Universidad Técnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Dipartimento di Ingegneria per l’Ambiente e il Territorio e Ingegneria Chimica, Università della Calabria, 87036 Rende (CS) (Italy); Stashans, Arvids [Grupo de Fisicoquímica de Materiales, Universidad Técnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Lee, Po-Ming; Liu, Yen-Shuo; Liu, Cheng-Yi [Department of Chemical and Materials Engineering, National Central University, Jhong-Li, Taiwan (China); Carini, Manuela [Dipartimento di Ingegneria per l’Ambiente e il Territorio e Ingegneria Chimica, Università della Calabria, 87036 Rende (CS) (Italy)

    2015-05-01

    Highlights: • Switch from n-type to p-type conductivity in SnO{sub 2} has been studied. • Computational DFT + U method where used. • X-ray diffraction and X-ray photoelectron spectroscopy where used. • Al- and N-codoped SnO{sub 2} compound shows stable p-type conductivity. • Low resistivity (3.657 × 10{sup −1} Ω cm) has been obtained. • High carrier concentration (4.858 × 10{sup 19} cm{sup −3}) has been obtained. - Abstract: The long-sought fully transparent technology will not come true if the n region of the p–n junction does not get as well developed as its p counterpart. Both experimental and theoretical efforts have to be used to study and discover phenomena occurring at the microscopic level in SnO{sub 2} systems. In the present paper, using the DFT + U approach as a main tool and the Vienna ab initio Simulation Package (VASP) we reproduce both intrinsic n-type as well as p-type conductivity in concordance to results observed in real samples of SnO{sub 2} material. Initially, an oxygen vacancy (1.56 mol% concentration) combined with a tin-interstitial (1.56 mol% concentration) scheme was used to achieve the n-type electrical conductivity. Later, to attain the p-type conductivity, crystal already possessing n-type conductivity, was codoped with nitrogen (1.56 mol% concentration) and aluminium (12.48 mol% concentration) impurities. Detailed explanation of structural changes endured by the geometry of the crystal as well as the changes in its electrical properties has been obtained. Our experimental data to a very good extent matches with the results found in the DFT + U modelling.

  15. Nanostructured transparent conducting oxide electrochromic device

    Energy Technology Data Exchange (ETDEWEB)

    Milliron, Delia; Tangirala, Ravisubhash; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2016-05-17

    The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

  16. Transparent and conductive paper from nanocellulose fibers

    KAUST Repository

    Hu, Liangbing

    2013-01-01

    Here we report on a novel substrate, nanopaper, made of cellulose nanofibrils, an earth abundant material. Compared with regular paper substrates, nanopaper shows superior optical properties. We have carried out the first study on the optical properties of nanopaper substrates. Since the size of the nanofibrils is much less than the wavelength of visible light, nanopaper is highly transparent with large light scattering in the forward direction. Successful depositions of transparent and conductive materials including tin-doped indium oxide, carbon nanotubes and silver nanowires have been achieved on nanopaper substrates, opening up a wide range of applications in optoelectronics such as displays, touch screens and interactive paper. We have also successfully demonstrated an organic solar cell on the novel substrate. © The Royal Society of Chemistry 2013.

  17. Enhanced thermopower and low thermal conductivity in p-type polycrystalline ZrTe5

    Science.gov (United States)

    Hooda, M. K.; Yadav, C. S.

    2017-07-01

    Thermoelectric properties of polycrystalline p-type ZrTe5 are reported in the temperature (T) range of 2-340 K. Thermoelectric power (S) is positive and reaches up to 458 μV/K at 340 K on increasing T. The value of Fermi energy 16 meV suggests a low carrier density of ≈9.5 × 1018 cm-3. A sharp anomaly in S data is observed at 38 K, which seems intrinsic to p-type ZrTe5. The thermal conductivity (κ) value is low (2 W/m K at T = 300 K) with major contribution from the lattice part. Electrical resistivity data show the metal to semiconductor transition at T ˜ 150 K and non-Arrhenius behavior in the semiconducting region. The figure of merit zT (0.026 at T = 300 K) is ˜63% higher than that of HfTe5 (0.016) and better than those of the conventional SnTe, p-type PbTe, and bipolar pristine ZrTe5 compounds.

  18. Carbon nanotube based transparent conductive thin films.

    Science.gov (United States)

    Yu, X; Rajamani, R; Stelson, K A; Cui, T

    2006-07-01

    Carbon nanotube (CNT) based optically transparent and electrically conductive thin films are fabricated on plastic substrates in this study. Single-walled carbon nanotubes (SWNTs) are chemically treated with a mixture of concentrated sulfuric acid and nitric acid before being dispersed in aqueous surfactant-contained solutions. SWNT thin films are prepared from the stable SWNT solutions using wet coating techniques. The 100 nm thick SWNT thin film exhibits a surface resistivity of 6 kohms/square nanometer with an average transmittance of 88% on the visible light range, which is three times better than the films prepared from the high purity as-received SWNTs.

  19. Flexible, transparent, and conductive defrosting glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (United States); Fang, Zhiqiang; Zhu, Hongli; Gao, Binyu [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States); Garner, Sean; Cimo, Pat [Corning Incorporated, Corning, NY 14831 (United States); Barcikowski, Zachary [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States); Mignerey, Alice [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (United States); Hu, Liangbing, E-mail: binghu@umd.edu [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States)

    2014-04-01

    Flexible and transparent electronics play a predominant role in the next-generation electrical devices. In this study, a printable aqueous graphene oxide (GO) ink that enables direct deposition of GO onto flexible glass substrates is demonstrated and its application on fabricating a transparent, conductive, and flexible glass device by solution coating process is investigated as well. A uniform GO layer is formed on the flexible glass through Meyer-rod coating followed by an annealing process to reduce GO into graphene. The obtained thermally reduced graphene oxide (RGO) flexible glass has a transmittance of over 40%, as well as a sheet resistance of ∼ 5 × 10{sup 3} Ω/sq. In addition, a defrosting window fabricated from the RGO coated flexible glass is demonstrated, which shows excellent defrosting performance. - Highlights: • A facile synthesis of aqueous graphene oxide (GO) suspension is demonstrated. • Scalable printing of GO suspension is achieved with Meyer-rod coating technique. • A flexible glass is utilized as a substrate for the deposition of GO suspension. • Reduced graphene oxide films show improved conductivity with great transmittance. • Its potential to be applied in window defrosting is demonstrated and illustrated.

  20. ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide

    Energy Technology Data Exchange (ETDEWEB)

    Godlewski, M., E-mail: godlew@ifpan.edu.p [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Guziewicz, E.; Luka, G.; Krajewski, T. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Lukasiewicz, M.; Wachnicki, L.; Wachnicka, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Kopalko, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Sarem, A.; Dalati, B. [Department of Physics, Faculty of Science, Tishreen University, Latakia (Syrian Arab Republic)

    2009-12-15

    We demonstrate possibility of a control (by selection of zinc precursors and variation of a growth temperature) of electrical properties of ZnO films grown by Atomic Layer Deposition (ALD). ZnO films grown by ALD are used in test photovoltaic devices (solar cells) as transparent conductive oxides for upper, transparent layer in inorganic and organic solar cells, and as n-type partners of p-type CdTe.

  1. ZnO based transparent conductive oxide films with controlled type of conduction

    Energy Technology Data Exchange (ETDEWEB)

    Zaharescu, M., E-mail: mzaharescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Mihaiu, S., E-mail: smihaiu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Toader, A. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Atkinson, I., E-mail: irinaatkinson@yahoo.com [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Calderon-Moreno, J.; Anastasescu, M.; Nicolescu, M.; Duta, M.; Gartner, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Vojisavljevic, K.; Malic, B. [Institute Jožef Stefan, Ljubljana (Slovenia); Ivanov, V.A.; Zaretskaya, E.P. [State Scientific and Production Association “Scientific-Practical Materials Research Center of the National Academy of Science Belarus, P. Brovska str.19, 220072, Minsk (Belarus)

    2014-11-28

    The transparent conductive oxide films with controlled type of conduction are of great importance and their preparation is intensively studied. In our work, the preparation of such films based on doped ZnO was realized in order to achieve controlled type of conduction and high concentration of the charge carriers. Sol–gel method was used for films preparation and several dopants were tested (Sn, Li, Ni). Multilayer deposition was performed on several substrates: SiO{sub 2}/Si wafers, silica-soda-lime and/or silica glasses. The structural and morphological characterization of the obtained films were done by scanning electron microscopy, X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy and atomic force microscopy respectively, while spectroscopic ellipsometry and transmittance measurements were done for determination of optical properties. The selected samples with the best structural, morphological and optical properties were subjected to electrical measurement (Hall and Seebeck effect). In all studied cases, samples with good adherence and homogeneous morphology as well as monophasic wurtzite type structure were obtained. The optical constants (refractive index and extinction coefficient) were calculated from spectroscopic ellipsometry data using Cauchy model. Films with n- or p-type conduction were obtained depending on the composition, number of deposition and thermal treatment temperature. - Highlights: • Transparent conductive ZnO based thin films were prepared by the sol–gel method. • Controlled type of conduction is obtained in (Sn, Li) doped and Li-Ni co-doped ZnO films. • Hall and Seebeck measurements proved the p-type conductivity for Li-Ni co-doped ZnO films. • The p-type conductivity was maintained even after 4-months of storage. • Influence of dopant- and substrate-type on the ZnO films properties was established.

  2. Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Trilok Kumar [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Kumar, Vinod, E-mail: vinod.phy@gmail.com [Department of Physics, University of the Free State, Bloemfontein (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein (South Africa); Purohit, L.P., E-mail: proflppurohitphys@gmail.com [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India)

    2016-01-01

    Nitrogen doped ZnO (NZO) thin films were synthesized on glass substrates by the sol–gel and spin coating method. Zinc acetate dihydrates and ammonium acetate were used as precursors for zinc and nitrogen, respectively. X-ray diffraction study showed that the thin films have a hexagonal wurtzite structure corresponding (002) peak for undoped and doped ZnO thin films. The transmittance of the films was above 80% and the band gap of the film varies from 3.21±0.03 eV for undoped and doped ZnO. The minimum resistivity of NZO thin films was obtained as 0.473 Ω cm for the 4 at% of nitrogen (N) doping with a mobility of 1.995 cm{sup 2}/V s. The NZO thin films showed p-type conductivity at 2 and 3 at% of N doping. The AC conductivity measurements that were carried out in the frequency range 10 kHz to 0.1 MHz showed localized conduction in the NZO thin films. These highly transparent ZnO films can be used as a possible window layer in solar cells.

  3. Enhanced photovoltaic effect of ruthenium complex-modified graphene oxide with P-type conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: jj_zw_js@sina.com.cn; Bai, Huicong; Zhang, Yu; Sun, Ying; Lin, Shen; Liu, Jian; Yang, Qi; Song, Xi-Ming, E-mail: songlab@lnu.edu.cn

    2014-10-15

    A graphene oxide nanocomposite with bis(1,10-phenanthroline)(N-(2-aminoethyl)-4-(4-methyl-2,2-bipyridine-4-yl) formamide) ruthenium (Ru(phen){sub 2}(bpy-NH{sub 2})(PF{sub 6}){sub 2}), a ruthenium complex, was synthesized by amidation reaction between amino group of the ruthenium complex and carboxyl group of GO. The as-prepared Ru(II)–GO composite was characterized by infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet–visible (UV–Vis) absorption spectra, fluorescence spectra, surface photovoltage (SPV) spectrum and transient photovoltage (TPV) technology. This nanocomposite showed a typical p-type character and an enhanced photovoltaic effect at long timescale of about 3 × 10{sup −3} s compared to GO alone. A reversible rise/decay of the photocurrent in response to the on/off illumination step was also observed in a photoelectrochemical cell of the Ru(II)–GO composite. The photocurrent response of the Ru(II)–GO film was remarkably higher than that of GO film. Therefore, this Ru(II)–GO composite is believed to be a promising p-type photoelectric conversion material for further photovoltaic applications. - Highlights: • A new dye-sensitized graphene oxide nanocomposite was reported. • A photo-induced charge transfer process in this nanocomposite was confirmed. • This composite showed a typical p-type conductivity. • This composite showed an enhanced photovoltaic effect at a long timescale.

  4. Atomic layer deposition of undoped TiO2 exhibiting p-type conductivity.

    Science.gov (United States)

    Iancu, Andrei T; Logar, Manca; Park, Joonsuk; Prinz, Fritz B

    2015-03-11

    With prominent photocatalytic applications and widespread use in semiconductor devices, TiO2 is one of the most popular metal oxides. However, despite its popularity, it has yet to achieve its full potential due to a lack of effective methods for achieving p-type conductivity. Here, we show that undoped p-type TiO2 films can be fabricated by atomic layer deposition (ALD) and that their electrical properties can be controlled across a wide range using proper postprocessing anneals in various ambient environments. Hole mobilities larger than 400 cm(2)/(V·s) are accessible superseding the use of extrinsic doping, which generally produces orders of magnitude smaller values. Through a combination of analyses and experiments, we provide evidence that this behavior is primarily due to an excess of oxygen in the films. This discovery enables entirely new categories of TiO2 devices and applications, and unlocks the potential to improve existing ones. TiO2 homojunction diodes fabricated completely by ALD are developed as a demonstration of the utility of these techniques and shown to exhibit useful rectifying characteristics even with minimal processing refinement.

  5. Transparent Conductive Nanofiber Paper for Foldable Solar Cells.

    Science.gov (United States)

    Nogi, Masaya; Karakawa, Makoto; Komoda, Natsuki; Yagyu, Hitomi; Nge, Thi Thi

    2015-11-26

    Optically transparent nanofiber paper containing silver nanowires showed high electrical conductivity and maintained the high transparency, and low weight of the original transparent nanofiber paper. We demonstrated some procedures of optically transparent and electrically conductive cellulose nanofiber paper for lightweight and portable electronic devices. The nanofiber paper enhanced high conductivity without any post treatments such as heating or mechanical pressing, when cellulose nanofiber dispersions were dropped on a silver nanowire thin layer. The transparent conductive nanofiber paper showed high electrical durability in repeated folding tests, due to dual advantages of the hydrophilic affinity between cellulose and silver nanowires, and the entanglement between cellulose nanofibers and silver nanowires. Their optical transparency and electrical conductivity were as high as those of ITO glass. Therefore, using this conductive transparent paper, organic solar cells were produced that achieved a power conversion of 3.2%, which was as high as that of ITO-based solar cells.

  6. Interstitial oxygen as a source of p-type conductivity in hexagonal manganites

    Science.gov (United States)

    Skjærvø, Sandra H.; Wefring, Espen T.; Nesdal, Silje K.; Gaukås, Nikolai H.; Olsen, Gerhard H.; Glaum, Julia; Tybell, Thomas; Selbach, Sverre M.

    2016-12-01

    Hexagonal manganites, h-RMnO3 (R=Sc, Y, Ho-Lu), have been intensively studied for their multiferroic properties, magnetoelectric coupling, topological defects and electrically conducting domain walls. Although point defects strongly affect the conductivity of transition metal oxides, the defect chemistry of h-RMnO3 has received little attention. We use a combination of experiments and first principles electronic structure calculations to elucidate the effect of interstitial oxygen anions, Oi, on the electrical and structural properties of h-YMnO3. Enthalpy stabilized interstitial oxygen anions are shown to be the main source of p-type electronic conductivity, without reducing the spontaneous ferroelectric polarization. A low energy barrier interstitialcy mechanism is inferred from Density Functional Theory calculations to be the microscopic migration path of Oi. Since the Oi content governs the concentration of charge carrier holes, controlling the thermal and atmospheric history provides a simple and fully reversible way of tuning the electrical properties of h-RMnO3.

  7. Influence of the ``second gap'' on the optical absorption of transparent conducting oxides

    Science.gov (United States)

    Ha, Viet-Anh; Waroquiers, David; Rignanese, Gian-Marco; Hautier, Geoffroy

    Transparent conducting oxides (TCOs) are critical to many technologies (e.g., thin-film solar cells, flat-panel displays or organic light-emitting diodes). TCOs are heavily doped (n or p-type) oxides that satisfy many design criteria such as high transparency to visible light (i.e., a band gap > 3 eV), high concentration and mobility of carriers (leading to high conductivity), ... In such (highly doped) systems, optical transitions from the conduction band minimum to higher energy bands in n-type or from lower energy bands to the valence band maximum in p-type are possible and can degrade transparency. In fact, it has been claimed that a high energy (> 3eV) for any of these transitions made possible by doping, commonly referred as a high ``second gap'', is a necessary design criterion for high performance TCOs. Here, we study the influence of this second gap on the transparency of doped TCOs by using ab initio calculations within the random phase approximation (RPA) for several well-known p-type and n-type TCOs. Our work highlights how the second gap affects the transparency of doped TCOs, shining light on more accurate design criteria for high performance TCOs.

  8. Method of forming macro-structured high surface area transparent conductive oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Forman, Arnold J.; Chen, Zhebo; Jaramillo, Thomas F.

    2016-01-05

    A method of forming a high surface area transparent conducting electrode is provided that includes depositing a transparent conducting thin film on a conductive substrate, where the transparent conducting thin film includes transparent conductive particles and a solution-based transparent conducting adhesive layer which serves to coat and bind together the transparent conducting particles, and heat treating the transparent conducting adhesion layer on the conductive substrate, where an increased surface area transparent conducting electrode is formed.

  9. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  10. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  11. Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays

    Science.gov (United States)

    Li, Mary; Sultana, Mahmooda; Hess, Larry

    2012-01-01

    Graphene is a single atomic layer of graphite. It is optically transparent and has high electron mobility, and thus has great potential to make transparent conductive electrodes. This invention contributes towards the development of graphene transparent conductive electrodes for next-generation microshutter arrays. The original design for the electrodes of the next generation of microshutters uses indium-tin-oxide (ITO) as the electrode material. ITO is widely used in NASA flight missions. The optical transparency of ITO is limited, and the material is brittle. Also, ITO has been getting more expensive in recent years. The objective of the invention is to develop a graphene transparent conductive electrode that will replace ITO. An exfoliation procedure was developed to make graphene out of graphite crystals. In addition, large areas of single-layer graphene were produced using low-pressure chemical vapor deposition (LPCVD) with high optical transparency. A special graphene transport procedure was developed for transferring graphene from copper substrates to arbitrary substrates. The concept is to grow large-size graphene sheets using the LPCVD system through chemical reaction, transfer the graphene film to a substrate, dope graphene to reduce the sheet resistance, and pattern the film to the dimension of the electrodes in the microshutter array. Graphene transparent conductive electrodes are expected to have a transparency of 97.7%. This covers the electromagnetic spectrum from UV to IR. In comparison, ITO electrodes currently used in microshutter arrays have 85% transparency in mid-IR, and suffer from dramatic transparency drop at a wavelength of near-IR or shorter. Thus, graphene also has potential application as transparent conductive electrodes for Schottky photodiodes in the UV region.

  12. Sensitization of p-type NiO using n-type conducting polymers

    NARCIS (Netherlands)

    Chavhan, S.D.; Abellon, R.D.; Breemen, A.J.J.M. van; Koetse, M.M.; Sweelssen, J.; Savenije, T.J.

    2010-01-01

    We report on the sensitization of a p-type inorganic semiconductor, NiO, by n-type conjugated polymers. NiO thin films were deposited using RF sputtering in pure Ar (NiO A) or in Ar + O2 (90% + 10%) (NiO B). XPS and Kelvin probe measurements indicate the incorporation of oxygen in NiO B

  13. Sensitization of p-type NiO using n-type conducting polymers

    NARCIS (Netherlands)

    Chavhan, S.D.; Abellon, R.D.; Breemen, A.J.J.M. van; Koetse, M.M.; Sweelssen, J.; Savenije, T.J.

    2010-01-01

    We report on the sensitization of a p-type inorganic semiconductor, NiO, by n-type conjugated polymers. NiO thin films were deposited using RF sputtering in pure Ar (NiO A) or in Ar + O2 (90% + 10%) (NiO B). XPS and Kelvin probe measurements indicate the incorporation of oxygen in NiO B l

  14. Sensitization of p-type NiO using n-type conducting polymers

    NARCIS (Netherlands)

    Chavhan, S.D.; Abellon, R.D.; Breemen, A.J.J.M. van; Koetse, M.M.; Sweelssen, J.; Savenije, T.J.

    2010-01-01

    We report on the sensitization of a p-type inorganic semiconductor, NiO, by n-type conjugated polymers. NiO thin films were deposited using RF sputtering in pure Ar (NiO A) or in Ar + O2 (90% + 10%) (NiO B). XPS and Kelvin probe measurements indicate the incorporation of oxygen in NiO B l

  15. New transparent conductive metal based on polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz Hedayati, Mehdi; Jamali, Mohammad [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Strunkus, Thomas; Zaporochentko, Vladimir; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Currently great efforts are made to develop new kind of transparent conductors (TCs) to replace ITO. In this regard different materials and composites have been proposed and studied including conductive polymers, carbon nanotubes (CNTs), metal grids, and random networks of metallic nanowires. But so far none of them could be used as a replacing material, since either they are either fragile and brittle or their electrical conductivity is below the typical ITO. Thin metallic films due to their high electrical conductivity could be one of the best replacing materials for ITO, however their poor transparency makes their application as TCs limited. Here we design and fabricate a new polymeric composite coating which enhances the transparency of the thin metal film up to 100% relative to the initial value while having a high electrical conductivity of typical metals. Therefore our proposed device has a great potential to be used as new transparent conductor.

  16. Versatile and Tunable Transparent Conducting Electrodes Based on Doped Graphene

    KAUST Repository

    Mansour, Ahmed E.

    2016-11-25

    The continued growth of the optoelectronics industry and the emergence of wearable and flexible electronics will continue to place an ever increasing pressure on replacing ITO, the most widely used transparent conducting electrode (TCE). Among the various candidates, graphene shows the highest optical transmittance in addition to promising electrical transport properties. The currently available large-scale synthesis routes of graphene result in polycrystalline samples rife with grain boundaries and other defects which limit its transport properties. Chemical doping of graphene is a viable route towards increasing its conductivity and tuning its work function. However, dopants are typically present at the surface of the graphene sheet, making them highly susceptible to degradation in environmental conditions. Few-layers graphene (FLG) is a more resilient form of graphene exhibiting higher conductivity and performance stability under stretching and bending as contrasted to single-layer graphene. In addition FLG presents the advantage of being amenable bulk doping by intercalation. Herein, we explore non-covalent doping routes of CVD FLG, such as surface doping, intercalation and combination thereof, through in-depth and systematic characterization of the electrical transport properties and energy levels shifts. The intercalation of FLG with Br2 and FeCl3 is demonstrated, showing the highest improvements of the figure of merit of TCEs of any doping scheme, which results from up to a five-fold increase in conductivity while maintaining the transmittance within 3% of that for the pristine value. Importantly the intercalation yields TCEs that are air-stable, due to encapsulation of the intercalant in the bulk of FLG. Surface doping with novel solution-processed metal-organic molecular species (n- and p-type) is demonstrated with an unprecedented range of work function modulation, resulting from electron transfer and the formation of molecular surface dipoles. However

  17. A highly stretchable, transparent, and conductive polymer.

    Science.gov (United States)

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F; Murmann, Boris; Bao, Zhenan

    2017-03-01

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain-among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire- or carbon nanotube-based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.

  18. Interstitial oxygen as a source of p-type conductivity in hexagonal manganites

    National Research Council Canada - National Science Library

    Sandra H Skjærvø; Espen T Wefring; Silje K Nesdal; Nikolai H Gaukås; Gerhard H Olsen; Julia Glaum; Thomas Tybell; Sverre M Selbach

    2016-01-01

      Hexagonal manganites, h-RMnO3 (R=Sc, Y, Ho-Lu), have been intensively studied for their multiferroic properties, magnetoelectric coupling, topological defects and electrically conducting domain walls...

  19. Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode.

    Science.gov (United States)

    Sun, Kuan; Li, Pengcheng; Xia, Yijie; Chang, Jingjing; Ouyang, Jianyong

    2015-07-22

    Perovskite solar cells (PSCs) have been attracting considerable attention because of their low fabrication cost and impressive energy conversion efficiency. Most PSCs are built on transparent conductive oxides (TCOs) such as fluorine-doped tin oxide (FTO) or indium tin oxide (ITO), which are costly and rigid. Therefore, it is significant to explore alternative materials as the transparent electrode of PSCs. In this study, highly conductive and highly transparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate ( PSS) films were investigated as the transparent electrode of both rigid and flexible PSCs. The conductivity of PSS films on rigid glass or flexible poly(ethylene terephthalate) (PET) substrate is significantly enhanced through a treatment with methanesulfonic acid (MSA). The optimal power conversion efficiency (PCE) is close to 11% for the rigid PSCs with an MSA-treated PSS film as the transparent electrode on glass, and it is more than 8% for the flexible PSCs with a MSA-treated PSS film as the transparent electrode on PET. The flexible PSCs exhibit excellent mechanical flexibility in the bending test.

  20. Electrical conduction and dielectric relaxation in p-type PVA/CuI polymer composite

    Directory of Open Access Journals (Sweden)

    M.H. Makled

    2013-11-01

    Full Text Available PVA/CuI polymer composite samples have been prepared and subjected to characterizations using FT-IR spectroscopy, DSC analysis, ac spectroscopy and dc conduction. The FT-IR spectral analysis shows remarkable variation of the absorption peak positions whereas DSC illustrates a little decrease of both glass transition temperature, Tg, and crystallization fraction, χ, with increasing CuI concentration. An increase of dc conductivity for PVA/CuI nano composite by increasing CuI concentration is recoded up to 15 wt%, besides it obeys Arhenuis plot with an activation energy in the range 0.54–1.32 eV. The frequency dependence of ac conductivity showed power law with an exponent 0.33 < s < 0.69 which predicts hopping conduction mechanism. The frequency dependence of both dielectric permittivity and dielectric loss obeys Debye dispersion relations in wide range of temperatures and frequency. Significant values of dipole relaxation time obtained which are thermally activated with activation energies in the range 0.33–0.87 eV. A significant value of hopping distance in the range 3.4–1.2 nm is estimated in agreement with the value of Bohr radius of the exciton.

  1. Electrical conduction and dielectric relaxation in p-type PVA/CuI polymer composite.

    Science.gov (United States)

    Makled, M H; Sheha, E; Shanap, T S; El-Mansy, M K

    2013-11-01

    PVA/CuI polymer composite samples have been prepared and subjected to characterizations using FT-IR spectroscopy, DSC analysis, ac spectroscopy and dc conduction. The FT-IR spectral analysis shows remarkable variation of the absorption peak positions whereas DSC illustrates a little decrease of both glass transition temperature, Tg , and crystallization fraction, χ, with increasing CuI concentration. An increase of dc conductivity for PVA/CuI nano composite by increasing CuI concentration is recoded up to 15 wt%, besides it obeys Arhenuis plot with an activation energy in the range 0.54-1.32 eV. The frequency dependence of ac conductivity showed power law with an exponent 0.33 < s < 0.69 which predicts hopping conduction mechanism. The frequency dependence of both dielectric permittivity and dielectric loss obeys Debye dispersion relations in wide range of temperatures and frequency. Significant values of dipole relaxation time obtained which are thermally activated with activation energies in the range 0.33-0.87 eV. A significant value of hopping distance in the range 3.4-1.2 nm is estimated in agreement with the value of Bohr radius of the exciton.

  2. Transparent conductive grids via direct writing of silver nanoparticle inks

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Bok Y; Lorang, David J; Lewis, Jennifer A

    2011-01-01

    Transparent conductive grids are patterned by direct writing of concentrated silver nanoparticle inks. This maskless, etch-free patterning approach is used to produce well-defined, two-dimensional periodic arrays composed of conductive features with center-to-center separation distances of up to 400 µm and an optical transmittance as high as 94.1%.

  3. Nanostructured Transparent Conductive Oxide Films for Plasmonic Applications

    DEFF Research Database (Denmark)

    Kim, Jongbum; Zhao, Yang; Naik, Gururaj V.;

    2013-01-01

    Transparent conductive oxides (TCOs) as substitutes to metals could offer many advantages for low-loss plasmonic and metamaterial (MM) applications in the near infrared (NIR) regime. By employing a lift-off process, we fabricated 2D-periodic arrays of TCO nanodisks and characterized the material'...

  4. Transparent conducting oxides on polymeric substrates by pulsed laser deposition

    NARCIS (Netherlands)

    Dekkers, Jan Matthijn

    2007-01-01

    This thesis describes the research on thin films of transparent conducting oxides (TCOs) on polymeric substrates manufactured by pulsed laser deposition (PLD). TCOs are an indispensable part in optoelectronic applications such as displays, solar cells, light-emitting diodes, etc. At present, in many

  5. Efficient bifacial perovskite solar cell based on a highly transparent poly(3,4-ethylenedioxythiophene) as the p-type hole-transporting material

    Science.gov (United States)

    Xiao, Yaoming; Han, Gaoyi; Wu, Jihuai; Lin, Jeng-Yu

    2016-02-01

    A novel bifacial perovskite solar cell (PSC) is devised and prepared by using a highly transparent poly(3,4-ethylenedioxythiophene) (PEDOT) electrode. The PEDOT is used as the p-type hole-transporting material (HTM) due to the well matched band positions for the charge separation and transport. Moreover, the PEDOT layer can play a role of electron blocking layer at the CH3NH3PbI3/PEDOT interface to reduce the electron recombination rate because of its LUMO level is higher than that of the perovskite sensitizer. As a result, the bifacial PSC based on the PEDOT HTM yields front and rear efficiencies of 12.33% and 11.78% respectively, which are higher than those of the PSC without the PEDOT HTM (8.67% and 8.27% of the front and rear efficiencies). And the front efficiency is only decreased by 4.46% to the rear efficiency. These promising results highlight the potential application of the PEDOT in the cost-effective and transparent PSC, which could be used in the bifacial solar cell and tandem solar cell.

  6. High-Work-Function Transparent Conductive Oxides with Multilayer Films

    Science.gov (United States)

    Song, Chunyan; Chen, Hong; Fan, Yi; Luo, Jinsong; Guo, Xiaoyang; Liu, Xingyuan

    2012-04-01

    Transparent conductive oxide (TCO) films using WO3/Ag/WO3 (WAW) were fabricated under room temperature conditions. WAW has a low sheet resistance of 12 Ω/sq and a work function of 6.334 eV. This is one of the TCOs with the highest work function. These properties make it useful for application in electroluminescent devices and solar cells. Both theoretical calculation and experimental results show that the two WO3 layers strongly affect transparency, while the Ag layer determines transmittance and electrical performances. These rules can be applied in all dielectric/metal/dielectric structures.

  7. High conductivity transparent carbon nanotube films deposited from superacid

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, David S; Lee, Roland; Hu Liangbing [Unidym Incorporated, 1244 Reamwood Drive, Sunnyvale, CA 94089 (United States); Heintz, Amy M; Moore, Bryon; Cucksey, Chad; Risser, Steven, E-mail: dhecht@gmail.com [Battelle, 505 King Avenue, Columbus, OH 43201 (United States)

    2011-02-18

    Carbon nanotubes (CNTs) were deposited from a chlorosulfonic superacid solution onto PET substrates by a filtration/transfer method. The sheet resistance and transmission (at 550 nm) of the films were 60 {Omega}/sq and 90.9% respectively, which corresponds to a DC conductivity of 12 825 S cm{sup -1} and a DC/optical conductivity ratio of 64.1. This is the highest DC conductivity reported for CNT thin films to date, and attributed to both the high quality of the CNT material and the exfoliation/doping by the superacid. This work demonstrates that CNT transparent films have not reached the conductivity limit; continued improvements will enable these films to be used as the transparent electrode for applications in solid state lighting, LCD displays, touch panels, and photovoltaics.

  8. High conductivity transparent carbon nanotube films deposited from superacid.

    Science.gov (United States)

    Hecht, David S; Heintz, Amy M; Lee, Roland; Hu, Liangbing; Moore, Bryon; Cucksey, Chad; Risser, Steven

    2011-02-18

    Carbon nanotubes (CNTs) were deposited from a chlorosulfonic superacid solution onto PET substrates by a filtration/transfer method. The sheet resistance and transmission (at 550 nm) of the films were 60 Ω/sq and 90.9% respectively, which corresponds to a DC conductivity of 12,825 S cm(-1) and a DC/optical conductivity ratio of 64.1. This is the highest DC conductivity reported for CNT thin films to date, and attributed to both the high quality of the CNT material and the exfoliation/doping by the superacid. This work demonstrates that CNT transparent films have not reached the conductivity limit; continued improvements will enable these films to be used as the transparent electrode for applications in solid state lighting, LCD displays, touch panels, and photovoltaics.

  9. Transparent conducting oxide induced by liquid electrolyte gating

    Science.gov (United States)

    ViolBarbosa, Carlos; Karel, Julie; Kiss, Janos; Gordan, Ovidiu-dorin; Altendorf, Simone G.; Utsumi, Yuki; Samant, Mahesh G.; Wu, Yu-Han; Tsuei, Ku-Ding; Felser, Claudia; Parkin, Stuart S. P.

    2016-10-01

    Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3. Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ˜1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.

  10. Transparent conducting oxide top contacts for organic electronics

    KAUST Repository

    Franklin, Joseph B.

    2014-01-01

    A versatile method for the deposition of transparent conducting oxide (TCO) layers directly onto conjugated polymer thin film substrates is presented. Using pulsed laser deposition (PLD) we identify a narrow window of growth conditions that permit the deposition of highly transparent, low sheet resistance aluminium-doped zinc oxide (AZO) without degradation of the polymer film. Deposition on conjugated polymers mandates the use of low growth temperatures (<200°C), here we deposit AZO onto poly-3-hexylthiophene (P3HT) thin films at 150°C, and investigate the microstructural and electrical properties of the AZO as the oxygen pressure in the PLD chamber is varied (5-75 mTorr). The low oxygen pressure conditions previously optimized for AZO deposition on rigid substrates are shown to be unsuitable, resulting in catastrophic damage of the polymer films. By increasing the oxygen pressure, thus reducing the energy of the ablated species, we identify conditions that allow direct deposition of continuous, transparent AZO films without P3HT degradation. We find that uptake of oxygen into the AZO films reduces the intrinsic charge carriers and AZO films with a measured sheet resistance of approximately 500 Ω □-1 can be prepared. To significantly reduce this value we identify a novel process in which AZO is deposited over a range of oxygen pressures-enabling the deposition of highly transparent AZO with sheet resistances below 50 Ω □-1 directly onto P3HT. We propose these low resistivity films are widely applicable as transparent top-contacts in a range of optoelectronic devices and highlight this by demonstrating the operation of a semi-transparent photovoltaic device. © 2014 The Royal Society of Chemistry. 2014.

  11. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    Science.gov (United States)

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

  12. Combinatorial Optimization of Transparent Conducting Oxides (TCOS) for PV

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, J. D.; Taylor, M. P.; van Hest, M.F.A.M.; Teplin, C. W.; Alleman, J. L.; Dabney, M. S.; Gedvilas, L. M.; Keyes, B. M.; To, B.; Readey, D. W.; Delahoy, A. E.; Guo, S.; Ginley, D. S.

    2005-02-01

    Transparent conducting oxides (TCOs) can serve a variety of important functions in thin-film photovoltaics such as transparent electrical contacts, antireflection coatings, and chemical barriers. Two areas of particular interest are TCOs that can be deposited at low temperatures and TCOs with high carrier mobilities. We have employed combinatorial high-throughput approaches to investigate both these areas. Conductivities of s = 2500 W-1-cm-1 have been obtained for In-Zn-O (IZO) films deposited at 100 C and s > 5000 W-1-cm-1 for In-Ti-O (ITiO) and In-Mo-O (IMO) films deposited at 550 C. The highest mobility obtained was 83 cm2/V-s for ITiO deposited at 550 C.

  13. Highly Transparent Conducting Nanopaper for Solid State Foldable Electrochromic Devices.

    Science.gov (United States)

    Kang, Wenbin; Lin, Meng-Fang; Chen, Jingwei; Lee, Pooi See

    2016-12-01

    It is of great challenge to develop a transparent solid state electrochromic device which is foldable at the device level. Such devices require delicate designs of every component to meet the stringent requirements for transparency, foldability, and deformation stability. Meanwhile, nanocellulose, a ubiquitous natural resource, is attracting escalating attention recently for foldable electronics due to its extreme flexibility, excellent mechanical strength, and outstanding transparency. In this article, transparent conductive nanopaper delivering the state-of-the-art electro-optical performance is achieved with a versatile nanopaper transfer method that facilitates junction fusing for high-quality electrodes. The highly compliant nanopaper electrode with excellent electrode quality, foldability, and mechanical robustness suits well for the solid state electrochromic device that maintains good performance through repeated folding, which is impossible for conventional flexible electrodes. A concept of camouflage wearables is demonstrated using gloves with embedded electrochromics. The discussed strategies here for foldable electrochromics serve as a platform technology for futuristic deformable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Method for producing highly conformal transparent conducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Mane, Anil U.

    2016-07-26

    A method for forming a transparent conducting oxide product layer. The method includes use of precursors, such as tetrakis-(dimethylamino) tin and trimethyl indium, and selected use of dopants, such as SnO and ZnO for obtaining desired optical, electrical and structural properties for a highly conformal layer coating on a substrate. Ozone was also input as a reactive gas which enabled rapid production of the desired product layer.

  15. Accumulation-layer surface plasmons in transparent conductive oxides.

    Science.gov (United States)

    Fardad, Shima; Alexander Ramos, E; Salandrino, Alessandro

    2017-05-15

    A rigorous analytical study of the eigenmodes supported by a charge accumulation layer within a transparent conductive oxide (TCO) is presented. The new class of surface plasmons termed accumulation-layer surface plasmons (ASPs) is introduced. Near resonance ASPs are tightly bound and display a vast effective index tunability that could be of great practical interest. The suppression of ASPs in the presence of epsilon-near zero regions is discussed.

  16. Transparent conducting oxides: a δ-doped superlattice approach.

    Science.gov (United States)

    Cooper, Valentino R; Seo, Sung S Ambrose; Lee, Suyoun; Kim, Jun Sung; Choi, Woo Seok; Okamoto, Satoshi; Lee, Ho Nyung

    2014-08-11

    Metallic states appearing at interfaces between dissimilar insulating oxides exhibit intriguing phenomena such as superconductivity and magnetism. Despite tremendous progress in understanding their origins, very little is known about how to control the conduction pathways and the distribution of charge carriers. Using optical spectroscopic measurements and density-functional theory (DFT) simulations, we examine the effect of SrTiO3 (STO) spacer layer thickness on the optical transparency and carrier distribution in La δ-doped STO superlattices. We experimentally observe that these metallic superlattices remain highly transparent to visible light; a direct consequence of the appropriately large gap between the O 2p and Ti 3d states. In superlattices with relatively thin STO layers, we predict that three-dimensional conduction would occur due to appreciable overlap of quantum mechanical wavefunctions between neighboring δ-doped layers. These results highlight the potential for using oxide heterostructures in optoelectronic devices by providing a unique route for creating novel transparent conducting oxides.

  17. Novel transparent conductor with enhanced conductivity: hybrid of silver nanowires and dual-doped graphene

    Science.gov (United States)

    Sohn, Hiesang; Woo, Yun Sung; Shin, Weonho; Yun, Dong-Jin; Lee, Taek; Kim, Felix Sunjoo; Hwang, Jinyoung

    2017-10-01

    We present hybrid transparent conducting films based on silver nanowires (Ag NWs) and doped graphene through novel dual co-doping method by applying various dopants (HNO3 or Au for p-doping and N2H4 for n-doping) on top and bottom sides of graphene. We systematically investigated the effect of dual-doping on their surface as well as electrical and optical properties of graphene and Ag NW/graphene hybrid films through the combination study with various dopant types (p/p, p/n, n/p, and n/n). We found that the p/p-type dual-doped (p-type dopant: HNO3) graphene and its hybrid formation with Ag NWs appeared to be the most effective in enhancing the electrical properties of conductor (doped graphene with ΔR/R0 = 84% and Ag NW/doped graphene hybrid with ΔR/R0 = 62%), demonstrating doped monolayer graphene with high optical transmittance (TT = 97.4%), and sheet resistance (Rs = 188 Ω/sq.). We also note that dual-doping improved such electrical properties without any significant debilitation of optical transparency of conductors (doped graphene with ΔTT = 0.1% and Ag NW/doped graphene hybrid with ΔTT = 0.4%). In addition, the enhanced conductivity of p-type dual-doped graphene allows a hybrid system to form co-percolating network in which Ag NWs can form a secondary conductive path at grain boundaries of polycrystalline graphene.

  18. Electrically conductive, optically transparent polymer/carbon nanotube composites

    Science.gov (United States)

    Connell, John W. (Inventor); Smith, Jr., Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  19. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film

    Science.gov (United States)

    Ali, N. I. Mohd; Misran, N.; Mansor, M. F.; Jamlos, M. F.

    2017-05-01

    This paper presents the analysis of 28GHz solar patch antenna using the variations of transparent conductive oxides (TCO) thin film as the radiating patch. Solar antenna is basically combining the function of antenna and solar cell into one device and helps to maximize the usage of surface area. The main problem of the existing solar antenna is the radiating patch which made of nontransparent material, such as copper, shadowing the solar cell and degrades the total solar efficiency. Hence, by using the transparent conductive oxides (TCO) thin film as the radiating patch, this problem can be tackled. The TCO thin film used is varied to ITO, FTO, AgHT-4, and AgHT-8 along with glass as substrate. The simulation of the antenna executed by using Computer Simulation Technology (CST) Microwave Studio software demonstrated at 28 GHz operating frequency for 5G band applications. The performance of the transparent antennas is compared with each other and also with the nontransparent patch antenna that using Rogers RT5880 as substrate, operating at the same resonance frequency and then, the material that gives the best performance is identified.

  20. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    Science.gov (United States)

    Myzaferi, A.; Reading, A. H.; Cohen, D. A.; Farrell, R. M.; Nakamura, S.; Speck, J. S.; DenBaars, S. P.

    2016-08-01

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time and temperature of the p-type layers. These design limitations have individually been addressed by using limited area epitaxy (LAE) to block TD glide in n-type AlGaN bottom cladding layers and by using transparent conducting oxide (TCO) top cladding layers to reduce the growth time and temperature of the p-type layers. In addition, a TCO-based top cladding should have significantly lower resistivity than a conventional p-type (Al)GaN top cladding. In this work, LAE and indium-tin-oxide cladding layers are used simultaneously in a ( 20 2 ¯ 1 ) III-nitride laser structure. Lasing was achieved at 446 nm with a threshold current density of 8.5 kA/cm2 and a threshold voltage of 8.4 V.

  1. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    KAUST Repository

    Myzaferi, A.

    2016-08-11

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time and temperature of the p-type layers. These design limitations have individually been addressed by using limited area epitaxy (LAE) to block TD glide in n-type AlGaN bottom cladding layers and by using transparent conducting oxide (TCO) top cladding layers to reduce the growth time and temperature of the p-type layers. In addition, a TCO-based top cladding should have significantly lower resistivity than a conventional p-type (Al)GaN top cladding. In this work, LAE and indium-tin-oxide cladding layers are used simultaneously in a (202⎯⎯1) III-nitride laser structure. Lasing was achieved at 446 nm with a threshold current density of 8.5 kA/cm2 and a threshold voltage of 8.4 V.

  2. Room temperature p-type conductivity and coexistence of ferroelectric order in ferromagnetic Li doped ZnO nanoparticles

    KAUST Repository

    Awan, Saif Ullah

    2014-10-28

    Memory and switching devices acquired new materials which exhibit ferroelectric and ferromagnetic order simultaneously. We reported multiferroic behavior in Zn1-yLiyO(0.00≤y≤0.10) nanoparticles. The analysis of transmission electron micrographs confirmed the hexagonal morphology and wurtzite crystalline structure. We investigated p-type conductivity in doped samples and measured hole carriers in range 2.4×1017/cc to 7.3×1017/cc for different Li contents. We found that hole carriers are responsible for long range order ferromagnetic coupling in Li doped samples. Room temperature ferroelectric hysteresis loops were observed in 8% and 10% Li doped samples. We demonstrated ferroelectric coercivity (remnant polarization) 2.5kV/cm (0.11 μC/cm2) and 2.8kV/cm (0.15 μC/cm2) for y=0.08 and y=0.10 samples. We propose that the mechanism of Li induced ferroelectricity in ZnO is due to indirect dipole interaction via hole carriers. We investigated that if the sample has hole carriers ≥5.3×1017/cc, they can mediate the ferroelectricity. Ferroelectric and ferromagnetic measurements showed that higher electric polarization and larger magnetic moment is attained when the hole concentration is larger and vice versa. Our results confirmed the hole dependent coexistence of ferromagnetic and ferroelectric behavior at room temperature, which provide potential applications for switchable and memory devices.

  3. Nanocrystalline sputter-deposited ZnMgO:Al transparent p-type electrode in GaN-based 385 nm UV LED for significant emission enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Borysiewicz, M.A., E-mail: mbory@ite.waw.pl; Wzorek, M.; Gołaszewska, K.; Kruszka, R.; Pągowska, K.D.; Kamińska, E.

    2015-10-15

    Graphical abstract: - Highlights: • Polycrystalline ZnMgO:Al films grown by room temperature cosputtering. • Increase of Mg content leads to grain disorientation and Mg precipitation. • The unexpected behavior suggested to be related to Al presence. • ZnMgO:Al transparent electrode to p-GaN: 250% increase in 385 nm LED efficiency. - Abstract: We demonstrate nanocrystalline ZnMgO:Al transparent conducting films grown by room temperature magnetron sputtering. Unlike in the usual ZnMgO films grown by sputtering, the crystal orientation perpendicular to the substrate surface is strongly disrupted with the addition of Mg, even well below the phase separation threshold of Mg/(Mg + Zn) = 0.43. We argue that the presence of Al in the films promotes disoriented growth. Using transmission, Rutherford Backscattering Spectroscopy and electron microscopy measurements, we prove that not all Mg in the films substitutes Zn in the ZnO lattice, but also forms of precipitates. We apply the highest transmission films as contact electrodes to the p-GaN layer in a GaN-based 385 nm UV LED structure. By replacing the common opaque Ni/Au ohmic contact to p-GaN in ring geometry by a circular ZnMgO:Al electrode we obtain a 250% increase in irradiated power, which is also 148% higher than when Ni/Al is replaced by ZnO:Al.

  4. Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tze-Bin Song

    2014-03-01

    Full Text Available Organic light emitting diodes (OLEDs have attracted much attention in recent years as next generation lighting and displays, due to their many advantages, including superb performance, mechanical flexibility, ease of fabrication, chemical versatility, etc. In order to fully realize the highly flexible features, reduce the cost and further improve the performance of OLED devices, replacing the conventional indium tin oxide with better alternative transparent conducting electrodes (TCEs is a crucial step. In this review, we focus on the emerging alternative TCE materials for OLED applications, including carbon nanotubes (CNTs, metallic nanowires, conductive polymers and graphene. These materials are selected, because they have been applied as transparent electrodes for OLED devices and achieved reasonably good performance or even higher device performance than that of indium tin oxide (ITO glass. Various electrode modification techniques and their effects on the device performance are presented. The effects of new TCEs on light extraction, device performance and reliability are discussed. Highly flexible, stretchable and efficient OLED devices are achieved based on these alternative TCEs. These results are summarized for each material. The advantages and current challenges of these TCE materials are also identified.

  5. Transparent Conductive Films of Copper Nanofiber Network Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Sungyeoul Kim

    2015-01-01

    Full Text Available Cu nanofiber networks can be a good alternative of the Ag nanowire of high electrical conductivity while having the advantage of low price. An electrospinning method was developed to fabricate copper nanofiber network for use as a transparent conductive film on glass substrate. The effects of liquid diluents for electrospinning processability were examined in relation to the subsequent Cu nanofiber formation processes. Electrospinning solutions of copper acetate/polyvinyl alcohol (PVA and copper nitrate trihydrate/polyvinyl butyral (PVB were investigated. The polymer mixing solutions influenced the subsequent annealing temperatures for removal of the polymers and reduction of the formed CuO nanofibers to Cu metal nanofibers. The morphology and structures of the formed nanofiber networks were examined by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and so forth. The mixture with PVB provided lower annealing temperatures suitable for application to flexible substrates.

  6. Colloidal transparent conducting oxide nanocrystals: A new infrared plasmonic material

    Indian Academy of Sciences (India)

    Bharat Tandon; Aswathi Ashok; Angshuman Nag

    2015-06-01

    Thin films of transparent conducting oxides (TCO) are technologically important for applications as a visible light transparent electrode in a wide variety of optoelectronic devices. In the last few years, researchers started to explore novel size- and shape-dependent properties of TCO, where the crystallite size is ∼10 nm. So far, the localized surface plasmon resonance (LSPR) properties of TCO nanocrystals (NCs) have been found to be the most interesting. TCOs like Sn-doped In2O3, Al-doped ZnO and In-doped CdO NCs, exhibit LSPR band in near- to mid-infrared region. LSPR from a TCO NC exhibits many intrinsic differences with that of a metal NC. Carrier density in a TCO NC can easily be tuned by controlling the dopant concentration, which allows the LSPR band to be tuned over a range of ∼2000 nm (∼0.62 eV) in the near- to mid-infrared region. This review discusses recent advances in the understanding of plasmonic properties of various TCO NCs and highlights the potential applications of such unique plasmonic properties.

  7. Processing and Performance of Polymeric Transparent Conductive Composites

    Directory of Open Access Journals (Sweden)

    Parul Jain

    2013-01-01

    Full Text Available Recent advances in microelectronic and optoelectronic industries have spurred interest in the development of reticulate doped polymer films containing “metallic” charge transfer complexes. In this study, such reticulate doped polymer films were prepared by exposing solid solutions of bis(ethylenedioxy tetrathiafulvalene (BEDO-TTF in polycarbonate (PC to iodine, forming conductive charge transfer complexes. The resulting films exhibited room temperature conductivities ranging from 6.33 to  S    cm−1. The colored iodine complexes in the film were reduced by cyclic voltammetry yielding conductive, colorless, transparent films. We were intrigued to examine the dielectric properties of BEDO-TTF in solid solution in PC prior to formation of the charge transfer complex as no such studies appear in the literature. Dielectric analysis (DEA was used to probe relaxations in neat PC and BEDO-TTF/PC. BEDO-TTF plasticized the PC and decreased the glass transition temperature. Two secondary relaxations appeared in PC films, whereas the transitions merged in the BEDO-TTF/PC film. DEA also evidenced conductivity relaxations above 180°C which are characterized via electric modulus formalism and revealed that BEDO-TTF increased AC conductivity in PC.

  8. Nanoscale Plasmonic and Optical Modulators Based on Transparent Conducting Oxides

    CERN Document Server

    Lu, Zhaolin; Shi, Kaifeng

    2012-01-01

    Recent experiments showed that unity-order index change in a transparent conducting oxide (TCO) can be achieved in a metal-oxide-semiconductor (MOS) structure by accumulation charge. However, the ultrathin (~5nm) accumulation layer and inherent absorption of TCOs impede the practical applications of this effect. Herein, we propose and explore a novel waveguide, namely "TCO-slot waveguide", which combines both the tunable property of a TCO and field enhancement of a slot waveguide. In particular, light absorption can be sharply enhanced when the slot dielectric constant is tuned close to zero. Based on TCO-slot waveguides, efficient electro-absorption modulation can be achieved within 200 nm with small insertion loss.

  9. Transparent conducting oxide free backside illuminated perovskite solar cells

    Science.gov (United States)

    Li, Jia; Yao, Jiexiong; Xia, Huarong; Sun, Wentao; Liu, Jian; Peng, Lianmao

    2015-07-01

    Recently, hybrid perovskites have attracted great attention because of their promising applications in solar cells. However, perovskite solar devices reported till now are mostly based on transparent conducting oxide (TCO) substrates which account for a large proportion in the total cost. Herein, TCO-free perovskite solar cells are fabricated. A photo-electricity conversion efficiency of 5.27% is obtained with short circuit current density (Jsc) of 10.7 mA/cm2, open circuit voltage (Voc) of 0.837 V, and fill factor of 0.588. This study points a feasible way of replacing TCO substrate by low cost substrates, indicating promising potentials in solar energy conversion applications.

  10. Gravure printing of transparent conducting ITO coatings for display applications

    Science.gov (United States)

    Puetz, Joerg; Heusing, Sabine; de Haro Moro, Marcos; Ahlstedt, C. Mikael; Aegerter, Michel A.

    2005-09-01

    Transparent conducting coatings and patterns of ITO (indium tin oxide) were deposited by a direct gravure printing on PET foils using nanoparticle-based UV-curable inks. Solid areas with thicknesses ranging between 300 and >1000 nm were obtained by varying the ink composition (e.g. ITO content, solvents) and fundamental parameters of the printing plate such as the line density. The best ITO coating patterns showed a sheet resistance of 3 to 10 kΩ□ and a transmission of up to 88 % with a haze of less than 1 %. One of the most crucial steps during film formation is the drying of the wet film as it changes the rheology and polarity of the ink and in consequence decisively influences the film formation. Typical fields of application of the gravure-printed ITO patterned electrodes include smart windows, flexible displays and printed electronics.

  11. Slightly Conductive Transparent Films for Space Applications: Manufacturability and Durability

    Science.gov (United States)

    Uppala, N.; Griffin, J.; Vemulapalli, J.; Hambourger, P. D.

    2001-01-01

    Highly transparent, slightly conductive films of co-deposited indium tin oxide (ITO) and MgF, have possible applications for environmental protection of exterior surfaces of spacecraft. Reliable preparation of films with the desired sheet resistivity (approximately 10(exp 8) ohms/square) is difficult because the electrical properties of ITO-Mg F, are highly dependent on film composition. We have investigated the use of plasma emission monitoring to improve the reproducibility of films prepared by RF magnetron sputtering. While considerable improve ment was observed, it appears that some in-situ electrical or optica l characterization will be needed for reliable production coating wit h ITO-MgF,. We have also done further evaluation of a possibly undesi rable photoconductive effect previously observed in these films.

  12. Plasmonic resonances in nanostructured transparent conducting oxide films

    CERN Document Server

    Kim, Jongbum; Emani, Naresh K; Boltasseva, Alexandra

    2012-01-01

    Transparent conducting oxides (TCO) are emerging as possible alternative constituent materials to replace noble metals such as silver and gold for low-loss plasmonic and metamaterial (MMs) applications in the near infrared (NIR) regime. The optical characteristics of TCOs have been studied to evaluate the functionalities and potential of these materials as metal substitutes in plasmonic and MM devices, even apart from their usual use as electrode materials. However, patterning TCOs at the nanoscale, which is necessary for plasmonic and MM devices, is not well-studied. This paper investigates nanopatterning processes for TCOs, especially the lift-off technique with electron-beam lithography, and the realization of plasmonic nanostructures with TCOs. By employing the developed nanopatterning process, we fabricate 2D-periodic arrays of TCO nanodisks and characterize the material's plasmonic properties to evaluate the performance of TCOs as metal substitutes. Light-induced collective oscillations of the free elec...

  13. Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: Clues for optimizing transparent conductors

    OpenAIRE

    Wang, A.; Babcock, J. R.; Edleman, N. L.; Metz, A. W.; Lane, M A; Asahi, R.; Dravid, V. P.; Kannewurf, C. R.; Freeman, A.J.; Marks, T. J.

    2001-01-01

    Materials with high electrical conductivity and optical transparency are needed for future flat panel display, solar energy, and other opto-electronic technologies. InxCd1-xO films having a simple cubic microstructure have been grown on amorphous glass substrates by a straightforward chemical vapor deposition process. The x = 0.05 film conductivity of 17,000 S/cm, carrier mobility of 70 cm2/Vs, and visible region optical transparency window considerably exceed the corresponding parameters for...

  14. Laser Processing of Carbon Nanotube Transparent Conducting Films

    Science.gov (United States)

    Mann, Andrew

    Transparent conducting films, or TCFs, are 2D electrical conductors with the ability to transmit light. Because of this, they are used in many popular electronics including smart phones, tablets, solar panels, and televisions. The most common material used as a TCF is indium tin oxide, or ITO. Although ITO has great electrical and optical characteristics, it is expensive, brittle, and difficult to pattern. These limitations have led researchers toward other materials for the next generation of displays and touch panels. The most promising material for next generation TCFs is carbon nanotubes, or CNTs. CNTs are cylindrical tubes of carbon no more than a few atoms thick. They have different electrical and optical properties depending on their atomic structure, and are extremely strong. As an electrode, they conduct electricity through an array of randomly dispersed tubes. The array is highly transparent because of gaps between the tubes, and size and optical properties of the CNTs. Many research groups have tried making CNT TCFs with opto-electric properties similar to ITO but have difficultly achieving high conductivity. This is partly attributed to impurities from fabrication and a mix of different tube types, but is mainly caused by low junction conductivity. In functionalized nanotubes, junction conductivity is impaired by covalently bonded molecules added to the sidewalls of the tubes. The addition of this molecule, known as functionalization, is designed to facilitate CNT dispersion in a solvent by adding properties of the molecule to the CNTs. While necessary for a good solution, functionalization decreases the conductivity in the CNT array by creating defects in the tube's structures and preventing direct inter-carbon bonding. This research investigates removing the functional coating (after tube deposition) by laser processing. Laser light is able to preferentially heat the CNTs because of their optical and electrical properties. Through local conduction

  15. Evaluating conducting network based transparent electrodes from geometrical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ankush [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560064 Bangalore (India); Kulkarni, G. U., E-mail: guk@cens.res.in [Centre for Nano and Soft Matter Sciences, 560013 Bangalore (India)

    2016-01-07

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  16. Origin of p-type conductivity of Sb-doped ZnO nanorods and the local structure around Sb ions

    Energy Technology Data Exchange (ETDEWEB)

    Liang, J. K.; Su, H. L., E-mail: suhlnju@hotmail.com, E-mail: ycwu@hfut.edu.cn, E-mail: jcahuang@mail.ncku.edu.tw; Wu, Y. C., E-mail: suhlnju@hotmail.com, E-mail: ycwu@hfut.edu.cn, E-mail: jcahuang@mail.ncku.edu.tw [School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, Anhui (China); Chuang, P. Y.; Kuo, C. L.; Huang, S. Y. [Department of Physics, National Cheng Kung University, Tainan 701, Taiwan (China); Chan, T. S. [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Huang, J. C. A., E-mail: suhlnju@hotmail.com, E-mail: ycwu@hfut.edu.cn, E-mail: jcahuang@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 701, Taiwan (China); Advanced Optoelectronic Technology Center and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Taiwan Consortium of Emergent Crystalline Materials, Ministry of Science and Technology, Taipei 106, Taiwan (China)

    2015-05-25

    To probe the origin of p-type conductivity in Sb-doped ZnO, a careful and detailed synchrotron radiation study was performed. The extended X-ray absorption fine structure and X-ray photoelectron spectroscopy investigations provided the evidence for the formation of the complex defects comprising substitution Sb ions at Zn sites (Sb{sub Zn}) and Zn vacancies within the Sb-doped ZnO lattice. Such complex defects result in the increases of Sb-O coordination number and the Sb valence and thereby lead to the p-type conductivity of Sb-doped ZnO. The back-gate field-effect-transistors based on single nanorod of Sb-doped ZnO were constructed, and the stable p-type conduction behavior was confirmed.

  17. Sputtered Al-doped ZnO transparent conducting thin films suitable for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ayadi, Z., E-mail: Zouhaier.BenAyadi@fsg.rnu.tn [Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l' Environnement, Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia); Mahdhi, H. [Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l' Environnement, Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia); Djessas, K. [Laboratoire Procédés, Matériaux et Energie Solaire (PROMES-CNRS), TECNOSUD, Rambla de la Thermodynamique, 66100 Perpignan (France); Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 68860, Perpignan Cedex9 (France); Gauffier, J.L. [Département de Génie Physique, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse cedex 4 (France); and others

    2014-02-28

    Highly transparent conducting Al-doped zinc oxide (AZO) thin films have been grown onto p-type porous silicon substrates by RF-magnetron sputtering at room temperature using aluminum doped nanocrystalline powder. The obtained AZO films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction. The films are highly transparent in the visible wavelength region with a transmittance higher than 85% and an electrical resistivity of 1.56 × 10{sup −4} Ω·cm was obtained at room temperature. On the other hand, we have studied the position of the p–n junction involved in the In{sub 2}O{sub 3}:SnO{sub 2}/(n)AZO/Si(p) structure, by electron-beam induced current technique. Current density–voltage characterizations in dark and under illumination were also investigated. The cell exhibits an efficiency of 5%. - Highlights: • Al-doped zinc oxide (AZO) thin films were grown by RF-magnetron sputtering. • AZO nanopowder compacted target was prepared by a sol–gel method. • AZO thin films are polycrystalline and have preferred orientation along c-axis. • We report a photovoltaic effect in Si(p)/porous silicon/AZO heterostructure. • The cell exhibits an efficiency of 5%.

  18. Transparent, Conductive Coatings Developed for Arc-Proof Solar Arrays

    Science.gov (United States)

    1996-01-01

    Transparent, conductive thin-film coatings have many potential applications where a surface must be able to dissipate electrical charges without sacrificing its optical properties. Such applications include automotive and aircraft windows, heat mirrors, optoelectronic devices, gas sensors, and solar cell array surfaces for space applications. Many spacecraft missions require that solar cell array surfaces dissipate charges in order to avoid damage such as electronic upsets, formation of pinholes in the protective coatings on solar array blankets, and contamination due to deposition of sputtered products. In tests at the NASA Lewis Research Center, mixed thin-films of sputter-deposited indium tin oxide (ITO) and magnesium fluoride (MgF2) that could be tailored to the desired sheet resistivity, showed transmittance values of greater than 90 percent. The samples evaluated were composed of mixed, thin-film ITO/MgF2 coatings, with a nominal thickness of 650 angstroms, deposited onto glass substrates. Preliminary results indicated that these coatings were durable to vacuum ultraviolet radiation and atomic oxygen. These coatings show promise for use on solar array surfaces in polar low-Earth-orbit environments, where a sheet resistivity of less than 10(exp 8)/square is required, and in geosynchronous orbit environments, where a resistivity of less than 10(exp 9)/square is required.

  19. Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides

    KAUST Repository

    Paniagua, Sergio A.

    2016-05-26

    Transparent conducting oxides (TCOs), such as indium tin oxide and zinc oxide, play an important role as electrode materials in organic-semiconductor devices. The properties of the inorganic-organic interface - the offset between the TCO Fermi level and the relevant transport level, the extent to which the organic semiconductor can wet the oxide surface, and the influence of the surface on semiconductor morphology - significantly affect device performance. This review surveys the literature on TCO modification with phosphonic acids (PAs), which has increasingly been used to engineer these interfacial properties. The first part outlines the relevance of TCO surface modification to organic electronics, surveys methods for the synthesis of PAs, discusses the modes by which they can bind to TCO surfaces, and compares PAs to alternative organic surface modifiers. The next section discusses methods of PA monolayer deposition, the kinetics of monolayer formation, and structural evidence regarding molecular orientation on TCOs. The next sections discuss TCO work-function modification using PAs, tuning of TCO surface energy using PAs, and initiation of polymerizations from TCO-tethered PAs. Finally, studies that examine the use of PA-modified TCOs in organic light-emitting diodes and organic photovoltaics are compared. © 2016 American Chemical Society.

  20. Metal nano-grids for transparent conduction in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Muzzillo, Christopher P.

    2017-09-01

    A general procedure for predicting metal grid performance in solar cells was developed. Unlike transparent conducting oxides (TCOs) or other homogeneous films, metal grids induce more resistance in the neighbor layer. The resulting balance of transmittance, neighbor and grid resistance was explored in light of cheap lithography advances that have enabled metal nano-grid (MNG) fabrication. The patterned MNGs have junction resistances and degradation rates that are more favorable than solution-synthesized metal nanowires. Neighbor series resistance was simulated by the finite element method, although a simpler analytical model was sufficient in most cases. Finite-difference frequency-domain transmittance simulations were performed for MNGs with minimum wire width (w) of 50 nm, but deviations from aperture transmittance were small in magnitude. Depending on the process, MNGs can exhibit increased series resistance as w is decreased. However, numerous experimental reports have already achieved transmittance-MNG sheet resistance trade-offs comparable to TCOs. The transmittance, neighbor and MNG series resistances were used to parameterize a grid fill factor for a solar cell. This new figure of merit was used to demonstrate that although MNGs have only been employed in low efficiency solar cells, substantial gains in performance are predicted for decreased w in all high efficiency absorber technologies.

  1. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    Science.gov (United States)

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (flexible enough to withstand 10 000 bending cycles with a 1 mm bending radius. Furthermore, a few μm scale patterning of the electrode was easily implemented by using photolithography, which is widely employed industrially for patterning. Flexible organic light-emitting diodes and a transparent flexible thin-film transistor were successfully fabricated with the proposed electrode. Various practical applications of this electrode to new transparent flexible electronics are expected.

  2. Transparent Conductive Oxides for Thin-Film Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, J.

    2005-04-25

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150C and 350C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the

  3. Transparent conductive oxides for thin-film silicon solar cells

    Science.gov (United States)

    Löffler, J.

    2005-04-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150 º C and 350 º C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the cells

  4. Transparency

    DEFF Research Database (Denmark)

    Flyverbom, Mikkel

    2016-01-01

    This article challenges the view of transparency as a matter of providing openness, insight, and clarity by conceptualizing it as a form of visibility management. We tend to think of transparency as a process of ensuring accountability through the timely and public disclosure of information....... But with the ubiquity of digital technology and data, transparency efforts have more elaborate and complex effects. To conceptualize these, this article discusses the technological and mediated foundations of transparency and the dynamics of visibility practices resulting from efforts to make people, objects......, and processes knowable and governable. This implies that we shift our attention away from the provision of information and consider the wider social processes and dynamics at work in transparency efforts. Using empirical illustrations from organizations with an explicit commitment to transparency, this article...

  5. Transparency

    DEFF Research Database (Denmark)

    Flyverbom, Mikkel; Albu, Oana Brindusa

    2017-01-01

    then outlines the most important dimensions of the concept of transparency by highlighting two paradigmatic positions underpinning contemporary research in this area: namely, informational approaches that focus on the sharing of information and the perceived quality of that information and social process...... orientations that explore the dynamics of transparency in organizational settings. The entry highlights emergent methodological and conceptual insights concerning transparency as a dynamic and paradoxical social process with performative characteristics – an approach that remains underexplored....

  6. Transparency

    DEFF Research Database (Denmark)

    Flyverbom, Mikkel

    2016-01-01

    This article challenges the view of transparency as a matter of providing openness, insight, and clarity by conceptualizing it as a form of visibility management. We tend to think of transparency as a process of ensuring accountability through the timely and public disclosure of information......, and processes knowable and governable. This implies that we shift our attention away from the provision of information and consider the wider social processes and dynamics at work in transparency efforts. Using empirical illustrations from organizations with an explicit commitment to transparency, this article...

  7. Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes

    DEFF Research Database (Denmark)

    Mei, Bastian Timo; Permyakova, Anastasia Aleksandrovna; Frydendal, Rasmus;

    2014-01-01

    Sputter deposition of 50 nm thick NiO films on p+–n-Si and subsequent treatment in an Fe-containing electrolyte yielded highly transparent photoanodes capable of water oxidation (OER) in alkaline media (1 M KOH) with high efficiency and stability. The Fe treatment of NiO thin films enabled Si...... stability for more than 2000 days of continuous operation. Therefore, protection by Fe-treated NiO films is a promising strategy to achieve highly efficient and stable photoanodes....

  8. Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: clues for optimizing transparent conductors.

    Science.gov (United States)

    Wang, A; Babcock, J R; Edleman, N L; Metz, A W; Lane, M A; Asahi, R; Dravid, V P; Kannewurf, C R; Freeman, A J; Marks, T J

    2001-06-19

    Materials with high electrical conductivity and optical transparency are needed for future flat panel display, solar energy, and other opto-electronic technologies. In(x)Cd(1-x)O films having a simple cubic microstructure have been grown on amorphous glass substrates by a straightforward chemical vapor deposition process. The x = 0.05 film conductivity of 17,000 S/cm, carrier mobility of 70 cm2/Vs, and visible region optical transparency window considerably exceed the corresponding parameters for commercial indium-tin oxide. Ab initio electronic structure calculations reveal small conduction electron effective masses, a dramatic shift of the CdO band gap with doping, and a conduction band hybridization gap caused by extensive Cd 5s + In 5s mixing.

  9. Transparency

    NARCIS (Netherlands)

    Gupta, A.

    2012-01-01

    Transparency is commonly understood as openness and the “opposite of secrecy” (Florini 1998), to be secured through greater availability and increased flows of information. In our globalizing era, transparency seems to be implicated in every controversy of the moment, from the 2010 WikiLeaks disclos

  10. Efros-Shklovskii type variable range hopping conduction and magnetoresistance in p-type CuGa3Te5

    Science.gov (United States)

    Wasim, S. M.; Essaleh, L.; Marín, G.; Rincón, C.; Amhil, S.; Galibert, J.

    2017-07-01

    Variable range hopping conduction of Efros and Shklovskii type when a Coulomb gap appears at the Fermi level due to repulsive interaction of the holes, is observed in two different temperature regions in the ordered defect compound CuGa3Te5. Since this type of electrical conduction appears over a very wide temperature range between 4 and 150 K, not reported before in elemental II-VI, and I-III-VI2 compound semiconductors, three different methods were employed to analyze the data to confirm this behavior. This is also supported from the study of the variation of impurity band hole mobility with temperature. Other hopping parameters are estimated. The logarithmic variation of the positive magnetoresistance at different temperatures in the two regions varies as B2 and B1/5 above and below the critical field Bc, that separates the low and high magnetic field regions. This is in complete agreement with the theory of Efros and Shklovskii. The temperature dependence of the corresponding slope as T- 3/2 and T- 3/5 is also consistent with the proposed models.

  11. The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications

    Directory of Open Access Journals (Sweden)

    A. Tombak

    2015-01-01

    Full Text Available In the current paper, the physical properties and microelectronic parameters of direct current (DC sputtered p-type CuO film and diode have been investigated. The film of CuO as oxide and p-type semiconductor is grown onto glass and n-Si substrates by reactive DC sputtering at 250 °C. After deposition, a post-annealing procedure is applied at various temperatures in ambient. Through this research, several parameters are determined such structural, optical and electrical magnitudes. The thickness of CuO thin films goes from 122 to 254 nm. A (111-oriented cubic crystal structure is revealed by X-ray analysis. The grain size is roughly depending on the post-annealing temperature, it increases with temperature within the 144–285 nm range. The transmittance reaches 80% simultaneously in visible and infrared bands. The optical band gap is varied between 1.99 and 2.52 eV as a result of annealing temperature while the resistivity and the charge carrier mobility decrease with an increase in temperature from 135 to 14 Ω cm and 0.92 to 0.06 cm2/Vs, respectively. The surface of samples is homogenous, bright dots are visible when temperature reaches the highest value. As a diode, Ag/CuO/n-Si exhibits a non-ideal behavior and the ideality factor is about 3.5. By Norde method, the barrier height and the series resistance are extracted and found to be 0.96 V and 86.6 Ω respectively.

  12. Fabrication of Hybrid Diamond and Transparent Conducting Metal Oxide Electrode for Spectroelectrochemistry

    Directory of Open Access Journals (Sweden)

    Jingping Hu

    2011-01-01

    Full Text Available A novel diamond transparent electrode is constructed by integrating conductive diamond film and transparent conducting metal oxide to combine the superior electrochemical properties of diamond and the electrical conductivity of transparent metal oxide (TCO. Direct growth of diamond on indium tin oxide (ITO and aluminium doped zinc oxide (AZO was explored, but X-ray photoelectron spectroscopy measurement reveals that both substrates cannot survive from the aggressive environment of diamond growth even if the latter is regarded as one of the most stable TCO. As a second route, a diamond membrane in silicon frame was prepared by selective chemical etching, and a diamond optically transparent electrode (OTE was constructed by assembling the diamond membrane on the top of an ITO-coated substrate. The resulting device exhibits a high optical transparency and quasireversible electrochemical kinetics, which are competitive to other diamond OTEs reported previously. Its application in UV-Vis spectroelectrochemical studies on the oxidisation of 4-aminophenol was demonstrated.

  13. Recent progress in transparent conducting materials by use of metallic grids on metaloxides

    NARCIS (Netherlands)

    Deelen, J. van; Rendering, H.; Hovestad, A.

    2012-01-01

    Alternatives to ITO are under heavy investigation. Organic and inorganic transparent conducting materials are compared based on their transparency versus sheet resistance characteristics. Although graphene has advanced recently, TCOs are still superior in performance and can only be surpassed by the

  14. Conduction mechanisms in p-type Pb{sub 1-x}Eu{sub x}Te alloys in the insulator regime

    Energy Technology Data Exchange (ETDEWEB)

    Peres, M. L.; Rubinger, R. M.; Ribeiro, L. H.; Rubinger, C. P. L. [Departamento de Fisica e Quimica, Instituto de Ciencias Exatas, Universidade Federal de Itajuba, Itajuba, PB 50, MG CEP 37500-903 (Brazil); Ribeiro, G. M. [Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, PB 702, MG CEP 30123-970 (Brazil); Chitta, V. A. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, PB 66318, SP CEP 05315-970 (Brazil); Rappl, P. H. O.; Abramof, E. [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, PB 515, SP CEP 12201-970 (Brazil)

    2012-06-15

    Electrical resistivity measurements were performed on p-type Pb{sub 1-x}Eu{sub x}Te films with Eu content x = 4%, 5%, 6%, 8%, and 9%. The well-known metal-insulator transition that occurs around 5% at room temperature due to the introduction of Eu is observed, and we used the differential activation energy method to study the conduction mechanisms present in these samples. In the insulator regime (x > 6%), we found that band conduction is the dominating conduction mechanism for high temperatures with carriers excitation between the valence band and the 4f levels originated from the Eu atoms. We also verified that mix conduction dominates the low temperatures region. Samples with x = 4% and 5% present a temperature dependent metal insulator transition and we found that this dependence can be related to the relation between the thermal energy k{sub B}T and the activation energy {Delta}{epsilon}{sub a}. The physical description obtained through the activation energy analysis gives a new insight about the conduction mechanisms in insulating p-type Pb{sub 1-x}Eu{sub x}Te films and also shed some light over the influence of the 4f levels on the transport process in the insulator region.

  15. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  16. Investigation of ITO free transparent conducting polymer based electrode

    Science.gov (United States)

    Sharma, Vikas; Sapna, Sachdev, Kanupriya

    2016-05-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10-4Ω-cm), high carrier concentration (2.9 x 1021 cm-3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  17. Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by RF magnetron sputtering.

    Science.gov (United States)

    Nandy, S; Maiti, U N; Ghosh, C K; Chattopadhyay, K K

    2009-03-18

    Stoichiometric NiO, a Mott-Hubbard insulator at room temperature, shows p-type electrical conduction due to the introduction of Ni(2+) vacancies (V(Ni)('')) and self-doping of Ni(3+) ions in the presence of excess oxygen. The electrical conductivity of this important material is low and not sufficient for active device fabrication. Al doped NiO thin films were synthesized by radio frequency (RF) magnetron sputtering on glass substrates at a substrate temperature of 250 °C in an oxygen + argon atmosphere in order to enhance the p-type electrical conductivity. X-ray diffraction studies confirmed the correct phase formation and also oriented growth of NiO thin films. Al doping was confirmed by x-ray photoelectron spectroscopic studies. The structural, electrical and optical properties of the films were investigated as a function of Al doping (0-4 wt%) in the target. The room temperature electrical conductivity increased from 0.01-0.32 S cm (-1) for 0-4% Al doping. With increasing Al doping, above the Mott critical carrier density, energy band gap shrinkage was observed. This was explained by the shift of the band edges due to the existence of exchange and correlation energies amongst the electron-electron and hole-hole systems and also by the interaction between the impurity quasi-particle system.

  18. Lead free CH3NH3SnI3 perovskite thin-film with p-type semiconducting nature and metal-like conductivity

    OpenAIRE

    2016-01-01

    Lead free CH3NH3SnI3 perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM). Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH3NH3SnI3 film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microsco...

  19. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Vosgueritchian, Michael; Lipomi, Darren J.; Bao, Zhenan [Department of Chemical Engineering, Stanford University, CA (United States)

    2012-01-25

    Highly conductive and transparent poly-(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) films, incorporating a fluorosurfactant as an additive, have been prepared for stretchable and transparent electrodes. The fluorosurfactant-treated PEDOT:PSS films show a 35% improvement in sheet resistance (R{sub s}) compared to untreated films. In addition, the fluorosurfactant renders PEDOT:PSS solutions amenable for deposition on hydrophobic surfaces, including pre-deposited, annealed films of PEDOT:PSS (enabling the deposition of thick, highly conductive, multilayer films) and stretchable poly(dimethylsiloxane) (PDMS) substrates (enabling stretchable electronics). Four-layer PEDOT:PSS films have an R{sub s} of 46 {omega} per square with 82% transmittance (at 550 nm). These films, deposited on a pre-strained PDMS substrate and buckled, are shown to be reversibly stretchable, with no change to R{sub s}, during the course of over 5000 cycles of 0 to 10% strain. Using the multilayer PEDOT:PSS films as anodes, indium tin oxide (ITO)-free organic photovoltaics are prepared and shown to have power conversion efficiencies comparable to that of devices with ITO as the anode. These results show that these highly conductive PEDOT:PSS films can not only be used as transparent electrodes in novel devices (where ITO cannot be used), such as stretchable OPVs, but also have the potential to replace ITO in conventional devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Deposition and post-processing techniques for transparent conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Christoforo, Mark Greyson; Mehra, Saahil; Salleo, Alberto; Peumans, Peter

    2017-07-04

    In one embodiment, a method is provided for fabrication of a semitransparent conductive mesh. A first solution having conductive nanowires suspended therein and a second solution having nanoparticles suspended therein are sprayed toward a substrate, the spraying forming a mist. The mist is processed, while on the substrate, to provide a semitransparent conductive material in the form of a mesh having the conductive nanowires and nanoparticles. The nanoparticles are configured and arranged to direct light passing through the mesh. Connections between the nanowires provide conductivity through the mesh.

  1. Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by ``coffee ring effect''

    Science.gov (United States)

    Shimoni, Allon; Azoubel, Suzanna; Magdassi, Shlomo

    2014-09-01

    Transparent and flexible conductors are a major component in many modern optoelectronic devices, such as touch screens for smart phones, displays, and solar cells. Carbon nanotubes (CNTs) offer a good alternative to commonly used conductive materials, such as metal oxides (e.g. ITO) for flexible electronics. The production of transparent conductive patterns, and arrays composed of connected CNT ``coffee rings'' on a flexible substrate poly(ethylene terephthalate), has been reported. Direct patterning is achieved by inkjet printing of an aqueous dispersion of CNTs, which self-assemble at the rim of evaporating droplets. After post-printing treatment with hot nitric acid, the obtained TCFs are characterized by a sheet resistance of 156 Ω sq-1 and transparency of 81% (at 600 nm), which are the best reported values obtained by inkjet printing of conductive CNTs. This makes such films very promising as transparent conductors for various electronic devices, as demonstrated by using an electroluminescent device.

  2. Increased p-type conductivity in GaN{sub x}Sb{sub 1−x}, experimental and theoretical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Segercrantz, N., E-mail: natalie.segercrantz@aalto.fi; Makkonen, I.; Slotte, J.; Kujala, J.; Tuomisto, F. [Department of Applied Physics, Aalto University, P.O. Box 14100, FIN-00076 Aalto Espoo (Finland); Veal, T. D. [Department of Physics and Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF (United Kingdom); Ashwin, M. J. [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-08-28

    The large increase in the p-type conductivity observed when nitrogen is added to GaSb has been studied using positron annihilation spectroscopy and ab initio calculations. Doppler broadening measurements have been conducted on samples of GaN{sub x}Sb{sub 1−x} layers grown by molecular beam epitaxy, and the results have been compared with calculated first-principle results corresponding to different defect structures. From the calculated data, binding energies for nitrogen-related defects have also been estimated. Based on the results, the increase in residual hole concentration is explained by an increase in the fraction of negative acceptor-type defects in the material. As the band gap decreases with increasing N concentration, the ionization levels of the defects move closer to the valence band. Ga vacancy-type defects are found to act as positron trapping defects in the material, and the ratio of Ga vacancy-type defects to Ga antisites is found to be higher than that of the p-type bulk GaSb substrate. Beside Ga vacancies, the calculated results imply that complexes of a Ga vacancy and nitrogen could be present in the material.

  3. Fabrication and optimization of transparent conductive films using laser annealing and picosecond laser patterning

    Science.gov (United States)

    Lee, Keunhee; Ki, Hyungson

    2017-10-01

    In this article, we propose a systematic method of optimizing the properties of transparent conductive films that possess high electrical conductivity and low optical transparency, by using laser patterning and doping. Prediction maps were constructed, which show the effects of patterning and doping for all possible combinations of initial film conditions (in terms of sheet resistance and transparency) and the degrees of patterning. Using these maps, the properties of transparent conductive films can be easily optimized. We first fabricated graphene-based transparent conductive films on fused silica glass by laser annealing of diamond-like carbon films, and then picosecond laser patterning and doping were successively conducted employing the processing conditions suggested by the maps. For patterning, two types of patterns, circular and square, were considered and prediction maps were separately constructed for both patterns. In this study, a film originally having a sheet resistance of 578 Ω/sq and a transparency of 25% was transformed to a 2823 Ω/sq and 80.6% film when 73% of the film was removed using square patterns and doped by nitric acid. Experimental data agreed well with predicted values.

  4. Structure and Properties of Amorphous Transparent Conducting Oxides

    Science.gov (United States)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The

  5. Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te3

    Directory of Open Access Journals (Sweden)

    Hyun-sik Kim

    2017-07-01

    Full Text Available Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi2Te3-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi0.48Sb1.52Te3. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi0.48-xPbxSb1.52Te3 due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14–22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site was analyzed using the Debye–Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction.

  6. Magnetic assembly of transparent and conducting graphene-based functional composites

    Science.gov (United States)

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele

    2016-06-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices.

  7. Magnetic Transparent Conducting Oxide Film And Method Of Making

    Science.gov (United States)

    Windisch, Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

    2006-03-14

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 O·cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450° C. in air. An increase in film resistivity was found upon substitution of other cations (e.g., Zn2+, Al3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo2O4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x0.67, the oxide was all spinel but the increased Co content lowered the conductivity.

  8. Magnetic Transparent Conducting Oxide Film And Method Of Making

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Jr., Charles F. (Richland, WA); Exarhos, Gregory J. (Richland, WA); Sharma, Shiv K. (Honolulu, HI)

    2006-03-14

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 O·cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450° C. in air. An increase in film resistivity was found upon substitution of other cations (e.g., Zn2+, Al3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo2O4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity.

  9. Transparent and conductive polymer layers by gas plasma techniques

    NARCIS (Netherlands)

    Groenewoud, Lucas Marinus Hendrikus

    2000-01-01

    Polymers are widely used in a great number of applications because of their general properties such as low density, low cost, and processability. If these properties could be combined with electrical conductivity, this would open up the way to desirable applications such as flexible LCD’s and polyme

  10. Transparent and conductive polymer layers by gas plasma techniques

    NARCIS (Netherlands)

    Groenewoud, L.M.H.

    2000-01-01

    Polymers are widely used in a great number of applications because of their general properties such as low density, low cost, and processability. If these properties could be combined with electrical conductivity, this would open up the way to desirable applications such as flexible LCD’s and

  11. Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films.

    Science.gov (United States)

    Halim, Joseph; Lukatskaya, Maria R; Cook, Kevin M; Lu, Jun; Smith, Cole R; Näslund, Lars-Åke; May, Steven J; Hultman, Lars; Gogotsi, Yury; Eklund, Per; Barsoum, Michel W

    2014-04-08

    Since the discovery of graphene, the quest for two-dimensional (2D) materials has intensified greatly. Recently, a new family of 2D transition metal carbides and carbonitrides (MXenes) was discovered that is both conducting and hydrophilic, an uncommon combination. To date MXenes have been produced as powders, flakes, and colloidal solutions. Herein, we report on the fabrication of ∼1 × 1 cm(2) Ti3C2 films by selective etching of Al, from sputter-deposited epitaxial Ti3AlC2 films, in aqueous HF or NH4HF2. Films that were about 19 nm thick, etched with NH4HF2, transmit ∼90% of the light in the visible-to-infrared range and exhibit metallic conductivity down to ∼100 K. Below 100 K, the films' resistivity increases with decreasing temperature and they exhibit negative magnetoresistance-both observations consistent with a weak localization phenomenon characteristic of many 2D defective solids. This advance opens the door for the use of MXenes in electronic, photonic, and sensing applications.

  12. Fabrication of flexible transparent conductive films from long double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Naoki Imazu

    2014-04-01

    Full Text Available The fabrication of flexible transparent conducting films (TCFs is important for the development of the next-generation flexible devices. In this study, we used double-walled carbon nanotubes (DWCNTs as the starting material and described a fabrication method of flexible TCFs. We have determined in a quantitative way that the key factors are the length and the dispersion states of the DWCNTs as well as the weight-ratios of dispersant polymer/DWCNTs. By controlling such factors, we have readily fabricated a flexible highly transparent (94% transmittance and conductive (surface resistivity = 320 Ω sq−1 DWCNT film without adding any chemical doping that is often used to reduce the surface resistivity. By applying a wet coating, we have succeeded in the fabrication of large-scale conducting transparent DWCNT films based on the role-to-role method.

  13. Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications

    Science.gov (United States)

    Babu, S. Harinath; Kaleemulla, S.; Rao, N. Madhusudhana; Krishnamoorthi, C.

    2016-10-01

    The optical and electrical properties are the two important dimensions of Indium oxide and its derivatives (indium tin oxide) and were well studied to understand the origin of wide electronic band gap and high electrical conductivity at room temperature. In2O3 and its derivatives find many applications in electronic and optoelectronic domains based on the above properties. The recent discovery of ferromagnetism in In2O3 at room temperature become a third dimension and lead to intensive research on enhancement of ferromagnetic strength by various means such as dopants and synthesis protocols and extrinsic parameters. The research lead to enormous experimental data and theoretical models proliferation over the past one decade with diverse insights into the origin of ferromagnetism in In2O3 based dilute magnetic semiconductors. The experimental data and theoretical models of ferromagnetism in In2O3 has been thoroughly surveyed in the literature and compiled all the data and presented for easy of understanding in this review. We have identified best chemical composition, geometry and synthesis protocols for strongest ferromagnetic strength and suitable theoretical model of magnetism has been presented in this review.

  14. Controlled p-type to n-type conductivity transformation in NiO thin films by ultraviolet-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pranav; Dutta, Titas; Mal, Siddhartha; Narayan, Jagdish [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606 (United States)

    2012-01-01

    We report the systematic changes in structural, electrical, and optical properties of NiO thin films on c-sapphire introduced by nanosecond ultraviolet excimer laser pulses. Epitaxial nature of as deposited NiO was determined by x-ray diffraction phi scans and transmission electron microscopy (TEM) and it was established that NiO film growth takes place with twin domains on sapphire where two types of domains have 60 deg. in-plane rotation with respect to each other about the [111] growth direction. We determined that at pulsed laser energy density of 0.275 J/cm{sup 2}, NiO films exhibited conversion from p-type semiconducting to n-type conductive behavior with three orders of magnitude decrease in resistivity, while maintaining its cubic crystal structure and good epitaxial relationship. Our TEM and electron-energy-loss spectroscopy studies conclusively ruled out the presence of any Ni clustering or precipitation due to the laser treatment. The laser-induced n-type carrier transport and conductivity enhancement were shown to be reversible through subsequent thermal annealing in oxygen. This change in conductivity behavior was correlated with the nonequilibrium concentration of laser induced Ni{sup 0}-like defect states.

  15. Origin of the n -type and p -type conductivity of MoS 2 monolayers on a SiO 2 substrate

    KAUST Repository

    Dolui, Kapildeb

    2013-04-02

    Ab initio density functional theory calculations are performed to study the electronic properties of a MoS2 monolayer deposited over a SiO 2 substrate in the presence of interface impurities and defects. When MoS2 is placed on a defect-free substrate, the oxide plays an insignificant role since the conduction band top and the valence band minimum of MoS2 are located approximately in the middle of the SiO2 band gap. However, if Na impurities and O dangling bonds are introduced at the SiO2 surface, these lead to localized states, which modulate the conductivity of the MoS2 monolayer from n- to p-type. Our results show that the conductive properties of MoS2 deposited on SiO 2 are mainly determined by the detailed structure of the MoS 2/SiO2 interface, and suggest that doping the substrate can represent a viable strategy for engineering MoS2-based devices. © 2013 American Physical Society.

  16. Digital grayscale printing for patterned transparent conducting Ag electrodes and their applications in flexible electronics

    DEFF Research Database (Denmark)

    Gupta, Ritu; Hösel, Markus; Jensen, Jacob

    2014-01-01

    Grayscale (halftone) laser printing is developed as a low-cost and solution processable fabrication method for ITO-free, semi-transparent and conducting Ag electrodes extendable over large area on a flexible substrate. The transmittance and sheet resistance is easily tunable by varying the graysc......Grayscale (halftone) laser printing is developed as a low-cost and solution processable fabrication method for ITO-free, semi-transparent and conducting Ag electrodes extendable over large area on a flexible substrate. The transmittance and sheet resistance is easily tunable by varying...

  17. Electrical properties of transparent conductive ATO coatings obtained by spray pyrolysis

    Science.gov (United States)

    Zinchenko, T. O.; Kondrashin, V. I.; Pecherskaya, E. A.; Kozlyakov, A. S.; Nikolaev, K. O.; Shepeleva, J. V.

    2017-08-01

    Transparent conductive coatings based on thin films of metal oxides have been widely spread in various optoelectronic devices and appliances. It is necessary to determine the influence of preparation conditions on coatings properties for their use in the solution of certain tasks. Thin films of tin dioxide were obtained by the method of spray pyrolysis on glass substrates. Surface resistance and resistivity, concentration and mobility of charge carriers, the conductivity were measured, and the dependences showing the effect of preparation conditions on electrical properties of optically transparent coatings.

  18. Nanocomposite of p-type conductive polymer/functionalized graphene oxide nanosheets as novel and hybrid electrodes for highly capacitive pseudocapacitors.

    Science.gov (United States)

    Ehsani, A; Mohammad Shiri, H; Kowsari, E; Safari, R; Torabian, J; Kazemi, S

    2016-09-15

    An effective approach for increasing the life cycle of poly ortho aminophenol (POAP) as a p-type conductive polymers is combining conventional conductive polymers and nanomaterials to fabricate hybrid electrodes. In this paper, functionalized graphene oxide (FGO) has first been synthesized using a chemical approach. Hybrid POAP/FGO films have then been fabricated by POAP electropolymerization in the presence of FGO nanoparticles as active electrodes for electrochemical supercapacitors. Based on the atomic scale study results, it seems that H3PO4(-) oxygen atoms and terminal pyridine ring nitrogen atoms play a crucial role in the intramolecular charge and energy transfer in the FGO molecular systems. Theoretical studies, surface and electrochemical analyses have been used for characterization of POAP/FGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. This work introduces new nanocomposite materials for electrochemical redox capacitors with such advantages as the ease of synthesis, high active surface area and stability in an aqueous electrolyte.

  19. Promoting oxygen vacancy formation and p-type conductivity in SrTiO3via alkali metal doping: a first principles study.

    Science.gov (United States)

    Triggiani, Leonardo; Muñoz-García, Ana B; Agostiano, Angela; Pavone, Michele

    2016-10-19

    Strontium titanate (SrTiO3, STO) is a prototypical perovskite oxide, widely exploited in many technological applications, from catalysis to energy conversion devices. In the context of solid-oxide fuel cells, STO has been recently applied as an epitaxial substrate for nano-sized layers of mixed ion-electron conductive catalysts with enhanced electrochemical performances. To extend the applications of such heterogeneous nano-cathodes in real devices, also the STO support should be active for both electron transport and oxide diffusion. To this end, we explored using first-principles calculations the strategy of doping of STO at the Sr site with sodium and potassium. These two ions fit in the perovskite structure and induce holes in the STO valence band, so as to obtain the desired p-type electronic conduction. At the same time, the doping with alkali ions also promotes the formation of oxygen vacancies in STO, a prerequisite for effective oxide diffusion. Analysis of electron density rearrangements upon defect formation allows relating the favorable vacancy formation energies to an improved electronic delocalization over the oxide sub-lattice, as observed in closely related materials (e.g. Sr2Fe1.5Mo0.5O6). Overall, our results suggest the alkali-doped STO as a new potential substrate material in nanoscale heterogeneous electrodes for solid oxide electrochemical cells.

  20. Transparent Conducting Oxides for Infrared Plasmonic Waveguides: ZnO (Preprint)

    Science.gov (United States)

    2014-01-15

    AFRL-RY-WP-TP-2014-0009 TRANSPARENT CONDUCTING OXIDES FOR INFRARED PLASMONIC WAVEGUIDES: ZnO (PREPRINT) Monica Allen, Jeffery Allen...CONDUCTING OXIDES FOR INFRARED PLASMONIC WAVEGUIDES: ZnO (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER N...for plasmonic waveguiding applications with an emphasis on highly conducting ZnO . In addition, the paper contains analysis of a set of thin Al-doped

  1. Two high-field thermodynamically stable conductivity states in photoconductive CdS, one n-type and one p-type

    Energy Technology Data Exchange (ETDEWEB)

    Böer, Karl W. [Department of Physics and Astronomy, 217 Sharp Lab, University of Delaware, Newark, Delaware 19716 (United States)

    2015-08-28

    Photoconductive CdS is known to be n-type and develops high-field domains in the range of negative differential conductivities. These domains have been extensively discussed, and when remaining attached to the electrodes have been renamed Böer domains (a broader definition suggested earlier is misleading) [K. Thiessen, Phys. Status Solidi B 248, 2775 (2011)]. They are occurring at high applied voltage in a range at which the current becomes highly non-ohmic that is conventionally described as N-shaped when the conductance decreases with increasing bias or as S-shaped when the current starts to increase again. In this paper only such cases will be discussed in which the current stays below significant Joule heating (no current channel formation), and only for stationary electrode-attached high-field domains. These are the cathode-attached domains that are maintained by field-quenching and are thermodynamically stable. Their finding is summarized in the first segment of this paper. When the applied voltage is increased, an anode-attached hyper-high-field domain develops that is stabilized by a hole blocking anode and will be analyzed in more detail below. It will be shown that they are a thermodynamically stable p-type photoconductive state of CdS. These two new states can be used to determine the carrier densities and mobilities as function of the field and the effective work function in dependence of the spectral distribution of the optical excitation. In a thin slab adjacent to a blocking cathode, the quasi-Fermi levels are spread to a precise amount and are kept there in the entire high-field region. This opens the opportunity to analyze with small modulation of the excitation the trap transition coefficients near these quasi-Fermi levels separately, without broadening interference from other signals. This has already resulted in the discovery of an unusually sharp electron quenching level when the CdS was in a p-type state with an anode adjacent domain. It is

  2. Study of a sandwich structure of transparent conducting oxide films prepared by electron beam evaporation at room temperature

    OpenAIRE

    Chiu, Po Kai; Cho, Wen Hao; Chen, Hung Ping; Hsiao, Chien Nan; Yang, Jer Ren

    2012-01-01

    Transparent conducting ZnO/Ag/ZnO multilayer electrodes having electrical resistance much lower than that of widely used transparent electrodes were prepared by ion-beam-assisted deposition (IAD) under oxygen atmosphere. The optical parameters were optimized by admittance loci analysis to show that the transparent conducting oxide (TCO) film can achieve an average transmittance of 93%. The optimum thickness for high optical transmittance and good electrical conductivity was found to be 11 nm ...

  3. Decoupling the refractive index from the electrical properties of transparent conducting oxides via periodic superlattices

    NARCIS (Netherlands)

    Caffrey, D.; Norton, E.; Coileain, C.O.; Smith, C.M.; Bulfin, B.; Farrell, L.; Shvets, I.V.; Fleischer, K.

    2016-01-01

    We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a

  4. Development of atmospheric pressure CVD processes for highquality transparent conductive oxides

    NARCIS (Netherlands)

    Graaf, A. de; Deelen, J. van; Poodt, P.W.G.; Mol, A.M.B. van; Spee, C.I.M.A.; Grob, F.; Kuypers, A.

    2010-01-01

    For the past decade TNO has been involved in the research and development of atmospheric pressure CVD (APCVD) and plasma enhanced CVD (PECVD) processes for deposition of transparent conductive oxides (TCO), such as tin oxide and zinc oxide. It is shown that by combining precursor development, fundam

  5. Lead free CH3NH3SnI3 perovskite thin-film with p-type semiconducting nature and metal-like conductivity

    Science.gov (United States)

    Iefanova, Anastasiia; Adhikari, Nirmal; Dubey, Ashish; Khatiwada, Devendra; Qiao, Qiquan

    2016-08-01

    Lead free CH3NH3SnI3 perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM). Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH3NH3SnI3 film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microscopy (SEM) confirmed a structure of this compound and uniform film formation. The morphology, film uniformity, light harvesting and electrical properties strongly depend on preparation method and precursor solution. CH3NH3SnI3 films prepared based on dimethylformamide (DMF) showed higher crystallinity and light harvesting capability compared to the film based on combination of dimethyl sulfoxide (DMSO) with gamma-butyrolactone (GBL). Local photocurrent mapping analysis showed that CH3NH3SnI3 can be used as an active layer and have a potential to fabricate lead free photovoltaic devices.

  6. Lead free CH3NH3SnI3 perovskite thin-film with p-type semiconducting nature and metal-like conductivity

    Directory of Open Access Journals (Sweden)

    Anastasiia Iefanova

    2016-08-01

    Full Text Available Lead free CH3NH3SnI3 perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM. Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH3NH3SnI3 film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microscopy (SEM confirmed a structure of this compound and uniform film formation. The morphology, film uniformity, light harvesting and electrical properties strongly depend on preparation method and precursor solution. CH3NH3SnI3 films prepared based on dimethylformamide (DMF showed higher crystallinity and light harvesting capability compared to the film based on combination of dimethyl sulfoxide (DMSO with gamma-butyrolactone (GBL. Local photocurrent mapping analysis showed that CH3NH3SnI3 can be used as an active layer and have a potential to fabricate lead free photovoltaic devices.

  7. Fabrication of high optical transparent and conductive SWNT based transparent conducting film on flexible plastic substrate using ozone as a redox dopant.

    Science.gov (United States)

    Peng, Ke; Liu, Lu-Qi; Gao, Yun; Qu, Mei-Zhen; Zhang, Zhong

    2010-11-01

    In the present work, single-wall carbon nanotubes-transparent conducting films (SWNTs-TCFs) were fabricated at room temperature on a flexible polycarbonate substrate using the ultrosonication-dip-coating technique. Ozone was employed to reduce the sheet resistance of conductive film. As a result, the sheet resistance of film was decreased drastically after 1.5 hr ozone (O3) treatment and could reach up to 170 omega/square at 80% T at 550 nm wavelength. In addition, aminopropyltriethoxysilane (APTS) was further applied as an adhesion promoter in order to enhance the adhesion between the SWNTs films and the substrate. Experimental results show that ATPS can greatly improve the adhesion of SWNTs coating to the substrate without the loss of conductivity.

  8. Transparent conductive zinc oxide basics and applications in thin film solar cells

    CERN Document Server

    Klein, Andreas; Rech, Bernd

    2008-01-01

    Zinc oxide (ZnO) belongs to the class of transparent conducting oxides which can be used as transparent electrodes in electronic devices or heated windows. In this book the material properties of, the deposition technologies for, and applications of zinc oxide in thin film solar cells are described in a comprehensive manner. Structural, morphological, optical and electronic properties of ZnO are treated in this review. The editors and authors of this book are specialists in deposition, analysis and fabrication of thin-film solar cells and especially of ZnO. This book is intended as an overview and a data collection for students, engineers and scientist.

  9. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment

    Directory of Open Access Journals (Sweden)

    Diana E. Proffit

    2010-11-01

    Full Text Available Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides Zn0, In2O3, and SnO2 as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning.

  10. Copper Nanowires and Their Applications for Flexible, Transparent Conducting Films: A Review

    Directory of Open Access Journals (Sweden)

    Vu Binh Nam

    2016-03-01

    Full Text Available Cu nanowires (NWs are attracting considerable attention as alternatives to Ag NWs for next-generation transparent conductors, replacing indium tin oxide (ITO and micro metal grids. Cu NWs hold great promise for low-cost fabrication via a solution-processed route and show preponderant optical, electrical, and mechanical properties. In this study, we report a summary of recent advances in research on Cu NWs, covering the optoelectronic properties, synthesis routes, deposition methods to fabricate flexible transparent conducting films, and their potential applications. This review also examines the approaches on protecting Cu NWs from oxidation in air environments.

  11. Large-Area Chemical Vapor Deposited MoS2 with Transparent Conducting Oxide Contacts toward Fully Transparent 2D Electronics

    KAUST Repository

    Dai, Zhenyu

    2017-09-08

    2D semiconductors are poised to revolutionize the future of electronics and photonics, much like transparent oxide conductors and semiconductors have revolutionized the display industry. Herein, these two types of materials are combined to realize fully transparent 2D electronic devices and circuits. Specifically, a large-area chemical vapor deposition process is developed to grow monolayer MoS2 continuous films, which are, for the first time, combined with transparent conducting oxide (TCO) contacts. Transparent conducting aluminum doped zinc oxide contacts are deposited by atomic layer deposition, with composition tuning to achieve optimal conductivity and band-offsets with MoS2. The optimized process gives fully transparent TCO/MoS2 2D electronics with average visible-range transmittance of 85%. The transistors show high mobility (4.2 cm2 V−1 s−1), fast switching speed (0.114 V dec−1), very low threshold voltage (0.69 V), and large switching ratio (4 × 108). To our knowledge, these are the lowest threshold voltage and subthreshold swing values reported for monolayer chemical vapor deposition MoS2 transistors. The transparent inverters show fast switching properties with a gain of 155 at a supply voltage of 10 V. The results demonstrate that transparent conducting oxides can be used as contact materials for 2D semiconductors, which opens new possibilities in 2D electronic and photonic applications.

  12. Advanced two-photon photolithography for patterning of transparent, electrically conductive ionic liquid-polymer nanostructures

    Science.gov (United States)

    Bakhtina, Natalia A.; MacKinnon, Neil; Korvink, Jan G.

    2016-04-01

    A key challenge in micro- and nanotechnology is the direct patterning of functional structures. For example, it is highly desirable to possess the ability to create three-dimensional (3D), conductive, and optically transparent structures. Efforts in this direction have, to date, yielded less than optimal results since the polymer composites had low optical transparency over the visible range, were only slightly conductive, or incompatible with high resolution structuring. We have previously presented the novel cross-linkable, conductive, highly transparent composite material based on a photoresist (IP-L 780, OrmoComp, or SU-8) and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. Material patterning by conventional and two-photon photolithography has been demonstrated as proof-of-concept. Aiming to increase the resolution and to extend the spectrum of exciting applications we continued our research into identifying new ionic liquid - polymer composites. In this paper, we report the precise 3D single-step structuring of optically transparent and electrically conductive ionic liquid - polymer nanostructures with the highest spatial resolution (down to 150 nm) achieved to date. This was achieved via the development of novel cross-linkable composite based on the photoresist IP-G 780 and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. The successful combination of the developed material with the advanced direct laser writing technique enabled the time- and cost-saving direct manufacturing of transparent, electrically conductive components. We believe that the excellent characteristics of the structured material will open a wider range of exciting applications.

  13. Applications of Silver Nanowires on Transparent Conducting Film and Electrode of Electrochemical Capacitor

    Directory of Open Access Journals (Sweden)

    Yuan-Jun Song

    2014-01-01

    Full Text Available Silver nanowire has potential applications on transparent conducting film and electrode of electrochemical capacitor due to its excellent conductivity. Transparent conducting film (G-film was prepared by coating silver nanowires on glass substrate using Meyer rod method, which exhibited better performance than carbon nanotube and graphene. The conductivity of G-film can be improved by increasing sintering temperature. Electrode of electrochemical capacitor (I-film was fabricated through the same method with G-film on indium tin oxide (ITO. CV curves of I-film under different scanning rates had obvious redox peaks, which indicated that I-film exhibited excellent electrochemical pseudocapacitance performance and good reversibility during charge/discharge process. In addition, the specific capacitance of I-film was measured by galvanostatic charge/discharge experiments, indicating that I-film exhibits high special capacitance and excellent electrochemical stability.

  14. Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ng, M H Andrew; Hartadi, Lysia T; Tan Huiwen; Poa, C H Patrick [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore)], E-mail: patrick-poa@imre.a-star.edu.sg

    2008-05-21

    Optically transparent and electrically conductive single-walled carbon nanotube (SWNT) thin films were fabricated at room temperature using a dip-coating technique. The film transparency and sheet resistance can be easily tailored by controlling the number of coatings. Aminopropyltriethoxysilane (APTS) was used as an adhesion promoter and, together with surfactant Triton X-100, greatly improved the SWNTs coating. Only five coats were required to obtain a sheet resistance of 2.05 {omega}{open_square} and film transparency of 84 %T. The dip-coated film after post-deposition treatment with nitric acid has a sheet resistance as low as 130 {omega}{open_square} at 69 %T. This technique is suitable for large-scale SWNT coating at room temperature and can be used on different types of substrates such as glass and plastics. This paper will discuss the role of the adhesion promoter and surfactant in the coating process.

  15. Flexible, Transparent, and Conductive Film Based on Random Networks of Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Shunhua Wang

    2013-01-01

    Full Text Available Flexible, transparent, and conductive films based on random networks of Ag nanowires were prepared by vacuum-filtrating method. The size of Ag nanowires prepared by hydrothermal method is uniform, with a relatively smaller diameter and a longer length, thereby achieving a high aspect ratio (>1000. The films fabricated by Ag nanowires exhibit the excellent transparency with a 92% optical transmittance and a low surface resistivity of 11 Ωsq−1. Importantly, both the transmittance and sheet resistance decrease with the increasing of the Ag nanowires contents. When the contents of Ag nanowires are up to 200 mg/m2 especially, the surface resistivity quickly falls below 5 Ωsq−1. Also, these films are robust, which have almost no change in sheet resistance after the repeating bends over 200 cycles. These encouraging results may have a potential application in flexible and transparent electronics and other heating systems.

  16. Nature Degradable, Flexible, and Transparent Conductive Substrates from Green and Earth-Abundant Materials.

    Science.gov (United States)

    Yang, Bing; Yao, Chunhua; Yu, Yanhao; Li, Zhaodong; Wang, Xudong

    2017-07-10

    The rapid development of wearable and disposable electronic devices and the rising awareness of environmental sustainability impose growing new demands on the nature degradability of current electronic and energy systems. Here we report a new type of flexible transparent conductive paper completely made from green and earth abundant materials which are also fully degradable and recyclable. Aluminum-doped zinc oxide (AZO) was deposited by low-temperature atomic layer deposition (ALD) as the transparent conductive oxide (TCO) layer on transparent cellulose nanofibril (CNF) papers. The mesoporous structure of the CNF paper rendered strong adhesion of the AZO layer and exhibited excellent mechanical integrity and electrical conductivity within a wide range of tensile and compressive strains. The AZO-CNF paper could be completely dissolved in warm city water after one-hour stirring, demonstrating an excellent nature degradability. A flexible and transparent triboelectric nanogenerator (TENG) was further fabricated using such AZO-CNF papers with a performance that was comparable to other synthetic polymer-based systems. This work illustrated a new and promising strategy of utilizing 100% green and degradable materials in novel electronic and energy harvesting devices.

  17. High-performance Bi-stage process in reduction of graphene oxide for transparent conductive electrodes

    Science.gov (United States)

    Alahbakhshi, Masoud; Fallahi, Afsoon; Mohajerani, Ezeddin; Fathollahi, Mohammad-Reza; Taromi, Faramarz Afshar; Shahinpoor, Mohsen

    2017-02-01

    A novel and innovative approach to develop reduction of graphene oxide (GO) solution for fabrication of highly and truly transparent conductive electrode (TCE) has been presented. Thanks to outstanding mechanical and electronic properties of graphene which offer practical applications in synthesizing composites as well as fabricating various optoelectronic devices, in this study, conductive reduced graphene oxide (r-GO) thin films were prepared through sequential chemical and thermal reduction process of homogeneously dispersed GO solutions. The conductivity and transparency of r-GO thin film is regulated using hydroiodic acid (HI) as reducing agent following by vacuum thermal annealing. The prepared r-GO is characterized by XRD, AFM, UV-vis and Raman spectroscopy. the AFM topographic images reveal surface roughness almost ∼11 nm which became less than 2 nm for the 4 mg/mL solution. Moreover, XRD analysis and Raman spectra substantiate the interlayer spacing between rGO layers has been reduced dramatically and also electronic conjugation has been ameliorated after using HI chemical agent and 700 °C thermal annealing sequentially. Subsequently providing r-GO transparent electrode with decent and satisfactory transparency, acceptable conductivity and suitable work function, it has been exploited as the anode in organic light emitting diode (OLED). The maximum luminance efficiency and maximum power efficiency reached 4.2 cd/A and 0.83 lm/W, respectively. We believe that by optimizing the hole density, sheet resistance, transparency and surface morphology of the r-GO anodes, the device efficiencies can be remarkably increased further.

  18. Transparent Conductive Films Fabricated from Polythiophene Nanofibers Composited with Conventional Polymers

    Directory of Open Access Journals (Sweden)

    Borjigin Aronggaowa

    2013-11-01

    Full Text Available Transparent, conductive films were prepared by compositing poly(3-hexylthiophene (P3HT nanofibers with poly(methyl methacrylate (PMMA. The transparency, conductivity, atmospheric stability, and mechanical strength of the resulting nanofiber composite films when doped with AuCl3 were evaluated and compared with those of P3HT nanofiber mats. The conductivity of the nanofiber composite films was 4.1 S∙cm−1, which is about seven times less than that which was previously reported for a nanofiber mat with the same optical transmittance (~80% reported by Aronggaowa et al. The time dependence of the transmittance, however, showed that the doping state of the nanofiber composite films in air was more stable than that of the nanofiber mats. The fracture stress of the nanofiber composite film was determined to be 12.3 MPa at 3.8% strain.

  19. Highly conductive, transparent flexible films based on open rings of multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Wen-Yin; Su, Jun-Wei; Guo, Chian-Hua; Fu, Shu-Juan; Hsu, Chuen-Yuan; Lin, Kuan-Jiuh, E-mail: kjlin@dragon.nchu.edu.tw

    2011-09-01

    Open rings of multi-walled carbon nanotubes were stacked to form porous networks on a poly(ethylene terephthalate) substrate to form a flexible conducting film (MWCNT-PET) with good electrical conductivity and transparency by a combination of ultrasonic atomization and spin-coating technique. To enhance the electric flexibility, we spin-coated a cast film of poly(vinyl alcohol) onto the MWCNT-PET substrate, which then underwent a thermo-compression process. Field-emission scanning electron microscopy of the cross-sectional morphology illustrates that the film has a robust network with a thickness of {approx} 175 nm, and it remarkably exhibits a sheet resistance of approximately 370 {Omega}/sq with {approx} 77% transmittance at 550 nm even after 500 bending cycles. This electrical conductivity is much superior to that of other MWCNT-based transparent flexible films.

  20. Magnetic assembly of transparent and conducting graphene-based functional composites

    Science.gov (United States)

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele

    2016-01-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol–gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices. PMID:27354243

  1. Transparent conductive film by large area roll-to-roll processing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Linda Y.L., E-mail: ylwu@simtech.a-star.edu.sg [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Kerk, W.T. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Wong, C.C. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2013-10-01

    Sputtered indium tin oxide (ITO) coating on polyethylene terephthalate film has been used as the substrate for roll-to-roll fabrication of large area printed electronics devices, but it is expensive and could be cracked when bending, limiting its applications. Transparent conductive (TC) electrode made by roll-to-roll coating of transparent conductive ink on flexible substrate is an alternative, but both the ink material and the control of the coating quality are very crucial. The major challenges are the coating performance, coating uniformity and defect control during roll-to-roll processing. In this paper, we report the chemical synthesis of silver nanowires in preferred shape and size, the surface modification of the Ag nanowires for better dispersion into the commercial Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate) (PEDOT:PSS) conductive polymer ink, and the controlled roll-to-roll coating process on flexible polyethylene terephthalate substrate by a one meter web-width roll-to-roll slot die coating system. We obtained high uniformity PEDOT:PSS coating with optical transmission higher than 80% and sheet resistance lower than 100 Ω/square, and silver containing coating with sheet resistance below 40 Ω/square and maintained optical transmittance. The slot die coating mechanism is investigated and the influencing factors for coating uniformity and defect are defined. The coated transparent conductive film has the same properties as the sputtered ITO and has been used as the TC electrode for printed lighting, whose performance has been proven by standard weathering test for 1000 h. - Highlight: • Controlled synthesis of silver nanowires using trace amount of Cl{sup −} ions • Large area roll-to-roll processed transparent conductive (TC) coatings • TC film has light transmission > 80% and sheet resistance < 100 Ω/sq. • Silver containing ink achieved better property than conductive polymer ink. • Used as the TC electrode for printed

  2. Annealing Effect of Pulsed Laser Deposited Transparent Conductive Ta-Doped Titanium Oxide Films

    Institute of Scientific and Technical Information of China (English)

    WU Bin-Bin; PAN Feng-Ming; YANG Yu-E

    2011-01-01

    Tantalum-doped TiO2 Rilms were deposited on glass at 300℃PG by pulsed laser deposition (PLD). After post-annealing in vacuum (~10-4 Pa) at temperatures ranging from 450℃ to 650℃, these films were crystallized into an anatase TiO2 structure and presented good conductive features. With increasing annealing temperature up to 550℃, the resistivity of the films was measured to be around 8.7 x 10-4 Ω·cm. Such films exhibit high transparency of over 80% in the visible light region. These results indicate that tantalum-doped anatase TiO2 films have a great potential as transparent conducting oxides.%Tantalum-doped TiO2 films were deposited on glass at 300℃ by pulsed laser deposition (PLD).After postannealing in vacuum (~10-4 Pa) at temperatures ranging from 450℃ to 650℃,these films were crystallized into an anatase TiO2 structure and presented good conductive features.With increasing annealing temperature up to 550℃,the resistivity of the films was measured to be around 8.7 × 10-4 Ω·cm.Such films exhibit high transparency of over 80% in the visible light region.These results indicate that tantalum-doped anatase TiO2 films have a great potential as transparent conducting oxides.Transparent conducting oxides (TCOs) have received much attention both in fundamental research and device applications due to their good combination of high electrical conductivity and excellent optical transparency.[1] Among various TCOs,indium tin oxide (ITO) is considered as the most beneficial TCO due to its excellent properties:low resistivity (~10-4 Ω·cm),high optical transmittance (80-90%)and simple preparation process.[2] However,due to the scarcity and high cost of indium,ITO may not be able to satisfy the demands in the future.Hence,it is necessary to explore new candidates of TCOs for expanding application usage.

  3. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  4. Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers.

    Science.gov (United States)

    Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M; Kordas, Krisztian

    2015-09-03

    The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 10(5) cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated.

  5. Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers

    Science.gov (United States)

    Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian

    2015-01-01

    The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated. PMID:26333520

  6. Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers

    Science.gov (United States)

    Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian

    2015-09-01

    The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated.

  7. Transparent conducting zinc oxide thin film prepared by off-axis rf magnetron sputtering

    Indian Academy of Sciences (India)

    M K Jayaraj; Aldrin Antony; Manoj Ramachandran

    2002-06-01

    Highly conducting and transparent ZnO : Al thin films were grown by off-axis rf magnetron sputtering on amorphous silica substrates without any post-deposition annealing. The electrical and optical properties of the films deposited at various substrate temperatures and target to substrate distances were investigated in detail. Optimized ZnO : Al films have conductivity of 2200 S cm–1 and average transmission in the visible range is higher than 85%. The conductivity and mobility show very little temperature dependence.

  8. Laser patterning of transparent conductive metal nanowire coatings: simulation and experiment.

    Science.gov (United States)

    Henley, Simon J; Cann, Maria; Jurewicz, Izabela; Dalton, Alan; Milne, David

    2014-01-21

    Transparent and electrically conductive metal nanowire networks are possible replacements for costly indium tin oxide (ITO) films in many optoelectronic devices. ITO films are regularly patterned using pulsed lasers so similar technologies could be used for nanowire coatings to define electrode structures. Here, the effects of laser irradiation on conducting silver nanowire coatings are simulated and then investigated experimentally for networks formed by spray deposition onto transparent substrates. The ablation threshold fluence is found experimentally for such nanowire networks and is then related to film thickness. An effective model using finite-element heat transfer analysis is examined to look at energy dissipation through these nanowire networks and used to understand mechanisms at play in the laser-material interactions. It is demonstrated that the three-dimensional nature of these coatings and the relative ratios of the rates of lateral to vertical heat diffusion are important controlling parameter affecting the ablation threshold.

  9. Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application

    Directory of Open Access Journals (Sweden)

    Yu Han-Young

    2010-01-01

    Full Text Available Abstract We demonstrate the synthesis of monolayer graphene using thermal chemical vapor deposition and successive transfer onto arbitrary substrates toward transparent flexible conductive film application. We used electron-beam-deposited Ni thin film as a synthetic catalyst and introduced a gas mixture consisting of methane and hydrogen. To optimize the synthesis condition, we investigated the effects of synthetic temperature and cooling rate in the ranges of 850–1,000°C and 2–8°C/min, respectively. It was found that a cooling rate of 4°C/min after 1,000°C synthesis is the most effective condition for monolayer graphene production. We also successfully transferred as-synthesized graphene films to arbitrary substrates such as silicon-dioxide-coated wafers, glass, and polyethylene terephthalate sheets to develop transparent, flexible, and conductive film application.

  10. Thin Solid Films Topical Special Issue on ZnO related transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Jinn P.; Endo, Tamio; Ellmer, Klaus; Gessert, Tim; Ginley, David

    2016-04-01

    World-wide research activities on ZnO and related transparent conductive oxides (TCO) in thin film, nanostructured, and multilayered forms are driven by the vast potential of these materials for optoelectronic, microelectronic, and photovoltaic applications. Renewed interest in ZnO applications is partly stimulated by cost reduction in material processing and device development. One of the most important issues is doping and alloying with Al, Ga, In, Sn, etc. in order to tune properties. When highly doped, these materials are used as transparent-conducting contacts on solar cells, as well as in catalytic, spintronic, and surface acoustic wave devices. Film growth conditions, including substrate type and orientation, growth temperature, deposition rate, and ambient atmosphere, all play important roles in determining structural, electrical, magnetic, and optical properties.

  11. Graphene as a transparent conducting and surface field layer in planar Si solar cells.

    Science.gov (United States)

    Kumar, Rakesh; Mehta, Bodh R; Bhatnagar, Mehar; S, Ravi; Mahapatra, Silika; Salkalachen, Saji; Jhawar, Pratha

    2014-01-01

    This work presents an experimental and finite difference time domain (FDTD) simulation-based study on the application of graphene as a transparent conducting layer on a planar and untextured crystalline p-n silicon solar cell. A high-quality monolayer graphene with 97% transparency and 350 Ω/□ sheet resistance grown by atmospheric pressure chemical vapor deposition method was transferred onto planar Si cells. An increase in efficiency from 5.38% to 7.85% was observed upon deposition of graphene onto Si cells, which further increases to 8.94% upon SiO2 deposition onto the graphene/Si structure. A large increase in photon conversion efficiency as a result of graphene deposition shows that the electronic interaction and the presence of an electric field at the graphene/Si interface together play an important role in this improvement and additionally lead to a reduction in series resistance due to the conducting nature of graphene.

  12. Transparent conducting film: Effect of mechanical stretching to optical and electrical properties of carbon nanotube mat

    Indian Academy of Sciences (India)

    Tsuyoshi Saotome; Hansang Kim; David Lashmore; H Thomas Hahn

    2011-07-01

    We describe in this paper a transparent conducting film (TCF). It is a fibrous layer of multiwalled carbon nanotubes (MWNTs), labeled a dilute CNT mat, that was prepared and unidirectionally stretched to improve both the optical and electrical properties. After stretching by 80% strain, transmittance at 550 nm wavelength was improved by 37% and sheet resistance was reduced to 71% of the original value. The improvement of the transmittance can be explained by increased area of the CNT mat after stretch, and the reduced sheet resistance can be explained by increased density of the CNT alignment in lateral direction due to contraction. Based on the microscopic observation before and after stretch, models to describe the phenomena are proposed. By further expanding on this method, it may be possible to obtain a transparent conducting carbon nanotube film which is crack-resistant for solar cell applications.

  13. Highly conductive and transparent Ag honeycomb mesh fabricated using a monolayer of polystyrene spheres

    Science.gov (United States)

    Kwon, Namyong; Kim, Kyohyeok; Sung, Sihyun; Yi, Insook; Chung, Ilsub

    2013-06-01

    We describe the design principles and fabrication of Ag honeycomb mesh as a transparent conductive electrode using a polystyrene (PS) sphere template. Monolayers of PS spheres with different diameters, such as 600 nm, 3 μm, and 10 μm, are studied as templates to form Ag mesh with high transmittance. Since the parasitic Ag islands degrade the transmittance, both heat pretreatment and wet etching are used to control the area covered by parasitic Ag islands. The trade-off between transmittance and conductivity forces us to use larger diameter PS spheres. Ten-micron PS spheres are chosen as the template for the PS sphere monolayer, and heat pretreatment and Ag wet etching are used to demonstrate that the Ag honeycomb mesh transparent electrodes have high performance. The transmittance and the sheet resistance are 83% and 20 Ω/sq, which are comparable to commercial ITO electrodes.

  14. Developing Infrared (IR) Transparent Conductive Electrode Technology for Multi-Functional Infrared (IR) Sensing

    Science.gov (United States)

    2011-07-13

    Lett., vol. 63, pp. 1-3 (1993). [4] C. G. Granqvist, ―Transparent conductive electrodes for electrochromic devices : A review,‖ Applied Physics A...2]. The poor mechanical flexibility and high substrate temperature requirement seriously limit its applications in flexible devices , such as...Surface Science, vol. 252, pp. 425-429 (2005). [12] S. M. Sze, "Physics of Semiconductor Devices ," 3rd Ed. pp. 305, 2007. [13] J. E. Baumgardner, A. A

  15. Pulsed electron beam deposition of transparent conducting Al-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Quang, Pham Hong, E-mail: phquang2711@yahoo.com [Hanoi University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Sang, Ngo Dinh [National University of Civil Engineering, 55 Giai Phong Street, Hai Ba Trung, Hanoi (Viet Nam); Ngoc, Do Quang [Hanoi University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam)

    2012-08-31

    Good quality transparent conducting Al-doped ZnO films were deposited on quartz substrates from a high purity target using pulsed electron deposition (PED). Two series of films were made, one deposited at room temperature but at four pressures, viz., 0.7, 1.3, 2.0 and 2.7 Pa of oxygen and one deposited at 1.3 Pa oxygen pressure but at the substrate temperature ranged from room temperature to 600 Degree-Sign C. In order to evaluate the effect of substrate temperature and oxygen pressure on the properties of obtained films, various characterization techniques were employed including X-ray diffraction, stylus profiler, scanning electron microscope, optical spectrophotometer and electrical resistivity. For the first series films, the optimal oxygen pressure of 1.3 Pa was found to bring about the appropriate energetic deposition atoms which results in the best crystallinity. For the second series films, the lowest resistivity was obtained in the film grown at 400 Degree-Sign C. An attempt was made to reduce the resistivity by lowering the oxygen pressure to 0.5 Pa which was the lower limit of working pressure of the PED system. The obtained results indicate that PED is a suitable technique for growing transparent conducting ZnO films. - Highlights: Black-Right-Pointing-Pointer Transparent conducting Al-doped ZnO films grown by pulsed electron deposition (PED). Black-Right-Pointing-Pointer The film properties were found to depend strongly on the deposition conditions. Black-Right-Pointing-Pointer The best film was grown at the oxygen pressure of 0.5 Pa and at 400 Degree-Sign C. Black-Right-Pointing-Pointer PED is found to be a suitable technique for growing transparent conducting ZnO films.

  16. Catalytic, conductive, and transparent platinum nanofiber webs for FTO-free dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Jongwook; Kang, Jonghyun; Jeong, Uiyoung; Kim, Heesuk; Lee, Hyunjung

    2013-04-24

    We report a multifunctional platinium nanofiber (PtNF) web that can act as a catalyst layer in dye-sensitized solar cell (DSSC) to simultaneously function as a transparent counter electrode (CE), i.e., without the presence of an indium-doped tin oxide (ITO) or fluorine-doped tin oxide (FTO) glass. This PtNF web can be easily produced by electrospinning, which is highly cost-effective and suitable for large-area industrial-scale production. Electrospun PtNFs are straight and have a length of a few micrometers, with a common diameter of 40-70 nm. Each nanofiber is composed of compact, crystalline Pt grains and they are well-fused and highly interconnected, which should be helpful to provide an efficient conductive network for free electron transport and a large surface area for electrocatalytic behavior. A PtNF web is served as a counter electrode in DSSC and the photovoltaic performance increases up to a power efficiency of 6.0%. It reaches up to 83% of that in a conventional DSSC using a Pt-coated FTO glass as a counter electrode. Newly designed DSSCs containing PtNF webs display highly stable photoelectric conversion efficiencies, and excellent catalytic, conductive, and transparent properties, as well as long-term stability. Also, while the DSSC function is retained, the fabrication cost is reduced by eliminating the transparent conducting layer on the counter electrode. The presented method of fabricating DSSCs based on a PtNF web can be extended to other electrocatalytic optoelectronic devices that combine superior catalytic activity with high conductivity and transparency.

  17. The structural and electro-optical characteristics of AZO/Cr:Cu/AZO transparent conductive film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tien-Chai [Department of Electrical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China); Huang, Wen-Chang, E-mail: wchuang@mail.ksu.edu.tw [Department of Electro-Optical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China); Tsai, Fu-Chun [Department of Electro-Optical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China)

    2015-08-31

    A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO (ACCA), was presented in the paper. The structural and electro-optical properties of the ACCA film were discussed. The thickness of the middle metal layer was constant and those of the AZO layers were varied. The ACCA film shows an obvious ZnO (002) c-axis preferential growth. No diffraction peaks related to Cr and Cu were observed through x-ray diffraction analysis. The middle Cr:Cu layer showed a thickness of 8.16 nm with a continuous and amorphous structure by the observation of a high-resolution transmission electron microscopy (HR-TEM). For the electro-optical characteristic, a best figure of merit (FOM) value of 3.54 × 10{sup −3} Ω{sup −1} with a corresponding transmittance of 85% was obtained at the thickness of 116 nm of ACCA film. The high FOM value of the film is due to the improvement of conductivity and small sacrifices of transparency. - Highlights: • A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO is developed. • Chromium is added to copper to reduce the oxidation–reduction reaction. • The film has a FOM of 3.54 × 10{sup −3} Ω{sup −1} with a corresponding transmittance of 85%. • The Cr:Cu layer shows a continuous and amorphous structure.

  18. Formation of ultralong copper nanowires by hydrothermal growth for transparent conducting applications

    Science.gov (United States)

    Balela, Mary Donnabelle L.; Tan, Michael

    2017-07-01

    Transparent conducting electrodes are key components of optoelectronic devices, such as touch screens, organic light emitting diodes (OLEDs) and solar cells. Recent market surveys have shown that the demands for these devices are rapidly growing at a tremendous rate. Semiconducting oxides, in particular indium tin oxide (ITO) are the material of choice for transparent conducting electrodes. However, these conventional oxides are typically brittle, which limits their applicability in flexible electronics. Metal nanowires, e.g. copper (Cu) nanowires, are considered as the best candidate as substitute for ITO due to their excellent mechanical and electrical properties. In this paper, ultralong copper (Cu) nanowires with were successfully prepared by hydrothermal growth at 50-80°C for 1 h. Ethylenediamine was employed as the structure-directing agents, while hydrazine was used as the reductant. In situ mixed potential measurement was also carried out to monitor Cu deposition. Higher temperature shifted the mixed potential negatively, leading to thicker Cu nanowires. Transparent conducting electrode, with a sheet resistance of 197 Ω sq-1 at an optical transmittance of around 61 %, was fabricated with the Cu nanowire ink.

  19. Transparent conductive PVP/AgNWs films for flexible organic light emitting diodes by spraying method

    Science.gov (United States)

    Hu, Jun-tao; Mei, Wen-juan; Ye, Kang-li; Wei, Qing-qing; Hu, Sheng

    2016-05-01

    In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. The transmittance and bending performance are improved by optimizing the number of spraying times and the solution concentration and controlling the annealing time. The spraying times of 20, the concentration of 2 mg/mL and the annealing time of 10 min are chosen to fabricate the PVP/AgNWs films. The transmittance of PVP/AgNWs films is 53.4%—67.9% at 380—780 nm, and the sheet resistance is 30 Ω/□ which is equivalent to that of commercial indium tin oxide (ITO). During cyclic bending tests to 500 cycles with bending radius of 5 mm, the changes of resistivity are negligible. The performance of PVP/AgNW transparent electrodes has little change after being exposed to the normal environment for 1 000 h. The adhesion to polymeric substrate and the ability to endure bending stress in AgNWs network films are both significantly improved by introducing PVP. Spraying method makes AgNWs form a stratified structure on large-area polymer substrates, and the vacuum annealing method is used to weld the AgNWs together at junctions and substrates, which can improve the electrical conductivity. The experimental results indicate that PVP/AgNW transparent electrodes can be used as transparent conductive electrodes in flexible organic light emitting diodes (OLEDs).

  20. Fabrication of nano-engineered transparent conducting oxides by pulsed laser deposition.

    Science.gov (United States)

    Gondoni, Paolo; Ghidelli, Matteo; Di Fonzo, Fabio; Li Bassi, Andrea; Casari, Carlo S

    2013-02-27

    Nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas allows the deposition of metal oxides with tunable morphology, structure, density and stoichiometry by a proper control of the plasma plume expansion dynamics. Such versatility can be exploited to produce nanostructured films from compact and dense to nanoporous characterized by a hierarchical assembly of nano-sized clusters. In particular we describe the detailed methodology to fabricate two types of Al-doped ZnO (AZO) films as transparent electrodes in photovoltaic devices: 1) at low O₂ pressure, compact films with electrical conductivity and optical transparency close to the state of the art transparent conducting oxides (TCO) can be deposited at room temperature, to be compatible with thermally sensitive materials such as polymers used in organic photovoltaics (OPVs); 2) highly light scattering hierarchical structures resembling a forest of nano-trees are produced at higher pressures. Such structures show high Haze factor (>80%) and may be exploited to enhance the light trapping capability. The method here described for AZO films can be applied to other metal oxides relevant for technological applications such as TiO₂, Al₂O₃, WO₃ and Ag₄O₄.

  1. High quality transparent conductive Ag-based barium stannate multilayer flexible thin films.

    Science.gov (United States)

    Wu, Muying; Yu, Shihui; He, Lin; Yang, Lei; Zhang, Weifeng

    2017-03-07

    Transparent conductive multilayer thin films of silver (Ag)-embedded barium stannate (BaSnO3) structures have been deposited onto flexible polycarbonate substrates by magnetron sputtering at room temperature to develop an indium free transparent flexible electrode. The effect of thicknesses of Ag mid-layer and barium stannate layers on optical and electrical properties were investigated, and the mechanisms of conduction and transmittance were discussed. The highest value of figure of merit is 25.5 × 10(-3) Ω(-1) for the BaSnO3/Ag/BaSnO3 multilayer flexible thin films with 9 nm thick silver mid-layer and 50 nm thick barium stannate layers, while the average optical transmittance in the visible range from 380 to 780 nm is above 87%, the resistivity is 9.66 × 10(-5) Ω · cm, and the sheet resistance is 9.89 Ω/sq. The change rate of resistivity is under 10% after repeated bending of the multilayer flexible thin films. These results indicate that Ag-based barium stannate multilayer flexible thin films can be used as transparent flexible electrodes in various flexible optoelectronic devices.

  2. Direct Observation of Electrostatically Driven Band Gap Renormalization in a Degenerate Perovskite Transparent Conducting Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lebens-Higgins, Z.; Scanlon, D. O.; Paik, H.; Sallis, S.; Nie, Y.; Uchida, M.; Quackenbush, N. F.; Wahila, M. J.; Sterbinsky, G. E.; Arena, Dario A.; Woicik, J. C.; Schlom, D. G.; Piper, L. F. J.

    2016-01-01

    We have directly measured the band gap renormalization associated with the Moss-Burstein shift in the perovskite transparent conducting oxide (TCO), La-doped BaSnO 3 , using hard x-ray photoelectron spectroscopy. We determine that the band gap renormalization is almost entirely associated with the evolution of the conduction band. Our experimental results are supported by hybrid density functional theory supercell calculations. We determine that unlike conventional TCOs where interactions with the dopant orbitals are important, the band gap renormalization in La - BaSnO 3 is driven purely by electrostatic interactions.

  3. Direct Observation of Electrostatically Driven Band Gap Renormalization in a Degenerate Perovskite Transparent Conducting Oxide.

    Science.gov (United States)

    Lebens-Higgins, Z; Scanlon, D O; Paik, H; Sallis, S; Nie, Y; Uchida, M; Quackenbush, N F; Wahila, M J; Sterbinsky, G E; Arena, Dario A; Woicik, J C; Schlom, D G; Piper, L F J

    2016-01-15

    We have directly measured the band gap renormalization associated with the Moss-Burstein shift in the perovskite transparent conducting oxide (TCO), La-doped BaSnO_{3}, using hard x-ray photoelectron spectroscopy. We determine that the band gap renormalization is almost entirely associated with the evolution of the conduction band. Our experimental results are supported by hybrid density functional theory supercell calculations. We determine that unlike conventional TCOs where interactions with the dopant orbitals are important, the band gap renormalization in La-BaSnO_{3} is driven purely by electrostatic interactions.

  4. Optically transparent magnetic and electrically conductive Fe-Cr-Zr ultra-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Louzguine-Luzgin, D.V.; Ketov, S.V.; Mizukami, S. [Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai (Japan); Orava, J. [Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai (Japan); Department of Materials Science and Metallurgy, University of Cambridge (United Kingdom)

    2014-05-15

    The transparent magnetic thin films having a nominal composition of Fe{sub 75}Cr{sub 15}Zr{sub 10} and containing nanocrystalline BCC Fe particles embedded in a metallic glassy matrix were deposited by a magnetron sputtering technique. The nanoparticles were homogeneously distributed in the glassy matrix, which results in the appearance of ferromagnetic properties. The phase composition and microstructure of the films were examined by X-ray diffractometry and scanning electron microscopy equipped with EDX spectroscopy. The magneto-optical properties of the obtained films were also studied by magnetic circular dichroism (MCD) method. The material obtained possesses three key properties: it is optically transparent in the visible-light range as well as electrically conductive and it shows ferromagnetism, which all of these are often mutually alternative. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    Science.gov (United States)

    Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  6. Transparent conducting electrodes based on thin, ultra-long copper nanowires and graphene nano-composites

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent S.; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2014-10-01

    High aspect-ratio ultra-long (> 70 μm) and thin (< 50 nm) copper nanowires (Cu-NW) were synthesized in large quantities using a solution-based approach. The nanowires, along with reduced graphene-oxide sheets, were coated onto glass as well as plastic substrates, thus producing transparent conducting electrodes. Our fabricated transparent electrodes achieved high optical transmittance and low sheet resistance, comparable to those of existing Indium Tin Oxide (ITO) electrodes. Furthermore, our electrodes show no notable loss of performance under high temperature and high humidity conditions. Adaptations of such nano-materials into smooth and ultrathin films lead to potential alternatives for the conventional tin-doped indium oxide, with applications in a wide range of solar cells, flexible displays, and other opto-electronic devices.

  7. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    Directory of Open Access Journals (Sweden)

    Md. Poostforush

    2014-04-01

    Full Text Available The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO. Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina but their transparency was preserved (Tλ550 nm ~ 72%. Integrated annealed alumina phase, low refractive index mismatch between resin and alumina and formation of nano-optical fibers through the membrane resulted in such marvel combination. This report shows a great potential of these types of nanocomposites in ‘heat management’ of lightening devices.

  8. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs

    Science.gov (United States)

    Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui

    2015-08-01

    Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The

  9. Thickness dependent structural, magnetic, and electronic properties of the epitaxial films of transparent conducting oxide NiCo2O4

    Science.gov (United States)

    Silwal, Punam; Miao, Ludi; Hu, Jin; Spinu, Leonard; Ho Kim, Dae; Talbayev, Diyar

    2013-09-01

    We present the thickness dependent structural, magnetic, and transport properties of transparent conducting spinel NiCo2O4 thin films on MgAl2O4 (001) substrates. The structural examination of the films reveals that the epitaxial stain is independent of the films' thickness. Electric and magnetic measurements show that the films are metallic with p-type conduction and ferrimagnetic down to 2 unit cells with an enhanced coercive field in the films thinner than 30 unit cells. The low-temperature resistivity data indicate that the observed resistivity minimum results from the disorder-induced quantum interference effects. Our results demonstrate that NiCo2O4 may provide an alternative magnetic conducting medium for spintronics devices.

  10. Highly Conductive, Transparent Flexible Films Based on Metal Nanoparticle-Carbon Nanotube Composites

    Directory of Open Access Journals (Sweden)

    Wen-Yin Ko

    2013-01-01

    Full Text Available Metallic nanoparticles decorated on MWCNTs based transparent conducting thin films (TCFs show a cheap and efficient option for the applications in touch screens and the replacement of the ITO film because of their interesting properties of electrical conductivity, mechanical property, chemical inertness, and other unique properties, which may not be accessible by their individual components. However, a great challenge that always remains is to develop effective ways to prepare junctions between metallic nanoparticles and MWCNTs for the improvement of high-energy barriers, high contact resistances, and weak interactions which could lead to the formation of poor conducting pathways and result in the CNT-based devices with low mechanical flexibility. Herein, we not only discuss recent progress in the preparation of MNP-CNT flexible TCFs but also describe our research studies in the relevant areas. Our result demonstrated that the MNP-CNT flexible TCFs we prepared could achieve a highly electrical conductivity with the sheet resistance of ~100 ohm/sq with ~80% transmittance at 550 nm even after being bent 500 times. This electrical conductivity is much superior to the performances of other MWCNT-based transparent flexible films, making it favorable for next-generation flexible touch screens and optoelectronic devices.

  11. Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers

    Energy Technology Data Exchange (ETDEWEB)

    Szabó, Zoltán; Baji, Zsófia [MTA EK Institute of Technical Physics and Materials Science, Konkoly Thege M. út 29-33, 1121 Budapest (Hungary); Basa, Péter [Semilab Semiconductor Physics Laboratory Co. Ltd., Prielle K. u. 2, H-1117 Budapest (Hungary); Czigány, Zsolt; Bársony, István [MTA EK Institute of Technical Physics and Materials Science, Konkoly Thege M. út 29-33, 1121 Budapest (Hungary); Wang, Hsin-Ying [Epistar corporation No 5, Li-hsin 5th Rd., Hsinchu Science Park, Hsinchu 300, Taiwan (China); Volk, János, E-mail: volk@mfa.kfki.hu [MTA EK Institute of Technical Physics and Materials Science, Konkoly Thege M. út 29-33, 1121 Budapest (Hungary)

    2016-08-30

    Highlights: • Highly conductive, transparent GZO layers were deposited by ALD. • The ALD layers show superior thickness and sheet resistance homogeneity for 4” wafers. • A two-step ALD deposition technique was proposed and demonstrated to improve the quality of GZO/p-GaN interface. - Abstract: Highly conductive and uniform Ga doped ZnO (GZO) films were prepared by atomic layer deposition (ALD) as transparent conductive layers for InGaN/GaN LEDs. The optimal Ga doping concentration was found to be 3 at%. Even for 4” wafers, the TCO layer shows excellent homogeneity of film resistivity (0.8 %) according to Eddy current and spectroscopic ellipsometry mapping. This makes ALD a favourable technique over concurrent methods like MBE and PLD where the up-scaling is problematic. In agreement with previous studies, it was found that by an annealing treatment the quality of the GZO/p-GaN interface can be improved, although it causes the degradation of TCO conductivity. Therefore, a two-step ALD deposition technique was proposed and demonstrated: a “buffer layer” deposited and annealed first was followed by a second deposition step to maintain the high conductivity of the top layer.

  12. Low-temperature processing of transparent conductive indium tin oxide nanocomposites using polyvinyl derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Maksimenko, Ilja, E-mail: ilja.maksimenko@ww.uni-erlangen.de; Wellmann, Peter J.

    2011-12-01

    We report on the influence of additives on the electrical, optical, morphological and mechanical properties of transparent conductive indium tin oxide (In{sub 2}O{sub 3}:Sn; ITO) nanoparticle films by the use of polymers as matrix material. Key issues to fabricate layers suitable for use in electronic device applications are presented. Polyvinyl derivatives polyvinyl acetate, polyvinyl alcohol (PVA) and polyvinyl butyral were applied and their suitability to form transparent conductive ITO nanocomposite coatings at a maximum process temperature of 130 Degree-Sign C was investigated. A low-temperature treatment with UV-light has been developed to provide the possibility of curing ITO thin films deposited on substrates which do not withstand high process temperatures. Compared to best pure ITO layers (0.2 {Omega}{sup -1} cm{sup -1}), the ITO-PVA nanocomposite coatings show a conductance value of 4.1 {Omega}{sup -1} cm{sup -1} and 5.9 {Omega}{sup -1} cm{sup -1} after reducing in forming gas. Sheet resistance of ca. 1200 {Omega}/{open_square} with coexistent transmittance of 85% at 550 nm for a layer thickness of about 1.45 {mu}m was achieved. The conductance enhancement is a consequence of nanoparticulate ITO network densification due to the acting shrinkage forces caused by the polymer matrix during film drying and additionally UV-induced crosslinking of PVA.

  13. Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers

    Science.gov (United States)

    Szabó, Zoltán; Baji, Zsófia; Basa, Péter; Czigány, Zsolt; Bársony, István; Wang, Hsin-Ying; Volk, János

    2016-08-01

    Highly conductive and uniform Ga doped ZnO (GZO) films were prepared by atomic layer deposition (ALD) as transparent conductive layers for InGaN/GaN LEDs. The optimal Ga doping concentration was found to be 3 at%. Even for 4" wafers, the TCO layer shows excellent homogeneity of film resistivity (0.8 %) according to Eddy current and spectroscopic ellipsometry mapping. This makes ALD a favourable technique over concurrent methods like MBE and PLD where the up-scaling is problematic. In agreement with previous studies, it was found that by an annealing treatment the quality of the GZO/p-GaN interface can be improved, although it causes the degradation of TCO conductivity. Therefore, a two-step ALD deposition technique was proposed and demonstrated: a "buffer layer" deposited and annealed first was followed by a second deposition step to maintain the high conductivity of the top layer.

  14. Graphene, conducting polymer and their composites as transparent and current spreading electrode in GaN solar cells

    Science.gov (United States)

    Mahala, Pramila; Kumar, Ajay; Nayak, Sasmita; Behura, Sanjay; Dhanavantri, Chenna; Jani, Omkar

    2016-04-01

    Understanding the physics of charge carrier transport at graphene/p-GaN interface is critical for achieving efficient device functionality. Currently, the graphene/p-GaN interface is being explored as light emitting diodes, however this interface can be probed as a potential photovoltaic cell. We report the intimate interfacing of mechanically exfoliated graphene (EG), conducting polymer (PEDOT:PSS) and composite of reduced graphene oxide (rGO) and PEDOT:PSS with a wide band gap p-GaN layer. To explore their potential in energy harvesting, three heterojunction devices such as: (i) EG/p-GaN/sapphire, (ii) PEDOT:PSS/p-GaN/sapphire and (iii) PEDOT:PSS(rGO)/p-GaN/sapphire are designed and their photovoltaic characteristics are examined. It is interesting to observe that the EG/p-GaN/sapphire solar cell exhibits high open-circuit voltage of 0.545 V with low ideality factor and reverse saturation current. However, improved short circuit current density (13.7 mA/cm2) is noticed for PEDOT:PSS/p-GaN/sapphire solar cell because of enhanced conductivity accompanied by high transmittance for PEDOT:PSS. Further, the low series resistance for PEDOT:PSS(rGO)/p-GaN/sapphire is observed suggesting that the PEDOT:PSS and rGO composite is well dispersed and exhibits low interfacial resistances with p-GaN. The present investigation leverages the potential of graphene, conducting polymer and their composites as dual capability of (a) transparent and current spreading electrode and (b) an active top layer to make an intimate contact with wide bandgap p-type GaN for possible prospect towards high performance diodes, switches and solar cells.

  15. Damp-Heat Induced Degradation of Transparent Conducting Oxides for Thin Film Solar Cells (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Pern, J.; Noufi, R.; Li, X.; DeHart, C.; To, B.

    2008-05-01

    The objectives are: (1) To achieve a high long-term performance reliability for the thin-film CIGS PV modules with more stable materials, device structure designs, and moisture-resistant encapsulation materials and schemes; (2) to evaluate the DH stability of various transparent conducting oxides (TCOs); (3) to identify the degradation mechanisms and quantify degradation rates; (4) to seek chemical and/or physical mitigation methods, and explore new materials. It's important to note that direct exposure to DH represents an extreme condition that a well-encapsulated thin film PV module may never experience.

  16. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  17. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.

    2010-08-11

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from that of optically thick metallic films. We analyze the optical properties when performing a geometrical transformation that maintains the electrical properties. For one-dimensional patterns of metallic wires, the analysis favors tall and narrow wires. Our design principles remain valid for oblique incidence and readily carry over to two-dimensional patterns. © 2010 American Chemical Society.

  18. A summary report on the Flat-Plate Solar Array Project Workshop on Transparent Conducting Polymers

    Science.gov (United States)

    Kachare, R.; Moacanin, J.

    1985-01-01

    The proceedings and technical discussions of a workshop on Transparent Conducting Polymers (TCP) for solar cell applications are reported. This is in support of the Device Research Task of the Flat-Flate Solar Array Project. The workshop took place on January 11 and 12, 1985, in Santa Barbara, California. Participants included university and industry researchers. The discussions focused on the electronic and optical properties of TCP, and on experimental issues and problems that should be addressed for high-efficiency solar cell application.

  19. Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices.

    Science.gov (United States)

    Lee, Donghwa; Lee, Hyungjin; Ahn, Yumi; Jeong, Youngjun; Lee, Dae-Young; Lee, Youngu

    2013-09-07

    A new AgNW-graphene hybrid transparent conducting electrode (TCE) was prepared by dry-transferring a chemical vapor deposition (CVD)-grown monolayer graphene onto a pristine AgNW TCE. The AgNW-graphene hybrid TCE exhibited excellent optical and electrical properties as well as mechanical flexibility. The AgNW-graphene hybrid TCE showed highly enhanced thermal oxidation and chemical stabilities because of the superior gas-barrier property of the graphene protection layer. Furthermore, the organic solar cells with the AgNW-graphene hybrid TCE showed excellent photovoltaic performance as well as superior long-term stability under ambient conditions.

  20. Preparation of properties of SWNT/graphene oxide type flexible transparent conductive films.

    Science.gov (United States)

    Kim, Jin Ho; Jung, Jae Mok; Kwak, Jun Young; Jeong, Jung Hyun; Choi, Byung Chun; Lim, Kwon Taek

    2011-08-01

    Single walled carbon nanotube (SWNT)/graphene oxide (GO) hybrid films were prepared by a facile bar coating method on a polyethylene terephthalate substrate using a mixed solution of SWCNTs and GO. An acryl type polymer was employed as a dispersion agent to obtain SWCNT and GO suspension in ethyl alcohol. The SWCNT/GO hybrid films were highly transparent and electrically conductive, showing 80% transmittance and 1.8 x 10(3) ohm/sq surface resistance. The surface resistance of the SWCNT/GO film could be further improved to 750 ohm/sq by hydrazine vapor reduction.

  1. Anodic Bonding of Transparent Conductive Oxide Coated Silicon Wafer to Glass Substrate for Solar Cell Applications

    Science.gov (United States)

    Yuda, Yohei; Koida, Takashi; Kaneko, Tetsuya; Kondo, Michio

    2013-01-01

    We report on the anodic bonding of Si wafer coated by thin transparent conductive oxide (TCO) with a glass substrate, for the first time. We obtained sufficient bonding strength of as high as 9.5 MPa using a 30-nm-thick indium tin oxide (ITO) layer. We have also found that the ITO sample shows much stronger bonding strength does a sample that with a zinc oxide layer. The bonding mechanism is discussed in terms of the permeation of indium elements into the glass side driven by electric field. Finally we demonstrated a solar cell using this substrate.

  2. A Facile Method for Preparing Transparent, Conductive, and Paper-Like Silver Nanowire Films

    Directory of Open Access Journals (Sweden)

    Yajie Wang

    2011-01-01

    Full Text Available Transparent, conductive, and flexible silver nanowire (AgNW films have been fabricated by a facile two-step method. Firstly, the well-dispersed AgNW suspension is vacuum filtered using mixed esters of cellulose (MCE membranes as filters. Then, the AgNW-MCE films are treated with acetone vapor. After the infiltration of acetone vapor, the white and porous MCE membranes change into transparent and pore-free, and AgNW-MCE films are obtained with extraordinary optical, conductive, and mechanical properties. An optimal result is obtained with transmittance of 85% at 550 nm and sheet resistance about 50 Ohm/sq. The flexibility of AgNW-MCE films is remarkable, which is comparable to that of the AgNW film on flexible polyethylene terephthalate (PET. More important, AgNW-MCE films show an excellent adhesion to the substrate, which causes a stable electrical conductivity even after scotch tape test and finger friction test. As a result of improved adhesion to the substrate, the sheet resistance of AgNW-MCE films is about 20% smaller than that of AgNW-PET films.

  3. VO{sub x} effectively doping CVD-graphene for transparent conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qinghua; Shi, Liangjing [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Zhang, Qinghong [State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Wang, Weiqi; Zheng, Huifeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Zhang, Yuzhi [The Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China); Liu, Yangqiao, E-mail: yqliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Sun, Jing, E-mail: jingsun@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2016-11-30

    Highlights: • Doping process operated easily. • Sheet resistance decreased efficiently after doping. • Sheet resistance of doped graphene is stable after exposed in the air. • Mechanism of doping process is studied. - Abstract: Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VO{sub x} doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86–90%. The optimized VO{sub x}-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VO{sub x} can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VO{sub x} species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VO{sub x} doped graphene is expected to be a promising candidate for transparent conductive film purposes.

  4. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    Science.gov (United States)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  5. Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Ostfeld, Aminy E.; Arias, Ana Claudia, E-mail: acarias@eecs.berkeley.edu [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Catheline, Amélie [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Linde Nanomaterials, Linde LLC, 1970 Diamond Street, San Marcos, California 92078 (United States); Ligsay, Kathleen; Kim, Kee-Chan; Fogden, Siân [Linde Nanomaterials, Linde LLC, 1970 Diamond Street, San Marcos, California 92078 (United States); Chen, Zhihua [Polyera Corporation, 8045 Lamon Avenue, Skokie, Illinois 60077 (United States); Facchetti, Antonio [Polyera Corporation, 8045 Lamon Avenue, Skokie, Illinois 60077 (United States); Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-12-22

    Solutions of unbundled and unbroken single-walled carbon nanotubes have been prepared using a reductive dissolution process. Transparent conductive films spray-coated from these solutions show a nearly twofold improvement in the ratio of electrical conductivity to optical absorptivity versus those deposited from conventional aqueous dispersions, due to substantial de-aggregation and sizable nanotube lengths. These transparent electrodes have been utilized to fabricate P3HT-PCBM organic solar cells achieving power conversion efficiencies up to 2.3%, comparable to those of solar cells using indium tin oxide transparent electrodes.

  6. Fabrication of CdS/CdTe solar cells with transparent p-type conductive BaCuSeF back contact

    Science.gov (United States)

    Yamamoto, Koichi; Sakakima, Hiroshi; Ogawa, Yohei; Hosono, Aikyo; Okamoto, Tamotsu; Wada, Takahiro

    2015-08-01

    BaCuSeF films were applied to CdS/CdTe solar cells as back electrodes. The interfaces between the CdTe and BaCuSeF layers in the CdS/CdTe solar cells with BaCuSeF back contact deposited at substrate temperatures (TS) of 200 and 300 °C were analyzed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). We clearly observed many dislocations in the CdTe layer in the CdS/CdTe solar cell with the BaCuSeF layer deposited at TS = 300 °C. We also observed a reaction layer of Cu2.72Te2 between the BaCuSeF and CdTe layers in both solar cells. We concluded that (1) the substrate temperature for the pulsed laser deposition of the BaCuSeF layer and (2) the interface between the CdTe and BaCuSeF layers are important factors for the performance of the CdTe solar cells. We obtained high conversion efficiency of 8.31% for a solar cell with a BaCuSeF layer deposited at TS = 200 °C on a CdTe surface etched in a NH3 aqueous solution. The highest conversion efficiency of 9.91% was obtained for a solar cell with a CdTe surface etched in a bromide-bromate solution.

  7. Preparation and characterization of conductive and transparent ruthenium dioxide sol-gel films.

    Science.gov (United States)

    Allhusen, John S; Conboy, John C

    2013-11-27

    RuO2 conductive thin films were synthesized using the sol-gel method and deposited onto transparent insulating substrates. The optical transmission, film thickness, surface morphology and composition, resistivity, and spectroelectrochemical performance have been characterized. The optical transmission values of these films ranged from 70 to 89% in the visible region and from 56 to 88% in the infrared region. Resistivity values of the RuO2 sol-gel films varied from 1.02 × 10(-3) to 1.13 Ω cm and are highly dependent on the initial solution concentration of RuO2 in the sol-gel. The RuO2 sol-gel films were used as electrodes for the electrochemical oxidation and reduction of ferrocenemethanol. The electrochemical behavior of our novel RuO2 sol-gel films was compared to that of a standard platinum disk electrode and showed no appreciable differences in the half-wave potential (E1/2). The mechanical and chemical stability of the coatings was tested by physical abrasion and exposure to highly acidic, oxidizing Piranha solution. Repeated exposure to these extreme conditions did not result in any appreciable decline in electrochemical performance. Finally, the use of the novel RuO2 sol-gel conductive and transparent films was demonstrated in a spectroelectrochemistry experiment in which the oxidation and reduction of ferrocenemethanol was monitored via UV-vis spectroscopy as the applied potential was cycled.

  8. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    Science.gov (United States)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-01

    Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  9. Ultra-Smooth, Fully Solution-Processed Large-Area Transparent Conducting Electrodes for Organic Devices

    Science.gov (United States)

    Jin, Won-Yong; Ginting, Riski Titian; Ko, Keum-Jin; Kang, Jae-Wook

    2016-11-01

    A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻‑1), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days). The ME-TCE substrates were used to fabricate flexible organic solar cells and organic light-emitting diodes exhibiting devices efficiencies comparable to devices fabricated on ITO/glass substrates. Additionally, the flexibility of the organic devices did not degrade their performance even after being bent to a bending radius of ~1 mm. Our findings suggest that ME-TCEs are a promising alternative to indium tin oxide and show potential for application toward large-area optoelectronic devices via fully printing processes.

  10. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride for uric acid measurements

    Directory of Open Access Journals (Sweden)

    Vanessa F Cardoso, Pedro Martins, Gabriela Botelho, Luis Rebouta, Senentxu Lanceros-Méndez and Graca Minas

    2010-01-01

    Full Text Available Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride (β-PVDF. If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  11. Transparent conductive oxide films embedded with plasmonic nanostructure for light-emitting diode applications.

    Science.gov (United States)

    Chuang, Shih-Hao; Tsung, Cheng-Sheng; Chen, Ching-Ho; Ou, Sin-Liang; Horng, Ray-Hua; Lin, Cheng-Yi; Wuu, Dong-Sing

    2015-02-04

    In this study, a spin coating process in which the grating structure comprises an Ag nanoparticle layer coated on a p-GaN top layer of InGaN/GaN light-emitting diode (LED) was developed. Various sizes of plasmonic nanoparticles embedded in a transparent conductive layer were clearly observed after the deposition of indium tin oxide (ITO). The plasmonic nanostructure enhanced the light extraction efficiency of blue LED. Output power was 1.8 times the magnitude of that of conventional LEDs operating at 350 mA, but retained nearly the same current-voltage characteristic. Unlike in previous research on surface-plasmon-enhanced LEDs, the metallic nanoparticles were consistently deposited over the surface area. However, according to microstructural observation, ITO layer mixed with Ag-based nanoparticles was distributed at a distance of approximately 150 nm from the interface of ITO/p-GaN. Device performance can be improved substantially by using the three-dimensional distribution of Ag-based nanoparticles in the transparent conductive layer, which scatters the propagating light randomly and is coupled between the localized surface plasmon and incident light internally trapped in the LED structure through total internal reflection.

  12. Decoupling the refractive index from the electrical properties of transparent conducting oxides via periodic superlattices

    Science.gov (United States)

    Caffrey, David; Norton, Emma; Coileáin, Cormac Ó.; Smith, Christopher M.; Bulfin, Brendan; Farrell, Leo; Shvets, Igor V.; Fleischer, Karsten

    2016-09-01

    We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility while acting optically as an effective medium with a modified refractive index. Calculations indicate that, with our refractive index change of 0.2, a significant reduction of reflective losses could be obtained by the utilisation of these structures in optoelectronic devices. Beyond this, periodic superlattice structures present a solution to decouple physical properties where the underlying electronic interaction is governed by different length scales.

  13. Hopping conduction in p-type MoS{sub 2} near the critical regime of the metal-insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Park, Tae-Eon; Jang, Chaun, E-mail: cujang@kist.re.kr, E-mail: presto@kist.re.kr [Center for Spintronics, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Suh, Joonki; Wu, Junqiao [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Seo, Dongjea [Center for Spintronics, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Park, Joonsuk [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Lin, Der-Yuh [Department of Electronics Engineering, National Changhua University of Education, Changhua 50007, Taiwan (China); Huang, Ying-Sheng [Department of Electronics Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Choi, Heon-Jin [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Chang, Joonyeon, E-mail: cujang@kist.re.kr, E-mail: presto@kist.re.kr [Center for Spintronics, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Nanomaterials Science and Engineering, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2015-11-30

    We report on temperature-dependent charge and magneto transport of chemically doped MoS{sub 2}, p-type molybdenum disulfide degenerately doped with niobium (MoS{sub 2}:Nb). The temperature dependence of the electrical resistivity is characterized by a power law, ρ(T) ∼ T{sup −0.25}, which indicates that the system resides within the critical regime of the metal-insulator (M-I) transition. By applying high magnetic field (∼7 T), we observed a 20% increase in the resistivity at 2 K. The positive magnetoresistance shows that charge transport in this system is governed by the Mott-like three-dimensional variable range hopping (VRH) at low temperatures. According to relationship between magnetic-field and temperature dependencies of VRH resistivity, we extracted a characteristic localization length of 19.8 nm for MoS{sub 2}:Nb on the insulating side of the M-I transition.

  14. Highly Conductive Transparent Organic Electrodes with Multilayer Structures for Rigid and Flexible Optoelectronics

    OpenAIRE

    Guo, Xiaoyang; Liu, Xingyuan; Lin, Fengyuan; Li, Hailing; Fan, Yi; Zhang, Nan

    2015-01-01

    Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative transparent electrodes with excellent opto-electrical performance and mechanical flexibility will b...

  15. Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach

    Science.gov (United States)

    Kou, Pengfei; Yang, Liu; Chang, Cheng; He, Sailing

    2017-01-01

    Silver nanowire (Ag NW) networks have attracted wide attention as transparent electrodes for emerging flexible optoelectronics. However, the sheet resistance is greatly limited by large wire-to-wire contact resistances. Here, we propose a simple sunlight illumination approach to remarkably improve their electrical conductivity without any significant degradation of the light transmittance. Because the power density is extremely low (0.1 W/cm2, 1-Sun), only slight welding between Ag NWs has been observed. Despite this, a sheet resistance of <20 Ω/sq and transmittance of ~87% at wavelength of 550 nm as well as excellent mechanical flexibility have still been achieved for Ag NW networks after sunlight illumination for 1 hour or longer, which are significant upgrades over those of ITO. Slight plasmonic welding together with the associated self-limiting effect has been investigated by numerical simulations and further verified experimentally through varied solar concentrations. Due to the reduced resistance, high-performance transparent film heaters as well as efficient defrosters have been demonstrated, which are superior to the previously-reported Ag NW based film heaters. Since the sunlight is environmentally friendly and easily available, sophisticated or expensive facilities are not necessary. Our findings are particularly meaningful and show enormous potential for outdoor applications. PMID:28169343

  16. Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells.

    Science.gov (United States)

    La Notte, Luca; Villari, Enrica; Palma, Alessandro Lorenzo; Sacchetti, Alberto; Michela Giangregorio, Maria; Bruno, Giovanni; Di Carlo, Aldo; Bianco, Giuseppe Valerio; Reale, Andrea

    2017-01-07

    A five-layer (5L) graphene on a glass substrate has been demonstrated as a transparent conductive electrode to replace indium tin oxide (ITO) in organic photovoltaic devices. The required low sheet resistance, while maintaining high transparency, and the need of a wettable surface are the main issues. To overcome these, two strategies have been applied: (i) the p-doping of the multilayer graphene, thus reaching 25 Ω□(-1) or (ii) the O2-plasma oxidation of the last layer of the 5L graphene that results in a contact angle of 58° and a sheet resistance of 134 Ω□(-1). A Nd:YVO4 laser patterning has been implemented to realize the desired layout of graphene through an easy and scalable way. Inverted Polymer Solar Cells (PSCs) have been fabricated onto the patterned and modified graphene. The use of PEDOT:PSS has facilitated the deposition of the electron transport layer and a non-chlorinated solvent (ortho-xylene) has been used in the processing of the active layer. It has been found that the two distinct functionalization strategies of graphene have beneficial effects on the overall performance of the devices, leading to an efficiency of 4.2%. Notably, this performance has been achieved with an active area of 10 mm(2), the largest area reported in the literature for graphene-based inverted PSCs.

  17. Fabrication and structure characterization of ITO transparent conducting film by sol-gel technique

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-hua; REN Dong-yan

    2007-01-01

    Using In(NO3)3-5H2O and acetylacetone as raw materials and anhydrous SnCl4 as dopant, the transparent conducting indium tin oxide(ITO) films were prepared by sol-gel and dip-coating technique. The phase transformation, structure properties and physical properties (sheet resistance and transmittance) of the films were investigated by DTA-TG, XRD, SEM, four-probe method and UV-Vis spectrometry. The results indicate that it is feasible to fabricate ITO films on the quartz substrates by sol-gel technique, and the ITO films are formed by accumulating of particles with the size of several decades of nanometers. The prepared ITO film has cubic bixbyite structure, and (111) is its preferred plane. After five-times dip-coating, the ITO film has a thickness less than 150 nm, a sheet resistance of 110 Ω/□, a resistivity of 1.65×10-3 Ω-cm and a transparency of 90%.

  18. Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-09-01

    We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (>80%) and excellent sheet resistance (Rs zinc oxide (AZO) thin-film coatings, or platinum thin film coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (Voc = 720 mV) and short-circuit current-density (Jsc = 0.96 mA/cm2), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (Voc = 782 mV) and a decent short-circuit current (Jsc = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.

  19. Enhancing the electrical conductivity of carbon-nanotube-based transparent conductive films using functionalized few-walled carbon nanotubes decorated with palladium nanoparticles as fillers.

    Science.gov (United States)

    Li, Yu-An; Tai, Nyan-Hwa; Chen, Swe-Kai; Tsai, Tsung-Yen

    2011-08-23

    This work demonstrates the processing and characterization of the transparent and highly electrically conductive film using few-walled carbon nanotubes (FWCNTs) decorated with Pd nanoparticles as fillers. The approach included functionalizing the FWCNTs, immersing them in an aqueous solution of palladate salts, and subsequently subjecting them to a reduction reaction in H(2). Field-emission scanning electron microscopy and transmission electron microscopy images showed that the functionalized FWCNTs (f-FWCNTs) were decorated with uniform and homogeneous Pd nanoparticles with an average diameter of 5 nm. A shift of the G-band to a higher frequency in the Raman spectra of the Pd-decorated f-FWCNTs (Pd@f-FWCNTs) illustrates that the p-type doping effect was enhanced. X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy showed that PdCl(2) was the primary decoration compound on the f-FWCNTs prior to the reduction reaction and that Pd nanoparticles were the only decorated nanoparticles after H(2) reduction. The contact resistance between the metallic materials and the semiconducting CNTs in FWCNTs, controlled by the Schottky barrier, was significantly decreased compared to the pristine FWCNTs. The decrease in contact resistance is attributed to the 0.26 eV increase of the work function of the Pd@f-FWCNTs. Extremely low sheet resistance of 274 ohm/sq of the poly(ethylene terephthalate) substrates coated with Pd@f-FWCNTs was attained, which was 1/25 the resistance exhibited by those coated with FWCNTs, whereas the same optical transmittance of 81.65% at a wavelength of 550 nm was maintained. © 2011 American Chemical Society

  20. Effects of Concentration and Substrate Type on Structure and Conductivity of p-Type CuS Thin Films Grown by Spray Pyrolysis Deposition

    Science.gov (United States)

    Sabah, Fayroz A.; Ahmed, Naser M.; Hassan, Z.

    2016-09-01

    Copper sulphide (CuS) thin films were grown upon Ti, indium tin oxide (ITO), and glass substrates by using spray pyrolysis deposition at 200°C. The films exhibited good adhesion compared to chemical bath deposition. CuCl2·2H2O and Na2S2O3·5H2O precursors were used as Cu2+ and S2- sources, respectively. Two concentrations (i.e., 0.2 M and 0.4 M) were selected in this study. X-ray diffraction analysis reveals that the films with 0.2 M showed only the formation of a covellite CuS phase having a hexagonal crystal structure with diffraction peaks of low intensity. For 0.4 M concentration, in addition to the covellite CuS phase, chalcocite Cu2S phase having a hexagonal crystal structure also appeared with relatively higher intensity peaks for all thin films. Field-emission scanning electron microscopy observations showed the formation of small grains for 0.2 M, whereas a mixture of grains with square-like shape and nanoplates were formed for 0.4 M. Depending on the 0.2 M and 0.4 M thin films thicknesses (3.2 μm and 4 μm, respectively), the band gap energy was obtained from optical measurements to be approximately 2.64 eV for 0.2 M (pure CuS phase), which slightly decreased up to 2.56 eV for 0.4 M concentration. Hall effect measurements showed that all grown films are p-type. The 0.2 M film exhibited much lower sheet resistance (R sh = 33.96 Ω/Sq-55.70 Ω/Sq) compared to 0.4 M film (R sh = 104.33 Ω/Sq-466.6 Ω/Sq). Moreover, for both concentrations, the films deposited onto ITO substrate showed the lowest sheet resistance (R sh = 33.96 Ω/Sq-104.33 Ω/Sq).

  1. Effects of Concentration and Substrate Type on Structure and Conductivity of p-Type CuS Thin Films Grown by Spray Pyrolysis Deposition

    Science.gov (United States)

    Sabah, Fayroz A.; Ahmed, Naser M.; Hassan, Z.

    2017-01-01

    Copper sulphide (CuS) thin films were grown upon Ti, indium tin oxide (ITO), and glass substrates by using spray pyrolysis deposition at 200°C. The films exhibited good adhesion compared to chemical bath deposition. CuCl2·2H2O and Na2S2O3·5H2O precursors were used as Cu2+ and S2- sources, respectively. Two concentrations (i.e., 0.2 M and 0.4 M) were selected in this study. X-ray diffraction analysis reveals that the films with 0.2 M showed only the formation of a covellite CuS phase having a hexagonal crystal structure with diffraction peaks of low intensity. For 0.4 M concentration, in addition to the covellite CuS phase, chalcocite Cu2S phase having a hexagonal crystal structure also appeared with relatively higher intensity peaks for all thin films. Field-emission scanning electron microscopy observations showed the formation of small grains for 0.2 M, whereas a mixture of grains with square-like shape and nanoplates were formed for 0.4 M. Depending on the 0.2 M and 0.4 M thin films thicknesses (3.2 μm and 4 μm, respectively), the band gap energy was obtained from optical measurements to be approximately 2.64 eV for 0.2 M (pure CuS phase), which slightly decreased up to 2.56 eV for 0.4 M concentration. Hall effect measurements showed that all grown films are p-type. The 0.2 M film exhibited much lower sheet resistance ( R sh = 33.96 Ω/Sq-55.70 Ω/Sq) compared to 0.4 M film ( R sh = 104.33 Ω/Sq-466.6 Ω/Sq). Moreover, for both concentrations, the films deposited onto ITO substrate showed the lowest sheet resistance ( R sh = 33.96 Ω/Sq-104.33 Ω/Sq).

  2. 25th anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices.

    Science.gov (United States)

    Du, Jinhong; Pei, Songfeng; Ma, Laipeng; Cheng, Hui-Ming

    2014-04-02

    Carbon nanotube (CNT)- and graphene (G)-based transparent conductive films (TCFs) are two promising alternatives for commonly-used indium tin oxide-based TCFs for future flexible optoelectronic devices. This review comprehensively summarizes recent progress in the fabrication, properties, modification, patterning, and integration of CNT- and G-TCFs into optoelectronic devices. Their potential applications and challenges in optoelectronic devices, such as organic photovoltaic cells, organic light emitting diodes and touch panels, are discussed in detail. More importantly, their key characteristics and advantages for use in these devices are compared. Despite many challenges, CNT- and G-TCFs have demonstrated great potential in various optoelectronic devices and have already been used for some products like touch panels of smartphones. This illustrates the significant opportunities for the industrial use of CNTs and graphene, and hence pushes nanoscience and nanotechnology one step towards practical applications.

  3. Employment of gold-coated silver nanowires as transparent conductive electrode for organic light emitting diodes

    Science.gov (United States)

    Kim, Sunho; Kim, Bongsung; Im, Inseob; Kim, Dongjae; Lee, Haeseong; Nam, Jaewook; Chung, Ho Kyoon; Lee, Hoo-Jeong; Cho, Sung Min

    2017-08-01

    This study proposes a simple method of Au coating on silver nanowires (Ag NWs) transparent conductive films as the anode of organic light emitting diodes (OLED) to increase the work function of the film and thus enhance hole transport. We carefully engineer the process conditions (pretreatment, solution concentrations, and coating number) of the coating using a diluted HAuCl4 solution on the Ag NWs film to minimize etching damage on Ag NWs accompanying the galvanic replacement reaction. Ultraviolet photoelectron spectroscopy and Kelvin probe force microscopy show work function increase of Ag NWs upon Au coating. OLED devices based on Au-coated Ag NWs show a lower turn-on voltage and higher luminance, compared with pristine Ag NWs device. Although the Ag NWs device displays poor efficiencies in the low luminance range due to a high leakage, some of the Au-coated Ag NWs devices showed efficiencies higher than those of the ITO device in a high luminance.

  4. PSS resin-fortified polythiophene nanoparticles for highly transparent conducting films.

    Science.gov (United States)

    Lee, Sun Jong; Oh, Ki Nam; Lee, Jung Min; Kim, Jung Hyun; Cheong, In Woo

    2010-10-01

    Polythiophene/poly(sodium 4-styrene sulfonate) (PT/PSS) composite nanoparticles having different particle size were prepared by Fe(3+)-catalyzed oxidative polymerization in aqueous medium. This facile method includes a FeCl3/H2O2 (catalyst/oxidant) combination system, which guarantees a high conversion (more than 95%) of thiophene monomers in various concentration of poly(styrene sulfonate) (PSS) with only a trace of FeCl3. Particle size of PT/PSS composite nanoparticles decreased from 134 nm to 26 nm as the concentration of PSS and H2O2 increased, and which was confirmed by SEM and CHDF analyses. The poly(ethylene terephthalate) (PET) film coated with PT/PSS was transparent and showed a high conductivity in a dried state. The sheet resistivity decreased as the ratio of PT to PSS increased. Photoluminescence property of the PT/PSS composite nanoparticles was also investigated.

  5. Transparent conducting film: Effect of vacuum filtration of carbon nanotube suspended in oleum

    Indian Academy of Sciences (India)

    Tsuyoshi Saotome; Hansang Kim; Zhe Wang; David Lashmore; H Thomas Hahn

    2011-07-01

    Vacuum filtration process to fabricate a transparent conducting carbon nanotube (CNT) film is reported. A CNT mat, which is a fibrous sheet of long multi-walled carbon nanotubes (MWNT), was prepared and dispersed in oleum by solution-sonication. The suspension was then vacuum filtered to obtain a thin MWNT layer with improved dispersion. Sheet resistance of the obtained MWNT layer was increased despite the improved dispersion. SEM micrographs and energy dispersive spectroscopy results indicated that the increase of the sheet resistance could be attributed to degradation and oxidation of the MWNT bundles. Though the chemical approach in this study did not improve the electrical property of the CNT mat, a mechanical approach proposed in our recent work was deemed suitable to enhance optical and electrical properties of the CNT mat.

  6. Study on Ag mesh/conductive oxide hybrid transparent electrode for film heaters

    Science.gov (United States)

    Kwon, Namyong; Kim, Kyohyeok; Heo, Jinhee; Yi, Insook; Chung, Ilsub

    2014-07-01

    Ag mesh-indium tin oxide (ITO) hybrid transparent conductive films were fabricated and evaluated for use in film heaters. PS monolayer templates were prepared using highly mono-dispersed PS spheres (11.2 μm) obtained by a filtering process with micro-sieves. At first, three Ag meshes with different sheet resistances (20, 100, and 300 Ω sq-1) and transmittances (70, 73, and 76%) were evaluated for film heaters in terms of voltage and long-term stability. Subsequently, in an effort to obtain better transmittance, Ag mesh-ITO hybrid heaters were fabricated utilizing finite ITO depositions. At the optimised ITO thickness (15 nm), the sheet resistance and the transmittance were 300 Ω sq-1 and 88%, respectively, which indicates that this material is a good potential candidate for an efficient defroster in vehicles.

  7. Solution synthesis and characterization of indium-zinc formate precursors for transparent conducting oxides.

    Science.gov (United States)

    Pasquarelli, Robert M; Curtis, Calvin J; Miedaner, Alexander; van Hest, Maikel F A M; O'Hayre, Ryan P; Ginley, David S

    2010-06-21

    A series of In-Zn formate mixtures were investigated as potential precursors to amorphous In-Zn-oxide (IZO) for transparent conducting oxide (TCO) applications. These mixtures were prepared by neutralization from formic acid and characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction, and thermogravimetry-differential scanning calorimetry (TG-DSC) measurements. Thermal analysis revealed that a mixture of In and Zn formates reduced the overall decomposition temperature compared to the individual constituents and that OH-substitution enhanced the effect. In terms of precursor feasibility, it was demonstrated that the decomposition products of In-Zn formate could be directed toward oxidation or reduction by controlling the decomposition atmosphere or with solution acid additives. For TCO applications, amorphous IZO films were prepared by ultrasonic spray deposition from In-Zn formate solutions with annealing at 300-400 degrees C.

  8. Preparation of ITO transparent conductive film by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-hua; REN Dong-yan

    2006-01-01

    The ITO transparent conductive films were prepared on substrate of quartz glass by sol-gel method. The raw materials were nitrate indium, acetylacetone and the dopant of anhydrous chloride (SnCl4). The process from gel to crystalline film and the microstructure of the films were investigated by DTA-TG, XRD and SEM. The influence of preparation processes on the electricity performance of the films was also studied by four-probe apparatus. The results show that the crystallization process of ITO xerogel completes when the heat treatment temperature reaches 600 ℃. The ITO films possesses on vesicular structures accumulated by spherical particles, and both heat treatment temperature and cooling rate have important effects on the resistivity ofITO films.

  9. Roll-offset printed transparent conducting electrode for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inyoung, E-mail: ikim@kimm.re.kr; Kwak, Sun-Woo; Ju, Yeonkyeong; Park, Gun-Young; Lee, Taik-Min; Jang, Yunseok; Choi, Young-Man; Kang, Dongwoo

    2015-04-01

    Transparent conducting electrodes (TCEs) were developed through the roll-offset printing of Ag grid mesh patterns for the application of all-solution processed organic solar cells (OSCs). Due to the remarkable printability of roll-offset printing, the printed TCEs did not show the step coverage problem of subsequent thin layers, which was a chronic problem in other printing techniques. The control of ink cohesion was verified as a critical factor for the high printing quality, which was optimized by adding a polyurethane diol of 2 wt.%. The tensile strength of optimized Ag ink was 322 mN, which led to the clear patterning of Ag nanoparticles. The printed TCEs with different mesh densities of the Ag grid were designed to have a similar property of indium tin oxide (ITO). The measured sheet resistance was 13 Ω/□, and optical transmittance was 86%, including the glass substrate, which was found to be independent of wavelength in the visible spectrum, in contrast with the optical transmittance of ITO. To evaluate the TCE performance as bottom electrodes, all-solution processed OSCs were fabricated on top of the TCEs. The power conversion efficiency (PCE) of the OSCs increased with the increments of the mesh density due to the distinctive increase of the short circuit current density (J{sub sc}), notwithstanding the similar transmittance and sheet resistance of the TCEs. In comparison with ITO, a higher PCE of OSCs was obtained because the printed TCEs with a high mesh density were able to facilitate effective current collection, leading to a significant increase of J{sub sc}. - Highlights: • Roll-offset printing provided a remarkable printability of Ag nano-ink. • Control of ink cohesion played a critical role on the patterning of Ag nano-ink. • Printed Ag mesh was used as a transparent conducting electrode. • Transparency and sheet resistance of printed Ag mesh can be designed simply. • Printed Ag mesh was effective for the current collection of organic

  10. Bromination of Graphene: A New Route to Making High Performance Transparent Conducting Electrodes with Low Optical Losses

    KAUST Repository

    Mansour, Ahmed

    2015-07-22

    The unique optical and electrical properties of graphene have triggered great interest in its application as a transparent conducting electrode material and significant effort has been invested in achieving high conductivity while maintaining transparency. Doping of graphene has been a popular route for reducing its sheet resistance, but this has typically come at a significant cost in optical transmission. We demonstrate doping of few layers graphene with bromine as a means of enhancing the conductivity via intercalation without major optical losses. Our results demonstrate the encapsulation of bromine leads to air-stable transparent conducting electrodes with five-fold improvement of sheet resistance reaching at the cost of only 2-3% loss of optical transmission. The remarkably low tradeoff in optical transparency leads to the highest enhancements in the figure of merit reported thus far for FLG. Furthermore, we tune the workfunction by up to 0.3 eV by tuning the bromine content. These results should help pave the way for further development of graphene as a potential substitute to transparent conducting polymers and metal oxides used in optoelectronics, photovoltaics and beyond.

  11. Dipole-induced conductivity enhancement by n-type inclusion in a p-type system: α-Fe₂O₃-PEDOT:PSS nanocomposites.

    Science.gov (United States)

    Raccis, R; Wortmann, L; Ilyas, S; Schläfer, J; Mettenbörger, A; Mathur, S

    2014-08-07

    Hematite (α-Fe2O3) nanoparticles of two different shapes but of same size (ca. 40 nm) were dispersed in PEDOT:PSS matrices in various concentration ranges (0-7 wt%) to study the consequent changes in conductivity in the dark and under solar illumination conditions. Within a distinct range of concentration, a distinct increase in the conductivity was observed for both spherical and cubical particle population. We ascribed this effect to the generalized Poole-Frenkel theory of conduction in conjunction with the basic depletion width properties of heterojunctions and electrostatic dipole moments, and verified our assumptions through data fitting. A difference in conductivity between sphere- and cube-based α-Fe2O3-PEDOT:PSS nanocomposites was also observed and ascribed to the electrostatic edge effect on the nanoparticles. The dispersion of α-Fe2O3 nanocrystals was confirmed by high-resolution electron microscopy, whereas the electrical properties and modulations thereof were followed by recording current-voltage characteristics.

  12. Structural stability of transparent conducting films assembled from length purified single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Harris; G. R. S. Iyer; D. O. Simien; J. A. Fagan; J. Y. Huh; J. Y. Chung; S. D. Hudson; J. Obrzut; J. F. Douglas; C. M. Stafford; E. K. Hobbie

    2011-01-01

    Single-wall carbon nanotube (SWCNT) films show significant promise for transparent electronics applications that demand mechanical flexibility, but durability remains an outstanding issue. In this work, thin membranes of length purified single-wall carbon nanotubes (SWCNTs) are uniaxially and isotropically compressed by depositing them on prestrained polymer substrates. Upon release of the strain, the topography, microstructure, and conductivity of the films are characterized using a combination of optical/fluorescence microscopy, light scattering, force microscopy, electron microscopy, and impedance spectroscopy. Above a critical surface mass density, films assembled from nanotubes of well-defined length exhibit a strongly nonlinear mechanical response. The measured strain dependence reveals a dramatic softening that occurs through an alignment of the SWCNTs normal to the direction of prestrain, which at small strains is also apparent as an anisotropic increase in sheet resistance along the same direction. At higher strains, the membrane conductivities increase due to a compression-induced restoration of conductive pathways. Our measurements reveal the fundamental mode of elasto-plastic deformation in these films and suggest how it might be suppressed.

  13. A simple and innovative route to electrosynthesis of Eu2O3 nanoparticles and its nanocomposite with p-type conductive polymer: Characterisation and electrochemical properties.

    Science.gov (United States)

    Mohammad Shiri, H; Ehsani, A

    2016-07-01

    Conductive polymers are usually used as an electrode in redox supercapacitor. However, due to accumulation of stress on polymer during repeating charge-discharge process, the cycle life of pure conductive polymer is poor, which needs to be further improved. For this purpose, combining conventional conductive polymers active material and nanomaterials to fabricate hybrid electrode has been considered to be one of the efficient avenues. In this paper, a simple and rapid electrochemical method has been carried out to prepare Eu2O3 nanoparticles and hybrid POAP/Eu2O3 to serve as the active electrode for electrochemical supercapacitor. Structural and morphological characterisations of Eu2O3 and composite film were carried out using powder X-ray diffraction, field emission scanning electron microscopy and energy dispersion of X-rays. Their electrochemical properties were also investigated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The as-prepared composites had excellent properties in the specific capacitance and a coulombic efficiency of 95%. The as-prepared composites had excellent properties in the capacitance, and its specific capacitance was up to 375Fg(-1) and a coulombic efficiency of 95%. This work introduces new nanocomposite materials for electrochemical redox capacitors with advantages including ease synthesis, high active surface area and stability in an aqueous electrolyte.

  14. Effective passivation of Ag nanowire-based flexible transparent conducting electrode by TiO2 nanoshell

    Science.gov (United States)

    Lee, Dong Geon; Lee, Dongjun; Yoo, Jin Sun; Lee, Sangwook; Jung, Hyun Suk

    2016-08-01

    Silver nanowire-based flexible transparent electrodes have critical problem, in spite of their excellent electrical and optical properties, that the electrical conductance and transparency degrade within several days in air because of oxidation of silver. To prevent the degradation of the silver nanowire, we encapsulated Ag-NWs with thin TiO2 barrier. Bar-coated silver nanowires on flexible polymer substrate were laminated at 120 °C, followed by atomic layer deposition of TiO2 nanoshell. With 20 nm of TiO2 nanoshells on silver nanowires, the transparent electrode keeps its electrical and optical properties over 2 months. Moreover, the TiO2-encapsulated silver nanowire-based transparent electrodes exhibit excellent bending durability.

  15. Silver Nanowire-IZO-Conducting Polymer Hybrids for Flexible and Transparent Conductive Electrodes for Organic Light-Emitting Diodes

    Science.gov (United States)

    Yun, Ho Jun; Kim, Se Jung; Hwang, Ju Hyun; Shim, Yong Sub; Jung, Sun-Gyu; Park, Young Wook; Ju, Byeong-Kwon

    2016-01-01

    Solution-processed silver nanowire (AgNW) has been considered as a promising material for next-generation flexible transparent conductive electrodes. However, despite the advantages of AgNWs, some of their intrinsic drawbacks, such as large surface roughness and poor interconnection between wires, limit their practical application in organic light-emitting diodes (OLEDs). Herein, we report a high-performance AgNW-based hybrid electrode composed of indium-doped zinc oxide (IZO) and poly (3,4-ethylenediowythiophene):poly(styrenesulfonate) [PEDOT:PSS]. The IZO layer protects the underlying AgNWs from oxidation and corrosion and tightly fuses the wires together and to the substrate. The PEDOT:PSS effectively reduces surface roughness and increases the hybrid films’ transmittance. The fabricated electrodes exhibited a low sheet resistance of 5.9 Ωsq−1 with high transmittance of 86% at 550 nm. The optical, electrical, and mechanical properties of the AgNW-based hybrid films were investigated in detail to determine the structure-property relations, and whether optical or electrical properties could be controlled with variation in each layer’s thickness to satisfy different requirements for different applications. Flexible OLEDs (f-OLEDs) were successfully fabricated on the hybrid electrodes to prove their applicability; their performance was even better than those on commercial indium doped tin oxide (ITO) electrodes. PMID:27703182

  16. Bromination of graphene: a new route to making high performance transparent conducting electrodes with low optical losses

    KAUST Repository

    Mansour, Ahmed

    2015-09-03

    The high optical transmittance, electrical conductivity, flexibility and chemical stability of graphene have triggered great interest in its application as a transparent conducting electrode material and as a potential replacement for indium doped tin oxide. However, currently available large scale production methods such as chemical vapor deposition produce polycrystalline graphene, and require additional transfer process which further introduces defects and impurities resulting in a significant increase in its sheet resistance. Doping of graphene with foreign atoms has been a popular route for reducing its sheet resistance which typically comes at a significant loss in optical transmission. Herein, we report the successful bromine doping of graphene resulting in air-stable transparent conducting electrodes with up to 80% reduction of sheet resistance reaching ~180 Ω/ at the cost of 2-3% loss of optical transmission in case of few layer graphene and 0.8% in case of single layer graphene. The remarkably low tradeoff in optical transparency leads to the highest enhancements in figure of merit reported thus far. Furthermore, our results show a controlled increase in the workfunction up to 0.3 eV with the bromine content. These results should help pave the way for further development of graphene as potentially a highly transparent substitute to other transparent conducting electrodes in optoelectronic devices.

  17. Activation of visible up-conversion luminescence in transparent and conducting ZnO:Er:Yb films by laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Lluscà, M., E-mail: marta.llusca@ub.edu [Department of Applied Physics and Optics, Universitat de Barcelona, Barcelona 08028 (Spain); López-Vidrier, J. [Department of Electronics, Universitat de Barcelona, Barcelona 08028 (Spain); Lauzurica, S.; Sánchez-Aniorte, M.I. [Centro Laser, Universidad Politécnica de Madrid, Madrid 28031 (Spain); Antony, A. [Department of Applied Physics and Optics, Universitat de Barcelona, Barcelona 08028 (Spain); Indian Institute of Technology Bombay, Mumbai 400076 (India); Molpeceres, C. [Centro Laser, Universidad Politécnica de Madrid, Madrid 28031 (Spain); Hernández, S.; Garrido, B. [Department of Electronics, Universitat de Barcelona, Barcelona 08028 (Spain); Bertomeu, J. [Department of Applied Physics and Optics, Universitat de Barcelona, Barcelona 08028 (Spain)

    2015-11-15

    Transparent and conducting ZnO:Er:Yb thin films with visible up-conversion (660-nm emission under 980-nm excitation) were fabricated by RF magnetron sputtering. The as-deposited films were found to be transparent and conducting and the activation of the Er ions in these films to produce up-conversion luminescence was achieved by different post-deposition annealing treatments in air, vacuum or by laser annealing using a Nd:YVO{sub 4} laser. The structural, electrical and optical properties and the up-conversion efficiency of these films were found to be strongly influenced by the annealing method, and a detailed study is reported in this paper. It has been demonstrated that, although the air annealing was the most efficient in terms of up-conversion, laser annealing was the only method capable of activating Er ions while preserving the electrical conductivity of the doped films. It has been shown that a minimum energy was needed in laser annealing to optically activate the rare earth ions in the ZnO host material to produce up-conversion. Up-converting and transparent conducting ZnO:Er:Yb films with an electrical resistivity of 5×10{sup −2} Ω cm and transparency ~80% in the visible wavelength range has been achieved by laser annealing. - Highlights: • Transparent and conducting ZnO:Er:Yb films were grown via magnetron sputtering. • Post-annealing ZnO:Er:Yb is needed to optically activate Er ions. • Visible up-conversion emission at 660 nm is observed under 980 nm excitation. • A transparent and conducting up-converter is achieved by laser annealing.

  18. A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels

    Science.gov (United States)

    Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo

    2016-02-01

    We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07657a

  19. Thermal durability of AZO/Ag(Al)/AZO transparent conductive films

    Science.gov (United States)

    Sugimoto, Yukiko; Igarashi, Kanae; Shirasaki, Shinya; Kikuchi, Akihiko

    2016-04-01

    Effects of Al doping on surface morphology, sheet resistance, optical transmission spectra, and thermal durability of a thin Ag layer and AZO/Ag/AZO dielectric/metal/dielectric (DMD) transparent conductive films (TCFs) were investigated. The 1.7 at. % Al doping suppressed the initial island growth of a thin Ag layer and the plasmon resonant absorption dip in the optical transmission spectra. The threshold thickness of percolation conductivity was reduced from 9-10 (pure Al layer) to 5-6 nm (1.7 at. % Al-doped Ag layer). Al doping in the Ag layer improved the thermal durability of AZO/Ag/AZO-DMD TCFs. The threshold temperature for Ag void formation increased from 400 °C (DMD with pure Ag layer) to 600 °C (DMD with a 10.5 at. % Al-doped Ag layer). The optimum annealing temperature increased from 300 °C (DMD with a pure Ag layer) to 500 °C (DMD with a 10.5 at. % Al-doped Ag layer). Maximum figures of merit (FOM) were 0.5 × 10-2 and 1.1 × 10-2 Ω-1 for the DMD with a pure Ag layer and that with a 10.5 at. % Al-doped Ag layer, respectively.

  20. Nanoscale Chemical and Electrical Stabilities of Graphene-covered Silver Nanowire Networks for Transparent Conducting Electrodes

    Science.gov (United States)

    Kim, Seong Heon; Choi, Woon Ih; Kim, Kwang Hee; Yang, Dae Jin; Heo, Sung; Yun, Dong-Jin

    2016-09-01

    The hybrid structure of Ag nanowires (AgNWs) covered with graphene (Gr) shows synergetic effects on the performance of transparent conducting electrodes (TCEs). However, these effects have been mainly observed via large-scale characterization, and precise analysis at the nanoscale level remains inadequate. Here, we present the nanoscale verification and visualization of the improved chemical and electrical stabilities of Gr-covered AgNW networks using conductive atomic force microscopy (C-AFM), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) combined with the gas cluster ion beam (GCIB) sputtering technique. Specifically by transferring island Gr on top of the AgNW network, we were able to create samples in which both covered and uncovered AgNWs are simultaneously accessible to various surface-characterization techniques. Furthermore, our ab initio molecular dynamics (AIMD) simulation elucidated the specific mechanistic pathway and a strong propensity for AgNW sulfidation, even in the presence of ambient oxidant gases.

  1. Silver nanowire-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells

    Science.gov (United States)

    Ye, Neng; Yan, Jielin; Xie, Shuang; Kong, Yuhan; Liang, Tao; Chen, Hongzheng; Xu, Mingsheng

    2017-07-01

    Silver nanowires (AgNWs) and graphene are both promising candidates as a transparent conductive electrode (TCE) to replace expensive and fragile indium tin oxide (ITO) TCE. A synergistically optimized performance is expected when the advantages of AgNWs and graphene are combined. In this paper, the AgNW-graphene hybrid electrode is constructed by depositing a graphene layer on top of the network of AgNWs. Compared with the pristine AgNWs electrode, the AgNW-graphene TCE exhibits reduced sheet resistance, lower surface roughness, excellent long-term stability, and corrosion resistance in corrosive liquids. The graphene layer covering the AgNWs provides additional conduction pathways for electron transport and collection by the electrode. Benefiting from these advantages of the hybrid electrodes, we achieve a power conversion efficiency of 8.12% of inverted organic solar cells using PTB7:PC71BM as the active layer, which is compared to that of the solar cells based on standard ITO TCE but about 10% higher than that based on AgNWs TCE.

  2. Nanoscale Chemical and Electrical Stabilities of Graphene-covered Silver Nanowire Networks for Transparent Conducting Electrodes.

    Science.gov (United States)

    Kim, Seong Heon; Choi, Woon Ih; Kim, Kwang Hee; Yang, Dae Jin; Heo, Sung; Yun, Dong-Jin

    2016-09-13

    The hybrid structure of Ag nanowires (AgNWs) covered with graphene (Gr) shows synergetic effects on the performance of transparent conducting electrodes (TCEs). However, these effects have been mainly observed via large-scale characterization, and precise analysis at the nanoscale level remains inadequate. Here, we present the nanoscale verification and visualization of the improved chemical and electrical stabilities of Gr-covered AgNW networks using conductive atomic force microscopy (C-AFM), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) combined with the gas cluster ion beam (GCIB) sputtering technique. Specifically by transferring island Gr on top of the AgNW network, we were able to create samples in which both covered and uncovered AgNWs are simultaneously accessible to various surface-characterization techniques. Furthermore, our ab initio molecular dynamics (AIMD) simulation elucidated the specific mechanistic pathway and a strong propensity for AgNW sulfidation, even in the presence of ambient oxidant gases.

  3. Edge isolation of transparent conductive polymer (TCP) thin films on flexible substrates using UV laser ablation.

    Science.gov (United States)

    Hsiao, Wen-Tse; Tseng, Shih-Feng; Huang, Kuo-Cheng; Chiang, Donyau; Chen, Ming-Fei

    2012-06-01

    The purpose of this study was to directly use the writing techniques for the complex electrode edge isolation of transparent conductive polymer (TCP) thin films by a nanosecond pulsed UV laser processing system. The processing parameters including the laser pulse energy, the pulse repetition frequency, and the scan speed of galvanometers were examined to ablate the TCP films deposited on polyethylene terephtalate substrates of 188 microm thick. The thickness of TCP films was approximately 20 nm. The laser pulse repetition frequency and the scan speed of galvanometers were applied to calculate the overlapping rate of laser spots and to discuss the patterning region quality. Surface morphology, edge quality, and width and depth of edge isolated patterning structures after laser ablation process were measured by a three-dimensional confocal laser scanning microscope. In addition, the electrical conductivity of ablated TCP films was measured by a four-point probes instrument. After isolated line patterning was formed, the ablated TCP films with a better edge quality were obtained directly when the overlapping rate of laser spots, the scan speed, and the pulse repetition rate were 83.3%, 200 mm/s, and 40 kHz, respectively. The better surface morphology of electrode pattern structures was also obtained when the scan speed and the pulse repetition rate were 500 mm/s and 40 kHz, respectively.

  4. Radio-frequency-transparent, electrically conductive graphene nanoribbon thin films as deicing heating layers.

    Science.gov (United States)

    Volman, Vladimir; Zhu, Yu; Raji, Abdul-Rahman O; Genorio, Bostjan; Lu, Wei; Xiang, Changsheng; Kittrell, Carter; Tour, James M

    2014-01-08

    Deicing heating layers are frequently used in covers of large radio-frequency (RF) equipment, such as radar, to remove ice that could damage the structures or make them unstable. Typically, the deicers are made using a metal framework and inorganic insulator; commercial resistive heating materials are often nontransparent to RF waves. The preparation of a sub-skin-depth thin film, whose thickness is very small relative to the RF skin (or penetration) depth, is the key to minimizing the RF absorption. The skin depth of typical metals is on the order of a micrometer at the gigahertz frequency range. As a result, it is very difficult for conventional conductive materials (such as metals) to form large-area sub-skin-depth films. In this report, we disclose a new deicing heating layer composite made using graphene nanoribbons (GNRs). We demonstrate that the GNR film is thin enough to permit RF transmission. This metal-free, ultralight, robust, and scalable graphene-based RF-transparent conductive coating could significantly reduce the size and cost of deicing coatings for RF equipment covers. This is important in many aviation and marine applications. This is a demonstration of the efficacy and applicability of GNRs to afford performances unattainable by conventional materials.

  5. ITO/ATO bilayer transparent electrodes with enhanced light scattering, thermal stability and electrical conductance

    Science.gov (United States)

    Guillén, C.; Montero, J.; Herrero, J.

    2016-10-01

    Transparent electrodes based on In2O3:Sn (ITO) and SnO2:Sb (ATO) thin films have been deposited by sputtering at room temperature on soda lime glass (SLG) substrates. The preparation conditions were adjusted to obtain 250 nm-thick ITO layers with high conductivity and textured ATO coatings with various thicknesses from 80 to 200 nm. These ITO and ATO films have been combined to enhance the optical scattering and the electrical conductivity of the bilayer electrodes. Besides, a suitable ATO coating can prevent the oxidation of the ITO underlayer, thus increasing the stability of the overall electrical performance. With this purpose the structure, morphology, optical and electrical properties have been analysed comparatively for SLG/ITO, SLG/ATO and SLG/ITO/ATO samples after heating in air at 500 °C, studying the influence of the ATO layer thickness on the light scattering and thermal stability of the electrodes. In this way, a minimum sheet resistance of 8 Ω/sq has been achieved with a 120 nm-thick ATO film deposited on the 250 nm-thick ITO layer; such stacked electrode has visible transmittance near 80% and average haze HT = 10%, showing superior stability, light scattering and electrical performance than the isolated ITO and ATO films.

  6. Flexural Capability of Patterned Transparent Conductive Substrate by Performing Electrical Measurements and Stress Simulations

    Directory of Open Access Journals (Sweden)

    Chang-Chun Lee

    2016-10-01

    Full Text Available The suitability of stacked thin films for next-generation display technology was analyzed based on their properties and geometrical designs to evaluate the mechanical reliability of transparent conducting thin films utilized in flexural displays. In general, the high bending stress induced by various operation conditions is a major concern regarding the mechanical reliability of indium–tin–oxide (ITO films deposited on polyethylene terephthalate (PET substrates; mechanical reliability is commonly used to estimate the flexibility of displays. However, the pattern effect is rarely investigated to estimate the mechanical reliability of ITO/PET films. Thus, this study examined the flexible content of patterned ITO/PET films with two different line widths by conducting bending tests and sheet resistance measurements. Moreover, a stress–strain simulation enabled by finite element analysis was performed on the patterned ITO/PET to explore the stress impact of stacked film structures under various levels of flexural load. Results show that the design of the ITO/PET film can be applied in developing mechanically reliable flexible electronics.

  7. Flexibility of the Indium Tin Oxide Transparent Conductive Film Deposited Onto the Plastic Substrate

    Directory of Open Access Journals (Sweden)

    Shao-Kai Lu

    2014-03-01

    Full Text Available In this study, we utilize the RF magnetron sputtering system to deposit the indium tin oxide (ITO conductive transparent film with low resistivity and high light transmittance to the polyethylene tetephthalate (PET plastic substrate and measure the film’s bending property and reliability at different tensile/compressive strain bending curvatures as well as the flexibility after cycling bending. The results show that the critical curvatures corresponded to the significant increase in the resistance of the 150 nm-thick ITO film deposited onto the PET substrate under tensile and compressive stress areO 14.1 mm and 5.4 mm, respectively. By observing the film’s surface crack and morphology, we can further discover that the critical curvature of the crack generated when the film is bent is quite consistent with the critical curvature at which the conductivity property degrades, and the film can withstand a higher compressive strain bending. In addition, the resistance and adhesion behavior of the film almost is unchanged after cycling bent for 1000 times with the curvature below the critical curvature.

  8. Fabrication of transparent and conductive carbon nanotube/polyvinyl butyral films by a facile solution surface dip coating method

    Science.gov (United States)

    Li, Yuanqing; Yu, Ting; Pui, Tzesian; Chen, Peng; Zheng, Lianxi; Liao, Kin

    2011-06-01

    We present a simple solution surface dip coating method for fabricating transparent and conductive carbon nanotube/polyvinyl butyral (CNT/PVB) composite films. This fabrication process is simple to scale production and requires only ethanol and water as solvents, which is green and environment friendly.We present a simple solution surface dip coating method for fabricating transparent and conductive carbon nanotube/polyvinyl butyral (CNT/PVB) composite films. This fabrication process is simple to scale production and requires only ethanol and water as solvents, which is green and environment friendly. Electronic supplementary information (ESI) available: Experimental section. See DOI: 10.1039/c1nr10302d

  9. Three-dimensionally embedded indium tin oxide (ITO) films in photosensitive glass: a transparent and conductive platform for microdevices

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S.; Sugioka, K.; Midorikawa, K. [RIKEN - Advanced Science Institute, Laser Technology Laboratory, Saitama (Japan); Koroesi, L.; Dekany, I. [University of Szeged, Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, Szeged (Hungary)

    2011-02-15

    A new method for embedding transparent and conductive two- and three-dimensional microstructures in glass is presented. We show that the internal surface of hollow structures fabricated by femtosecond-laser direct writing inside the photosensitive glass can be coated by indium tin oxide (Sn-doped In{sub 2}O{sub 3}, ITO) using a sol-gel process. The idea of combining two transparent materials with different electrical properties, i.e., insulating and conductive, is very promising and hence it opens new prospects in manufacturing cutting edge microdevices, such as lab-on-a-chips (LOCs) and microelectromechanical systems (MEMS). (orig.)

  10. Polymer assisted solution processing of Ti-doped indium oxide transparent conducting thin films for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanath, Sujaya Kumar [Division of Advanced Materials Engineering, Kongju National University, Cheonan, Chungchungnam-do 331-717 (Korea, Republic of); Jin, Won-Yong [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kang, Jae-Wook, E-mail: jwkang@jbnu.ac.kr [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Jihoon, E-mail: jihoon.kim@kongju.ac.kr [Division of Advanced Materials Engineering, Kongju National University, Cheonan, Chungchungnam-do 331-717 (Korea, Republic of)

    2015-05-15

    Highlights: • Polymer assisted solution process. • Ti-doped indium oxide (TIO) transparent conducting films. • Replacement of sputtered ITO with polymer-assisted-solution-coated TIO films. • High mobility transparent conducting films. • Application of polymer-assisted-solution-coated TIO films to organic solar cells. - Abstract: We report the preparation and evaluation of Ti-doped indium oxide (TIO) transparent conducting films by a polymer-assisted solution (PAS) process, as well as the evaluation of this type of film as a transparent cathode in an inverted organic solar cell (IOCS). Both Ti- and In-PASs have been synthesized by coordinating Ti- and In-anionic complexes with polyethyleneimine. The final TIO–PAS was formed by mixing Ti-PAS into In-PAS with a Ti concentration between 1 at.% and 7 at.%. The TIO–PAS was spin-coated onto glass substrates to form uniform thin films of Ti-doped indium oxide, which were then annealed at high temperature. The optimum Ti concentration to achieve the best electrical and optical properties of PAS–TIO films was found to be 3 at.%. With the film thickness of 650 nm, PAS–TIO films had a sheet resistance of 65 Ω/sq and an optical transmittance greater than 85%. The feasibility of PAS-coated TIO thin film as a transparent electrode was evaluated by applying it to the fabrication of IOSCs, which showed the energy conversion efficiency of 4.60%.

  11. On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study

    Energy Technology Data Exchange (ETDEWEB)

    Slassi, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Naji, S. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Department of Physics, Faculty of Science, Ibb University, Ibb (Yemen); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); El Kenz, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-08-25

    Highlights: • The incorporation of Al in ZnO increases the optical band edge absorption. • Incorporated Al creates shallow donor states of Al-3s around Fermi level. • Transmittance decreases in the visible and IR regions, while it increases in the UV region. • Electrical conductivity increases and reaches almost the saturation for high concentration of Al. - Abstract: We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.

  12. PEDOT:PSS Nanofilms Fabricated by a Nonconventional Coating Method for Uses as Transparent Conducting Electrodes in Flexible Electrochromic Devices

    Directory of Open Access Journals (Sweden)

    Kanyanee Sanglee

    2017-01-01

    Full Text Available Nanofilms of a polymer mixer of two ionomers, poly 3,4-ethylenedioxythiophene:poly(styrene sulfonic acid (PEDOT:PSS, were used as conducting materials to develop transparent conducting electrodes. It was firstly found that convective deposition, a versatile and wide-area coating method, could be used for the coating and acid treatment of PEDOT:PSS films. Electrical conductivity of the PEDOT:PSS films was significantly enhanced up to 1814 S/cm by only one-time surface treatment by a mild acid solution (4 M methanesulfonic acid. This is because some PSS chains were removed out from the polymer mixer films without damage on the substrates. UV-vis-NIR spectroscopy, Raman spectroscopy, and cyclic voltammetry were used to characterize the acid-treated transparent conducting films. In this report, obtained transparent conducting PEDOT:PSS films on polyester substrates were used as flexible electrodes for fabrication of flexible electrochromic devices. Poly(3-hexylthiophene (P3HT was used as an active layer, which its color changed reversibly from transparent-light blue to purple with a small applied voltage (±3 V.

  13. 2D Graphene Oxide Nanosheets as an Adhesive Over-Coating Layer for Flexible Transparent Conductive Electrodes

    Science.gov (United States)

    Moon, In Kyu; Kim, Jae Il; Lee, Hanleem; Hur, Kangheon; Kim, Woon Chun; Lee, Hyoyoung

    2013-01-01

    In recent, highly transparent and flexible, two-dimensional (2D) graphene oxide (GO) nanosheet has been paid attention for various applications. Due to an existence of a large amount of oxygen functional groups, the single 2D GO nanosheet has an insulating, transparent, highly dispersible in the eco-friendly water, and hydrophilic property that has strong adhesion to the hydrophilic surface, which will be the best candidate for the use of an over-coating layer (OCL) and protecting layer for a conductive nanowire based indium-free transparent conductive film (TCF). The ultrathin 2D adhesive GO OCL nanosheet is expected to tightly hold silver nanowires (AgNWs), reduce sheet resistance and produce uniform TCF, providing complete solution that simultaneously solves a high haze, low transparency with a conventional OCL and mechanical instability in cases without a thick OCL. Our novel 2D insulating and hydrophilic GO OCL successfully provided a large-area, flexible, and highly transparent AgNW TCF.

  14. Nanostructures and thin films of transparent conductive oxides studied by perturbed angular correlations

    CERN Document Server

    Barbosa, M B; Redondo-Cubero, A; Miranda, S M C; Simon, R; Kessler, P; Brandt, M; Henneberger, F; Nogales, E; Méndez, B; Johnston, K; Alves, E; Vianden, R; Araújo, J P; Lorenz, K; Correia, J G

    2013-01-01

    The versatility of perturbed angular correlations (PAC) in the study of nanostructures and thin films is demonstrated, namely for the specific cases of ZnO/Cd$_x$Zn$_{1-x}$O thin films and Ga$_2$O$_3$ powder pellets and nanowires, examples of transparent conductive oxides. PAC measurements as a function of annealing temperature were performed after implantation of $^{111m}$Cd$/^{111}$Cd (T$_{1/2}$=48$\\,$min.) and later compared to density functional theory simulations. For ZnO, the substitution of Cd probes at Zn sites was observed, as well as the formation of a probe-defect complex. The ternary Cd$_x$Zn$_{1-x}$O (x=0.16) showed good macroscopic crystal quality but revealed some clustering of local defects around the probe Cd atoms, which could not be annealed. In the Ga$_2$O$_3$ samples, the substitution of the Cd probes in the octahedral Ga-site was observed, demonstrating the potential of ion-implantation for the doping of nanowires.

  15. Amorphous-nanocrystalline Al doped ZnO transparent conducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Betriu, X., E-mail: xdiezbetriu@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco 28049 Madrid (Spain); Jimenez-Rioboo, R.; Marcos, J. Sanchez-; Cespedes, E.; Espinosa, A.; Andres, A. de [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco 28049 Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Al- doped ZnO films by RF- sputtering as amorphous TCO. Black-Right-Pointing-Pointer Structural characterization confirms amorphous-nanocrystalline nature of samples. Black-Right-Pointing-Pointer Optical gap dependence on substrate and grain size. Black-Right-Pointing-Pointer Resistivity correlates to the optical bandgap. - Abstract: Al-doped ZnO films have been deposited at room temperature by means of RF sputtering under different conditions and subjected to annealing treatments looking for amorphous Transparent Conducting Oxide (TCO) films in the search for their integration into the emerging area of the flexible electronics. Structural studies have been performed as well as optical and electrical characterization. Spectroscopic ellipsometry has been used for the determination of the optical gap for films grown on Si and the films thickness. The amorphous fraction of the films (up to 86%) depends on the substrate and RF power but not on the annealing temperature up to 600 Degree-Sign C for glass substrates. The resistivity is found to be independent of the amorphous degree and correlates to the optical bandgap which presents three regimes depending on the annealing temperature.

  16. Growth-controlled surface roughness in Al-doped ZnO as transparent conducting oxide.

    Science.gov (United States)

    Lee, Joon Hwan; Chou, Chia-Yun; Bi, Zhenxing; Tsai, Chen-Fong; Wang, Haiyan

    2009-09-30

    The surface morphology of Al(2)O(3)-doped ZnO (AZO, 2 wt%) thin films varies from a uniform layer to nanorod structure by simply controlling oxygen pressure during growth. All AZO films were deposited on sapphire(0001) substrates using a pulsed laser deposition (PLD) technique. In the low oxygen pressure regime (vacuum approximately 50 mTorr), AZO films grow as a smooth and uniform layer. In the high oxygen pressure regime (100-250 mTorr) AZO thin films with nanorods have formed. Detailed cross-sectional transmission electron microscopy (TEM) and x-ray diffraction (XRD) studies reveal that, besides the obvious variation in the film morphology, the in-plane d spacing of AZO film increases and the out-of-plane d spacing decreases, as oxygen pressure increases. A bilayer AZO film with a nanorod structure on top of a uniform layer was demonstrated by controlling the oxygen pressure for the two layers. Electrical resistivity and optical transmittance measurements were carried out to correlate with the microstructures obtained under different oxygen pressures. The bilayer AZO films could find applications as a transparent conducting oxide (TCO) with a unique light trapping function in thin film solar cells.

  17. Growth of oriented vanadium pentaoxide nanostructures on transparent conducting substrates and their applications in photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongjiang [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi 1295, Changning, Shanghai 200050 (China); Gao, Yanfeng, E-mail: gaosic@gmail.com [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi 1295, Changning, Shanghai 200050 (China); School of Materials Science and Engineering, Shanghai University, Shangda Rd. 99, Baoshan, Shanghai 200444 (China); Zhou, Jiadong [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi 1295, Changning, Shanghai 200050 (China); Liu, Xinling [School of Materials Science and Engineering, Shanghai University, Shangda Rd. 99, Baoshan, Shanghai 200444 (China); Chen, Zhang; Cao, Chuanxiang [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi 1295, Changning, Shanghai 200050 (China); Luo, Hongjie [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi 1295, Changning, Shanghai 200050 (China); School of Materials Science and Engineering, Shanghai University, Shangda Rd. 99, Baoshan, Shanghai 200444 (China); Kanehira, Minoru [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi 1295, Changning, Shanghai 200050 (China)

    2014-06-01

    A novel, hydrothermal and hard-template-free method was developed for the first time to grow oriented, single-crystalline monoclinic VO{sub 2} (B) flower-like nanorod films on transparent conductive fluorine-doped tin oxide (FTO) substrates. The length and morphology of the nanorods can be tuned by changing the growth parameters, such as growth time and initial precursor concentration. The flower-like V{sub 2}O{sub 5} films were obtained after post-calcination treatment of VO{sub 2} (B) films. The photocatalytic activity of V{sub 2}O{sub 5} films was investigated by the degradation of methylene blue (MB) under UV and visible light. The prepared V{sub 2}O{sub 5} film exhibited good photocatalytic performance (74.6% and 63% under UV and visible light for 210 min, respectively) and more practical application in industry. - Graphical abstract: Flower nanostructured vanadium oxide film was prepared by hydrothermal reaction for photocatalysis application. - Highlights: • Monoclinic VO{sub 2} nanorod array and flower-like nanostructure were directly grown on FTO substrate by hydrothermal reaction. • The growth mechanism was analyzed by FESEM at different time. • V{sub 2}O{sub 5} flower-like nanostructure film was obtained after calcining VO{sub 2} film. • V{sub 2}O{sub 5} film exhibited good light activity and potential application in photocatalysis.

  18. Optoelectrochemical biorecognition by optically transparent highly conductive graphene-modified fluorine-doped tin oxide substrates.

    Science.gov (United States)

    Lamberti, F; Brigo, L; Favaro, M; Luni, C; Zoso, A; Cattelan, M; Agnoli, S; Brusatin, G; Granozzi, G; Giomo, M; Elvassore, N

    2014-12-24

    Both optical and electrochemical graphene-based sensors have gone through rapid development, reaching high sensitivity at low cost and with fast response time. However, the complex validating biochemical operations, needed for their consistent use, currently limits their effective application. We propose an integration strategy for optoelectrochemical detection that overcomes previous limitations of these sensors used separately. We develop an optoelectrochemical sensor for aptamer-mediated protein detection based on few-layer graphene immobilization on selectively modified fluorine-doped tin oxide (FTO) substrates. Our results show that the electrochemical properties of graphene-modified FTO samples are suitable for complex biological detection due to the stability and inertness of the engineered electrodic interface. In addition, few-layer immobilization of graphene sheets through electrostatic linkage with an electrochemically grafted FTO surface allows obtaining an optically accessible and highly conductive platform. As a proof of concept, we used insulin as the target molecule to reveal in solution. Because of its transparency and low sampling volume (a few microliters), our sensing unit can be easily integrated in lab-on-a-chip cell culture systems for effectively monitoring subnanomolar concentrations of proteins relevant for biomedical applications.

  19. Silver Nanowire Transparent Conductive Electrodes for High-Efficiency III-Nitride Light-Emitting Diodes

    Science.gov (United States)

    Oh, Munsik; Jin, Won-Yong; Jun Jeong, Hyeon; Jeong, Mun Seok; Kang, Jae-Wook; Kim, Hyunsoo

    2015-09-01

    Silver nanowires (AgNWs) have been successfully demonstrated to function as next-generation transparent conductive electrodes (TCEs) in organic semiconductor devices owing to their figures of merit, including high optical transmittance, low sheet resistance, flexibility, and low-cost processing. In this article, high-quality, solution-processed AgNWs with an excellent optical transmittance of 96.5% at 450 nm and a low sheet resistance of 11.7 Ω/sq were demonstrated as TCEs in inorganic III-nitride LEDs. The transmission line model applied to the AgNW contact to p-GaN showed that near ohmic contact with a specific contact resistance of ~10-3 Ωcm2 was obtained. The contact resistance had a strong bias-voltage (or current-density) dependence: namely, field-enhanced ohmic contact. LEDs fabricated with AgNW electrodes exhibited a 56% reduction in series resistance, 56.5% brighter output power, a 67.5% reduction in efficiency droop, and a approximately 30% longer current spreading length compared to LEDs fabricated with reference TCEs. In addition to the cost reduction, the observed improvements in device performance suggest that the AgNWs are promising for application as next-generation TCEs, to realise brighter, larger-area, cost-competitive inorganic III-nitride light emitters.

  20. Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    Kamlesh Patel

    2015-07-01

    Full Text Available In this paper, the structure of a graphene/silicon heterojunction solar cell has been studied under simulated conditions. The parameters of the cell’s layers have been optimized by using AFORS-HET software. Instead of reported 2D nature, we considered graphene as 3D in nature. To ensure the formation of Schottky junction, electrical contacts were made along c-axis to collect the minority carriers, which generate upon illumination. By optimizing the various parameters of n-type multilayer graphene, we achieved the best-simulated cell with the power conversion efficiency of 7.62 % at room temperature. Up to 40 layers of n-type graphene, the efficiency found to be constant and enhanced only to 7.623 %. After further optimization of the parameters of p-crystalline silicon wafer, a maximum efficiency of 11.23 % has been achieved. Temperature dependence on the cell performance has also been studied and an efficiency of 11.38 % has been achieved at 270 K. Finally, we have demonstrated that n-type multilayer graphene can act as an excellent transparent conducting electrode.

  1. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells.

    Science.gov (United States)

    Patil, Bhushan R; Mirsafaei, Mina; Cielecki, Paweł Piotr; Cauduro, André Luis Fernandes; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2017-10-06

    In this work, development of semi-transparent electrodes for efficient large area organic solar cells (OSCs) has been demonstrated. Electron beam evaporated silver grids were embedded in commercially available ITO coatings on glass, through a standard negative photolithography process, in order to improve the conductivity of planar ITO substrates. The fabricated electrodes with embedded line and square patterned Ag grids reduced the sheet resistance of ITO by 25% and 40%, respectively, showing optical transmittance drops of less than 6% within the complete visible light spectrum for both patterns. Solution processed bulk heterojunction OSCs based on PTB7:[70]PCBM were fabricated on top of these electrodes with cell areas of 4.38 cm(2), and the performance of these OSCs was compared to reference cells fabricated on pure ITO electrodes. The Fill Factor (FF) of the large-scale OSCs fabricated on ITO with embedded Ag grids was enhanced by 18% for the line grids pattern and 30% for the square grids pattern compared to that of the reference OSCs. The increase in the FF was directly correlated to the decrease in the series resistance of the OSCs. The maximum power conversion efficiency (PCE) of the OSCs was measured to be 4.34%, which is 23% higher than the PCE of the reference OSCs. As the presented method does not involve high temperature processing, it could be considered a general approach for development of large area organic electronics on solvent resistant, flexible substrates.

  2. Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes.

    Science.gov (United States)

    Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong

    2016-01-20

    Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs.

  3. Green synthesis of silver-graphene nanocomposite-based transparent conducting film

    Science.gov (United States)

    Chamoli, Pankaj; Das, Malay K.; Kar, Kamal K.

    2017-06-01

    In the present work, silver nanoparticles (Ag NPs)/graphene nanocomposite has been synthesized successfully by simple solvothermal method via green route. Citric acid is used as green reducing agent for the reduction of graphene oxide (GO) and Ag ions. Silver nitrate is used as a precursor material for Ag NPs. As synthesized Ag NPs/graphene nanocomposite has been characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infra-red spectroscopy, UV-vis spectroscopy, thermal gravimetric analysis, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy. Experimental results confirm the reduction of GO and the successful formation of Ag NPs decorated graphene nanosheets. In addition, spray coating technique is employed for the fabrication of transparent conducting films. Enhancement in the optoelectrical signatures has been achieved using thermal graphitization of fabricated films. Thermal graphitization at 800 °C for 1 h marks the best performance of fabricated film with sheet resistance of 3.4 kΩ/□ and transmittance (550 nm) of 66.40%, respectively.

  4. Chemical mechanical polishing of transparent conductive layers using spherical cationic polymer microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shoji, E-mail: nagaoka@kmt-iri.go.jp [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Ryu, Naoya [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Yamanouchi, Akio [Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Shirosaki, Tomohiro [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Horikawa, Maki [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Sakurai, Hideo; Takafuji, Makoto; Ihara, Hirotaka [Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan)

    2015-02-02

    Spherical cationic polymer microbeads were used to chemically mechanically polish transparent conductive oxide (TCO) layers without the need for inorganic abrasives. Poly(methyl acrylate) (PMA) was used as the polymer matrix. Surface cationization of the spherical PMA microbeads was achieved by aminolysis using 1,2-diaminoethane. The amino group content of the microbeads was controlled using the aminolysis reaction time. The surface roughness of the TCO polished using the cationic polymer microbeads was similar to that of TCO polished with an inorganic abrasive. The microbead-polished TCO layer was slightly thinner than the unpolished TCO layer. The sheet resistance of the TCO layer polished using the microbeads was lower than that polished using the inorganic abrasive. The TCO polishing ability of the microbeads was dependent on their cationic properties and softness. - Highlights: • Indium tin oxide (ITO) layer was planarized using cationic polymer microbeads. • Cationic polymer microbeads planarized, while retaining ITO layer thickness • Cationic polymer microbeads did not degrade the sheet resistance of ITO. • Cationic polymer microbeads could planarize the ITO surface without damaging.

  5. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells

    Science.gov (United States)

    Patil, Bhushan R.; Mirsafaei, Mina; Piotr Cielecki, Paweł; Fernandes Cauduro, André Luis; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2017-10-01

    In this work, development of semi-transparent electrodes for efficient large area organic solar cells (OSCs) has been demonstrated. Electron beam evaporated silver grids were embedded in commercially available ITO coatings on glass, through a standard negative photolithography process, in order to improve the conductivity of planar ITO substrates. The fabricated electrodes with embedded line and square patterned Ag grids reduced the sheet resistance of ITO by 25% and 40%, respectively, showing optical transmittance drops of less than 6% within the complete visible light spectrum for both patterns. Solution processed bulk heterojunction OSCs based on PTB7:[70]PCBM were fabricated on top of these electrodes with cell areas of 4.38 cm2, and the performance of these OSCs was compared to reference cells fabricated on pure ITO electrodes. The Fill Factor (FF) of the large-scale OSCs fabricated on ITO with embedded Ag grids was enhanced by 18% for the line grids pattern and 30% for the square grids pattern compared to that of the reference OSCs. The increase in the FF was directly correlated to the decrease in the series resistance of the OSCs. The maximum power conversion efficiency (PCE) of the OSCs was measured to be 4.34%, which is 23% higher than the PCE of the reference OSCs. As the presented method does not involve high temperature processing, it could be considered a general approach for development of large area organic electronics on solvent resistant, flexible substrates.

  6. Preparation, structure and optical properties of transparent conducting gallium-doped zinc oxide thin films

    Directory of Open Access Journals (Sweden)

    Gu J. H.

    2015-09-01

    Full Text Available Highly conductive gallium-doped zinc oxide (GZO transparent thin films were deposited on glass substrates by RF mag­netron sputtering. The deposited films were characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, four-point probe and UV-Vis spectrophotometer, respectively. The effect of growth temperature on the structure and optoelectrical properties of the films was investigated. The results demonstrate that high quality GZO films oriented with their crystal­lographic c-axis perpendicular to the substrates are obtained. The structure and optoelectrical properties of the films are highly dependent on the growth temperature. It is found that with increasing growth temperature, the average visible transmittance of the deposited films is enhanced and the residual stress in the thin films is obviously relaxed. The GZO films deposited at the growth temperature of 400°C, which have the largest grain size (74.3 nm, the lowest electrical resistivity (1.31×10-3 Ω·cm and the maximum figure of merit (1.46×1O-2Ω-1, exhibit the best optoelectrical properties. Furthermore, the optical proper­ties of the deposited films were determined by the optical characterization methods and the optical energy-gaps were evaluated by extrapolation method. A blue shift of the optical energy gap is observed with an increase in the growth temperature.

  7. Designing interlayers to improve the mechanical reliability of transparent conductive oxide coatings on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hye; Yang, Chan-Woo; Park, Jin-Woo [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-05-01

    In this study, we investigate the effect of interlayers on the mechanical properties of transparent conductive oxide (TCO) on flexible polymer substrates. Indium tin oxide (ITO), which is the most widely used TCO film, and Ti, which is the most widely used adhesive interlayer, are selected as the coating and the interlayer, respectively. These films are deposited on the polymer substrates using dc-magnetron sputtering to achieve varying thicknesses. The changes in the following critical factors for film cracking and delamination are analyzed: the internal stress ({sigma}{sup i}) induced in the coatings during deposition using a white light interferometer, the crystallinity using a transmission electron microscope, and the surface roughness of ITO caused by the interlayer using an atomic force microscope. The resistances to the cracking and delamination of ITO are evaluated using a fragmentation test. Our tests and analyses reveal the important role of the interlayers, which significantly reduce the compressive {sigma}{sup i} that is induced in the ITO and increase the resistance to the buckling delamination of the ITO. However, the relaxation of {sigma}{sup i} is not beneficial to cracking because there is less compensation for the external tension as {sigma}{sup i} further decreases. Based on these results, the microstructural control is revealed as a more influential factor than {sigma}{sup i} for improving crack resistance.

  8. Designing interlayers to improve the mechanical reliability of transparent conductive oxide coatings on flexible substrates

    Science.gov (United States)

    Kim, Eun-Hye; Yang, Chan-Woo; Park, Jin-Woo

    2012-05-01

    In this study, we investigate the effect of interlayers on the mechanical properties of transparent conductive oxide (TCO) on flexible polymer substrates. Indium tin oxide (ITO), which is the most widely used TCO film, and Ti, which is the most widely used adhesive interlayer, are selected as the coating and the interlayer, respectively. These films are deposited on the polymer substrates using dc-magnetron sputtering to achieve varying thicknesses. The changes in the following critical factors for film cracking and delamination are analyzed: the internal stress (σi) induced in the coatings during deposition using a white light interferometer, the crystallinity using a transmission electron microscope, and the surface roughness of ITO caused by the interlayer using an atomic force microscope. The resistances to the cracking and delamination of ITO are evaluated using a fragmentation test. Our tests and analyses reveal the important role of the interlayers, which significantly reduce the compressive σi that is induced in the ITO and increase the resistance to the buckling delamination of the ITO. However, the relaxation of σi is not beneficial to cracking because there is less compensation for the external tension as σi further decreases. Based on these results, the microstructural control is revealed as a more influential factor than σi for improving crack resistance.

  9. Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells

    Science.gov (United States)

    Patel, Kamlesh; Tyagi, Pawan K.

    2015-07-01

    In this paper, the structure of a graphene/silicon heterojunction solar cell has been studied under simulated conditions. The parameters of the cell's layers have been optimized by using AFORS-HET software. Instead of reported 2D nature, we considered graphene as 3D in nature. To ensure the formation of Schottky junction, electrical contacts were made along c-axis to collect the minority carriers, which generate upon illumination. By optimizing the various parameters of n-type multilayer graphene, we achieved the best-simulated cell with the power conversion efficiency of 7.62 % at room temperature. Up to 40 layers of n-type graphene, the efficiency found to be constant and enhanced only to 7.623 %. After further optimization of the parameters of p-crystalline silicon wafer, a maximum efficiency of 11.23 % has been achieved. Temperature dependence on the cell performance has also been studied and an efficiency of 11.38 % has been achieved at 270 K. Finally, we have demonstrated that n-type multilayer graphene can act as an excellent transparent conducting electrode.

  10. UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires.

    Science.gov (United States)

    Gao, J; Chen, R; Li, D H; Jiang, L; Ye, J C; Ma, X C; Chen, X D; Xiong, Q H; Sun, H D; Wu, T

    2011-05-13

    Multifunctional single crystalline tin-doped indium oxide (ITO) nanowires with tuned Sn doping levels are synthesized via a vapor transport method. The Sn concentration in the nanowires can reach 6.4 at.% at a synthesis temperature of 840 °C, significantly exceeding the Sn solubility in ITO bulks grown at comparable temperatures, which we attribute to the unique feature of the vapor-liquid-solid growth. As a promising transparent conducting oxide nanomaterial, layers of these ITO nanowires exhibit a sheet resistance as low as 6.4 Ω/[Symbol: see text] and measurements on individual nanowires give a resistivity of 2.4 × 10(-4) Ω cm with an electron density up to 2.6 × 10(20) cm(-3), while the optical transmittance in the visible regime can reach ∼ 80%. Under the ultraviolet excitation the ITO nanowire samples emit blue light, which can be ascribed to transitions related to defect levels. Furthermore, a room temperature ultraviolet light emission is observed in these ITO nanowires for the first time, and the exciton-related radiative process is identified by using temperature-dependent photoluminescence measurements.

  11. Silver nanowires for transparent conductive electrode to GaN-based light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gyu-Jae; Lee, Jae-Hwan; Han, Sang-Hyun; Lee, Sung-Nam, E-mail: snlee@kpu.ac.kr [Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of); Jin, Won-Yong; Kang, Jae-Wook, E-mail: jwkang@jbnu.ac.kr [Department of Flexible and Printable Electronics, Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2015-01-19

    Transparent, conductive, and uniform Ag nanowires (NWs) were introduced to improve the optical performance of GaN-based light-emitting diodes (LEDs) by a spin-coating technique. The Ag NWs acted as a current spreading layer, exhibiting high transmittance and low sheet resistance, and ultimately leading to high performance GaN-based LEDs with an ultra large size of 5 × 5 mm{sup 2}. Compared to the transmittance of conventional LEDs without Ag NWs, the relative transmittance of LEDs with Ag NWs was approximately 90% of the overall wavelength region. However, the electroluminescence (EL) intensity of LED with Ag NWs was much higher than that of conventional LEDs without Ag NWs for injection current above 45 mA. In addition, the EL full width at half maximum of LEDs with Ag NWs was much lower than that of conventional LEDs without Ag NWs. Based on these results, we believe that the enhanced optical performance of ultra large LEDs was due to an increase in the current spreading effect.

  12. The Effect of Annealing on Nanothick Indium Tin Oxide Transparent Conductive Films for Touch Sensors

    Directory of Open Access Journals (Sweden)

    Shih-Hao Chan

    2015-01-01

    Full Text Available This study aims to discuss the sheet resistance of ultrathin indium tin oxide (ITO transparent conductive films during the postannealing treatment. The thickness of the ultrathin ITO films is 20 nm. They are prepared on B270 glass substrates at room temperature by a direct-current pulsed magnetron sputtering system. Ultrathin ITO films with high sheet resistance are commonly used for touch panel applications. As the annealing temperature is increased, the structure of the ultrathin ITO film changes from amorphous to polycrystalline. The crystalline of ultrathin ITO films becomes stronger with an increase of annealing temperature, which further leads to the effect of enhanced Hall mobility. A postannealing treatment in an atmosphere can enhance the optical transmittance owing to the filling of oxygen vacancies, but the sheet resistance rises sharply. However, a higher annealing temperature, above 250°C, results in a decrease in the sheet resistance of ultrathin ITO films, because more Sn ions become an effective dopant. An optimum sheet resistance of 336 Ω/sqr was obtained for ultrathin ITO films at 400°C with an average optical transmittance of 86.8% for touch sensor applications.

  13. Enhanced Photocurrent Generation from Bacteriorhodopsin Photocells Using Grating-Structured Transparent Conductive Oxide Electrodes.

    Science.gov (United States)

    Kaji, Takahiro; Kasai, Katsuyuki; Haruyama, Yoshihiro; Yamada, Toshiki; Inoue, Shin-Ichiro; Tominari, Yukihiro; Ueda, Rieko; Terui, Toshifumi; Tanaka, Shukichi; Otomo, Akira

    2016-04-01

    We fabricated a grating-structured electrode made of indium-doped zinc oxide (IZO) with a high refractive index (approximately 2) for a bacteriorhodopsin (bR) photocell. We investigated the photocurrent characteristics of the bR photocell and demonstrated that the photocurrent values from the bR/IZO electrode with the grating structure with a grating period of 340 nm were more than 3.5-4 times larger than those without the grating structure. The photocurrent enhancement was attributed to the resonance effect due to light coupling to the grating structure as well as the scattering effect based on the experimental results and analysis using the photonic band structure determined using finite-difference time-domain (FDTD) simulations. The refractive index of the bR film in electrolyte solution (1.40) used in the FDTD simulations was estimated by analyzing the extinction peak wavelength of 20-nm gold colloids in the bR film. Our results indicate that the grating- or photonic-crystal-structured transparent conductive oxide (TCO) electrodes can increase the light use efficiency of various bR devices such as artificial photosynthetic devices, solar cells, and light-sensing devices.

  14. Investigation of nanostructured transparent conductive films grown by rotational-sequential-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jong-Hong, E-mail: jonghonglu@mail.mcut.edu.tw; Chen, Bo-Ying; Wang, Chih-Hsuan [Department of Materials Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist. New Taipei City 24301, Taiwan and Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist. New Taipei City 24301, Taiwan (China)

    2014-03-15

    This study fabricates three types of nanostructured conductive transparent films using a rotational-sequential-sputtering method. These films include (1) TiO{sub 2}/indium-tin oxide (ITO) and SiO{sub x}/ITO nanomultilayer films, the optical refractive indices of which can be manipulated in the range of 2.42–1.63 at a wavelength of 550 nm with a controlled resistivity range of 1 × 10{sup −3} to 2 × 10{sup −4} Ω·cm. (2) Multilayer ITO films are deposited on polyethylene terephthalate substrates, providing good flexibility and resistivity as low as 5 × 10{sup −4} Ω·cm. Finally, (3) ultrathin ITO films ranging from subnanometer to a few nanometers in thickness enable exploration of ITO film growth and thermal stability. X-ray reflection characterization provides a rapid, non-destructive method to measure the single-layer thicknesses of the nanomultilayer films and ultrathin ITO films at subnanoscale resolution.

  15. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, N G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Gudage, Y G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Ghosh, A [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Vyas, J C [Technical and Prototype Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai (MS) (India); Singh, F [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Tripathi, A [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Sharma, Ramphal [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India)

    2008-02-07

    We have examined the effect of swift heavy ions using 100 MeV Au{sup 8+} ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10{sup -4} {omega} cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.

  16. Metal Nanowires: Synthesis, Processing, and Structure-Property Relationships in the Context of Flexible Transparent Conducting Films

    Science.gov (United States)

    Rathmell, Aaron R.

    The demand for flat-panel televisions, e-readers, smart-phones, and touch-screens has been increasing over the past few years and will continue to increase for the foreseeable future. Each of these devices contains a transparent conductor, which is usually indium tin oxide (ITO) because of its high transparency and low sheet resistance. ITO films, however, are brittle, expensive, and difficult to deposit, and because of these problems, alternative transparent electrodes are being studied. One cheap and flexible alternative to ITO is films of randomly oriented copper nanowires. We have developed a synthesis to make long, thin, and well-dispersed copper nanowires that can be suspended in an ink and coated onto a substrate to make flexible transparent films. These films are then made conductive by annealing in a hydrogen atmosphere or by a solution processing technique that can be done in air at room temperature. The resulting flexible transparent conducting films display transparencies and sheet resistance values comparable to ITO. Since it is well known that copper oxidizes, we also developed a synthesis to coat the copper nanowires with a layer of nickel in solution. Our measurements indicated that copper nanowires would double their sheet resistance in 3 months, but the sheet resistance of cupronickel nanowire films containing 20 mole% nickel will double in about 400 years. The addition of nickel to the copper nanowires also gave the film a more neutral grey appearance. The nickel coating can also be applied to the copper nanowires after the film is formed via an electroless plating method. To further optimize the properties of our transparent conductors we developed a framework to understand how the dimensions and area coverage of the nanowires affect the overall film properties. To quantify the effect of length on the sheet resistance and transmittance, wires with different lengths but the same diameter were synthesized to make transparent conducting films and

  17. Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Simchi, Abdolreza; Fan, Zhiyong; Aashuri, Hossein

    2016-01-07

    We present a novel chemical procedure to prepare three-dimensional graphene networks (3DGNs) as a transparent conductive film to enhance the photovoltaic performance of PbS quantum-dot (QD) solar cells. It is shown that 3DGN electrodes enhance electron extraction, yielding a 30% improvement in performance compared with the conventional device.

  18. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide

    NARCIS (Netherlands)

    Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C.

    2016-01-01

    Flexible large-area organic light-emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin-doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are h

  19. Highly efficient and bendable organic solar cells using a three-dimensional transparent conducting electrode

    Science.gov (United States)

    Wang, Wei; Bae, Tae-Sung; Park, Yeon Hyun; Kim, Dong Ho; Lee, Sunghun; Min, Guanghui; Lee, Gun-Hwan; Song, Myungkwan; Yun, Jungheum

    2014-05-01

    A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area and low effective series resistance for hole transport, OSCs based on this 3D electrode exhibit a power conversion efficiency that is 11-22% higher than that achievable in OSCs by means of conventional planar ITO film-type electrodes. A record high efficiency of 6.74% can be achieved in a bendable OSC fabricated on a poly(ethylene terephthalate) substrate.A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area

  20. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yuankun, E-mail: yuan.kun.zhu@gmail.com [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080 (China); Plasma Applications Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Mendelsberg, Rueben J. [Plasma Applications Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Zhu Jiaqi, E-mail: zhujq@hit.edu.cn [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080 (China); Han Jiecai [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080 (China); Anders, Andre [Plasma Applications Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer High quality CdO:In films were prepared on glass by pulsed filtered cathodic arc. Black-Right-Pointing-Pointer 230 nm thick films show low resistivity of 7.23 Multiplication-Sign 10{sup -5} {Omega} cm and mobility of 142 cm{sup 2}/Vs. Black-Right-Pointing-Pointer In-doping significantly improves the conductivity and extends the transparent range. Black-Right-Pointing-Pointer Film crystalline quality is maintained with increasing In concentration. Black-Right-Pointing-Pointer The pulsed arc-grown CdO:In show excellent reproducibility of film properties. - Abstract: Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). It is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein-Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 Multiplication-Sign 10{sup -5} {Omega} cm, high electron mobility of 142 cm{sup 2}/Vs, and mean transmittance over 80% from 500 to 1250 nm (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.

  1. Copper:molybdenum sub-oxide blend as transparent conductive electrode (TCE) indium free

    Science.gov (United States)

    Hssein, Mehdi; Cattin, Linda; Morsli, Mustapha; Addou, Mohammed; Bernède, Jean-Christian

    2016-05-01

    Oxide/metal/oxide structures have been shown to be promising alternatives to ITO. In such structures, in order to decrease the high light reflection of the metal film it is embedded between two metal oxides dielectric. MoO3-x is often used as oxide due to its capacity to be a performing anode buffer layer in organic solar cells, while silver is the metal the most often used [1]. Some attempts to use cheaper metal such as copper have been done. However it was shown that Cu diffuses strongly into MoO3-x [2]. Here we used this property to grow simple new transparent conductive oxide (TCE), i.e., Cu: MoO3-x blend. After the deposition of a thin Cu layer, a film of MoO3-x is deposited by sublimation. An XPS study shows more than 50% of Cu is present at the surface of the structure. In order to limit the Cu diffusion an ultra-thin Al layer is deposited onto MoO3-x. Then, in order to obtain a good hole collecting contact with the electron donor of the organic solar cells, a second MoO3-x layer is deposited. After optimization of the thickness of the different layers, the optimum structure is as follow: Cu (12 nm) : MoO3-x (20 nm)/Al (0.5 nm)/ MoO3-x (10 nm). The sheet resistance of this structure is Rsq = 5.2 Ω/sq. and its transmittance is Tmax = 65%. The factor of merit ϕM = T10/Rsq. = 2.41 × 10-3 Ω-1, which made this new TCE promising as anode in organic solar cells. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  2. Effect of oxygen intercalation on properties of sputtered CuYO2 for potential use as -type transparent conducting films

    Indian Academy of Sciences (India)

    R Manoj; M Nisha; K A Vanaja; M K Jayaraj

    2008-02-01

    Transparent films of copper yttrium oxide doped with 2% calcium have been prepared by rf magnetron sputtering. The films show a conductivity of 8 Scm-1 on intercalation of oxygen at high pressure, which reduced the transparency in the visible region. The Ca-doped CuYO2 films before oxygen intercalation show an average transmission of about 60% which reduces to about 45% upon oxygen intercalation. The temperature dependence of the conductivity indicates semiconductor behaviour with low activation energy of 0.59 eV at room temperature. The positive sign of Seebeck coefficient (+274 VK-1) confirms the -type conductivity of the films. The optical bandgap of CuYO2 was found to be 3.15 eV.

  3. Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum-dot solar cells.

    Science.gov (United States)

    Xu, Zijie; Li, Teng; Zhang, Fayin; Hong, Xiaodan; Xie, Shuyao; Ye, Meidan; Guo, Wenxi; Liu, Xiangyang

    2017-03-17

    The rapid development of modern electronics has given rise to a higher demand for flexible and wearable energy sources. Flexible transparent conducting electrodes (TCEs) are one of the essential components of flexible/wearable thin-film solar cells (SCs). In this regard, we present highly transparent and conducting CuS-nanosheet (NS) networks with an optimized sheet resistance (Rs) as low as 50 Ω sq(-1) at 85% transmittance as a counter electrode (CE) for flexible quantum-dot solar cells (QDSCs). The CuS NS network electrode exhibits remarkable mechanical flexibility under bending tests compared to traditional ITO/plastic substrates and sputtered CuS films. Herein, CuS NS networks not only served as conducting films for collecting electrons from the external circuit, but also served as superior catalysts for reducing polysulfide (S(2-)/Sx(2-)) electrolytes. A power conversion efficiency (PCE) up to 3.25% was achieved for the QDSCs employing CuS NS networks as CEs, which was much higher than those of the devices based on Pt networks and sputtered CuS films. We believe that such CuS network TCEs with high flexibility, transparency, conductivity and catalytic activity could be widely used in making wearable electronic products.

  4. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    Science.gov (United States)

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  5. An epitaxial transparent conducting perovskite oxide: double-doped SrTiO3

    NARCIS (Netherlands)

    Ravichandran, Jayakanth; Siemons, W.; Heijmerikx, Herman; Huijben, Mark; Majumdar, Arun; Ramesh, Ramamoorthy

    2010-01-01

    Epitaxial thin films of strontium titanate doped with different concentrations of lanthanum and oxygen vacancies were grown on LSAT substrates by pulsed laser deposition technique. Films grown with 5−15% La doping and a critical growth pressure of 1−10 mTorr showed high transparency (>70−95%) in the

  6. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Mirsafaei, Mina; Cielecki, Pawel Piotr

    2017-01-01

    In this work, development of semi-transparent electrodes for efficient large area organic solar cells (OSCs) has been demonstrated. Electron beam evaporated silver grids were embedded in commercially available ITO coatings on glass, through a standard negative photolithography process, in order...

  7. Conductive polymer/fullerene blend thin films with honeycomb framework for transparent photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Cotlet, Mircea; Wang, Hsing-Lin; Tsai, Hsinhan; Xu, Zhihua

    2015-04-21

    Optoelectronic devices and thin-film semiconductor compositions and methods for making same are disclosed. The methods provide for the synthesis of the disclosed composition. The thin-film semiconductor compositions disclosed herein have a unique configuration that exhibits efficient photo-induced charge transfer and high transparency to visible light.

  8. Transparent conducting AZO and ITO films produced by pulsed laser ablation at 355 nm

    DEFF Research Database (Denmark)

    Thestrup, B.; Schou, Jørgen

    1999-01-01

    Thin films of aluminium-doped zinc oxide (AZO) and indium tin oxide (ITO) were deposited on glass substrates by laser ablation in an oxygen environment. The electrical and optical properties of films grown at various oxygen pressures were compared. With no substrate heating, highly transparent...

  9. Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules.

    Science.gov (United States)

    Liang, Yanyu; Frisch, Johannes; Zhi, Linjie; Norouzi-Arasi, Hassan; Feng, Xinliang; Rabe, Jürgen P; Koch, Norbert; Müllen, Klaus

    2009-10-28

    Transparent and highly conductive graphene electrodes have been fabricated through acetylene-assisted thermolysis of graphite oxide (GO) sheets. This novel procedure uses acetylene as a supplemental carbon source to repair substantial defects within GO sheets, leading to the enhancement of graphitization of synthesized graphene electrodes. The as-prepared graphene on quartz substrates exhibits an electrical conductivity of 1425 S cm(-1) with an optical transmittance of more than 70% at a wavelength of 500 nm. Such an acetylene-assisted thermal treatment approach is also adopted to fabricate graphene electrodes from synthetic nanographene molecules, with an almost five times increase in conductivity compared to samples prepared by the common thermal reduction.

  10. Infrared-optical spectroscopy of transparent conducting perovskite (La,Ba)SnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dongmin; Yu, Kwangnam; Jun Chang, Young; Choi, E. J., E-mail: echoi@uos.ac.kr [Department of Physics, University of Seoul, Seoul 130-743 (Korea, Republic of); Sohn, Egon; Hoon Kim, Kee [Center for Novel States of Complex Materials Research, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-01-13

    We have performed optical transmission, reflection, spectroscopic ellipsometry, and Hall effect measurements on the electron-doped La{sub x}Ba{sub 1–x}SnO{sub 3} (x = 0.04) transparent thin films. From the infrared Drude response and plasma frequency analysis we determine the effective mass of the conducting electron m* = 0.35m{sub 0}. In the visible-UV region the optical band gap shifts to high energy in (La,Ba)SnO{sub 3} by 0.18 eV compared with undoped BaSnO{sub 3} which, in the context of the Burstein-Moss analysis, is consistent with the infrared-m*. m* of BaSnO{sub 3} is compared with other existing transparent conducting oxides (TCO), and implication on search for high-mobility TCO compounds is discussed.

  11. Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@Ag Mixture Nanoparticle Pastes

    Directory of Open Access Journals (Sweden)

    Hyun Min Nam

    2017-05-01

    Full Text Available Transparent conducting electrode film is highly desirable for application in touch screen panels (TSPs, flexible and wearable displays, sensors, and actuators. A sputtered film of indium tin oxide (ITO shows high transmittance (90% at low sheet resistance (50 Ω/cm2. However, ITO films lack mechanical flexibility, especially under bending stress, and have limitation in application to large-area TSPs (over 15 inches due to the trade-off in high transmittance and low sheet resistance properties. One promising solution is to use metal mesh-type transparent conducting film, especially for touch panel application. In this work, we investigated such inter-related issues as UV imprinting process to make a trench layer pattern, the synthesis of core-shell-type Ag and Cu@Ag composite nanoparticles and their paste formulation, the filling of Ag and Cu@Ag mixture nanoparticle paste to the trench layer, and touch panel fabrication processes.

  12. Properties of transparent and conductive Al:ZnO/Au/Al:ZnO multilayers on flexible PET substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, T., E-mail: theodoros.dimopoulos@ait.ac.at [AIT-Austrian Institute of Technology, Energy Department, Photovoltaic Systems, Giefinggasse 2, 1210, Vienna (Austria); Bauch, M.; Wibowo, R.A.; Bansal, N. [AIT-Austrian Institute of Technology, Energy Department, Photovoltaic Systems, Giefinggasse 2, 1210, Vienna (Austria); Hamid, R. [AIT-Austrian Institute of Technology, Mobility Department, Electric Drive Technologies, Giefinggasse 2, 1210, Vienna (Austria); Auer, M.; Jäger, M. [NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler Straße 32, A-8160 Weiz (Austria); List-Kratochvil, E.J.W. [NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler Straße 32, A-8160 Weiz (Austria); Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2015-10-15

    Highlights: • Transparent, low resistive AZO/Au/AZO layers were sputtered on PET substrates. • AZO/Au/AZO has higher figure of merit than ITO for specific Au thicknesses. • The resistance of AZO/Au/AZO is stable against repetitive substrate bending. • AZO/Au/AZO electrode performance is comparable to ITO in light emitting diodes. - Abstract: We investigate the structural, electrical and optical properties of transparent electrodes, consisting of Al-doped ZnO (AZO) and ultrathin Au layers, sputtered on polyethylene terephthalate (PET). These electrodes are relevant for optoelectronic devices and thin film photovoltaics. When deposited on AZO, Au films as thin as 3 nm form electrically conductive, meandering structures, whereas uniform Au films are obtained from a thickness of 5 nm. The sheet resistance decreases with Au thickness, reaching 7 Ω for 11 nm-thick Au. AZO/Au/AZO trilayers combine lowest resistance with highest transparency, while their resistance stability against bending fatigue is superior to the Sn-doped In{sub 2}O{sub 3} (ITO) electrode. The figure of merit of AZO/Au/AZO is larger than of ITO for Au thickness equal to or larger than 9 nm. To demonstrate the applicability of the AZO/Au/AZO transparent electrode, simple organic light emitting diodes were fabricated and tested in comparison to PET/ITO standard substrates.

  13. Toward Highly Efficient Large-Area ITO-Free Organic Solar Cells with a Conductance-Gradient Transparent Electrode.

    Science.gov (United States)

    Zuo, Lijian; Zhang, Shuhua; Li, Hanying; Chen, Hongzheng

    2015-11-18

    Highly efficient large-area organic solar cells (OSCs) with power conversion efficiency up to 7.09%, and device area of 4 cm(2) are demonstrated on flexible substrates. A conductance- or thickness-gradient ultra-thin Ag-based transparent electrode is developed to better balance the light trapping and energy loss, owing to the inhomogeneous energy-loss density on the large OSC sheet. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Al-doped ZnO/Ag grid hybrid transparent conductive electrodes fabricated using a low-temperature process

    Energy Technology Data Exchange (ETDEWEB)

    An, Ha-Rim; Oh, Sung-Tag [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Kim, Chang Yeoul [Future Convergence Ceramic Division, Korea Institute Ceramic Engineering and Technology (KICET), Seoul 233-5 (Korea, Republic of); Baek, Seong-Ho [Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Park, Il-Kyu, E-mail: ikpark@ynu.ac.kr [Department of Electronic Engineering, Yeungnam University, Gyeongbuk 712-749 (Korea, Republic of); Ahn, Hyo-Jin, E-mail: hjahn@seoultech.ac.kr [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of)

    2014-12-05

    Highlights: • Al-doped ZnO/Ag transparent conductive electrode is fabricated at low temperature. • Performance of the hybrid transparent conductive electrode affected by the structure. • The performance enhancement mechanism is suggested. - Abstract: Al-doped ZnO (AZO)/Ag grid hybrid transparent conductive electrode (TCE) structures were fabricated at a low temperature by using electrohydrodynamic jet printing for the Ag grids and atomic layer deposition for the AZO layers. The structural investigations showed that the AZO/Ag grid hybrid structures consisted of Ag grid lines formed by Ag particles and the AZO layer covering the inter-spacing between the Ag grid lines. The Ag particles comprising the Ag grid lines were also capped by thin AZO layers, and the coverage of the AZO layers was increased with increasing the thickness of the AZO layer. Using the optimum thickness of AZO layer of 70 nm, the hybrid TCE structure showed an electrical resistivity of 5.45 × 10{sup −5} Ω cm, an optical transmittance of 80.80%, and a figure of merit value of 1.41 × 10{sup −2} Ω{sup −1}. The performance enhancement was suggested based on the microstructural investigations on the AZO/Ag grid hybrid structures.

  15. Amorphous and crystalline In{sub 2}O{sub 3}-based transparent conducting films for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Koida, Takashi [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2017-02-15

    We reported solar cells with reduced electrical and optical losses using hydrogen-doped In{sub 2}O{sub 3} (In{sub 2}O{sub 3}:H) transparent conducting layers with low sheet resistance and high transparence characteristics. The transparent conducting oxide (TCO) films were prepared by solid-phase crystallization of amorphous (a-) In{sub 2}O{sub 3}:H films grown by magnetron sputtering. The polycrystalline (poly-) In{sub 2}O{sub 3}:H films exhibited electron mobilities (over 100 cm{sup 2}V{sup -1} s{sup -1}) 2 and 3 times greater than those of conventional TCO films. This paper describes (i) the current status of the electrical properties of In{sub 2}O{sub 3}-based TCO; (ii) the structural and optoelectrical properties of the a-In{sub 2}O{sub 3}:H and poly-In{sub 2}O{sub 3}:H films, focusing on the inhomogeneity and stability characteristics of the films; and (iii) the electrical properties of bilayer TCO. The potential of these high mobility TCO films for solar cells was also described. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Preparation of Graphene Sheets by Electrochemical Exfoliation of Graphite in Confined Space and Their Application in Transparent Conductive Films.

    Science.gov (United States)

    Wang, Hui; Wei, Can; Zhu, Kaiyi; Zhang, Yu; Gong, Chunhong; Guo, Jianhui; Zhang, Jiwei; Yu, Laigui; Zhang, Jingwei

    2017-10-04

    A novel electrochemical exfoliation mode was established to prepare graphene sheets efficiently with potential applications in transparent conductive films. The graphite electrode was coated with paraffin to keep the electrochemical exfoliation in confined space in the presence of concentrated sodium hydroxide as the electrolyte, yielding ∼100% low-defect (the D band to G band intensity ratio, ID/IG = 0.26) graphene sheets. Furthermore, ozone was first detected with ozone test strips, and the effect of ozone on the exfoliation of graphite foil and the microstructure of the as-prepared graphene sheets was investigated. Findings indicate that upon applying a low voltage (3 V) on the graphite foil partially coated with paraffin wax that the coating can prevent the insufficiently intercalated graphite sheets from prematurely peeling off from the graphite electrode thereby affording few-layer (graphene sheets in a yield of as much as 60%. Besides, the ozone generated during the electrochemical exfoliation process plays a crucial role in the exfoliation of graphite, and the amount of defect in the as-prepared graphene sheets is dependent on electrolytic potential and electrode distance. Moreover, the graphene-based transparent conductive films prepared by simple modified vacuum filtration exhibit an excellent transparency and a low sheet resistance after being treated with NH4NO3 and annealing (∼1.21 kΩ/□ at ∼72.4% transmittance).

  17. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, Gary S.; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu, Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve; Hartmann, Sören; Jessen, Frank; Krogmann, Bianaca; Rickers, Christoph; Ruske, Manfred; Schwab, Holger; Bertram, Dietrich

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a

  18. Highly-stable and -flexible graphene/(CF3SO2)2NH/graphene transparent conductive electrodes for organic solar cells.

    Science.gov (United States)

    Seo, Sang Woo; Lee, Ha Seung; Shin, Dong Hee; Kim, Ju Hwan; Jang, Chan Wook; Kim, Jong Min; Kim, Sung; Choi, Suk-Ho

    2017-08-09

    We first employ highly-stable and -flexible (CF3SO2)2NH-doped graphene (TFSA/GR) and GR-encapsulated TFSA/GR (GR/TFSA/GR) transparent conductive electrodes (TCEs) prepared on polyethylene terephthalate substrates for flexible organic solar cells (OSCs). Compared to conventional indium tin oxide (ITO) TCEs, the TFSA-doped-GR TCEs show higher optical transmittance and larger sheet resistance. The TFSA/GR and GR/TFSA/GR TCEs show work functions of 4.89 ± 0.16 and 4.97 ± 0.18 eV, respectively, which are not only larger than those of the ITO TCEs but also indicate p-type doping of GR, and are therefore more suitable for anode TCEs of OSCs. In addition, typical GR/TFSA/GR-TCE OSCs are much more mechanically flexible than the ITO-TCE ones with their photovoltaic parameters being similar, as proved by bending tests as functions of cycle and curvature. © 2017 IOP Publishing Ltd.

  19. Highly-stable and -flexible graphene/(CF3SO2)2NH/graphene transparent conductive electrodes for organic solar cells

    Science.gov (United States)

    Seo, Sang Woo; Lee, Ha Seung; Shin, Dong Hee; Kim, Ju Hwan; Jang, Chan Wook; Kim, Jong Min; Kim, Sung; Choi, Suk-Ho

    2017-10-01

    We first employ highly-stable and -flexible (CF3SO2)2NH-doped graphene (TFSA/GR) and GR-encapsulated TFSA/GR (GR/TFSA/GR) transparent conductive electrodes (TCEs) prepared on polyethylene terephthalate substrates for flexible organic solar cells (OSCs). Compared to conventional indium tin oxide (ITO) TCEs, the TFSA-doped-GR TCEs show higher optical transmittance and larger sheet resistance. The TFSA/GR and GR/TFSA/GR TCEs show work functions of 4.89 ± 0.16 and 4.97 ± 0.18 eV, respectively, which are not only larger than those of the ITO TCEs but also indicate p-type doping of GR, and are therefore more suitable for anode TCEs of OSCs. In addition, typical GR/TFSA/GR-TCE OSCs are much more mechanically flexible than the ITO-TCE ones with their photovoltaic parameters being similar, as proved by bending tests as functions of cycle and curvature.

  20. Characterization of transparent conductive oxide films and their effect on amorphous/crystalline silicon heterojunction solar cells

    Science.gov (United States)

    Meng, Fanying; Shi, Jianhua; Shen, Leilei; Zhang, Liping; Liu, Jinning; Liu, Yucheng; Yu, Jian; Bao, Jian; Liu, Zhengxin

    2017-04-01

    Three different dopant indium oxide thin films were fabricated at low temperatures by reactive plasma deposition and sputtering. The optical and electrical characteristics of these films were analyzed as a function of the Hall electron concentration. Furthermore, these films were applied to amorphous/crystalline silicon heterojunction solar cells as transparent electrodes. Consequently, it was demonstrated that the high Hall mobility, high refractive index, and low extinction coefficient of transparent conductive oxide (TCO) films contribute to the high product of short-circuit current density and fill factor and conversion efficiency. Furthermore, it was found that the solar cell with a finger spacing of 1.9 mm on a 125 × 125 mm2 Si wafer is highly tolerant to TCO film resistivity when the electron concentration is less than 4.0 × 1020 cm-3.

  1. Study of semi-transparent conductive layers for the realization of high quantum efficiency transmission mode CsI photocathodes for vacuum photodetectors

    Science.gov (United States)

    Barbato, F. C. T.; Valentini, A.; Casamassima, G.; Campajola, L.; Di Capua, F.

    2017-07-01

    We worked on the R&D of an innovative photodetector, the Vacuum Silicon Photomultiplier Tube (VSiPMT). The VSiPMT is composed by a photocathode and a solid state amplification stage. A semi-transparent conductive layer is necessary to supply voltage and to obtain a highly efficient CsI photocathode. Since the literature is poor on this topic we performed a systematic and detailed study of a set of semi-transparent conductive layers, made by different material and thickness. A CsI photocathode was evaporated on each sample. The impact of the semi-transparent conductive layer on the quantum efficiency of the photocathode is discussed.

  2. Low-temperature solid-state microwave reduction of graphene oxide for transparent electrically conductive coatings on flexible polydimethylsiloxane (PDMS).

    Science.gov (United States)

    Liang, Qizhen; Hsie, Sinsar Alec; Wong, Ching Ping

    2012-11-12

    Microwaves (MWs) are applied to initialize deoxygenation of graphene oxide (GO) in the solid state and at low temperatures (∼165 °C). The Fourier-transform infrared (FTIR) spectra of MW-reduced graphene oxide (rGO) show a significantly reduced concentration of oxygen-containing functional groups, such as carboxyl, hydroxyl and carbonyl. X-ray photoelectron spectra confirm that microwaves can promote deoxygenation of GO at relatively low temperatures. Raman spectra and TGA measurements indicate that the defect level of GO significantly decreases during the isothermal solid-state MW-reduction process at low temperatures, corresponding to an efficient recovery of the fine graphene lattice structure. Based on both deoxygenation and defect-level reduction, the resurgence of interconnected graphene-like domains contributes to a low sheet resistance (∼7.9×10(4) Ω per square) of the MW-reduced GO on SiO(2) -coated Si substrates with an optical transparency of 92.7 % at ∼547 nm after MW reduction, indicating the ultrahigh efficiency of MW in GO reduction. Moreover, the low-temperature solid-state MW reduction is also applied in preparing flexible transparent conductive coatings on polydimethylsiloxane (PDMS) substrates. UV/Vis measurements indicate that the transparency of the thus-prepared MW-reduced GO coatings on PDMS substrates ranges from 34 to 96 %. Correspondingly, the sheet resistance of the coating ranges from 10(5) to 10(9) Ω per square, indicating that MW reduction of GO is promising for the convenient low-temperature preparation of transparent conductors on flexible polymeric substrates.

  3. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a

  4. Synthesis and characterization of transparent conductive zinc oxide thin films by sol-gel spin coating method

    Science.gov (United States)

    Winarski, David

    Zinc oxide has been given much attention recently as it is promising for various semiconductor device applications. ZnO has a direct band gap of 3.3 eV, high exciton binding energy of 60 meV and can exist in various bulk powder and thin film forms for different applications. ZnO is naturally n-type with various structural defects, which sparks further investigation into the material properties. Although there are many potential applications for this ZnO, an overall lack of understand and control of intrinsic defects has proven difficult to obtain consistent, repeatable results. This work studies both synthesis and characterization of zinc oxide in an effort to produce high quality transparent conductive oxides. The sol-gel spin coating method was used to obtain highly transparent ZnO thin films with high UV absorbance. This research develops a new more consistent method for synthesis of these thin films, providing insight for maintaining quality control for each step in the procedure. A sol-gel spin coating technique is optimized, yielding highly transparent polycrystalline ZnO thin films with tunable electrical properties. Annealing treatment in hydrogen and zinc atmospheres is researched in an effort to increase electrical conductivity and better understand intrinsic properties of the material. These treatment have shown significant effects on the properties of ZnO. Characterization of doped and undoped ZnO synthesized by the sol-gel spin coating method was carried out using scanning electron microscopy, UV-Visible range absorbance, X-ray diffraction, and the Hall Effect. Treatment in hydrogen shows an overall decrease in the number of crystal phases and visible absorbance while zinc seems to have the opposite effect. The Hall Effect has shown that both annealing environments increase the n-type conductivity, yielding a ZnO thin film with a carrier concentration as high as 3.001 x 1021 cm-3.

  5. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  6. Growth and optical properties of ZnO nanorod arrays on Al-doped ZnO transparent conductive film

    OpenAIRE

    Lin, Suanzhi; Hu, Hailong; Zheng, Weifeng; Qu, Yan; Lai, Fachun

    2013-01-01

    ZnO nanorod arrays (NRAs) on transparent conductive oxide (TCO) films have been grown by a solution-free, catalyst-free, vapor-phase synthesis method at 600°C. TCO films, Al-doped ZnO films, were deposited on quartz substrates by magnetron sputtering. In order to study the effect of the growth duration on the morphological and optical properties of NRAs, the growth duration was changed from 3 to 12 min. The results show that the electrical performance of the TCO films does not degrade after t...

  7. Large Scale Laser Crystallization of Solution-based Alumina-doped Zinc Oxide (AZO) Nanoinks for Highly Transparent Conductive Electrode

    Science.gov (United States)

    Nian, Qiong; Callahan, Michael; Saei, Mojib; Look, David; Efstathiadis, Harry; Bailey, John; Cheng, Gary J.

    2015-10-01

    A new method combining aqueous solution printing with UV Laser crystallization (UVLC) and post annealing is developed to deposit highly transparent and conductive Aluminum doped Zinc Oxide (AZO) films. This technique is able to rapidly produce large area AZO films with better structural and optoelectronic properties than most high vacuum deposition, suggesting a potential large-scale manufacturing technique. The optoelectronic performance improvement attributes to UVLC and forming gas annealing (FMG) induced grain boundary density decrease and electron traps passivation at grain boundaries. The physical model and computational simulation developed in this work could be applied to thermal treatment of many other metal oxide films.

  8. Preparation and characterization of transparent conducting Zn-Sn-O films deposited on organic substrates at low temperature

    Institute of Scientific and Technical Information of China (English)

    MA; Jin(马瑾); HUANG; ShuIai(黄树来); MA; Honglei(马洪磊); GAI; Lingyun(盖凌云)

    2003-01-01

    Transparent conducting Zn-Sn-O films were deposited on Polypropylene adipate thin-film substrates at Iow temperature by r. f. magnetron sputtering. The structural, electrical and optical properties of the deposited films were investigated. All the obtained films are of amorphous structure and have a very good adhesion to the substrates. The resistivity, carrier concentration and Hall mobility of the film are 1.3× 10-2 Ω @ cm, 4.1 × 1019 cm-3 and 12.4 cm2 @ V-1 @ s-1, respectively. The transmittance of the film reaches 82%.

  9. Optical spectroscopic analyses of CVD plasmas used in the deposition of transparent and conductive ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Espinos, J.P.; Yubero, F.; Barranco, A.; Gonzalez-Elipe, A.R. [Instituto de Ciencias de Materiales de Sevilla, CSIC-Universidad de Sevilla (Spain); Cotrino, J. [Universidad de Sevilla, Facultad de Fisica, Dept. de Fisica Atomica, Molecular y Nuclear, Sevilla (Spain)

    2001-07-01

    Transparent conducting ZnO:A1 thin films have been prepared by remote plasma enhanced chemical vapor deposition. Emission line profiles were recorded as a function of different plasma gas composition (oxygen and hydrogen mixtures) and different rates of precursors (Zn(C{sub 2}H{sub 5}){sub 2} and A1(CH{sub 3}){sub 3}) in the downstream zone of the plasma reactor. Optical emission spectroscopy were used to characterize the oxygen/hydrogen plasma as a function of hydrogen flow rate. The variation of plasma hydrogen content has an important influence in the resistivity of the films. (authors)

  10. A shape tailored gold-conductive polymer nanocomposite as a transparent electrode with extraordinary insensitivity to volatile organic compounds (VOCs)

    Science.gov (United States)

    Khalil, Rania; Homaeigohar, Shahin; Häußler, Dietrich; Elbahri, Mady

    2016-09-01

    In this study, the transparent conducting polymer of poly (3,4-ethylenendioxythiophene): poly(styrene sulphonate) (PEDOT:PSS) was nanohybridized via inclusion of gold nanofillers including nanospheres (NSs) and nanorods (NRs). Such nanocomposite thin films offer not only more optimum conductivity than the pristine polymer but also excellent resistivity against volatile organic compounds (VOCs). Interestingly, such amazing properties are achieved in the diluted regimes of the nanofillers and depend on the characteristics of the interfacial region of the polymer and nanofillers, i.e. the aspect ratio of the latter component. Accordingly, a shape dependent response is made that is more desirable in case of using the Au nanorods with a much larger aspect ratio than their nanosphere counterparts. This transparent nanocomposite thin film with an optimized conductivity and very low sensitivity to organic gases is undoubtedly a promising candidate material for the touch screen panel production industry. Considering PEDOT as a known material for integrated electrodes in energy saving applications, we believe that our strategy might be an important progress in the field.

  11. Transparent Conducting Electrodes based on 1D and 2D Ag Nanogratings for Organic Photovoltaics

    CERN Document Server

    Zeng, Beibei; Bartoli, Filbert J

    2014-01-01

    The optical and electrical properties of optically-thin one-dimensional (1D) Ag nanogratings and two-dimensional (2D) Ag nanogrids are studied, and their use as transparent electrodes in organic photovoltaics are explored. A large broadband and polarization-insensitive optical absorption enhancement in the organic light-harvesting layers is theoretically and numerically demonstrated using either single-layer 2D Ag nanogrids or two perpendicular 1D Ag nanogratings, and is attributed to the excitation of surface plasmon resonances and plasmonic cavity modes. Total photon absorption enhancements of 150% and 200% are achieved for the optimized single-layer 2D Ag nanogrids and double (top and bottom) perpendicular 1D Ag nanogratings, respectively.

  12. Transparent Conductive AGZO/Ag/AGZO Multilayers on PET Substrate by Roll-to-Roll Sputtering.

    Science.gov (United States)

    Kim, Taehoon; Park, Kwangwon; Kim, Jongsu

    2016-02-01

    Indium-free Al and Ga-codoped ZnO (AGZO) multilayer films with nanoscale Ag interlayer were deposited by dual target roll-to-roll RF for AGZO and DC sputtering systems for Ag at room temperature for a large scale. The thicknesses of AGZO/Ag/AGZO multilayer were optimized by changing the roll speed: 0.15/1.1/0.15 m/min for AGZO/Ag/AGZO multilayers, respectively. The optimum thicknesses of AGZO/Ag/AGZO multilayer are 9.21, 8.32 and 8.04 nm, respectively. Optimized AGZO/Ag/AGZO multilayer films showed an excellent transparency (84% at 550 nm) and a low sheet resistance (9.2 omega/sq.) on PET substrates for opto-electronic applications. The effects of nanoscale Ag interlayer on optical and electrical properties of AGZO/Ag/AGZO multilayer films were discussed.

  13. Lead free CH{sub 3}NH{sub 3}SnI{sub 3} perovskite thin-film with p-type semiconducting nature and metal-like conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Iefanova, Anastasiia; Adhikari, Nirmal; Dubey, Ashish; Khatiwada, Devendra; Qiao, Qiquan, E-mail: qiquan.qiao@sdstate.edu [South Dakota State University, Brookings, South Dakota (United States)

    2016-08-15

    Lead free CH{sub 3}NH{sub 3}SnI{sub 3} perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM). Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH{sub 3}NH{sub 3}SnI{sub 3} film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microscopy (SEM) confirmed a structure of this compound and uniform film formation. The morphology, film uniformity, light harvesting and electrical properties strongly depend on preparation method and precursor solution. CH{sub 3}NH{sub 3}SnI{sub 3} films prepared based on dimethylformamide (DMF) showed higher crystallinity and light harvesting capability compared to the film based on combination of dimethyl sulfoxide (DMSO) with gamma-butyrolactone (GBL). Local photocurrent mapping analysis showed that CH{sub 3}NH{sub 3}SnI{sub 3} can be used as an active layer and have a potential to fabricate lead free photovoltaic devices.

  14. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung, E-mail: hkkim@ynu.ac.kr

    2015-08-31

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □{sup −1} and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □{sup −1} after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐{sup −1}) and high transmittance (87.6%)

  15. Transparent electric convection heater

    OpenAIRE

    Khalid, A.; Luck, J.L.

    2001-01-01

    An optically transparent electrically heated convection heater for use as a space heater in homes, offices, shops. Typically, said convection heater consists of a transparent layer 1 upon which is deposited a layer of a transparent electrically conductive material 2 such as indium-tin-oxide, electrodes 3 and 3a are formed on opposite edges of the transparent electrically conductive layer 2 and electrical wires 4 and 4a are connected to the electrodes. The transparent electrically conductive l...

  16. Ultraviolet laser crystallized ZnO:Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency

    Energy Technology Data Exchange (ETDEWEB)

    Nian, Qiong; Zhang, Martin Y. [School of Industrial Engineering, Purdue University, 315N. Grant St, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, 1205W State St, West Lafayette, Indiana 47907 (United States); Schwartz, Bradley D. [Goodrich Corporation, UTC Aerospace Systems, 100 Wooster Heights Road, Danbury, Connecticut 06810 (United States); Cheng, Gary J., E-mail: gjcheng@purdue.edu [School of Industrial Engineering, Purdue University, 315N. Grant St, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, 1205W State St, West Lafayette, Indiana 47907 (United States); School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907 (United States)

    2014-05-19

    One of the most challenging issues in transparent conductive oxides (TCOs) is to improve their conductivity without compromising transparency. High conductivity in TCO films often comes from a high carrier concentration, which is detrimental to transparency due to free carrier absorption. Here we show that UV laser crystallization (UVLC) of aluminum-doped ZnO (AZO) films prepared by pulsed laser deposition on sapphire results in much higher Hall mobility, allowing relaxation of the constraints of the conductivity/transparency trade-off. X-ray diffraction patterns and morphological characterizations show grain growth and crystallinity enhancement during UVLC, resulting in less film internal imperfections. Optoelectronic measurements show that UVLC dramatically improves the electron mobility, while the carrier concentration decreases which in turn simultaneously increases conductivity and transparency. AZO films under optimized UVLC achieve the highest electron mobility of 79 cm{sup 2}/V s at a low carrier concentration of 7.9 × 10{sup +19} cm{sup −3}. This is realized by a laser crystallization induced decrease of both grain boundary density and electron trap density at grain boundaries. The infrared (IR) to mid-IR range transmittance spectrum shows UVLC significantly enhances the AZO film transparency without compromising conductivity.

  17. Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmad Hadi, E-mail: ahadi@uthm.edu.my [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Penang (Malaysia); Science Department, Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor (Malaysia); Shuhaimi, Ahmad [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur (Malaysia); Hassan, Zainuriah [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Penang (Malaysia)

    2014-01-01

    We report on the transparent conductive oxides (TCO) characteristics based on the indium tin oxides (ITO) and ITO/metal thin layer as an electrode for optoelectronics device applications. ITO, ITO/Ag and ITO/Ni were deposited on Si and glass substrate by thermal evaporator and radio frequency (RF) magnetron sputtering at room temperature. Post deposition annealing was performed on the samples in air at moderate temperature of 500 °C and 600 °C. The structural, optical and electrical properties of the ITO and ITO/metal were characterized using X-ray diffraction (XRD), UV–Vis spectrophotometer, Hall effect measurement system and atomic force microscope (AFM). The XRD spectrum reveals significant polycrystalline peaks of ITO (2 2 2) and Ag (1 1 1) after post annealing process. The post annealing also improves the visible light transmittance and electrical resistivity of the samples. Figure of merit (FOM) of the ITO, ITO/Ag and ITO/Ni were determined as 5.5 × 10{sup −3} Ω{sup −1}, 8.4 × 10{sup −3} Ω{sup −1} and 3.0 × 10{sup −5} Ω{sup −1}, respectively. The results show that the post annealed ITO with Ag intermediate layer improved the efficiency of the transparent conductive electrodes (TCE) as compared to the ITO and ITO/Ni.

  18. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    Science.gov (United States)

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.

  19. Spreadability of Ag Layer on Oxides and High Performance of AZO/Ag/AZO Sandwiched Transparent Conductive Film

    Directory of Open Access Journals (Sweden)

    Yuchao Niu

    2017-01-01

    Full Text Available Single layers of indium tin oxide (ITO, aluminum-doped zinc oxide (AZO, and Ag, bilayers of ITO/Ag and AZO/Ag, and sandwiched layers of ITO/Ag/ITO (IAI and AZO/Ag/AZO (ZAZ were fabricated on ordinary glass substrates using magnetron sputtering. The surface morphologies of single layers and bilayers were measured. The sheet resistance and transmittance of the sandwiched layers were investigated. The results showed that the spreadability of the Ag on the AZO was significantly better than that on the ITO or bare glass substrate. The spreadability of Ag on underlayers influences obviously the performance of transparent conductive oxide/Ag/transparent conductive oxides (TCO/Ag/TCO or TAT. The sheet resistance and transmittance of the ZAZ sandwiched layer with the matching of 35 nm AZO (35 nm/Ag (9 nm/AZO (35 nm fabricated in this paper were low to 3.84 Ω/sq and up to 85.55% at 550 nm, respectively. Its maximum Haacke figure of merit was 0.05469 Ω−1, higher than that of IAI multilayer.

  20. Non-contact measurement of the electrical conductivity and coverage density of silver nanowires for transparent electrodes using Terahertz spectroscopy

    Science.gov (United States)

    Park, Sung-Hyeon; Chung, Wan-Ho; Kim, Hak-Sung

    2017-02-01

    In this work, a terahertz time-domain spectroscopy (THz-TDS) imaging technique was used for non-contact measurement of the conductivity and coverage density (D C) of silver nanowires (SNWs) as transparent electrodes. The reflection mode of THz-TDS with an incident angle of 30° was used, and the sheet resistance (R sh) of SNW films was measured using the four-point probe method. The correlations between the THz reflection ratio and R sh were studied by comparing the results of the four-point probe method and the measured THz reflection ratios. Also, the D C of SNWs was evaluated using THz waveforms with a general refractivity formula. This result matched well with a conventional approximation method using a scanning electron microscope image. Furthermore, defects in the SNWs could be easily detected using the THz-TDS imaging technique. The non-contact THz-TDS measurement method that we developed is expected to be a promising technique for non-contact measurement of the R sh and D C for transparent conductive electrodes.

  1. Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.A.; Herrero, J.; Gutierrez, M.T. [Instituto de Energias Renovables CIEMAT, Madrid (Spain)

    1996-01-08

    The effect of the substrate temperature on the optoelectronic properties of ZnO-based thin films prepared by rf magnetron sputtering has been studied. Three different targets (Zn/Al 98/2 at%, ZnO:Al 98/2 at% and ZnO:Al{sub 2}O{sub 3} 98/2 wt%) have been investigated in order to compare resulting samples and try to reduce the substrate temperature down to room temperature. From the ZnO:Al{sub 2}O{sub 3} target, transparent conductive zinc oxide has been obtained at 25C with the average optical transmission in the 400-800 nm wavelength range, T=80-90% and resistivity, {rho}=3-5x10{sup -3} {Omega}cm. In Al:ZnO layers, the spatial distribution of the electrical properties across the substrate placed parallel to the target has been improved by depositing at high substrate temperatures, above 200C. Besides, owing to diffusion processes of CuInSe{sub 2} and CdS take place at 200C, an Al:ZnO/CdS/CuInSe{sub 2} polycrystalline solar cell made with the Al:ZnO deposited at 25C as the transparent conductive oxide, has shown a more efficient photovoltaic response, {eta}=6.8%, than the one measured when the aluminium-doped zinc oxide has been prepared at 200C, {eta}=1.8%

  2. Transparent and Electrically Conductive Carbon Nanotube-Polymer Nanocomposite Materials for Electrostatic Charge Dissipation

    Science.gov (United States)

    Dervishi, E.; Biris, A. S.; Biris, A. R.; Lupu, D.; Trigwell, S.; Miller, D. W.; Schmitt, T.; Buzatu, D. A.; Wilkes, J. G.

    2006-01-01

    In recent years, nanocomposite materials have been extensively studied because of their superior electrical, magnetic, and optical properties and large number of possible applications that range from nano-electronics, specialty coatings, electromagnetic shielding, and drug delivery. The aim of the present work is to study the electrical and optical properties of carbon nanotube(CNT)-polymer nanocomposite materials for electrostatic charge dissipation. Single and multi-wall carbon nanotubes were grown by catalytic chemical vapor deposition (CCVD) on metal/metal oxide catalytic systems using acetylene or other hydrocarbon feedstocks. After the purification process, in which amorphous carbon and non-carbon impurities were removed, the nanotubes were functionalized with carboxylic acid groups in order to achieve a good dispersion in water and various other solvents. The carbon nanostructures were analyzed, both before and after functionalization by several analytical techniques, including microscopy, Raman spectroscopy, and X-Ray photoelectron spectroscopy. Solvent dispersed nanotubes were mixed (1 to 7 wt %) into acrylic polymers by sonication and allowed to dry into 25 micron thick films. The electrical and optical properties of the films were analyzed as a function of the nanotubes' concentration. A reduction in electrical resistivity, up to six orders of magnitude, was measured as the nanotubes' concentration in the polymeric films increased, while optical transparency remained 85 % or higher relative to acrylic films without nanotubes.

  3. Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis

    Science.gov (United States)

    Babar, A. R.; Deshamukh, P. R.; Deokate, R. J.; Haranath, D.; Bhosale, C. H.; Rajpure, K. Y.

    2008-07-01

    Zinc oxide (ZnO) and ZnO : Ga films have been deposited by the spray pyrolysis method onto preheated glass substrates using zinc acetate and gallium nitrate as precursors for Zn and Ga ions, respectively. The effect of Ga doping on the structural, morphological, optical and electrical properties of sprayed ZnO thin films were investigated using x-ray diffraction (XRD), scanning electron microscopy, optical absorption, photoluminescence (PL) and Hall effect techniques. XRD studies reveal that films are polycrystalline with hexagonal (wurtzite) crystal structure. The thin films were oriented along the (0 0 2) plane. Room temperature PL measurements indicate that the deposited films exhibit proper doping of Ga in ZnO lattice. The average transparency in the visible range was around ~85-95% for typical thin film deposited using 2 at% gallium doping. The optical band gap increased from 3.31 to 3.34 eV with Ga doping of 2 at%. The addition of gallium induces a decrease in electrical resistivity of the ZnO : Ga films up to 2 at% gallium doping. The highest figure of merit observed in this present study was 3.09 × 10-3 cm2 Ω-1.

  4. Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Babar, A R; Deshamukh, P R; Deokate, R J; Bhosale, C H; Rajpure, K Y [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India); Haranath, D [National Physical Laboratory, Dr K S Krishnan Road, New Delhi 110 012 (India)], E-mail: rajpure@yahoo.com

    2008-07-07

    Zinc oxide (ZnO) and ZnO : Ga films have been deposited by the spray pyrolysis method onto preheated glass substrates using zinc acetate and gallium nitrate as precursors for Zn and Ga ions, respectively. The effect of Ga doping on the structural, morphological, optical and electrical properties of sprayed ZnO thin films were investigated using x-ray diffraction (XRD), scanning electron microscopy, optical absorption, photoluminescence (PL) and Hall effect techniques. XRD studies reveal that films are polycrystalline with hexagonal (wurtzite) crystal structure. The thin films were oriented along the (0 0 2) plane. Room temperature PL measurements indicate that the deposited films exhibit proper doping of Ga in ZnO lattice. The average transparency in the visible range was around {approx}85-95% for typical thin film deposited using 2 at% gallium doping. The optical band gap increased from 3.31 to 3.34 eV with Ga doping of 2 at%. The addition of gallium induces a decrease in electrical resistivity of the ZnO : Ga films up to 2 at% gallium doping. The highest figure of merit observed in this present study was 3.09 x 10{sup -3} cm{sup 2} {omega}{sup -1}.

  5. Hybrid transparent conductive electrodes with copper nanowires embedded in a zinc oxide matrix and protected by reduced graphene oxide platelets

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-02-01

    Transparent conductive electrodes (TCE) were fabricated by combining three emerging nano-materials: copper nanowires (CuNWs), zinc oxide (ZnO) nano-particulate thin films, and reduced graphene oxide (rGO) platelets. Whereas CuNWs are responsible for essentially all of the electrical conductivity of our thin-film TCEs, the ZnO matrix embeds and strengthens the CuNW network in its adhesion to the substrate, while the rGO platelets provide a protective overcoat for the composite electrode, thereby improving its stability in hot and humid environments. Our CuNW/ZnO/rGO hybrid electrodes deposited on glass substrates have low sheet resistance (Rs ˜ 20 Ω/sq) and fairly high optical transmittance (T550 ˜ 79%). In addition, our hybrid TCEs are mechanically strong and able to withstand multiple scotch-tape peel tests. Finally, these TCEs can be fabricated on rigid glass as well as flexible plastic substrates.

  6. Transparent conductive Hf-doped In2O3 thin films by RF sputtering technique at low temperature annealing

    Science.gov (United States)

    Wang, G. H.; Shi, C. Y.; Zhao, L.; Diao, H. W.; Wang, W. J.

    2017-03-01

    Hf-doped In2O3 transparent conductive polycrystalline films (IHFO) were grown at a low substrate temperature by radio frequency magnetron sputtering for the applications of silicon-based solar cell. The effect of argon flow rate on the electrical and optical properties of the films was investigated. Low temperature thermal treatment improved IHFO films properties, with the optimal Hall mobility of 79.6 cm2/Vs and resistivity of 3.76 × 10-4 Ω cm. The average transmittance of the 807 nm thick IHFO films in the range of 300-1500 nm was above 83%. The carrier density was utilized to evaluate the plasma wavelength of IHFO conducting film which was 1.8 μm. The optimized IHFO film was then applied to amorphous silicon germanium thin film solar cells as the contacting layer. Compared to the cell without such a layer, the efficiency was higher by 0.35%.

  7. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hemant Kr. [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India); Avasthi, D.K. [Inter University Accelerator Center, Post Box 10502, New Delhi (India); Aggarwal, Shruti, E-mail: shruti.al@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India)

    2015-06-15

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO{sub 2}:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In{sub 2}O{sub 3}:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag{sup +9} ions at fluences ranging from 3.0 × 10{sup 11} ions/cm{sup 2} to 3.0 × 10{sup 13} ions/cm{sup 2}. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  8. Gd-doped BaSnO{sub 3}: A transparent conducting oxide with localized magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Alaan, Urusa S., E-mail: usalaan@gmail.com [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Shafer, Padraic; N' Diaye, Alpha T.; Arenholz, Elke [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Suzuki, Y. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States)

    2016-01-25

    We have synthesized transparent, conducting, paramagnetic stannate thin films via rare-earth doping of BaSnO{sub 3}. Gd{sup 3+} (4f{sup 7}) substitution on the Ba{sup 2+} site results in optical transparency in the visible regime, low resistivities, and high electron mobilities, along with a significant magnetic moment. Pulsed laser deposition was used to stabilize epitaxial Ba{sub 0.96}Gd{sub 0.04}SnO{sub 3} thin films on (001) SrTiO{sub 3} substrates, and compared with Ba{sub 0.96}La{sub 0.04}SnO{sub 3} and undoped BaSnO{sub 3} thin films. Gd as well as La doping schemes result in electron mobilities at room temperature that exceed those of conventional complex oxides, with values as high as 60 cm{sup 2}/V·s (n = 2.5 × 10{sup 20 }cm{sup −3}) and 30 cm{sup 2}/V·s (n = 1 × 10{sup 20 }cm{sup −3}) for La and Gd doping, respectively. The resistivity shows little temperature dependence across a broad temperature range, indicating that in both types of films the transport is not dominated by phonon scattering. Gd-doped BaSnO{sub 3} films have a strong magnetic moment of ∼7 μ{sub B}/Gd ion. Such an optically transparent conductor with localized magnetic moments may unlock opportunities for multifunctional devices in the design of next-generation displays and photovoltaics.

  9. PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells.

    Science.gov (United States)

    Yu, Zhimeng; Xia, Yijie; Du, Donghe; Ouyang, Jianyong

    2016-05-11

    A transparent electrode is an indispensable component of optoelectronic devices, and there as been a search for substitutes of indium tin oxide (ITO) as the transparent electrode. Poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) ( PSS) is a conducting polymer that is very promising as the next generation of materials for the transparent electrode if it can obtain conductivity as high as that of ITO. Here, we report the treatment of PSS with organic solutions to significantly enhance its conductivity. Common organic solvents like dimethylformamide and γ-butyrolactone and common organic salts like methylammonium iodide and methylammonium bromide are used for the organic solutions. The conductivity of pristine PSS films is only ∼0.2 S/cm, and it can be increased to higher than 2100 S/cm. The conductivity enhancement is much more significant than control treatments of PSS films with neat organic solvents or aqueous solutions of the organic salts. The mechanism for the conductivity enhancement is the synergetic effects of both the organic salts and organic solvents on the microstructure and composition of PSS. They induce the segregation of some PSSH chains from PSS. Highly conductive PSS films were studied as the transparent electrode of polymer solar cells. The photovoltaic efficiency is comparable to that with an ITO transparent electrode.

  10. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Arrieta, M.L. Pérez [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, C.P. 98060, Zacatecas, México (Mexico); Meza-Rocha, A.N.; Rivera-Álvarez, Z. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Falcony, C., E-mail: cfalcony@fis.cinvestav.mx [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico)

    2013-10-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min{sup −1} at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min{sup −1} were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s.

  11. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide.

    Science.gov (United States)

    Yun, Jungheum; Wang, Wei; Bae, Tae Sung; Park, Yeon Hyun; Kang, Yong-Cheol; Kim, Dong-Ho; Lee, Sunghun; Lee, Gun-Hwan; Song, Myungkwan; Kang, Jae-Wook

    2013-10-23

    We report that significantly more transparent yet comparably conductive AgOx films, when compared to Ag films, are synthesized by the inclusion of a remarkably small amount of oxygen (i.e., 2 or 3 atom %) in thin Ag films. An 8 nm thick AgOx (O/Ag=2.4 atom %) film embedded between 30 nm thick ITO films (ITO/AgOx/ITO) achieves a transmittance improvement of 30% when compared to a conventional ITO/Ag/ITO electrode with the same configuration by retaining the sheet resistance in the range of 10-20 Ω sq(-1). The high transmittance provides an excellent opportunity to improve the power-conversion efficiency of organic solar cells (OSCs) by successfully matching the transmittance spectral range of the electrode to the optimal absorption region of low band gap photoactive polymers, which is highly limited in OSCs utilizing conventional ITO/Ag/ITO electrodes. An improvement of the power-conversion efficiency from 4.72 to 5.88% is achieved from highly flexible organic solar cells (OSCs) fabricated on poly(ethylene terephthalate) polymer substrates by replacing the conventional ITO/Ag/ITO electrode with the ITO/AgOx/ITO electrode. This novel transparent electrode can facilitate a cost-effective, high-throughput, room-temperature fabrication solution for producing large-area flexible OSCs on heat-sensitive polymer substrates with excellent power-conversion efficiencies.

  12. Comparative study of highly dense aluminium- and gallium-doped zinc oxide transparent conducting sol–gel thin films

    Indian Academy of Sciences (India)

    Naji Al Dahoudi

    2014-10-01

    Transparent conducting aluminium- and gallium-doped zinc oxide (AZO and GZO) layers have been deposited by spin coating on glass substrates. The coatings have been sintered in air at 450 °C for 30 min and then post-annealed at 350 °C in a reducing atmosphere for 30 min. The electrical, optical and morphological properties of both coatings have been studied and compared. The conventional sols lead to very thin coating, typically 24 nm for a single layer of AZO and 32 nm of GZO with electrical resistivity of 0.72 and 0.35 cm, respectively. The value however, drastically decreases down to a minimum of 2.6 × 10-2 cm for AZO and 1.76 × 10-2 cm for GZO, when five multilayer coatings are made. The origin of these differences is due to the different morphology of the coatings showing different electron scattering process. The GZO sol leads to denser smoother structure (porosity of 5%) layers with an average roughness of 2.76 Å, while the AZO coating is formed by a more porous assembly (porosity of 20%) with an average roughness of 3.46 Å. Both coatings exhibit high transparency ( > 85%) in the visible spectrum range with a slight shift of the absorption energy gap.

  13. Low substrate temperature deposition of transparent and conducting ZnO:Al thin films by RF magnetron sputtering

    Science.gov (United States)

    Waykar, Ravindra; Amit, Pawbake; Kulkarni, Rupali; Jadhavar, Ashok; Funde, Adinath; Waman, Vaishali; Dewan, Rupesh; Pathan, Habib; Jadkar, Sandesh

    2016-04-01

    Transparent and conducting Al-doped ZnO (ZnO:Al) films were prepared on glass substrate using the RF sputtering method at different substrate temperatures from room temperature (RT) to 200 °C. The structural, morphological, electrical and optical properties of these films were investigated using a variety of characterization techniques such as low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), Hall measurement and UV-visible spectroscopy. The electrical properties showed that films deposited at RT have the lowest resistivity and it increases with an increase in the substrate temperature whereas carrier mobility and concentration decrease with an increase in substrate temperature. Low angle XRD and Raman spectroscopy analysis reavealed that films are highly crystalline with a hexagonal wurtzite structure and a preferred orientation along the c-axis. The FE-SEM analysis showed that the surface morphology of films is strongly dependent on the substrate temperature. The band gap decreases from 3.36 to 3.29 eV as the substrate temperature is increased from RT to 200 °C. The fundamental absorption edge in the UV region shifts towards a longer wavelength with an increase in substrate temperature and be attributed to the Burstein-Moss shift. The synthesized films showed an average transmission (> 85%) in the visible region, which signifies that synthesized ZnO:Al films can be suitable for display devices and solar cells as transparent electrodes.

  14. On the possibility to grow zinc oxide-based transparent conducting oxide films by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abrutis, Adulfas, E-mail: adulfas.abrutis@chf.vu.lt; Silimavicus, Laimis; Kubilius, Virgaudas; Murauskas, Tomas; Saltyte, Zita; Kuprenaite, Sabina; Plausinaitiene, Valentina [Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania)

    2014-03-15

    Hot-wire chemical vapor deposition (HW-CVD) was applied to grow zinc oxide (ZnO)-based transparent conducting oxide (TCO) films. Indium (In)-doped ZnO films were deposited using a cold wall pulsed liquid injection CVD system with three nichrome wires installed at a distance of 2 cm from the substrate holder. The wires were heated by an AC current in the range of 0–10 A. Zn and In 2,2,6,6-tetramethyl-3,5-heptanedionates dissolved in 1,2-dimethoxyethane were used as precursors. The hot wires had a marked effect on the growth rates of ZnO, In-doped ZnO, and In{sub 2}O{sub 3} films; at a current of 6–10 A, growth rates were increased by a factor of ≈10–20 compared with those of traditional CVD at the same substrate temperature (400 °C). In-doped ZnO films with thickness of ≈150 nm deposited on sapphire-R grown at a wire current of 9 A exhibited a resistivity of ≈2 × 10{sup −3} Ωcm and transparency of >90% in the visible spectral range. These initial results reveal the potential of HW-CVD for the growth of TCOs.

  15. Sol-gel derived Al-Ga co-doped transparent conducting oxide ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Serrao, Felcy Jyothi, E-mail: jyothiserrao@gmail.com [Department of studies in Physics, Mangalore University, Mangalagangothri 574199 (India); Department of Physics, Karnataka Government Research centre SCEM, Mangalore, 575007 (India); Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M. [Department of studies in Physics, Mangalore University, Mangalagangothri 574199 (India)

    2016-05-23

    Transparent conducting ZnO doped with Al, Ga and co-doped Al and Ga (1:1) (AGZO) thin films were grown on glass substrates by cost effective sol-gel spin coating method. The XRD results showed that all the films are polycrystalline in nature and highly textured along the (002) plane. Enhanced grain size was observed in the case of AGZO thin films. The transmittance of all the films was more than 83% in the visible region of light. The electrical properties such as carrier concentration and mobility values are increased in case of AGZO compared to that of Al and Ga doped ZnO thin films. The minimum resistivity of 2.54 × 10{sup −3} Ω cm was observed in AGZO thin film. The co-doped AGZO thin films exhibited minimum resistivity and high optical transmittance, indicate that co-doped ZnO thin films could be used in transparent electronics mainly in display applications.

  16. Synthesis of graphene-like transparent conductive films on dielectric substrates using a modified filtered vacuum arc system

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Helge, E-mail: lux@th-wildau.de; Schrader, Sigurd [Technical University of Applied Sciences Wildau, Hochschulring 1, Wildau 15745 (Germany); Siemroth, Peter [Arc Precision GmbH, Schwartzkopffstraße 2, Wildau 15745 (Germany); Sgarlata, Anna [Department of Physics, University of Roma - Tor Vergata, Via della Ricerca Scientifica 1, Roma 00133 (Italy); Prosposito, Paolo; Casalboni, Mauro [Department of Industrial Engineering, University of Roma - Tor Vergata, and Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata Via del Politecnico 1, Roma 00133 (Italy); Schubert, Markus Andreas [IHP Innovations for High Performance Microelectronics, Im Technologiepark 25, Frankfurt (Oder) 15236 (Germany)

    2015-05-21

    Here, we present a reliable process to deposit transparent conductive films on silicon oxide, quartz, and sapphire using a solid carbon source. This layer consists of partially ordered graphene flakes with a lateral dimension of about 5 nm. The process does not require any catalytic metal and exploits a high current arc evaporation (Φ-HCA) to homogeneously deposit a layer of carbon on heated substrates. A gas atmosphere consisting of Argon or Argon/Hydrogen blend acting as a buffer influences the morphology of the growing film. scanning tunneling microscopy, transmission electron microscopy, and Raman spectra were used for a thorough characterization of the samples in order to optimize the growth parameters. The best carbon layers have a surface resistance of 5.7 × 10{sup 3} Ω{sub ◻} whereas the optical transparency of the coatings is 88% with an excellent homogeneity over areas of several cm{sup 2}. Such results are compatible with most semiconductor fabrication processes and make this method very promising for various industrial applications.

  17. High performance flexible metal oxide/silver nanowire based transparent conductive films by a scalable lamination-assisted solution method

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2017-03-01

    Full Text Available Flexible MoO3/silver nanowire (AgNW/MoO3/TiO2/Epoxy electrodes with comparable performance to ITO were fabricated by a scalable solution-processed method with lamination assistance for transparent and conductive applications. Silver nanoparticle-based electrodes were also prepared for comparison. Using a simple spin-coating and lamination-assisted planarization method, a full solution-based approach allows preparation of AgNW-based composite electrodes at temperatures as low as 140 °C. The resulting flexible AgNW-based electrodes exhibit higher transmittance of 82% at 550 nm and lower sheet resistance about 12–15 Ω sq−1, in comparison with the values of 68% and 22–25 Ω sq−1 separately for AgNP based electrodes. Scanning electron microscopy (SEM and Atomic force microscopy (AFM reveals that the multi-stacked metal-oxide layers embedded with the AgNWs possess lower surface roughness (<15 nm. The AgNW/MoO3 composite network could enhance the charge transport and collection efficiency by broadening the lateral conduction range due to the built of an efficient charge transport network with long-sized nanowire. In consideration of the manufacturing cost, the lamination-assisted solution-processed method is cost-effective and scalable, which is desire for large-area fabrication. While in view of the materials cost and comparable performance, this AgNW-based transparent and conductive electrodes is potential as an alternative to ITO for various optoelectronic applications.

  18. Effect of dopants on the transparency and stability of the conductivity of plasma polymerised thiophene layers

    NARCIS (Netherlands)

    Groenewoud, L.M.H.; Weinbeck, A.E.; Engbers, G.H.M.; Feijen, J.

    2002-01-01

    Iodine is frequently used as dopant for plasma polymerised thiophene (PPT) layers, but suffers from several drawbacks such as the rapidly decaying conductivity upon exposure to air, and the absorption of light by iodine species that are present in the doped PPT layer (i.e., I2, I3− , and I5−). This

  19. Study on the optical and electrical properties of tetracyanoethylene doped bilayer graphene stack for transparent conducting electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Limbu, Tej B., E-mail: tejnembang@yahoo.com; Barrionuevo, Danilo; Katiyar, Ram S.; Morell, Gerardo [Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931 (United States); Department of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931 (United States); Mendoza, Frank [Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931 (United States); Carpena, Jennifer [National Research Council, Washington D.C. 20001 (United States); Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Maruyama, Benji [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Weiner, Brad R. [Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931 (United States); Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931 (United States)

    2016-03-15

    We report the optical and electrical properties of chemically-doped bilayer graphene stack by tetracyanoethylene, a strong electron acceptor. The Tetracyanoethylene doping on the bilayer graphene via charge transfer was confirmed by Raman spectroscopy and Infrared Fourier transform spectroscopy. Doped graphene shows a significant increase in the sheet carrier concentration of up to 1.520 × 10{sup 13} cm{sup −2} with a concomitant reduction of the sheet resistance down to 414.1 Ω/sq. The high optical transmittance (ca. 84%) in the visible region in combination with the low sheet resistance of the Tetracyanoethylene-doped bilayer graphene stack opens up the possibility of making transparent conducting electrodes for practical applications.

  20. 2D Confined-Space Assisted Growth of Molecular-Level-Thick Polypyrrole Sheets with High Conductivity and Transparency.

    Science.gov (United States)

    Yang, Yang; Wang, Dong; Wu, Yongjin; Tian, Xiaorui; Qin, Haili; Hu, Liang; Zhang, Ting; Ni, Weihai; Jin, Jian

    2016-04-01

    Herein, the use of a 2D soft template system composed of hundred-nanometer-thick water/ethanol mixed layers sandwiched by lamellar bilayer membranes of a self-assembled amphiphilic molecule to produce ultrathin polyprrole (PPy) with a uniform thickness as thin as 3.8 nm and with large dimensions (>2 μm(2)) is presented. The obtained PPy nanosheets exhibit regioregularity with ordered chain alignment where the polymer chains in the nanosheets produced are well aligned with a clear interchain spacing as confirmed by small-angle X-ray scattering measurement. The molecular-level-thick PPy nanosheets exhibit extremely high conductivity up to 1330 S m(-1), thanks to the ordered alignment of polymer chains in the nanosheets, and a high transparency in both the visible region (transmittance >99%) and near-infrared region (transmittance >93%).

  1. Transparent Conducting ZnO:A1 Films on Different Organic Substrates Deposited by r.f. Sputtering

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Transparent conducting ZnO:AI films with good adhesion, low resistivity and high transmittance have been prepared on polyptopylene adipate (PPA), polyisocyanate (PI) and polyester substrates by r.f. magnetron sputtering. The structural, electrical and optical properties of the obtained films were studied. The polycrystalline ZnO:AI films with resistivity as Iow as 5.76×10-4 Ω·cm,carrier concentration 9.06×1020 cm-a and Hall mobility 11.98 cm2 V-1s-1 were produced on PPA substrate by controlling the deposition parameters. The average transmittance of films on PPA is ~80% in the wavelength range of visible spectrum. The films on PPA substrates have better electrical and optical properties compared with the filmson other kinds of substrates.

  2. Preparation and Characterization of Transparent Conductive Nb-Doped ZnO Films by Radio-Frequency Sputtering

    Institute of Scientific and Technical Information of China (English)

    CAO Feng; WANG Yi-Ding; LIU Da-Li; YIN Jing-Zhi; GUO Bao-Jia; LI Lei; AN Yu-Peng

    2009-01-01

    Niobium-doped ZnO (NZO) transparent conductive films are deposited on glass substrates by rf sputtering at 300℃.Effects of sputtering power on the structural,morphologic,electrical,and optical properties of NZO films are investigated by x-ray diffraction (XRD),field emission scanning electron microscopy (FESEM),Hall measurement,and optical transmission spectroscopy. The obtained films are polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction.The minimum resistivity of 4.0×10-4 Ω cm is obtained from the film grown at the sputtering power of 170W.The average optical transmittance of the films is over 90%.

  3. High-temperature solar selective absorbers based on a transparent conductive oxide film coated periodic micro-hole array

    Science.gov (United States)

    Shimizu, Makoto; Abe, Toshiro; Iguchi, Fumitada; Yugami, Hiroo

    2017-06-01

    A transparent conductive oxide (TCO) film coated metal microstructures as solar selective absorbers for high-temperature usage exceeding 700°C is introduced. Steep absorption cutoff property and low-emittance at infrared range owing to TCO characteristic can be seen, whereas high-absorptance explained by interaction of incident light and microstructures of which size is submicron is appeared. Honeycomb array cylindrical microcavity of which an absorptance peak appeared at around 0.8 µm was fabricated on a tungsten (W) surface with interference lithography technique. The fabricated sample consist of 1.0 µm indium tin oxide film and W microstructure showed solar absorptance αs = 0.83, hemispherical emittance ɛht = 0.16 assuming the absorber temperature at 700°C, and performance factor η= 0.76. Short duration thermal stability was confirmed at 700°C for 2 h in vacuum condition.

  4. The properties of transparent conducting molybdenum-doped ZnO films grown by radio frequency magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    Xiu Xian-Wu; Zhao Wen-Jing

    2012-01-01

    Transparent conducting molybdenum-doped zinc oxide films are prepared by radio frequency (RF) magnetron sputtering at ambient temperature.The MoO3 content in the target varies from 0 to 5 wt%,and each film is polycrystalline with a hexagonal structure and a preferred orientation along the c axis.The resistivity first decreases and then increases with the increase in MoO3 content.The lowest resistivity achieved is 9.2 × 10-4 Ω.cm,with a high Hall mobility of 30 cm2 · V- 1.s- 1 and a carrier concentration of 2.3 × 1020 cm-3 at an MoO3 content of 2 wt%.The average transmittance in the visible range is reduced from 91% to 80% with the increase in the MoO3 content in the target.

  5. Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes

    Science.gov (United States)

    Kang, Chun Hong; Shen, Chao; M. Saheed, M. Shuaib; Mohamed, Norani Muti; Ng, Tien Khee; Ooi, Boon S.; Burhanudin, Zainal Arif

    2016-08-01

    Transparent conductive electrodes (TCE) made of carbon nanotube (CNT) and graphene composite for GaN-based light emitting diodes (LED) are presented. The TCE with 533-Ω/□ sheet resistance and 88% transmittance were obtained when chemical-vapor-deposition grown graphene was fused across CNT networks. With an additional 2-nm thin NiOx interlayer between the TCE and top p-GaN layer of the LED, the forward voltage was reduced to 5.12 V at 20-mA injection current. Four-fold improvement in terms of light output power was observed. The improvement can be ascribed to the enhanced lateral current spreading across the hybrid CNT-graphene TCE before injection into the p-GaN layer.

  6. Study on the optical and electrical properties of tetracyanoethylene doped bilayer graphene stack for transparent conducting electrodes

    Directory of Open Access Journals (Sweden)

    Tej B. Limbu

    2016-03-01

    Full Text Available We report the optical and electrical properties of chemically-doped bilayer graphene stack by tetracyanoethylene, a strong electron acceptor. The Tetracyanoethylene doping on the bilayer graphene via charge transfer was confirmed by Raman spectroscopy and Infrared Fourier transform spectroscopy. Doped graphene shows a significant increase in the sheet carrier concentration of up to 1.520 × 1013 cm−2 with a concomitant reduction of the sheet resistance down to 414.1 Ω/sq. The high optical transmittance (ca. 84% in the visible region in combination with the low sheet resistance of the Tetracyanoethylene-doped bilayer graphene stack opens up the possibility of making transparent conducting electrodes for practical applications.

  7. Enhancement of the electrical properties of silver nanowire transparent conductive electrodes by atomic layer deposition coating with zinc oxide

    Science.gov (United States)

    Pham, Anh-Tuan; Nguyen, Xuan-Quang; Tran, Duc-Huy; Phan, Vu Ngoc; Duong, Thanh-Tung; Nguyen, Duy-Cuong

    2016-08-01

    Transparent conductive electrodes for applications in optoelectronic devices such as solar cells and light-emitting diodes are important components and require low sheet resistance and high transmittance. Herein, we report an enhancement of the electrical properties of silver (Ag) nanowire networks by coating with zinc oxide using the atomic layer deposition technique. A strong decrease in the sheet resistance of Ag nanowires, namely from 20-40 Ω/□ to 7-15 Ω/□, was observed after coating with ZnO. Ag nanowire electrodes coated with 200-cycle ZnO by atomic layer deposition show the best quality, with a sheet resistance of 11 Ω/□ and transmittance of 75%.

  8. Effective Synthesis and Recovery of Silver Nanowires Prepared by Tapered Continuous Flow Reactor for Flexible and Transparent Conducting Electrode

    Directory of Open Access Journals (Sweden)

    Hyung Duk Yun

    2016-01-01

    Full Text Available Silver nanowires (AgNWs with high aspect ratio were obtained utilizing a tapered tubular reactor by the polyol process. The tapered tubular type flow reactor allowed us to obtain nanowires in high yield without defects that is generally encountered in a closed reactor due to excessive shearing for a long time. After reaction the AgNWs were precipitated in the aqueous solution with the aid of a hydrogen bond breaker and were recovered effectively without using a high-cost centrifugation process. Dispersion of the AgNWs were used to prepare transparent conducting electrode (TCE films by a spray coating method, which showed 86% transmittance and 90 Ωsq−1 sheet resistance.

  9. Fabrication and characterization of highly transparent and conductive indium tin oxide films made with different solution-based methods

    Science.gov (United States)

    Xia, N.; Gerhardt, R. A.

    2016-11-01

    Solution-based fabrication methods can greatly reduce the cost and broaden the applications of transparent conducting oxides films, such as indium tin oxide (ITO) films. In this paper, we report on ITO films fabricated by spin coating methods on glass substrates with two different ITO sources: (1) a commercial ITO nanopowder water dispersion and (2) a sol-gel ITO solution. A simple and fast air annealing process was used to treat as-coated ITO films on a controlled temperature hot plate. Thermogravimetric analysis and x-ray diffraction showed that highly crystalline ITO films were formed after the annealing steps. The final ITO films had a good combination of optical properties and electrical properties, especially for films made from five layers of sol-gel ITO (92.66% transmittance and 8.7 × 10-3 Ω cm resistivity). The surface morphology and conducting network on the ITO films were characterized by non-contact and current atomic force microscopy. It was found that conducting paths were only partially connected for the nanoparticle ITO dispersion films, whereas the sol-gel ITO films had a more uniformly distributed conducting network on the surface. We also used the sol-gel ITO films to fabricate a simple liquid crystal display (LCD) device to demonstrate the excellent properties of our films.

  10. ITO-Free Solution-Processed Flexible Electrochromic Devices Based on PEDOT:PSS as Transparent Conducting Electrode.

    Science.gov (United States)

    Singh, Rekha; Tharion, Joseph; Murugan, Sengottaiyan; Kumar, Anil

    2017-06-14

    Electrochromic devices (ECDs) are emerging as novel technology for various applications ranging from commercialized smart window glasses, goggles, and autodimming rear view mirrors to uncommon yet more sophisticated applications such as infrared camouflage in military and thermal control in space satellites. The development of low-power, lightweight, inexpensive, and flexible devices is the need of the hour. In this respect, utilizing PEDOT:PSS as transparent conducting electrode (TCE) to replace indium tin oxide (ITO) and metal based TCEs for ECDs is a promising solution for the aforementioned requirements. In this work we have demonstrated the performance of PEDOT:PSS films coated on flexible substrates, treated with PTSA-DMSO, as TCEs for ECD applications and their comparison with that of ITO based ECDs. The PEDOT:PSS based flexible TCEs used in this study have conductivity of 1400-1500 S·cm(-1) and figure of merit (FoM) of 70-77. The process of increasing the conductivity of PEDOT:PSS films also led to the broadening of the conducting potential window (CPW), which is important for electrochemical applications of PEDOT:PSS when used as a stand-alone electrode. More than achieving a comparable electrochromic contrast, switching time, and coloration efficiency with respect to the ITO based ECDs, PEDOT:PSS devices also had the added advantage of good mechanical flexibility. These devices demonstrated superior stability during electrochemical cycling and multiple mechanical bending tests, making them an inexpensive alternative to the costly ITO based ECD technology.

  11. Sheet resistance characterization of locally anisotropic transparent conductive films made of aligned metal-enriched single-walled carbon nanotubes.

    Science.gov (United States)

    Kang, Hosung; Kim, Duckjong; Baik, Seunghyun

    2014-09-21

    One-dimensional conductive fillers such as single-walled carbon nanotubes (SWNTs) can be aggregated and aligned during transparent conductive film (TCF) formation by the vacuum filtration method. The potential error of analysing the average sheet resistance of these anisotropic films, using the four-point probe in-line method and the conversion formula developed assuming uniform isotropic material properties, was systematically investigated by finite element analysis and experiments. The finite element analysis of anisotropic stripe-patterned TCFs with alternating low (ρ1) and high (ρ2) resistivities revealed that the estimated average sheet resistance approached ρ1/t when the probes were parallel to the aligned nanotubes. The thickness of the film is t. It was more close to ρ2/t when the probes were perpendicular to the aligned tubes. Indeed, TCFs fabricated by the vacuum filtration method using metal-enriched SWNTs exhibited highly anisotropic local regions where tubes were aggregated and aligned. The local sheet resistances of randomly oriented, aligned, and perpendicular tube regions of the TCF at a transmittance of 89.9% were 5000, 2.4, and 12 300 Ω □(-1), respectively. Resistivities of the aggregated and aligned tube region (ρ1 = 1.2 × 10(-5) Ω cm) and the region between tubes (ρ2 = 6.2 × 10(-2) Ω cm) could be approximated with the aid of finite element analysis. This work demonstrates the potential error of characterizing the average sheet resistance of anisotropic TCFs using the four-point probe in-line method since surprisingly high or low values could be obtained depending on the measurement angle. On the other hand, a better control of aggregation and alignment of nanotubes would realize TCFs with a very small anisotropic resistivity and a high transparency.

  12. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Nian, Qiong; Cheng, Gary J. [Birck Nanotechnology Center and School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Callahan, Michael; Bailey, John [Greentech Solutions, Inc., Hanson, Massachusetts 02341 (United States); Look, David [Semiconductor Research Center, Wright State University, Dayton, Ohio 45435 (United States); Efstathiadis, Harry [College of Nanoscale Science and Engineering (CNSE), University of Albany, Albany, New York 12203 (United States)

    2015-06-01

    Commercial production of transparent conducting oxide (TCO) polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC) of solution deposited aluminium-doped zinc oxide (AZO) nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm{sup 2} V{sup −1} s{sup −1} with corresponding electrical resistivity and sheet resistances as low as 1 × 10{sup −3} Ω cm and 75 Ω/sq, respectively. The high mobility also enabled a high transmittance (T) of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.

  13. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Qiong Nian

    2015-06-01

    Full Text Available Commercial production of transparent conducting oxide (TCO polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC of solution deposited aluminium-doped zinc oxide (AZO nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm2 V−1 s−1 with corresponding electrical resistivity and sheet resistances as low as 1 × 10−3 Ω cm and 75 Ω/sq, respectively. The high mobility also enabled a high transmittance (T of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.

  14. Optimizing processes of dispersant concentration and post-treatments for fabricating single-walled carbon nanotube transparent conducting films

    Science.gov (United States)

    Gao, Jing; Wang, Wen-Yi; Chen, Li-Ting; Cui, Li-Jun; Hu, Xiao-Yan; Geng, Hong-Zhang

    2013-07-01

    This study evaluated the effect of sodium dodecyl benzene sulfonate (SDBS) as dispersant for the dispersion of purified single-walled carbon nanotubes (SWCNTs) in water in terms of dispersibility dependence on electrical conductivity of SWCNT transparent conducting film (TCF) performance. SWCNT TCFs were prepared by different proportions of CNTs/SDBS solution to find out the optimum SDBS concentration according to the film resistance of pristine and after post-treatment by nitric acid. TCFs fabricated with the aqueous solution by the ratio of CNTs/SDBS 1:5 gave the lowest sheet resistance and the highest transmittance. The TCFs were then further treated with thionyl chloride to improve their conductivity. Low sheet resistance (86 Ω/□, 80%T) was achieved. The dispersion condition of CNTs/SDBS aqueous solution was characterized by field-emission scanning electron microscopy, while the X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the dispersion and doping mechanism treated with nitric acid and thionyl chloride.

  15. Transparent and flexible conducting hybrid film combined with 3-Aminopropyltriethoxysilane-coated polymer and graphene

    Science.gov (United States)

    Jung, Daesung; Ko, Yong-Hun; Cho, Jumi; Adhikari, Prashanta Dhoj; Lee, Su Il; Kim, Yooseok; Song, Wooseok; Jung, Min Wook; Jang, Sung Won; Lee, Seung Youb; An, Ki-Seok; Park, Chong-Yun

    2015-12-01

    A simple approach to fabricate graphene hybrid film consisted of Graphene/3-aminopropyltriethoxysilane (APTES)/polyethylene terephthalate (PET) is presented, using self-assembled monolayers (SAMs) for enhancement of conductivity. The SAMs of APTES was prepared on ultraviolet-ozone (UVO)-irradiated PET films via wet chemical technique. The density of APTES was saturated after UV treatment time of 1 h for PET films; the carrier density and the optical transmittance were 9.3 × 10 12/cm2 and 82% for pristine graphene and 1.16 × 1013/cm2 and 86% for graphene hybrid films, respectively, and experienced at inflection point at 30 min in UV treatment time. This behavior can be explained by surface morphology transition due to coalescence or clustering of mobile and low-molecular-weight oxidized components of PET.

  16. Sol-gel processing of highly transparent conducting Cd2SnO4 thin films

    Science.gov (United States)

    Bel-Hadj-Tahar, Radhouane; Bel-Hadj-Tahar, Noureddine; Belhadj Mohamed, Abdellatif

    2015-03-01

    Polycrystalline thin films of cadmium stannate (Cd2SnO4) (CTO) were coated on corning glass substrates by sol-gel method. The films were fired at different temperatures and annealed in inert ambient (N2) at 680°C. The structural, optical, and electrical properties of dip-coated cadmium-tin-oxide (CTO) thin films are discussed. CTO layers with a Hall mobility of 30 cm2/Vs and a carrier density of 1.4 × 1021 cm-3 resulting in a resistivity of 5 × 10-4 Ω cm have been deposited. Dip-coating conditions must be carefully monitored to produce consistent films. The high electronic conductivity is due to two effective mechanisms of n-type doping: (i) stoichiometric deviation and (ii) self-doping.

  17. Transparent conductivity modulation of ZnO by group-IVA doping

    Science.gov (United States)

    Liu, J.; Fan, X. F.; Sun, C. Q.; Zhu, W.

    2016-04-01

    We examined the effect of group-IVA doping on the electronic structure and transmittance of ZnO using first-principle calculations. All these doped ZnO materials are found to perform n-type conductive behavior. Si-doped ZnO and Pb-doped ZnO are found to have larger optical band gap than those of Ge-doped ZnO and Sn-doped ZnO. The transmittance of Si-doped ZnO is found to be high in both UV and visible region. The enhancement of UV region transmittance can be attributed to the enhanced optical band gap, while the reduction of visible region transmittance is due to the intraband optical transition.

  18. The use of arc-erosion as a patterning technique for transparent conductive materials

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Trillo, J. [Dpt. Ingenieria de Circuitos y Sistemas, EUIT Telecomunicacion, U. P. M, 28031 Madrid (Spain); Alvarez, A.L., E-mail: angelluis.alvarez@urjc.es [Dpt. Tecnologia Electronica, Univ. Rey Juan Carlos, Mostoles, 28933 Madrid (Spain); Coya, C. [Dpt. Tecnologia Electronica, Univ. Rey Juan Carlos, Mostoles, 28933 Madrid (Spain); Cespedes, E.; Espinosa, A. [Instituto de Ciencia de los Materiales (CSIC), Cantoblanco, 28049 Madrid (Spain)

    2011-12-01

    Within the framework of cost-effective patterning processes a novel technique that saves photolithographic processing steps, easily scalable to wide area production, is proposed. It consists of a tip-probe, which is biased with respect to a conductive substrate and slides on it, keeping contact with the material. The sliding tip leaves an insulating path (which currently is as narrow as 30 {mu}m) across the material, which enables the drawing of tracks and pads electrically insulated from the surroundings. This ablation method, called arc-erosion, requires an experimental set up that had to be customized for this purpose and is described. Upon instrumental monitoring, a brief proposal of the physics below this process is also presented. As a result an optimal control of the patterning process has been acquired. The system has been used on different substrates, including indium tin oxide either on glass or on polyethylene terephtalate, as well as alloys like Au/Cr, and Al. The influence of conditions such as tip speed and applied voltage is discussed. - Research highlights: Black-Right-Pointing-Pointer An experimental set up has been arranged to use arc erosion as a cost-effective patterning technique of conductive materials (ITO, and thin film metals). Black-Right-Pointing-Pointer Monitoring of the process has revealed that patterning is performed by a sequence of electrical discharges, assisted by the bypass capacitor at the source output. Black-Right-Pointing-Pointer This process has been controlled optimizing the patterning conditions and quality over different materials.

  19. Room temperature transparent conducting oxides based on zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Clatot, J. [Laboratoire de Reactivite et de Chimie des Solides, UMR CNRS 6007, 33, rue Saint-Leu, 80039 Amiens (France); Campet, G. [Institut de Chimie de la Matiere Condensee de Bordeaux (ICMCB), CNRS, 87 Avenue du Docteur A. Schweitzer, 33608 Pessac Cedex (France); Zeinert, A. [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue St. Leu, 80039, Amiens (France); Labrugere, C. [Institut de Chimie de la Matiere Condensee de Bordeaux (ICMCB), CNRS, 87 Avenue du Docteur A. Schweitzer, 33608 Pessac Cedex (France); Rougier, A., E-mail: aline.rougier@u-picardie.fr [Laboratoire de Reactivite et de Chimie des Solides, UMR CNRS 6007, 33, rue Saint-Leu, 80039 Amiens (France)

    2011-04-01

    Doped zinc oxide thin films are grown on glass substrate at room temperature under oxygen atmosphere, using pulsed laser deposition (PLD). O{sub 2} pressure below 1 Pa leads to conductive films. A careful characterization of the film stoichiometry and microstructure using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) concludes on a decrease in crystallinity with Al and Ga additions ({<=}3%). The progressive loss of the (0 0 2) orientation is associated with a variation of the c parameter value as a function of the film thickness and substrate nature. ZnO:Al and ZnO:Ga thin films show a high optical transmittance (>80%) with an increase in band gap from 3.27 eV (pure ZnO) to 3.88 eV and 3.61 eV for Al and Ga doping, respectively. Optical carrier concentration, optical mobility and optical resistivity are deduced from simulation of the optical data.

  20. Highly Elastic, Transparent, and Conductive 3D-Printed Ionic Composite Hydrogels

    KAUST Repository

    Odent, Jérémy

    2017-07-17

    Despite extensive progress to engineer hydrogels for a broad range of technologies, practical applications have remained elusive due to their (until recently) poor mechanical properties and lack of fabrication approaches, which constrain active structures to simple geometries. This study demonstrates a family of ionic composite hydrogels with excellent mechanical properties that can be rapidly 3D-printed at high resolution using commercial stereolithography technology. The new material design leverages the dynamic and reversible nature of ionic interactions present in the system with the reinforcement ability of nanoparticles. The composite hydrogels combine within a single platform tunable stiffness, toughness, extensibility, and resiliency behavior not reported previously in other engineered hydrogels. In addition to their excellent mechanical performance, the ionic composites exhibit fast gelling under near-UV exposure, remarkable conductivity, and fast osmotically driven actuation. The design of such ionic composites, which combine a range of tunable properties and can be readily 3D-printed into complex architectures, provides opportunities for a variety of practical applications such as artificial tissue, soft actuators, compliant conductors, and sensors for soft robotics.

  1. Decrease in work function of transparent conducting ZnO tin films by phosphorus ion implantation.

    Science.gov (United States)

    Heo, Gi-Seok; Hong, Sang-Jin; Park, Jong-Woon; Choi, Bum-Ho; Lee, Jong-Ho; Shin, Dong-Chan

    2008-09-01

    To confirm the possibility of engineering the work function of ZnO thin films, we have implanted phosphorus ions into ZnO thin films deposited by radio-frequency magnetron sputtering. The fabricated films show n-type characteristics. It is shown that the electrical and optical properties of those thin films vary depending sensitively on the ion dose and rapid thermal annealing time. Compared to as-deposited ZnO films, the work-function of phosphorus ion-implanted ZnO thin films is observed to be lower and decreases with increasing ion doses. It is likely that the zinc or oxygen vacancies are firstly filled with the implanted phosphorus ions. With further increased ions, free electrons are generated as Zn2+ sites are replaced by those ions or interstitial phosphorus ions increase at the lattice sites, the fermi level by which approaches the conduction band and thus the work function decreases. Those films exhibit the optical transmittance higher than 85% within the visible wavelength range (up to 800 nm).

  2. Concentrator bifacial crystalline silicon solar cells with multi-wire metallization attached to TCO layers using transparent conductive polymers

    Science.gov (United States)

    Untila, Gennady; Chebotareva, Alla; Kost, Tatiana; Salazkin, Sergei; Shaposhnikova, Vera; Shvarts, Maxim

    2017-09-01

    Replacing expensive silver with inexpensive copper for the metallization of silicon wafer solar cells can lead to substantial reductions in material costs associated with cell production. A promising approach is the use of multi-wire design. This technology uses many wires in the place of busbars, and the copper wires are "soldered" during the low-temperature lamination process to the fingers (printed or plated) or to the transparent conductive oxide (TCO) layer, e.g. in the case of the α-Si/c-Si heterojunction cells. Here we describe a solar cell design in which wires are attached to TCO layers using transparent conductive polymer (TCP) films. To this end, we have synthesized a number of thermoplastics, poly(arylene ether ketone) copolymers (co-PAEKs), containing phthalide in their main chain. The fraction of phthalide-containing units in the copolymers was p = 3, 5, 15, and 50 mol %. With increasing p, the peak strain temperature of the co-PAEKs rises from 205 to 290 °C and their optical band gap and refractive index increase from 3.12 to 3.15 eV and from 1.6 to 1.614, respectively. The copolymers have a negligible absorption coefficient in the wavelength range 400- 1100 nm. When exposed to an excess pressure of 1 atm or above, co-PAEK films less than 30 µm in thickness undergo a transition from a dielectric to a conductive state. The resistivity (ρC) of wire/TCP/TCO (ITO = In2O3:Sn and IFO = In2O3:F) contacts ranges from 0.37 to 1.43 mΩ cm2. The polymer with the highest phthalide content (p = 50 mol %) has the lowest ρC. The average work of adhesion per unit area determined by pulling off the wires from the polymer surface depends on both the phthalide content of the co-PAEKs and their reduced viscosity, ranging from 14.3 to 43.5 N/cm. The highest value was obtained for the co-PAEK with p = 50 mol %. We have fabricated low-concentration bifacial IFO/(n+pp+)Cz-Si/ITO solar cells with a wire contact grid attached to IFO and ITO using a co-PAEK film. The

  3. Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dosmailov, M. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Leonat, L.N. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Patek, J. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Roth, D.; Bauer, P. [Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Scharber, M.C.; Sariciftci, N.S. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-09-30

    Aluminum doped ZnO (AZO) and pure ZnO thin films are grown on polymer substrates by pulsed-laser deposition and the optical, electrical, and structural film properties are investigated. Laser fluence, substrate temperature, and oxygen pressure are varied to obtain transparent, conductive, and stoichiometric AZO layers on polyethylene terephthalate (PET) that are free of cracks. At low fluence (1 J/cm{sup 2}) and low pressure (10{sup −3} mbar), AZO/PET samples of high optical transmission in the visible range, low electrical sheet resistance, and high figure of merit (FOM) are produced. AZO films on fluorinated ethylene propylene have low FOM. The AZO films on PET substrates are used as electron transport layer in inverted organic solar cell devices employing P3HT:PCBM as photovoltaic polymer-fullerene bulk heterojunction. - Highlights: • Aluminum doped and pure ZnO thin films are grown on polyethylene terephthalate. • Growth parameters laser fluence, temperature, and gas pressure are optimized. • AZO films on PET have high optical transmission and electrical conductance (FOM). • Organic solar cells on PET using AZO as electron transport layer are made. • Power conversion efficiency of these OSC devices is measured.

  4. Characteristics of SnO2:Sb Films as Transparent Conductive Electrodes of Flexible Inverted Organic Solar Cells.

    Science.gov (United States)

    Lee, Jaehyeong; Kim, Nam-Hoon; Park, Yong Seob

    2016-05-01

    Antimony-doped tin oxide (ATO) films were deposited on polyethersulfone (PES) substrates by means of a radio frequency (RF) magnetron sputtering method, using a SnO2 target mixed with 6 wt% Sb at room temperature and using various RF powers; these films were used as transparent electrodes in inverted organic solar cells (IOSC). We investigated the structural, optical, and electrical properties of the resulting films by means of various analyses, including X-ray diffraction (XRD), UV-visible spectroscopy, and Hall effect measurements. The crystallinity and conductivity of the ATO films were increased by increasing the RF power used. Based on the experimental data acquired, we fabricated IOSCs based on ATO electrodes deposited by using various conditions. Each IOSC device was composed of an ATO electrode, a ZnO buffer layer, a photoactive layer (P3HT:PCBM), and an Al cathode. The IOSC based on an ATO electrode fabricated at the RF power of 160 W exhibited good device performance due to the electrode's high conductivity and crystallinity.

  5. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Science.gov (United States)

    Singh, Hemant Kr.; Avasthi, D. K.; Aggarwal, Shruti

    2015-06-01

    Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO2:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In2O3:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag+9 ions at fluences ranging from 3.0 × 1011 ions/cm2 to 3.0 × 1013 ions/cm2. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  6. Development and characterization of transparent and conductive InZnO films by magnetron sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J. Nicholas, E-mail: JAlexander@albany.edu [State University of New York Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Rd., Albany, NY 12203 (United States); Sun, Neville; Sun, Richard [Angstrom Sun Technologies Inc., 31 Nagog Park, Acton, MA 01720 (United States); Efstathiadis, Harry; Haldar, Pradeep [State University of New York Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Rd., Albany, NY 12203 (United States)

    2015-06-05

    Highlights: • Deposition of InZnO by magnetron co-sputtering of pure indium and ZnO targets. • InZnO deposited at room temperature and no post anneal. • InZnO oxygen optimization for high conductivity and transmission. • Ellipsometry and Tauc–Lorentz model of InZnO. - Abstract: The electrical and optical properties of InZnO for use as a transparent conducting oxide (TCO) is reported through the investigation of the concentration of indium and oxygen in the film. InZnO films (10–30 wt.% In) were deposited by magnetron sputtering without substrate heating or annealing from a ceramic ZnO and a metallic indium target. The film’s properties were investigated by X-ray photoelectric spectroscopy (XPS), 4-point probe, UV–vis spectroscopy (UV–vis), spectroscopic ellipsometry, and Hall measurements. InZnO films obtained properties with low resistivity, on the order of ∼5.5 × 10{sup −4} ohm-cm, with a mobility ∼35 cm{sup 2}/V S, and carrier concentrations ∼3 ∗ 10{sup 20} cm{sup −3}. The band-gap ranged from 2.7 to 3.2 eV with transmission of several samples >80%. InZnO has demonstrated properties adequate for photovoltaic applications.

  7. Surface modification of ZnO-Films as transparent conductive oxide layer for silicon thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Luekermann, Florian; Moenkemoeller, Viola; Brechling, Armin; Sacher, Marc; Heinzmann, Ulrich [Molecular and Surface Physics, Bielefeld University (Germany); Kurz, Henning; Hamelmann, Frank; Stiebig, Helmut [Malibu GmbH, Bielefeld (Germany)

    2009-07-01

    Transparent conductive oxides are used as front electrode in thin film solar cells. Especially ZnO deposited by Low Pressure Chemical Vapor Deposition provides useful features for solar cells. On the one hand ZnO shows a good conductivity and on the other hand a rough surface consisting of pyramidal grains which possess a good light scattering capability. To influence this light scattering, two different kinds of treatments have been applied on the ZnO surface: etching with diluted HCl and Reactive Ion Etching with Ar and O{sub 2}. The main interest is focused on the change of surface morphology and the resulting changes in light scattering and transmission. HCl etching leads to an increasing surface roughness as well as diffuse transmittance. Ar/O{sub 2} bombardment decreases the roughness and thus the scattering. The lowered roughness enhances the growth of the a-Si absorber layer and reduces the formation of pinholes. Finally the properties of amorphous silicon solar cells deposited on treated ZnO-films are compared with those deposited on untreated films.

  8. Thickness Effect of Nb-Doped TiO2 Transparent Conductive Oxide Grown on Glass Substrates Fabricated by RF Sputtering

    Science.gov (United States)

    Tseng, Zong-Liang; Chen, Lung-Chien; Tang, Jian-Fu; Shih, Meng-Fu; Chu, Sheng-Yuan

    2017-03-01

    Transparent conducting Nb-doped titanium oxide (NTO) films were deposited on a non-alkali glass substrate using an RF magnetron sputtering method with post-annealing. Structural, electrical and optical properties of the NTO films were found to be strongly dependent on film thickness. A resistivity of 4.2 × 10-3 Ω cm and an average visible transmittance of ˜70% were obtained at the film thickness of 360 nm, indicating that the polycrystalline NTO fabricated by the sputtering method has sufficient potential as a transparent conducting oxide (TCO) candidate for practical applications.

  9. Thickness Effect of Nb-Doped TiO2 Transparent Conductive Oxide Grown on Glass Substrates Fabricated by RF Sputtering

    Science.gov (United States)

    Tseng, Zong-Liang; Chen, Lung-Chien; Tang, Jian-Fu; Shih, Meng-Fu; Chu, Sheng-Yuan

    2016-12-01

    Transparent conducting Nb-doped titanium oxide (NTO) films were deposited on a non-alkali glass substrate using an RF magnetron sputtering method with post-annealing. Structural, electrical and optical properties of the NTO films were found to be strongly dependent on film thickness. A resistivity of 4.2 × 10-3 Ω cm and an average visible transmittance of ˜70% were obtained at the film thickness of 360 nm, indicating that the polycrystalline NTO fabricated by the sputtering method has sufficient potential as a transparent conducting oxide (TCO) candidate for practical applications.

  10. Surface microstructure evolution of highly transparent and conductive Al-doped ZnO thin films and its application in CIGS solar cells

    Science.gov (United States)

    Cheng, Ke; Liu, Jingjing; Jin, Ranran; Liu, Jingling; Liu, Xinsheng; Lu, Zhangbo; Liu, Ya; Liu, Xiaolan; Du, Zuliang

    2017-07-01

    Aluminum-doped zinc oxide (AZO) has attained intensive attention as being a very good transparent conducting oxide for photovoltaic applications. In this work, AZO films have been deposited on glass substrate by radio frequency (RF) magnetron sputtering. The influences of substrate temperatures on morphological, structural, optical and electrical properties of AZO films were systematically investigated. The results indicate that all AZO films have the hexagonal structure with c-axis preferred orientation. Morphological and electrical measurements have revealed that the substrate temperatures have strong influence on the microstructure, optical and electrical properties of AZO films. The AZO film is highly transparent from ultraviolet up to near infrared range with highest average transparency exceeding 83%. The minimum resistivity is as low as 6.1 × 10-4 Ω cm. The carrier concentration and mobility are as high as 3.357 × 1020 cm-3 and 30.48 cm2/Vs, respectively. Finally, the performances of the AZO film are evaluated by its practical application in Cu(In1-xGax)Se2 (CIGS) photovoltaic device as a transparent electrode. Benefited from its highly transparent and conductive feature, the most efficient device reveals an efficiency of 7.8% with a short-circuit current density of 28.99 mA/cm2, an open-circuit voltage of 430 mV, and a fill factor of 62.44 under standard conditions.

  11. Atomic mapping of Ruddlesden-Popper faults in transparent conducting BaSnO3-based thin films.

    Science.gov (United States)

    Wang, W Y; Tang, Y L; Zhu, Y L; Suriyaprakash, J; Xu, Y B; Liu, Y; Gao, B; Cheong, S-W; Ma, X L

    2015-11-03

    Doped BaSnO3 has arisen many interests recently as one of the promising transparent conducting oxides for future applications. Understanding the microstructural characteristics are crucial for the exploration of relevant devices. In this paper, we investigated the microstructural features of 0.001% La doped BaSnO3 thin film using both conventional and aberration corrected transmission electron microscopes. Contrast analysis shows high densities of Ruddlesden-Popper faults in the film, which are on {100} planes with translational displacements of 1/2a  . Atomic EELS element mappings reveal that the Ruddlesden-Popper faults are Ba-O layer terminated, and two kinds of kink structures at the Ruddlesden-Popper faults with different element distributions are also demonstrated. Quantitative analysis on lattice distortions of the Ruddlesden-Popper faults illustrates that the local lattice spacing poses a huge increment of 36%, indicating that large strains exist around the Ruddlesden-Popper faults in the film.

  12. Method for Fabricating Textured High-Haze ZnO:Al Transparent Conduction Oxide Films on Chemically Etched Glass Substrates.

    Science.gov (United States)

    Park, Hyeongsik; Nam, Sang-Hun; Shin, Myunghun; Ju, Minkyu; Lee, Youn-Jung; Yu, Jung-Hoon; Jung, Junhee; Kim, Sunbo; Ahn, Shihyun; Boo, Jin-Hyo; Yi, Junsin

    2016-05-01

    We developed a technique for forming textured aluminum-doped zinc oxide (ZnO:Al) transparent conductive oxide (TCO) films on glass substrates, which were etched using a mixture of hydrofluoric (HF) and hydrochloric (HCl) acids. The etching depth and surface roughness increased with an increase in the HF content and the etching time. The HF-based residues produced insoluble hexafluorosilicate anion- and oxide impurity-based semipermeable films, which reduced the etching rate. Using a small amount of HCl dissolved the Ca compounds, helping to fragment the semipermeable film. This formed random, complex structures on the glass substrates. The angled deposition of three layers of ZnO:Al led to the synthesis of multiscaled ZnO:Al textures on the glass substrates. The proposed approach resulted in textured ZnO:Al TCO films that exhibited high transmittance (-80%) and high haze (> 40%) values over wavelengths of 400-1000 nm, as well as low sheet resistances (ZnO:Al textured TCO films exhibited photocurrents and cell efficiencies that were 40% higher than those of cells with conventional TCO films.

  13. Rheology of cellulose nanofibrils/silver nanowires suspension for the production of transparent and conductive electrodes by screen printing

    Science.gov (United States)

    Hoeng, Fanny; Denneulin, Aurore; Reverdy-Bruas, Nadège; Krosnicki, Guillaume; Bras, Julien

    2017-02-01

    With the aim of processing silver nanowires-based electrodes using screen printing process, this study proposes to evaluate the suitability of cellulose nanofibrils (CNF) as a thickening agent for providing a high viscosity silver nanowires screen printing ink. Rheology of CNF suspension has been specifically investigated according to screen printing process requirements using both rotational and oscillating rheology. It has been found that CNF indeed act as a thickener and stabilizer for the silver nanowires suspension. However, the solid dominant visco-elastic behavior of the CNF suspension was not suitable for screen printing and leads to defects within the printed film. CNF visco-elastic properties were modified by adding hydroxypropylmethyl cellulose (HPMC) to the suspension. Homogeneous transparent conductive layers have been obtained when using CNF-HPMC as a matrix for silver nanowires. The screen printed layers were characterized and performances of Rsh = 12 ± 5 Ω□-1 and T%500nm = 74,8% were achieved without any additional post-treatment to the film.

  14. Growth and optical properties of ZnO nanorod arrays on Al-doped ZnO transparent conductive film.

    Science.gov (United States)

    Lin, Suanzhi; Hu, Hailong; Zheng, Weifeng; Qu, Yan; Lai, Fachun

    2013-04-08

    ZnO nanorod arrays (NRAs) on transparent conductive oxide (TCO) films have been grown by a solution-free, catalyst-free, vapor-phase synthesis method at 600°C. TCO films, Al-doped ZnO films, were deposited on quartz substrates by magnetron sputtering. In order to study the effect of the growth duration on the morphological and optical properties of NRAs, the growth duration was changed from 3 to 12 min. The results show that the electrical performance of the TCO films does not degrade after the growth of NRAs and the nanorods are highly crystalline. As the growth duration increases from 3 to 8 min, the diffuse transmittance of the samples decreases, while the total transmittance and UV emission enhance. Two possible nanorod self-attraction models were proposed to interpret the phenomena in the sample with 9-min growth duration. The sample with 8-min growth duration has the highest total transmittance of 87.0%, proper density about 75 μm-2, diameter about 26 nm, and length about 500 nm, indicating that it can be used in hybrid solar cells.

  15. ZnO-Nanorod Dye-Sensitized Solar Cells: New Structure without a Transparent Conducting Oxide Layer

    Directory of Open Access Journals (Sweden)

    Ming-Hong Lai

    2010-01-01

    Full Text Available Conventional nanorod-based dye-sensitized solar cells (DSSCs are fabricated by growing nanorods on top of a transparent conducting oxide (TCO, typically fluorine-doped tin oxide—FTO. The heterogeneous interface between the nanorod and TCO forms a source for carrier scattering. This work reports on a new DSSC architecture without a TCO layer. The TCO-less structure consists of ZnO nanorods grown on top of a ZnO film. The ZnO film replaced FTO as the TCO layer and the ZnO nanorods served as the photoanode. The ZnO nanorod/film structure was grown by two methods: (1 one-step chemical vapor deposition (CVD (2 two-step chemical bath deposition (CBD. The thicknesses of the nanorods/film grown by CVD is more uniform than that by CBD. We demonstrate that the TCO-less DSSC structure can operate properly as solar cells. The new DSSCs yield the best short-current density of 3.96 mA/cm2 and a power conversion efficiency of 0.73% under 85 mW/cm2 of simulated solar illumination. The open-circuit voltage of 0.80 V is markedly higher than that from conventional ZnO DSSCs.

  16. Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates.

    Science.gov (United States)

    Yoo, Kicheon; Kim, Jae-Yup; Lee, Jin Ah; Kim, Jin Soo; Lee, Doh-Kwon; Kim, Kyungkon; Kim, Jin Young; Kim, BongSoo; Kim, Honggon; Kim, Won Mok; Kim, Jong Hak; Ko, Min Jae

    2015-04-28

    To achieve commercialization and widespread application of next-generation photovoltaics, it is important to develop flexible and cost-effective devices. Given this, the elimination of expensive transparent conducting oxides (TCO) and replacement of conventional glass substrates with flexible plastic substrates presents a viable strategy to realize extremely low-cost photovoltaics with a potentially wide applicability. To this end, we report a completely TCO-free and flexible dye-sensitized solar cell (DSSC) fabricated on a plastic substrate using a unique transfer method and back-contact architecture. By adopting unique transfer techniques, the working and counter electrodes were fabricated by transferring high-temperature-annealed TiO2 and Pt/carbon films, respectively, onto flexible plastic substrates without any exfoliation. The fabricated working electrode with the conventional counter electrode exhibited a record efficiency for flexible DSSCs of 8.10%, despite its TCO-free structure. In addition, the completely TCO-free and flexible DSSC exhibited a remarkable efficiency of 7.27%. Furthermore, by using an organic hole-transporting material (spiro-MeOTAD) with the same transfer method, solid-state flexible TCO-free DSSCs were also successfully fabricated, yielding a promising efficiency of 3.36%.

  17. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes

    Science.gov (United States)

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-07-01

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs.

  18. A Comparative Study of Spin Coated Transparent Conducting Thin Films of Gallium and Aluminum Doped ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Alkahlout

    2015-01-01

    Full Text Available Transparent conducting Ga:ZnO (GZO and Al:ZnO (AZO layers have been deposited by spin coating on glass substrates using crystalline nanoparticles redispersed in 1-propanol. The coatings have been sintered in air at 600°C for 15 min and then postannealed in a reducing atmosphere at 400°C for 90 min. The effect of Ga and Al doping on the structural, morphological, optical, and electrical properties of the obtained thin films was investigated. Both films were found to be crystalline with a hexagonal structure. A single step spin coated layer 52–56 nm thick is obtained. To increase the thickness and lower the obtained sheet resistance multilayers coatings have been used. The visible transmission of both layers is high (T>80%. The influence of the sintering temperature and the optimum doping concentration was investigated. Five layers synthesized with doping ratio of 1 mol.% and sintered at 600°C and then submitted to reducing treatment in forming gas exhibited a minimum resistivity value of 7.4 × 10−2 Ω·cm for GZO layer and 1.45 Ω·cm for AZO coating.

  19. Effect of annealing on silicon heterojunction solar cells with textured ZnO:Al as transparent conductive oxide

    Directory of Open Access Journals (Sweden)

    Roca i Cabarrocas P.

    2012-07-01

    Full Text Available We report on silicon heterojunction solar cells using textured aluminum doped zinc oxide (ZnO:Al as a transparent conductive oxide (TCO instead of flat indium tin oxide. Double side silicon heterojunction solar cell were fabricated by radio frequency plasma enhanced chemical vapor deposition on high life time N-type float zone crystalline silicon wafers. On both sides of these cells we have deposited by radio frequency magnetron sputtering ZnO:Al layers of thickness ranging from 800 nm to 1400 nm. These TCO layers were then textured by dipping the samples in a 0.5% hydrochloric acid. External quantum efficiency as well as I-V under 1 sun illumination measurements showed an increase of the current for the cells using textured ZnO:Al. The cells were then annealed at 150 °C, 175 °C and 200 °C during 30 min in ambient atmosphere and characterized at each annealing step. The results show that annealing has no impact on the open circuit voltage of the devices but that up to a 175 °C it enhances their short circuit current, consistent with an overall enhancement of their spectral response. Our results suggest that ZnO:Al is a promising material to increase the short circuit current (Jsc while avoiding texturing the c-Si substrate.

  20. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer

    Science.gov (United States)

    Hong, Sung-Jei; Song, Sang-Hyun; Kim, Byeong Jun; Lee, Jae-Yong; Kim, Young-Sung

    2017-09-01

    In this study, ITO nanoparticles (ITO-NPs) were reused from ITO target scraps to synthesize low cost ITO-NPs and to apply to make sputtering target for transparent conductive electrodes (TCEs). By controlling heat-treatment temperature as 980 °C, we achieved reused ITO-NPs having Brunauer, Emmett and Teller specific surface area (BET SSA) and average particle size 8.05 m2/g and 103.8 nm, respectively. The BET SSA decreases along with increasing heat-treatment temperature. The ITO-NPs were grown as round mound shape, and highly crystallized to (222) preferred orientations. Also, applying the reused ITO-NPs, we achieved an ITO target of which density was 99.6%. Using the ITO target, we achieved high quality TCE layer of which sheet resistance and optical transmittance at 550 nm were 29.5 Ω/sq. and 82.3%. Thus, it was confirmed that the reused ITO-NPs was feasible to sputtering target for TCEs layer.

  1. Solution-processed silver nanowires as a transparent conducting electrode for air-stable inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myungkwan; Kim, Jong-Kuk [Surface Technology Division, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Yang, Shi-Young, E-mail: yangsy@jbnu.ac.kr [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kang, Jae-Wook, E-mail: jwkang@jbnu.ac.kr [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-12-31

    Highly efficient and air-stable inverted organic solar cells (IOSCs) were fabricated using solution-processed silver nanowire electrodes. The electrodes showed a low sheet resistance of ∼ 16 Ω sq{sup −1} and a high transmittance of ∼ 95% at a wavelength of 550 nm. A solution-processed ZnO buffer layer is typically used for electron transport and effective passivation of the surface of Ag NW electrodes. The device performance of the IOSCs that used these Ag NW electrodes, which were fabricated on a glass or plastic substrate, was > 94% of that of devices containing indium tin oxide (ITO) electrodes. This indicates that solution-processed Ag NW electrode can replace commercialized ITO and can be utilized in roll-to-roll and large-area fabrication processes. - Highlights: • Solution-processed silver nanowires (Ag NWs) as a transparent conducting electrode • Ag NW-based high-performance inverted organic solar cell (IOSCs) • IOSC performance > 94% of that of devices with indium tin oxide electrodes.

  2. Transparent and electrically conductive GaSb/Si direct wafer bonding at low temperatures by argon-beam surface activation

    Science.gov (United States)

    Predan, F.; Reinwand, D.; Klinger, V.; Dimroth, F.

    2015-10-01

    Direct wafer bonds of the material system n-GaSb/n-Si have been achieved by means of a low-temperature direct wafer bonding process, enabling an optical transparency of the bonds along with a high electrical conductivity of the boundary layer. In the used technique, the surfaces are activated by sputter-etching with an argon fast-atom-beam (FAB) and bonded in ultra-high vacuum. The bonds were annealed at temperatures between 300 and 400 °C, followed by an optical, mechanical and electrical characterization of the interface. Additionally, the influence of the sputtering on the surface topography of the GaSb was explicitly investigated. Fully bonded wafer pairs with high bonding strengths were found, as no blade could be inserted into the bonds without destroying the samples. The interfacial resistivities of the bonded wafers were significantly reduced by optimizing the process parameters, by which Ohmic interfacial resistivities of less than 5 mΩ cm2 were reached reproducibly. These promising results make the monolithic integration of GaSb on Si attractive for various applications.

  3. Direct and Efficient Preparation of Graphene Transparent Conductive Films on Flexible Poly Carbonate Substrate by Spray-Coating.

    Science.gov (United States)

    Li, Xiuqiang; Zhang, Dong; Yang, Chao; Shang, Yu

    2015-12-01

    Owing to the hydrophobic property and heat-labile of flexible substances, it is difficult to prepare graphene transparent conductive films (TCFs) on flexible substrate in a direct and effective way. Here we prepared a good dispersion of water/graphene oxide (GO)/ethanol, and the fabrication of graphene TCFs on flexible poly carbonate (PC) substrate was made by spray deposition of water/GO/ethanol, followed by the reduction of hydriodic acid (HI) fuming method. It can be found that when ethanol was added to GO solution, the drying dynamics of the spraying solvent increased and the problem of wetting property of GO dispersion on the PC could be effectively resolved. HI acid vapour can achieve an effective reduction of the GO film. The reduction effect of HI acid fuming method is more effective in comparation with traditional HI acid immersed method. An increase in spraying concentration can lead to a rise in coverage degree of film and folding degree of surface. 1/500 mg/ml is a relatively appropriate concentration for spray-coating. The thickness of the film was controlled by adjusting the spraying volume of water/GO/ethanol dispersion. The graphene TCFs exhibit a sheet resistance of less than 15.3 kΩ/sq at 74% transmittance.

  4. SEMICONDUCTOR DEVICES: A Ga-doped ZnO transparent conduct layer for GaN-based LEDs

    Science.gov (United States)

    Zhen, Liu; Xiaofeng, Wang; Hua, Yang; Yao, Duan; Yiping, Zeng

    2010-09-01

    An 8 μm thick Ga-doped ZnO (GZO) film grown by metal-source vapor phase epitaxy was deposited on a GaN-based light-emitting diode (LED) to substitute for the conventional ITO as a transparent conduct layer (TCL). Electroluminescence spectra exhibited that the intensity value of LED emission with a GZO TCL is markedly improved by 23.6% as compared to an LED with an ITO TCL at 20 mA. In addition, the forward voltage of the LED with a GZO TCL at 20 mA is higher than that of the conventional LED. To investigate the reason for the increase of the forward voltage, X-ray photoelectron spectroscopy was performed to analyze the interface properties of the GZO/p-GaN heterojunction. The large valence band offset (2:24 ± 0:21 eV) resulting from the formation of Ga2O3 in the GZO/p-GaN interface was attributed to the increase of the forward voltage.

  5. Effects of the buffer layer inserted between the transparent conductive oxide anode and the organic electron donor

    Energy Technology Data Exchange (ETDEWEB)

    Godoy, A.; Kouskoussa, B.; Benchouk, K.; Khelil, A. [Facultad Ciencias de la Salud, Universidad Diego Portales, Ejercito 141, Santiago de Chile (Chile); Cattin, L.; Soto, G.M. [Universite de Nantes, Nantes Atlantique Universites, Institut des Materiaux Jean Rouxel (IMN)-CNRS, Faculte des Sciences et Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France); Toumi, L. [LPCM2E, Universite d' Oran Es-Senia, LPCM2E (Algeria); Diaz, F.R.; del Valle, M.A. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Morsli, M.; Bernede, J.C. [Universite de Nantes, Nantes Atlantique Universites, LAMP, Faculte des Sciences et Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France)

    2010-04-15

    In optoelectronic devices, the work function of the transparent conductive oxide, which is used as anode, does not match well the highest occupied molecular orbital of the organic material, which induces the formation of a barrier opposed to hole exchange at this interface. Therefore a thin buffer layer is often used to achieve good matching of the band structure at the interface. From experimental results it can be deduced that the main effects of the buffer layer consist in a better matching of the band structure at the interface anode/organic material and in a more homogeneous organic layer growth. We show that, whatever the nature of the buffer layer-metal, oxide, organic material - the classical Schottky-Mott model allows to anticipate, at least roughly, the behaviour of the contact, even if some dipole effect are often present. A good correlation between the ''metal/buffer layer'' work function and the barrier {phi}{sub b} for hole exchange at anode/organic electron donor interfaces is obtained, as expected by the model. (author)

  6. High-conductivity large-area semi-transparent electrodes for polymer photovoltaics by silk screen printing and vapour-phase deposition

    DEFF Research Database (Denmark)

    Winther-Jensen, B.; Krebs, Frederik C

    2006-01-01

    Transparent electrodes based on PEDOT were prepared using a variety of techniques suitable for large area applications from 3,4-ethylenedioxythiophene (EDT) and Fe(111)tosylate. High conductivities were obtained (similar to 20 Omega(-1)) with moderate transmission in the UVvisible range 350-600 nm...

  7. Influence of the sputtering pressure on the properties of transparent conducting zirconium-doped zinc oxide films prepared by RF magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    刘汉法; 张化福; 类成新; 袁长坤

    2009-01-01

    Transparent conducting zirconium-doped zinc oxide films with high transparency and relatively low re-sistivity have been successfully prepared on water-cooled glass substrate by radio frequency magnetron sputtering at room temperature. The Ar sputtering pressure was varied from 0.5 to 3 Pa. The crystallinity increases and the electri-cal resistivity decreases when the sputtering pressure increases from 0.5 to 2.5 Pa. The cystallinity decreases and the electrical resistivity increases when the sputtering pressure increases from 2.5 to 3 Pa. When the sputtering pressure The deposited films are polycrystalline with a hexagonal structure and a preferred orientation perpendicular to the substrate.

  8. Sb2O3/Ag/Sb2O3 Multilayer Transparent Conducting Films For Ultraviolet Organic Light-emitting Diode

    Science.gov (United States)

    Song, Chunyan; Zhang, Nan; Lin, Jie; Guo, Xiaoyang; Liu, Xingyuan

    2017-01-01

    A novel UV transparent conducting films based on Sb2O3/Ag/Sb2O3 (SAS) structure, which were prepared by an electron-beam thermal evaporation at room temperature. This SAS exhibits excellent electrical, optical and stable properties. Especially for UV region, the SAS has high transmittance of 80% at 306 nm and 92% at 335 nm, meanwhile achieving low sheet resistance ( ≤ 10 Ω sq‑1). The UV OLED based on the SAS show competitive device performance. The UV OLED obtains the peak of UV electroluminescence at 376 nm and shows a very high maximum EQE of 4.1% with the maximum output power density of 5.18 mW cm‑2. These results indicate that the potential of SAS applications in deep UV transparent electrodes and large-scale flexible transparent electronics.

  9. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing

    Energy Technology Data Exchange (ETDEWEB)

    Panky, Sreedevi; Thandavan, Kavitha [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sivalingam, Durgajanani [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sethuraman, Swaminathan; Krishnan, Uma Maheswari [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Jeyaprakash, Beri Gopalakrishnan [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Rayappan, John Bosco Balaguru, E-mail: rjbosco@ece.sastra.edu [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India)

    2013-01-15

    Nanostructured cerium oxide (CeO{sub 2}) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO{sub 2} and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film to form the lipase/nano-CeO{sub 2}/TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO{sub 2}/TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp response time of 5 s and a shelf life of about 6 weeks. -- Graphical abstract: Nanostructured cerium oxide thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique. Fluorine doped cadmium oxide (CdO:F) thin film acts as the TCO film and hence the working electrode. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film and hence the lipase/nano-CeO{sub 2}/TCO bioelectrode has been fabricated. Sensing studies were carried out using cyclic voltammetry and amperometry with tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp

  10. High spectral selectivity for solar absorbers using a monolayer transparent conductive oxide coated on a metal substrate

    Science.gov (United States)

    Shimizu, Makoto; Suzuki, Mari; Iguchi, Fumitada; Yugami, Hiroo

    2017-05-01

    A spectrally selective absorber composed of a monolayer transparent conductive oxide (TCO) coated on a metal substrate is investigated for use in solar systems operating at temperatures higher (>973 K) than the operation temperature of conventional systems ( ˜ 673 K). This method is different from the currently used solar-selective coating technologies, such as those using multilayered and cermet materials. The spectral selective absorption property can be attributed to the inherent optical property of TCO owing to the plasma frequency and interferences between the substrates. Since spectral selectivity can be achieved using monolayered materials, the effect of atomic diffusion occurring at each layer boundary in a multilayer or cermet coatings under high-temperature conditions can be reduced. In addition, since this property is attributed to the inherent property of TCO, the precise control of the layer thickness can be omitted if the layer is sufficiently thick (>0.5 μm). The optimum TCO properties, namely, carrier density and mobility, required for solar-selective absorbers are analyzed to determine the cutoff wavelength and emittance in the infrared range. A solar absorptance of 0.95 and hemispherical emittance of 0.10 at 973 K are needed for achieving the optimum TCO properties, i.e., a carrier density of 5.5 × 1020 cm-3 and mobility of 90 cm2 V-1 s-1 are required. Optical simulations indicate that the spectrally selective absorption weakly depends on the incident angle and film thickness. The thermal stability of the fabricated absorber treated at temperatures up to 973 K for 10 h is verified in vacuum by introducing a SiO2 interlayer, which plays an important role as a diffusion barrier.

  11. On the solid phase crystallization of In2O3:H transparent conductive oxide films prepared by atomic layer deposition

    Science.gov (United States)

    Macco, Bart; Verheijen, Marcel A.; Black, Lachlan E.; Barcones, Beatriz; Melskens, J.; Kessels, Wilhelmus M. M.

    2016-08-01

    Hydrogen-doped indium oxide (In2O3:H) has emerged as a highly transparent and conductive oxide, finding its application in a multitude of optoelectronic devices. Recently, we have reported on an atomic layer deposition (ALD) process to prepare high quality In2O3:H. This process consists of ALD of In2O3:H films at 100 °C, followed by a solid phase crystallization step at 150-200 °C. In this work, we report on a detailed electron microscopy study of this crystallization process which reveals new insights into the crucial aspects for achieving the large grain size and associated excellent properties of the material. The key finding is that the best optoelectronic properties are obtained by preparing the films at the lowest possible temperature prior to post-deposition annealing. Electron microscopy imaging shows that such films are mostly amorphous, but feature a very low density of embedded crystallites. Upon post-deposition annealing, crystallization proceeds merely from isotropic crystal grain growth of these embedded crystallites rather than by the formation of additional crystallites. The relatively high hydrogen content of 4.2 at. % in these films is thought to cause the absence of additional nucleation, thereby rendering the final grain size and optoelectronic properties solely dependent on the density of embedded crystallites. The temperature-dependent grain growth rate has been determined, from which an activation energy of (1.39 ± 0.04) eV has been extracted. Finally, on the basis of the observed crystallization mechanism, a simple model to fully describe the crystallization process has been developed. This model has been validated with a numerical implementation thereof, which accurately predicts the observed temperature-dependent crystallization behaviour.

  12. Toward High Performance Integrated Semiconductor Micro and Nano Lasers Enabled by Transparent Conducting Materials: from Thick Structure to Thin Film

    Science.gov (United States)

    Ou, Fang

    Integrated semiconductor lasers working at the wavelength around 1.3 microm and 1.55 microm are of great interest for the research of photonic integrated circuit (PIC) since they are the crucial components for optical communications and many other applications. To satisfy the requirement of the next generation optical communication and computing systems, integrated semiconductor lasers are expected to have high device performance like very low lasing threshold, high output powers, high speed and possibility of being integrated with electronics. This dissertation focuses on the design and realization of InP based high performance electrically pumped integrated semiconductor lasers. In the dissertation, we first design the tall structure based electrically pumped integrated micro-lasers. Those lasers are capable of giving >10 mW output power with a moderate low threshold current density (0.5--5 kA/cm 2). Besides, a new enhanced radiation loss based coupler design is demonstrated to realize single directional output for curvilinear cavities. Second, the thin film structure based integrated semiconductor laser designs are proposed. Both structures use the side conduction geometry to enable the electrical injection into the thin film laser cavity. The performance enhancement of the thin film structure based lasers is analyzed compared to the tall structure. Third, we investigate the TCO materials. CdO deposited by PLD and In 2O3 deposited by IAD are studied from aspects of their physical, optical and electrical properties. Those materials can give a wide range of tunability in their conductivity (1--5000 S/cm) and optical transparency (loss 200--5000 cm-1), which is of great interest in realizing novel nanophotonic devices. In addition, the electrical contact properties of those materials to InP are also studied. Experiment result shows that both CdO and In2O3 can achieve good ohmic contact to n-InP with contact resistance as low as 10-6O·cm 2. At last, we investigate

  13. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes

    Science.gov (United States)

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-08-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process.

  14. Fabrication of Heterogeneous TiO2-CdS Nanotubular Arrays on Transparent Conductive Substrate and Their Photoelectrochemical Properties

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-11-01

    and the CdS nanoparticles under front-side illumination. Our strategy for nanotubular transfer on transparent substrate may extend the applications of TiO2 nanotubular arrays into other fields, such as dye-sensitized solar cells, photochromism and photocatalysis.

  15. Transparent conductive Ga-doped MgZnO/Ag/Ga-doped MgZnO sandwich structure with improved conductivity and transmittance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Sheng, E-mail: wsliu@saturn.yzu.edu.tw [Department of Photonics Engineering, Yuan Ze University, Chung-Li, Taiwan (China); Liu, Yueh-Hung; Chen, Wei-Ku [Department of Photonics Engineering, Yuan Ze University, Chung-Li, Taiwan (China); Hsueh, Kuang-Po [Department of Electronics Engineering, Vanung University, Chung-Li, Taiwan (China)

    2013-07-05

    Highlights: ► Remarkable improvement of the GMZO/Ag/GMZO sandwich structure with resistivity of 10{sup −5} Ω cm without thermal annealing. ► The optimal structural design shows an average transmittance of 81% at a wavelength range of 400–800 nm. ► The AFM were used to verify the morphological study for crystallite size. ► The SEM pictures show the aggregation of the Ag grain leading to the increase of light scattering. ► XPS measurements were employed to confirm the composition and the diffusion of Ag. -- Abstract: This study presents the advantages of combining Ga-doped MgZnO (GMZO) transparent conductive oxide (TCO) with a silver (Ag) layer to form a GMZO/Ag/GMZO composite structure using a radio-frequency magnetron sputtering and electron beam system. The proposed structure improves the electrical properties of a single GMZO bulk and allows a low processing temperature. This study also investigates the effects of the silver thickness and post-annealing process on the structural, electrical, and optical properties of the GMZO/Ag/GMZO composite sandwich structure. The optimal GMZO/Ag/GMZO structural thickness was 40/20/60 nm, which yielded a resistivity of 5.8 × 10{sup −5} Ω cm with an average transmittance of 81.0% at a wavelength range of 400–800 nm. The figure of merit (Φ{sub TC}) for the as-deposited sandwich structure was calculated as 2.1 × 10{sup −2} Ω{sup −1}. This is approximately two times higher than the best results obtained from a single GMZO bulk layer with an annealing temperature of 600 °C (1.1 × 10{sup −2} Ω{sup −1}). This remarkable improvement of the GMZO/Ag/GMZO sandwich structure is a highly promising candidate for optoelectronic devices, and has a low processing temperature than a single TCO bulk layer.

  16. Indium-free Cu/fluorine doped ZnO composite transparent conductive electrodes with stretchable and flexible performance on poly(ethylene terephthalate) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun; Gong, Haibo; Yang, Xiaopeng; Qiu, Zhiwen; Zi, Min; Qiu, Xiaofeng [Key Lab of Inorganic Functional Material in Universities of Shandong, School of Material Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wang, Hongqiang [Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Peach Street, Liverpool L69 7ZF (United Kingdom); Cao, Bingqiang, E-mail: mse_caobq@ujn.edu.cn [Key Lab of Inorganic Functional Material in Universities of Shandong, School of Material Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Cu/FZO bilayer films grow on PET substrates at room temperature. • The lowest resistivity of 6.6 × 10{sup −5} Ω cm is obtained. • The Cu/FZO film exhibits mechanical flexibility and stability. - Abstract: Material-abundant ZnO and metal thin film have been proposed as potential alternatives for the most widely commercial indium tin oxide (ITO) transparent and conductive electrode. Yet the deterioration of optical transparency and conductivity for these materials makes them difficult to compete with ITO. In this work, a double-layer structured film-composed of FZO and Cu film is presented at room temperature, which combines the high transparency of FZO and high conductivity of Cu film. We first studied the effect of oxygen pressure on the transparency and conductivity of free-standing FZO layer deposited on poly(ethylene terephthalate) (PET) by PLD method. Also the structural, electrical, and optical properties of bilayers electrode dependence on the Cu layer thickness were optimized in detail. As the Cu layer thickness increases, the resistivity decreases. The lowest resistivity of 6.6 × 10{sup −5} Ω cm with a carrier concentration of 1.11 × 10{sup 22} cm{sup −3} and mobility of 8.52 cm{sup 2} V{sup −1} s{sup −1} was obtained at the optimum Cu (12 nm) layer thickness. We find that FZO layer have anti-reflection effect for Cu/FZO (250 nm) bilayer in the wavelength range of 650–1000 nm compared with single Cu layer. And we firstly study the stretchable performance for Cu film-based composite electrodes with stretching ratio changing from 0 to 5%. Furthermore, we study excellent mechanical flexibility and stability of composite electrodes by bending test.

  17. Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications

    OpenAIRE

    2016-01-01

    The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower s...

  18. Site-selective growth of patterned silver grid networks as flexible transparent conductive film by using poly(dopamine) at room temperature.

    Science.gov (United States)

    Jin, Yunxia; Cheng, Yuanrong; Deng, Dunying; Jiang, Chengjie; Qi, Tianke; Yang, Donglun; Xiao, Fei

    2014-02-12

    Metal transparent conductive films (TCFs) have received increasing attention in various flexible electronics. However, there are two crucial issues that need to be addressed: (1) strong adhesion between metal TCFs and the flexible substrates and (2) high conductivity with short treatment time and low process temperature, simultaneous with high transparency. In this paper, a site-selective electroless plating combination with poly(dopamine) modification is demonstrated to fabricate a new high performance transparent conductor composed of a periodic two-dimensional silver network on a heat sensitive flexible substrate at room temperature. The TCF reveals an extremely high ratio of DC to optical conductivity (σ(DC)/σ(Op)) value in the range of 350-1000 for various fabricated silver grid films. It also exhibits particularly strong adhesion, which can resist ultrasonic treatment in water or organic solvent for several hours. Its reliability (stable for at least 1440 h during 85 °C/85% RH aging) meets the essential requirements for microelectronic applications. Using this method, we obtain silver grid film on a flexible polyethylene terephthalate substrate with optical transmittance of 91% and sheet resistance of 8 Ohm sq(-1), which is comparable to or better than the commercially available indium tin oxide.

  19. Lateral assembly of oxidized graphene flakes into large-scale transparent conductive thin films with a three-dimensional surfactant 4-sulfocalix[4]arene

    Science.gov (United States)

    Sundramoorthy, Ashok K.; Wang, Yilei; Wang, Jing; Che, Jianfei; Thong, Ya Xuan; Lu, Albert Chee W.; Chan-Park, Mary B.

    2015-01-01

    Graphene is a promising candidate material for transparent conductive films because of its excellent conductivity and one-carbon-atom thickness. Graphene oxide flakes prepared by Hummers method are typically several microns in size and must be pieced together in order to create macroscopic films. We report a macro-scale thin film fabrication method which employs a three-dimensional (3-D) surfactant, 4-sulfocalix[4]arene (SCX), as a lateral aggregating agent. After electrochemical exfoliation, the partially oxidized graphene (oGr) flakes are dispersed with SCX. The SCX forms micelles, which adsorb on the oGr flakes to enhance their dispersion, also promote aggregation into large-scale thin films under vacuum filtration. A thin oGr/SCX film can be shaved off from the aggregated oGr/SCX cake by immersing the cake in water. The oGr/SCX thin-film floating on the water can be subsequently lifted from the water surface with a substrate. The reduced oGr (red-oGr) films can be as thin as 10−20 nm with a transparency of >90% and sheet resistance of 890 ± 47 kΩ/sq. This method of electrochemical exfoliation followed by SCX-assisted suspension and hydrazine reduction, avoids using large amounts of strong acid (unlike Hummers method), is relatively simple and can easily form a large scale conductive and transparent film from oGr/SCX suspension. PMID:26040436

  20. Silver Nanowires Binding with Sputtered ZnO to Fabricate Highly Conductive and Thermally Stable Transparent Electrode for Solar Cell Applications.

    Science.gov (United States)

    Singh, Manjeet; Rana, Tanka R; Kim, SeongYeon; Kim, Kihwan; Yun, Jae Ho; Kim, JunHo

    2016-05-25

    Silver nanowire (AgNW) film has been demonstrated as excellent and low cost transparent electrode in organic solar cells as an alternative to replace scarce and expensive indium tin oxide (ITO). However, the low contact area and weak adhesion with low-lying surface as well as junction resistance between nanowires have limited the applications of AgNW film to thin film solar cells. To resolve this problem, we fabricated AgNW film as transparent conductive electrode (TCE) by binding with a thin layer of sputtered ZnO (40 nm) which not only increased contact area with low-lying surface in thin film solar cell but also improved conductivity by connecting AgNWs at the junction. The TCE thus fabricated exhibited transparency and sheet resistance of 92% and 20Ω/□, respectively. Conductive atomic force microscopy (C-AFM) study revealed the enhancement of current collection vertically and laterally through AgNWs after coating with ZnO thin film. The CuInGaSe2 solar cell with TCE of our AgNW(ZnO) demonstrated the maximum power conversion efficiency of 13.5% with improved parameters in comparison to solar cell fabricated with conventional ITO as TCE.

  1. The effect of annealing temperature on electrical and optical properties of transparent and conductive thin films fabicated of multi-walled carbon nanotube/Ag nanowires

    Directory of Open Access Journals (Sweden)

    A zilaee

    2017-02-01

    Full Text Available Transparent and conductive thin films of multi-walled carbon nanotube/ Ag nanowires were fabricated using spin coating technique. In order to improve the electrical conductivity and the optical properties, the layers were annealed from room temperature to 350 °C for 30 minutes. The measurements revealed that annealing caused electrical conductivity of fabricated thin layes to be improved. The optimum annealing temperature for improving these properties was deduced 285 °C. For all different film thicknesses from about 89 to 183 nm it was observed that the presence of nanowires has improved the film’s electrical conductivity in all tempretures. The best ratio of DC conductivity to optical conductivity of the films, which is accounted as films figure of merit, was measured at 285 °C for all Ag percentages. Sheet resistance and optical transmittance were measured by four-point probe technique and UV-Vis spectrophotometer, respectively

  2. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing.

    Science.gov (United States)

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-05-16

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10(-2) Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate.

  3. Plasmonic transparent conductors

    Science.gov (United States)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-09-01

    Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.

  4. Plasticized Polymer Interlayer for Low-Temperature Fabrication of a High-Quality Silver Nanowire-Based Flexible Transparent and Conductive Film

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wonhee; Kang, Hong Suk; Choi, Jaeho; Lee, Hongkyung; Kim, Hee-Tak

    2017-04-18

    Silver nanowires (AgNWs) are one of the most promising materials to replace commercially available indium tin oxide in flexible transparent conductive films (TCFs); however, there are still numerous problems originating from poor AgNW junction formation and improper AgNW embedment into transparent substrates. To mitigate these problems, high-temperature processes have been adopted; however, unwanted substrate deformation prevents the use of these processes for the formation of flexible TCFs. In this work, we present a novel poly(methyl methacrylate) interlayer plasticized by dibutyl phthalate for low-temperature fabrication of AgNW-based TCFs, which does not cause any substrate deformation. By exploiting the viscoelastic properties of the plasticized interlayer near the lowered glass-transition temperature, a monolithic junction of AgNWs on the interlayer and embedment of the interconnected AgNWs into the interlayer are achieved in a single-step pressing. The resulting AgNW-TCFs are highly transparent (~92% at a wavelength of 550 nm), highly conductive (<90 Ω/sq), and environmentally and mechanically robust. Therefore, the plasticized interlayer provides a simple and effective route to fabricate high-quality AgNW-based TCFs.

  5. Piezoresistance in p-type silicon revisited

    DEFF Research Database (Denmark)

    Richter, Jacob; Pedersen, Jesper; Brandbyge, Mads;

    2008-01-01

    We calculate the shear piezocoefficient pi44 in p-type Si with a 6×6 k·p Hamiltonian model using the Boltzmann transport equation in the relaxation-time approximation. Furthermore, we fabricate and characterize p-type silicon piezoresistors embedded in a (001) silicon substrate. We find that the ...

  6. Young's Modulus and Coefficient of Linear Thermal Expansion of ZnO Conductive and Transparent Ultra-Thin Films

    OpenAIRE

    2011-01-01

    A new technique for measuring Young's modulus of an ultra-thin film, with a thickness in the range of about 10 nm, was developed by combining an optical lever technique for measuring the residual stress and X-ray diffraction for measuring the strain in the film. The new technique was applied to analyze the mechanical properties of Ga-doped ZnO (GZO) films, that have become the focus of significant attention as a substitute material for indium-tin-oxide transparent electrodes. Young's modulus...

  7. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  8. Recent Developments in p-Type Oxide Semiconductor Materials and Devices.

    Science.gov (United States)

    Wang, Zhenwei; Nayak, Pradipta K; Caraveo-Frescas, Jesus A; Alshareef, Husam N

    2016-05-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  9. Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer.

    Science.gov (United States)

    Du, J H; Jin, H; Zhang, Z K; Zhang, D D; Jia, S; Ma, L P; Ren, W C; Cheng, H M; Burn, P L

    2017-01-07

    The large surface roughness, low work function and high cost of transparent electrodes using multilayer graphene films can limit their application in organic photovoltaic (OPV) cells. Here, we develop single layer graphene (SLG) films as transparent anodes for OPV cells that contain light-absorbing layers comprised of the evaporable molecular organic semiconductor materials, zinc phthalocyanine (ZnPc)/fullerene (C60), as well as a molybdenum oxide (MoOx) interfacial layer. In addition to an increase in the optical transmittance, the SLG anodes had a significant decrease in surface roughness compared to two and four layer graphene (TLG and FLG) anodes fabricated by multiple transfer and stacking of SLGs. Importantly, the introduction of a MoOx interfacial layer not only reduced the energy barrier between the graphene anode and the active layer, but also decreased the resistance of the SLG by nearly ten times. The OPV cells with the structure of polyethylene terephthalate/SLG/MoOx/CuI/ZnPc/C60/bathocuproine/Al were flexible, and had a power conversion efficiency of up to 0.84%, which was only 17.6% lower than the devices with an equivalent structure but prepared on commercial indium tin oxide anodes. Furthermore, the devices with the SLG anode were 50% and 86.7% higher in efficiency than the cells with the TLG and FLG anodes. These results show the potential of SLG electrodes for flexible and wearable OPV cells as well as other organic optoelectronic devices.

  10. Fabrication of Transparent Conductive Zinc Oxide Co-Doped with Fluorine and Zirconium Thin Solid Films by Ultrasonic Chemical Pyrolysis: Effects of Precursor Solution Aging and Substrate Temperature

    Directory of Open Access Journals (Sweden)

    Luis Castañeda

    2013-01-01

    Full Text Available Highly transparent, conducting zinc oxide [ZnO] thin films co-doped with fluorine and zirconium have been deposited on glass substrates by the ultrasonic chemical spraying technique. The effects of aging of the starting solution and substrate temperature on the structural, morphological, and electrical properties of the ZnO:F:Zr films have been studied. The resistivity of the films decreases with the aging time of the starting solution until the seventeenth day reaching a minimum of about 1.2×10−2 Ω cm and then increases. Though all the samples are of polycrystalline hexagonal wurtzite type and grow preferentially with (002 plane parallel to the substrate, their morphology depends strongly on the aging time of the reaction solution. The optical transmittance of all the films remained around 80% in the visible spectral range. These highly transparent, low resistive thin films are expected to be highly useful as transparent electrodes in the fabrication of thin film solar cells.

  11. Optical and Electrical Effects of p-type μc-SiOx:H in Thin-Film Silicon Solar Cells on Various Front Textures

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2014-01-01

    Full Text Available p-type hydrogenated microcrystalline silicon oxide (µc-SiOx:H was developed and implemented as a contact layer in hydrogenated amorphous silicon (a-Si:H single junction solar cells. Higher transparency, sufficient electrical conductivity, low ohmic contact to sputtered ZnO:Al, and tunable refractive index make p-type µc-SiOx:H a promising alternative to the commonly used p-type hydrogenated microcrystalline silicon (µc-Si:H contact layers. In this work, p-type µc-SiOx:H layers were fabricated with a conductivity of up to 10−2 S/cm and a Raman crystallinity of above 60%. Furthermore, we present p-type µc-SiOx:H films with a broad range of optical properties (2.1 eV < band gap E04<2.8 eV and 1.6 < refractive index n<2.6. These properties can be tuned by adapting deposition parameters, for example, the CO2/SiH4 deposition gas ratio. A conversion efficiency improvement of a-Si:H solar cells is achieved by applying p-type µc-SiOx:H contact layer compared to the standard p-type µc-Si:H contact layer. As another aspect, the influence of the front side texture on a-Si:H p-i-n solar cells with different p-type contact layers, µc-Si:H and µc-SiOx:H, is investigated. Furthermore, we discuss the correlation between the decrease of Voc and the cell surface area derived from AFM measurements.

  12. An insight into doping mechanism in Sn–F co-doped transparent conducting ZnO films by correlating structural, electrical and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Arindam; Sarkar, Sanjit; Ghosh, Tushar; Basak, Durga, E-mail: sspdb@iacs.res.in

    2015-10-15

    On the face of massively growing market of transparent optoelectronics, developing ZnO-based transparent conductive thin films as a promising substitute for indium-free transparent electrode is extremely important. However, the detailed function of the dopants, especially co-dopants acting on the electrical and optical properties of ZnO-based transparent conductive thin films is not clear yet. We present a detailed comparative investigation on the structural, electrical and optical properties of pulsed laser deposited ZnO thin films co-doped with Sn and F for the first time. An unexpected expansion in the lattice structure has been observed when Zn{sup 2+} are replaced by Sn{sup 4+} having smaller ionic radius. Electrical measurements show that there is no anticipated change in the carrier concentration with the dopant concentration. A minimum resistivity of 2.56 × 10{sup −3} Ohm-cm with a carrier concentration of 4.41 × 10{sup 20} cm{sup −3} has been obtained for 1 at.% each Sn–F co-doped film. Most interestingly, a significant improvement in the ultraviolet (UV)/visible (VIS) photoluminescence peak intensity in Sn doped and Sn–F co-doped films in correlation with the structural and electrical properties allows us to propose that Sn doping into ZnO lattice causes a screening of the native Zn vacancy defects. While the presence of F co-dopant induces Sn{sup 2+} to occupy the lattice sites, as evidenced from the lattice expansion, an insignificant increase in the carrier concentration as well as enhanced UV emission of the co-doped films. The results obtained in this study shed light on the development of ZnO-based transparent electrodes. - Highlights: • A comparative investigation on electrical and optical properties of F, Sn and Sn–F co-doped ZnO films has been done. • There is no significant correlation between the carrier concentration and dopant content. • The UV/vis PL peak intensity of the films gets better in Sn doped and best in the Sn

  13. Superhydrophobic and anti-reflective ZnO nanorod-coated FTO transparent conductive thin films prepared by a three-step method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: li_bjia@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, 212013 (China); Huang, Li-jing; Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Kong, Xia; Cai, Yun-long; Zhang, Jie-lu [Jiangsu Tailong Reduction Box Co. Ltd., Taixing, 225400 (China)

    2016-07-25

    A ZnO nanorod-coated FTO film was prepared by sputtering an AZO layer on FTO glass, thermal annealing of the AZO/FTO film, and hydrothermal growth of ZnO nanorods at 70 °C on the annealed AZO/FTO film using zinc foils as zinc source. Two other ZnO nanorod-coated FTO films were also prepared by hydrothermal growths of ZnO nanorods on the FTO glass and the unannealed AZO/FTO film respectively for comparison purpose. The results were observed in detail using X-ray diffraction, scanning electron microscopy, water contact/sliding angle measurement, spectrophotometry and four-point probe measurement. The ZnO nanorods on the annealed AZO/FTO film were found to exhibit denser distribution and better orientation than those on the FTO glass and the unannealed AZO/FTO film. As a result, the ZnO nanorod-coated annealed AZO/FTO film demonstrated superhydrophobicity, high transparency and low reflectance in the visible range. Also this film had the lowest sheet resistance of 4.0 Ω/sq, implying its good electrical conductivity. This investigation provides a valuable reference for developing multifunctional transparent conductive films. - Highlights: • ZnO nanorod-coated annealed AZO/FTO film was obtained by a three-step method. • FTO and unannealed AZO/FTO films were also used as substrates for comparison. • ZnO nanorods on the annealed AZO/FTO film were denser and more vertically-oriented. • The ZnO nanorod-coated annealed AZO/FTO film (Z/TA-FTO) had superhydrophobicity. • The Z/TA-FTO exhibited high transparency, low reflectance and good conductivity.

  14. Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications.

    Science.gov (United States)

    Kou, Kuang-Yang; Huang, Yu-En; Chen, Chien-Hsun; Feng, Shih-Wei

    2016-01-01

    The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer.

  15. Solid-State Dye-Sensitized Solar Cells using Ordered TiO2 Nanorods on Transparent Conductive Oxide as Photoanodes

    OpenAIRE

    Wang, Mingkui; Bai, Jie; Le Formal, Florian; Moon, Soo-Jin; Cevey-Ha, Le; Humphry-Baker, Robin; Graetzel, Carole; Zakeeruddin, Shaik M.; Graetzel, Michael

    2012-01-01

    TiO2 nanorod arrays were prepared on top of a transparent conductive glass substrate covered with a thin TiO2 compact layer. Solid-state dye-sensitized solar cells (SSDSCs) were fabricated using these structured TiO2 films sensitized with C106 dye as a photoanode and 2,2',7,7'-tetrakis-(N,N-dipmethoxyphenylamine) 9,9'-spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. Photovoltaic power conversion efficiency of 2.9% was obtained at full sunlight intensity. The electron ...

  16. Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications

    Directory of Open Access Journals (Sweden)

    Kuang-Yang Kou

    2016-01-01

    Full Text Available The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B, transparent conductive oxide (TCO materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer.

  17. Merits and Demerits of Transparent Conducting Magnetron Sputtered ZnO:Al, ITO and SnO2:F Thin Films for Solar Cell Applications

    Science.gov (United States)

    Das, Rajesh; Das, Himadri Sekhar

    2017-04-01

    Transparent conducting ZnO:Al and indium tin oxide (ITO) thin films were deposited by magnetron sputtering under reactive environment. Both the transparent conducting oxide (TCO) films were exposed intentionally in hydrogen environment at 350 °C calcinations temperature to study the post treated TCO film's opto-electronic, structural as well as surface morphological properties. Electrical resistivity of both ZnO:Al, ITO and SnO2:F films are comparable (order of 10-4 Ω-cm), lowest sheet resistance are 8.5, 3.7 and 4.6 Ω/sq respectively and slightly improved after hydrogen exposure at 350 °C. Optical transmittance and internal texture of hydrogen environment exposed ZnO films remains invariant, but in case of ITO, SnO2:F films optical transmittance deteriorated drastically. Hexagonal wurtzite structure with (002) c-axis orientation is observed for pre- and post-hydrogen exposed ZnO films whereas internal texture as well as crystallographic orientation of ITO and SnO2:F films have significantly changed. Surface grains of ITO films have been significantly enhanced, but no such variations are observed in ZnO surface morphology. ZnO:Al and ITO films show unique plasmonic properties in near infrared transmittance due to free carrier generation in conduction band. Based on surface features/morphology, haze factor and internal texture light scattering mechanism is modeled.

  18. Textured surface structures formed using new techniques on transparent conducting Al-doped zinc oxide films prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Miyata, Toshihiro, E-mail: tmiyata@neptune.kanazawa-it.ac.jp [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Uozaki, Ryousuke [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Sai, Hitoshi; Koida, Takashi [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2016-09-01

    Surface-textured Al-doped ZnO (AZO) films formed using two new techniques based on magnetron sputtering deposition were developed by optimizing the light scattering properties to be suitable for transparent electrode applications in thin-film silicon solar cells. Scrambled egg-like surface-textured AZO films were prepared using a new texture formation technique that post-etched pyramidal surface-textured AZO films prepared under deposition conditions suppressing c-axis orientation. In addition, double surface-textured AZO films were prepared using another new texture formation technique that completely removed, by post-etching, the pyramidal surface-textured AZO films previously prepared onto the initially deposited low resistivity AZO films; simultaneously, the surface of the low resistivity films was slightly etched. However, the obtained very high haze value in the range from the near ultraviolet to visible light in the scrambled egg-like surface-textured AZO films did not contribute significantly to the obtainable photovoltaic properties in the solar cells fabricated using the films. Significant light scattering properties as well as a low sheet resistance could be achieved in the double surface-textured AZO films. In addition, a significant improvement of external quantum efficiency in the range from the near ultraviolet to visible light was achieved in superstrate-type n-i-p μc-Si:H solar cells fabricated using a double surface-textured AZO film prepared under optimized conditions as the transparent electrode. - Highlights: • Double surface-textured AZO films prepared using a new texture formation technique • Extensive light scattering properties with low sheet resistance achieved in the double surface-textured AZO films • Improved external quantum efficiency of μc-Si:H solar cells using a double surface-textured AZO film.

  19. Hot-wire chemical vapor deposition prepared aluminum doped p-type microcrystalline silicon carbide window layers for thin film silicon solar cells

    Science.gov (United States)

    Chen, Tao; Köhler, Florian; Heidt, Anna; Carius, Reinhard; Finger, Friedhelm

    2014-01-01

    Al-doped p-type microcrystalline silicon carbide (µc-SiC:H) thin films were deposited by hot-wire chemical vapor deposition at substrate temperatures below 400 °C. Monomethylsilane (MMS) highly diluted in hydrogen was used as the SiC source in favor of SiC deposition in a stoichiometric form. Aluminum (Al) introduced from trimethylaluminum (TMAl) was used as the p-type dopant. The material property of Al-doped p-type µc-SiC:H thin films deposited with different deposition pressure and filament temperature was investigated in this work. Such µc-SiC:H material is of mainly cubic (3C) SiC polytype. For certain conditions, like high deposition pressure and high filament temperature, additional hexagonal phase and/or stacking faults can be observed. P-type µc-SiC:H thin films with optical band gap E04 ranging from 2.0 to 2.8 eV and dark conductivity ranging from 10-5 to 0.1 S/cm can be prepared. Such transparent and conductive p-type µc-SiC:H thin films were applied in thin film silicon solar cells as the window layer, resulting in an improved quantum efficiency at wavelengths below 480 nm.

  20. Organic photovoltaic cells fabricated on a SnO{sub x}/Ag/SnO{sub x} multilayer transparent conducting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jeong-Do [Interface Control Research Center, Korea Institute of Science and Technology, Sungbuk-Gu, Hwarangno 14-gil 5, Seoul 136-791 (Korea, Republic of); Department of Physics, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Cho, Se-Hee; Hong, Tae-Woo; Son, Dong Ick; Park, Dong-Hee [Interface Control Research Center, Korea Institute of Science and Technology, Sungbuk-Gu, Hwarangno 14-gil 5, Seoul 136-791 (Korea, Republic of); Yoo, Kyung-Hwa [Department of Physics, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Choi, Won-Kook, E-mail: wkchoi@kist.re.kr [Interface Control Research Center, Korea Institute of Science and Technology, Sungbuk-Gu, Hwarangno 14-gil 5, Seoul 136-791 (Korea, Republic of)

    2012-07-31

    Transparent conducting multilayer structured electrode of a few nm Ag layer embedded in tin oxide thin film SnO{sub x}/Ag/SnO{sub x} was fabricated on a glass by RF magnetron sputtering at room temperature. The multilayer of the SnO{sub x}(40 nm)/Ag(11 nm)/SnO{sub x}(40 nm) electrode shows the maximum optical transmittance of 87.3% at 550 nm and a quite low electrical resistivity of 6.5 Multiplication-Sign 10{sup -5} {Omega} cm, and the corresponding figure of merit (T{sup 10}/R{sub S}) is equivalent to 3.6 Multiplication-Sign 10{sup -2} {Omega}{sup -1}. A normal organic photovoltaic (OPV) structure of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/polythiophene:phenyl-C60-butyric acid methyl ester/Al was fabricated on glass/SnO{sub x}/Ag/SnO{sub x} to examine the compatibility of OPV as a transparent conducting electrode. Measured characteristic values of open circuit voltage of 0.62 V, saturation current of 8.11 mA/cm{sup 2} and fill factor of 0.54 are analogous to 0.63 V, 8.37 mA/cm{sup 2} and 0.58 of OPV on commercial glass/indium tin oxide (ITO) respectively. A resultant power conversion efficiency of 2.7% is also very comparable with the 3.09% of the same OPV structure on the commercial ITO glass as a reference, and which reveals that SnO{sub x}/Ag/SnO{sub x} can be appropriate to OPV solar cells as a sound transparent conducting electrode. - Highlights: Black-Right-Pointing-Pointer We fabricated the highly transparent and low resistive electrode. Black-Right-Pointing-Pointer The Ag embedded multilayer was used for the organic photovoltaic cells. Black-Right-Pointing-Pointer The multilayer shows the possibility to replace indium tin oxide.

  1. Low temperature-pyrosol-deposition of aluminum-doped zinc oxide thin films for transparent conducting contacts

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, M.J. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico); Ramírez, E.B. [Universidad Autónoma de la Ciudad de México, Calle Prolongación San Isidro Núm. 151, Col. San Lorenzo Tezonco, Iztapalapa, 09790 México, D.F. (Mexico); Juárez, B.; González, J.; García-León, J.M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico); Escobar-Alarcón, L. [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México, D.F. 11801 (Mexico); Alonso, J.C., E-mail: alonso@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico)

    2016-04-30

    Aluminum doped-zinc oxide (ZnO:Al) thin films with thickness ~ 1000 nm have been deposited by the ultrasonic spray pyrolysis technique using low substrate temperatures in the range from 285 to 360 °C. The electrical and optical properties of the ZnO:Al (AZO) films were investigated by Uv–vis spectroscopy and Hall effect measurements. The crystallinity and morphology of the films were analyzed using X-ray diffraction (XRD), atomic force microscopy (AFM), and high resolution scanning electron microcopy (SEM). XRD results reveal that all the films are nanocrystalline with a hexagonal wurtzite structure with a preferential orientation in the (002) plane. The size of the grains calculated from Scherrer's formula was in the range from 28 to 35 nm. AFM and SEM analysis reveals that the grains form round and hexagonal shaped aggregates at high deposition temperatures and larger rice shaped aggregates at low temperatures. All the films have a high optical transparency (~ 82%). According to the Hall measurements the AZO films deposited at 360 and 340 °C had resistivities of 2.2 × 10{sup −3}–4.3 × 10{sup −3} Ω cm, respectively. These films were n-type and had carrier concentrations and mobilities of 3.71–2.54 × 10{sup 20} cm{sup −3} and 7.4–5.7 cm{sup 2}/V s, respectively. The figure of merit of these films as transparent conductors was in the range of 2.6 × 10{sup −2} Ω{sup −1}–4.1 × 10{sup −2} Ω{sup −1}. Films deposited at 300 °C and 285 °C, had much higher resistivities. Based on the thermogravimetric analysis of the individual precursors used for film deposition, we speculate on possible film growing mechanisms that can explain the composition and electrical properties of films deposited under the two different ranges of temperatures. - Highlights: • Aluminum doped zinc oxide thin films were deposited at low temperatures by pyrosol. • Low resistivity was achieved from 340 °C substrate temperature. • All films deposited

  2. TiO2 nanotube membranes on transparent conducting glass for high efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Dubey, Mukul; Shrestha, Maheshwar; Zhong, Yihan; Galipeau, David; He, Hongshan

    2011-07-15

    Crack-free TiO(2) nanotube (NT) membranes were obtained by short time re-anodization of a sintered TiO(2) NT array on Ti foil, followed by dilute HF etching at room temperature. The resulting freestanding TiO(2) membranes were opaque with a slight yellow color having one end open and another end closed. The membranes were then fixed on transparent fluorine-tin-oxide glass using a thin layer of screen-printed TiO(2) nanoparticles (NPs) as a binding medium. It was found that low temperature treatment of the resulting NT/NP film under appropriate pressure before sintering at 450 °C was critical for successful fixation of the NT membrane on the NP layer. The resulting films with open-ends of NT membranes facing the NP layer (open-ends down, OED, configuration) exhibited better interfacial contact between NTs and NPs than those with closed-ends facing the NP layer (closed-ends down, CED, configuration). The cells with an OED configuration exhibit higher external quantum efficiency, greater charge transfer resistance from FTO/TiO(2) to electrolyte, and better dye loading compared to CED configurations. The solar cells with the OED configuration gave 6.1% energy conversion efficiency under AM1.5G condition when the commercial N719 was used as a dye and I(-)/I(3)(-) as a redox couple, showing the promise of this method for high efficiency solar cells.

  3. Highly conductive and transparent silver grid/metal oxide hybrid electrodes for low-temperature planar perovskite solar cells

    Science.gov (United States)

    Zhang, Weihai; Xiong, Juan; Wang, Sheng; Liu, Wei-er; Li, Jun; Wang, Duofa; Gu, Haoshuang; Wang, Xianbao; Li, Jinhua

    2017-01-01

    Recently, organometal halide perovskite solar cells have attracted great attention in photovoltaic research. However, the devices require high-temperature processing of up to 450 °C that hinders the applications in the low cost and large-area product of devices. Here, we reported the ITO/Ag grid/AZO hybrid electrodes for planar perovskite solar cells fabricated under the temperature of 150 °C. The planar perovskite solar cells do not require a mesoporous scaffold that need high-temperature annealing processing. The optimized ITO/Ag grid/AZO electrode which was fabricated as the sequence of ITO, Ag grid, AZO by magnetron sputtering exhibited an extreme low sheet resistance about 3.8 Ω/sq and a relative high transparency of 89.6% at the wavelength of 550 nm. The hybrid electrode could combine the electrical property of ITO and optical property of AZO. On the other hand, AZO has better energy level match with electron transport layer of ZnO than ITO. The power conversion efficiency (PCE) of 13.8% was obtained under the processing temperature of 150 °C by using ITO/Ag grid/AZO electrode. The high performances of the solar cells were attributed to the superior performances of ITO/Ag grid/AZO electrode and the good band energy match between ZnO and AZO.

  4. Organizational Transparency

    DEFF Research Database (Denmark)

    Albu, Oana Brindusa; Flyverbom, Mikkel

    2016-01-01

    with the sharing of information and the perceived quality of the information shared. This narrow focus on information and quality, however, overlooks the dynamics of organizational transparency. To provide a more structured conceptualization of organizational transparency, this article unpacks the assumptions......Transparency is an increasingly prominent area of research that offers valuable insights for organizational studies. However, conceptualizations of transparency are rarely subject to critical scrutiny and thus their relevance remains unclear. In most accounts, transparency is associated...... approaches and performativity approaches; (b) on an analytical level, we suggest a novel future research agenda for studying organizational transparency that pays attention to its dynamics, paradoxes, and performative characteristics....

  5. Development of high-performance transparent conducting oxides and their impact on the performance of CdS/CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Coutts, T.J.; Wu, X.; Sheldon, P.; Rose, D.H. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper begins with a review of the modeled performance of transparent conducting oxides (TCOs) as a function of their free-carrier concentration, mobility, and film thickness. It is shown that it is vital to make a film with high mobility to minimize the width and height of the free-carrier absorption band, and to optimize the optical properties. The free-carrier concentration must be kept sufficiently small that the absorption band does not extend into that part of the spectrum to which the solar cell responds. Despite this consideration, a high electrical conductivity is essential to minimize series resistance losses. Hence, a high mobility is vital for these materials. The fabrication of thin-films of cadmium stannate is then discussed, and their performance is compared with that of tin oxide, both optically and as these materials influence the performance of CdTe solar cells.

  6. Effects of a high humidity environment and air anneal treatments on the electrical resistivity of transparent conducting ZnO-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Asvarov, Abil; Abduev, Aslan; Akhmedov, Akhmed; Abdullaev, Abdulla [Institute of Physics, Dagestan Scientific Center of RAS, Yaragskogo str. 94, 367003 Makhachkala (Russian Federation)

    2010-06-15

    Transparent conducting Al-doped and Ga-doped ZnO thin films (so-called AZO and GZO, respectively) have been grown on glass substrates by dc magnetron sputtering under identical growth conditions. The thermal stability and the damp heat stability of AZO and GZO thin films deposited at room temperature (RT) as well as 250 C were investigated for hi-tech applications in thin-film solar cells and displays. AZO and GZO thin films grown at 250 C have showed much greater stability to air and damp heat treatments than thin films deposited at RT. At growth temperature of 250 C, however, it was shown that GZO thin films resistivity to various treatments was significantly more stable than one for AZO thin films. The mechanism of the charge carrier transport in doped ZnO conducting thin films has been proposed. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Ultrahigh Aspect Ratio Copper-Nanowire-Based Hybrid Transparent Conductive Electrodes with PEDOT:PSS and Reduced Graphene Oxide Exhibiting Reduced Surface Roughness and Improved Stability.

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A; Mansuripur, Masud; Falco, Charles M

    2015-08-05

    Copper nanowires (CuNWs) with ultrahigh aspect ratio are synthesized with a solution process and spray-coated onto select substrates to fabricate transparent conductive electrodes (TCEs). Different annealing methods are investigated and compared for effectiveness and convenience. The CuNWs are subsequently combined with the conductive polymer poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) ( PSS) or with reduced graphene oxide (rGO) platelets in order to reduce the surface roughness and improve the durability of the fabricated TCEs. Our best-performing PSS/CuNW films have optical transmittance T550 = 84.2% (at λ = 550 nm) and sheet resistance Rs = 25 Ω/sq, while our best CuNW/rGO films have T550 = 84% and Rs = 21.7 Ω/sq.

  8. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells.

    Science.gov (United States)

    José Andrés, Luis; Fe Menéndez, María; Gómez, David; Luisa Martínez, Ana; Bristow, Noel; Paul Kettle, Jeffrey; Menéndez, Armando; Ruiz, Bernardino

    2015-07-03

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  9. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells

    Science.gov (United States)

    José Andrés, Luis; Menéndez, María Fe; Gómez, David; Martínez, Ana Luisa; Bristow, Noel; Kettle, Jeffrey Paul; Menéndez, Armando; Ruiz, Bernardino

    2015-07-01

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  10. Transparent Oxide Semiconductors for Emerging Electronics

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso

    2013-11-01

    Transparent oxide electronics have emerged as promising materials to shape the future of electronics. While several n-type oxides have been already studied and demonstrated feasibility to be used as active materials in thin film transistors, high performance p-type oxides have remained elusive. This dissertation is devoted to the study of transparent p-type oxide semiconductor tin monoxide and its use in the fabrication of field effect devices. A complete study on the deposition of tin monoxide thin films by direct current reactive magnetron sputtering is performed. Carrier density, carrier mobility and conductivity are studied over a set of deposition conditions where p-type conduction is observed. Density functional theory simulations are performed in order to elucidate the effect of native defects on carrier mobility. The findings on the electrical properties of SnO thin films are then translated to the fabrication of thin films transistors. The low processing temperature of tin monoxide thin films below 200 oC is shown advantageous for the fabrication of fully transparent and flexible thin film transistors. After careful device engineering, including post deposition annealing temperature, gate dielectric material, semiconductor thickness and source and drain electrodes material, thin film transistors with record device performance are demonstrated, achieving a field effect mobility >6.7 cm2V-1s-1. Device performance is further improved to reach a field effect mobility of 10.8 cm2V-1s-1 in SnO nanowire field effect transistors fabricated from the sputtered SnO thin films and patterned by electron beam lithography. Downscaling device dimension to nano scale is shown beneficial for SnO field effect devices not only by achieving a higher hole mobility but enhancing the overall device performance including better threshold voltage, subthreshold swing and lower number of interfacial defects. Use of p-type semiconductors in nonvolatile memory applications is then

  11. Selectively Transparent and Conducting Photonic Crystals and their Potential to Enhance the Performance of Thin-Film Silicon-Based Photovoltaics and Other Optoelectronic Devices

    Science.gov (United States)

    O'Brien, Paul G.

    2011-12-01

    The byproducts of human engineered energy production are increasing atmospheric CO2 concentrations well above their natural levels and accompanied continual decline in the natural reserves of fossil fuels necessitates the development of green energy alternatives. Solar energy is attractive because it is abundant, can be produced in remote locations and consumed on site. Specifically, thin-film silicon-based photovoltaic (PV) solar cells have numerous inherent advantages including their availability, non-toxicity, and they are relatively inexpensive. However, their low-cost and electrical performance depends on reducing their thickness to as great an extent as possible. This is problematic because their thickness is much less than their absorption length. Consequently, enhanced light trapping schemes must be incorporated into these devices. Herein, a transparent and conducting photonic crystal (PC) intermediate reflector (IR), integrated into the rear side of the cell and serving the dual function as a back-reflector and a spectral splitter, is identified as a promising method of boosting the performance of thin-film silicon-based PV. To this end a novel class of PCs, namely selectively transparent and conducting photonic crystals (STCPC), is invented. These STCPCs are a significant advance over existing 1D PCs because they combine intense wavelength selective broadband reflectance with the transmissive and conductive properties of sputtered ITO. For example, STCPCs are made to exhibit Bragg-reflectance peaks in the visible spectrum of 95% reflectivity and have a full width at half maximum that is greater than 200nm. At the same time, the average transmittance of these STCPCs is greater than 80% over the visible spectrum that is outside their stop-gap. Using wave-optics analysis, it is shown that STCPC intermediate reflectors increase the current generated in micromorph cells by 18%. In comparison, the more conventional IR comprised of a single homogeneous

  12. Transparent conducting oxides: principles, problems and analysis%透明导电氧化物的原理、问题与研究分析

    Institute of Scientific and Technical Information of China (English)

    王焕华

    2012-01-01

    Modern photoelectronic products and energy technologies largely exploit transparent conduc ting oxide (TCO) thin films. Due to the increasing demand for solar cells, flat-panel displays, light emit- ting devices, short-wavelength lasers, energy-conserving windows and so on, TCO thin films are finding more and more applications. This article analyses and summarizes the operating principles, application de- mands, and current research directions of TCO. Emphasis is placed on the key problems of p-type TCO thin films, including doping asymmetry, performance degradation, and the generation, structure and devel- opment of defects. The critical factors regarding preparation of TCO thin films, leading-edge research, and promising opportunities for achieving breakthroughs are pointed out.%现代光电子产品和能源技术都大量使用透明导电氧化物(TCO)薄膜.由于太阳能电池、平板显示器、发光二极管、短波长激光器、节能玻璃窗等应用领域日益增长的需求,TCO薄膜获得了越来越广泛的应用.文章总结了TCO薄膜的功能原理、应用需求和当前的研究方向,重点分析了P型TCO薄膜研究所要解决的关键问题(其中包括掺杂非对称性,性能退化与缺陷的生成,结构和变化的关系),指出了p型TCO薄膜制备的关键因素,研究的热点问题和蕴藏的研究机会.

  13. Enhancement of p-type mobility in tin monoxide by native defects

    KAUST Repository

    Granato, D. B.

    2013-05-31

    Transparent p-type materials with good mobility are needed to build completely transparent p-n junctions. Tin monoxide (SnO) is a promising candidate. A recent study indicates great enhancement of the hole mobility of SnO grown in Sn-rich environment [E. Fortunato et al., Appl. Phys. Lett. 97, 052105 (2010)]. Because such an environment makes the formation of defects very likely, we study defect effects on the electronic structure to explain the increased mobility. We find that Sn interstitials and O vacancies modify the valence band, inducing higher contributions of the delocalized Sn 5p orbitals as compared to the localized O 2p orbitals, thus increasing the mobility. This mechanism of valence band modification paves the way to a systematic improvement of transparent p-type semiconductors.

  14. Evolution of plant P-type ATPases

    Directory of Open Access Journals (Sweden)

    Christian N.S. Pedersen

    2012-02-01

    Full Text Available Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauria and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a moss, Selaginella moellendorffii (a primitive vascular plant, and Arabidopsis thaliana (a model flowering plant. Each organism contained sequences for all five subfamilies of P-type ATPases. Our analysis demonstrates when specific subgroups of P-type ATPases disappeared in the evolution of Angiosperms. Na/K-pump related P2C ATPases were lost with the evolution of streptophytes whereas Na+ or K+ pumping P2D ATPases and secretory pathway Ca2+-ATPases remained until mosses. An N-terminally located calmodulin binding domain in P2B ATPases can only be detected in pumps from Streptophytae, whereas, like in animals, a C-terminally localized calmodulin binding domain might be present in chlorophyte P2B Ca2+-ATPases. Chlorophyte genomes encode P3A ATPases resembling protist plasma membrane H+-ATPases and a C-terminal regulatory domain is missing. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps.

  15. Effect of growth temperature on the terahertz-frequency conductivity of the epitaxial transparent conducting spinel NiCo2O4 films

    OpenAIRE

    Punam Silwal; Chan La-o-vorakiat; Chia, Elbert E. M.; Dae Ho Kim; Diyar Talbayev

    2013-01-01

    We have measured the terahertz-frequency optical conductivity of the epitaxial inverse spinel NiCo2O4 films grown at different temperatures. The low-temperature-grown film exhibits a metallic behavior with ferrimagnetic ordering, while the high-temperature-grown film shows greatly suppressed magnetization and insulating behavior. Both films exhibit band-like coherent conduction at intermediate temperatures, albeit with very different carrier densities consistent with the proposed models of ca...

  16. Properties of Sb-doped SnO{sub 2} transparent conductive thin films deposited by radio-frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenhao; Yu, Shihui; Zhang, Yang; Zhang, Weifeng, E-mail: wfzhang@henu.edu.cn

    2013-09-02

    Transparent conducting Sb-doped SnO{sub 2} (ATO) thin films were prepared on quartz substrates by radio-frequency magnetron sputtering technique. The X-ray diffraction measurement shows that the as-deposited ATO film is of tetragonal crystal structure. Electrical and optical properties were investigated by Hall and optical measurements. The resistivity and optical transmittance of the ATO thin films are of the order of 10{sup −3} Ω · cm and over 85%, respectively. The lowest electrical resistivity of the films was found to be about 1.99 × 10{sup −3} Ω · cm. Finally, the organic solar cell with the ATO thin film as an anode was prepared, and a power conversion efficiency of 1.11% was achieved. - Highlights: • The Sb-doped SnO{sub 2} (ATO) thin films are prepared on quartz substrates by magnetron sputtering. • The ATO thin films have low resistivity and high optical transparency. • The power conversion efficiency of organic solar cells with ATO thin films is 1.11%.

  17. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films.

    Science.gov (United States)

    Jun, Min-Chul; Park, Sang-Uk; Koh, Jung-Hyuk

    2012-11-22

    We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin films regarding crystallization and electrical and optical properties for application in transparent conducting oxide devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol-gel spin-coating process. As a starting material, AlCl3⋅6H2O, Ga(NO3)2, and Zn(CH3COO)2⋅2H2O were used. A lowest sheet resistance of 3.3 × 103 Ω/□ was obtained for the GZO thin film doped with 1.5 mol% of Ga after post-annealing at 650°C for 60 min in air. All the films showed more than 85% transparency in the visible region. We have studied the structural and microstructural properties as a function of Al and Ga concentrations through X-ray diffraction and scanning electron microscopy analysis. In addition, the optical bandgap and photoluminescence were estimated.

  18. Investigation of the interfacial adhesion of the transparent conductive oxide films to large-area flexible polymer substrates using laser-induced thermo-mechanical stresses

    Science.gov (United States)

    Park, Jin-Woo; Lee, Seung-Ho; Yang, Chan-Woo

    2013-08-01

    In this study, we investigated the interfacial adhesion strength (σint) of transparent conductive oxide (TCO) coatings on polymer substrates using a nanosecond Nd:YAG pulsed laser. We compared our results with those achieved using conventional testing methods such as bending and fragmentation tests as well as theoretical calculations. In the fragmentation and bending tests, mechanical compressive stress is induced in the film due to mismatches in Poisson's ratio and Young's modulus between the substrate and film. But, the incident laser makes the film under compression due to the mismatch in thermal expansion between the TCO and the polymer substrate. With a pulse incident to the substrate, the TCO rapidly expands by laser-induced instant heating while the transparent polymer does little, which causes the TCO to buckle and delaminate over the critical pulse energy. The critical compressive stress that scales with σint was calculated using simple equations, which agreed well with the results from previous theoretical calculations. Because the films preferentially delaminate at the defects and grain boundaries, this technique also provided useful information regarding the interface microstructures. Moreover, because the laser can scan over large areas, this method is suitable for flexible substrates that are produced by a roll-to-roll process. Nevertheless, the mechanical stress introduced by the bending and fragmentation tests causes the TCO to buckle without interfacial delamination. Hence, the stresses at the buckling disagreed with the results obtained from the laser test and the theoretical calculations.

  19. Transparent conducting properties of Ni doped zinc oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Bouaoud, A.; Rmili, A.; Ouachtari, F.; Louardi, A.; Chtouki, T. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Elidrissi, B., E-mail: e.bachir@mailcity.com [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Erguig, H. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Ecole Nationale des Sciences Appliquees de Kenitra (ENSAK) (Morocco)

    2013-01-15

    Undoped and Ni doped zinc oxide (Ni-ZnO) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of anhydrous zinc acetate (Zn(CH{sub 3}COOH){sub 2} and hexahydrated nickel chloride (NiCl{sub 2}{center_dot}6H{sub 2}O) as sources of zinc and nickel, respectively. The films were deposited onto the amorphous glass substrates kept at (450 Degree-Sign C). The effect of the [Ni]/[Zn] ratio on the structural, morphological, optical and electrical properties of Ni doped ZnO thin film was studied. It was found from X-ray diffraction (XRD) analysis that both the undoped and Ni doped ZnO films were crystallized in the hexagonal structure with a preferred orientation of the crystallites along the [002] direction perpendicular to the substrate. The scanning electron microscopy (SEM) images showed a relatively dense surface structure composed of crystallites in the spherical form whose average size decreases when the [Ni]/[Zn] ratio increases. The optical study showed that all the films were highly transparent. The optical transmittance in the visible region varied between 75 and 85%, depending on the dopant concentrations. The variation of the band gap versus the [Ni]/[Zn] ratio showed that the energy gap decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02 and then increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. The films obtained with the [Ni]/[Zn] ratio = 0.02 showed minimum resistivity of 2 Multiplication-Sign 10{sup -3} {Omega} cm at room temperature. -- Highlights: Black-Right-Pointing-Pointer The optical transmittance of Ni doped ZnO varies between 75 and 85%. Black-Right-Pointing-Pointer The energy gap of these films decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02. Black-Right-Pointing-Pointer The energy gap increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. Black-Right-Pointing-Pointer The films obtained with [Ni]/[Zn] ratio = 0.02 show minimum resistivity of 2

  20. A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells.

    Science.gov (United States)

    Bryant, Daniel; Greenwood, Peter; Troughton, Joel; Wijdekop, Maarten; Carnie, Mathew; Davies, Matthew; Wojciechowski, Konrad; Snaith, Henry J; Watson, Trystan; Worsley, David

    2014-11-26

    A self-adhesive laminate solar-cell electrode is presented based on a metal grid embedded in a polymer film (x-y conduction) and set in contact with the active layer using a pressure-sensitive adhesive containing a very low quantity (1.8%) of organic conductor, which self-organizes to provide z conduction to the grid. This ITO-free material performs in an identical fashion to evaporated gold in high-efficiency perovskite solar cells. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of growth temperature on the terahertz-frequency conductivity of the epitaxial transparent conducting spinel NiCo2O4 films

    Science.gov (United States)

    Silwal, Punam; La-o-vorakiat, Chan; Chia, Elbert E. M.; Kim, Dae Ho; Talbayev, Diyar

    2013-09-01

    We have measured the terahertz-frequency optical conductivity of the epitaxial inverse spinel NiCo2O4 films grown at different temperatures. The low-temperature-grown film exhibits a metallic behavior with ferrimagnetic ordering, while the high-temperature-grown film shows greatly suppressed magnetization and insulating behavior. Both films exhibit band-like coherent conduction at intermediate temperatures, albeit with very different carrier densities consistent with the proposed models of cation valencies in this mixed-valence material. Both films also display a crossover to incoherent transport at low temperatures, indicating a disorder-induced tendency toward localization.

  2. Effect of growth temperature on the terahertz-frequency conductivity of the epitaxial transparent conducting spinel NiCo2O4 films

    Directory of Open Access Journals (Sweden)

    Punam Silwal

    2013-09-01

    Full Text Available We have measured the terahertz-frequency optical conductivity of the epitaxial inverse spinel NiCo2O4 films grown at different temperatures. The low-temperature-grown film exhibits a metallic behavior with ferrimagnetic ordering, while the high-temperature-grown film shows greatly suppressed magnetization and insulating behavior. Both films exhibit band-like coherent conduction at intermediate temperatures, albeit with very different carrier densities consistent with the proposed models of cation valencies in this mixed-valence material. Both films also display a crossover to incoherent transport at low temperatures, indicating a disorder-induced tendency toward localization.

  3. Adhesion of TiO{sub 2} nanotube arrays on transparent conducting substrates using CNT–TiO{sub 2} composite pastes

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.B.; Qiang, Y.H., E-mail: yhqiang@cumt.edu.cn; Zhao, Y.L.; Gu, X.Q.; Song, D.M.; Zhu, L.

    2014-06-01

    Dye-sensitized solar cells (DSSCs) were fabricated using TiO{sub 2} nanotube arrays (NTAs) as the photoanodes, which were adhered onto transparent conducting glass substrates by a carbon nanotube (CNT)-TiO{sub 2} composite paste. The effect of the CNT contents on the DSSC performance was investigated by adjusting the ratios of CNTs to TiO{sub 2} in the paste. It was found that DSSC efficiencies firstly increased and then decreased with increasing the CNT contents. The optimized DSSC efficiency of 6.77% was achieved at a suitable CNT concentration (0.1 wt%), which was due to a balance of the electron transport and light harvesting.

  4. Properties of doped ZnO transparent conductive thin films deposited by RF magnetron sputtering using a series of high quality ceramic targets

    Institute of Scientific and Technical Information of China (English)

    LIN Wei; MA Ruixin; SHAO Wei; KANG Bo; WU Zhongliang

    2008-01-01

    To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets (ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabricated and used to deposit thin films onto glass substrates by radio frequency (RF) magnetron sputtering.X-ray diffraction (XRD) analysis shows that the films are polyerystalline fitting well with hexagonal wurtzite structure and have a preferred orientation of the (002) plane.The transmittance of above 86% as well as the lowest resistivity of 8.43 x 10-3 Ω·cm was obtained.

  5. High efficiency bifacial Cu2ZnSnSe4 thin-film solar cells on transparent conducting oxide glass substrates

    Directory of Open Access Journals (Sweden)

    Jung-Sik Kim

    2016-09-01

    Full Text Available In this work, transparent conducting oxides (TCOs have been employed as a back contact instead of Mo on Cu2ZnSnSe4 (CZTSe thin-film solar cells in order to examine the feasibility of bifacial Cu2ZnSn(S,Se4 (CZTSSe solar cells based on a vacuum process. It is found that the interfacial reaction between flourine doped tin oxide (FTO or indium tin oxide (ITO and the CZTSe precursor is at odds with the conventional CZTSe/Mo reaction. While there is no interfacial reaction on CZTSe/FTO, indium in CZTSe/ITO was significantly diffused into the CZTSe layers; consequently, a SnO2 layer was formed on the ITO substrate. Under bifacial illumination, we achieved a power efficiency of 6.05% and 4.31% for CZTSe/FTO and CZTSe/ITO, respectively.

  6. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films

    OpenAIRE

    Jun, Min-Chul; Park, Sang-Uk; Koh, Jung-Hyuk

    2012-01-01

    We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin films regarding crystallization and electrical and optical properties for application in transparent conducting oxide devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol–gel spin-coating process. As a starting material, AlCl3⋅6H2O, Ga(NO3)2, and Zn(CH3COO)2⋅2H2O were used. A lowest sheet resistance of 3.3 × 103 Ω/□ was obtained for the GZO ...

  7. Structure and properties of Al-doped ZnO transparent conductive thin-films prepared by asymmetric bipolar pulsed DC reactive magnetron sputtering.

    Science.gov (United States)

    Hsu, Fu-Yung; Chen, Tse-Hao; Peng, Kun-Cheng

    2009-07-01

    Transparent conductive thin-films of aluminum-doped zinc oxide (AZO) were deposited on STN-glass substrates by an asymmetric bipolar pulsed DC (ABPDC) reactive magnetron sputtering system. Two different alloys, Zn-1.6 wt% Al and Zn-3.0 wt% Al, were used as the sputtering targets. The films consist of columnar grains with a preferred orientation of c-axis. Strong crystal distortion and high density stacking faults were observed in high resolution TEM micrographs. The full-width at half-maximum (FWHM) of the (002) rocking curve has a close relationship with the resistivity of the films; the smaller the FWHM, the lower the resistivity. The lowest resistivity of 7.0 x 10(-4) omega-cm was obtained from the film deposited with Zn-1.6 wt% Al target at 200 degrees C.

  8. High efficiency bifacial Cu2ZnSnSe4 thin-film solar cells on transparent conducting oxide glass substrates

    Science.gov (United States)

    Kim, Jung-Sik; Kang, Jin-Kyu; Hwang, Dae-Kue

    2016-09-01

    In this work, transparent conducting oxides (TCOs) have been employed as a back contact instead of Mo on Cu2ZnSnSe4 (CZTSe) thin-film solar cells in order to examine the feasibility of bifacial Cu2ZnSn(S,Se)4 (CZTSSe) solar cells based on a vacuum process. It is found that the interfacial reaction between flourine doped tin oxide (FTO) or indium tin oxide (ITO) and the CZTSe precursor is at odds with the conventional CZTSe/Mo reaction. While there is no interfacial reaction on CZTSe/FTO, indium in CZTSe/ITO was significantly diffused into the CZTSe layers; consequently, a SnO2 layer was formed on the ITO substrate. Under bifacial illumination, we achieved a power efficiency of 6.05% and 4.31% for CZTSe/FTO and CZTSe/ITO, respectively.

  9. Fabrication of transparent, tough, and conductive shape-memory polyurethane films by incorporating a small amount of high-quality graphene.

    Science.gov (United States)

    Jung, Yong Chae; Kim, Jin Hee; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S

    2012-04-23

    We report a mechanically strong, electrically and thermally conductive, and optically transparent shape-memory polyurethane composite which was fabricated by introducing a small amount (0.1 wt%) of high-quality graphene as a filler. Geometrically large (≈4.6 μm(2)), but highly crystallized few-layer graphenes, verified by Raman spectroscopy and transmission electron microscopy, were prepared by the sonication of expandable graphite in an organic solvent. Oxygen- containing functional groups at the edge plane of graphene were crucial for an effective stress transfer from the graphene to polyurethane. Homogeneously dispersed few-layered graphene enabled polyurethane to have a high shape recovery force of 1.8 MPa cm(-3). Graphene, which is intrinsically stretchable up to 10%, will enable high-performance composites to be fabricated at relatively low cost and we thus envisage that such composites may replace carbon nanotubes for various applications in the near future.

  10. Sol-gel deposited aluminum-doped and gallium-doped zinc oxide thin-film transparent conductive electrodes with a protective coating of reduced graphene oxide

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-04-01

    Using a traditional sol-gel deposition technique, we successfully fabricated aluminum-doped zinc oxide (AZO) and gallium-doped zinc oxide (GZO) thin films on glass substrates. Employing a plasma treatment method as the postannealing process, we produced thin-film transparent conductive electrodes exhibiting excellent optical and electrical properties, with transmittance greater than 90% across the entire visible spectrum and the near-infrared range, as well as good sheet resistance under 200 Ω/sq. More importantly, to improve the resilience of our fabricated thin-film samples at elevated temperatures and in humid environments, we deposited a layer of reduced graphene oxide (rGO) as protective overcoating. The stability of our composite AZO/rGO and GZO/rGO samples improved substantially compared to that of their counterparts with no rGO coating.

  11. Improved Long-Term Stability of Transparent Conducting Electrodes Based on Double-Laminated Electrosprayed Antimony Tin Oxides and Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Koo B.-R.

    2017-06-01

    Full Text Available We fabricated double-laminated antimony tin oxide/Ag nanowire electrodes by spin-coating and electrospraying. Compared to pure Ag nanowire electrodes and single-laminated antimony tin oxide/Ag nanowire electrodes, the double-laminated antimony tin oxide/Ag nanowire electrodes had superior transparent conducting electrode performances with sheet resistance ~19.8 Ω/□ and optical transmittance ~81.9%; this was due to uniform distribution of the connected Ag nanowires because of double lamination of the metallic Ag nanowires without Ag aggregation despite subsequent microwave heating at 250°C. They also exhibited excellent and superior long-term chemical and thermal stabilities and adhesion to substrate because double-laminated antimony tin oxide thin films act as the protective layers between Ag nanowires, blocking Ag atoms penetration.

  12. Pr and F co-doped SnO₂ transparent conductive films with high work function deposited by ion-assisted electron beam evaporation.

    Science.gov (United States)

    Wu, Shaohang; Li, Yantao; Luo, Jinsong; Lin, Jie; Fan, Yi; Gan, Zhihong; Liu, Xingyuan

    2014-02-24

    A transparent conductive oxide (TCO) Pr and F co-doped SnO2 (PFTO) film is prepared by ion-assisted electron beam deposition. An optimized PFTO film shows a high average visible optical transmittance of 83.6% and a minimum electrical resistivity of 3.7 × 10(-3) Ω·cm corresponding to a carrier density of 1.298 × 10(20) cm(-3) and Hall mobility of 12.99 cm(2)/V⋅s. This PFTO film shows a high work function of 5.147 eV and favorable surface morphology with an average roughness of 1.45 nm. Praseodymium fluoride is found to be an effective material to dope F into SnO2 that can simplify the fabrication process of SnO2-based TCO films.

  13. Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model

    Science.gov (United States)

    Sinatkas, Georgios; Pitilakis, Alexandros; Zografopoulos, Dimitrios C.; Beccherelli, Romeo; Kriezis, Emmanouil E.

    2017-01-01

    Electro-optic waveguide modulators exploiting the carrier-induced epsilon-near-zero effect in transparent conducting oxides are comprehensively studied and evaluated using a rigorous multi-physics modeling framework. The examined amplitude modulators integrate indium tin oxide with two representative examples of the silicon-on-insulator technology, the silicon-rib and silicon-slot platform, with the latter design exhibiting superior performance, featuring μm modulation lengths, switching speeds exceeding 100 GHz, and a sub-pJ per bit of energy consumption. The effect of free carriers is rigorously introduced by combining the drift-diffusion model for the description of the carrier dynamics with near-infrared carrier-dependent permittivity models, leading to a seamless and physically consistent integration of solid-state physics and Maxwell wave theory on a unified finite-element platform.

  14. An insight to the low temperature conduction mechanism of c-axis grown Al-doped ZnO, a widely used transparent conducting oxide

    Science.gov (United States)

    Murali, Banavoth; Parui, Jayanta; Madhuri, M.; Krupanidhi, S. B.

    2015-01-01

    Al-doped ZnO thin films were synthesized from oxygen reactive co-sputtering of Al and Zn targets. Explicit doping of Al in the highly c-axis oriented crystalline films of ZnO was manifested in terms of structural optical and electrical properties. Electrical conduction with different extent of Al doping into the crystal lattice of ZnO (AZnO) were characterized by frequency dependent (40 Hz-50 MHz) resistance. From the frequency dependent resistance, the ac conduction of them, and correlations of localized charge particles in the crystalline films were studied. The dc conduction at the low frequency region was found to increase from 8.623 µA to 1.14 mA for the samples AZnO1 (1 wt% Al) and AZnO2 (2 wt% Al), respectively. For the sample AZnO10 (10 wt% Al) low frequency dc conduction was not found due to the electrode polarization effect. The measure of the correlation length by inverse of threshold frequency (ω0) showed that on application of a dc electric field such length decreases and the decrease in correlation parameter(s) indicates that the correlation between potentials wells of charge particles decreases for the unidirectional nature of dc bias. The comparison between the correlation length and the extent of correlation in the doped ZnO could not be made due to the observation of several threshold frequencies at the extent of higher doping. Such threshold frequencies were explained by the population possibility of correlated charge carriers that responded at different frequencies. For AZnO2 (2% Al), the temperature dependent (from 4.5 to 288 K) resistance study showed that the variable range hopping mechanism was the most dominating conduction mechanism at higher temperature whereas at low temperature region it was influenced by the small polaronic hopping conduction mechanism. There was no significant influence found in these mechanisms on applications of 1, 2 and 3 V as biases.

  15. Al and Fe co-doped transparent conducting ZnO thin film for mediator-less biosensing application

    Directory of Open Access Journals (Sweden)

    Shibu Saha

    2011-12-01

    Full Text Available Highly c-axis oriented Al and Fe co-doped ZnO (ZAF thin film is prepared by pulsed laser deposition. Fe introduces redox centre along with shallow donor level while Al doping enhances conductivity of ZnO, thus removing the requirement of both mediator and bottom conducting layer in bioelectrode. Model enzyme (glucose oxidase, was immobilized on surface of ZAF matrix. Cyclic voltammetry and photometric assay show that prepared bio-electrode is sensitive to glucose concentration with enhanced response of 0.18 μAmM-1cm-2 and low Km ∼ 2.01 mM. The results illustrate that ZAF is an attractive matrix for realization of miniaturized mediator-less solid state biosensor.

  16. A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials

    Directory of Open Access Journals (Sweden)

    Daniela Lehr

    2015-11-01

    Full Text Available Numerous applications in optoelectronics require electrically conducting materials with high optical transparency over the entire visible light range. A solid solution of indium oxide and substantial amounts of tin oxide for electronic doping (ITO is currently the most prominent example for the class of so-called TCOs (transparent conducting oxides. Due to the limited, natural occurrence of indium and its steadily increasing price, it is highly desired to identify materials alternatives containing highly abundant chemical elements. The doping of other metal oxides (e.g., zinc oxide, ZnO is a promising approach, but two problems can be identified. Phase separation might occur at the required high concentration of the doping element, and for successful electronic modification it is mandatory that the introduced heteroelement occupies a defined position in the lattice of the host material. In the case of ZnO, most attention has been attributed so far to n-doping via substitution of Zn2+ by other metals (e.g., Al3+. Here, we present first steps towards n-doped ZnO-based TCO materials via substitution in the anion lattice (O2− versus halogenides. A special approach is presented, using novel single-source precursors containing a potential excerpt of the target lattice 'HalZn·Zn3O3' preorganized on the molecular scale (Hal = I, Br, Cl. We report about the synthesis of the precursors, their transformation into halogene-containing ZnO materials, and finally structural, optical and electronic properties are investigated using a combination of techniques including FT-Raman, low-T photoluminescence, impedance and THz spectroscopies.

  17. Novel Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next Generation Phosphor-Converted LED-based Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Bockstaller, Michael [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-02-06

    The low thermal conductivity of state-of-the-art polymer encapsulants (k ~ 0.15 Wm-1K-1) limits the efficiency and power density of current phosphor conversion light emitting diodes (pc-LEDs). The technical objective of this project was to demonstrate synthesis and processing schemes for the fabrication of polymer hybrid encapsulants with a thermal conductivity exceeding k = 0.4 Wm-1K-1 for LED applications. The ‘hybrid polymer’ approach encompasses the dispersion of high thermal conductivity particle fillers (zinc oxide, ZnO as well as the alpha-polymorph of alumina, Al2O3) within a polysiloxane matrix (poly(dimethylsiloxane), PDMS as well as poly(phenyl methyl siloxane), PPMS) to increase the thermal conductivity while maintaining optical transparency and photothermal stability at levels consistent with LED applications. To accomplish this goal, a novel synthesis method for the fabrication of nanosized ZnO particles was developed and a novel surface chemistry was established to modify the surface of zinc oxide particle fillers and thus to enable their dispersion in poly(dimethyl siloxane) (PDMS) matrix polymers. Molecular dynamics and Mie simulations were used to optimize ligand structure and to enable the concurrent mixing of particles in PDMS/PPMS embedding media while also minimizing the thermal boundary resistance as well as optical scattering of particle fillers. Using this approach the synthesis of PDMS/ZnO hybrid encapsulants exhibiting a thermal conductivity of 0.64 Wm-1K-1 and optical transparency > 0.7 mm-1 was demonstrated. A forming process based on micromolding was developed to demonstrate the forming of particle filled PDMS into film and lens shapes. Photothermal stability testing revealed stability of the materials for approximately 4000 min when exposed to blue light LED (450 nm, 30 W/cm2). One postgraduate and seven graduate students were supported by the project. The research performed within this project led to fifteen publications in peer

  18. Characterization of Optical and Electrical Properties of Transparent Conductive Boron-Doped Diamond thin Films Grown on Fused Silica

    Directory of Open Access Journals (Sweden)

    Bogdanowicz Robert

    2014-12-01

    Full Text Available Abstract A conductive boron-doped diamond (BDD grown on a fused silica/quartz has been investigated. Diamond thin films were deposited by the microwave plasma enhanced chemical vapor deposition (MW PECVD. The main parameters of the BDD synthesis, i.e. the methane admixture and the substrate temperature were investigated in detail. Preliminary studies of optical properties were performed to qualify an optimal CVD synthesis and film parameters for optical sensing applications. The SEM micro-images showed the homogenous, continuous and polycrystalline surface morphology; the mean grain size was within the range of 100-250 nm. The fabricated conductive boron-doped diamond thin films displayed the resistivity below 500 mOhm cm-1 and the transmittance over 50% in the VIS-NIR wavelength range. The studies of optical constants were performed using the spectroscopic ellipsometry for the wavelength range between 260 and 820 nm. A detailed error analysis of the ellipsometric system and optical modelling estimation has been provided. The refractive index values at the 550 nm wavelength were high and varied between 2.24 and 2.35 depending on the percentage content of methane and the temperature of deposition.

  19. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite.

    Science.gov (United States)

    Sun, Yiqing; Chemelewski, William D; Berglund, Sean P; Li, Chun; He, Huichao; Shi, Gaoquan; Mullins, C Buddie

    2014-04-23

    We report the growth of well-defined antimony-doped tin oxide (ATO) nanorods as a conductive scaffold to improve hematite's photoelectrochemical water oxidation performance. The hematite grown on ATO exhibits greatly improved performance for photoelectrochemical water oxidation compared to hematite grown on flat fluorine-doped tin oxide (FTO). The optimized photocurrent density of hematite on ATO is 0.67 mA/cm(2) (0.6 V vs Ag/AgCl), which is much larger than the photocurrent density of hematite on flat FTO (0.03 mA/cm(2)). Using H2O2 as a hole scavenger, it is shown that the ATO nanorods indeed act as a useful scaffold and enhanced the bulk charge separation efficiency of hematite from 2.5% to 18% at 0.4 V vs Ag/AgCl.

  20. Further improvements in conducting and transparent properties of ZnO:Ga films with perpetual c-axis orientation: Materials optimization and application in silicon solar cells

    Science.gov (United States)

    Mondal, Praloy; Das, Debajyoti

    2017-07-01

    Technologically appropriate device friendly ZnO:Ga films have been prepared at a low growth temperature (100 °C) by changing the RF power (P) applied to the magnetron plasma. Structurally preferred c-axis orientation of the ZnO:Ga network has been attained with I/I > 5. The c-axis oriented grains of wurtzite ZnO:Ga grows geometrically and settles in tangentially, providing favorable conduction path for stacked layer devices. Nano-sheet like structures produced at the surface are interconnected and provide conducting path across the surface; however, those accommodate a lot of pores in between that help better light trapping and reduce the reflection loss. The optimized ZnO:Ga thin film prepared at RF power of 200 W has oriented grains of average size ∼10 nm and exhibits a very high conductivity ∼200 S cm-1 and elevated transmission (∼93% at 500 nm) in the visible range. The optimized ZnO:Ga film has been used as the transparent conducting oxide (TCO) window layer of RF-PECVD grown silicon thin film solar cells in glass/TCO/p-i-n-Si/Al configuration. The characteristics of identically prepared p-i-n-Si solar cells are compared by replacing presently developed ZnO:Ga TCO with the best quality U-type SnO2 coated Asahi glass substrates. The ZnO:Ga coated glass substrate offers a higher open circuit voltage (VOC) and the higher fill factor (FF). The ZnO:Ga film being more stable in hydrogen plasma than its SnO2 counterpart, maintains a high transparency to the solar radiation and improves the VOC, while reduced diffusion of Zn across the p-layer creates less defects at the p-i interface in Si:H cells and thereby, increases the FF. Nearly identical conversion efficiency is preserved for both TCO substrates. Excellent c-axis orientation even at low growth temperature promises improved device performance by extended parametric optimization.

  1. THE BAND STRUCTURE AND WORK FUNCTION OF TRANSPARENT CONDUCTING ALUMINUM AND MANGANESE CO-DOPED ZINC OXIDE FILMS

    Institute of Scientific and Technical Information of China (English)

    H.T. Cao; Z.L. Pei; X.B. Zhang; J. Gong; C. Sun; L.S. Wen

    2005-01-01

    Al and Mn co-doped-ZnO films have been prepared at room temperature by DC reactive magnetron sputtering technique. The optical absorption coefficient, apparent and fundamental band gap, and work function of the films have been investigated using optical spectroscopy, band structure analyses and ultraviolet photoelectron spectroscopy (UPS). ZnO films have direct allowed transition band structure, which has been confirmed by the character of the optical absorption coefficient. The apparent band gap has been found directly proportional to N2/3, showing that the effect of Burstein-Moss shift on the band gap variations dominates over the many-body effect. With only standard cleaning protocols, the work function of ZnO: (Al, Mn) and ZnO: Al films have been measured to be 4.26 and 4.21eV, respectively. The incorporation of Mn element into the matrix of ZnO, as a relatively deep donor, can remove some electrons from the conduction band and deplete the density of occupied states at the Fermi energy, which causes a loss in measured photoemission intensity and an increase in the surface work function. Based on the band gap and work function results, the energy band diagram of the ZnO: (Al, Mn)film near its surface is also given.

  2. Development of transparent conductive indium and fluorine co-doped ZnO thin films: Effect of F concentration and post-annealing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hadri, A. [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco); Taibi, M. [University of Mohammed V, LPCMIN, Ecole Normale Superieure, Rabat (Morocco); Loghmarti, M.; Nassiri, C.; Slimani Tlemçani, T. [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco); Mzerd, A., E-mail: mzerd@yahoo.fr [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco)

    2016-02-29

    In the present work ZnO, In doped ZnO and In-F co-doped ZnO (IFZO) films were synthesized on heated glass substrates (350 °C) by the chemical spray technique. The effect of fluorine concentration on the structural, morphological, optical and electrical properties was studied. It was observed from X-ray diffraction (XRD) that the films have a polycrystalline structure and the intensity of the peaks depend on the doping and co-doping concentration. No diffraction peak related to dopants in XRD patterns along with shift in peaks angles to ZnO proved that In and F ions were doped into ZnO thin films. The Raman spectra confirm the hexagonal structure of the as-deposited films, and demonstrated an enhancement of the surface phonon mode of doped and co-doped films as compared to undoped films. The as-deposited films showed an average transmittance above 70%, in the wavelength range of 400–800 nm. A minimum electrical resistivity, in the order of 5.2 × 10{sup −} {sup 2} Ω cm was obtained for the IFZO thin film with 5 at.% F doping. Moreover, the electrical properties of doped and co-doped films were enhanced after post-deposition annealing. It was found that post-annealed thin films at 350 °C showed a decrease of one order of magnitude of the resistivity values. Such a transparent and conducting thin film can be suitable for optical and electrical applications owing to their low resistivity combined with high transmittance in the visible range. - Highlights: • Conductive transparent ZnO, IZO, IFZO thin films were deposited by spray pyrolysis. • Doping and co-doping affect morphology and optoelectrical properties. • As deposited film with high fluorine content exhibited high carrier mobility (55 cm{sup 2} V{sup −} {sup 1} s{sup −} {sup 1}). • Correlation between intrinsic defects and carrier mobility was observed. • Post-annealing in Ar atmosphere improves conductivity.

  3. Optical and fundamental band gaps disparity in transparent conducting oxides: new findings for the [Formula: see text] and [Formula: see text] systems.

    Science.gov (United States)

    Sabino, Fernando P; Nunes Oliveira, Luiz; Wei, Su-Huai; Da Silva, Juarez L F

    2017-03-01

    The optical band gap, extracted from absorption measurements, defines the figure of merit for transparent conducting oxides (TCOs). In many oxides, such as [Formula: see text] or [Formula: see text], inversion symmetry introduces a selection rule that blocks transitions from the valence-band maximum to the conduction-band minimum. This raises the absorption threshold and enlarges the optical gap relative to the fundamental band gap. Here, we present density-functional computations identifying two optical gaps, either of which can be detected, depending on the optical light intensity. Under strong illumination, weak transitions from [Formula: see text]-points near the valence-band maximum contribute significantly to the absorption spectrum and define an optical gap matching the fundamental gap. Low optical intensities by contrast give prominence to the large optical gap determined by the selection rule. While experimental conditions have favored observation of the former optical gap in [Formula: see text], in contrast, absorption measurements in [Formula: see text] have focused on the latter. Our findings explain the disparity between the optical and fundamental gaps in bixbyite [Formula: see text] and predict that, measured under low illumination, the optical gap for rutile [Formula: see text] will increase, from 3.60 eV to 4.34 eV.

  4. Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells.

    Science.gov (United States)

    Xu, Qiaojing; Song, Tao; Cui, Wei; Liu, Yuqiang; Xu, Weidong; Lee, Shuit-Tong; Sun, Baoquan

    2015-02-11

    Hybrid solar cells based on n-Si/poly(3,4-ethylenedioxythiophene):poly(styrene- sulfonate) (PEDOT:PSS) heterojunction promise to be a low cost photovoltaic technology by using simple device structure and easy fabrication process. However, due to the low conductivity of PEDOT:PSS, a metal grid deposited by vacuum evaporation method is still required to enhance the charge collection efficiency, which complicates the device fabrication process. Here, a solution-processed graphene oxide (GO)-welded silver nanowires (AgNWs) transparent conductive electrode (TCE) was employed to replace the vacuum deposited metal grid. A unique "sandwich" structure was developed by embedding an AgNW network between PEDOT:PSS and GO with a figure-of-merit of 8.6×10(-3) Ω(-1), which was even higher than that of sputtered indium tin oxide electrode (6.6×10(-3) Ω(-1)). A champion power conversion efficiency of 13.3% was achieved, because of the decreased series resistance of the TCEs as well as the enhanced built-in potential (Vbi) in the hybrid solar cells. The TCEs were obtained by facile low-temperature solution process method, which was compatible with cost-effective mass production technology.

  5. Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang-Hsing, E-mail: fansen@dragon.nchu.edu.tw; Chang, Chiao-Lu

    2016-05-01

    Highlights: • Al and F co-doped ZnO (AFZO) thin films were prepared by rf magnetron sputtering. • Effects of substrate temperature on properties of AFZO films were investigated. • The AFZO films show a typical hexagonal wurtzite structure and are (0 0 2) oriented. • The AFZO thin film prepared at 200 °C exhibits a low resistivity of 2.88 × 10{sup −4} Ω-cm. • The average visible transmittances of all the AFZO thin films exceed 92%. - Abstract: ZnO is a wide bandgap semiconductor that has many potential applications such as solar cells, thin film transistors, light emitting diodes, and gas/biological sensors. In this study, a composite ceramic ZnO target containing 1 wt% Al{sub 2}O{sub 3} and 1.5 wt% ZnF{sub 2} was prepared and used to deposit transparent conducting Al and F co-doped zinc oxide (AFZO) thin films on glass substrates by radio frequency magnetron sputtering. The effect of substrate temperatures ranging from room temperature (RT) to 200 °C on structural, morphological, electrical, chemical, and optical properties of the deposited thin films were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), Hall effect measurement, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and UV–vis spectrophotometer. The XRD results showed that all the AFZO thin films had a (0 0 2) diffraction peak, indicating a typical wurtzite structure with a preferential orientation of the c-axis perpendicular to the substrate. The FE-SEM and AFM analyses indicated that the crystallinity and grain size of the films were enhanced while the surface roughness decreased as the substrate temperature increased. Results of Hall effect measurement showed that Al and F co-doping decreased the resistivity more effectively than single-doping (either Al or F doping) in ZnO thin films. The resistivity of the AFZO thin films decreased from 5.48 × 10{sup −4} to 2.88 × 10{sup −4}

  6. Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering

    Science.gov (United States)

    Wang, Fang-Hsing; Chang, Chiao-Lu

    2016-05-01

    ZnO is a wide bandgap semiconductor that has many potential applications such as solar cells, thin film transistors, light emitting diodes, and gas/biological sensors. In this study, a composite ceramic ZnO target containing 1 wt% Al2O3 and 1.5 wt% ZnF2 was prepared and used to deposit transparent conducting Al and F co-doped zinc oxide (AFZO) thin films on glass substrates by radio frequency magnetron sputtering. The effect of substrate temperatures ranging from room temperature (RT) to 200 °C on structural, morphological, electrical, chemical, and optical properties of the deposited thin films were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), Hall effect measurement, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and UV-vis spectrophotometer. The XRD results showed that all the AFZO thin films had a (0 0 2) diffraction peak, indicating a typical wurtzite structure with a preferential orientation of the c-axis perpendicular to the substrate. The FE-SEM and AFM analyses indicated that the crystallinity and grain size of the films were enhanced while the surface roughness decreased as the substrate temperature increased. Results of Hall effect measurement showed that Al and F co-doping decreased the resistivity more effectively than single-doping (either Al or F doping) in ZnO thin films. The resistivity of the AFZO thin films decreased from 5.48 × 10-4 to 2.88 × 10-4 Ω-cm as the substrate temperature increased from RT to 200 °C due to the increased carrier concentration and Hall mobility. The optical transmittances of all the AFZO thin films were over 92% in the wavelength range of 400-800 nm regardless of substrate temperature. The blue-shift of absorption edge accompanied the rise of the optical band gap, which conformed to the Burstein-Moss effect. The developed AFZO thin films are suitable as transparent conducting electrodes for various optoelectronic

  7. Graphene Transparent Conductive Electrodes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Graphene thin films will be fabricated using Low Pressure Chemical Vapor Deposition (LPCVD), Films will be selected and doped to reduce sheet resistance. The films...

  8. High mobility In{sub 2}O{sub 3}:H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Macco, B.; Wu, Y.; Vanhemel, D. [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Kessels, W.M.M. [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Solliance Solar Research, Eindhoven (Netherlands)

    2014-12-01

    The preparation of high-quality In{sub 2}O{sub 3}:H, as transparent conductive oxide (TCO), is demonstrated at low temperatures. Amorphous In{sub 2}O{sub 3}:H films were deposited by atomic layer deposition at 100 C, after which they underwent solid phase crystallization by a short anneal at 200 C. TEM analysis has shown that this approach can yield films with a lateral grain size of a few hundred nm, resulting in electron mobility values as high as 138 cm{sup 2}/V s at a device-relevant carrier density of 1.8 x 10{sup 20} cm{sup -3}. Due to the extremely high electron mobility, the crystallized films simultaneously exhibit a very low resistivity (0.27 mΩ cm) and a negligible free carrier absorption. In conjunction with the low temperature processing, this renders these films ideal candidates for front TCO layers in for example silicon heterojunction solar cells and other sensitive optoelectronic applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Controlled electrodeposition of bismuth nanocatalysts for the solution-liquid-solid synthesis of CdSe nanowires on transparent conductive substrates.

    Science.gov (United States)

    Reim, Natalia; Littig, Alexander; Behn, Dino; Mews, Alf

    2013-12-11

    Semiconductor nanowires (NWs) composed of cadmium selenide (CdSe) have been directly grown on transparent conductive substrates via the solution-liquid-solid (SLS) approach using electrodeposited bismuth nanoparticles (Bi NPs) as catalyst. Bi NPs were fabricated on indium tin oxide (ITO) surfaces from a bismuth trichloride solution using potentiostatic double-pulse techniques. The size and density of electrodeposited Bi NPs were controlled by the pulse parameters. Since the NW diameter is governed by the dimension of the Bi catalyst, the electrodeposition is a reliable method to synthesize nanowires directly on substrates with a desired size and density. We show that the density can be adjusted from individual NWs on several square micrometer to very dense NW networks. The diameter can be controlled between thick nanowires above 100 nm to very thin NW of 7 nm in diameter, which is well below the respective exciton dimension. Hence, especially the thinnest NWs exhibit diameter-dependent photoluminescence energies as a result of quantum confinement effects in the radial dimension.

  10. Investigation of Ag-TiO2 Interfacial Reaction of Highly Stable Ag Nanowire Transparent Conductive Film with Conformal TiO2 Coating by Atomic Layer Deposition.

    Science.gov (United States)

    Yeh, Ming-Hua; Chen, Po-Hsun; Yang, Yi-Ching; Chen, Guan-Hong; Chen, Hsueh-Shih

    2017-03-29

    The atomic layer deposition (ALD) technique is applied to coat Ag nanowires (NWs) with a highly uniform and conformal TiO2 layer to improve the stability and sustainability of Ag NW transparent conductive films (TCFs) at high temperatures. The TiO2 layer can be directly deposited on Ag NWs with a surface polyvinylpyrrolidone (PVP) coat that acts a bed for TiO2 seeding in the ALD process. The ALD TiO2 layer significantly enhances the thermal stability at least 100 fold when aged between 200-400 °C and also provides an extra function of violet-blue light filtration for Ag NW TCFs. Investigation into the interaction between TiO2 and Ag reveals that the conformal TiO2 shell could effectively prevent Ag from 1D-to-3D ripening. However, Ag could penetrate the conformal TiO2 shell and form nanocrystals on the TiO2 shell surface when it is aged at 400 °C. According to experimental data and thermodynamic evaluation, the Ag penetration leads to an interlayer composed of mixed Ag-Ag2O-amorphous carbon phases and TiO2-x at the Ag-TiO2 interface, which is thought to be caused by extremely high vapor pressure of Ag at the Ag-TiO2 interface at a higher temperature (e.g., 400 °C).

  11. Transparent conductive oxide layer with monolayer closed-pack Al-doped ZnO spheres and their application to a-Si thin-film solar cells.

    Science.gov (United States)

    Lo, Shih-Shou; Lin, Chen-Yu; Jan, Der-Jun

    2011-09-15

    We report a new (to the best of our knowledge) transparent conductive oxide (TCO) layer with a monolayer of closed-pack Al-doped ZnO (AZO) spheres partly embedded in an AZO thin film. The average transmittance and haze ratio in the wavelength range of 380-800 nm achieves 65% and 55%, respectively, when AZO spheres with a diameter of 500 nm are embedded in a thickness of 240 nm AZO thin films. The a-Si thin-film solar cell with a regular p-i-n TCO structure is demonstrated. Under air mass 1.5 global illumination, conversion efficiencies of 5.6%, a fill factor of 0.55, V(oc) of 0.81 V, and a J(sc) of 2.44 mA/cm² are obtained. The Letter helps us to open up potential applications of a new TCO in advanced solar cells and light-emitting diodes.

  12. Influence of transparent conductive oxides on passivation of a-Si:H/c-Si heterojunctions as studied by atomic layer deposited Al-doped ZnO

    Science.gov (United States)

    Macco, B.; Deligiannis, D.; Smit, S.; van Swaaij, R. A. C. M. M.; Zeman, M.; Kessels, W. M. M.

    2014-12-01

    In silicon heterojunction solar cells, the main opportunities for efficiency gain lie in improvements of the front-contact layers. Therefore, the effect of transparent conductive oxides (TCOs) on the a-Si:H passivation performance has been investigated for Al-doped zinc oxide (ZnO:Al) layers made by atomic layer deposition (ALD). It is shown that the ALD process, as opposed to sputtering, does not impair the chemical passivation. However, the field-effect passivation is reduced by the ZnO:Al. The resulting decrease in low injection-level lifetime can be tuned by changing the ZnO:Al doping level (carrier density = 7 × 1019-7 × 1020 cm-3), which is explained by a change in the TCO workfunction. Additionally, it is shown that a ˜10-15 nm ALD ZnO:Al layer is sufficient to mitigate damage to the a-Si:H by subsequent sputtering, which is correlated to ALD film closure at this thickness.

  13. Synthesis of Solution-Processed Cu{sub 2}ZnSnSe{sub 4} Thin Films on Transparent Conducting Oxide Glass Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Agus; Cho, Jin Woo; Park, Se Jin; Hwang, Yun Jeong; Min, Byoung Koun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-07-15

    Received February 10, 2014, Accepted March 7, 2014 Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films were synthesized on transparent conducting oxide glass substrates via a simple, non-toxic, and low-cost process using a precursor solution paste. A three-step heating process (oxidation, sulfurization, and selenization) was employed to synthesize a CZTSe thin film as an absorber layer for use in thin-film solar cells. In particular, we focused on the effects of sulfurization conditions on CZTSe film formation. We found that sulfurization at 400 .deg. C involves the formation of secondary phases such as CuSe{sub 2} and Cu{sub 2}SnSe{sub 3}, but they gradually disappeared when the temperature was increased. The formed CZTSe thin films showed homogenous and good crystallinity with grain sizes of approximately 600 nm. A solar cell device was tentatively fabricated and showed a power conversion efficiency of 2.2% on an active area of 0.44 cm{sup 2} with an open circuit voltage of 365 mV, a short current density of 20.6 mA/cm{sup 2}, and a fill factor of 28.7%.

  14. Effect of precursor solvent on the opto-electrical properties of spin coated transparent conducting ZnO: Ga thin films

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Amit Kumar, E-mail: akrsri@gmail.com; Kumar, Jitendra

    2015-07-15

    ZnO: Ga thin films have been prepared by spin coating on glass substrate using solutions of zinc acetate dihydrate and gallium nitrate hydrate precursors in methanol, ethanol and 2-methoxyethanol with mono-ethanolamine as complexing agent to examine the effect of solvent on their opto-electrical characteristics. The selection of the solvent involves factors like toxicity, sol stability and the film properties. Accordingly, ethanol is shown to be suitable for yielding a stable sol to produce low cost 1 at% Ga−ZnO thin films useful for photovoltaic applications. These films exhibit hexagonal structure with (0001) preferred orientation, optical transmittance of ∼75−96% in wavelength range 400−900 nm, electrical resistivity of ∼ 3 × 10{sup −2} Ω-cm and electron mobility of ∼24 cm{sup 2}/ V. s. - Highlights: • c-axis preferred orientation of spin coated Ga-doped ZnO thin films. • Selection of solvents for preparation of precursor solutions. • Alternative transparent conducting oxide thin films. • Low cost method.

  15. Microstructural and optical properties of transparent conductive ZnO : Al : Mo films deposited by template-assisted sol–gel method

    Indian Academy of Sciences (India)

    H-Y He; J-F Huang; Z He; J Lu; Q Shen

    2014-05-01

    Transparent conductive ZnO : Al : Mo films with a molar ratio of Zn : Al : Mo = 99 : 0.99 : 0.01 were deposited on quartz glass substrate by a template-assisted sol-gel process and characterized by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and UV–Vis and luminescent spectrophotometries. The four types of organic template have induced nanowire morphology with varying aspect ratio. Dip coating in one constant positive and reverse direction causes the parallel array of ZnO : Al : Mo nanowires on the quartz glass substrate. Long and parallel arrayed nanowire films show obviously blue shifts and enhanced transmittances in the UV-Vis light range. The PEG-1000 and PEG-2000 have optimal effects among four templates as constant weight content is used. The films show strong ultraviolet, violet and bluish violet emissions. The templates also lead to overall thicker film and more native defect and thereby remarkably enhancing photoluminescence of the films. Long chain organic template can be used to optimize the optical properties of the doped ZnO film.

  16. Very thin ITO/metal mesh hybrid films for a high-performance transparent conductive layer in GaN-based light-emitting diodes

    Science.gov (United States)

    Min, Jung-Hong; Kwak, Hoe-Min; Kim, Kiyoung; Jeong, Woo-Lim; Lee, Dong-Seon

    2017-01-01

    In this paper, we introduce very thin Indium tin oxide (ITO) layers (5, 10, and 15 nm) hybridized with a metal mesh to produce high-performance transparent conductive layers (TCLs) in near-ultraviolet light-emitting diodes (NUV LEDs). Using UV–vis–IR spectrometry, Hall measurement, and atomic force microscopy, we found that 10 nm was the optimal thickness for the very thin ITO layers in terms of outstanding transmittance and sheet resistance values as well as stable contact properties when hybridized with the metal mesh. The proposed layers showed a value of 4.56 Ω/□ for sheet resistance and a value of 89.1% for transmittance. Moreover, the NUV LEDs fabricated with the hybrid TCLs achieved ∼140% enhanced light output power compared to that of 150 nm thick ITO layers. Finally, to verify the practical usage of the TCLs for industrial applications, we packaged the NUV LED chips and obtained improved turn-on voltage (3.48 V) and light output power (∼116%) performance.

  17. Potential application of mono/bi-layer molybdenum disulfide (MoS2) sheet as an efficient transparent conducting electrode in silicon heterojunction solar cells

    Science.gov (United States)

    Chaudhary, Rimjhim; Patel, Kamlesh; Sinha, Ravindra K.; Kumar, Sanjeev; Tyagi, Pawan K.

    2016-07-01

    In this paper, we have simulated the structure of n-type MoS2/silicon heterojunction solar cell and studied its function under different conditions. The optimization of parameters of the cell's layer has been carried out by using AFORS-HET software. In the present study, MoS2 has been considered as 3-D in nature instead of the reported 2-D nature. In order to ensure the formation of Schottky junction, electric contact has been made along the c-axis to collect the minority charge carriers. After optimizing the various parameters of n-type single layer MoS2, power efficiency of 12.44% has been achieved at the room temperature, which has further decreased to 9.042% as the layer number has increased up to 40. Furthermore, after optimizing the parameters of silicon wafer maximum efficiency of 16.4% has been achieved. Temperature dependence of the cell performance has also been studied and the maximum efficiency has been achieved at 300 K. In the present study, we have demonstrated that n-type ultrathin layer of MoS2 can be used as an excellent transparent conducting electrode.

  18. Embedment of nano-sized Ag layer into Ag-doped In2O3 films for use as highly transparent and conductive anode in organic solar cells

    Science.gov (United States)

    Cho, Da-Young; Na, Seok-In; Chung, Kwun-Bum; Kim, Han-Ki

    2015-08-01

    By inserting a nano-sized Ag layer between bottom Ag-doped In2O3 (AIO) and a top AIO layer, we were able to control the sheet resistance and optical transmittance of AIO films for application in organic solar cells (OSCs) as a transparent electrode. To optimize the AIO/Ag/AIO multilayer, we investigated the electrical, optical, structural and morphological properties of the AIO/Ag/AIO multilayer as a function of Ag interlayer thickness with a constant bottom and top AIO thickness of 35 nm. The optimized AIO/Ag/AIO multilayer showed a much lower resistivity of 3.988 × 10-5 Ω cm and a higher optical transmittance of 84.79% than the values (4.625 × 10-4 Ω cm and 78.36%) of the single AIO film, due to the high conductivity of the metallic Ag layer and the antireflection effect of the symmetric AIO/Ag/AIO structure. In addition, we investigated the performances of OSCs with AIO/Ag/AIO electrodes as a function of Ag interlayer thickness to determine the optimal Ag thickness to produce a high power conversion efficiency (PCE) of the OSCs. Based on the PCE of the OSCs, we correlated the performance of the OSCs with the Ag interlayer thickness in the AIO/Ag/AIO multilayer and suggested a possible mechanism to explain the dependency of PCE on Ag thickness in AIO/Ag/AIO multilayer electrodes.

  19. Effect of sputtering power on crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO transparent conducting thin films for optoelectronic devices

    Science.gov (United States)

    Hu, Yu Min; Li, Jung Yu; Chen, Nai Yun; Chen, Chih Yu; Han, Tai Chun; Yu, Chin Chung

    2017-02-01

    The crystallinity and intrinsic defects of transparent conducting oxide (TCO) films have a high impact on their optical and electrical properties and therefore on the performance of devices incorporating such films, including flat panel displays, electro-optical devices, and solar cells. The optical and electrical properties of TCO films can be modified by tailoring their deposition parameters, which makes proper understanding of these parameters crucial. Magnetron sputtering is the most adaptable method for preparing TCO films used in industrial applications. In this study, we investigate the direct and inter-property correlation effects of sputtering power (PW) on the crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO (AZO) TCO films. All of the films were preferentially c-axis-oriented with a wurtzite structure and had an average transmittance of over 80% in the visible wavelength region. Scanning electron microscopy images revealed significantly increased AZO film grain sizes for PW ≥ 150 W, which may lead to increased conductivity, carrier concentration, and optical band gaps but decreased carrier mobility and in-plane compressive stress in AZO films. Photoluminescence results showed that, with increasing PW, the near band edge emission gradually dominates the defect-related emissions in which zinc interstitial (Zni), oxygen vacancy (VO), and oxygen interstitial (Oi) are possibly responsible for emissions at 3.08, 2.8, and 2.0 eV, respectively. The presence of Zni- and Oi-related emissions at PW ≥ 150 W indicates a slight increase in the presence of Al atoms substituted at Zn sites (AlZn). The presence of Oi at PW ≥ 150 W was also confirmed by X-ray photoelectron spectroscopy results. These results clearly show that the crystallinity and intrinsic-defect type of AZO films, which dominate their optical and electrical properties, may be controlled by PW. This understanding may facilitate the development of TCO

  20. Electronic structure of Al-doped ZnO transparent conductive thin films studied by x-ray absorption and emission spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Huang, W. H.; Sun, S. J.; Chiou, J. W. [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Chou, H. [Department of Physics, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Chan, T. S.; Lin, H.-J. [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Kumar, Krishna [Department of Electrical and Computer Engineering, University of Waterloo, Ontario N2L 3G1 (Canada); Guo, J.-H. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2011-11-15

    This study used O K-, Zn L{sub 3}-, Zn K-, and Al K-edges x-ray absorption near-edge structure (XANES) and O K-edge x-ray emission spectroscopy (XES) measurements to investigate the electronic structure of transparent Al-doped ZnO (AZO) thin film conductors. The samples were prepared on glass substrates at a low temperature near 77 K by using a standard RF sputtering method. High-purity Ne (5N) was used as the sputtering gas. The crystallography of AZO thin films gradually transformed from the ZnO wurtize structure to an amorphous structure during sample deposition, which suggests the suitability to grow on flexible substrates, eliminating the severe degradation due to fragmentation by repeated bending. The O K- and Zn L{sub 3}-edges XANES spectra of AZO thin films revealed a decrease in the number of both O 2p and Zn 3d unoccupied states when the pressure of Ne was increased from 5 to 100 mTorr. In contrast, Al K-edges XANES spectra showed that the number of unoccupied states of Al 3p increased in conjunction with the pressure of Ne, indicating an electron transfer from Al to O atoms, and suggesting that Al doping increases the negative effective charge of oxygen ions. XES and XANES spectra of O 2p states at the O K-edge also revealed that Al doping not only raised the conduction-band-minimum, but also increased the valence-band-maximum and the band-gap. The results indicate that the reduction in conductivity of AZO thin films is due to the generation of ionic characters, the increase in band-gap, and the decrease in density of unoccupied states of oxygen.

  1. Transparent conducting oxide-free nitrogen-doped graphene/reduced hydroxylated carbon nanotube composite paper as flexible counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Zhang, Jindan; Yu, Mei; Li, Songmei; Meng, Yanbing; Wu, Xueke; Liu, Jianhua

    2016-12-01

    Three-dimensional nitrogen-doped graphene/reduced hydroxylated carbon nanotube composite aerogel (NG/CNT-OH) with unique hierarchical porosity and mechanical stability is developed through a two-step hydrothermal reaction. With plenty of exposed active sites and efficient multidimensional transport pathways of electrons and ions, NG/CNT-OH exhibits great electrocatalytic performances for I-/I3- redox couple. The subsequent compressed NG/CNT-OH papers possess high electrical conductivity and good flexibility, thus generating high-performance flexible counter electrodes (CEs) with transparent conducting oxide free (TCO-free) for dye-sensitized solar cells (DSSCs). The flexible NG/CNT-OH electrodes show good stability and the DSSCs with the optimized NG/CNT-OH CE had higher short-circuit current density (13.62 mA cm-2) and cell efficiency (6.36%) than DSSCs using Pt CE, whereas those of the DSSCs using Pt CE were only 12.81 mA cm-2 and 5.74%, respectively. Increasing the ratio of hydroxylated carbon nanotubes (CNT-OH) to the graphene oxide (GO) in the reactant would lead to less content of doped N, but better diffusion of electrolyte in the CEs because of more complete GO etching reaction. The design strategy presents a facile and cost effective way to synthesis three-dimensional graphene/CNT composite aerogel with excellent performance, and it can be potentially used as flexible TCO-free CE in other power conversion or energy storage devices.

  2. A new model of organic solar cells reveals open circuit conditions and size dependent power loss induced by the finite conductivity of a transparent contact

    Science.gov (United States)

    Gotleyb, Dor; Shikler, Rafi

    2017-01-01

    We report on a new approach to modelling the effect of the size of organic solar cells on their efficiency. Experimental results show a drastic deterioration in performance when scaling up organic solar cells. This reduction reflects in key parameters such as the short circuit current (Is c ) , the maximum power point (Pm ) , and the Fill Factor (F F ) . It is attributed to the transparent anode that exhibits a relatively low conductivity (σ) . Our unique approach is to account for the interplay between the two sub-domains of the solar cell. In the first domain, containing the electro-optic active materials, we solve the drift-diffusion model using a simplified model for the recombination to emphasize the role of the anode resistance. In the second domain, representing the anode, we solve only the Laplace equation. We introduce the coupling between these layers using the current of the active layer as the boundary condition for the anode and the position dependent potential of the anode as the boundary condition for the active layer. Our results reveal that as the length of the cell increases, the parts that are farther from the contact exhibit near open circuit conditions and do not contribute to the current. We found that the efficiency of the cell altered from linear to sub-linear behavior already at cell lengths of a few millimeters. The transition point strongly depends on the conductivity of the anode. The sub-linearity starts at 0.4, 0.5, and 0.7 cm for σ=100 , 200 , and 500 S /cm , respectively. Additionally, the efficiency begins to saturate sooner than both the short circuit current and the Fill-Factor. The saturation is observed at device lengths of 0.8, 1.2, and 2.1 cm for σ=100 , 200 , and 500 S /cm , respectively.

  3. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    Science.gov (United States)

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-07-01

    We demonstrate the high structural and optical properties of InxGa1‑xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm‑2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1‑xN epilayers can be achieved with high optical quality of InxGa1‑xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  4. Controlled Al3+ Incorporation in the ZnO Lattice at 188 °C by Soft Reactive Co-Sputtering for Transparent Conductive Oxides

    Directory of Open Access Journals (Sweden)

    Salvatore Sanzaro

    2016-06-01

    Full Text Available Transparent conductive oxide (TCO layers, to be implemented in photo-anodes for dye-sensitized solar cells (DSCs, were prepared by co-deposition of ZnO and Al using pulsed-direct current (DC-magnetron reactive sputtering processes. The films were deposited at low deposition temperatures (RT-188 °C and at fixed working pressure (1.4 Pa using soft power loading conditions to avoid intrinsic extra-heating. To compensate the layer stoichiometry, O2 was selectively injected close to the sample in a small percentage (Ar:O2 = 69 sccm:2 sccm. We expressly applied the deposition temperature as a controlling parameter to tune the incorporation of the Al3+ species in the targeted position inside the ZnO lattice. With this method, Aluminum-doped Zinc Oxide films (ZnO:Al were grown following the typical wurtzite structure, as demonstrated by X-ray Diffraction analyses. A combination of micro-Raman, X-ray photoelectron spectroscopy (XPS and spectroscopic ellipsometry (SE analyses has shown that the incorporated host-atoms are Al3+ species in Zn2+ substitutional position; their amount increases following a direct monotonic trend with the deposition temperature. Correspondently, the c-axis strain into the layer decreases due to the progressive ordering of the lattice structure and reducing clustering phenomena. The maximum average Al content inside the film was ~2%, as measured by energy dispersive X-ray (EDX spectroscopy, with a uniform distribution of the dopant species along the layer thickness traced by depth-profile XPS analyses. The optimised ZnO:Al layer, deposited at a rate of ~7 nm/min, exhibits high transmittance in the visible range (~85% and low resistivity values (~13 mΩ × cm. The material therefore fulfils all the requirements to be candidate as TCO for low-cost DSCs on flexible substrates for large area technologies.

  5. Structural, photoconductive, thermoelectric and activation energy measurements of $V$-doped transparent conductive $SnO_{2}$ films fabricated by spray pyrolysis technique

    Indian Academy of Sciences (India)

    R NASIRAEI; M R FADAVIESLAM; H AZIMI-JUYBARI

    2016-08-01

    This report investigated the structural, optical and electrical properties of V-doped $SnO_{2}$ thin films deposited using spray pyrolysis technique. The $SnO_{2}$:$V$ films, with different $V$-content, were deposited on glasssubstrates at a substrate temperature of $550\\deg C$ using an aqueous ethanol solution consisting of tin and vanadium chloride. X-ray diffraction studies showed that the $SnO_{2}$:$V$ films were polycrystalline only with tin oxide phasesand the preferred orientations are along (1 1 0), (1 0 1), (2 1 1) and (3 0 1) planes. Using Scherrer formula, the grain sizes were estimated to be within the range of 25--36 nm. The variation in sheet resistance and optical direct band gap are functions of vanadium doping concentration. Field emission scanning electron microscopy (FESEM) revealed the surface morphology to be very smooth, yet grainy in nature. Optical transmittance spectra of the films showed high transparency of about $\\approx 69--90%$ in the visible region, decreasing with increase in $V$-doping. The direct band gap for undoped $SnO_{2}$ films was found to be 3.53 eV, while for higher V-doped films it shifted toward lower energies in the range of 3.27--3.53 eV and then increased again to 3.5 eV. The Hall effect and Seebeck studies revealed that the films exhibit n-type conductivity. The thermal activation energy, Seebeck coefficient and maximum of photosensitivity in the films were found to be in the range of 0.02--0.82 eV (in thelow-temperature range), $0.15--0.18 {\\rm mV K^{−1}}$ (at $T = 350 K$) and 0.96--2.84, respectively.

  6. Interface Study of ITO/ZnO and ITO/SnO2 Complex Transparent Conductive Layers and Their Effect on CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Tingliang Liu

    2013-01-01

    Full Text Available Transparent ITO/ZnO and ITO/SnO2 complex conductive layers were prepared by DC- and RF-magnetron sputtering. Their structure and optical and electronic performances were studied by XRD, UV/Vis Spectroscopy, and four-probe technology. The interface characteristic and band offset of the ITO/ZnO, ITO/SnO2, and ITO/CdS were investigated by Ultraviolet Photoelectron Spectroscopy (UPS and X-ray Photoelectron Spectroscopy (XPS, and the energy band diagrams have also been determined. The results show that ITO/ZnO and ITO/SnO2 films have good optical and electrical properties. The energy barrier those at the interface of ITO/ZnO and ITO/SnO2 layers are almost 0.4 and 0.44 eV, which are lower than in ITO/CdS heterojunctions (0.9 eV, which is beneficial for the transfer and collection of electrons in CdTe solar cells and reduces the minority carrier recombination at the interface, compared to CdS/ITO. The effects of their use in CdTe solar cells were studied by AMPS-1D software simulation using experiment values obtained from ZnO, ITO, and SnO2. From the simulation, we confirmed the increase of Eff, FF, Voc, and Isc by the introduction of ITO/ZnO and ITO/SnO2 layers in CdTe solar cells.

  7. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    KAUST Repository

    Mumthaz Muhammed, Mufasila

    2016-07-14

    We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  8. Random resistor network model of minimal conductivity in graphene.

    Science.gov (United States)

    Cheianov, Vadim V; Fal'ko, Vladimir I; Altshuler, Boris L; Aleiner, Igor L

    2007-10-26

    Transport in undoped graphene is related to percolating current patterns in the networks of n- and p-type regions reflecting the strong bipolar charge density fluctuations. Finite transparency of the p-n junctions is vital in establishing the macroscopic conductivity. We propose a random resistor network model to analyze scaling dependencies of the conductance on the doping and disorder, the quantum magnetoresistance and the corresponding dephasing rate.

  9. Optical and Electrical Properties of Heavy-doped AZO Transparent Conducting Thin Films%重掺杂AZO透明导电薄膜的光电特性

    Institute of Scientific and Technical Information of China (English)

    吕有明; 曹培江; 贾芳; 柳文军; 朱德亮; 马晓翠; 林传强; 刘稳

    2011-01-01

    Al-doped ZnO (AZO) film have been actively investigated for potential applications in solar cells,flat panel displays, transparent heat mirrors and organic light emitting diodes,etc. , because of high transmittance in the visible region, low resistance and better stability. Extensive work has been concentrated on the fabrication and characterization of AZO thin films. All results show that the average transmittance of the visible light is above 80%, the resistivity can be changed from values as low as 10-4 Ω · cm to values as high as 104 Ω · cm. However, a few researches are devoted to the optical and electrical properties in heavy Al doping AZO thin films. In particular, there are hardly any reports regarding the conductivity mechanism of heavily doped AZO thin films. In this paper, AZO thin films with heavy Al doping concentration were grown on quartz (SiO2) substrates by pulsed laser deposition (PLD) method. ZnO mixed with Al203 (mass fraction is 2% ) was used as target.The structure, optical and electrical properties of AZO thin films were investigated by using X-ray diffraction (XRD), transmission spectra, photoluminescence (PL) spectra and Hall effect measurement. XRD patterns indicate that all AZO thin films have the wurtzite structure of ZnO with a strong c-axis preferred orientation.The electrical measurement of AZO thin films show a good conductivity. The highest carrier density and the Hall mobility are 9. O1 × 1020 cm-3 and 33 cm2 · V-1 · s-1, respectively. The conducting mechanism was studied by temperature-dependent Hall-effect measurement. The temperature variation of cartier concentration from shows alike-metallic conducting behavior. All AZO thin films have good optical quality. The optical transmittance is above 80%, the highest transmittance is about 90%. The PL spectrum in AZO thin films is dominated by near band edge (NBE) emission at room temperature. The absorption edge and NBE emission peak of AZO thin films show an obvious

  10. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  11. p-Type Transparent NiO Thin Films By e-Beam Evaporation Techniques

    Directory of Open Access Journals (Sweden)

    K.J. Patel1,

    2011-01-01

    Full Text Available Nickel oxide (NiO semiconductors thin films were prepared by e-beam evaporation technique at different substrate temperatures ranging from room temperature to 400 °C on glass substrate. Glancing incident X-ray diffraction depict that with the increases in substrate temperature the preferred orientation changes from (111 to (200 direction. Atomic force microscopy was used to investigate the surface morphology of the NiO thin films. The transmittance of NiO thin film increases with substrate temperature. NiO thin film was also deposited on n-type indium tin oxide (ITO thin films to investigate the diode characteristic of p-NiO/n-ITO junction.

  12. Improvement of the effective work function and transmittance of thick indium tin oxide/ultrathin ruthenium doped indium oxide bilayers as transparent conductive oxide

    Energy Technology Data Exchange (ETDEWEB)

    Taweesup, Kattareeya [Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Yamamoto, Ippei [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Shibaura Institute of Technology, 3-7-5 Toyosu, Koto, Tokyo 135-8548 (Japan); Chikyow, Toyohiro [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Lothongkum, Gobboon [Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Tsukagoshi, Kazutoshi [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Ohishi, Tomoji [Shibaura Institute of Technology, 3-7-5 Toyosu, Koto, Tokyo 135-8548 (Japan); Tungasmita, Sukkaneste [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Visuttipitukul, Patama [Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Ito, Kazuhiro; Takahashi, Makoto [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Nabatame, Toshihide, E-mail: NABATAME.Toshihide@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2016-01-01

    Ruthenium doped indium oxide (In{sub 1−x}Ru{sub x}O{sub y}) films fabricated using DC magnetron co-sputtering with In{sub 2}O{sub 3} and Ru targets were investigated for use as transparent conductive oxides. The In{sub 1−x}Ru{sub x}O{sub y} films had an amorphous structure in the wide compositional range of x = 0.3–0.8 and had an extremely smooth surface. The transmittance and resistivity of the In{sub 1−x}Ru{sub x}O{sub y} films increased as the Ru content increased. The transmittance of the In{sub 0.38}Ru{sub 0.62}O{sub y} film improved to over 80% when the film thickness was less than 5 nm, while the specific resistivity (ρ) was kept to a low value of 1.6 × 10{sup −4} Ω cm. Based on these experimental data, we demonstrated that thick indium tin oxide (In{sub 0.9}Sn{sub 0.1}O{sub y}, ITO) (150 nm)/ultrathin In{sub 0.38}Ru{sub 0.62}O{sub y} (3 nm) bilayers have a high effective work function of 5.3 eV, transmittance of 86%, and low ρ of 9.2 × 10{sup −5} Ω cm. This ITO/In{sub 0.38}Ru{sub 0.62}O{sub y} bilayer is a candidate for use as an anode for organic electroluminescent devices. - Highlights: • We investigated characteristics of thick ITO/ultrathin Ru doped In{sub 2}O{sub 3} bilayers. • Effect of Ru addition in In{sub 2}O{sub 3} results in smooth surface because of an amorphous structure. • The In{sub 0.38}Ru{sub 0.62}O{sub y} film with less than 5 nm improves to high transmittance over 80%. • ITO/In{sub 0.38}Ru{sub 0.62}O{sub y} bilayer has a high effective work function of 5.3 eV. • We conclude that ITO/ultrathin In{sub 0.38}Ru{sub 0.62}O{sub y} bilayer is a candidate as an anode of OEL.

  13. Transparency International

    NARCIS (Netherlands)

    Hulten, van M. (Michel)

    2009-01-01

    Established in 1993, Transparency International (TI) defines itself as “the global civil society organization leading the fight against corruption, that brings people together in a powerful worldwide coalition to end the devastating impact of corruption on men, women and children around the wo

  14. Epitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anode.

    Science.gov (United States)

    Osiak, M; Khunsin, W; Armstrong, E; Kennedy, T; Torres, C M Sotomayor; Ryan, K M; O'Dwyer, C

    2013-02-15

    Unique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.

  15. Preparation of p-type NiO films by reactive sputtering and their application to CdTe solar cells

    Science.gov (United States)