WorldWideScience

Sample records for p-type si surfaces

  1. Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films

    International Nuclear Information System (INIS)

    Hai-Qing, Xiao; Chun-Lan, Zhou; Xiao-Ning, Cao; Wen-Jing, Wang; Lei, Zhao; Hai-Ling, Li; Hong-Wei, Diao

    2009-01-01

    Al 2 O 3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 10 12 cm −2 is detected in the Al 2 O 3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO 2 and plasma enhanced chemical vapor deposition SiN x :H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al 2 O 3 . (cross-disciplinary physics and related areas of science and technology)

  2. Spectroscopic characterization of a single dangling bond on a bare Si(100)- c ( 4 × 2 ) surface for n - and p -type doping

    KAUST Repository

    Mantega, M.; Rungger, I.; Naydenov, B.; Boland, J. J.; Sanvito, S.

    2012-01-01

    We investigate the charging state of an isolated single dangling bond formed on an unpassivated Si(100) surface with c(4×2) reconstruction, by comparing scanning tunneling microscopy and spectroscopy analysis with density functional theory calculations. The dangling bond is created by placing a single hydrogen atom on the bare surface with the tip of a scanning tunneling microscope. The H atom passivates one of the dimer dangling bonds responsible for the surface one-dimensional electronic structure. This leaves a second dangling at the reacted surface dimer which breaks the surface periodicity. We consider two possible H adsorption configurations for both the neutral and the doped situation (n- and p-type). In the case of n-doping we find that the single dangling bond state is doubly occupied and the most stable configuration is that with H bonded to the bottom Si atom of the surface dimer. In the case of p-doping the dangling bond is instead empty and the configuration with the H attached to the top atom of the dimer is the most stable. Importantly the two configurations have different scattering properties and phase shift fingerprints. This might open up interesting perspectives for fabricating a switching device by tuning the doping level or by locally charging the single dangling bond state. © 2012 American Physical Society.

  3. Spectroscopic characterization of a single dangling bond on a bare Si(100)- c ( 4 × 2 ) surface for n - and p -type doping

    KAUST Repository

    Mantega, M.

    2012-07-19

    We investigate the charging state of an isolated single dangling bond formed on an unpassivated Si(100) surface with c(4×2) reconstruction, by comparing scanning tunneling microscopy and spectroscopy analysis with density functional theory calculations. The dangling bond is created by placing a single hydrogen atom on the bare surface with the tip of a scanning tunneling microscope. The H atom passivates one of the dimer dangling bonds responsible for the surface one-dimensional electronic structure. This leaves a second dangling at the reacted surface dimer which breaks the surface periodicity. We consider two possible H adsorption configurations for both the neutral and the doped situation (n- and p-type). In the case of n-doping we find that the single dangling bond state is doubly occupied and the most stable configuration is that with H bonded to the bottom Si atom of the surface dimer. In the case of p-doping the dangling bond is instead empty and the configuration with the H attached to the top atom of the dimer is the most stable. Importantly the two configurations have different scattering properties and phase shift fingerprints. This might open up interesting perspectives for fabricating a switching device by tuning the doping level or by locally charging the single dangling bond state. © 2012 American Physical Society.

  4. Ohmic Contacts to P-Type SiC

    National Research Council Canada - National Science Library

    Crofton, John

    2000-01-01

    Alloys of aluminum (Al) have previously been used as ohmic contacts to p-type SiC, however the characteristics and performance of these contacts is drastically affected by the type and composition of the Al alloy...

  5. Electrical and structural properties of surfaces and interfaces in Ti/Al/Ni Ohmic contacts to p-type implanted 4H-SiC

    Science.gov (United States)

    Vivona, M.; Greco, G.; Bongiorno, C.; Lo Nigro, R.; Scalese, S.; Roccaforte, F.

    2017-10-01

    In this work, the electrical and structural properties of Ti/Al/Ni Ohmic contacts to p-type implanted silicon carbide (4H-SiC) were studied employing different techniques. With increasing the annealing temperature, an improvement of the electrical properties of the contacts is highlighted, until an Ohmic behavior is obtained at 950 °C, with a specific contact resistance ρc = 2.3 × 10-4 Ω cm2. A considerable intermixing of the metal layers occurred upon annealing, as a consequence of the formation of different phases, both in the uppermost part of the stack (mainly Al3Ni2) and at the interface with SiC, where the formation of preferentially aligned TiC is observed. The formation of an Ohmic contact was associated with the occurrence of the reaction and the disorder at the interface, where the current transport is dominated by the thermionic field emission mechanism with a barrier height of 0.56 eV.

  6. Surface chemistry of a hydrogenated mesoporous p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Media, El-Mahdi, E-mail: belhadidz@tahoo.fr; Outemzabet, Ratiba, E-mail: oratiba@hotmail.com

    2017-02-15

    Highlights: • Due to its large specific surface porous silicon is used as substrate for drug therapy and biosensors. • We highlight the evidency of the contribution of the hydrides (SiHx) in the formation of the porous silicon. • The responsible species in the porous silicon formation are identified and quantified at different conditions. • By some chemical treatments we show that silicon surface can be turn from hydrophobic to hydrophilic. - Abstract: The finality of this work is devoted to the grafting of organic molecules on hydrogen passivated mesoporous silicon surfaces. The study would aid in the development for the formation of organic monolayers on silicon surface to be exploited for different applications such as the realisation of biosensors and medical devices. The basic material is silicon which has been first investigated by FTIR at atomistic plane during the anodic forward and backward polarization (i.e. “go” and “return”). For this study, we applied a numerical program based on least squares method to infrared absorbance spectra obtained by an in situ attenuated total reflection on p-type silicon in diluted HF electrolyte. Our numerical treatment is based on the fitting of the different bands of IR absorbance into Gaussians corresponding to the different modes of vibration of molecular groups such as siloxanes and hydrides. An adjustment of these absorbance bands is done systematically. The areas under the fitted bands permit one to follow the intensity of the different modes of vibration that exist during the anodic forward and backward polarization in order to compare the reversibility of the phenomenon of the anodic dissolution of silicon. It permits also to follow the evolution between the hydrogen silicon termination at forward and backward scanning applied potential. Finally a comparison between the states of the initial and final surface was carried out. We confirm the presence of clearly four and three distinct vibration modes

  7. Characterization of anodic SiO2 films on P-type 4H-SiC

    International Nuclear Information System (INIS)

    Woon, W.S.; Hutagalung, S.D.; Cheong, K.Y.

    2009-01-01

    The physical and electronic properties of 100-120-nm thick anodic silicon dioxide film grown on p-type 4H-SiC wafer and annealed at different temperatures (500, 600, 700, and 800 deg. C ) have been investigated and reported. Chemical bonding of the films has been analyzed by Fourier transform infra red spectroscopy. Smooth and defect-free film surface has been revealed under field emission scanning electron microscope. Atomic force microscope has been used to study topography and surface roughness of the films. Electronic properties of the film have been investigated by high frequency capacitance-voltage and current-voltage measurements. As the annealing temperature increased, refractive index, dielectric constant, film density, SiC surface roughness, effective oxide charge, and leakage current density have been reduced until 700 deg. C . An increment of these parameters has been observed after this temperature. However, a reversed trend has been demonstrated in porosity of the film and barrier height between conduction band edge of SiO 2 and SiC

  8. Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers.

    Science.gov (United States)

    Wei, Chun-You; Lin, Chu-Hsuan; Hsiao, Hao-Tse; Yang, Po-Chuan; Wang, Chih-Ming; Pan, Yen-Chih

    2013-11-22

    Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT) structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency of cells based on p-type single-crystalline Si wafers could provide broader options for the development of HIT solar cells. In this study, we varied the thickness of intrinsic hydrogenated amorphous Si layer to improve the efficiency of HIT solar cells on p-type Si wafers.

  9. Study of the interface in n{sup +}{mu}c-Si/p-type c-Si heterojunctions: role of the fluorine chemistry in the interface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Grimaldi, A.; Sacchetti, A.; Capezzuto, P.; Ambrico, M.; Bruno, G.; Roca, Francesco

    2003-03-03

    Investigation of n-p heterojunction solar cells obtained by depositing a n-type thin silicon films either amorphous or microcrystalline on p-type c-Si is carried out. The study is focused on the improvement of the c-Si surface and emitter layer/c-Si substrate interface. The peculiarity is the use of SiF{sub 4}-based plasmas for the in situ dry cleaning and passivation of the c-Si surface and for the PECVD deposition of the emitter layer that can be either amorphous (a-Si:H,F) or microcrystalline ({mu}c-Si). The use of SiF{sub 4} instead of the conventional SiH{sub 4} results in a lower hydrogen content in the film and in a reduction of the interaction of the c-Si surface with hydrogen atoms. Furthermore, the dependence of the heterojunction solar cell photovoltaic parameters on the insertion of an intrinsic buffer layer between the n-type thin silicon layer and the p-type c-Si substrate is discussed.

  10. a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base

    Energy Technology Data Exchange (ETDEWEB)

    Rostan, Philipp Johannes

    2010-07-01

    This thesis reports on low temperature amorphous silicon back and front contacts for high-efficiency crystalline silicon solar cells with a p-type base. The back contact uses a sequence of intrinsic amorphous (i-a-Si:H) and boron doped microcrystalline (p-{mu}c-Si:H) silicon layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) and a magnetron sputtered ZnO:Al layer. The back contact is finished by evaporating Al onto the ZnO:Al and altogether prepared at a maximum temperature of 220 C. Analysis of the electronic transport of mobile charge carriers at the back contact shows that the two high-efficiency requirements low back contact series resistance and high quality c-Si surface passivation are in strong contradiction to each other, thus difficult to achieve at the same time. The preparation of resistance- and effective lifetime samples allows one to investigate both requirements independently. Analysis of the majority charge carrier transport on complete Al/ZnO:Al/a-Si:H/c-Si back contact structures derives the resistive properties. Measurements of the effective minority carrier lifetime on a-Si:H coated wafers determines the back contact surface passivation quality. Both high-efficiency solar cell requirements together are analyzed in complete photovoltaic devices where the back contact series resistance mainly affects the fill factor and the back contact passivation quality mainly affects the open circuit voltage. The best cell equipped with a diffused emitter with random texture and a full-area a-Si:H/c-Si back contact has an independently confirmed efficiency {eta} = 21.0 % with an open circuit voltage V{sub oc} = 681 mV and a fill factor FF = 78.7 % on an area of 1 cm{sup 2}. An alternative concept that uses a simplified a-Si:H layer sequence combined with Al-point contacts yields a confirmed efficiency {eta} = 19.3 % with an open circuit voltage V{sub oc} = 655 mV and a fill factor FF = 79.5 % on an area of 2 cm{sup 2}. Analysis of the

  11. Reduced thermal conductivity due to scattering centers in p-type SiGe alloys

    International Nuclear Information System (INIS)

    Beaty, J.S.; Rolfe, J.L.; Vandersande, J.; Fleurial. J.P.

    1992-01-01

    This paper reports that a theoretical model has been developed that predicts that the addition of ultra-fine, inert, phonon-scattering centers to SiGe thermoelectric material will reduce its thermal conductivity and improve its figure-of-merit. To investigate this prediction, ultra-fine particulates (20 Angstrom to 200 Angstrom) of boron nitride have been added to boron doped, p-type, 80/20 SiGe. All previous SiGe samples produced from ultra-fine SiGe powder without additions had lower thermal conductivities than standard SiGe, but high temperature (1525 K) heat treatment increased their thermal conductivity back to the value for standard SiGe. Transmission Electron Microscopy has been used to confirm the presence of occluded particulates and X-ray diffraction has been used to determine the composition to be BN

  12. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology

    International Nuclear Information System (INIS)

    Dehzangi, Arash; Larki, Farhad; Naseri, Mahmud G.; Navasery, Manizheh; Majlis, Burhanuddin Y.; Razip Wee, Mohd F.; Halimah, M.K.; Islam, Md. Shabiul; Md Ali, Sawal H.; Saion, Elias

    2015-01-01

    Highlights: • Single crystal silicon nanowire is fabricated on Si on insulator substrate, using atomic force microscope (AFM) nanolithography and KOH + IPA chemical wet etching. • Some of major parameters in fabrication process, such as writing speed and applied voltage along with KOH etching depth are investigated, and then the I–V characteristic of Si nanowires is measured. • For better understanding of the charge transmission through the nanowire, 3D-TCAD simulation is performed to simulate the Si nanowires with the same size of the fabricated ones, and variation of majority and minority carriers, hole quasi-Fermi level and generation/recombination rate are investigated. - Abstract: Si nanowires (SiNWs) as building blocks for nanostructured materials and nanoelectronics have attracted much attention due to their major role in device fabrication. In the present work a top-down fabrication approach as atomic force microscope (AFM) nanolithography was performed on Si on insulator (SOI) substrate to fabricate a single crystal p-type SiNW. To draw oxide patterns on top of the SOI substrate local anodic oxidation was carried out by AFM in contact mode. After the oxidation procedure, an optimized solution of 30 wt.% KOH with 10 vol.% IPA for wet etching at 63 °C was applied to extract the nanostructure. The fabricated SiNW had 70–85 nm full width at half maximum width, 90 nm thickness and 4 μm length. The SiNW was simulated using Sentaurus 3D software with the exact same size of the fabricated device. I–V characterization of the SiNW was measured and compared with simulation results. Using simulation results variation of carrier's concentrations, valence band edge energy and recombination generation rate for different applied voltage were investigated

  13. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology

    Energy Technology Data Exchange (ETDEWEB)

    Dehzangi, Arash, E-mail: arashd53@hotmail.com [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Larki, Farhad [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Naseri, Mahmud G. [Department of Physics, Faculty of Science, Malayer University, Malayer, Hamedan (Iran, Islamic Republic of); Navasery, Manizheh [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Majlis, Burhanuddin Y.; Razip Wee, Mohd F. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Halimah, M.K. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Islam, Md. Shabiul; Md Ali, Sawal H. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Saion, Elias [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2015-04-15

    Highlights: • Single crystal silicon nanowire is fabricated on Si on insulator substrate, using atomic force microscope (AFM) nanolithography and KOH + IPA chemical wet etching. • Some of major parameters in fabrication process, such as writing speed and applied voltage along with KOH etching depth are investigated, and then the I–V characteristic of Si nanowires is measured. • For better understanding of the charge transmission through the nanowire, 3D-TCAD simulation is performed to simulate the Si nanowires with the same size of the fabricated ones, and variation of majority and minority carriers, hole quasi-Fermi level and generation/recombination rate are investigated. - Abstract: Si nanowires (SiNWs) as building blocks for nanostructured materials and nanoelectronics have attracted much attention due to their major role in device fabrication. In the present work a top-down fabrication approach as atomic force microscope (AFM) nanolithography was performed on Si on insulator (SOI) substrate to fabricate a single crystal p-type SiNW. To draw oxide patterns on top of the SOI substrate local anodic oxidation was carried out by AFM in contact mode. After the oxidation procedure, an optimized solution of 30 wt.% KOH with 10 vol.% IPA for wet etching at 63 °C was applied to extract the nanostructure. The fabricated SiNW had 70–85 nm full width at half maximum width, 90 nm thickness and 4 μm length. The SiNW was simulated using Sentaurus 3D software with the exact same size of the fabricated device. I–V characterization of the SiNW was measured and compared with simulation results. Using simulation results variation of carrier's concentrations, valence band edge energy and recombination generation rate for different applied voltage were investigated.

  14. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2009-04-01

    Full Text Available In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors.

  15. Thermal stability of Ni/Ti/Al ohmic contacts to p-type 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hailong; Shen, Huajun, E-mail: shenhuajun@ime.ac.cn; Tang, Yidan; Bai, Yun; Liu, Xinyu [Microwave Device and IC Department, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029 (China); Zhang, Xufang [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wu, Yudong; Liu, Kean [Zhuzhou CSR Times Electric Co., Ltd, ZhuZhou 412001 (China)

    2015-01-14

    Low resistivity Ni/Ti/Al ohmic contacts on p-type 4H-SiC epilayer were developed, and their thermal stabilities were also experimentally investigated through high temperature storage at 600 °C for 100 h. The contact resistance of the Al/Ti/Ni/SiC contacts degraded in different degrees, and the contact morphology deteriorated with the increases of the average surface roughness and interface voids. X-ray spectra showed that Ni{sub 2}Si and Ti{sub 3}SiC{sub 2}, which were formed during ohmic contact annealing and contributed to low contact resistivity, were stable under high temperature storage. The existence of the TiAl{sub 3} and NiAl{sub 3} intermetallic phases was helpful to prevent Al agglomeration on the interface and make the contacts thermally stable. Auger electron spectroscopy indicated that the incorporation of oxygen at the surface and interface led to the oxidation of Al or Ti resulting in increased contact resistance. Also, the formation of these oxides roughened the surface and interface. The temperature-dependence of the specific contact resistance indicated that a thermionic field emission mechanism dominates the current transport for contacts before and after the thermal treatment. It suggests that the Ni/Ti/Al composite ohmic contacts are promising for SiC devices to be used in high temperature applications.

  16. Characteristics of accumulation of recombination centers due to irradiation of p-type Si

    International Nuclear Information System (INIS)

    Kazakevich, L.A.; Lugakov, P.F.; Filippov, I.M.

    1989-01-01

    Irradiation of Czochralski-grown p-type Si single crystals results primarily in creation of recombination-active radiation defects which give rise to a donor energy level at E v + 0.30-0.38 eV in the band gap. The ideas on the structure and mechanisms of formation of these radiation defects are continuously evolving and at present the most widely held view is that which assumes that the K centers can be carbon-oxygen-divacancy complexes or interstitial carbon-interstitial oxygen pairs. The authors investigated the recombination properties of such centers

  17. P-type poly-Si prepared by low-temperature aluminum-induced crystallization and doping for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yasuhiro; Yu, Zhenrui; Morales-Acevedo, Arturo [CINVESTAV-IPN, Mexico, D.F. (Mexico)

    2000-07-01

    P-type poly-Si thin films prepared by low temperature aluminum-induced crystallization and doping are reported. The starting material was boron-doped a-Si:H prepared by PECVD on glass substrates. Aluminum layers with different thickness were evaporated on a-Si:H surface and conventional thermal annealing was performed at temperatures ranging from 300 to 550 Celsius degrees. XRD, SIMS, and Hall effect measurements were carried out to characterize the annealed Al could be crystallized at temperature as low as 300 Celsius degrees in 60 minutes. This material has high carrier concentration as well as high Hall mobility and can be used as a p-layer of seed layer for thin film poly-Si solar cells. The technique reported here is compatible with PECVD process. [Spanish] Se informa sobre la preparacion de peliculas delgadas tipo P y Poli-Si mediante la cristalizacion inducida de aluminio a baja temperatura y el dopado. El material inicial era de boro dopado y a-Si:H preparado PECVD sobre substratos de vidrio. Se evaporaron capas de aluminio de diferente espesor sobre una superficie de a-Si:H y se llevo a cabo un destemplado termico convencional a temperaturas que varian entre 300 y 500 grados Celsius. Se llevaron a cabo mediciones de XRB, SIMS y del efecto Hall para caracterizar el aluminio destemplado para que pudiera ser cristalizado a temperaturas tan bajas como 300 grados Celsius en 60 minutos. Este material tiene una alta concentracion portadora asi como una alta movilidad Hall y puede usarse como una capa de semilla para celdas solares de pelicula delgada Poli-Si. La tecnica reportada aqui es compatible con el proceso PECVD.

  18. Determination of the refractive index of n+- and p-type porous Si samples

    International Nuclear Information System (INIS)

    Setzu, S.; Romestain, R.; Chamard, V.

    2004-01-01

    Photochemical etching of porous Si layers has been shown to be able to create micrometer or submicrometer-scale lateral gratings very promising for photonic applications. However, the reduced size of this lateral periodicity hinders standard measurements of refractive index variations. Therefore accurate characterizations of such gratings are usually difficult. In this paper we address this problem by reproducing on a larger scale (millimeter) the micrometer scale light-induced refractive index variations associated to the lateral periodicity. Using this procedure we perform standard X-ray and optical reflectivity measurements on our samples. One can then proceed to the determination of light-induced variations of porosity and refractive index. We present results for p-type samples, where the photo-dissolution can only be realized after the formation of the porous layer, as well as for n + -type samples, where light action can only be effective during the formation of the porous layer

  19. Valence band states in Si-based p-type delta-doped field effect transistors

    International Nuclear Information System (INIS)

    Martinez-Orozco, J C; Vlaev, Stoyan J

    2009-01-01

    We present tight-binding calculations of the hole level structure of δ-doped Field Effect Transistor in a Si matrix within the first neighbors sp 3 s* semi-empirical tight-binding model including spin. We employ analytical expressions for Schottky barrier potential and the p-type δ-doped well based on a Thomas-Fermi approximation, we consider these potentials as external ones, so in the computations they are added to the diagonal terms of the tight-binding Hamiltonian, by this way we have the possibility to study the energy levels behavior as we vary the backbone parameters in the system: the two-dimensional impurity density (p 2d ) of the p-type δ-doped well and the contact voltage (V c ). The aim of this calculation is to demonstrate that the tight-binding approximation is suitable for device characterization that permits us to propose optimal values for the input parameters involved in the device design.

  20. Valence band states in Si-based p-type delta-doped field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Orozco, J C; Vlaev, Stoyan J, E-mail: jcmover@correo.unam.m [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico)

    2009-05-01

    We present tight-binding calculations of the hole level structure of delta-doped Field Effect Transistor in a Si matrix within the first neighbors sp{sup 3}s* semi-empirical tight-binding model including spin. We employ analytical expressions for Schottky barrier potential and the p-type delta-doped well based on a Thomas-Fermi approximation, we consider these potentials as external ones, so in the computations they are added to the diagonal terms of the tight-binding Hamiltonian, by this way we have the possibility to study the energy levels behavior as we vary the backbone parameters in the system: the two-dimensional impurity density (p{sub 2d}) of the p-type delta-doped well and the contact voltage (V{sub c}). The aim of this calculation is to demonstrate that the tight-binding approximation is suitable for device characterization that permits us to propose optimal values for the input parameters involved in the device design.

  1. Nanomechanical properties of thick porous silicon layers grown on p- and p+-type bulk crystalline Si

    International Nuclear Information System (INIS)

    Charitidis, C.A.; Skarmoutsou, A.; Nassiopoulou, A.G.; Dragoneas, A.

    2011-01-01

    Highlights: → The nanomechanical properties of bulk crystalline Si. → The nanomechanical properties of porous Si. → The elastic-plastic deformation of porous Si compared to bulk crystalline quantified by nanoindentation data analysis. - Abstract: The nanomechanical properties and the nanoscale deformation of thick porous Si (PSi) layers of two different morphologies, grown electrochemically on p-type and p+-type Si wafers were investigated by the depth-sensing nanoindentation technique over a small range of loads using a Berkovich indenter and were compared with those of bulk crystalline Si. The microstructure of the thick PSi layers was characterized by field emission scanning electron microscopy. PSi layers on p+-type Si show an anisotropic mesoporous structure with straight vertical pores of diameter in the range of 30-50 nm, while those on p-type Si show a sponge like mesoporous structure. The effect of the microstructure on the mechanical properties of the layers is discussed. It is shown that the hardness and Young's modulus of the PSi layers exhibit a strong dependence on their microstructure. In particular, PSi layers with the anisotropic straight vertical pores show higher hardness and elastic modulus values than sponge-like layers. However, sponge-like PSi layers reveal less plastic deformation and higher wear resistance compared with layers with straight vertical pores.

  2. TSC measurements on proton-irradiated p-type Si-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Donegani, Elena; Fretwurst, Eckhart; Garutti, Erika; Junkes, Alexandra [University of Hamburg (Germany)

    2016-07-01

    Thin n{sup +}p Si sensors are potential candidates for coping with neutron equivalent fluences up to 2.10{sup 16} n{sub eq}/cm{sup 2} and an ionizing dose in the order of a few MGy, which are expected e.g. for the HL-LHC upgrade. The aim of the present work is to provide experimental data on radiation-induced defects in order to: firstly, get a deeper understanding of the properties of hadron induced defects, and secondly develop a radiation damage model based on microscopic measurements. Therefore, the outcomes of Thermally Stimulated Current measurements on 200 μm thick Float-Zone (FZ) and Magnetic Czochralski (MCz) diodes will be shown, as a results of irradiation with 23 MeV protons and isothermal annealing. The samples were irradiated in the fluence range (0.3-1).10{sup 14} n{sub eq}/cm{sup 2}, so that the maximal temperature at which the TSC signal is still sharply distinguishable from the dark current is 200 K. In particular, special focus will be given to the defect introduction rate and to the issue of boron removal in p-type silicon. Annealing studies allow to distinguish which defects mainly contribute to the leakage current and which to the space charge, and thus correlate microscopic defects properties with macroscopic sensor properties.

  3. High surface hole concentration p-type GaN using Mg implantation

    International Nuclear Information System (INIS)

    Long Tao; Yang Zhijian; Zhang Guoyi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 17 cm -3 ) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  4. Correlation between the electrical properties and the interfacial microstructures of TiAl-based ohmic contacts to p-type 4H-SiC

    Science.gov (United States)

    Tsukimoto, S.; Nitta, K.; Sakai, T.; Moriyama, M.; Murakami, Masanori

    2004-05-01

    In order to understand a mechanism of TiAl-based ohmic contact formation for p-type 4H-SiC, the electrical properties and microstructures of Ti/Al and Ni/Ti/Al contacts, which provided the specific contact resistances of approximately 2×10-5 Ω-cm2 and 7×10-5 Ω-cm2 after annealing at 1000°C and 800°C, respectively, were investigated using x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Ternary Ti3SiC2 carbide layers were observed to grow on the SiC surfaces in both the Ti/Al and the Ni/Ti/Al contacts when the contacts yielded low resistance. The Ti3SiC2 carbide layers with hexagonal structures had an epitaxial orientation relationship with the 4H-SiC substrates. The (0001)-oriented terraces were observed periodically at the interfaces between the carbide layers and the SiC, and the terraces were atomically flat. We believed the Ti3SiC2 carbide layers primarily reduced the high Schottky barrier height at the contact metal/p-SiC interface down to about 0.3 eV, and, thus, low contact resistances were obtained for p-type TiAl-based ohmic contacts.

  5. Surface States and Effective Surface Area on Photoluminescent P-Type Porous Silicon

    Science.gov (United States)

    Weisz, S. Z.; Porras, A. Ramirez; Resto, O.; Goldstein, Y.; Many, A.; Savir, E.

    1997-01-01

    The present study is motivated by the possibility of utilizing porous silicon for spectral sensors. Pulse measurements on the porous-Si/electrolyte system are employed to determine the surface effective area and the surface-state density at various stages of the anodization process used to produce the porous material. Such measurements were combined with studies of the photoluminescence spectra. These spectra were found to shift progressively to the blue as a function of anodization time. The luminescence intensity increases initially with anodization time, reaches a maximum and then decreases with further anodization. The surface state density, on the other hand, increases with anodization time from an initial value of about 2 x 10(exp 12)/sq cm surface to about 1013 sq cm for the anodized surface. This value is attained already after -2 min anodization and upon further anodization remains fairly constant. In parallel, the effective surface area increases by a factor of 10-30. This behavior is markedly different from the one observed previously for n-type porous Si.

  6. Effect of the nand p-type Si(100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial layers of semipolar AlN and GaN

    Science.gov (United States)

    Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.

    2015-10-01

    A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.

  7. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  8. P-type silicon surface barrier detector used for x-ray dosimetry

    International Nuclear Information System (INIS)

    Yamamoto, Hisao; Hatakeyama, Satoru; Norimura, Toshiyuki; Tsuchiya, Takehiko

    1983-01-01

    Responses to X-rays of a P-type surface barrier detector fabricated in our laboratory were studied, taking into consideration the dependence on the temperature in order to examine its applicability to dosimetry of short-range radiation. The study was also made in the case of N-type surface barrier detector. At room temperature, the short-circuit current increased linearly with exposure dose rate (15 - 50 R/min) for N- and P-type detectors. The open-circuit voltage showed a nonlinear dependence. With increasing temperature, the short-circuit current for the N-type detector was approximately constant up to 30 0 C and then decreased, though the open-circuit voltage decreased linearly. For the P- type detector, both open-circuit voltage and short-circuit current decreased almost linearly with increasing temperature. While a P-type detector is still open to some improvements, these results indicate that it can be used as a dosimeter. (author)

  9. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    Directory of Open Access Journals (Sweden)

    Rafal Pietruszka

    2014-02-01

    Full Text Available Selected properties of photovoltaic (PV structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100 are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

  10. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC

    Science.gov (United States)

    Sakwe, S. A.; Müller, R.; Wellmann, P. J.

    2006-04-01

    We have developed a KOH-based defect etching procedure for silicon carbide (SiC), which comprises in situ temperature measurement and control of melt composition. As benefit for the first time reproducible etching conditions were established (calibration plot, etching rate versus temperature and time); the etching procedure is time independent, i.e. no altering in KOH melt composition takes place, and absolute melt temperature values can be set. The paper describes this advanced KOH etching furnace, including the development of a new temperature sensor resistant to molten KOH. We present updated, absolute KOH etching parameters of n-type SiC and new absolute KOH etching parameters for low and highly p-type doped SiC, which are used for quantitative defect analysis. As best defect etching recipes we found T=530 °C/5 min (activation energy: 16.4 kcal/mol) and T=500 °C/5 min (activation energy: 13.5 kcal/mol) for n-type and p-type SiC, respectively.

  11. Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation

    Science.gov (United States)

    Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima

    2016-08-01

    Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.

  12. Mode tunable p-type Si nanowire transistor based zero drive load logic inverter.

    Science.gov (United States)

    Moon, Kyeong-Ju; Lee, Tae-Il; Lee, Sang-Hoon; Han, Young-Uk; Ham, Moon-Ho; Myoung, Jae-Min

    2012-07-25

    A design platform for a zero drive load logic inverter consisting of p-channel Si nanowire based transistors, which controlled their operating mode through an implantation into a gate dielectric layer was demonstrated. As a result, a nanowire based class D inverter having a 4.6 gain value at V(DD) of -20 V was successfully fabricated on a substrate.

  13. Bulk and surface event identification in p-type germanium detectors

    Science.gov (United States)

    Yang, L. T.; Li, H. B.; Wong, H. T.; Agartioglu, M.; Chen, J. H.; Jia, L. P.; Jiang, H.; Li, J.; Lin, F. K.; Lin, S. T.; Liu, S. K.; Ma, J. L.; Sevda, B.; Sharma, V.; Singh, L.; Singh, M. K.; Singh, M. K.; Soma, A. K.; Sonay, A.; Yang, S. W.; Wang, L.; Wang, Q.; Yue, Q.; Zhao, W.

    2018-04-01

    The p-type point-contact germanium detectors have been adopted for light dark matter WIMP searches and the studies of low energy neutrino physics. These detectors exhibit anomalous behavior to events located at the surface layer. The previous spectral shape method to identify these surface events from the bulk signals relies on spectral shape assumptions and the use of external calibration sources. We report an improved method in separating them by taking the ratios among different categories of in situ event samples as calibration sources. Data from CDEX-1 and TEXONO experiments are re-examined using the ratio method. Results are shown to be consistent with the spectral shape method.

  14. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Science.gov (United States)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-01

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×1016 atoms/cm3) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  15. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Minden 11800 Penang (Malaysia)

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  16. Robustness up to 400°C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation

    Science.gov (United States)

    Defresne, A.; Plantevin, O.; Roca i Cabarrocas, Pere

    2016-12-01

    Heterojunction solar cells based on crystalline silicon (c-Si) passivated by hydrogenated amorphous silicon (a-Si:H) thin films are one of the most promising architectures for high energy conversion efficiency. Indeed, a-Si:H thin films can passivate both p-type and n-type wafers and can be deposited at low temperature (layers, in particular p-type a-Si:H, show a dramatic degradation in passivation quality above 200°C. Yet, annealing at 300 - 400°C the TCO layer and metallic contacts is highly desirable to reduce the contact resistance as well as the TCO optical absorption. In this work, we show that as expected, ion implantation (5 - 30 keV) introduces defects at the c-Si/a-Si:H interface which strongly degrade the effective lifetime, down to a few micro-seconds. However, the passivation quality can be restored and lifetime values can be improved up to 2 ms over the initial value with annealing. We show here that effective lifetimes above 1 ms can be maintained up to 380°C, opening up the possibility for higher process temperatures in silicon heterojunction device fabrication.

  17. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    Science.gov (United States)

    Jadhav, Vidya

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0> orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 1017 cm-3 were irradiated at 100 MeV Fe7+ ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 1010-1 × 1014 ions cm-2. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet-visible-NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 1013, 5 × 1013 and 1 × 1014 ions cm-2, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 1013 ion cm-2 was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E1, E1 + Δ and E2 band gaps in all irradiated samples.

  18. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    International Nuclear Information System (INIS)

    Jadhav, Vidya

    2015-01-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0〉 orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 10 17 cm −3 were irradiated at 100 MeV Fe 7+ ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 10 10 –1 × 10 14 ions cm −2 . The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet–visible–NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 10 13 , 5 × 10 13 and 1 × 10 14 ions cm −2 , we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 10 13 ion cm −2 was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E 1 , E 1 + Δ and E 2 band gaps in all irradiated samples

  19. Origin of the n -type and p -type conductivity of MoS 2 monolayers on a SiO 2 substrate

    KAUST Repository

    Dolui, Kapildeb

    2013-04-02

    Ab initio density functional theory calculations are performed to study the electronic properties of a MoS2 monolayer deposited over a SiO 2 substrate in the presence of interface impurities and defects. When MoS2 is placed on a defect-free substrate, the oxide plays an insignificant role since the conduction band top and the valence band minimum of MoS2 are located approximately in the middle of the SiO2 band gap. However, if Na impurities and O dangling bonds are introduced at the SiO2 surface, these lead to localized states, which modulate the conductivity of the MoS2 monolayer from n- to p-type. Our results show that the conductive properties of MoS2 deposited on SiO 2 are mainly determined by the detailed structure of the MoS 2/SiO2 interface, and suggest that doping the substrate can represent a viable strategy for engineering MoS2-based devices. © 2013 American Physical Society.

  20. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Vidya, E-mail: vj1510@yahoo.com

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0〉 orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 10{sup 17} cm{sup −3} were irradiated at 100 MeV Fe{sup 7+} ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 10{sup 10}–1 × 10{sup 14} ions cm{sup −2}. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet–visible–NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 10{sup 13}, 5 × 10{sup 13} and 1 × 10{sup 14} ions cm{sup −2}, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 10{sup 13} ion cm{sup −2} was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E{sub 1}, E{sub 1} + Δ and E{sub 2} band gaps in all irradiated samples.

  1. Field-induced surface passivation of p-type silicon by using AlON films

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.N.; Parm, I.O.; Dhungel, S.K.; Jang, K.S.; Jeong, S.W.; Yoo, J.; Hwang, S.H.; Yi, J. [School of Information and Communication Engineering, Sungkyunkwan University, 300 Chunchun dong, Jangan-gu, Suwon-440746 (Korea)

    2008-02-15

    In the present work, we report on the evidence for a high negative charge density in aluminum oxynitride (AlON) coating on silicon. A comparative study was carried out on the composition and electrical properties of AlON and aluminum nitride (AlN). AlON films were deposited on p-type Si (1 0 0) substrate by RF magnetron sputtering using a mixture of argon and oxygen gases at substrate temperature of 300 C. The electrical properties of the AlON, AlN films were studied through capacitance-voltage (C-V) characteristics of metal-insulator-semiconductor (MIS) using the films as insulating layers. The flatband voltage shift V{sub FB} observed for AlON is around 4.5 V, which is high as compared to the AlN thin film. Heat treatment caused the V{sub FB} reduction to 3 V, but still the negative charge density was observed to be very high. In the AlN film, no fixed negative charge was observed at all. The XRD spectrum of AlON shows the major peaks of AlON (2 2 0) and AlN (0 0 2), located at 2{theta} value of 32.96 and 37.8 , respectively. The atomic percentage of Al, N in AlN film was found to be 42.5% and 57.5%, respectively. Atomic percentages of Al, N and O in EDS of AlON film are 20.21%, 27.31% and 52.48%, respectively. (author)

  2. Magnetotransport, structural and optical characterization of p-type modulation doped heterostructures with high Ge content Si1-xGex channel grown by SS-MBE on Si1-yGey/Si(001) virtual substrates

    International Nuclear Information System (INIS)

    Myronov, M.

    2001-04-01

    This thesis is a report on experimental investigations of magnetotransport, structural and optical properties of p-type modulation doped (MOD) heterostructures with Si 1-x Ge x channel of high Ge content (0.6 1-y Ge y /Si(001) virtual substrate (VS). The active layers of MOD heterostructures were grown by solid source molecular beam epitaxy (SS-MBE). The VSs were grown either by SS-MBE or low-pressure chemical vapour deposition (LP-CVD). The influence of thermal annealing on magnetotransport, structural and optical properties of Si 1-x Ge x /Si 1-y Ge y heterostructures was studied by performing the post growth furnace thermal annealing (FTA) treatments in the temperature range of 600-900C for 30min and rapid thermal annealing (RTA) treatments at temperature 750C for 30sec. Structural and optical analysis of p-type MOD Si 1-x Ge x /Si 1-y Ge y heterostructures involved the techniques of cross-sectional transmission electron microscopy, ultra low energy secondary ion mass spectrometry, photoluminescence spectroscopy, micro-Raman spectroscopy and scanning white-light interferometry. From the combinations of experimental results obtained by these techniques the Ge composition in the SiGe heteroepilayers, their thicknesses, state of strain in the heteroepilayers and dislocations microstructure in VSs were obtained. After post growth thermal annealing treatments were observed broadening of the Si 1-x Ge x channel accompanied with the reduction of Ge content in the channel and smearing of Si 1-x Ge x /Si 1-y Ge y interfaces. The Si 0.7 Ge 0.3 on low-temperature Si buffer VSs with very good structural properties were designed and grown by SS-MBE. These include: relatively thin 850nm total thickness of VS, 4-6nm Peak-to-Valley values of surface roughness, less than 10 5 cm -2 threading dislocations density and more than 95% degree of relaxation in the top layers of VS. The Hall mobility and sheet carrier density of as-grown and annealed p-type MOD Si 1-x Ge x /Si 1-y Ge y

  3. In situ monitoring of stacking fault formation and its carrier lifetime mediation in p-type 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin, E-mail: chenbinmse@gmail.com; Chen, Jun; Yao, Yuanzhao; Sekiguchi, Takashi [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Matsuhata, Hirofumi; Okumura, Hajime [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2014-07-28

    Using the fine control of an electron beam (e-beam) in scanning electron microscopy with the capabilities of both electrical and optical imaging, the stacking fault (SF) formation together with its tuning of carrier lifetime was in situ monitored and investigated in p-type 4H-SiC homoepitaxial films. The SFs were formed through engineering basal plane dislocations with the energy supplied by the e-beam. The e-beam intensity required for the SF formation in the p-type films was ∼100 times higher than that in the n-type ones. The SFs reduced the minority-carrier lifetime in the p-type films, which was opposite to that observed in the n-type case. The reason for the peculiar SF behavior in the p-type 4H-SiC is discussed with the cathodoluminescence results.

  4. Effects of interface modification by H2O2 treatment on the electrical properties of n-type ZnO/p-type Si diodes

    International Nuclear Information System (INIS)

    He, Guan-Ru; Lin, Yow-Jon; Chang, Hsing-Cheng; Chen, Ya-Hui

    2012-01-01

    The fabrication and detailed electrical properties of heterojunction diodes based on n-type ZnO and p-type Si were reported. The effect of interface modification by H 2 O 2 treatment on the electrical properties of n-type ZnO/p-type Si diodes was investigated. The n-type ZnO/p-type Si diode without H 2 O 2 treatment showed a poor rectifying behavior with an ideality factor (n) of 2.5 and high leakage, indicating that the interfacial ZnSi x O y layer influenced the electronic conduction through the device. However, the n-type ZnO/p-type Si diode with H 2 O 2 treatment showed a good rectifying behavior with n of 1.3 and low leakage. This is because the thin SiO x layer acts as a thermodynamically stable buffer layer to suppress interfacial reaction between ZnO and Si. In addition, the enhanced photo-responsivity can be interpreted by the device rectifying performance and interface passivation. - Highlights: ► The electrical properties of n-ZnO/p-Si heterojunction diodes were researched. ► The n-ZnO/p-Si diode without H 2 O 2 treatment showed a poor rectifying behavior. ► The n-ZnO/H 2 O 2 -treated p-Si diode showed a good rectifying behavior. ► The enhanced responsivity can be interpreted by the device rectifying performance.

  5. The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications

    Directory of Open Access Journals (Sweden)

    A. Tombak

    2015-01-01

    Full Text Available In the current paper, the physical properties and microelectronic parameters of direct current (DC sputtered p-type CuO film and diode have been investigated. The film of CuO as oxide and p-type semiconductor is grown onto glass and n-Si substrates by reactive DC sputtering at 250 °C. After deposition, a post-annealing procedure is applied at various temperatures in ambient. Through this research, several parameters are determined such structural, optical and electrical magnitudes. The thickness of CuO thin films goes from 122 to 254 nm. A (111-oriented cubic crystal structure is revealed by X-ray analysis. The grain size is roughly depending on the post-annealing temperature, it increases with temperature within the 144–285 nm range. The transmittance reaches 80% simultaneously in visible and infrared bands. The optical band gap is varied between 1.99 and 2.52 eV as a result of annealing temperature while the resistivity and the charge carrier mobility decrease with an increase in temperature from 135 to 14 Ω cm and 0.92 to 0.06 cm2/Vs, respectively. The surface of samples is homogenous, bright dots are visible when temperature reaches the highest value. As a diode, Ag/CuO/n-Si exhibits a non-ideal behavior and the ideality factor is about 3.5. By Norde method, the barrier height and the series resistance are extracted and found to be 0.96 V and 86.6 Ω respectively.

  6. P-type sp3-bonded BN/n-type Si heterodiode solar cell fabricated by laser-plasma synchronous CVD method

    International Nuclear Information System (INIS)

    Komatsu, Shojiro; Nagata, Takahiro; Chikyo, Toyohiro; Sato, Yuhei; Watanabe, Takayuki; Hirano, Daisuke; Takizawa, Takeo; Nakamura, Katsumitsu; Hashimoto, Takuya; Nakamura, Takuya; Koga, Kazunori; Shiratani, Masaharu; Yamamoto, Atsushi

    2009-01-01

    A heterojunction of p-type sp 3 -bonded boron nitride (BN) and n-type Si fabricated by laser-plasma synchronous chemical vapour deposition (CVD) showed excellent rectifying properties and proved to work as a solar cell with photovoltaic conversion efficiency of 1.76%. The BN film was deposited on an n-type Si (1 0 0) substrate by plasma CVD from B 2 H 6 + NH 3 + Ar while doping of Si into the BN film was induced by the simultaneous irradiation of an intense excimer laser with a pulse power of 490 mJ cm -2 , at a wavelength of 193 nm and at a repetition rate of 20 Hz. The source of dopant Si was supposed to be the Si substrate ablated at the initial stage of the film growth. The laser enhanced the doping (and/or diffusion) of Si into BN as well as the growth of sp 3 -bonded BN simultaneously in this method. P-type conduction of BN films was determined by the hot (thermoelectric) probe method. The BN/Si heterodiode with an essentially transparent p-type BN as a front layer is supposed to efficiently absorb light reaching the active region so as to potentially result in high efficiency.

  7. Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels

    Science.gov (United States)

    Huang, B.

    2016-07-01

    We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.

  8. Study of araldite in edge protection of n-type and p-type surface barrier detectors

    International Nuclear Information System (INIS)

    Alencar, M.A.V.; Jesus, E.F.O.; Lopes, R.T.

    1995-01-01

    The aim of this work is the realization of a comparative study between the surface barrier detectors performance n and type using the epoxy resin Araldite as edge protection material with the purpose of determining which type of detector (n or p) the use of Araldite is more indicated. The surface barrier detectors were constructed using n and p type silicon wafer with resistivity of 3350Ω.cm and 5850 Ω.cm respectively. In the n type detectors, the metals used as ohmic and rectifier contacts were the Al and Au respectively, while in the p type detectors, the ohmic and rectifier contacts were Au and Al. All metallic contacts were done by evaporation in high vacuum (∼10 -4 Torr) and with deposit of 40 μm/cm 2 . The obtained results for the detectors (reverse current of -350nA and resolution from 21 to 26 keV for p type detectors and reserve current of 1μA and resolution from 44 to 49 keV for n type detectors) tend to demonstrate that use of epoxy resin Araldite in the edge protection is more indicated to p type surface barrier detectors. (author). 3 refs., 4 figs., 1 tab

  9. Incubation and nanostructure formation on n- and p-type Si(1 0 0) and Si(1 1 1) at various doping levels induced by sub-nanojoule femto- and picosecond near-infrared laser pulses

    International Nuclear Information System (INIS)

    Schüle, M.; Afshar, M.; Feili, D.; Seidel, H.; König, K.; Straub, M.

    2014-01-01

    Highlights: • Nanorifts, ripples of period 130 nm and randomly nanoporous surface structures were generated. • Such nanostructures emerged on heavily and lightly n- and p-doped Si(1 0 0) and Si(1 1 1) surfaces. • Strong incubation occurred irrespective of dopant type and concentration or surface orientation. • Incubation is attributed to photoexcitation from laser-induced defect states in the bandgap. • Aggregation of defects results in nanocracks, which turn into nanorift and nanoripple patterns. • Ablation involved predominantly single-photon processes but also multiphoton absorption. - Abstract: N- and p-doped Si(1 0 0) and Si(1 1 1) surfaces with dopant concentrations of 2 × 10 14 –1 × 10 19 cm −3 were irradiated by tightly focused 85-MHz repetition rate Ti:sapphire laser light (central wavelength 800 nm, bandwidth 120 nm) at pulse durations of 12 fs to 1.6 ps. Dependent on pulse peak intensity and exposure time nanorifts, ripples of period 130 nm as well as sponge-like randomly nanoporous surface structures were generated with water immersion and, thereafter, laid bare by etching off aggregated oxide nanoparticles. The same structure types emerged in air or water with transform-limited 100-fs pulses. At a pulse length of 12 fs pronounced incubation occurred with incubation coefficients S = 0.66–0.85, whereas incubation was diminished for picosecond pulses (S > 0.95). The ablation threshold strongly rose with dopant concentration. At similar doping level it was higher for n-type than for p-type samples and for Si(1 0 0) compared to Si(1 1 1) surfaces. These observations are attributed to laser-induced defect states in the bandgap which participate in photoexcitation, deactivation of dopants by complex formation, and different densities of interface states at the boundary with the ultrathin native silicon dioxide surface layer. The threshold increase with pulse length revealed predominant single-photon excitation as well as multiphoton

  10. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  11. Gamma-Ray Irradiation Effects on the Characteristics of New Material P Type 6H-SiC Ni-Schottky Diodes (Application For Nuclear Fuel Facilities)

    International Nuclear Information System (INIS)

    U-Sudjadi; T-Ohshima, N. Iwamoto; S-Hishiki; N-Iwamoto, K. Kawano

    2007-01-01

    Effects of gamma-ray irradiation on electrical characteristics of new material p type 6H-SiC Ni-Schottky diodes were investigated. Ni Schottky diodes fabricated on p type 6H-SiC epi-layer were irradiated with gamma-rays at RT. The electrical characteristics of the diodes were evaluated before and after irradiation. The value of the on-resistance does not change up to 1 MGy, and the value increases with increasing absorbed dose above 1 MGy. For n factor, no significant increase is observed below 500 kGy, however, the value increases above 500 kGy. Schottky Barrier Height (SBH) decreases with increasing absorbed dose. Leakage current tends to increase due to irradiation. (author)

  12. Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption

    International Nuclear Information System (INIS)

    Wang, C; Fu, X Q; Xue, X Y; Wang, Y G; Wang, T H

    2007-01-01

    P-type CuO nanorods were synthesized by a hydrothermal method and the ethanol-sensing properties of sensors based on CuO were investigated. The sensor resistance increased when it was exposed to ethanol and decreased in the air, which is contrary to the case for sensors realized from n-type semiconductor. The resistance of the CuO-based sensor was about 2 kΩ in air and 6 kΩ in ethanol vapour with concentration of 2000 ppm. Such a sensing property is attributed to surface accumulation conduction. Sensors based on CuO nanorods have potential applications in detecting ethanol in low concentration

  13. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111).

    Science.gov (United States)

    Nguyen, H P T; Zhang, S; Cui, K; Han, X; Fathololoumi, S; Couillard, M; Botton, G A; Mi, Z

    2011-05-11

    Full-color, catalyst-free InGaN/GaN dot-in-a-wire light-emitting diodes (LEDs) were monolithically grown on Si(111) by molecular beam epitaxy, with the emission characteristics controlled by the dot properties in a single epitaxial growth step. With the use of p-type modulation doping in the dot-in-a-wire heterostructures, we have demonstrated the most efficient phosphor-free white LEDs ever reported, which exhibit an internal quantum efficiency of ∼56.8%, nearly unaltered CIE chromaticity coordinates with increasing injection current, and virtually zero efficiency droop at current densities up to ∼640 A/cm(2). The remarkable performance is attributed to the superior three-dimensional carrier confinement provided by the electronically coupled dot-in-a-wire heterostructures, the nearly defect- and strain-free GaN nanowires, and the significantly enhanced hole transport due to the p-type modulation doping.

  14. Surface photovoltage studies of p-type AlGaN layers after reactive-ion etching

    Science.gov (United States)

    McNamara, J. D.; Phumisithikul, K. L.; Baski, A. A.; Marini, J.; Shahedipour-Sandvik, F.; Das, S.; Reshchikov, M. A.

    2016-10-01

    The surface photovoltage (SPV) technique was used to study the surface and electrical properties of Mg-doped, p-type AlxGa1-xN (0.06 GaN:Mg thin films and from the predictions of a thermionic model for the SPV behavior. In particular, the SPV of the p-AlGaN:Mg layers exhibited slower-than-expected transients under ultraviolet illumination and delayed restoration to the initial dark value. The slow transients and delayed restorations can be attributed to a defective surface region which interferes with normal thermionic processes. The top 45 nm of the p-AlGaN:Mg layer was etched using a reactive-ion etch which caused the SPV behavior to be substantially different. From this study, it can be concluded that a defective, near-surface region is inhibiting the change in positive surface charge by allowing tunneling or hopping conductivity of holes from the bulk to the surface, or by the trapping of electrons traveling to the surface by a high concentration of defects in the near-surface region. Etching removes the defective layer and reveals a region of presumably higher quality, as evidenced by substantial changes in the SPV behavior.

  15. Effect of PECVD SiNx/SiOy Nx –Si interface property on surface passivation of silicon wafer

    International Nuclear Information System (INIS)

    Jia Xiao-Jie; Zhou Chun-Lan; Zhou Su; Wang Wen-Jing; Zhu Jun-Jie

    2016-01-01

    It is studied in this paper that the electrical characteristics of the interface between SiO y N x /SiN x stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the SiO y N x layer on interface parameters, such as interface state density Di t and fixed charge Q f , and the surface passivation quality of silicon are observed. Capacitance–voltage measurements reveal that inserting a thin SiO y N x layer between the SiN x and the silicon wafer can suppress Q f in the film and D it at the interface. The positive Q f and D it and a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the SiO y N x film increasing. Prepared by deposition at a low temperature and a low ratio of N 2 O/SiH 4 flow rate, the SiO y N x /SiN x stacks result in a low effective surface recombination velocity (S eff ) of 6 cm/s on a p-type 1 Ω·cm–5 Ω·cm FZ silicon wafer. The positive relationship between S eff and D it suggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it. (paper)

  16. Subband Structure and Effective Mass in the Inversion Layer of a Strain Si-Based Alloy P-Type MOSFET.

    Science.gov (United States)

    Chen, Kuan-Ting; Fan, Jun Wei; Chang, Shu-Tong; Lin, Chung-Yi

    2015-03-01

    In this paper, the subband structure and effective mass of an Si-based alloy inversion layer in a PMOSFET are studied theoretically. The strain condition considered in our calculations is the intrinsic strain resulting from growth of the silicon-carbon alloy on a (001) Si substrate and mechanical uniaxial stress. The quantum confinement effect resulting from the vertically effective electric field was incorporated into the k · p calculation. The distinct effective mass, such as the quantization effective mass and the density-of-states (DOS) effective mass, as well as the subband structure of the silicon-carbon alloy inversion layer for a PMOSFET under substrate strain and various effective electric field strengths, were all investigated. Ore results show that subband structure of relaxed silicon-carbon alloys with low carbon content are almost the same as silicon. We find that an external stress applied parallel to the channel direction can efficiently reduce the effective mass along the channel direction, thus producing hole mobility enhancement.

  17. Properties and growth peculiarities of Si{sub 0.30}Ge{sub 0.70} stressor integrated in 14 nm fin-based p-type metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hikavyy, A., E-mail: Andriy.Hikavyy@imec.be; Rosseel, E.; Kubicek, S.; Mannaert, G.; Favia, P.; Bender, H.; Loo, R.; Horiguchi, N.

    2016-03-01

    Integration of Si{sub 0.30}Ge{sub 0.70} in the Source/Drain (S/D) areas of metal oxide semiconductor transistors built according to 14 nm technological node rules has been shown. SiGe properties and growth peculiarities are presented and elaborated. In order to preserve the fin structures during a pre-epitaxy surface preparation, the H{sub 2} bake pressure had to be increased to 19,998 Pa at 800 °C. Influence of this bake on the Si recess in the S/D areas is presented. Excellent quality of both the raised and the embedded Si{sub 0.30}Ge{sub 0.70} was demonstrated by transmission electron microscopy inspections. Energy-dispersive X-ray spectroscopy measurement showed two stages of SiGe growth for the embedded case: first with a lower Ge content at the beginning of the deposition until the (111) facets are formed, and second with a higher Ge content which is governed by the growth on (111) planes. Nano-beam diffraction analysis showed that SiGe grown in the S/D areas of p-type metal-oxide-semiconductor field-effect transistor is fully elastically relaxed in the direction across the fin and partially strained along the fin. Finally, a strain accumulation effect in the chain of transistors has been observed. - Highlights: • Si{sub 0.30}Ge{sub 0.70} stressor has been implemented in the 14 nm technology node CMOS flow. • Embedded and raised variants have been investigated. • High Si{sub 0.30}Ge{sub 0.70} quality was confirmed. • Si{sub 0.30}Ge{sub 0.70} layer is elastically relaxed across the fin direction. • Partial stress presence and stress accumulation effect were observed.

  18. THERMOELECTRIC PROPERTIES OF HOT-PRESSED p-TYPE Mg2Si0.3Sn0.7 SOLID SOLUTION

    Directory of Open Access Journals (Sweden)

    G. N. Isachenko

    2014-05-01

    Full Text Available It is shown that thermoelectric energy conversion which gives the possibility for utilizing a low potential heat is one of the ways for adoption of energy-saving technologies; and semiconductor materials with p-type and n-type conductivities having high thermoelectric figure of merit are necessary for operation of thermoelectric generators. The paper deals with possibility of usage of the p-Mg2Si0.3Sn0.7 solid solution (with a nanostructured modification as a couple for the well studied thermoelectric material based on n-Mg2Si-Mg2Sn. A technological scheme for fabrication of heavily doped Mg2Si0.3Sn0.7 solid solution of p-type by hot pressing from nanopowder is developed. The given technology has made it possible to reduce duration of a homogeneous material fabrication and has improved its physical and chemical properties. The samples were made by three ways: direct fusion for polycrystals fabrication; hot pressing from microparticles; nanostructuring, i.e. hot pressing from nanoparticles. By X-ray diffraction it is shown that sizes of structural elements in the fabricated samples are about 40 nm. The probe technique is used for measurement of electric conductivity and Seebeck coefficient. The stationary absolute method is used for measurement of thermal conductivity. Thermoelectric figure of merit is defined by measured values of kinetic coefficients in the temperatures range of 77 – 800 K. It was demonstrated, that electric conductivity, Seebeck coefficient and the power factor do not depend practically on a way of solid solution preparation. Thermal conductivity of samples pressed from nanoparticles has appeared to be higher, than of samples, obtained by direct fusion; i.e. in this case nanostructuring has not led to increase of thermoelectric figure of merit. The conclusion is drawn, that polycrystalline semiconductor Mg2Si0.3Sn0.7 can be used as a p-branch for a thermoelectric generator though nanostructuring has not led to the figure of

  19. Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode.

    Science.gov (United States)

    Su, Chia-Ying; Lin, Chun-Han; Yao, Yu-Feng; Liu, Wei-Heng; Su, Ming-Yen; Chiang, Hsin-Chun; Tsai, Meng-Che; Tu, Charng-Gan; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, C C

    2017-09-04

    The high performance of a light-emitting diode (LED) with the total p-type thickness as small as 38 nm is demonstrated. By increasing the Mg doping concentration in the p-AlGaN electron blocking layer through an Mg pre-flow process, the hole injection efficiency can be significantly enhanced. Based on this technique, the high LED performance can be maintained when the p-type layer thickness is significantly reduced. Then, the surface plasmon coupling effects, including the enhancement of internal quantum efficiency, increase in output intensity, reduction of efficiency droop, and increase of modulation bandwidth, among the thin p-type LED samples of different p-type thicknesses that are compared. These advantageous effects are stronger as the p-type layer becomes thinner. However, the dependencies of these effects on p-type layer thickness are different. With a circular mesa size of 10 μm in radius, through surface plasmon coupling, we achieve the record-high modulation bandwidth of 625.6 MHz among c-plane GaN-based LEDs.

  20. Experimental investigation of slow-positron emission from 4H-SiC and 6H-SiC surfaces

    International Nuclear Information System (INIS)

    Ling, C.C.; Beling, C.D.; Fung, S.; Weng, H.M.

    2002-01-01

    Slow-positron emission from the surfaces of as-grown n-type 4H-SiC and 6H-SiC (silicon carbide) with a conversion efficiency of ∼10 -4 has been observed. After 30 min of 1000 deg. C annealing in forming gas, the conversion efficiency of the n-type 6H-SiC sample was observed to be enhanced by 75% to 1.9x10 -4 , but it then dropped to ∼10 -5 upon a further 30 min annealing at 1400 deg. C. The positron work function of the n-type 6H-SiC was found to increase by 29% upon 1000 deg. C annealing. For both p-type 4H-SiC and p-type 6H-SiC materials, the conversion efficiency was of the order of ∼10 -5 , some ten times lower than that for the n-type materials. This was attributed to the band bending at the p-type material surface which caused positrons to drift away from the positron emitting surface. (author)

  1. P-type surface effects for thickness variation of 2um and 4um of n-type layer in GaN LED

    Science.gov (United States)

    Halim, N. S. A. Abdul; Wahid, M. H. A.; Hambali, N. A. M. Ahmad; Rashid, S.; Ramli, M. M.; Shahimin, M. M.

    2017-09-01

    The internal quantum efficiency of III-Nitrides group, GaN light-emitting diode (LED) has been considerably limited due to the insufficient hole injection and this is caused by the lack of performance p-type doping and low hole mobility. The low hole mobility makes the hole less energetic, thus reduced the performance operation of GaN LED itself. The internal quantum efficiency of GaN-based LED with surface roughness (texture) can be changed by texture size, density, and thickness of GaN film or by the combined effects of surface shape and thickness of GaN film. Besides, due to lack of p-type GaN, attempts to look forward the potential of GaN LED relied on the thickness of n-type layer and surface shape of p-type GaN layer. This work investigates the characteristics of GaN LED with undoped n-GaN layer of different thickness and the surface shape of p-type layer. The LEDs performance is significantly altered by modifying the thickness and shape. Enhancement of n-GaN layer has led to the annihilation of electrical conductivity of the chip. Different surface geometry governs the emission rate extensively. Internal quantum efficiency is also predominantly affected by the geometry of n-GaN layer which subjected to the current spreading. It is recorded that the IQE droop can be minimized by varying the thickness of the active layer without amplifying the forward voltage. Optimum forward voltage (I-V), total emission rate relationship with the injected current and internal quantum efficiency (IQE) for 2,4 µm on four different surfaces of p-type layer are also reported in this paper.

  2. Evidence of a 2D Fermi surface due to surface states in a p-type metallic Bi2Te3

    Science.gov (United States)

    Shrestha, K.; Marinova, V.; Lorenz, B.; Chu, C. W.

    2018-05-01

    We present a systematic quantum oscillations study on a metallic, p-type Bi2Te3 topological single crystal in magnetic fields up to B  =  7 T. The maxima/minima positions of oscillations measured at different tilt angles align to one another when plotted as a function of the normal component of magnetic field, confirming the presence of the 2D Fermi surface. Additionally, the Berry phase, β  =  0.4  ±  0.05 obtained from the Landau level fan plot, is very close to the theoretical value of 0.5 for the Dirac particles, confirming the presence of topological surface states in the Bi2Te3 single crystal. Using the Lifshitz–Kosevich analyses, the Fermi energy is estimated to be meV, which is lower than that of other bismuth-based topological systems. The detection of surface states in the Bi2Te3 crystal can be explained by our previous hypothesis of the lower position of the Fermi surface that cuts the ‘M’-shaped valence band maxima. As a result, the bulk state frequency is shifted to higher magnetic fields, which allows measurement of the surface states signal at low magnetic fields.

  3. Behind the Nature of Titanium Oxide Excellent Surface Passivation and Carrier Selectivity of c-Si

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Crovetto, Andrea; Hansen, Ole

    We present an expanded study of the passivation properties of titanium dioxide (TiO2) on p-type crystalline silicon (c-Si). We report a low surface recombination velocity (16 cm/s) for TiO2 passivation layers with a thin tunnelling oxide interlayer (SiO2 or Al2O3) on p-type crystalline silicon (c-Si......), and post-deposition annealing temperature were investigated. We have observed that that SiO2 and Al2O3 interlayers enhance the TiO2 passivation of c-Si. TiO2 thin film passivation layers alone result in lower effective carrier lifetime. Further annealing at 200  ̊C in N2 gas enhances the surface...

  4. Atomic-scale luminescence measurement and theoretical analysis unveiling electron energy dissipation at a p-type GaAs(110) surface

    International Nuclear Information System (INIS)

    Imada, Hiroshi; Miwa, Kuniyuki; Jung, Jaehoon; Shimizu, Tomoko K; Kim, Yousoo; Yamamoto, Naoki

    2015-01-01

    Luminescence of p-type GaAs was induced by electron injection from the tip of a scanning tunnelling microscope into a GaAs(110) surface. Atomically-resolved photon maps revealed a significant reduction in luminescence intensity at surface electronic states localized near Ga atoms. Theoretical analysis based on first principles calculations and a rate equation approach was performed to describe the perspective of electron energy dissipation at the surface. Our study reveals that non-radiative recombination through the surface states (SS) is a dominant process for the electron energy dissipation at the surface, which is suggestive of the fast scattering of injected electrons into the SS. (paper)

  5. Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria; Giangregorio, Maria M.; Bianco, Giuseppe V.; Sacchetti, Alberto; Capezzuto, Pio; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy)

    2009-10-15

    Au nanoparticles (NPs)/(n-type)a-Si:H/(p-type)c-Si heterojunctions have been deposited combining plasma-enhanced chemical-vapour deposition (PECVD) with Au sputtering. We demonstrate that a density of {proportional_to}1.3 x 10{sup 11} cm{sup -2} of Au nanoparticles with an approximately 20 nm diameter deposited onto (n-type)a-Si:H/(p-type)c-Si heterojunctions enhance performance exploiting the improved absorption of light by the surface plasmon resonance of Au NPs. In particular, Au NPs/(n-type)a-Si:H/(p-type)c-Si show an enhancement of 20% in the short-circuit current, J{sub SC}, 25% in the power output, P{sub max} and 3% in the fill factor, FF, compared to heterojunctions without Au NPs. Structures have been characterized by spectroscopic ellipsometry, atomic force microscopy and current-voltage (I-V) measurements to correlate the plasmon resonance-induced enhanced absorption of light with photovoltaic performance. (author)

  6. Radicals and ions controlling by adjusting the antenna-substrate distance in a-Si:H deposition using a planar ICP for c-Si surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.P., E-mail: haipzhou@uestc.edu.cn [School of Energy Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731 (China); Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 (Singapore); Xu, S., E-mail: shuyan.xu@nie.edu.sg [Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 (Singapore); Xu, M. [Key Laboratory of Information Materials of Sichuan Province & School of Electrical and Information Engineering, Southwest University for Nationalities, Chengdu, 610041 (China); Xu, L.X.; Wei, D.Y. [Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 (Singapore); Xiang, Y. [School of Energy Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731 (China); Xiao, S.Q. [Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122 (China)

    2017-02-28

    Highlights: • A planar ICP was used to grow a-Si:H films for c-Si surface passivation. • The direct- and remote-plasma was compared for high-quality c-Si surface passivation. • The remote ICP with controlled plasma species and ion bombardments is preferable for the surface passivation of c-Si. - Abstract: Being a key issue in the research and fabrication of silicon heterojunction (SHJ) solar cells, crystalline silicon (c-Si) surface passivation is theoretically and technologically intricate due to its complicate dependence on plasma characteristics, material properties, and plasma-material interactions. Here amorphous silicon (a-Si:H) grown by a planar inductively coupled plasma (ICP) reactor working under different antenna-substrate distances of d was used for the surface passivation of low-resistivity p-type c-Si. It is found that the microstructures (i.e., the crystallinity, Si-H bonding configuration etc.) and passivation function on c-Si of the deposited a-Si:H were profoundly influenced by the parameter of d, which primarily determines the types of growing precursors of SiH{sub n}/H contributing to the film growth and the interaction between the plasma and growing surface. c-Si surface passivation is analyzed in terms of the d-dependent a-Si:H properties and plasma characteristics. The controlling of radical types and ion bombardment on the growing surface through adjusting parameter d is emphasized.

  7. Si surface passivation by SiOx:H films deposited by a low-frequency ICP for solar cell applications

    International Nuclear Information System (INIS)

    Zhou, H P; Wei, D Y; Xu, S; Xiao, S Q; Xu, L X; Huang, S Y; Guo, Y N; Khan, S; Xu, M

    2012-01-01

    Hydrogenated silicon suboxide (SiO x :H) thin films are fabricated by a low-frequency inductively coupled plasma of hydrogen-diluted SiH 4 + CO 2 at a low temperature (100 °C). Introduction of a small amount of oxygen into the film results in a predominantly amorphous structure, wider optical bandgap, increased H content, lower conductivity and higher activation energy. The minority carrier lifetime in the SiO x :H-passivated p-type Si substrate is up to 428 µs with a reduced incubation layer at the interface. The associated surface recombination velocity is as low as 70 cm s -1 . The passivation behaviour dominantly originates from the H-related chemical passivation. The passivation effect is also demonstrated by the excellent photovoltaic performance of the heterojunction solar cell with the SiO x :H-based passivation and emitter layers.

  8. Photo-induced electrochemical anodization of p-type silicon: achievement and demonstration of long term surface stability

    International Nuclear Information System (INIS)

    Dhanekar, Saakshi; Islam, S S; Harsh

    2012-01-01

    Surface stability is achieved and demonstrated by porous silicon (PS) fabricated using a wavelength-dependent photo-electrochemical (PEC) anodization technique. During anodization, the photon flux for all wavelengths was kept constant while only the effect of light wavelength on the surface morphology of PS was investigated. PS optical sensors were realized, characterized and tested using a photoluminescence (PL) quenching technique. An aliphatic chain of alcohols (methanol to n-octanol) was detected in the range of 10–200 ppm. Long term surface stability was observed from samples prepared under red (750–620 nm) and green illumination (570–495 nm), where the PL quenching cycles evoke the possibility of using PS for stable sensor device applications. This study provides a route for preparing highly sensitive organic vapour sensors with a precise selection of the fabrication parameters and demonstrating their prolonged performance. (paper)

  9. Electrical Properties Of Amorphous Selenium (aSe)/p-Type Silicon ...

    African Journals Online (AJOL)

    aSe) on four chemically etched p-type silicon crystals (pSi) each of 5Ω-cm resistivity and carrier concentration of 2.8x1015cm-3. Two of the pSi crystals have surface orientation of (111) while the other two crystals have (100) surface orientation.

  10. Delayed charge recovery discrimination of passivated surface alpha events in P-type point-contact detectors

    Science.gov (United States)

    Gruszko, J.; Majorana Collaboration

    2017-09-01

    The Majorana Demonstrator searches for neutrinoless double-beta decay of 76Ge using arrays of high-purity germanium detectors. If observed, this process would demonstrate that lepton number is not a conserved quantity in nature, with implications for grand-unification and for explaining the predominance of matter over antimatter in the universe. A problematic background in such large granular detector arrays is posed by alpha particles. In the Majorana Demonstrator, events have been observed that are consistent with energy-degraded alphas originating on the passivated surface, leading to a potential background contribution in the region-of-interest for neutrinoless double-beta decay. However, it is also observed that when energy deposition occurs very close to the passivated surface, charges drift through the bulk onto that surface, and then drift along it with greatly reduced mobility. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. In this contribution we discuss the characteristics of these events and the development of a filter that can identify the occurrence of this delayed charge recovery, allowing for the efficient rejection of passivated surface alpha events in analysis.

  11. Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes

    DEFF Research Database (Denmark)

    Mei, Bastian Timo; Permyakova, Anastasia Aleksandrovna; Frydendal, Rasmus

    2014-01-01

    Sputter deposition of 50 nm thick NiO films on p+–n-Si and subsequent treatment in an Fe-containing electrolyte yielded highly transparent photoanodes capable of water oxidation (OER) in alkaline media (1 M KOH) with high efficiency and stability. The Fe treatment of NiO thin films enabled Si...

  12. Surface passivation at low temperature of p- and n-type silicon wafers using a double layer a-Si:H/SiNx:H

    International Nuclear Information System (INIS)

    Focsa, A.; Slaoui, A.; Charifi, H.; Stoquert, J.P.; Roques, S.

    2009-01-01

    Surface passivation of bare silicon or emitter region is of great importance towards high efficiency solar cells. Nowadays, this is usually accomplished by depositing an hydrogenated amorphous silicon nitride (a-SiNx:H) layer on n + p structures that serves also as an excellent antireflection layer. On the other hand, surface passivation of p-type silicon is better assured by an hydrogenated amorphous silicon (a-Si:H) layer but suffers from optical properties. In this paper, we reported the surface passivation of p-type and n-type silicon wafers by using an a-Si:H/SiNx:H double layer formed at low temperature (50-400 deg. C) with ECR-PECVD technique. We first investigated the optical properties (refraction index, reflectance, and absorbance) and structural properties by FTIR (bonds Si-H, N-H) of the deposited films. The hydrogen content in the layers was determined by elastic recoil detection analysis (ERDA). The passivation effect was monitored by measuring the minority carrier effective lifetime vs. different parameters such as deposition temperature and amorphous silicon layer thickness. We have found that a 10-15 nm a-Si film with an 86 nm thick SiN layer provides an optimum of the minority carriers' lifetime. It increases from an initial value of about 50-70 μs for a-Si:H to about 760 and 800 μs for a-Si:H/SiNx:H on Cz-pSi and FZ-nSi, respectively, at an injection level 2 x 10 15 cm -3 . The effective surface recombination velocity, S eff , for passivated double layer on n-type FZ Si reached 11 cm/s and for FZ-pSi-14 cm/s, and for Cz-pSi-16-20 cm/s. Effect of hydrogen in the passivation process is discussed.

  13. Grafting cavitands on the Si(100) surface.

    Science.gov (United States)

    Condorelli, Guglielmo G; Motta, Alessandro; Favazza, Maria; Fragalà, Ignazio L; Busi, Marco; Menozzi, Edoardo; Dalcanale, Enrico; Cristofolini, Luigi

    2006-12-19

    Cavitand molecules having double bond terminated alkyl chains and different bridging groups at the upper rim have been grafted on H-terminated Si(100) surface via photochemical hydrosilylation of the double bonds. Pure and mixed monolayers have been obtained from mesitylene solutions of either pure cavitand or cavitand/1-octene mixtures. Angle resolved high-resolution X-ray photoelectron spectroscopy has been used as the main tool for the monolayer characterization. The cavitand decorated surface consists of Si-C bonded layers with the upper rim at the top of the layer. Grafting of pure cavitands leads to not-well-packed layers, which are not able to efficiently passivate the Si(100) surface. By contrast, monolayers obtained from cavitand/1-octene mixtures consist of well-packed layers since they prevent silicon oxidation after aging. AFM measurements showed that these monolayers have a structured topography, with objects protruding from the Si(100) surface with average heights compatible with the expected ones for cavitand molecules.

  14. Origin of the n -type and p -type conductivity of MoS 2 monolayers on a SiO 2 substrate

    KAUST Repository

    Dolui, Kapildeb; Rungger, Ivan; Sanvito, Stefano

    2013-01-01

    Ab initio density functional theory calculations are performed to study the electronic properties of a MoS2 monolayer deposited over a SiO 2 substrate in the presence of interface impurities and defects. When MoS2 is placed on a defect

  15. Insertion of a pentacene layer into the gold/poly(methyl methacrylate)/heavily doped p-type Si/indium device leading to the modulation of resistive switching characteristics

    Science.gov (United States)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    In order to get a physical insight into the pentacene interlayer-modulated resistive switching (RS) characteristics, the Au/pentacene/poly(methyl methacrylate) (PMMA)/heavily doped p-type Si (p+-Si)/In and Au/PMMA/p+-Si/In devices are fabricated and the device performance is provided. The Au/pentacene/PMMA/p+-Si/In device shows RS behavior, whereas the Au/PMMA/p+-Si/In device exhibits the set/reset-free hysteresis current-voltage characteristics. The insertion of a pentacene layer is a noticeable contribution to the RS characteristic. This is because of the occurrence of carrier accumulation/depletion in the pentacene interlayer. The transition from carrier depletion to carrier accumulation (carrier accumulation to carrier depletion) in pentacene occurring under negative (positive) voltage induces the process of set (reset). The switching conduction mechanism is primarily described as space charge limited conduction according to the electrical transport properties measurement. The concept of a pentacene/PMMA heterostructure opens a promising direction for organic memory devices.

  16. Steady-state analytical model of suspended p-type 3C-SiC bridges under consideration of Joule heating

    Science.gov (United States)

    Balakrishnan, Vivekananthan; Dinh, Toan; Phan, Hoang-Phuong; Kozeki, Takahiro; Namazu, Takahiro; Viet Dao, Dzung; Nguyen, Nam-Trung

    2017-07-01

    This paper reports an analytical model and its validation for a released microscale heater made of 3C-SiC thin films. A model for the equivalent electrical and thermal parameters was developed for the two-layer multi-segment heat and electric conduction. The model is based on a 1D energy equation, which considers the temperature-dependent resistivity and allows for the prediction of voltage-current and power-current characteristics of the microheater. The steady-state analytical model was validated by experimental characterization. The results, in particular the nonlinearity caused by temperature dependency, are in good agreement. The low power consumption of the order of 0.18 mW at approximately 310 K indicates the potential use of the structure as thermal sensors in portable applications.

  17. TED Study of Si(113) Surfaces

    Science.gov (United States)

    Suzuki, T.; Minoda, H.; Tanishiro, Y.; Yagi, K.

    A TED study of Si(113) surfaces was carried out. Reflections from the 3 × 2 reconstruction were seen at room temperature, while half-order reflections were very faint. The surface showed the phase transition between the 3 × 1 and the disordered (rough) structures at about 930°C. The (113) surface structure at room temperature was analyzed using TED intensity. Four kinds of structure models proposed previously, including both the 3 × 1 and the 3 × 2 reconstructed structures, were examined. The R-factors calculated using the energy-optimized atomic coordinates are not sufficiently small. After minimization of the R-factors, Dabrowski's 3 × 2 structure model is most agreeable, while Ranke's 3 × 1 and 3 × 2 structure models are not to be excluded. STM observation showed that the surface is composed of small domains of the 3 × 2 structure.

  18. Near-surface segregation in irradiated Ni3Si

    International Nuclear Information System (INIS)

    Wagner, W.; Rehn, L.E.; Wiedersich, H.

    1982-01-01

    The radiation-induced growth of Ni 3 Si films on the surfaces of Ni(Si) alloys containing = 3 Si phase has been observed. Post-irradiation depth profiling by Auger electron spectroscopy, as well as in situ analysis by high-resolution Rutherford backscattering spectrometry, reveals Si-enrichment at the surfaces of Ni(Si) alloys in excess of stoichiometric Ni 3 Si during irradiation. Thin, near-surface layers with silicon concentrations of 28 to 30 at.% are observed, and even higher Si enrichment is found in the first few atom layers. Transmission electron microscopy and selected area-electron diffraction were employed to characterize these Si-enriched layers. A complex, multiple-spot diffraction pattern is observed superposed on the diffraction pattern of ordered Ni 3 Si. The d-spacings obtained from the extra spots are consistent with those of the orthohexagonal intermetallic compound Ni 5 Si 2 . (author)

  19. Characterization of Ag-porous silicon nanostructured layer formed by an electrochemical etching of p-type silicon surface for bio-application

    Science.gov (United States)

    Naddaf, M.; Al-Mariri, A.; Haj-Mhmoud, N.

    2017-06-01

    Nanostructured layers composed of silver-porous silicon (Ag-PS) have been formed by an electrochemical etching of p-type (1 1 1) silicon substrate in a AgNO3:HF:C2H5OH solution at different etching times (10 min-30 min). Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) results reveal that the produced layers consist of Ag dendrites and a silicon-rich porous structure. The nanostructuring nature of the layer has been confirmed by spatial micro-Raman scattering and x-ray diffraction techniques. The Ag dendrites exhibit a surface-enhanced Raman scattering (SERS) spectrum, while the porous structure shows a typical PS Raman spectrum. Upon increasing the etching time, the average size of silicon nanocrystallite in the PS network decreases, while the average size of Ag nanocrystals is slightly affected. In addition, the immobilization of prokaryote Salmonella typhimurium DNA via physical adsorption onto the Ag-PS layer has been performed to demonstrate its efficiency as a platform for detection of biological molecules using SERS.

  20. Surface Passivation Mechanism of Atomic Layer Deposited Al2O3 Films on c-Si Studied by Optical Second-Harmonic Generation

    NARCIS (Netherlands)

    Gielis, J.J.H.; Verlaan, V.; Dingemans, G.; Sanden, van de M.C.M.; Kessels, W.M.M.; Terlinden, N.M.

    2009-01-01

    Recently, it was shown that Al2O3 thin films synthesized by (plasmaassisted) atomic layer deposition (ALD) provide excellent surface passivation of n, p and p+ type c-Si as highly relevant for c-Si photovoltaics. It was found that a large negative fixed charge density (up to 1013 cm-2) in the Al2O3

  1. Surface Chemistry Involved in Epitaxy of Graphene on 3C-SiC(111/Si(111

    Directory of Open Access Journals (Sweden)

    Abe Shunsuke

    2010-01-01

    Full Text Available Abstract Surface chemistry involved in the epitaxy of graphene by sublimating Si atoms from the surface of epitaxial 3C-SiC(111 thin films on Si(111 has been studied. The change in the surface composition during graphene epitaxy is monitored by in situ temperature-programmed desorption spectroscopy using deuterium as a probe (D2-TPD and complementarily by ex situ Raman and C1s core-level spectroscopies. The surface of the 3C-SiC(111/Si(111 is Si-terminated before the graphitization, and it becomes C-terminated via the formation of C-rich (6√3 × 6√3R30° reconstruction as the graphitization proceeds, in a similar manner as the epitaxy of graphene on Si-terminated 6H-SiC(0001 proceeds.

  2. Fermi surfaces of YRu2Si2 and LaRu2Si2

    International Nuclear Information System (INIS)

    Settai, R.; Ikezawa, H.; Toshima, H.; Takashita, M.; Ebihara, T.; Sugawara, H.; Kimura, T.; Motoki, K.; Onuki, Y.

    1995-01-01

    We have measured the de Haas-van Alphen effect of YRu 2 Si 2 and LaRu 2 Si 2 to clarify the Fermi surfaces and cyclotron masses. Main hole-Fermi surfaces of both compounds with a distorted ellipsoid shape are similar, occupying about half of the Brillouin zone. The small hole-Fermi surfaces with the shape of a rugby ball are three in number for LaRu 2 Si 2 , and one for YRu 2 Si 2 . An electron-Fermi surface consists of a doughnut like shape for LaRu 2 Si 2 , while a cylinder along the [001] direction and a multiply-connected shape exist for YRu 2 Si 2 . The cyclotron masses of YRu 2 Si 2 are a little larger than those of LaRu 2 Si 2 . ((orig.))

  3. Influence of a-Si:H deposition power on surface passivation property and thermal stability of a-Si:H/SiNx:H stacks

    Directory of Open Access Journals (Sweden)

    Hua Li

    2012-06-01

    Full Text Available The effectiveness of hydrogenated amorphous silicon (a-Si:H layers for passivating crystalline silicon surfaces has been well documented in the literature for well over a decade. One limitation of such layers however has arisen from their inability to withstand temperatures much above their deposition temperature without significant degradation. This limitation is of importance particularly with multicrystalline silicon materials where temperatures of at least 400°C are needed for effective hydrogenation of the crystallographic defects such as grain boundaries. To address this limitation, in this work the surface passivation quality and thermal stability of a stack passivating system, combining a layer of intrinsic a-Si:H and a capping layer of silicon nitride (SiNx:H, on p-type crystalline silicon wafers is studied and optimized. In particular the sensitivity of different microwave (MW power levels for underlying a-Si:H layer deposition are examined. Both effective minority carrier lifetime (ζeff measurement and Fourier transform infrared (FTIR spectrometry were employed to study the bonding configurations, passivating quality and thermal stability of the a-Si:H/SiNx:H stacks. It is established that the higher MW power could result in increased as-deposited ζeff and implied Voc (iVoc values, indicating likely improved surface passivation quality, but that this combination degrades more quickly when exposed to prolonged thermal treatments. The more dihydride-rich film composition corresponding to the higher MW power appears to be beneficial for bond restructuring by hydrogen interchanges when exposed to short term annealing, however it also appears more susceptible to providing channels for hydrogen out-effusion which is the likely cause of the poorer thermal stability for prolonged high temperature exposure compared with stacks with underlying a-Si:H deposited with lower MW power.

  4. Tight-binding study of the hole subband structure properties of p-type delta-doped quantum wells in Si by using a Thomas-Fermi-Dirac potential

    International Nuclear Information System (INIS)

    Rodriguez-Vargas, I; Madrigal-Melchor, J; Vlaev, S J

    2009-01-01

    We present the hole subband structure of p-type delta-doped single, double, multiple and superlattice quantum wells in Si. We use the first neighbors sp 3 s' tight-binding approximation including spin for the hole level structure analysis. The parameters of the tight-binding hamiltonian were taken from Klimeck et al. [Klimeck G, Bowen R C, Boykin T B, Salazar-Lazaro C, Cwik T A and Stoica A 2000 Superlattice. Microst. 27 77], first neighbors parameters that give realiable results for the valence band of Si. The calculations are based on a scheme previously proposed and applied to delta-doped quantum well systems [Vlaev S J and Gaggero-Sager L M 1998 Phys. Rev. B 58 1142]. The scheme relies on the incorporation of the delta-doped quantum well potential in the diagonal terms of the tight-binding hamiltonian. We give a detail description of the delta-doped quantum well structures, this is, we study the hole subband structure behavior as a function of the impurity density, the interwell distance of the doped planes and the superlattice period. We also compare our results with the available theoretical and experimental data, obtaining a reasonable agreement.

  5. Tight-binding study of the hole subband structure properties of p-type delta-doped quantum wells in Si by using a Thomas-Fermi-Dirac potential

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Vargas, I; Madrigal-Melchor, J; Vlaev, S J, E-mail: isaac@planck.reduaz.m [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, ZAC. (Mexico)

    2009-05-01

    We present the hole subband structure of p-type delta-doped single, double, multiple and superlattice quantum wells in Si. We use the first neighbors sp{sup 3}s' tight-binding approximation including spin for the hole level structure analysis. The parameters of the tight-binding hamiltonian were taken from Klimeck et al. [Klimeck G, Bowen R C, Boykin T B, Salazar-Lazaro C, Cwik T A and Stoica A 2000 Superlattice. Microst. 27 77], first neighbors parameters that give realiable results for the valence band of Si. The calculations are based on a scheme previously proposed and applied to delta-doped quantum well systems [Vlaev S J and Gaggero-Sager L M 1998 Phys. Rev. B 58 1142]. The scheme relies on the incorporation of the delta-doped quantum well potential in the diagonal terms of the tight-binding hamiltonian. We give a detail description of the delta-doped quantum well structures, this is, we study the hole subband structure behavior as a function of the impurity density, the interwell distance of the doped planes and the superlattice period. We also compare our results with the available theoretical and experimental data, obtaining a reasonable agreement.

  6. Surface Alpha Interactions in P-Type Point-Contact HPGe Detectors: Maximizing Sensitivity of 76Ge Neutrinoless Double-Beta Decay Searches

    Science.gov (United States)

    Gruszko, Julieta

    Though the existence of neutrino oscillations proves that neutrinos must have non-zero mass, Beyond-the-Standard-Model physics is needed to explain the origins of that mass. One intriguing possibility is that neutrinos are Majorana particles, i.e., they are their own anti-particles. Such a mechanism could naturally explain the observed smallness of the neutrino masses, and would have consequences that go far beyond neutrino physics, with implications for Grand Unification and leptogenesis. If neutrinos are Majorana particles, they could undergo neutrinoless double-beta decay (0nBB), a hypothesized rare decay in which two antineutrinos annihilate one another. This process, if it exists, would be exceedingly rare, with a half-life over 1E25 years. Therefore, searching for it requires experiments with extremely low background rates. One promising technique in the search for 0nBB is the use of P-type point-contact (P-PC) high-purity Germanium (HPGe) detectors enriched in 76Ge, operated in large low-background arrays. This approach is used, with some key differences, by the MAJORANA and GERDA Collaborations. A problematic background in such large granular detector arrays is posed by alpha particles incident on the surfaces of the detectors, often caused by 222Rn contamination of parts or of the detectors themselves. In the MAJORANA DEMONSTRATOR, events have been observed that are consistent with energy-degraded alphas originating near the passivated surface of the detectors, leading to a potential background contribution in the region-of-interest for neutrinoless double-beta decay. However, it is also observed that when energy deposition occurs very close to the passivated surface, high charge trapping occurs along with subsequent slow charge re-release. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. Here we discuss the characteristics of these events and the development of a filter that can identify the

  7. Si/C and H coadsorption at 4H-SiC{0001} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wachowicz, E., E-mail: elwira@ifd.uni.wroc.pl [Institute of Experimental Physics, University of Wrocław, Plac M. Borna 9, PL-50-204 Wrocław (Poland); Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, PL-02-106 Warsaw (Poland)

    2016-06-15

    Highlights: • Si on C-terminated and C on Si-terminated surface adsorb in the H{sub 3} hollow site. • The preferred adsorption site is in contrary to the stacking order of bulk crystal. • The presence of hydrogen increases the adsorption energy of Si/C. • Hydrogen weakens the bonds between the adsorbed Si or C and the surface. • Carbon adsorbs on top of the surface carbon on the C-terminated surface. • With both C and H on Si-terminated surface the surface state vanishes. - Abstract: Density functional theory (DFT) study of adsorption of 0.25 monolayer of either Si or C on 4H-SiC{0001} surfaces is presented. The adsorption in high-symmetry sites on both Si- and C-terminated surfaces was examined and the influence of the preadsorbed 0.25 ML of hydrogen on the Si/C adsorption was considered. It was found out that for Si on C-terminated surface and C on Si-terminated the most favourable is threefolded adsorption site on both clean and H-precovered surface. This is contrary to the bulk crystal stacking order which would require adsorption on top of the topmost surface atom. In those cases, the presence of hydrogen weakens the bonding of the adsorbate. Carbon on the C-terminated surface, only binds on-top of the surface atom. The C−C bond-length is almost the same for the clean surface and for one with H and equals to ∼1.33 Å which is shorter by ∼0.2 than in diamond. The analysis of the electronic structure changes under adsorption is also presented.

  8. 3C-SiC nanocrystal growth on 10° miscut Si(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Deokar, Geetanjali, E-mail: gitudeo@gmail.com [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); D' Angelo, Marie; Demaille, Dominique [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Cavellin, Catherine Deville [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Faculté des Sciences et Technologie UPEC, 61 av. De Gaulle, Créteil F-94010 (France)

    2014-04-01

    The growth of 3C-SiC nano-crystal (NC) on 10° miscut Si(001) substrate by CO{sub 2} thermal treatment is investigated by scanning and high resolution transmission electron microscopies. The vicinal Si(001) surface was thermally oxidized prior to the annealing at 1100 °C under CO{sub 2} atmosphere. The influence of the atomic steps at the vicinal SiO{sub 2}/Si interface on the SiC NC growth is studied by comparison with the results obtained for fundamental Si(001) substrates in the same conditions. For Si miscut substrate, a substantial enhancement in the density of the SiC NCs and a tendency of preferential alignment of them along the atomic step edges is observed. The SiC/Si interface is abrupt, without any steps and epitaxial growth with full relaxation of 3C-SiC occurs by domain matching epitaxy. The CO{sub 2} pressure and annealing time effect on NC growth is analyzed. The as-prepared SiC NCs can be engineered further for potential application in optoelectronic devices and/or as a seed for homoepitaxial SiC or heteroepitaxial GaN film growth. - Highlights: • Synthesis of 3C-SiC nanocrystals epitaxied on miscut-Si using a simple technique • Evidence of domain matching epitaxy at the SiC/Si interface • SiC growth proceeds along the (001) plane of host Si. • Substantial enhancement of the SiC nanocrystal density due to the miscut • Effect of the process parameters (CO{sub 2} pressure and annealing duration)

  9. Reactions between monolayer Fe and Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M; Kobayashi, N; Hayashi, N [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1997-03-01

    Reactions between 1.5 monolayer(ML) Fe deposited on Si(001)-2x1 and -dihydride surfaces were studied in situ by reflection high-energy electron diffraction and time-of-flight ion scattering spectrometry with the use of 25 keV H ions. The reactions between Fe and Si which were successively deposited on Si(001)-dihydride surface were also studied. After the room temperature deposition Fe reacted with Si(001)-2x1 substrate resulting in the formation of polycrystalline Fe5Si3. By annealing to 560-650degC composite heteroepitaxial layer of both type A and type B {beta}-FeSi2 was formed. On the dihydride surface polycrystalline Fe was observed after 1.5ML Fe deposition at room temperature, and reaction between Fe and Si(001)-dihydride surface is not likely at room temperature. We observed 3D rough surface when we deposited only Fe layer on the dihydride surface and annealed above 700degC. The hydrogen termination of Si(001) surface prevents the deposited Fe from diffusing into the substrate below 500degC, however the annealing above 710degC leads to the diffusion. We obtained 2D ordered surface, which showed 3x3 RHEED pattern as referenced to the primitive unreconstructed Si(001) surface net, when we deposited 2.5ML Fe and 5.8ML Si successively onto Si(001)-dihydride surface and annealed to 470degC. (author)

  10. Piezoresistance in p-type silicon revisited

    DEFF Research Database (Denmark)

    Richter, Jacob; Pedersen, Jesper; Brandbyge, Mads

    2008-01-01

    We calculate the shear piezocoefficient pi44 in p-type Si with a 6×6 k·p Hamiltonian model using the Boltzmann transport equation in the relaxation-time approximation. Furthermore, we fabricate and characterize p-type silicon piezoresistors embedded in a (001) silicon substrate. We find...... to experiments. Finally, we present a fitting function of temperature and acceptor density to the 6×6 model that can be used to predict the piezoresistance effect in p-type silicon. ©2008 American Institute of Physics...... that the relaxation-time model needs to include all scattering mechanisms in order to obtain correct temperature and acceptor density dependencies. The k·p results are compared to results obtained using a recent tight-binding (TB) model. The magnitude of the pi44 piezocoefficient obtained from the TB model...

  11. Control of the graphene growth rate on capped SiC surface under strong Si confinement

    International Nuclear Information System (INIS)

    Çelebi, C.; Yanık, C.; Demirkol, A.G.; Kaya, İsmet İ.

    2013-01-01

    Highlights: ► Graphene is grown on capped SiC surface with well defined cavity size. ► Graphene growth rate linearly increases with the cavity height. ► Graphene uniformity is reduced with thickness. - Abstract: The effect of the degree of Si confinement on the thickness and morphology of UHV grown epitaxial graphene on (0 0 0 −1) SiC is investigated by using atomic force microscopy and Raman spectroscopy measurements. Prior to the graphene growth process, the C-face surface of a SiC substrate is capped by another SiC comprising three cavities on its Si-rich surface with depths varying from 0.5 to 2 microns. The Si atoms, thermally decomposed from the sample surface during high temperature annealing of the SiC cap /SiC sample stack, are separately trapped inside these individual cavities at the sample/cap interface. Our analyses show that the growth rate linearly increases with the cavity height. It was also found that stronger Si confinement yields more uniform graphene layers.

  12. Investigating the effect of silicon surface chemical treatment on Al/Si contact properties in GaP/Si solar cells

    Science.gov (United States)

    Kudryashov, D.; Gudovskikh, A.

    2018-03-01

    In the present work, experimental studies have been carried out to reveal how chemical treatment of a silicon surface affects the properties of the Al/Si contact. It has been shown that for p-type monocrystalline silicon substrates with a resistivity of 10 ohm cm, it is possible to form an ohmic Al/Si contact by magnetron sputtering of an aluminum thin film and its further annealing at temperatures of 400 - 450 °C. In the range of annealing temperatures of 250 - 400 °C, the Si substrate treatment in the HF solution leads to a significant increase in currents on the current-voltage curves of the Al/Si contact, while in the range of 450 - 700 °C, the effect of chemical treatment of the silicon is not detected.

  13. Polarized luminescence of nc-Si-SiO x nanostructures on silicon substrates with patterned surface

    Science.gov (United States)

    Michailovska, Katerina; Mynko, Viktor; Indutnyi, Ivan; Shepeliavyi, Petro

    2018-05-01

    Polarization characteristics and spectra of photoluminescence (PL) of nc-Si-SiO x structures formed on the patterned and plane c-Si substrates are studied. The interference lithography with vacuum chalcogenide photoresist and anisotropic wet etching are used to form a periodic relief (diffraction grating) on the surface of the substrates. The studied nc-Si-SiO x structures were produced by oblique-angle deposition of Si monoxide in vacuum and the subsequent high-temperature annealing. The linear polarization memory (PM) effect in PL of studied structure on plane substrate is manifested only after the treatment of the structures in HF and is explained by the presence of elongated Si nanoparticles in the SiO x nanocolumns. But the PL output from the nc-Si-SiO x structure on the patterned substrate depends on how this radiation is polarized with respect to the grating grooves and is much less dependent on the polarization of the exciting light. The measured reflection spectra of nc-Si-SiO x structure on the patterned c-Si substrate confirmed the influence of pattern on the extraction of polarized PL.

  14. Effect of Aluminum Doping on the Nanocrystalline ZnS:Al3+ Films Fabricated on Heavily-Doped p-type Si(100) Substrates by Chemical Bath Deposition Method

    Science.gov (United States)

    Zhu, He-Jie; Liang, Yan; Gao, Xiao-Yong; Guo, Rui-Fang; Ji, Qiang-Min

    2015-06-01

    Intrinsic ZnS and aluminum-doped nanocrystalline ZnS (ZnS:Al3+) films with zinc-blende structure were fabricated on heavily-doped p-type Si(100) substrates by chemical bath deposition method. Influence of aluminum doping on the microstructure, and photoluminescent and electrical properties of the films, were intensively investigated. The average crystallite size of the films varying in the range of about 9.0 ˜ 35.0 nm initially increases and then decreases with aluminum doping contents, indicating that the crystallization of the films are initially enhanced and then weakened. The incorporation of Al3+ was confirmed from energy dispersive spectrometry and the induced microstrain in the films. Strong and stable visible emission band resulting from the defect-related light emission were observed for the intrinsic ZnS and ZnS:Al3+ films at room temperature. The photoluminescence related to the aluminum can annihilate due to the self-absorption of ZnS:Al3+ when the Al3+ content surpasses certain value. The variation of the resistivity of the films that initially reduces and then increases is mainly caused by the partial substitute for Zn2+ by Al3+ as well as the enhanced crystallization, and by the enhanced crystal boundary scattering, respectively.

  15. Stability of Ta-encapsulating Si clusters on Si(111)-(7x7) surfaces

    CERN Document Server

    Uchida, N; Miyazaki, T; Kanayama, T

    2003-01-01

    Tantalum containing Si cluster ions TaSi sub 1 sub 0 sub - sub 1 sub 3 H sub x sup + were synthesized in an ion trap and deposited onto Si(111)-(7x7) surfaces with a kinetic energy of 18 eV. Scanning tunnelling microscope observations revealed that the clusters adsorbed on the surface without decomposition, consistent with ab initio calculation results, that predicted the clusters would have stable Si-cage structures with a Ta atom at the centre. (rapid communication)

  16. Dislocation behavior of surface-oxygen-concentration controlled Si wafers

    International Nuclear Information System (INIS)

    Asazu, Hirotada; Takeuchi, Shotaro; Sannai, Hiroya; Sudo, Haruo; Araki, Koji; Nakamura, Yoshiaki; Izunome, Koji; Sakai, Akira

    2014-01-01

    We have investigated dislocation behavior in the surface area of surface-oxygen-concentration controlled Si wafers treated by a high temperature rapid thermal oxidation (HT-RTO). The HT-RTO process allows us to precisely control the interstitial oxygen concentration ([O i ]) in the surface area of the Si wafers. Sizes of rosette patterns, generated by nano-indentation and subsequent thermal annealing at 900 °C for 1 h, were measured for the Si wafers with various [O i ]. It was found that the rosette size decreases in proportion to the − 0.25 power of [O i ] in the surface area of the Si wafers, which were higher than [O i ] of 1 × 10 17 atoms/cm 3 . On the other hand, [O i ] of lower than 1 × 10 17 atoms/cm 3 did not affect the rosette size very much. These experimental results demonstrate the ability of the HT-RTO process to suppress the dislocation movements in the surface area of the Si wafer. - Highlights: • Surface-oxygen-concentration controlled Si wafers have been made. • The oxygen concentration was controlled by high temperature rapid thermal oxidation. • Dislocation behavior in the surface area of the Si wafers has been investigated. • Rosette size decreased with increasing of interstitial oxygen atoms. • The interstitial oxygen atoms have a pinning effect of dislocations at the surface

  17. Impact of surface morphology of Si substrate on performance of Si/ZnO heterojunction devices grown by atomic layer deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Purnima; Singh, Satyendra Kumar [Department of Electronics and Communication Engineering, Motilal Neheru National Institute of Technology, Allahabad 211004 (India); Jit, Satyabrata, E-mail: sjit.ece@itbhu.ac.in [Department of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi 221005 (India)

    2015-01-01

    In this paper, the authors have investigated the structural, optical, and electrical characteristics of silicon nanowire (SiNW)/zinc oxide (ZnO) core–shell nanostructure heterojunctions and compared their characteristics with Si/ZnO planar heterojunctions to investigate the effect of surface morphology of Si substrate in the characteristics of Si/ZnO heterojunction devices. In this work, ZnO thin film was conformally deposited on both p-type 〈100〉 planar Si substrate and substrate with vertically aligned SiNW arrays by atomic layer deposition (ALD) method. The x-ray diffraction spectra show that the crystalline structures of Si/ZnO heterojunctions are having (101) preferred orientation, whereas vertically oriented SiNW/ZnO core–shell heterojunctions are having (002)-oriented wurtzite crystalline structures. The photoluminescence (PL) spectra of Si/ZnO heterojunctions show a very sharp single peak at 377 nm, corresponding to the bandgap of ZnO material with no other defect peaks in visible region; hence, these devices can have applications only in UV region. On the other hand, SiNW/ZnO heterojunctions are having band-edge peak at 378 nm along with a broad emission band, spreading almost throughout the entire visible region with a peak around 550 nm. Therefore, ALD-grown SiNW/ZnO heterojunctions can emit green and red light simultaneously. Reflectivity measurement of the heterojunctions further confirms the enhancement of visible region peak in the PL spectra of SiNW/ZnO heterojunctions, as the surface of the SiNW/ZnO heterojunctions exhibits extremely low reflectance (<3%) in the visible wavelength region compared to Si/ZnO heterojunctions (>20%). The current–voltage characteristics of both Si/ZnO and SiNW/ZnO heterojunctions are measured with large area ohmic contacts on top and bottom of the structure to compare the electrical characteristics of the devices. Due to large surface to-volume ratio of SiNW/ZnO core–shell heterojunction devices, the

  18. Behaviour of total surface charge in SiO2-Si system under short-pulsed ultraviolet irradiation cycles characterised by surface photo voltage technique

    International Nuclear Information System (INIS)

    Kang, Ban-Hong; Lee, Wah-Pheng; Yow, Ho-Kwang; Tou, Teck-Yong

    2009-01-01

    Effects of time-accumulated ultraviolet (UV) irradiation and surface treatment on thermally oxidized p-type silicon wafers were investigated by using the surface photo voltage (SPV) technique via the direct measurement of the total surface charge, Q SC . The rise and fall times of Q sc curves, as a function of accumulated UV irradiation, depended on the thermal oxide thickness. A simple model was proposed to explain the time-varying characteristics of Q sc based on the UV-induced bond breaking of SiOH and SiH, and photoemission of bulk electrons to wafer surface where O 2 - charges were formed. While these mechanisms resulted in charge variations and hence in Q sc , these could be removed by rinsing the silicon wafers in de-ionized water followed by spin-dry or blow-dry by an ionizer fan. Empirical parameters were used in the model simulations and curve-fitting of Q SC . The simulated results suggested that initial changes in the characteristic behaviour of Q sc were mainly due to the net changes in the positive and negative charges, but subsequently were dominated by the accumulation of O 2 - during the UV irradiation.

  19. Passivation of hexagonal SiC surfaces by hydrogen termination

    International Nuclear Information System (INIS)

    Seyller, Thomas

    2004-01-01

    Surface hydrogenation is a well established technique in silicon technology. It is easily accomplished by wet-chemical procedures and results in clean and unreconstructed surfaces, which are extremely low in charged surface states and stable against oxidation in air, thus constituting an ideal surface preparation. As a consequence, methods for hydrogenation have been sought for preparing silicon carbide (SiC) surfaces with similar well defined properties. It was soon recognized, however, that due to different surface chemistry new ground had to be broken in order to find a method leading to the desired monatomic hydrogen saturation. In this paper the results of H passivation of SiC surfaces by high-temperature hydrogen annealing will be discussed, thereby placing emphasis on chemical, structural and electronic properties of the resulting surfaces. In addition to their unique properties, hydrogenated hexagonal SiC {0001} surfaces offer the interesting possibility of gaining insight into the formation of silicon- and carbon-rich reconstructions as well. This is due to the fact that to date hydrogenation is the only method providing oxygen-free surfaces with a C to Si ratio of 1:1. Last but not least, the electronic properties of hydrogen-free SiC {0001} surfaces will be alluded to. SiC {0001} surfaces are the only known semiconductor surfaces that can be prepared in their unreconstructed (1 x 1) state with one dangling bond per unit cell by photon induced hydrogen desorption. These surfaces give indications of a Mott-Hubbard surface band structure

  20. Impact of surface morphology of Si substrate on performance of Si/ZnO heterojunction devices grown by atomic layer deposition technique

    International Nuclear Information System (INIS)

    Hazra, Purnima; Singh, Satyendra Kumar; Jit, Satyabrata

    2015-01-01

    In this paper, the authors have investigated the structural, optical, and electrical characteristics of silicon nanowire (SiNW)/zinc oxide (ZnO) core–shell nanostructure heterojunctions and compared their characteristics with Si/ZnO planar heterojunctions to investigate the effect of surface morphology of Si substrate in the characteristics of Si/ZnO heterojunction devices. In this work, ZnO thin film was conformally deposited on both p-type 〈100〉 planar Si substrate and substrate with vertically aligned SiNW arrays by atomic layer deposition (ALD) method. The x-ray diffraction spectra show that the crystalline structures of Si/ZnO heterojunctions are having (101) preferred orientation, whereas vertically oriented SiNW/ZnO core–shell heterojunctions are having (002)-oriented wurtzite crystalline structures. The photoluminescence (PL) spectra of Si/ZnO heterojunctions show a very sharp single peak at 377 nm, corresponding to the bandgap of ZnO material with no other defect peaks in visible region; hence, these devices can have applications only in UV region. On the other hand, SiNW/ZnO heterojunctions are having band-edge peak at 378 nm along with a broad emission band, spreading almost throughout the entire visible region with a peak around 550 nm. Therefore, ALD-grown SiNW/ZnO heterojunctions can emit green and red light simultaneously. Reflectivity measurement of the heterojunctions further confirms the enhancement of visible region peak in the PL spectra of SiNW/ZnO heterojunctions, as the surface of the SiNW/ZnO heterojunctions exhibits extremely low reflectance ( 20%). The current–voltage characteristics of both Si/ZnO and SiNW/ZnO heterojunctions are measured with large area ohmic contacts on top and bottom of the structure to compare the electrical characteristics of the devices. Due to large surface to-volume ratio of SiNW/ZnO core–shell heterojunction devices, the output current rating is about 130 times larger compared to their planar

  1. Second harmonic generation spectroscopy on Si surfaces and interfaces

    DEFF Research Database (Denmark)

    Pedersen, Kjeld

    2010-01-01

    Optical second harmonic generation (SHG) spectroscopy studies of Si(111) surfaces and interfaces are reviewed for two types of systems: (1) clean 7 x 7 and root 3 x root 3-Ag reconstructed surfaces prepared under ultra-high vacuum conditions where surface states are excited and (2) interfaces...... in silicon-on-insulator (SOI) structures and thin metal films on Si surfaces where several interfaces contribute to the SHG. In all the systems resonances are seen at interband transitions near the bulk critical points E-1 and E-2. On the clean surfaces a number of resonances appear below the onset of bulk...

  2. p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Wang, Q; Liu, X; Kibria, M G; Zhao, S; Nguyen, H P T; Li, K H; Mi, Z; Gonzalez, T; Andrews, M P

    2014-09-07

    Micro-Raman scattering and X-ray photoelectron spectroscopy were employed to investigate Mg-doped GaN nanowires. With the increase of Mg doping level, pronounced Mg-induced local vibrational modes were observed. The evolution of longitudinal optical phonon-plasmon coupled mode, together with detailed X-ray photoelectron spectroscopy studies, show that the near-surface region of nanowires can be transformed from weakly n-type to p-type with the increase of Mg doping.

  3. Surface acoustic wave devices on AlN/3C–SiC/Si multilayer structures

    International Nuclear Information System (INIS)

    Lin, Chih-Ming; Lien, Wei-Cheng; Riekkinen, Tommi; Senesky, Debbie G; Pisano, Albert P; Chen, Yung-Yu; Felmetsger, Valery V

    2013-01-01

    Surface acoustic wave (SAW) propagation characteristics in a multilayer structure including a piezoelectric aluminum nitride (AlN) thin film and an epitaxial cubic silicon carbide (3C–SiC) layer on a silicon (Si) substrate are investigated by theoretical calculation in this work. Alternating current (ac) reactive magnetron sputtering was used to deposit highly c-axis-oriented AlN thin films, showing the full width at half maximum (FWHM) of the rocking curve of 1.36° on epitaxial 3C–SiC layers on Si substrates. In addition, conventional two-port SAW devices were fabricated on the AlN/3C–SiC/Si multilayer structure and SAW propagation properties in the multilayer structure were experimentally investigated. The surface wave in the AlN/3C–SiC/Si multilayer structure exhibits a phase velocity of 5528 m s −1 and an electromechanical coupling coefficient of 0.42%. The results demonstrate the potential of AlN thin films grown on epitaxial 3C–SiC layers to create layered SAW devices with higher phase velocities and larger electromechanical coupling coefficients than SAW devices on an AlN/Si multilayer structure. Moreover, the FWHM values of rocking curves of the AlN thin film and 3C–SiC layer remained constant after annealing for 500 h at 540 °C in air atmosphere. Accordingly, the layered SAW devices based on AlN thin films and 3C–SiC layers are applicable to timing and sensing applications in harsh environments. (paper)

  4. Low thermal budget surface preparation of Si and SiGe

    International Nuclear Information System (INIS)

    Abbadie, A.; Hartmann, J.M.; Holliger, P.; Semeria, M.N.; Besson, P.; Gentile, P.

    2004-01-01

    Using a two-step cleaning, we have investigated the low thermal budget surface preparation of Si and Si 1-x Ge x (x=0.2-0.33). It consists of an ex situ 'HF-last' wet-cleaning and an in situ low thermal budget H 2 bake in a reduced pressure-chemical vapor deposition reactor. Using secondary ion mass spectrometry, we have evaluated the effects of different H 2 bake temperatures (in between 750 and 850 deg. C for 2 min) on the removal efficiency of C, O and F atoms still present on the surface of Si and SiGe virtual substrates after the 'HF-last' wet-cleaning. We have then examined the impact of the (wet-cleaning+H 2 bake) combination on the surface cross-hatch of SiGe as-grown virtual substrates, focusing on the analysis, notably by atomic force microscopy, of the surface topography before and after the miscellaneous thermal treatments. In situ hydrogen baking steps in between 775 and 850 deg. C do not modify the surface morphology and roughness. An easy and rapid optical characterization method, i.e. the optical interferometry, is presented as well to monitor in line the morphological changes induced by such processing steps as chemical mechanical polishing, wet-cleaning, H 2 bake, etc. Despite the lower resolution of the optical profilometer, the surface roughness values coming from it have been correctly correlated with those obtained from AFM. An optimized 'HF-last' wet-cleaning using a diluted chemistry in conjunction with a H 2 bake at 800 deg. C for 2 min (775 deg. C, 2') is a good compromise for SiGe (Si) surface preparation

  5. Surface Damage Mechanism of Monocrystalline Si Under Mechanical Loading

    Science.gov (United States)

    Zhao, Qingliang; Zhang, Quanli; To, Suet; Guo, Bing

    2017-03-01

    Single-point diamond scratching and nanoindentation on monocrystalline silicon wafer were performed to investigate the surface damage mechanism of Si under the contact loading. The results showed that three typical stages of material removal appeared during dynamic scratching, and a chemical reaction of Si with the diamond indenter and oxygen occurred under the high temperature. In addition, the Raman spectra of the various points in the scratching groove indicated that the Si-I to β-Sn structure (Si-II) and the following β-Sn structure (Si-II) to amorphous Si transformation appeared under the rapid loading/unloading condition of the diamond grit, and the volume change induced by the phase transformation resulted in a critical depth (ductile-brittle transition) of cut (˜60 nm ± 15 nm) much lower than the theoretical calculated results (˜387 nm). Moreover, it also led to abnormal load-displacement curves in the nanoindentation tests, resulting in the appearance of elbow and pop-out effects (˜270 nm at 20 s, 50 mN), which were highly dependent on the loading/unloading conditions. In summary, phase transformation of Si promoted surface deformation and fracture under both static and dynamic mechanical loading.

  6. Experimental surface charge density of the Si (100)-2x1H surface

    DEFF Research Database (Denmark)

    Ciston, J.; Marks, L.D.; Feidenhans'l, R.

    2006-01-01

    We report a three-dimensional charge density refinement from x-ray diffraction intensities of the Si (100) 2x1H surface. By paying careful attention to parameterizing the bulk Si bonding, we are able to locate the hydrogen atoms at the surface, which could not be done previously. In addition, we...

  7. Impact of organic overlayers on a-Si:H/c-Si surface potential

    KAUST Repository

    Seif, Johannes P.

    2017-04-11

    Bilayers of intrinsic and doped hydrogenated amorphous silicon, deposited on crystalline silicon (c-Si) surfaces, simultaneously provide contact passivation and carrier collection in silicon heterojunction solar cells. Recently, we have shown that the presence of overlaying transparent conductive oxides can significantly affect the c-Si surface potential induced by these amorphous silicon stacks. Specifically, deposition on the hole-collecting bilayers can result in an undesired weakening of contact passivation, thereby lowering the achievable fill factor in a finished device. We test here a variety of organic semiconductors of different doping levels, overlaying hydrogenated amorphous silicon layers and silicon-based hole collectors, to mitigate this effect. We find that these materials enhance the c-Si surface potential, leading to increased implied fill factors. This opens opportunities for improved device performance.

  8. Impact of organic overlayers on a-Si:H/c-Si surface potential

    KAUST Repository

    Seif, Johannes P.; Niesen, Bjoern; Tomasi, Andrea; Ballif, Christophe; De Wolf, Stefaan

    2017-01-01

    Bilayers of intrinsic and doped hydrogenated amorphous silicon, deposited on crystalline silicon (c-Si) surfaces, simultaneously provide contact passivation and carrier collection in silicon heterojunction solar cells. Recently, we have shown that the presence of overlaying transparent conductive oxides can significantly affect the c-Si surface potential induced by these amorphous silicon stacks. Specifically, deposition on the hole-collecting bilayers can result in an undesired weakening of contact passivation, thereby lowering the achievable fill factor in a finished device. We test here a variety of organic semiconductors of different doping levels, overlaying hydrogenated amorphous silicon layers and silicon-based hole collectors, to mitigate this effect. We find that these materials enhance the c-Si surface potential, leading to increased implied fill factors. This opens opportunities for improved device performance.

  9. Surface tension and density of Si-Ge melts

    Science.gov (United States)

    Ricci, Enrica; Amore, Stefano; Giuranno, Donatella; Novakovic, Rada; Tuissi, Ausonio; Sobczak, Natalia; Nowak, Rafal; Korpala, Bartłomiej; Bruzda, Grzegorz

    2014-06-01

    In this work, the surface tension and density of Si-Ge liquid alloys were determined by the pendant drop method. Over the range of measurements, both properties show a linear temperature dependence and a nonlinear concentration dependence. Indeed, the density decreases with increasing silicon content exhibiting positive deviation from ideality, while the surface tension increases and deviates negatively with respect to the ideal solution model. Taking into account the Si-Ge phase diagram, a simple lens type, the surface tension behavior of the Si-Ge liquid alloys was analyzed in the framework of the Quasi-Chemical Approximation for the Regular Solutions model. The new experimental results were compared with a few data available in the literature, obtained by the containerless method.

  10. SiN sub x passivation of silicon surfaces

    Science.gov (United States)

    Olsen, L. C.

    1986-01-01

    The objectives were to perform surface characterization of high efficiency n+/p and p+/n silicon cells, to relate surface density to substrate dopant concentration, and to identify dominant current loss mechanisms in high efficiency cells. The approach was to measure density of states on homogeneously doped substrates with high frequency C-V and Al/SiN sub x/Si structures; to investigate density of states and photoresponse of high efficiency N+/P and P+/N cells; and to conduct I-V-T studies to identify current loss nechanisms in high efficiency cells. Results are given in tables and graphs.

  11. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China); Guo, Yanling, E-mail: guoyanling@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China); Chen, Ximeng, E-mail: chenxm@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China)

    2016-11-30

    Highlights: • We first observe that negative-ion fractions present no variation with the doping concentration, which is very different from the results of low energy Li neutralization from doped Si samples. • Our work shows that the affinity levels and collision time significantly counteract the band gap effect on negative ion formation. The work will improve our understanding on electron transfer on semiconductor surfaces associated with doping. • In addition, we build a complete theoretical framework to quantitatively calculate the negative-ion fractions. • Our work is related to charge transfer on semiconductor surfaces, which will be of interest to a broad audience due to the wide necessity of the knowledge of charge exchange on semiconductor surfaces in different fields. - Abstract: Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5–22.5 keV C{sup −} and F{sup −} ions scattering on H{sub 2}O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  12. Deposition of O atomic layers on Si(100) substrates for epitaxial Si-O superlattices: investigation of the surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Delabie, Annelies; Billen, Arne [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Dekkers, Harold; Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Caymax, Matty [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, Marc [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-01

    Highlights: • Atomic layer is deposited by O{sub 3} chemisorption reaction on H-terminated Si(100). • O-content has critical impact on the epitaxial thickness of the above-deposited Si. • Oxygen atoms at dimer/back bond configurations enable epitaxial Si on O atomic layer. • Oxygen atoms at hydroxyl and more back bonds, disable epitaxial Si on O atomic layer. - Abstract: Epitaxial Si-O superlattices consist of alternating periods of crystalline Si layers and atomic layers of oxygen (O) with interesting electronic and optical properties. To understand the fundamentals of Si epitaxy on O atomic layers, we investigate the O surface species that can allow epitaxial Si chemical vapor deposition using silane. The surface reaction of ozone on H-terminated Si(100) is used for the O deposition. The oxygen content is controlled precisely at and near the atomic layer level and has a critical impact on the subsequent Si deposition. There exists only a small window of O-contents, i.e. 0.7–0.9 atomic layers, for which the epitaxial deposition of Si can be realized. At these low O-contents, the O atoms are incorporated in the Si-Si dimers or back bonds (-OSiH), with the surface Si atoms mainly in the 1+ oxidation state, as indicated by infrared spectroscopy. This surface enables epitaxial seeding of Si. For O-contents higher than one atomic layer, the additional O atoms are incorporated in the Si-Si back bonds as well as in the Si-H bonds, where hydroxyl groups (-Si-OH) are created. In this case, the Si deposition thereon becomes completely amorphous.

  13. Combined sputtering yield and surface topography development studies on Si

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.; Lewis, G.W.; Whitton, J.L.

    1981-01-01

    The sputtering yield-incidence angle function has been measured for 8 keV Ar + ions incident on Si by direct scanning electron microscope observation of the depths of sputtered craters on substrate boundaries. This function displays a maximum sputtering yield at an angle thetasub(p) approximately equal to 40 0 to the surface normal. The sequential ion fluence dependence of features developed beneath local surface contaminant was then studied, quasi dynamically, in the same on-line ion source-S.E.M. system. During erosion of the contaminant a steeply elevated pillar of Si forms, which then transforms to a cone, again of high elevation angle >>thetasub(p). This cone is gradually eroded into the surrounding surface with no special significance associated with orientations of angle thetasub(p). Pedal depressions surrounding the pillar-cone system are also noted. The reasons for these observations and their relevance to ion beam surface channel etching are discussed. (Auth.)

  14. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    International Nuclear Information System (INIS)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-01-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al 2 O 3 ) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  15. Selective electrochemical gold deposition onto p-Si (1 0 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Santinacci, L; Etcheberry, A [Institut Lavoisier de Versailles (UMR CNRS 8180), University of Versailles-Saint-Quentin, 45 avenue des Etats-Unis, F-78035 Versailles cedex (France); Djenizian, T [Laboratoire Chimie Provence (UMR CNRS 6264), University of Aix-Marseille I-II-III, Centre Saint-Jerome, F-13397 Marseille Cedex 20 (France); Schwaller, P [Laboratory for Mechanics of Materials and Nanostructures, Swiss Federal Laboratory for Materials Testing and Research, Feuerwerkstr. 39, CH-3602 Thun (Switzerland); Suter, T [Laboratory for Corrosion and Materials Integrity, Swiss Federal Laboratory for Materials Testing and Research, Ueberlandstr. 129, CH-8600 Duebendorf (Switzerland); Schmuki, P [Department of Materials Science, LKO-WW4, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, D-91058 Erlangen (Germany)], E-mail: lionel.santinacci@uvsq.fr

    2008-09-07

    In this paper, we report selective electrochemical gold deposition onto p-type Si (1 0 0) into nanoscratches produced through a thin oxide layer using an atomic force microscope. A detailed description of the substrate engraving process is presented. The influence of the main scratching parameters such as the normal applied force, the number of scans and the scanning velocity are investigated as well as the mechanical properties of the substrate. Gold deposition is carried out in a KAu(CN){sub 2} + KCN solution by applying cathodic voltages for various durations. The gold deposition process is investigated by cyclic voltammetry. Reactivity enhancement at the scratched locations was studied by comparing the electrochemical behaviour of intact and engraved surfaces using a micro-electrochemical setup. Selective electrochemical gold deposition is achieved: metallic patterns with a sub-500 nm lateral resolution are obtained demonstrating, therefore, the bearing potential of this patterning technique.

  16. Modulating the Surface State of SiC to Control Carrier Transport in Graphene/SiC.

    Science.gov (United States)

    Jia, Yuping; Sun, Xiaojuan; Shi, Zhiming; Jiang, Ke; Liu, Henan; Ben, Jianwei; Li, Dabing

    2018-05-28

    Silicon carbide (SiC) with epitaxial graphene (EG/SiC) shows a great potential in the applications of electronic and photoelectric devices. The performance of devices is primarily dependent on the interfacial heterojunction between graphene and SiC. Here, the band structure of the EG/SiC heterojunction is experimentally investigated by Kelvin probe force microscopy. The dependence of the barrier height at the EG/SiC heterojunction to the initial surface state of SiC is revealed. Both the barrier height and band bending tendency of the heterojunction can be modulated by controlling the surface state of SiC, leading to the tuned carrier transport behavior at the EG/SiC interface. The barrier height at the EG/SiC(000-1) interface is almost ten times that of the EG/SiC(0001) interface. As a result, the amount of carrier transport at the EG/SiC(000-1) interface is about ten times that of the EG/SiC(0001) interface. These results offer insights into the carrier transport behavior at the EG/SiC heterojunction by controlling the initial surface state of SiC, and this strategy can be extended in all devices with graphene as the top layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Investigation of the Si(111) surface in uhv: oxidation and the effect of surface phosphorus

    International Nuclear Information System (INIS)

    Tom, H.W.K.; Zhu, X.D.; Shen, Y.R.; Somorjai, G.A.

    1984-06-01

    We have studied the initial stages of oxidation, the segregation of phosphorus, and the effect of phosphorus on oxidation of the Si(111) 7 x 7 surface using optical second-harmonic generation. We have also observed a (√3 x √3)R30 0 LEED pattern for P on Si

  18. Dimer-flipping-assisted diffusion on a Si(001) surface

    International Nuclear Information System (INIS)

    Zi, J.; Min, B. J.; Lu, Y.; Wang, C. Z.; Ho, K. M.

    2000-01-01

    The binding sites and diffusion pathways of Si adatoms on a c(4x2) reconstructed Si(001) surface are investigated by a tight-binding method with an environment-dependent silicon potential in conjunction with ab initio calculations using the Car--Parrinello method. A new diffusion pathway along the trough edge driven by dimer flipping is found with a barrier of 0.74 eV, comparable to that of 0.68 eV along the top of the dimer rows

  19. P -type transparent conducting oxides

    International Nuclear Information System (INIS)

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-01-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n -type, such as Sn doped In 2 O 3 , Al doped ZnO, and F doped SnO 2 . However, the development of efficient p -type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2 p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2 p orbitals with close-shell Cu 3 d 10 orbitals. This work has sparked tremendous interest in designing p -TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p -TCOs, including Cu + -based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr 3+ -based oxides (3 d 3 ) and post-transition metal oxides with lone pair state (ns 2 ). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p -type conductivity and optical properties. Device applications based on p -TCOs for transparent p – n junctions will also be briefly discussed. (topical review)

  20. Haemocompatibility evaluation of DLC- and SiC-coated surfaces

    Directory of Open Access Journals (Sweden)

    Nurdin N.

    2003-06-01

    Full Text Available Diamond-like carbon (DLC and silicon carbide (SiC coatings are attractive because of low friction coefficient, high hardness, chemical inertness and smooth finish, which they provide to biomedical devices. Silicon wafers (Siwaf and silicone rubber (Sirub plates were coated using plasma-enhanced chemical vapour deposition (PE-CVD techniques. This article describes: 1- the characterization of modified surfaces using attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FTIR and contact angle measurements, 2- the results of three in-vitro haemocompatibility assays. Coated surfaces were compared to uncoated materials and various substrates such as polymethylmethacrylate (PMMA, polyethylene (LDPE, polydimethylsiloxane (PDMS and medical steel (MS. Thrombin generation, blood platelet adhesion and complement convertase activity tests revealed the following classification, from the most to the least heamocompatible surface: Sirub/ DLC-Sirub/ DLC-Siwaf/ LDPE/ PDMS/ SiC-Siwaf/ Siwaf/ PMMA/ MS. The DLC coating surfaces delayed the clotting time, tended to inhibit the platelet and complement convertase activation, whereas SiC-coated silicon wafer can be considered as thrombogenic. This study has taken into account three events of the blood activation: coagulation, platelet activation and inflammation. The response to those events is an indicator of the in vitro haemocompatibility of the different surfaces and it allows us to select biomaterials for further in vivo blood contacting investigations.

  1. Adsorption and surface reaction of bis-diethylaminosilane as a Si precursor on an OH-terminated Si (0 0 1) surface

    International Nuclear Information System (INIS)

    Baek, Seung-Bin; Kim, Dae-Hee; Kim, Yeong-Cheol

    2012-01-01

    The adsorption and the surface reaction of bis-diethylaminosilane (SiH 2 [N(C 2 H 5 ) 2 ] 2 , BDEAS) as a Si precursor on an OH-terminated Si (0 0 1) surface were investigated to understand the initial reaction mechanism of the atomic layer deposition (ALD) process using density functional theory. The bond dissociation energies between two atoms in BDEAS increased in the order of Si-H, Si-N, and the rest of the bonds. Therefore, the relatively weak Si-H and Si-N bonds were considered for bond breaking during the surface reaction. Optimum locations of BDEAS for the Si-H and Si-N bond breaking were determined on the surface, and adsorption energies of 0.43 and 0.60 eV, respectively, were obtained. The Si-H bond dissociation energy of the adsorbed BDEAS on the surface did not decrease, so that a high reaction energy barrier of 1.60 eV was required. On the other hand, the Si-N bond dissociation energy did decrease, so that a relatively low reaction energy barrier of 0.52 eV was required. When the surface reaction energy barrier was higher than the adsorption energy, BDEAS would be desorbed from the surface instead of being reacted. Therefore, the Si-N bond breaking would be dominantly involved during the surface reaction, and the result is in good agreement with the experimental data in the literature.

  2. Interaction of submonolayer Bi films with the Si(100) surface

    International Nuclear Information System (INIS)

    Goryachko, A.M.; Melnik, P.V.; Nakhodkin, M.G.

    1999-01-01

    Scanning tunneling microscopy and Auger electron spectroscopy were used to investigate interaction of submonolayer Bi films with the Si(100)-2x1 surface. Ultra small Bi amounts (≤ 0.15ML) do not form ordered structures, if deposited at room temperature. Annealing at 400 degree C causes Bi to coalesce into small islands of the densely packed 2x1 phase. Simultaneously, vacancy clusters are produced in the substrate, which remain after desorption of Bi at 600 degree C. In contrast, room temperature deposition and thermal desorption of larger Bi amounts (≥ 0.25 ML) produces vacancies grouped into lines. Further annealing of such a substrate in the temperature range of 600 degree C ≤ T ≤ 750 degree C causes the phase transition between the Si(100)-2xn and Si(100)-c(4x4)

  3. Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications

    Science.gov (United States)

    Malinowski, Michael E.; Steinhaus, Chip; Clift, W. Miles; Klebanoff, Leonard E.; Mrowka, Stanley; Soufli, Regina

    2002-07-01

    The performance of Mo/Si multilayer mirrors (MLMs) used to reflect UV (EUV) radiation in an EUV + hydrocarbon (NC) vapor environment can be improved by optimizing the silicon capping layer thickness on the MLM in order to minimize the initial buildup of carbon on MLMs. Carbon buildup is undesirable since it can absorb EUV radiation and reduce MLM reflectivity. A set of Mo/Si MLMs deposited on Si wafers was fabricated such that each MLM had a different Si capping layer thickness ranging form 2 nm to 7 nm. Samples from each MLM wafer were exposed to a combination of EUV light + (HC) vapors at the Advanced Light Source (ALS) synchrotron in order to determine if the Si capping layer thickness affected the carbon buildup on the MLMs. It was found that the capping layer thickness had a major influence on this 'carbonizing' tendency, with the 3 nm layer thickness providing the best initial resistance to carbonizing and accompanying EUV reflectivity loss in the MLM. The Si capping layer thickness deposited on a typical EUV optic is 4.3 nm. Measurements of the absolute reflectivities performed on the Calibration and Standards beamline at the ALS indicated the EUV reflectivity of the 3 nm-capped MLM was actually slightly higher than that of the normal, 4 nm Si-capped sample. These results show that he use of a 3 nm capping layer represents an improvement over the 4 nm layer since the 3 nm has both a higher absolute reflectivity and better initial resistance to carbon buildup. The results also support the general concept of minimizing the electric field intensity at the MLM surface to minimize photoelectron production and, correspondingly, carbon buildup in a EUV + HC vapor environment.

  4. MarsSI: Martian surface data processing information system

    Science.gov (United States)

    Quantin-Nataf, C.; Lozac'h, L.; Thollot, P.; Loizeau, D.; Bultel, B.; Fernando, J.; Allemand, P.; Dubuffet, F.; Poulet, F.; Ody, A.; Clenet, H.; Leyrat, C.; Harrisson, S.

    2018-01-01

    MarsSI (Acronym for Mars System of Information, https://emars.univ-lyon1.fr/MarsSI/, is a web Geographic Information System application which helps managing and processing martian orbital data. The MarsSI facility is part of the web portal called PSUP (Planetary SUrface Portal) developed by the Observatories of Paris Sud (OSUPS) and Lyon (OSUL) to provide users with efficient and easy access to data products dedicated to the martian surface. The portal proposes 1) the management and processing of data thanks to MarsSI and 2) the visualization and merging of high level (imagery, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu). The portal PSUP as well as the facility MarsVisu is detailed in a companion paper (Poulet et al., 2018). The purpose of this paper is to describe the facility MarsSI. From this application, users are able to easily and rapidly select observations, process raw data via automatic pipelines, and get back final products which can be visualized under Geographic Information Systems. Moreover, MarsSI also contains an automatic stereo-restitution pipeline in order to produce Digital Terrain Models (DTM) on demand from HiRISE (High Resolution Imaging Science Experiment) or CTX (Context Camera) pair-images. This application is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) (ERC project eMars, No. 280168) and has been developed in the scope of Mars, but the design is applicable to any other planetary body of the solar system.

  5. Surface effects on the photoluminescence of Si quantum dots

    International Nuclear Information System (INIS)

    Wang, Chiang-Jing; Tsai, Meng-Yen; Chi, Cheng Chung; Perng, Tsong-Pyng

    2009-01-01

    Si quantum dots (SiQDs) with sizes ranging from 5 to 20 nm were fabricated by vapor condensation. They showed red photoluminescence (PL) in vacuum with the peak located at around 750 nm. After the specimen was exposed to air, the PL intensity became higher, and continued to increase during the PL test with a cycling of vacuum-air-vacuum. In pure oxygen, the PL intensity exhibited an irreversible decrease, while in nitrogen a smaller amount of reversible increase of PL intensity was observed. Furthermore, the PL intensity exhibited a remarkable enhancement if the SiQDs were treated with water. With HF treatment, the PL peak position showed a blue-shift to 680 nm, and was recovered after subsequent exposure to air. Si-O-H complexes were suggested to be responsible for this red luminescence. The irreversible decrease of PL intensity due to oxygen adsorption was speculated to be caused by the modification of chemical bonds on the surface. In the case of nitrogen adsorption, the PL change was attributed to the surface charging during adsorption.

  6. Self-activated, self-limiting reactions on Si surfaces

    DEFF Research Database (Denmark)

    Morgen, Per; Hvam, Jeanette; Bahari, Ali

    The direct thermally activated reactions of oxygen and ammonia with Si surfaces in furnaces have been used for a very long time in the semiconductor industry for the growth of thick oxides and nitride layers respectively. The oxidation mechanism was described in the Deal-Grove model as a diffusion...... mechanism for the direct growth of ultrathin films (0-3 nm) of oxides and nitrides under ultrahigh vacuum conditions. Neutral oxygen and a microwave excited nitrogen plasma interact directly with Si surfaces kept at different temperatures during the reaction. The gas pressures are around 10-6 Torr...... energy of an oxide system, which happened for an ordered structure, at a thickness of 0.7-0.8 nm. Thus this thin oxide structure has definite crystalline features. We have closely monitored the reaction kinetics with normal x-ray induced photoelectron spectroscopies, and also the structure, composition...

  7. Hydrogen generation due to water splitting on Si - terminated 4H-Sic(0001) surfaces

    Science.gov (United States)

    Li, Qingfang; Li, Qiqi; Yang, Cuihong; Rao, Weifeng

    2018-02-01

    The chemical reactions of hydrogen gas generation via water splitting on Si-terminated 4H-SiC surfaces with or without C/Si vacancies were studied by using first-principles. We studied the reaction mechanisms of hydrogen generation on the 4H-SiC(0001) surface. Our calculations demonstrate that there are major rearrangements in surface when H2O approaches the SiC(0001) surface. The first H splitting from water can occur with ground-state electronic structures. The second H splitting involves an energy barrier of 0.65 eV. However, the energy barrier for two H atoms desorbing from the Si-face and forming H2 gas is 3.04 eV. In addition, it is found that C and Si vacancies can form easier in SiC(0001)surfaces than in SiC bulk and nanoribbons. The C/Si vacancies introduced can enhance photocatalytic activities. It is easier to split OH on SiC(0001) surface with vacancies compared to the case of clean SiC surface. H2 can form on the 4H-SiC(0001) surface with C and Si vacancies if the energy barriers of 1.02 and 2.28 eV are surmounted, respectively. Therefore, SiC(0001) surface with C vacancy has potential applications in photocatalytic water-splitting.

  8. Fermi surface in V3Si from positron annihilation

    International Nuclear Information System (INIS)

    Peter, M.; Manuel, A.A.; Jarlborg, T.

    1982-01-01

    The recent work of the Geneva Group on the electronic structure of V 3 Si is briefly reviewed. Accurate self-consistent LMTO calculation leads to a Fermi surface and momentum distribution which is confirmed by high resolution 2-D angular correlation of positron annihilation radiation (2D-ACPAR). The bandstructure data are combined with phonon data from Junod's specific heat measurements to calculate parameters relevant to superconductivity. (orig.)

  9. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Lützenkirchen-Hecht, D. [Fachbereich C - Physik, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Hübner, R.; Grenzer, J.; Facsko, S. [Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany)

    2014-07-14

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.

  10. Enhancement of electroluminescence from embedded Si quantum dots/SiO2multilayers film by localized-surface-plasmon and surface roughening.

    Science.gov (United States)

    Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu

    2015-07-03

    In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications.

  11. Anomalously high yield of doubly charged Si ions sputtered from cleaned Si surface by keV neutral Ar impact

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.; Morita, K. E-mail: k-morita@mail.nucl.nagoya-u.ac.jp; Dhole, S.D.; Ishikawa, D

    2001-08-01

    The energy spectra of positively charged and neutral species ejected from the Si(1 1 1) surfaces by keV Ar impact have been measured by means of a combined technique of the time-of-flight (TOF) analysis with the multi-photon resonance ionization spectroscopy (MPRIS). It is shown that positively charged species of Si{sup +}, Si{sup 2+} and SiO{sup +} are ejected from the as-cleaned 7x7 surface by 11 keV Ar impact. It is also shown that Ar sputter cleaning of the as-cleaned 7x7 surface for 14 min at the flux of 2x10{sup 13}/cm{sup 2}s removes completely the oxygen impurity and the yields of Si{sup 2+} is comparable to that of Si{sup +}. Moreover, the ionization probability of Si atoms sputtered is shown to be expressed as an exponential function of the inverse of their velocity. The production mechanism for the doubly charged Si ion is discussed based on the L-shell ionization of Si atoms due to quasi-molecule formation in the collisions of the surface atoms with energetic recoils and subsequent Auger decay of the L-shell vacancy to doubly ionized Si ions.

  12. Chemical and electrical passivation of Si(1 1 1) surfaces

    International Nuclear Information System (INIS)

    Tian Fangyuan; Yang Dan; Opila, Robert L.; Teplyakov, Andrew V.

    2012-01-01

    This paper compares the physical and chemical properties of hydrogen-passivated Si(1 1 1) single crystalline surfaces prepared by two main chemical preparation procedures. The modified RCA cleaning is commonly used to prepare atomically flat stable surfaces that are easily identifiable spectroscopically and are the standard for chemical functionalization of silicon. On the other hand electronic properties of these surfaces are sometimes difficult to control. A much simpler silicon surface preparation procedure includes HF dipping for a short period of time. This procedure yields an atomically rough surface, whose chemical identity is not well-defined. However, the surfaces prepared by this approach often exhibit exceptionally attractive electronic properties as determined by long charge carrier lifetimes. This work utilizes infrared spectroscopy and X-ray photoelectron spectroscopy to investigate chemical modification of the surfaces prepared by these two different procedures with PCl 5 (leading to surface chlorination) and with short- and long-alkyl-chain alkenes (1-decene and 1-octodecene, respectively) and follows the electronic properties of the starting surfaces produced by measuring charge-carrier lifetimes.

  13. Chemical and electrical passivation of Si(1 1 1) surfaces

    Science.gov (United States)

    Tian, Fangyuan; Yang, Dan; Opila, Robert L.; Teplyakov, Andrew V.

    2012-01-01

    This paper compares the physical and chemical properties of hydrogen-passivated Si(1 1 1) single crystalline surfaces prepared by two main chemical preparation procedures. The modified RCA cleaning is commonly used to prepare atomically flat stable surfaces that are easily identifiable spectroscopically and are the standard for chemical functionalization of silicon. On the other hand electronic properties of these surfaces are sometimes difficult to control. A much simpler silicon surface preparation procedure includes HF dipping for a short period of time. This procedure yields an atomically rough surface, whose chemical identity is not well-defined. However, the surfaces prepared by this approach often exhibit exceptionally attractive electronic properties as determined by long charge carrier lifetimes. This work utilizes infrared spectroscopy and X-ray photoelectron spectroscopy to investigate chemical modification of the surfaces prepared by these two different procedures with PCl5 (leading to surface chlorination) and with short- and long-alkyl-chain alkenes (1-decene and 1-octodecene, respectively) and follows the electronic properties of the starting surfaces produced by measuring charge-carrier lifetimes.

  14. Molecular modeling of alkyl monolayers on the Si (100)-2 x 1 surface

    NARCIS (Netherlands)

    Lee, M.V.; Guo, D.; Linford, M.R.; Zuilhof, H.

    2004-01-01

    Molecular modeling was used to simulate various surfaces derived from the addition of 1-alkenes and 1-alkynes to Si=Si dimers on the Si(100)-2 × 1 surface. The primary aim was to better understand the interactions between adsorbates on the surface and distortions of the underlying silicon crystal

  15. Rate equation analysis of hydrogen uptake on Si (100) surfaces

    International Nuclear Information System (INIS)

    Inanaga, S.; Rahman, F.; Khanom, F.; Namiki, A.

    2005-01-01

    We have studied the uptake process of H on Si (100) surfaces by means of rate equation analysis. Flowers' quasiequilibrium model for adsorption and desorption of H [M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, Surf. Sci. 396, 227 (1998)] is extended so that in addition to the H abstraction (ABS) and β 2 -channel thermal desorption (TD) the proposed rate equation further includes the adsorption-induced desorption (AID) and β 1 -TD. The validity of the model is tested by the experiments of ABS and AID rates in the reaction system H+D/Si (100). Consequently, we find it can well reproduce the experimental results, validating the proposed model. We find the AID rate curve as a function of surface temperature T s exhibits a clear anti-correlation with the bulk dangling bond density versus T s curve reported in the plasma-enhanced chemical vapor deposition (CVD) for amorphous Si films. The significance of the H chemistry in plasma-enhanced CVD is discussed

  16. Surface sputtering in high-dose Fe ion implanted Si

    International Nuclear Information System (INIS)

    Ishimaru, Manabu

    2007-01-01

    Microstructures and elemental distributions in high-dose Fe ion implanted Si were characterized by means of transmission electron microscopy and Rutherford backscattering spectroscopy. Single crystalline Si(0 0 1) substrates were implanted at 350 deg. C with 120 keV Fe ions to fluences ranging from 0.1 x 10 17 to 4.0 x 10 17 /cm 2 . Extensive damage induced by ion implantation was observed inside the substrate below 1.0 x 10 17 /cm 2 , while a continuous iron silicide layer was formed at 4.0 x 10 17 /cm 2 . It was found that the spatial distribution of Fe projectiles drastically changes at the fluence between 1.0 x 10 17 and 4.0 x 10 17 /cm 2 due to surface sputtering during implantation

  17. Study of Si wafer surfaces irradiated by gas cluster ion beams

    International Nuclear Information System (INIS)

    Isogai, H.; Toyoda, E.; Senda, T.; Izunome, K.; Kashima, K.; Toyoda, N.; Yamada, I.

    2007-01-01

    The surface structures of Si (1 0 0) wafers subjected to gas cluster ion beam (GCIB) irradiation have been analyzed by cross-sectional transmission electron microscopy (XTEM) and atomic force microscopy (AFM). GCIB irradiation is a promising technique for both precise surface etching and planarization of Si wafers. However, it is very important to understand the crystalline structure of Si wafers after GCIB irradiation. An Ar-GCIB used for the physically sputtering of Si atoms and a SF 6 -GCIB used for the chemical etching of the Si surface are also analyzed. The GCIB irradiation increases the surface roughness of the wafers, and amorphous Si layers are formed on the wafer surface. However, when the Si wafers are annealed in hydrogen at a high temperature after the GCIB irradiation, the surface roughness decreases to the same level as that before the irradiation. Moreover, the amorphous Si layers disappear completely

  18. Surface passivation by Al2O3 and a-SiNx: H films deposited on wet-chemically conditioned Si surfaces

    NARCIS (Netherlands)

    Bordihn, S.; Mertens, V.; Engelhart, P.; Kersten, K.; Mandoc, M.M.; Müller, J.W.; Kessels, W.M.M.

    2012-01-01

    The surface passivation of p- and n-type silicon by different chemically grown SiO2 films (prepared by HNO3, H2SO4/H2O2 and HCl/H2O2 treatments) was investigated after PECVD of a-SiNx:H and ALD of Al2O3 capping films. The wet chemically grown SiO2 films were compared to thermally grown SiO2 and the

  19. Pb chains on ordered Si(3 3 5) surface

    International Nuclear Information System (INIS)

    Kisiel, M.; Skrobas, K.; Zdyb, R.; Mazurek, P.; Jalochowski, M.

    2007-01-01

    The electronic band structure of the Si(3 3 5)-Au surface decorated with Pb atoms was studied with angle resolved photoelectron spectroscopy (ARPES) in ultra high vacuum (UHV) conditions. The photoemission spectra were measured in two perpendicular directions, along and across the steps. In the direction parallel to the step edges the ARPES spectra show strongly dispersive electron energy band while in the perpendicular direction there is no electronic dispersion at all. This confirms one-dimensional character of the system. The theoretical band dispersion calculated within a tight-binding model was fitted to that obtained from the experiment

  20. Shaping Ge islands on Si(001) surfaces with misorientation angle.

    Science.gov (United States)

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2010-01-22

    A complete description of Ge growth on vicinal Si(001) surfaces in the angular miscut range 0 degrees -8 degrees is presented. The key role of substrate vicinality is clarified from the very early stages of Ge deposition up to the nucleation of 3D islands. By a systematic scanning tunneling microscopy investigation we are able to explain the competition between step-flow growth and 2D nucleation and the progressive elongation of the 3D islands along the miscut direction [110]. Using finite element calculations, we find a strict correlation between the morphological evolution and the energetic factors which govern the {105} faceting at atomic scale.

  1. Structural and optical characterization of p-type highly Fe-doped SnO2 thin films and tunneling transport on SnO2:Fe/p-Si heterojunction

    Science.gov (United States)

    Ben Haj Othmen, Walid; Ben Hamed, Zied; Sieber, Brigitte; Addad, Ahmed; Elhouichet, Habib; Boukherroub, Rabah

    2018-03-01

    Nanocrystalline highly Fe-doped SnO2 thin films were prepared using a new simple sol-gel method with iron amounts of 5, 10, 15 and 20%. The obtained gel offers a long durability and high quality allowing to reach a sub-5 nm nanocrystalline size with a good crystallinity. The films were structurally characterized through X-ray diffraction (XRD) that confirms the formation of rutile SnO2. High Resolution Transmission Electron Microscopy (HRTEM) images reveals the good crystallinity of the nanoparticles. Raman spectroscopy shows that the SnO2 rutile structure is maintained even for high iron concentration. The variation of the PL intensity with Fe concentration reveals that iron influences the distribution of oxygen vacancies in tin oxide. The optical transmittance results indicate a redshift of the SnO2 band gap when iron concentration increases. The above optical results lead us to assume the presence of a compensation phenomenon between oxygen vacancies and introduced holes following Fe doping. From current-voltage measurements, an inversion of the conduction type from n to p is strongly predicted to follow the iron addition. Electrical characterizations of SnO2:Fe/p-Si and SnO2:Fe/n-Si heterojunctions seem to be in accordance with this deduction. The quantum tunneling mechanism is expected to be important at high Fe doping level, which was confirmed by current-voltage measurements at different temperatures. Both optical and electrical properties of the elaborated films present a particularity for the same iron concentration and adopt similar tendencies with Fe amount, which strongly correlate the experimental observations. In order to evaluate the applicability of the elaborated films, we proceed to the fabrication of the SnO2:Fe/SnO2 homojunction for which we note a good rectifying behavior.

  2. Plasma processing of the Si(0 0 1) surface for tuning SPR of Au/Si-based plasmonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy)]. E-mail: michelaria.giangregorio@ba.imip.cnr.it; Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy); Sacchetti, Alberto [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy); Capezzuto, Pio [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy); Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy)

    2006-12-15

    Au nanoclusters have been deposited on Si(0 0 1) surfaces by sputtering of a metallic Au target using an Ar plasma. Different wet and dry treatments of the Si(0 0 1) surface, including dipping in HF solution and exposure to H{sub 2} and N{sub 2} plasmas, have been applied and the effects of these treatments on the Au nanoparticles/Si interface, the Au nanoclusters aspect ratio and the surface plasmon resonance (SPR) energy and amplitude are investigated exploiting spectroscopic ellipsometry and atomic force microscopy. It is found that the Au nanoclusters aspect ratio depends on the extent of the Au-Si intermixing. The thicker the Au-Si interface layer, the larger the Au nanoparticles aspect ratio and the red-shift of the SPR peak. Furthermore, SiO{sub 2} and the H{sub 2} plasma treatment inhibit the Si-Au intermixing, while HF-dipping and the N{sub 2} plasma treatment favour Au-Si intermixing, yielding silicide formation which increases the Si wetting by Au.

  3. Comparative analysis of germanium-silicon quantum dots formation on Si(100), Si(111) and Sn/Si(100) surfaces

    Science.gov (United States)

    Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander

    2018-02-01

    In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.

  4. TED analysis of the Si(113) surface structure

    Science.gov (United States)

    Suzuki, T.; Minoda, H.; Tanishiro, Y.; Yagi, K.

    1999-09-01

    We carried out a TED (transmission electron diffraction) analysis of the Si(113) surface structure. The TED patterns taken at room temperature showed reflections due to the 3×2 reconstructed structure. The TED pattern indicated that a glide plane parallel to the direction suggested in some models is excluded. We calculated the R-factors (reliability factors) for six surface structure models proposed previously. All structure models with energy-optimized atomic positions have large R-factors. After revision of the atomic positions, the R-factors of all the structure models decreased below 0.3, and the revised version of Dabrowski's 3×2 model has the smallest R-factor of 0.17.

  5. Surface photovoltage in heavily doped GaN:Si,Zn

    Science.gov (United States)

    McNamara, J. D.; Behrends, A.; Mohajerani, M. S.; Bakin, A.; Waag, A.; Baski, A. A.; Reshchikov, M. A.

    2014-02-01

    In n-type GaN, an upward band bending of about 1 eV is caused by negative charge at the surface. UV light reduces the band bending by creating a surface photovoltage (SPV), which can be measured by a Kelvin probe. Previously, we reported a fast SPV signal of about 0.6 eV in undoped and moderately doped GaN. In this work, we have studied degenerate GaN co-doped with Zn and Si, with a Si concentration of about 1019 cm-3 and a Zn concentration of 6×1017 cm-3. At room temperature, a fast component of about 0.6 eV was observed. However, after preheating the sample at 600 K for one hour and subsequently cooling the sample to 300 K (all steps performed in vacuum), the fast component disappeared. Instead, a very slow (minutes) and logarithmic in time rise of the SPV was observed with UV illumination. The total change in SPV was about 0.4 eV. This slow SPV transient can be reversibly converted into the "normal" fast (subsecond) rise by letting air or dry oxygen in at room temperature. Possible explanations of the observed unusual SPV transients are discussed.

  6. Electrical Properties of Photodiode Ba0.25Sr0.75TiO3 (BST Thin Film Doped with Ferric Oxide on p-type Si (100 Substrate using Chemical Solution Deposition Method

    Directory of Open Access Journals (Sweden)

    Irzaman

    2011-12-01

    Full Text Available In this paper we have grown pure Ba0.25Sr0.75TiO3 (BST and BST doped by Ferric Oxide Fe2O3 (BFST with doping variations of 5%, 10%, and 15% above type-p Silicon (100 substrate using the chemical solution deposition (CSD method with spin coating technique at rotation speed of 3000 rpm, for 30 seconds. BST thin film are made with a concentration of 1 M 2-methoxyethanol and annealing temperature of 850OC for the Si (100 substrate. Characterization of the thin film is performed for the electrical properties such as the current-voltage (I-V curve using Keithley model 2400 as well as dielectric constant, time constant, pyroelectric characteristics, and depth measurement. The results show that the thin film depth increases if the concentration of the Ferric Oxide doping increases. The I-V characterization shows that the BST and BFST thin film has photodiode properties. The dielectric constant increases with the addition of doping. The maximum dielectric constant value is obtained for 15 % doping concentration namely 83.1 for pure BST and 6.89, 11.1, 41.63 and 83.1, respectively for the Ferric Oxide doping based BST with concentration of 5%, 10%, and 15%. XRD spectra of 15 % of ferric oxide doped BST thin film tetragonal phase, we carried out the lattice constant were a = b = 4.203 Å; c = 4.214 Å; c/a ratio = 1.003

  7. Si/Fe flux ratio influence on growth and physical properties of polycrystalline β-FeSi2 thin films on Si(100) surface

    Science.gov (United States)

    Tarasov, I. A.; Visotin, M. A.; Aleksandrovsky, A. S.; Kosyrev, N. N.; Yakovlev, I. A.; Molokeev, M. S.; Lukyanenko, A. V.; Krylov, A. S.; Fedorov, A. S.; Varnakov, S. N.; Ovchinnikov, S. G.

    2017-10-01

    This work investigates the Si/Fe flux ratio (2 and 0.34) influence on the growth of β-FeSi2 polycrystalline thin films on Si(100) substrate at 630 °C. Lattice deformations for the films obtained are confirmed by X-ray diffraction analysis (XRD). The volume unit cell deviation from that of β-FeSi2 single crystal are 1.99% and 1.1% for Si/Fe =2 and Si/Fe =0.34, respectively. Absorption measurements show that the indirect transition ( 0.704 eV) of the Si/Fe =0.34 sample changes to the direct transition with a bandgap value of 0.816 eV for the sample prepared at Si/Fe =2. The absorption spectrum of the Si/Fe =0.34 sample exhibits an additional peak located below the bandgap energy value with the absorption maximum of 0.36 eV. Surface magneto-optic Kerr effect (SMOKE) measurements detect the ferromagnetic behavior of the β-FeSi2 polycrystalline films grown at Si/Fe =0.34 at T=10 K, but no ferromagnetism was observed in the samples grown at Si/Fe =2. Theoretical calculations refute that the cell deformation can cause the emergence of magnetization and argue that the origin of the ferromagnetism, as well as the lower absorption peak, is β-FeSi2 stoichiometry deviations. Raman spectroscopy measurements evidence that the film obtained at Si/Fe flux ratio equal to 0.34 has the better crystallinity than the Si/Fe =2 sample.

  8. A study of the mechanisms causing surface defects on sidewalls during Si etching for TSV (through Si via)

    International Nuclear Information System (INIS)

    Choi, Jae Woong; Loh, Woon Leng; Praveen, Sampath Kumar; Murphy, Ramana; Swee, Eugene Tan Kiat

    2013-01-01

    In this paper we report three mechanisms causing surface defects on Si sidewalls during Si etching for TSV. The first mechanism causing surface defects was a downward surface-defect formation due to the participation of the residual polymerizing gas in the transition periods between passivation steps and etch steps. The second mechanism was an upward surface-defect formation due to etchant attacking the interface between the Si and the sidewall polymer. Although the sidewall polymer was thick enough to protect the Si surface, it was not possible to avoid surface defects if the etch step was not switched to the following passivation step in time. The third mechanism was a sponge-like surface-defect formation caused by either poor polymer depositions or voids inside the sidewall polymer. The sponge-like surface defects were formed by Si isotropic etching through the weak points of the sidewall polymer. All three surface defects were considered as the major factors on TSV integration and packaging reliability issues. (paper)

  9. Effects of Surface Treatment Processes of SiC Ceramic on Interfacial Bonding Property of SiC-AFRP

    Directory of Open Access Journals (Sweden)

    WEI Ru-bin

    2016-12-01

    Full Text Available To improve the interfacial bonding properties of SiC-aramid fiber reinforced polymer matrix composites (SiC-AFRP, the influences of etching process of SiC ceramic, coupling treatment process, and the adhesives types on the interfacial peel strength of SiC-AFRP were studied. The results show that the surface etching process and coupling treatment process of silicon carbide ceramic can effectively enhance interfacial bonding property of the SiC-AFRP. After soaked the ceramic in K3Fe(CN6 and KOH mixed etching solution for 2 hours, and coupled with vinyl triethoxy silane coupling agent, the interfacial peel strength of the SiC-AFRP significantly increases from 0.45kN/m to 2.20kN/m. EVA hot melt film with mass fraction of 15%VA is ideal for interface adhesive.

  10. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    Energy Technology Data Exchange (ETDEWEB)

    Qiusheng, Y., E-mail: qsyan@gdut.edu.cn; Senkai, C., E-mail: senkite@sina.com; Jisheng, P., E-mail: panjisheng@gdut.edu.cn [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2015-03-30

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  11. Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces

    Science.gov (United States)

    Giresse Tetsassi Feugmo, Conrard; Champagne, Benoît; Caudano, Yves; Cecchet, Francesca; Chabal, Yves J.; Liégeois, Vincent

    2012-03-01

    In this work, we investigate the adsorption process of two carboxylic acids (stearic and undecylenic) on a H-Si(111) surface via the calculation of structural and energy changes as well as the simulation of their IR and Raman spectra. The two molecules adsorb differently at the surface since the stearic acid simply physisorbs while the undecylenic acid undergoes a chemical reaction with the hydrogen atoms of the surface. This difference is observed in the change of geometry during the adsorption. Indeed, the chemisorption of the undecylenic acid has a bigger impact on the structure than the physisorption of the stearic acid. Consistently, the former is also characterized by a larger value of adsorption energy and a smaller value of the tilting angle with respect to the normal plane. For both the IR and Raman signatures, the spectra of both molecules adsorbed at the surface are in a first approximation the superposition of the spectra of the Si cluster and of the carboxylic acid considered individually. The main deviation from this simple observation is the peak of the stretching Si-H (ν(Si-H)) mode, which is split into two peaks upon adsorption. As expected, the splitting is bigger for the chemisorption than the physisorption. The modes corresponding to atomic displacements close to the adsorption site display a frequency upshift by a dozen wavenumbers. One can also see the disappearance of the peaks associated with the C=C double bond when the undecylenic acid chemisorbs at the surface. The Raman and IR spectra are complementary and one can observe here that the most active Raman modes are generally IR inactive. Two exceptions to this are the two ν(Si-H) modes which are active in both spectroscopies. Finally, we compare our simulated spectra with some experimental measurements and we find an overall good agreement.

  12. Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces

    International Nuclear Information System (INIS)

    Tetsassi Feugmo, Conrard Giresse; Champagne, Benoît; Liégeois, Vincent; Caudano, Yves; Cecchet, Francesca; Chabal, Yves J

    2012-01-01

    In this work, we investigate the adsorption process of two carboxylic acids (stearic and undecylenic) on a H-Si(111) surface via the calculation of structural and energy changes as well as the simulation of their IR and Raman spectra. The two molecules adsorb differently at the surface since the stearic acid simply physisorbs while the undecylenic acid undergoes a chemical reaction with the hydrogen atoms of the surface. This difference is observed in the change of geometry during the adsorption. Indeed, the chemisorption of the undecylenic acid has a bigger impact on the structure than the physisorption of the stearic acid. Consistently, the former is also characterized by a larger value of adsorption energy and a smaller value of the tilting angle with respect to the normal plane. For both the IR and Raman signatures, the spectra of both molecules adsorbed at the surface are in a first approximation the superposition of the spectra of the Si cluster and of the carboxylic acid considered individually. The main deviation from this simple observation is the peak of the stretching Si-H (ν(Si-H)) mode, which is split into two peaks upon adsorption. As expected, the splitting is bigger for the chemisorption than the physisorption. The modes corresponding to atomic displacements close to the adsorption site display a frequency upshift by a dozen wavenumbers. One can also see the disappearance of the peaks associated with the C=C double bond when the undecylenic acid chemisorbs at the surface. The Raman and IR spectra are complementary and one can observe here that the most active Raman modes are generally IR inactive. Two exceptions to this are the two ν(Si-H) modes which are active in both spectroscopies. Finally, we compare our simulated spectra with some experimental measurements and we find an overall good agreement. (paper)

  13. Surface Defect Passivation and Reaction of c-Si in H2S.

    Science.gov (United States)

    Liu, Hsiang-Yu; Das, Ujjwal K; Birkmire, Robert W

    2017-12-26

    A unique passivation process of Si surface dangling bonds through reaction with hydrogen sulfide (H 2 S) is demonstrated in this paper. A high-level passivation quality with an effective minority carrier lifetime (τ eff ) of >2000 μs corresponding to a surface recombination velocity of passivation by monolayer coverage of S on the Si surface. However, S passivation of the Si surface is highly unstable because of thermodynamically favorable reaction with atmospheric H 2 O and O 2 . This instability can be eliminated by capping the S-passivated Si surface with a protective thin film such as low-temperature-deposited amorphous silicon nitride.

  14. Lowering the density of electronic defects on organic-functionalized Si(100) surfaces

    International Nuclear Information System (INIS)

    Peng, Weina; DeBenedetti, William J. I.; Kim, Seonjae; Chabal, Yves J.; Hines, Melissa A.

    2014-01-01

    The electrical quality of functionalized, oxide-free silicon surfaces is critical for chemical sensing, photovoltaics, and molecular electronics applications. In contrast to Si/SiO 2 interfaces, the density of interface states (D it ) cannot be reduced by high temperature annealing because organic layers decompose above 300 °C. While a reasonable D it is achieved on functionalized atomically flat Si(111) surfaces, it has been challenging to develop successful chemical treatments for the technologically relevant Si(100) surfaces. We demonstrate here that recent advances in the chemical preparation of quasi-atomically-flat, H-terminated Si(100) surfaces lead to a marked suppression of electronic states of functionalized surfaces. Using a non-invasive conductance-voltage method to study functionalized Si(100) surfaces with varying roughness, a D it as low as 2.5 × 10 11  cm −2 eV −1 is obtained for the quasi-atomically-flat surfaces, in contrast to >7 × 10 11  cm −2 eV −1 on atomically rough Si(100) surfaces. The interfacial quality of the organic/quasi-atomically-flat Si(100) interface is very close to that obtained on organic/atomically flat Si(111) surfaces, opening the door to applications previously thought to be restricted to Si(111)

  15. Study of surface segregation of Si on palladium silicide using Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Abhaya, S; Amarendra, G; Gopalan, Padma; Reddy, G L N; Saroja, S

    2004-01-01

    The transformation of Pd/Si to Pd 2 Si/Si is studied using Auger electron spectroscopy over a wide temperature range of 370-1020 K. The Pd film gets totally converted to Pd 2 Si upon annealing at 520 K, and beyond 570 K, Si starts segregating on the surface of silicide. It is found that the presence of surface oxygen influences the segregation of Si. The time evolution study of Si segregation reveals that segregation kinetics is very fast and the segregated Si concentration increases as the temperature is increased. Scanning electron microscopy measurements show that Pd 2 Si is formed in the form of islands, which grow as the annealing temperature is increased

  16. Research Progress of Optical Fabrication and Surface-Microstructure Modification of SiC

    Directory of Open Access Journals (Sweden)

    Fang Jiang

    2012-01-01

    Full Text Available SiC has become the best candidate material for space mirror and optical devices due to a series of favorable physical and chemical properties. Fine surface optical quality with the surface roughness (RMS less than 1 nm is necessary for fine optical application. However, various defects are present in SiC ceramics, and it is very difficult to polish SiC ceramic matrix with the 1 nm RMS. Surface modification of SiC ceramics must be done on the SiC substrate. Four kinds of surface-modification routes including the hot pressed glass, the C/SiC clapping, SiC clapping, and Si clapping on SiC surface have been reported and reviewed here. The methods of surface modification, the mechanism of preparation, and the disadvantages and advantages are focused on in this paper. In our view, PVD Si is the best choice for surface modification of SiC mirror.

  17. Metastability of a-SiO{sub x}:H thin films for c-Si surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Serenelli, L., E-mail: luca.serenelli@enea.it [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy); DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Martini, L. [DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Imbimbo, L. [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy); DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Asquini, R. [DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Menchini, F.; Izzi, M.; Tucci, M. [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy)

    2017-01-15

    Highlights: • a-SiO{sub x}:H film deposition by RF-PECVD is optimized from SiH{sub 4}, CO{sub 2} and H{sub 2} gas mixture. • Metastability of a-SiO{sub x}:H/c-Si passivation is investigated under thermal annealing and UV exposure. • A correlation between passivation metastability and Si−H bonds is found by FTIR spectra. • A metastability model is proposed. - Abstract: The adoption of a-SiO{sub x}:H films obtained by PECVD in heterojunction solar cells is a key to further increase their efficiency, because of its transparency in the UV with respect to the commonly used a-Si:H. At the same time this layer must guarantee high surface passivation of the c-Si to be suitable in high efficiency solar cell manufacturing. On the other hand the application of amorphous materials like a-Si:H and SiN{sub x} on the cell frontside expose them to the mostly energetic part of the sun spectrum, leading to a metastability of their passivation properties. Moreover as for amorphous silicon, thermal annealing procedures are considered as valuable steps to enhance and stabilize thin film properties, when performed at opportune temperature. In this work we explored the reliability of a-SiO{sub x}:H thin film layers surface passivation on c-Si substrates under UV exposition, in combination with thermal annealing steps. Both p- and n-type doped c-Si substrates were considered. To understand the effect of UV light soaking we monitored the minority carriers lifetime and Si−H and Si−O bonding, by FTIR spectra, after different exposure times to light coming from a deuterium lamp, filtered to UV-A region, and focused on the sample to obtain a power density of 50 μW/cm{sup 2}. We found a certain lifetime decrease after UV light soaking in both p- and n-type c-Si passivated wafers according to a a-SiO{sub x}:H/c-Si/a-SiO{sub x}:H structure. The role of a thermal annealing, which usually enhances the as-deposited SiO{sub x} passivation properties, was furthermore considered. In

  18. Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E. [Stanford University, Stanford, California 94309 (United States)

    1999-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied with high-resolution core level photoelectron spectroscopy (PES). Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) Olefin insertion into the H{endash}Si bond of the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, PES has revealed a C 1s component shifted to lower binding energy and a Si 2p component shifted to higher binding energy. Both components are attributed to the presence of a C{endash}Si bond at the interface. Along with photoelectron diffraction data [Appl. Phys. Lett. {bold 71}, 1056, (1997)], these data are used to show that these two synthetic methods can be used to functionalize the Si(111) surface. {copyright} {ital 1999 American Institute of Physics.}

  19. Passivation of surface-nanostructured f-SiC and porous SiC

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang; Ou, Yiyu

    The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper.......The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper....

  20. Monolayer assembly and striped architecture of Co nanoparticles on organic functionalized Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bae, S.-S.; Lim, D.K.; Park, J.-I.; Kim, S. [Korea Advanced Institute of Science and Technology, Department of Chemistry and School of Molecular Science (BK 21), Daejeon (Korea); Cheon, J. [Yonsei University, Department of Chemistry, College of Sciences, Seoul (Korea); Jeon, I.C. [Chonbuk National University, Department of Chemistry, College of Natural Sciences, Chonbuk (Korea)

    2005-03-01

    We present a new strategy to fabricate a monolayer assembly of Br-terminated Co nanoparticles on functionalized Si surfaces by using chemical covalent bonding and microcontact printing method. Self-assembled monolayers (SAMs) of the Co nanoparticles formed on the hydroxyl-terminated Si surface exhibit two-dimensional island networks with locally ordered arrays via covalent linkage between nanoparticles and surface. On the other hand, SAMs of the nanoparticles on the aminopropyl-terminated Si surface show an individual and random distribution over an entire surface. Furthermore, we have fabricated striped architectures of Co nanoparticles using a combination of microcontact printing and covalent linkage. Microcontact printing of octadecyltrichlorosilane and selective covalent linkage between nanoparticles and functionalized Si surfaces lead to a hybrid nanostructure with selectively assembled nanoparticles stripes on the patterned functionalized Si surfaces. (orig.)

  1. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-09-01

    Recently huge interest has been focussed on Ge-intercalated graphene. In order to address the effect of Ge on the electronic structure, we study Ge-intercalated free-standing C 6 and C 8 bilayer graphene, bulk C 6Ge and C 8Ge, as well as Ge-intercalated graphene on a SiC(0001) substrate, by density functional theory. In the presence of SiC(0001), there are three ways to obtain n-type graphene: i) intercalation between C layers; ii) intercalation at the interface to the substrate in combination with Ge deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition occurs. © Copyright EPLA, 2012.

  2. The origin of narrowing of the Si 2p coincidence photoelectron spectroscopy main line of Si(1 0 0) surface

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2011-01-01

    Highlights: → The Si 2p coincidence photoelectron spectroscopy (PES) main line of Si(1 0 0) is calculated. → The PES main line shows an asymmetric line shape change compared to the singles one. → The narrowing of the coincidence Si 2p PES main line is well reproduced. → The inherent mechanism of APECS is explained by a many-body theory. - Abstract: The Si 2p photoelectron spectroscopy (PES) main line of Si(1 0 0) surface measured in coincidence with the singles (noncoincidence) Si L 2,3 -VV Auger-electron spectroscopy (AES) elastic peak is calculated. The agreement with the experiment is good. The present work is the first many-body calculation of the experimental coincidence PES spectrum of solid surface. The narrowing of the coincidence Si 2p PES main line compared to the singles one is due to the mechanism inherent in the coincidence PES. The inherent mechanism is explained by a many-body theory by which photoemission and Auger-electron emission are treated on the same footing.

  3. Surface-site-selective study of valence electronic states of a clean Si(111)-7x7 surface using Si L23VV Auger electron and Si 2p photoelectron coincidence measurements

    International Nuclear Information System (INIS)

    Kakiuchi, Takuhiro; Tahara, Masashi; Nagaoka, Shin-ichi; Hashimoto, Shogo; Fujita, Narihiko; Tanaka, Masatoshi; Mase, Kazuhiko

    2011-01-01

    Valence electronic states of a clean Si(111)-7x7 surface are investigated in a surface-site-selective way using high-resolution coincidence measurements of Si pVV Auger electrons and Si 2p photoelectrons. The Si L 23 VV Auger electron spectra measured in coincidence with energy-selected Si 2p photoelectrons show that the valence band at the highest density of states in the vicinity of the rest atoms is shifted by ∼0.95 eV toward the Fermi level (E F ) relative to that in the vicinity of the pedestal atoms (atoms directly bonded to the adatoms). The valence-band maximum in the vicinity of the rest atoms, on the other hand, is shown to be shifted by ∼0.53 eV toward E F relative to that in the vicinity of the pedestal atoms. The Si 2p photoelectron spectra of Si(111)-7x7 measured in coincidence with energy-selected Si L 23 VV Auger electrons identify the topmost surface components, and suggest that the dimers and the rest atoms are negatively charged while the pedestal atoms are positively charged. Furthermore, the Si 2p-Si L 23 VV photoelectron Auger coincidence spectroscopy directly verifies that the adatom Si 2p component (usually denoted by C 3 ) is correlated with the surface state just below E F (usually denoted by S 1 ), as has been observed in previous angle-resolved photoelectron spectroscopy studies.

  4. A computational study on the adsorption configurations and reactions of SiHx(x = 1-4) on clean and H-covered Si(100) surfaces

    Science.gov (United States)

    Le, Thong N.-M.; Raghunath, P.; Huynh, Lam K.; Lin, M. C.

    2016-11-01

    Possible adsorption configurations of H and SiHx (x = 1 - 4) on clean and H-covered Si(100) surfaces are determined by using spin-polarized DFT calculations. The results show that, on the clean surface, the gas-phase hydrogen atom and SiH3 radicals effectively adsorb on the top sites, while SiH and SiH2 prefer the bridge sites of the first layer. Another possibility for SiH is to reside on the hollow sites with a triple-bond configuration. For a partially H-coverd Si(100) surface, the mechanism is similar but with higher adsorption energies in most cases. This suggests that the surface species become more stable in the presence of surface hydrogens. The minimum energy paths for the adsorption/migration and reactions of H/SiHx species on the surfaces are explored using the climbing image-nudged elastic band method. The competitive surface processes for Si thin-film formation from SiHx precursors are also predicted. The study reveals that the migration of hydrogen adatom is unimportant with respect to leaving open surface sites because of its high barriers (>29.0 kcal/mol). Alternatively, the abstraction of hydrogen adatoms by H/SiHx radicals is more favorable. Moreover, the removal of hydrogen atoms from adsorbed SiHx, an essential step for forming Si layers, is dominated by abstraction rather than the decomposition processes.

  5. The effects of surface conditions on electronic transportation mechanism of Al/SnO2/p-Si/Al structure

    International Nuclear Information System (INIS)

    Karadeniz, S.

    2001-01-01

    In the present work it was aimed to determine the effect of surface states on the electronic conductivity of Al/SnO 2 /p-Si/Al structure. In order to realize that goal, the Al/SnO 2 /p-Si/Al diodes were prepared p-types, 0.8 Ω-cm resistivity from single crystalline silicon of orientation (111). A spraying system was established in order to produce SnO 2 thin films. The morphology of SnO 2 thin films were measured by means of Atomic Force Microscope (AFM). The physical parameters which effected on the electronical conductivity of the structures were determined. The forward current-voltage (I-V) measurements were performed in the temperature range of 173-313 K. The reverse capacitance-voltage (C-V) characteristics were measured at 100 Hz, 1 kHz,10 kHz, 100 kHz, 500 kHz and 1 MHz frequencies at the same temperature range. The energy profile of the surface states effecting on diodes were determined by using high-low frequency capacitance method, Chattopadhyay method and the relation between surface states and ideality factor

  6. Influence of the step properties on submonolayer growth of Ge and Si at the Si(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Romanyuk, Konstantin

    2009-10-21

    The present work describes an experimental investigation of the influence of the step properties on the submonolayer growth at the Si(111) surface. In particular the influence of step properties on the morphology, shape and structural stability of 2D Si/Ge nanostructures was explored. Visualization, morphology and composition measurements of the 2D SiGe nanostructures were carried out by scanning tunneling microscopy (STM). The formation of Ge nanowire arrays on highly ordered kink-free Si stepped surfaces is demonstrated. The crystalline nanowires with minimal kink densities were grown using Bi surfactant mediated epitaxy. The nanowires extend over lengths larger than 1 {mu}m have a width of 4 nm. To achieve the desired growth conditions for the formation of such nanowire arrays, a modified variant of surfactant mediated epitaxy was explored. It was shown that controlling the surfactant coverage at the surface and/or at step edges modifies the growth properties of surface steps in a decisive way. The surfactant coverage at step edges can be associated with Bi passivation of the step edges. The analysis of island size distributions showed that the step edge passivation can be tuned independently by substrate temperature and by Bi rate deposition. The measurements of the island size distributions for Si and Ge in surfactant mediated growth reveal different scaling functions for different Bi deposition rates on Bi terminated Si(111) surface. The scaling function changes also with temperature. The main mechanism, which results in the difference of the scaling functions can be revealed with data of Kinetic Monte-Carlo simulations. According to the data of the Si island size distributions at different growth temperatures and different Bi deposition rates the change of SiGe island shape and preferred step directions were attributed to the change of the step edge passivation. It was shown that the change of the step edge passivation is followed by a change of the

  7. Hydrogen intercalation of single and multiple layer graphene synthesized on Si-terminated SiC(0001) surface

    International Nuclear Information System (INIS)

    Sołtys, Jakub; Piechota, Jacek; Ptasinska, Maria; Krukowski, Stanisław

    2014-01-01

    Ab initio density functional theory simulations were used to investigate the influence of hydrogen intercalation on the electronic properties of single and multiple graphene layers deposited on the SiC(0001) surface (Si-face). It is shown that single carbon layer, known as a buffer layer, covalently bound to the SiC substrate, is liberated after hydrogen intercalation, showing characteristic Dirac cones in the band structure. This is in agreement with the results of angle resolved photoelectron spectroscopy measurements of hydrogen intercalation of SiC-graphene samples. In contrast to that hydrogen intercalation has limited impact on the multiple sheet graphene, deposited on Si-terminated SiC surface. The covalently bound buffer layer is liberated attaining its graphene like structure and dispersion relation typical for multilayer graphene. Nevertheless, before and after intercalation, the four layer graphene preserved the following dispersion relations in the vicinity of K point: linear for (AAAA) stacking, direct parabolic for Bernal (ABAB) stacking and “wizard hat” parabolic for rhombohedral (ABCA) stacking

  8. Surface diffusion of carbon atom and carbon dimer on Si(0 0 1) surface

    International Nuclear Information System (INIS)

    Zhu, J.; Pan, Z.Y.; Wang, Y.X.; Wei, Q.; Zang, L.K.; Zhou, L.; Liu, T.J.; Jiang, X.M.

    2007-01-01

    Carbon (C) atom and carbon dimer (C2) are known to be the main projectiles in the deposition of diamond-like carbon (DLC) films. The adsorption and diffusion of the C adatom and addimer (C2) on the fully relaxed Si(0 0 1)-(2 x 1) surface was studied by a combination of the molecular dynamics (MD) and Monte Carlo (MC) simulation. The adsorption sites of the C and C2 on the surface and the potential barriers between these sites were first determined using the semi-empirical many-body Brenner and Tersoff potential. We then estimated their hopping rates and traced their pathways. It is found that the diffusion of both C and C2 is strongly anisotropic in nature. In addition, the C adatom can diffuse a long distance on the surface while the adsorbed C2 is more likely to be confined in a local region. Thus we can expect that smoother films will be formed on the Si(0 0 1) surface with single C atoms as projectile at moderate temperature, while with C2 the films will grow in two-dimensional islands. In addition, relatively higher kinetic energy of the projectile, say, a few tens of eV, is needed to grow DLC films of higher quality. This is consistent with experimental findings

  9. Cluster-surface collisions: Characteristics of Xe55- and C20 - Si[111] surface bombardment

    International Nuclear Information System (INIS)

    Cheng, H.

    1999-01-01

    Molecular dynamics (MD) simulations are performed to study the cluster-surface collision processes. Two types of clusters, Xe 55 and C 20 are used as case studies of materials with very different properties. In studies of Xe 55 - Si[111] surface bombardment, two initial velocities, 5.0 and 10.0 km/s (normal to the surface) are chosen to investigate the dynamical consequences of the initial energy or velocity in the cluster-surface impact. A transition in the speed of kinetic energy propagation, from subsonic velocities to supersonic velocities, is observed. Energy transfer, from cluster translational motion to the substrate, occurs at an extremely fast rate that increases as the incident velocity increases. Local melting and amorphous layer formation in the surfaces are found via energetic analysis of individual silicon atoms. For C 20 , the initial velocity ranges from 10 to 100 km/s. The clusters are damaged immediately upon impact. Similar to Xe 55 , increase in the potential energy is larger than the increase in internal kinetic energy. However, the patterns of energy distribution are different for the two types of clusters. The energy transfer from the carbon clusters to Si(111) surface is found to be slower than that found in the Xe clusters. Fragmentation of the carbon cluster occurs when the initial velocity is greater than 30 km/s. At 10 km/s, the clusters show recrystallization at later times. The average penetration depth displays a nonlinear dependence on the initial velocity. Disturbance in the surface caused by C 20 is discussed and compared to the damage caused by Xe 55 . Energetics, structures, and dynamics of these systems are fully analyzed and characterized. copyright 1999 American Institute of Physics

  10. Surface spins disorder in uncoated and SiO2 coated maghemite nanoparticles

    International Nuclear Information System (INIS)

    Zeb, F.; Nadeem, K.; Shah, S. Kamran Ali; Kamran, M.; Gul, I. Hussain; Ali, L.

    2017-01-01

    We studied the surface spins disorder in uncoated and silica (SiO 2 ) coated maghemite (γ-Fe 2 O 3 ) nanoparticles using temperature and time dependent magnetization. The average crystallite size for SiO 2 coated and uncoated nanoparticles was about 12 and 29 nm, respectively. Scanning electron microscopy (SEM) showed that the nanoparticles are spherical in shape and well separated. Temperature scans of zero field cooled (ZFC)/field cooled (FC) magnetization measurements showed lower average blocking temperature (T B ) for SiO 2 coated maghemite nanoparticles as compared to uncoated nanoparticles. The saturation magnetization (M s ) of SiO 2 coated maghemite nanoparticles was also lower than the uncoated nanoparticles and is attributed to smaller average crystallite size of SiO 2 coated nanoparticles. For saturation magnetization vs. temperature data, Bloch's law (M(T)= M(0).(1− BT b )) was fitted well for both uncoated and SiO 2 coated nanoparticles and yields: B =3×10 −7 K -b , b=2.22 and B=0.0127 K -b , b=0.57 for uncoated and SiO 2 coated nanoparticles, respectively. Higher value of B for SiO 2 coated nanoparticles depicts decrease in exchange coupling due to enhanced surface spins disorder (broken surface bonds) as compared to uncoated nanoparticles. The Bloch's exponent b was decreased for SiO 2 coated nanoparticles which is due to their smaller average crystallite size or finite size effects. Furthermore, a sharp increase of coercivity at low temperatures (<25 K) was observed for SiO 2 coated nanoparticles which is also due to contribution of increased surface anisotropy or frozen surface spins in these smaller nanoparticles. The FC magnetic relaxation data was fitted to stretched exponential law which revealed slower magnetic relaxation for SiO 2 coated nanoparticles. All these measurements revealed smaller average crystallite size and enhanced surface spins disorder in SiO 2 coated nanoparticles than in uncoated γ-Fe 2 O 3 nanoparticles

  11. Adsorption Mechanisms of NH3 on Chlorinated Si(100)-2 x 1 Surface

    International Nuclear Information System (INIS)

    Lee, Hee Soon; Choi, Cheol Ho

    2012-01-01

    The potential energy surfaces of ammonia molecule adsorptions on the symmetrically chlorinated Si(100)- 2 x 1 surface were explored with SIMOMM:MP2/6-31G(d). It was found that the initial nucleophilic attack by ammonia nitrogen to the surface Si forms a S N 2 type transition state, which eventually leads to an HCl molecular desorption. The second ammonia molecule adsorption requires much less reaction barrier, which can be rationalized by the surface cooperative effect. In general, it was shown that the surface Si-Cl bonds can be easily subjected to the substitution reactions by ammonia molecules yielding symmetric surface Si-NH 2 bonds, which can be a good initial template for subsequent surface chemical modifications. The ammonia adsorptions are in general more facile than the corresponding water adsorption, since ammonia is better nucleophile

  12. First-principle study of Mg adsorption on Si(111) surfaces

    International Nuclear Information System (INIS)

    Min-Ju, Ying; Ping, Zhang; Xiao-Long, Du

    2009-01-01

    We have carried out first-principle calculations of Mg adsorption on Si(111) surfaces. Different adsorption sites and coverage effects have been considered. We found that the threefold hollow adsorption is energy-favoured in each coverage considered, while for the clean Si(111) surface of metallic feature, we found that 0.25 and 0.5 ML Mg adsorption leads to a semiconducting surface. The results for the electronic behaviour suggest a polarized covalent bonding between the Mg adatom and Si(111) surface. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Pt-Si Bifunctional Surfaces for CO and Methanol Electro-Oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia A.; Han, Binghong; Jensen, Jens Oluf

    2015-01-01

    and storage. Here we report on Pt-Si bulk samples prepared by arc-melting, for the first time, with high activities toward the electro-oxidation of CO and methanol. Increasing the Si concentration on the surface was correlated with the shifts of onset oxidation potentials to lower values and higher activities...... for CO and methanol electro-oxidation. It is proposed that the reaction on the Pt-Si catalyst could follow a Langmuir-Hinshelwood type of mechanism, where substantially enhanced catalytic activity is attributed to the fine-tuning of the surface Pt-Si atomic structure....

  14. Surface texturing of Si3N4–SiC ceramic tool components by pulsed laser machining

    CSIR Research Space (South Africa)

    Tshabalala, LC

    2016-03-01

    Full Text Available Traditional abrasive techniques such as grinding and lapping have long been used in the surface conditioning of engineering materials. However, in the processing of hard and brittle materials like silicon nitride (Si(sub3)N(sub4)), machining...

  15. Effects of atomic hydrogen on the selective area growth of Si and Si1-xGex thin films on Si and SiO2 surfaces: Inhibition, nucleation, and growth

    International Nuclear Information System (INIS)

    Schroeder, T.W.; Lam, A.M.; Ma, P.F.; Engstrom, J.R.

    2004-01-01

    Supersonic molecular beam techniques have been used to study the nucleation of Si and Si 1-x Ge x thin films on Si and SiO 2 surfaces, where Si 2 H 6 and GeH 4 have been used as sources. A particular emphasis of this study has been an examination of the effects of a coincident flux of atomic hydrogen. The time associated with formation of stable islands of Si or Si 1-x Ge x on SiO 2 surfaces--the incubation time--has been found to depend strongly on the kinetic energy of the incident molecular precursors (Si 2 H 6 and GeH 4 ) and the substrate temperature. After coalescence, thin film morphology has been found to depend primarily on substrate temperature, with smoother films being grown at substrate temperatures below 600 deg. C. Introduction of a coincident flux of atomic hydrogen has a large effect on the nucleation and growth process. First, the incubation time in the presence of atomic hydrogen has been found to increase, especially at substrate temperatures below 630 deg. C, suggesting that hydrogen atoms adsorbed on Si-like sites on SiO 2 can effectively block nucleation of Si. Unfortunately, in terms of promoting selective area growth, coincident atomic hydrogen also decreases the rate of epitaxial growth rate, essentially offsetting any increase in the incubation time for growth on SiO 2 . Concerning Si 1-x Ge x growth, the introduction of GeH 4 produces substantial changes in both thin film morphology and the rate nucleation of poly-Si 1-x Ge x on SiO 2 . Briefly, the addition of Ge increases the incubation time, while it lessens the effect of coincident hydrogen on the incubation time. Finally, a comparison of the maximum island density, the time to reach this density, and the steady-state polycrystalline growth rate strongly suggests that all thin films [Si, Si 1-x Ge x , both with and without H(g)] nucleate at special sites on the SiO 2 surface, and grow primarily via direct deposition of adatoms on pre-existing islands

  16. Realization of a quantum Hamiltonian Boolean logic gate on the Si(001):H surface.

    Science.gov (United States)

    Kolmer, Marek; Zuzak, Rafal; Dridi, Ghassen; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek

    2015-08-07

    The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status.

  17. Evolution of plant P-type ATPases

    Directory of Open Access Journals (Sweden)

    Christian N.S. Pedersen

    2012-02-01

    Full Text Available Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauria and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a moss, Selaginella moellendorffii (a primitive vascular plant, and Arabidopsis thaliana (a model flowering plant. Each organism contained sequences for all five subfamilies of P-type ATPases. Our analysis demonstrates when specific subgroups of P-type ATPases disappeared in the evolution of Angiosperms. Na/K-pump related P2C ATPases were lost with the evolution of streptophytes whereas Na+ or K+ pumping P2D ATPases and secretory pathway Ca2+-ATPases remained until mosses. An N-terminally located calmodulin binding domain in P2B ATPases can only be detected in pumps from Streptophytae, whereas, like in animals, a C-terminally localized calmodulin binding domain might be present in chlorophyte P2B Ca2+-ATPases. Chlorophyte genomes encode P3A ATPases resembling protist plasma membrane H+-ATPases and a C-terminal regulatory domain is missing. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps.

  18. Novel pathways for elimination of chlorine atoms from growing Si(100) surfaces in CVD reactors

    Science.gov (United States)

    Kunioshi, Nílson; Hagino, Sho; Fuwa, Akio; Yamaguchi, Katsunori

    2018-05-01

    Reactions leading to elimination of chlorine atoms from growing Si(100) surfaces were simulated using clusters of silicon atoms of different sizes and shapes, and at the UB3LYP/6-31 g(d,p) level of theory. The reactions of type SiCl2(s) + 2 H2(g), where (s) indicates an adsorbed species at the surface and (g) a gas-phase species, were found to proceed in two steps: SiCl2(s) + H2(g) → SiHCl(s) + HCl(g) and SiHCl(s) + H2(g) → SiH2(s) + HCl(g), each having activation energies around 55 kcal/mol, a value which is comparable to experimental values published in the literature. In addition, the results suggested that H-passivation of Si(100) surfaces support reactions leading to canonical epitaxial growth, providing a plausible explanation for the convenience of passivating the surfaces prior to silicon deposition. The reactions analyzed here can therefore be seen as important steps in the mechanism of epitaxial growth of Si(100) surfaces.

  19. Ni3Si surface-film formation caused by radiation-induced segregation

    International Nuclear Information System (INIS)

    Potter, D.I.; Rehn, L.E.; Okamoto, P.R.; Wiedersich, H.

    1977-01-01

    Several advanced alloys being considered for reactor applications contain the ordered γ' phase Ni 3 X in which the X component is frequently Al, Si and/or Ti. These alloys are precipitation hardened, and their strength depends upon the volume fraction, size, and spatial distribution of the coherent γ' precipitate. The investigation shows that a substantial Ni 3 Si precipitate film forms on the surface of irradiated specimens of solid-solution as well as two-phase Ni-Si alloys

  20. Experimental and Theoretical Study of the Rotation of Si Ad-dimers on the Si(100) Surface

    DEFF Research Database (Denmark)

    Swartzentruber, B. S.; Smith, A. P.; Jonsson, Hannes

    1996-01-01

    Scanning tunneling microscopy measurements and first principles density functional theory calculations are used to study the rate of the rotational transition of Si ad-dimers on top of the surface dimer rows of Si(100). The rotation rate and the relative population of the two stable orientations ...... of the ad-dimers are measured as a function of the applied electric field to extract the zero-field behavior. The measured relative stability of the two configurations is used to test the accuracy of various functionals for density functional theory calculations....

  1. DNA immobilization on polymer-modified Si surface by controlling pH

    International Nuclear Information System (INIS)

    Demirel, Goekcen Birlik; Caykara, Tuncer

    2009-01-01

    A novel approach based on polymer-modified Si surface as DNA sensor platforms is presented. The polymer-modified Si surface was prepared by using 3-(methacryloxypropyl)trimethoxysilane [γ-MPS] and poly(acrylamide) [PAAm]. Firstly, a layer of γ-MPS was formed on the hydroxylated silicon surface as a monolayer and then modified with different molecular weight of PAAm to form polymer-modified surface. The polymer-modified Si surface was used for dsDNA immobilization. All steps about formation of layer structure were characterized by ellipsometry, atomic force microscopy (AFM), attenuated total reflectance Fourier transformed infrared (ATR-FTIR), and contact angle (CA) measurements. We found that in this case the amount of dsDNA immobilized onto the surface was dictated by the electrostatic interaction between the substrate surface and the DNA. Our results thus demonstrated that DNA molecules could be immobilized differently onto the polymer-modified support surface via electrostatic interactions.

  2. Passivation of Si(111) surfaces with electrochemically grafted thin organic films

    Science.gov (United States)

    Roodenko, K.; Yang, F.; Hunger, R.; Esser, N.; Hinrichs, K.; Rappich, J.

    2010-09-01

    Ultra thin organic films (about 5 nm thick) of nitrobenzene and 4-methoxydiphenylamine were deposited electrochemically on p-Si(111) surfaces from benzene diazonium compounds. Studies based on atomic force microscopy, infrared spectroscopic ellipsometry and x-ray photoelectron spectroscopy showed that upon exposure to atmospheric conditions the oxidation of the silicon interface proceed slower on organically modified surfaces than on unmodified hydrogen passivated p-Si(111) surfaces. Effects of HF treatment on the oxidized organic/Si interface and on the organic layer itself are discussed.

  3. Controlled surface chemistry of diamond/β-SiC composite films for preferential protein adsorption.

    Science.gov (United States)

    Wang, Tao; Handschuh-Wang, Stephan; Yang, Yang; Zhuang, Hao; Schlemper, Christoph; Wesner, Daniel; Schönherr, Holger; Zhang, Wenjun; Jiang, Xin

    2014-02-04

    Diamond and SiC both process extraordinary biocompatible, electronic, and chemical properties. A combination of diamond and SiC may lead to highly stable materials, e.g., for implants or biosensors with excellent sensing properties. Here we report on the controllable surface chemistry of diamond/β-SiC composite films and its effect on protein adsorption. For systematic and high-throughput investigations, novel diamond/β-SiC composite films with gradient composition have been synthesized using the hot filament chemical vapor deposition (HFCVD) technique. As revealed by scanning electron microscopy (SEM), the diamond/β-SiC ratio of the composite films shows a continuous change from pure diamond to β-SiC over a length of ∼ 10 mm on the surface. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to unveil the surface termination of chemically oxidized and hydrogen treated surfaces. The surface chemistry of the composite films was found to depend on diamond/β-SiC ratio and the surface treatment. As observed by confocal fluorescence microscopy, albumin and fibrinogen were preferentially adsorbed from buffer: after surface oxidation, the proteins preferred to adsorb on diamond rather than on β-SiC, resulting in an increasing amount of proteins adsorbed to the gradient surfaces with increasing diamond/β-SiC ratio. By contrast, for hydrogen-treated surfaces, the proteins preferentially adsorbed on β-SiC, leading to a decreasing amount of albumin adsorbed on the gradient surfaces with increasing diamond/β-SiC ratio. The mechanism of preferential protein adsorption is discussed by considering the hydrogen bonding of the water self-association network to OH-terminated surfaces and the change of the polar surface energy component, which was determined according to the van Oss method. These results suggest that the diamond/β-SiC gradient film can be a promising material for biomedical applications which

  4. Carbon surface diffusion and SiC nanocluster self-ordering

    International Nuclear Information System (INIS)

    Pezoldt, J.; Trushin, Yu.V.; Kharlamov, V.S.; Schmidt, A.A.; Cimalla, V.; Ambacher, O.

    2006-01-01

    The process of the spatial ordering of SiC nanoclusters on the step edges on Si surfaces was studied by means of multi-scale computer simulation. The evolution of cluster arrays on an ideal flat surface and surfaces with terraces of various widths was performed by kinetic Monte Carlo (KMC) simulations based on quantitative studies of potential energy surfaces (PES) by molecular dynamics (MD). PES analysis revealed that certain types of steps act as strong trapping centres for both Si and C adatoms stimulating clusters nucleation. Spatial ordering of the SiC nanoclusters at the terrace edges can be achieved if the parameters of the growth process (substrate temperature, carbon flux) and substrate (steps direction and terrace widths) are adjusted to the surface morphology. Temperature ranges for growth regimes with and without formation of cluster chains were determined. Cluster size distributions and the dependence of optimal terrace width for self ordering on the deposition parameters were obtained

  5. Self-assembly of nanosize coordination cages on si(100) surfaces.

    Science.gov (United States)

    Busi, Marco; Laurenti, Marco; Condorelli, Guglielmo G; Motta, Alessandro; Favazza, Maria; Fragalà, Ignazio L; Montalti, Marco; Prodi, Luca; Dalcanale, Enrico

    2007-01-01

    Bottom-up fabrication of 3D organic nanostructures on Si(100) surfaces has been achieved by a two-step procedure. Tetradentate cavitand 1 was grafted on the Si surface together with 1-octene (Oct) as a spatial spectator by photochemical hydrosilylation. Ligand exchange between grafted cavitand 1 and self-assembled homocage 2, derived from cavitand 5 bearing a fluorescence marker, led to the formation of coordination cages on Si(100). Formation, quantification, and distribution of the nanoscale molecular containers on a silicon surface was assessed by using three complementary analytical techniques (AFM, XPS, and fluorescence) and validated by control experiments on cavitand-free silicon surfaces. Interestingly, the fluorescence of pyrene at approximately 4 nm above the Si(100) surface can be clearly observed.

  6. Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics

    Science.gov (United States)

    Wang, Z. F.; Liu, Feng

    2015-07-01

    Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1 /3 monolayer halogen coverage. The s p3 dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (˜106 m /s ) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.

  7. Discrete impurity band from surface danging bonds in nitrogen and phosphorus doped SiC nanowires

    Science.gov (United States)

    Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Cao, Mao-Sheng; Fang, Xiao-Yong

    2018-04-01

    The electronic structure and optical properties of the nitrogen and phosphorus doped silicon carbide nanowires (SiCNWs) are investigated using first-principle calculations based on density functional theory. The results show doping can change the type of the band gap and improve the conductivity. However, the doped SiCNWs form a discrete impurity levels at the Fermi energy, and the dispersion degree decreases with the diameter increasing. In order to reveal the root of this phenomenon, we hydrogenated the doped SiCNWs, found that the surface dangling bonds were saturated, and the discrete impurity levels are degeneracy, which indicates that the discrete impurity band of the doped SiCNWs is derived from the dangling bonds. The surface passivation can degenerate the impurity levels. Therefore, both doping and surface passivation can better improve the photoelectric properties of the SiCNWs. The result can provide additional candidates in producing nano-optoelectronic devices.

  8. Hydrogen and oxygen behaviors on Porous-Si surfaces observed using a scanning ESD ion microscope

    International Nuclear Information System (INIS)

    Itoh, Yuki; Ueda, Kazuyuki

    2004-01-01

    A scanning electron-stimulated desorption (ESD) ion microscope (SESDIM) measured the 2-D images of hydrogen and oxygen distribution on solid surfaces. A primary electron beam at 600 eV, with a pulse width of 220 ns, resulted in ion yields of H + and O + . This SESDIM is applied to the surface analysis of Porous-Si (Po-Si) partially covered with SiN films. During the heating of a specimen of the Po-Si at 800 deg. C under ultra-high-vacuum (UHV) conditions, the components of the surface materials were moved or diffused by thermal decomposition accompanied by a redistribution of hydrogen and oxygen. After cyclic heating of above 800 deg. C, the dynamic behaviors of H + and O + accompanied by the movements of the SiN layers were observed as images of H + and O + . This was because the H + and O + ions have been identified as composite materials by their kinetic energies

  9. Superconductivity in Ti3P-type compounds

    International Nuclear Information System (INIS)

    Wills, J.O.; Hein, R.A.; Waterstrat, R.M.

    1978-01-01

    A study of 12 intermetallic A 3 B compounds which crsytallize in the tetragonal Ti 3 P-type structure has revealed five new superconductors with transition temperatures below 1 K: Zr 3 Si, Zr 3 Ge, Zr 3 P, V 3 P, and Nb 3 Ge (extrapolated from the alloy series Nb-Ge-As). In addition, two compounds, Zr 3 Sb and Ta 3 Ge, having the Ni 3 P structure type are found to be superconducting below 1 K. Within the Ti 3 P-type compounds, those with the lighter ''B'' elements in a given column of the Periodic Table have the higher transition temperatures. Critical-magnetic-field and electrical-resistivity data are reported for the superconducting Ti 2 P-type compound Nb 3 P, which permit one to estimate the Ginzburg-Landau kappa parameter and the electronic-specific-heat coefficient γ. The kappa value of 8.4 indicates that this material is type II, and the γ value of 1.3 mJ/mole K 2 for Nb 3 P is probably related to its low transition temperature relative to many A15 compounds

  10. Dual ohmic contact to N- and P-type silicon carbide

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  11. Characterization of n and p-type ZnO thin films grown by pulsed filtered cathodic vacuum arc system

    International Nuclear Information System (INIS)

    Kavak, H.; Erdogan, E.N.; Ozsahin, I.; Esen, R.

    2010-01-01

    Full text : Semiconductor ZnO thin films with wide band gap attract much interest due to their properties such as chemical stability in hydrogen plasma, high optical transparency in the visible and nearinfrared region. Due to these properties ZnO oxide is a promising materials for electronic or optoelectronic applications such as solar cell (as an antireflecting coating and a transparent conducting material), gas sensors, surface acoustic wave devices. The purpose of this research is to improve the properties of n and p-type ZnO thin films for device applications. Polycrystalline ZnO is naturally n-type and very difficult to dope to make p-type. Therefore nowadays hardly produced p-type ZnO attracts a lot of attention. Nitrogen considered as the best dopant for p-type ZnO thin films.The transparent, conductive and very precise thickness controlled n and p-type semiconducting nanocrystalline ZnO thin films were prepared by pulsed filtered cathodic vacuum arc deposition (PFCVAD) method. Structural, optical and electrical properties of these films were investigated. And also photoluminescence properties of these films were investigated. Transparent p-type ZnO thin films were produced by oxidation of PFCVAD deposited zinc nitride. Zinc nitride thin films were deposited with various thicknesses and under different oxygen pressures on glass substrates. Zinc nitride thin films, which were deposited at room temperatures, were amorphous and the optical transmission was below 70%. For oxidation zinc nitride, the sample was annealed in air starting from 350 degrees Celsium up to 550 degrees Celsium for one hour duration. These XRD patterns imply that zinc nitride thin films converted to zinc oxide thin films with the same hexagonal crystalline structures of ZnO. The optical measurements were made for each annealing temperature and the optical transmissions of ZnO thin films were found better than 90 percent in visible range after annealing over 350 degrees Celsium. By

  12. Optimisation of electronic interface properties of a-Si:H/c-Si hetero-junction solar cells by wet-chemical surface pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, H. [Hahn-Meitner-Institut, Abt. Siliziumphotovoltaik, Kekulestrasse 5, D-12489 Berlin (Germany)], E-mail: angermann@hmi.de; Korte, L.; Rappich, J.; Conrad, E.; Sieber, I.; Schmidt, M. [Hahn-Meitner-Institut, Abt. Siliziumphotovoltaik, Kekulestrasse 5, D-12489 Berlin (Germany); Huebener, K.; Hauschild, J. [Freie Universitaet Berlin, FB Physik, Arnimallee 14, 14195 Berlin (Germany)

    2008-08-30

    The relation between structural imperfections at structured silicon surfaces, energetic distribution of interface state densities, recombination loss at a-Si:H/c-Si interfaces and solar cell characteristics have been intensively investigated using non-destructive, surface sensitive techniques, surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and electron microscopy (SEM). Sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of Si(111) pyramids. Special wet-chemical smoothing and oxide removal procedures for structured substrates were developed, in order to reduce the preparation-induced surface micro-roughness and density of electronically active defects. H-termination and passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological process. We achieved significantly lower micro-roughness, densities of surface states D{sub it}(E) and recombination loss at a-Si:H/c-Si interfaces on wafers with randomly distributed pyramids, compared to conventional pre-treatments. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H/c-Si/BSF/Al), the c-Si surface becomes part of the a-Si:H/c-Si interface, whose recombination activity determines cell performance. With textured substrates, the smoothening procedure results in a significant increase of short circuit current, fill factor and efficiency.

  13. Optimisation of electronic interface properties of a-Si:H/c-Si hetero-junction solar cells by wet-chemical surface pre-treatment

    International Nuclear Information System (INIS)

    Angermann, H.; Korte, L.; Rappich, J.; Conrad, E.; Sieber, I.; Schmidt, M.; Huebener, K.; Hauschild, J.

    2008-01-01

    The relation between structural imperfections at structured silicon surfaces, energetic distribution of interface state densities, recombination loss at a-Si:H/c-Si interfaces and solar cell characteristics have been intensively investigated using non-destructive, surface sensitive techniques, surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and electron microscopy (SEM). Sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of Si(111) pyramids. Special wet-chemical smoothing and oxide removal procedures for structured substrates were developed, in order to reduce the preparation-induced surface micro-roughness and density of electronically active defects. H-termination and passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological process. We achieved significantly lower micro-roughness, densities of surface states D it (E) and recombination loss at a-Si:H/c-Si interfaces on wafers with randomly distributed pyramids, compared to conventional pre-treatments. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H/c-Si/BSF/Al), the c-Si surface becomes part of the a-Si:H/c-Si interface, whose recombination activity determines cell performance. With textured substrates, the smoothening procedure results in a significant increase of short circuit current, fill factor and efficiency

  14. 4H-SiC surface energy tuning by nitrogen up-take

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, E., E-mail: eduardo.pitthan@ufrgs.br [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Amarasinghe, V.P. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Xu, C.; Gustafsson, T. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Stedile, F.C. [PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Instituto de Química, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Feldman, L.C. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)

    2017-04-30

    Highlights: • Wettability modification of 4H-SiC as a function of nitrogen adsorption is reported. • SiC surface energy was significantly reduced as nitrogen was incorporated. • Modifications obtained were proved to be inert to etching and stable against time. • Variable control of SiC surface provides new opportunities for biomedical applications. - Abstract: Surface energy modification and surface wettability of 4H silicon carbide (0001) as a function of nitrogen adsorption is reported. The surface wettability is shown to go from primarily hydrophilic to hydrophobic and the surface energy was significantly reduced with increasing nitrogen incorporation. These changes are investigated by x-ray photoelectron spectroscopy and contact angle measurements. The surface energy was quantitatively determined by the Fowkes model and interpreted primarily in terms of the variation of the surface chemistry with nitrogen coverage. Variable control of SiC surface energies with a simple and controllable atomic additive such as nitrogen that is inert to etching, stable against time, and also effective in electrical passivation, can provide new opportunities for SiC biomedical applications, where surface wetting plays an important role in the interaction with the biological interfaces.

  15. Atomic scale study of the chemistry of oxygen, hydrogen and water at SiC surfaces

    International Nuclear Information System (INIS)

    Amy, Fabrice

    2007-01-01

    Understanding the achievable degree of homogeneity and the effect of surface structure on semiconductor surface chemistry is both academically challenging and of great practical interest to enable fabrication of future generations of devices. In that respect, silicon terminated SiC surfaces such as the cubic 3C-SiC(1 0 0) 3 x 2 and the hexagonal 6H-SiC(0 0 0 1) 3 x 3 are of special interest since they give a unique opportunity to investigate the role of surface morphology on oxygen or hydrogen incorporation into the surface. In contrast to silicon, the subsurface structure plays a major role in the reactivity, leading to unexpected consequences such as the initial oxidation starting several atomic planes below the top surface or the surface metallization by atomic hydrogen. (review article)

  16. Near-surface and bulk behavior of Ag in SiC

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Zhang, Y.; Snead, L.L.; Shutthanandan, V.; Xue, H.Z.; Weber, W.J.

    2012-01-01

    Highlights: ► Ag release from SiC poses problems in safe operation of nuclear reactors. ► Near-surface and bulk behavior of Ag are studied by ab initio and ion beam methods. ► Ag prefers to adsorb on the surface rather than in the bulk SiC. ► At high temperature Ag desorbs from the surface instead of diffusion into bulk SiC. ► Surface diffusion may be a dominating mechanism accounting for Ag release from SiC. - Abstract: The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85–1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor.

  17. P-type silicon drift detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Krieger, B.; Krofcheck, D.; O'Donnell, R.; Odyniec, G.; Partlan, M.D.; Wang, N.W.

    1995-06-01

    Preliminary results on 16 CM 2 , position-sensitive silicon drift detectors, fabricated for the first time on p-type silicon substrates, are presented. The detectors were designed, fabricated, and tested recently at LBL and show interesting properties which make them attractive for use in future physics experiments. A pulse count rate of approximately 8 x l0 6 s -1 is demonstrated by the p-type silicon drift detectors. This count rate estimate is derived by measuring simultaneous tracks produced by a laser and photolithographic mask collimator that generates double tracks separated by 50 μm to 1200 μm. A new method of using ion-implanted polysilicon to produce precise valued bias resistors on the silicon drift detectors is also discussed

  18. Surface modification of Al–Si alloy by excimer laser pulse processing

    Energy Technology Data Exchange (ETDEWEB)

    Mahanty, S., E-mail: soumitro@iitk.ac.in; Gouthama

    2016-04-15

    The laser irradiation on Al-Si alloy sample is carried out by excimer laser in ambient conditions for 30 or 45 pulses. Microstructural investigation of laser treated sample is done by OM, SEM and TEM and the surface hardness is evaluated by Vickers micro indentation. Laser treated, samples suggested the dissolution of coarse primary Si and β-AlFeSi particle in α-Al matrix. The SEM/EDS study shows the enhancement of retained Si in α-Al matrix. The interface analysis of laser treated sample suggested the effected modified depth is ∼6 μm. TEM investigation shows the formation of nanocrystalline Si in size ∼2–15 nm. The cellular structures of size range ∼30–50 nm are observed after 45 pulses. The α-Al cells and Si precipitates sizes were considerably refined at higher number of pulses. The fine Si precipitates are found to be dispersed in the intercellular boundaries. An improvement in surface hardness from ∼1.6 to 1.8 is observed 30 and 45 pulse treatment, respectively. The mechanism involves for improvement in surface properties are non-equilibrium solidification, metastable phase formation and microstructural refinement. - Highlights: • Coarse Si and β phase intermetallic are melted and the constituent elements dispersed into the matrix during re-solidification. • The solid solubility of the Si at the surface enhanced after the laser treatment. • The Cellular structure with the size range ∼30–50 nm observed in α-Al after 45 laser pulses. • Si nano particles in size ∼ 2–15 nm were observed in the intercellular region. • Surface hardness increased after laser processing.

  19. Pd adsorption on Si(1 1 3) surface: STM and XPS study

    International Nuclear Information System (INIS)

    Hara, Shinsuke; Yoshimura, Masamichi; Ueda, Kazuyuki

    2008-01-01

    Pd-induced surface structures on Si(1 1 3) have been studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). In the initial process of the Pd adsorption below 0.10 ML, Pd silicide (Pd 2 Si) clusters are observed to form randomly on the surface. By increasing the Pd coverage to 0.10 ML, the clusters cover the entire surface, and an amorphous layer is formed. After annealing the Si(1 1 3)-Pd surface at 600 deg. C, various types of islands and chain protrusions appears. The agglomeration, coalescence and crystallization of these islands are observed by using high temperature (HT-) STM. It is also found by XPS that the islands correspond to Pd 2 Si structure. On the basis of these results, evolution of Pd-induced structures at high temperatures is in detail discussed

  20. Density functional study of the decomposition pathways of SiH₃ and GeH₃ at the Si(100) and Ge(100) surfaces.

    Science.gov (United States)

    Ceriotti, M; Montalenti, F; Bernasconi, M

    2012-03-14

    By means of first-principles calculations we studied the decomposition pathways of SiH₃ on Ge(100) and of GeH₃ on Si(100), of interest for the growth of crystalline SiGe alloys and Si/Ge heterostructures by plasma-enhanced chemical vapor deposition. We also investigated H desorption via reaction of two adsorbed SiH₂/GeH₂ species (β₂ reaction) or via Eley-Rideal abstraction of surface H atoms from the impinging SiH₃ and GeH₃ species. The calculated activation energies for the different processes suggest that the rate-limiting step for the growth of Si/Ge systems is still the β₂ reaction of two SiH₂ as in the growth of crystalline Si.

  1. Desorption dynamics of deuterium molecules from the Si(100)-(3x1) dideuteride surface.

    Science.gov (United States)

    Niida, T; Tsurumaki, H; Namiki, A

    2006-01-14

    We measured polar angle (theta)-resolved time-of-flight spectra of D2 molecules desorbing from the Si(100)-(3x1) dideuteride surface. The desorbing D2 molecules exhibit a considerable translational heating with mean desorption kinetic energies of approximately 0.25 eV, which is mostly independent of the desorption angles for 0 degreesdynamics of deuterium was discussed along the principle of detailed balance to predict their adsorption dynamics onto the monohydride Si surface.

  2. Influences of H on the Adsorption of a Single Ag Atom on Si(111-7 × 7 Surface

    Directory of Open Access Journals (Sweden)

    Lin Xiu-Zhu

    2009-01-01

    Full Text Available Abstract The adsorption of a single Ag atom on both clear Si(111-7 × 7 and 19 hydrogen terminated Si(111-7 × 7 (hereafter referred as 19H-Si(111-7 × 7 surfaces has been investigated using first-principles calculations. The results indicated that the pre-adsorbed H on Si surface altered the surface electronic properties of Si and influenced the adsorption properties of Ag atom on the H terminated Si surface (e.g., adsorption site and bonding properties. Difference charge density data indicated that covalent bond is formed between adsorbed Ag and H atoms on 19H-Si(111-7 × 7 surface, which increases the adsorption energy of Ag atom on Si surface.

  3. The Stellar Imager (SI) Project: Resolving Stellar Surfaces, Interiors, and Magnetic Activity

    Science.gov (United States)

    Carpenter, Kenneth G.; Schrijver, K.; Karovska, M.

    2007-01-01

    The Stellar Imager (SI) is a UV/Optical. Space-Based Interferometer designed to enable 0.1 milli-arcsec (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. The science of SI focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. Its prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we discuss the science goals, technology needs, and baseline design of the SI mission.

  4. XPS studies of SiO2 surface layers formed by oxygen ion implantation into silicon

    International Nuclear Information System (INIS)

    Schulze, D.; Finster, J.

    1983-01-01

    SiO 2 surface layers of 160 nm thickness formed by 16 O + ion implantation into silicon are examined by X-ray photoelectron spectroscopy measurements into the depth after a step-by-step chemical etching. The chemical nature and the thickness of the transition layer were determined. The results of the XPS measurements show that the outer surface and the bulk of the layers formed by oxygen implantation and subsequent high temperature annealing consist of SiO 2 . There is no evidence for Si or SiO/sub x/ (0 2 and Si is similar to that of thin grown oxide layers. Only its thickness is somewhat larger than in thermal oxide

  5. Influence of Si wafer thinning processes on (sub)surface defects

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Fumihiro, E-mail: fumihiro.inoue@imec.be [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Jourdain, Anne; Peng, Lan; Phommahaxay, Alain; De Vos, Joeri; Rebibis, Kenneth June; Miller, Andy; Sleeckx, Erik; Beyne, Eric [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Uedono, Akira [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2017-05-15

    Highlights: • Mono-vacancy free Si-thinning can be accomplished by combining several thinning techniques. • The grinding damage needs to be removed prior to dry etching, otherwise vacancies remain in the Si at a depth around 0.5 to 2 μm after Si wafer thickness below 5 μm. • The surface of grinding + CMP + dry etching is equivalent mono vacancy level as that of grinding + CMP. - Abstract: Wafer-to-wafer three-dimensional (3D) integration with minimal Si thickness can produce interacting multiple devices with significantly scaled vertical interconnections. Realizing such a thin 3D structure, however, depends critically on the surface and subsurface of the remaining backside Si after the thinning processes. The Si (sub)surface after mechanical grinding has already been characterized fruitfully for a range of few dozen of μm. Here, we expand the characterization of Si (sub)surface to 5 μm thickness after thinning process on dielectric bonded wafers. The subsurface defects and damage layer were investigated after grinding, chemical mechanical polishing (CMP), wet etching and plasma dry etching. The (sub)surface defects were characterized using transmission microscopy, atomic force microscopy, and positron annihilation spectroscopy. Although grinding provides the fastest removal rate of Si, the surface roughness was not compatible with subsequent processing. Furthermore, mechanical damage such as dislocations and amorphous Si cannot be reduced regardless of Si thickness and thin wafer handling systems. The CMP after grinding showed excellent performance to remove this grinding damage, even though the removal amount is 1 μm. For the case of Si thinning towards 5 μm using grinding and CMP, the (sub)surface is atomic scale of roughness without vacancy. For the case of grinding + dry etch, vacancy defects were detected in subsurface around 0.5–2 μm. The finished surface after wet etch remains in the nm scale in the strain region. By inserting a CMP step in

  6. Ion beam effects on the surface and near-surface composition of TaSi2

    International Nuclear Information System (INIS)

    Valeri, S.; Di Bona, A.; Ottaviani, G.; Procop, M.

    1991-01-01

    Low-energy (0.7-4.5 keV) ion bombardment effects on polycrystalline TaSi 2 at sputter steady state and in various intermediate steps have been investigated, in the temperature range up to 550degC, to determine the time and temperature dependence of the altered layer formation. This in turn enables a better knowledge of the synergistic effects of the processes mentioned above. At low temperatures (T≤410degC) the surface is silicon depleted, and the depletion is even more severe in the subsurface region up to a depth of several tens of angstroems; silicon preferential sputtering and radiation-enhanced segregation assisted by the displacement mixing-induced motion of atoms are assumed to be responsible for this composition profile, while thermally activated diffusion processes become operative above 410degC, reducing progressively the concentration gradient between the surface and the subsurface zone. The composition at different depths has been determined from Auger peaks for different kinetic energies, by varying the take-off angle and finally by sputter profiling at low in energy the high energy processed surfaces. Quantitative analysis has been performed by XPS and AES by using the elemental standard method. (orig.)

  7. Growth mechanisms for Si epitaxy on O atomic layers: Impact of O-content and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Billen, Arne [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Moussa, Alain; Caymax, Matty; Bender, Hugo [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heyns, Marc [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Delabie, Annelies [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium)

    2016-10-30

    Highlights: • O{sub 3} or O{sub 2} exposures on H-Si(100) result in O ALs with different surface structures. • Si-EPI on O AL using O{sub 3} process is by direct epitaxial growth mechanism. • Si-EPI on O AL using O{sub 2} process is by epitaxial lateral overgrowth mechanism. • Distortions by O AL, SiH{sub 4} flux rate and Si thickness has an impact on Si-EPI quality. - Abstract: The epitaxial growth of Si layers on Si substrates in the presence of O atoms is generally considered a challenge, as O atoms degrade the epitaxial quality by generating defects. Here, we investigate the growth mechanisms for Si epitaxy on O atomic layers (ALs) with different O-contents and structures. O ALs are deposited by ozone (O{sub 3}) or oxygen (O{sub 2}) exposure on H-terminated Si at 50 °C and 300 °C respectively. Epitaxial Si is deposited by chemical vapor deposition using silane (SiH{sub 4}) at 500 °C. After O{sub 3} exposure, the O atoms are uniformly distributed in Si-Si dimer/back bonds. This O layer still allows epitaxial seeding of Si. The epitaxial quality is enhanced by lowering the surface distortions due to O atoms and by decreasing the arrival rate of SiH{sub 4} reactants, allowing more time for surface diffusion. After O{sub 2} exposure, the O atoms are present in the form of SiO{sub x} clusters. Regions of hydrogen-terminated Si remain present between the SiO{sub x} clusters. The epitaxial seeding of Si in these structures is realized on H-Si regions, and an epitaxial layer grows by a lateral overgrowth mechanism. A breakdown in the epitaxial ordering occurs at a critical Si thickness, presumably by accumulation of surface roughness.

  8. Effect of a Stepped Si(100) Surface on the Nucleation Process of Ge Islands

    Science.gov (United States)

    Yesin, M. Yu.; Nikiforov, A. I.; Timofeev, V. A.; Mashanov, V. I.; Tuktamyshev, A. R.; Loshkarev, I. D.; Pchelyakov, O. P.

    2018-03-01

    Nucleation of Ge islands on a stepped Si(100) surface is studied. It is shown by diffraction of fast electrons that at a temperature of 600°C, constant flux of Si, and deposition rate of 0.652 Å/s, a series of the 1×2 superstructure reflections completely disappears, if the Si (100) substrate deviated by an angle of 0.35° to the (111) face is preliminarily heated to 1000°C. The disappearance of the 1×2 superstructure reflexes is due to the transition from the surface with monoatomic steps to that with diatomic ones. Investigations of the Ge islands' growth were carried out on the Si(100) surface preliminarily annealed at temperatures of 800 and 1000°C. It is shown that the islands tend to nucleate at the step edges.

  9. Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yamagami, Hiroshi, E-mail: yamagami@cc.kyoto-su.ac.jp [Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan)

    2011-01-01

    In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu{sub 2}Si{sub 2} are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu{sub 2}Si{sub 2} crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like 'curing-stone', 'rugby-ball' and 'ball'. The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.

  10. Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu2Si2

    International Nuclear Information System (INIS)

    Yamagami, Hiroshi

    2011-01-01

    In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu 2 Si 2 are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu 2 Si 2 crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like 'curing-stone', 'rugby-ball' and 'ball'. The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.

  11. White light emission from fluorescent SiC with porous surface

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Fiordaliso, Elisabetta Maria

    2017-01-01

    We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3, the photol......We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3...... the bulk fuorescent SiC layer. A high color rendering index of 81.1 has been achieved. Photoluminescence spectra in porous layers fabricated in both commercial n-type and lab grown N-B co-doped 6H-SiC show two emission peaks centered approximately at 460nm and 530nm. Such bluegreen emission phenomenon can......, the photoluminescence intensity from the porous layer was signifcant enhanced by a factor of more than 12. Using a porous layer of moderate thickness (~10µm), high-quality white light emission was realized by combining the independent emissions of blue-green emission from the porous layer and yellow emission from...

  12. Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission

    Science.gov (United States)

    Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David

    2007-01-01

    The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  13. The strain effect in the surface barrier structures prepared on the basis of n-Si and p-Si

    International Nuclear Information System (INIS)

    Mamatkarimov, O.O.; Tuychiev, U.A.

    2004-01-01

    Full text: One of the ways of creation of large deformations in small volume of the semiconductor is the deformation created by a needle. At insignificant change of external influence the large deformation under a needle in small volume of the semiconductor the significant change of electrophysical parameters of the semiconductor in small volume is created. Therefore, in the present work the results of researches of local pressure influence on physical properties of surface barrier structures has been performed on the basis of silicon with Ni and Mn impurity. The relative changes of a direct current made on the basis n-Si and p-Si from a different degree of compensation are given depending on size of local pressure are shown. Change of current in structures Au-Si -Sb with specific resistance of base ρ=80 Ω·cm and ρ=200 Ω·cm are I p /I 0 =3-3.5 times and I P /I ) =2-2.5 times at pressure P=1.6·10 8 Pa respectively. These data show, that in structures received on the basis of initial silicon, change of a direct current with pressure is in inverse proportion to size of resistance of base of the diode. And in structures Au-Si -Sb with specific resistance of base ρ=5·10 2 Ω·cm and ρ=3·10 3 Ω·cm these changes accordingly are I P /I 0 =7 and I P /I 0 =14. Changes of direct current relative to initial value for structures on the basis p-Si with specific resistance ρ=7·10 2 Ω·cm and ρ=4·10 3 Ω·cm) are I P /I 0 =9 and I P /I 0 =16 respectively. The same changes of direct current of structures on the basis P-Si at local pressure are I P /I 0 =2-2.5. The given values I P /I 0 testify that as in structures Au-Si -Sb, and structures Sb-p-Si -Au, unlike structures on the basis of initial silicon, the values I P /I 0 are increased with increase of specific resistance of base of structures

  14. Surface Morphology Transformation Under High-Temperature Annealing of Ge Layers Deposited on Si(100).

    Science.gov (United States)

    Shklyaev, A A; Latyshev, A V

    2016-12-01

    We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications.

  15. Irradiation and annealing of p-type silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor' eva, Maria V.; Lebedev, Sergey P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg, 194021 (Russian Federation); Kozlovski, Vitaly V. [St. Petersburg State Polytechnic University, St. Petersburg, 195251 (Russian Federation)

    2014-02-21

    The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ≈ 1.5 × 10{sup 18} cm{sup −3} occurs at an irradiation dose of ∼1.1 × 10{sup 16} cm{sup −2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ≤1000°C. The conductivity is almost completely restored at T ≥ 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

  16. Surface spins disorder in uncoated and SiO{sub 2} coated maghemite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zeb, F. [Nanoscience and Technology Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan); Nadeem, K., E-mail: kashif.nadeem@iiu.edu.pk [Nanoscience and Technology Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan); Shah, S. Kamran Ali; Kamran, M. [Nanoscience and Technology Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan); Gul, I. Hussain [School of Chemical & Materials Engineering, National University of Sciences and Technology (NUST), H-12, 44000 Islamabad, Pakistan (Pakistan); Ali, L. [Materials Research Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan)

    2017-05-01

    We studied the surface spins disorder in uncoated and silica (SiO{sub 2}) coated maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles using temperature and time dependent magnetization. The average crystallite size for SiO{sub 2} coated and uncoated nanoparticles was about 12 and 29 nm, respectively. Scanning electron microscopy (SEM) showed that the nanoparticles are spherical in shape and well separated. Temperature scans of zero field cooled (ZFC)/field cooled (FC) magnetization measurements showed lower average blocking temperature (T{sub B}) for SiO{sub 2} coated maghemite nanoparticles as compared to uncoated nanoparticles. The saturation magnetization (M{sub s}) of SiO{sub 2} coated maghemite nanoparticles was also lower than the uncoated nanoparticles and is attributed to smaller average crystallite size of SiO{sub 2} coated nanoparticles. For saturation magnetization vs. temperature data, Bloch's law (M(T)= M(0).(1− BT{sup b})) was fitted well for both uncoated and SiO{sub 2} coated nanoparticles and yields: B =3×10{sup −7} K{sup -b}, b=2.22 and B=0.0127 K{sup -b}, b=0.57 for uncoated and SiO{sub 2} coated nanoparticles, respectively. Higher value of B for SiO{sub 2} coated nanoparticles depicts decrease in exchange coupling due to enhanced surface spins disorder (broken surface bonds) as compared to uncoated nanoparticles. The Bloch's exponent b was decreased for SiO{sub 2} coated nanoparticles which is due to their smaller average crystallite size or finite size effects. Furthermore, a sharp increase of coercivity at low temperatures (<25 K) was observed for SiO{sub 2} coated nanoparticles which is also due to contribution of increased surface anisotropy or frozen surface spins in these smaller nanoparticles. The FC magnetic relaxation data was fitted to stretched exponential law which revealed slower magnetic relaxation for SiO{sub 2} coated nanoparticles. All these measurements revealed smaller average crystallite size and enhanced surface

  17. Fabrication of p-type porous GaN on silicon and epitaxial GaN

    OpenAIRE

    Bilousov, Oleksandr V.; Geaney, Hugh; Carvajal, Joan J.; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Giguere, A.; Drouin, D.; Diaz, Francesc; Aguilo, Magdalena; O'Dwyer, Colm

    2013-01-01

    Porous GaN layers are grown on silicon from gold or platinum catalyst seed layers, and self-catalyzed on epitaxial GaN films on sapphire. Using a Mg-based precursor, we demonstrate p-type doping of the porous GaN. Electrical measurements for p-type GaN on Si show Ohmic and Schottky behavior from gold and platinum seeded GaN, respectively. Ohmicity is attributed to the formation of a Ga2Au intermetallic. Porous p-type GaN was also achieved on epitaxial n-GaN on sapphire, and transport measurem...

  18. Nitrogen ion induced nitridation of Si(111) surface: Energy and fluence dependence

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Kumar, Mahesh [Physics and Energy Harvesting Group, National Physical Laboratory, New Delhi 110012 (India); Nötzel, R. [ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Shivaprasad, S.M., E-mail: smsprasad@jncasr.ac.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2014-06-01

    We present the surface modification of Si(111) into silicon nitride by exposure to energetic N{sub 2}{sup +} ions. In-situ UHV experiments have been performed to optimize the energy and fluence of the N{sub 2}{sup +} ions to form silicon nitride at room temperature (RT) and characterized in-situ by X-ray photoelectron spectroscopy. We have used N{sub 2}{sup +} ion beams in the energy range of 0.2–5.0 keV of different fluence to induce surface reactions, which lead to the formation of Si{sub x}N{sub y} on the Si(111) surface. The XPS core level spectra of Si(2p) and N(1s) have been deconvoluted into different oxidation states to extract qualitative information, while survey scans have been used for quantifying of the silicon nitride formation, valence band spectra show that as the N{sub 2}{sup +} ion fluence increases, there is an increase in the band gap. The secondary electron emission spectra region of photoemission is used to evaluate the change in the work function during the nitridation process. The results show that surface nitridation initially increases rapidly with ion fluence and then saturates. - Highlights: • A systematic study for the formation of silicon nitride on Si(111). • Investigation of optimal energy and fluence for energetic N{sub 2}{sup +} ions. • Silicon nitride formation at room temperature on Si(111)

  19. Super-hydrophobic surfaces of SiO₂-coated SiC nanowires: fabrication, mechanism and ultraviolet-durable super-hydrophobicity.

    Science.gov (United States)

    Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan

    2015-04-15

    The interest in highly water-repellent surfaces of SiO2-coated SiC nanowires has grown in recent years due to the desire for self-cleaning and anticorrosive surfaces. It is imperative that a simple chemical treatment with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OC2H5)3) in ethanol solution at room temperature resulted in super-hydrophobic surfaces of SiO2-coated SiC nanowires. The static water contact angle of SiO2-coated SiC nanowires surfaces was changed from 0° to 153° and the morphology, microstructure and crystal phase of the products were almost no transformation before and after super-hydrophobic treatment. Moreover, a mechanism was expounded reasonably, which could elucidate the reasons for their super-hydrophobic behavior. It is important that the super-hydrophobic surfaces of SiO2-coated SiC nanowires possessed ultraviolet-durable (UV-durable) super-hydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Surface correlation behaviors of metal-organic Langmuir-Blodgett films on differently passivated Si(001) surfaces

    Science.gov (United States)

    Bal, J. K.; Kundu, Sarathi

    2013-03-01

    Langmuir-Blodgett films of standard amphiphilic molecules like nickel arachidate and cadmium arachidate are grown on wet chemically passivated hydrophilic (OH-Si), hydrophobic (H-Si), and hydrophilic plus hydrophobic (Br-Si) Si(001) surfaces. Top surface morphologies and height-difference correlation functions g(r) with in-plane separation (r) are obtained from the atomic force microscopy studies. Our studies show that deposited bilayer and trilayer films have self-affine correlation behavior irrespective of different passivations and different types of amphiphilic molecules, however, liquid like correlation coexists only for a small part of r, which is located near the cutoff length (1/κ) or little below the correlation length ξ obtained from the liquid like and self-affine fitting, respectively. Thus, length scale dependent surface correlation behavior is observed for both types of Langmuir-Blodgett films. Metal ion specific interactions (ionic, covalent, etc.,) in the headgroup and the nature of the terminated bond (polar, nonpolar, etc.,) of Si surface are mainly responsible for having different correlation parameters.

  1. Light trapping in a-Si/c-Si heterojunction solar cells by embedded ITO nanoparticles at rear surface

    Science.gov (United States)

    Dhar, Sukanta; Mandal, Sourav; Mitra, Suchismita; Ghosh, Hemanta; Mukherjee, Sampad; Banerjee, Chandan; Saha, Hiranmoy; Barua, A. K.

    2017-12-01

    The advantages of the amorphous silicon (a-Si)/crystalline silicon (c-Si) hetero junction technology are low temperature (oxide (ITO) nanoparticles embedded in amorphous silicon material at the rear side of the crystalline wafer. The nanoparticles were embedded in silicon to have higher scattering efficiency, as has been established by simulation studies. It has been shown that significant photocurrent enhancements (32.8 mA cm-2 to 35.1 mA cm-2) are achieved because of high scattering and coupling efficiency of the embedded nanoparticles into the silicon device, leading to an increase in efficiency from 13.74% to 15.22%. In addition, we have observed a small increase in open circuit voltage. This may be due to the surface passivation during the ITO nanoparticle formation with hydrogen plasma treatment. We also support our experimental results by simulation, with the help of a commercial finite-difference time-domain (FDTD) software solution.

  2. Enhancement of optical absorption of Si (100) surfaces by low energy N+ ion beam irradiation

    Science.gov (United States)

    Bhowmik, Dipak; Karmakar, Prasanta

    2018-05-01

    The increase of optical absorption efficiency of Si (100) surface by 7 keV and 8 keV N+ ions bombardment has been reported here. A periodic ripple pattern on surface has been observed as well as silicon nitride is formed at the ion impact zones by these low energy N+ ion bombardment [P. Karmakar et al., J. Appl. Phys. 120, 025301 (2016)]. The light absorption efficiency increases due to the presence of silicon nitride compound as well as surface nanopatterns. The Atomic Force Microscopy (AFM) study shows the formation of periodic ripple pattern and increase of surface roughness with N+ ion energy. The enhancement of optical absorption by the ion bombarded Si, compared to the bare Si have been measured by UV - visible spectrophotometer.

  3. Methods for growth of relatively large step-free SiC crystal surfaces

    Science.gov (United States)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2002-01-01

    A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.

  4. Surface-site-selective study of valence electronic structures of clean Si(100)-2x1 using Si-L23VV Auger electron-Si-2p photoelectron coincidence spectroscopy

    International Nuclear Information System (INIS)

    Kakiuchi, Takuhiro; Nagaoka, Shinichi; Hashimoto, Shogo; Fujita, Narihiko; Tanaka, Masatoshi; Mase, Kazuhiko

    2010-01-01

    Valence electronic structures of a clean Si(100)-2x1 surface are investigated in a surface-site-selective way using Si-L 23 VV Auger electron-Si-2p photoelectron coincidence spectroscopy. The Si-L 23 VV Auger electron spectra measured in coincidence with Si-2p photoelectrons emitted from the Si up-atoms or Si 2nd-layer of Si(100)-2x1 suggest that the position where the highest density of valence electronic states located in the vicinity of the Si up-atoms is shifted by 0.8 eV towards lower binding energy relative to that in the vicinity of the Si 2nd-layer. Furthermore, the valence band maximum in the vicinity of the Si up-atoms is indicated to be shifted by 0.1 eV towards lower binding energy relative to that in the vicinity of the Si 2nd-layer. These results are direct evidence of the transfer of negative charge from the Si 2nd-layer to the Si up-atoms. (author)

  5. HREELS study of the adsorption and evolution of diethylamine (DEA) on Si(1 0 0) surfaces

    International Nuclear Information System (INIS)

    Yeninas, S.; Brickman, A.; Craig, J.H.; Lozano, J.

    2008-01-01

    The adsorption of diethylamine (DEA) on Si(1 0 0) at 100 K was investigated using high-resolution electron energy loss spectroscopy (HREELS) and electron stimulated desorption (ESD). The thermal evolution of DEA on Si(1 0 0) was studied using temperature programmed desorption (TPD). Our results demonstrate DEA bonds datively to the Si(1 0 0) surface with no dissociation at 100 K. Thermal desorption of DEA takes place via a β-hydride elimination process leaving virtually no carbon behind. Electronic processing of DEA/Si(1 0 0) at 100 K results in desorption of ethyl groups; however, carbon and nitrogen are deposited on the surface as a result of electron irradiation. Thermal removal of carbon and nitrogen was not possible, indicating the formation of silicon carbide and silicon nitride

  6. The growth of Zn on a Si(1 0 0)-2x1 surface

    International Nuclear Information System (INIS)

    Xie Zhaoxiong; Tanaka, Ken-ichi

    2005-01-01

    Adsorption of Zn atoms on a Si(1 0 0)-2x1 surface was studied by scanning tunneling microscopy at room temperature. Narrow lines are grown perpendicular to the Si-dimer rows of the [1 1 0] direction at low coverage. The narrow line is formed by arraying rectangular Zn 3 dots, where a dot is composed of one Zn atom on a Si dimer and the other two in the neighboring two hollow sites. When the Si(1 0 0)-2x1 surface is covered with one monolayer of Zn, a 4x1 structure is established. More deposition of Zn on the 4x1 monolayer grows into three-dimensional Zn islands

  7. Two-dimensional Si nanosheets with local hexagonal structure on a MoS(2) surface.

    Science.gov (United States)

    Chiappe, Daniele; Scalise, Emilio; Cinquanta, Eugenio; Grazianetti, Carlo; van den Broek, Bas; Fanciulli, Marco; Houssa, Michel; Molle, Alessandro

    2014-04-02

    The structural and electronic properties of a Si nanosheet (NS) grown onto a MoS2 substrate by means of molecular beam epitaxy are assessed. Epitaxially grown Si is shown to adapt to the trigonal prismatic surface lattice of MoS2 by forming two-dimensional nanodomains. The Si layer structure is distinguished from the underlying MoS2 surface structure. The local electronic properties of the Si nanosheet are dictated by the atomistic arrangement of the layer and unlike the MoS2 hosting substrate they are qualified by a gap-less density of states. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electronic structure of p type Delta doped systems

    International Nuclear Information System (INIS)

    Gaggero S, L.M.; Perez A, R.

    1998-01-01

    We summarize of the results obtained for the electronic structure of quantum wells that consist in an atomic layer doped with impurities of p type. The calculations are made within the frame worth of the wrapper function approach to independent bands and with potentials of Hartree. We study the cases reported experimentally (Be in GaAs and B in Si). We present the levels of energy, the wave functions and the rate of the electronic population between the different subbands, as well as the dependence of these magnitudes with the density of impurities in the layer. The participation of the bans of heavy holes is analysed, light and split-off band in the total electronic population. The effect of the temperature is discussed and we give a possible qualitative explanation of the experimental optical properties. (Author)

  9. Effect of neutron irradiation on p-type silicon

    International Nuclear Information System (INIS)

    Sopko, B.

    1973-01-01

    The possibilities are discussed of silicon isotope reactions with neutrons of all energies. In the reactions, 30 Si is converted to a stable phosphorus isotope forming n-type impurities in silicon. The above reactions proceed as a result of thermal neutron irradiation. An experiment is reported involving irradiation of two p-type silicon single crystals having a specific resistance of 2000 ohm.cm and 5000 to 20 000 ohm.cm, respectively, which changed as a result of irradiation into n-type silicon with a given specific resistance. The specific resistance may be pre-calculated from the concentration of impurities and the time of irradiation. The effects of irradiation on other silicon parameters and thus on the suitability of silicon for the manufacture of semiconductor elements are discussed. (J.K.)

  10. Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces

    Science.gov (United States)

    Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong

    2004-10-01

    Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.

  11. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    International Nuclear Information System (INIS)

    Christensen-Dalsgaard, Joergen; Carpenter, Kenneth G; Schrijver, Carolus J; Karovska, Margarita

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a 'Landmark/Discovery Mission' in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  12. Direct Imaging of Stellar Surfaces: Results from the Stellar Imager (SI) Vision Mission Study

    Science.gov (United States)

    Carpenter, Kenneth; Schrijver, Carolus; Karovska, Margarita

    2006-01-01

    The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and stellar interiors (via asteroseismology) and of the Universe in general. SI is identified as a "Flagship and Landmark Discovery Mission'' in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory'' in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes: The 0.1 mas resolution of this deep-space telescope will transform point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we will discuss the results of the SI Vision Mission Study, elaborating on the science goals of the SI Mission and a mission architecture that could meet those goals.

  13. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Christensen-Dalsgaard, Joergen [Department of Physics and Astronomy, Aarhus University (Denmark); Carpenter, Kenneth G [Code 667 NASA-GSFC, Greenbelt, MD 20771 (United States); Schrijver, Carolus J [LMATC 3251 Hanover St., Bldg. 252, Palo Alto, CA 94304 (United States); Karovska, Margarita, E-mail: jcd@phys.au.d, E-mail: Kenneth.G.Carpenter@nasa.gov, E-mail: schryver@lmsal.com, E-mail: karovska@head.cfa.harvard.edu [60 Garden St., Cambridge, MA 02138 (United States)

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a 'Landmark/Discovery Mission' in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  14. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    Science.gov (United States)

    Christensen-Dalsgaard, Jørgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita; Si Team

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a "Landmark/Discovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  15. Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces.

    Science.gov (United States)

    Briand, Elisabeth; Humblot, Vincent; Landoulsi, Jessem; Petronis, Sarunas; Pradier, Claire-Marie; Kasemo, Bengt; Svedhem, Sofia

    2011-01-18

    The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described

  16. Fabrication and surface passivation of porous 6H-SiC by atomic layer deposited films

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Petersen, Paul Michael

    2016-01-01

    Porous 6H-SiC samples with different thicknesses were fabricated through anodic etching in diluted hydrofluoric acid. Scanning electron microscope images show that the dendritic pore formation in 6HSiC is anisotropic, which has different lateral and vertical formation rates. Strong photoluminesce...... above the 6H-SiC crystal band gap, which suggests that the strong photoluminescence is ascribed to surface state produced during the anodic etching....

  17. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Ferralis, Nicola; Carraro, Carlo

    2014-01-01

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm −1 corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching

  18. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferralis, Nicola, E-mail: ferralis@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Carraro, Carlo [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-11-30

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm{sup −1} corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching.

  19. Effect of surface passivation by SiN/SiO2 of AlGaN/GaN high-electron mobility transistors on Si substrate by deep level transient spectroscopy method

    International Nuclear Information System (INIS)

    Gassoumi, Malek; Mosbahi, Hana; Zaidi, Mohamed Ali; Gaquiere, Christophe; Maaref, Hassen

    2013-01-01

    Device performance and defects in AlGaN/GaN high-electron mobility transistors have been correlated. The effect of SiN/SiO 2 passivation of the surface of AlGaN/GaN high-electron mobility transistors on Si substrates is reported on DC characteristics. Deep level transient spectroscopy (DLTS) measurements were performed on the device after the passivation by a (50/100 nm) SiN/SiO 2 film. The DLTS spectra from these measurements showed the existence of the same electron trap on the surface of the device

  20. Adsorption of 1,3-butadiene on Si(111)7x7 surface

    International Nuclear Information System (INIS)

    An, K.-S.; Kim, Y.; Baik, J.Y.; Park, C.-Y.; Kim, B.

    2004-01-01

    Full text: The adsorption of 1,3-butadiene (BD : C 4 H 10 ) on the Si(111)7x7 surface has been investigated using synchrotron radiation photoemission spectroscopy and scanning tunneling microscopy. BD adsorbs on the Si(111)7x7 surface at room temperature, not only adatom-rest-atom bridging but also adatom-adatom bridging type. In the valence band spectrum for the Si(111)7x7 surface, the adatom and rest-atom states were observed at the binding energies of about 0.2 and 0.8 eV, respectively. With increasing BD exposure, the adatom state is completely quenched at an initial exposure, while the rest-atom state disappears at higher exposure. This indicates two different reaction pathways of BD on the Si(111)7x7 surface. STM shows three different adsorption types on the 7x7 surface, two adatom-adatom bridging and one adatom-rest-atom bridging types. By comparing the valence band and Si 2p core level spectra with STM images, it was found that the chemical reactivity of BD molecule with the adatom-rest-atom pair is strongly higher than the adatom-adatom pair

  1. Fracture surface analysis on nano-SiO{sub 2}/epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Rongguo [Institute of Fundamental Mechanics and Material Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Hunan 411105 (China)], E-mail: zhaorongguo@xtu.edu.cn; Luo Wenbo [Institute of Fundamental Mechanics and Material Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Hunan 411105 (China)

    2008-06-15

    Fracture surface morphologies of nano-SiO{sub 2}/epoxy composite with different weight percentage of SiO{sub 2} are investigated using scanning electron microscopy. Two types of curing agent, dimethylbenzanthracene (DMBA) and methyltetrahydrophthalic anhydride (MeTHPA), are individually used for preparing the composites. It is found that the fracture surface morphology of the composite cured by DMBA shows as radial striations, which suggests a rapid brittle fracture mode, while the fracture surface morphology of the composite cured by MeTHPA shows as regularly spaced 'rib' markings, which indicates a stick-slip motion during the fracture process. Furthermore, the uniaxial tensile behavior under constant loading rate and ambient temperature are investigated. It is shown that the elastic modulus of the composite cured by DMBA firstly increases, and then decreases with the mass fraction of nano-SiO{sub 2} particles, but the elongation of the composite cured by MeTHPA is reversed with increasing fraction of nano-SiO{sub 2} particles. For nano-SiO{sub 2}/epoxy composite cured with MeTHPA that possesses a suitable fraction of nano-SiO{sub 2}, an excellent synthetic mechanical property on elastic modulus and elongation is obtained.

  2. Role of SiC substrate surface on local tarnishing of deposited silver mirror stacks

    Science.gov (United States)

    Limam, Emna; Maurice, Vincent; Seyeux, Antoine; Zanna, Sandrine; Klein, Lorena H.; Chauveau, Grégory; Grèzes-Besset, Catherine; Savin De Larclause, Isabelle; Marcus, Philippe

    2018-04-01

    The role of the SiC substrate surface on the resistance to the local initiation of tarnishing of thin-layered silver stacks for demanding space mirror applications was studied by combined surface and interface analysis on model stack samples deposited by cathodic magnetron sputtering and submitted to accelerated aging in gaseous H2S. It is shown that suppressing the surface pores resulting from the bulk SiC material production process by surface pretreatment eliminates the high aspect ratio surface sites that are imperfectly protected by the SiO2 overcoat after the deposition of silver. The formation of channels connecting the silver layer to its environment through the failing protection layer at the surface pores and locally enabling H2S entry and Ag2S growth as columns until emergence at the stack surface is suppressed, which markedly delays tarnishing initiation and thereby preserves the optical performance. The results revealed that residual tarnishing initiation proceeds by a mechanism essentially identical in nature but involving different pathways short circuiting the protection layer and enabling H2S ingress until the silver layer. These permeation pathways are suggested to be of microstructural origin and could correspond to the incompletely coalesced intergranular boundaries of the SiO2 layer.

  3. Adsorption of carbon monoxide on the Si(111)-7 × 7 surface

    Energy Technology Data Exchange (ETDEWEB)

    Shong, Bonggeun, E-mail: bshong@cnu.ac.kr

    2017-05-31

    Highlights: • Detailed chemistry of CO with the Si(111)-7 × 7 surface is computationally studied. • On-top on rest-atoms and back-bond insertion on adatoms are suggested geometries. • The two structures exhibit no activation barrier for adsorption and significant stability. • Geometrical and spectroscopic properties of CO adsorbates are predicted. • Direction of the interfacial charge transfer depends on the bonding configuration. - Abstract: The adsorption of CO and surface chemistry of Si are well-understood topics in surface science. However, research into the adsorption of CO on the Si(111)-7 × 7 surface is deficient. In this study, the adsorption of CO on Si(111)-7 × 7 is investigated via high-level density functional theory calculations using cluster model. Two adsorption configurations are found to be kinetically and thermodynamically viable: on-top on rest-atoms and back-bond insertion on adatoms, both binding to the surface via C atom. Structural, electronic, and spectroscopic properties of the adsorbates indicate a σ-donating/π-accepting nature of the CO−Si bonds in both configurations. The domination of σ-donation in the on-top configuration results in a net positive charge on the on-top adsorbate, and the opposite situation yields a net negative charge on the back-bond insertion adsorbates. Our study provides a detailed understanding of the previous experimental observations of fundamental surface chemical phenomena, suggesting possible applications of Si surface functionalization using CO.

  4. Effects of surface crystallization and oxidation in nanocrystalline FeNbCuSiB(P) ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Butvinová, B., E-mail: beata.butvinova@savba.sk [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Butvin, P. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Brzózka, K. [Department of Physics, University of Technology and Humanities in Radom, Krasickiego 54, 26-600 Radom (Poland); Kuzminski, M. [Institute of Physics PAS, Al. Lotnikow 36/42, 02-668 Warsaw (Poland); Maťko, I.; Švec Sr, P. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Chromčíková, M. [Institute of Inorg. Chem. SAS, Centrum VILA, Študentská 2, 911 50 Trenčín (Slovakia)

    2017-02-15

    Si-poor Fe{sub 74}Nb{sub 3}Cu{sub 1}Si{sub 8}B{sub 14−x}P{sub x}, (x=0, 3) nanocrystalline ribbon-form alloys often form surfaces, which exert in-plane force on underlying ribbon interior when nanocrystallized in even modest presence of oxygen. Mostly unwanted hard-ribbon-axis magnetic anisotropy is standard result. Essential sources of the surface-caused stress have been sought and influence of P instead of B substitution on this effect was studied too. Preferred surface crystallization (PSC) was found to be the major reason. However P substitution suppresses PSC and promotes Fe-oxide formation, which eases the stress, softens the surfaces and provides different annealing evolution of surface properties. - Highlights: • Ar anneal of low-Si FeNbCuBSi ribbons produce surfaces that stress ribbon interior. • The stress comes mainly from preferred crystallization of surfaces. • Partial substitution of B by P changes annealing evolution of surface properties. • Without P, more crystalline surfaces significantly reduce ribbon's elasticity. • P suppresses surface crystallinity, promotes oxides and reduces mutual stress.

  5. Surface morphology of amorphous germanium thin films following thermal outgassing of SiO2/Si substrates

    International Nuclear Information System (INIS)

    Valladares, L. de los Santos; Dominguez, A. Bustamante; Llandro, J.; Holmes, S.; Quispe, O. Avalos; Langford, R.; Aguiar, J. Albino; Barnes, C.H.W.

    2014-01-01

    Highlights: • Annealing promotes outgassing of SiO 2 /Si wafers. • Outgassing species embed in the a-Ge film forming bubbles. • The density of bubbles obtained by slow annealing is smaller than by rapid annealing. • The bubbles explode after annealing the samples at 800 °C. • Surface migration at higher temperatures forms polycrystalline GeO 2 islands. - Abstract: In this work we report the surface morphology of amorphous germanium (a-Ge) thin films (140 nm thickness) following thermal outgassing of SiO 2 /Si substrates. The thermal outgassing was performed by annealing the samples in air at different temperatures from 400 to 900 °C. Annealing at 400 °C in slow (2 °C/min) and fast (10 °C/min) modes promotes the formation of bubbles on the surface. A cross sectional view by transmission electron microscope taken of the sample slow annealed at 400 °C reveals traces of gas species embedded in the a-Ge film, allowing us to propose a possible mechanism for the formation of the bubbles. The calculated internal pressure and number of gas molecules for this sample are 30 MPa and 38 × 10 8 , respectively. Over an area of 22 × 10 −3 cm 2 the density of bubbles obtained at slow annealing (9 × 10 3 cm −2 ) is smaller than that at rapid annealing (6.4 × 10 4 cm −2 ), indicating that the amount of liberated gas in both cases is only a fraction of the total gas contained in the substrate. After increasing the annealing temperature in the slow mode, bubbles of different diameters (from tens of nanometers up to tens of micrometers) randomly distribute over the Ge film and they grow with temperature. Vertical diffusion of the outgas species through the film dominates the annealing temperature interval 400–600 °C, whereas coalescence of bubbles caused by lateral diffusion is detected after annealing at 700 °C. The bubbles explode after annealing the samples at 800 °C. Annealing at higher temperatures, such as 900 °C, leads to surface migration of the

  6. Surface morphology of amorphous germanium thin films following thermal outgassing of SiO{sub 2}/Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, L. de los Santos, E-mail: ld301@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE (United Kingdom); Dominguez, A. Bustamante [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Apartado Postal 14-0149, Lima (Peru); Llandro, J.; Holmes, S. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE (United Kingdom); Quispe, O. Avalos [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Apartado Postal 14-0149, Lima (Peru); Langford, R. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE (United Kingdom); Aguiar, J. Albino [Laboratório de Supercondutividade e Materiais Avançados, Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife (Brazil); Barnes, C.H.W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE (United Kingdom)

    2014-10-15

    Highlights: • Annealing promotes outgassing of SiO{sub 2}/Si wafers. • Outgassing species embed in the a-Ge film forming bubbles. • The density of bubbles obtained by slow annealing is smaller than by rapid annealing. • The bubbles explode after annealing the samples at 800 °C. • Surface migration at higher temperatures forms polycrystalline GeO{sub 2} islands. - Abstract: In this work we report the surface morphology of amorphous germanium (a-Ge) thin films (140 nm thickness) following thermal outgassing of SiO{sub 2}/Si substrates. The thermal outgassing was performed by annealing the samples in air at different temperatures from 400 to 900 °C. Annealing at 400 °C in slow (2 °C/min) and fast (10 °C/min) modes promotes the formation of bubbles on the surface. A cross sectional view by transmission electron microscope taken of the sample slow annealed at 400 °C reveals traces of gas species embedded in the a-Ge film, allowing us to propose a possible mechanism for the formation of the bubbles. The calculated internal pressure and number of gas molecules for this sample are 30 MPa and 38 × 10{sup 8}, respectively. Over an area of 22 × 10{sup −3} cm{sup 2} the density of bubbles obtained at slow annealing (9 × 10{sup 3} cm{sup −2}) is smaller than that at rapid annealing (6.4 × 10{sup 4} cm{sup −2}), indicating that the amount of liberated gas in both cases is only a fraction of the total gas contained in the substrate. After increasing the annealing temperature in the slow mode, bubbles of different diameters (from tens of nanometers up to tens of micrometers) randomly distribute over the Ge film and they grow with temperature. Vertical diffusion of the outgas species through the film dominates the annealing temperature interval 400–600 °C, whereas coalescence of bubbles caused by lateral diffusion is detected after annealing at 700 °C. The bubbles explode after annealing the samples at 800 °C. Annealing at higher temperatures, such as

  7. Modification of Au and Si(111):H surfaces towards biological sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Rappich, Joerg [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institut fuer Si Photovoltaik, Berlin (Germany); Sun, Guoguang; Hinrichs, Karsten; Rosu, Dana; Esser, Norbert [ISAS-Institute for Analytical Sciences, Department Berlin (Germany); Hovestaedt, Marc; Ay, Bernhard; Volkmer, Rudolf [Institut fuer Medizinische Immunologie, Charite Berlin, Berlin (Germany); Janietz, Silvia [Fraunhofer-Institut fuer Angewandte Polymerforschung, Golm (Germany)

    2010-07-01

    Within the topics to grow functional organic surfaces for biosensors we grafted carboxylbenzene, aminobenzene and maleimidobenzene onto Au and H-terminated Si surfaces by electrochemical deposition from 4-carboxylbenzene-diazonium tetrafluoroborate (4-CBDT), 4-aminobenzene-diazonium tetrafluoroborate (4-ABDT) and 4-maleimidobenzene-diazonium tetrafluoroborate (4-MBDT).The electron injection to the diazonium compound in solution (cathodic current) leads to the formation of intermediate radicals, which further react with the surface (Au or Si:H) and the respective molecule is grafted onto the surface.The aim was to functionalise these surfaces for further reaction with corresponding amines, acids or cysteine-modified peptides. Ex-situ infrared spectroscopic ellipsometry (IRSE) was applied to inspect the surface species before and after the functionalisation.

  8. Nanofabrication on a Si surface by slow highly charged ion impact

    International Nuclear Information System (INIS)

    Tona, Masahide; Watanabe, Hirofumi; Takahashi, Satoshi; Nakamura, Nobuyuki; Yoshiyasu, Nobuo; Sakurai, Makoto; Terui, Toshifumi; Mashiko, Shinro; Yamada, Chikashi; Ohtani, Shunsuke

    2007-01-01

    We have observed surface chemical reactions which occur at the impact sites on a Si(1 1 1)-(7 x 7) surface and a highly oriented pyrolytic graphite (HOPG) surface bombarded by highly charged ions (HCIs) by using a scanning tunneling microscope (STM). Crater structures are formed on the Si(1 1 1)-(7 x 7) surface by single I 50+ -impacts. STM-observation for the early step of oxidation on the surface suggests that the impact site is so active that dangling bonds created by HCI impacts are immediately quenched by reaction with residual gas molecules. We show also the selective adsorption of organic molecules at a HCI-induced impact site on the HOPG surface

  9. Topological states in a two-dimensional metal alloy in Si surface: BiAg/Si(111)-4 ×4 surface

    Science.gov (United States)

    Zhang, Xiaoming; Cui, Bin; Zhao, Mingwen; Liu, Feng

    2018-02-01

    A bridging topological state with a conventional semiconductor platform offers an attractive route towards future spintronics and quantum device applications. Here, based on first-principles and tight-binding calculations, we demonstrate the existence of topological states hosted by a two-dimensional (2D) metal alloy in a Si surface, the BiAg/Si(111)-4 ×4 surface, which has already been synthesized experimentally. It exhibits a topological insulating state with an energy gap of 71 meV (˜819 K ) above the Fermi level and a topological metallic state with quasiquantized conductance below the Fermi level. The underlying mechanism leading to the formation of such nontrivial states is revealed by analysis of the "charge-transfer" and "orbital-filtering" effect of the Si substrate. A minimal effective tight-binding model is employed to reveal the formation mechanism of the topological states. Our finding opens opportunities to detect topological states and measure its quantized conductance in a large family of 2D surface metal alloys, which have been or are to be grown on semiconductor substrates.

  10. Ionization of xenon Rydberg atoms at Si(1 0 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, H.R. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States); Wethekam, S. [Institut fuer Physik der Humboldt-Universitaet zu Berlin, Newtonstra. 15, D-12489, Berlin (Germany); Lancaster, J.C. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States); Dunning, F.B. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States)]. E-mail: fbd@rice.edu

    2007-03-15

    The ionization of xenon Rydberg atoms excited to the lowest states in the n = 17 and n = 20 Stark manifolds at Si(1 0 0) surfaces is investigated. It is shown that, under appropriate conditions, a sizable fraction of the incident atoms can be detected as ions. Although the onset in the ion signal is perturbed by stray fields present at the surface, the data are consistent with ionization rates similar to those measured earlier at metal surfaces.

  11. Removal of copper and nickel contaminants from Si surface by use of cyanide solutions

    International Nuclear Information System (INIS)

    Fujiwara, N.; Liu, Y.-L.; Nakamura, T.; Maida, O.; Takahashi, M.; Kobayashi, H.

    2004-01-01

    The cleaning method using cyanide solutions has been developed to remove heavy metals such as copper (Cu) and nickel (Ni) from Si surfaces. Immersion of Si wafers with both Cu and Ni contaminants in potassium cyanide (KCN) solutions of methanol at room temperature decreases these surface concentrations below the detection limit of total reflection X-ray fluorescence spectroscopy of ∼3x10 9 atoms/cm 2 . UV spectra of the KCN solutions after cleaning of the Cu-contaminated Si surface show that stable copper-cyanide complexes are formed in the solution, leading to the prevention of the re-adsorption of copper in the solutions. From the complex stability constants, it is concluded that the Cu(CN) 4 3- is the most dominant species in the KCN solutions

  12. In situ study of nitrobenzene grafting on Si(111)-H surfaces by infrared spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Rappich, J. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institut fuer Silizium-Photovoltaik, Kekulestr. 5, 12489 Berlin (Germany); Hinrichs, K. [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany)

    2009-12-15

    The binding of nitrobenzene (NB) molecules from a solution of 4-nitrobenzene-diazonium-tetrafluoroborate on a Si(111)-H surface was investigated during the electrochemical processing in diluted sulphuric acid by means of infrared spectroscopic ellipsometry (IR-SE). The grafting was monitored by an increase in specific IR absorption bands due to symmetric and anti-symmetric NO{sub 2} stretching vibrations in the 1400-1700 cm{sup -1} regime. The p- and s-polarized reflectances were recorded within 20 s for each spectrum only. NB molecules were detected when bonded to the Si(111) surface but not in the 2 mM solution itself. Oxide formation on the NB grafted Si surface was observed after drying in inert atmosphere and not during the grafting process in the aqueous solution. (author)

  13. Self-assembly of InAs and Si/Ge quantum dots on structured surfaces

    International Nuclear Information System (INIS)

    Patella, F; Sgarlata, A; Arciprete, F; Nufris, S; Szkutnik, P D; Placidi, E; Fanfoni, M; Motta, N; Balzarotti, A

    2004-01-01

    We discuss the self-aggregation process of InAs and Si-Ge quantum dots (QDs) on natural and patterned GaAs(001) and Si(001) and Si(111) surfaces, with reference to our recent studies with scanning tunnelling and atomic force microscopy and current experimental and theoretical works. Various methods for obtaining naturally structured surfaces are briefly surveyed, as the patterning formed by the surface instability and by the strain in mismatched heteroepitaxy, and the latest methods of pre-patterning and growth at selected sites are discussed. Basic topics are also addressed that determine the final morphology of QDs, such as the wetting layer formation, the elastic strain field and the two-dimensional to three-dimensional phase transition

  14. Surface morphologies of excimer-laser annealed BF2+ implanted Si diodes

    International Nuclear Information System (INIS)

    Burtsev, A.; Schut, H.; Nanver, L.K.; Veen, A. van; Slabbekoorn, J.; Scholtes, T.L.M.

    2004-01-01

    Laser-induced surface roughness and damage formation in ultra-shallow n + -p and p + -n junctions, formed by low energy (5 keV) As + and BF 2 + implantations in Si, respectively, with a dose of 1 x 10 15 cm -2 have been investigated by atomic force microscopy (AFM) and Positron Annihilation Doppler Broadening (PADB) technique. The Si surface roughness is found to increase with laser energy density, and reaches a value of 3.5 nm after excimer-laser annealing (ELA) at 1100 mJ/cm 2 . However, anomalous behavior is witnessed for BF 2 + -implanted Si sample at 800 mJ/cm 2 , at which energy very high surface protrusions up to 9 nm high are observed. By PADB this behavior is correlated to extensive deep microcavity formation in the Si whereby the volatile F 2 fraction can accumulate and evaporate/out-diffuse, leading to Si surface roughening. The consequences for the diode characteristics and contact resistivity are examined

  15. Residual thermal desorption studies of Ga adatoms on trenched Si(5 5 12) surface

    International Nuclear Information System (INIS)

    Kumar, Praveen; Kumar, Mahesh; Shivaprasad, S.M.

    2013-01-01

    We present here the thermal stability studies of the room temperature adsorbed Ga/Si(5 5 12) interfaces in the monolayer coverage regime, using AES and LEED as in-situ UHV characterization probes. Ga grows in Stranski–Krastanov growth mode at RT on the 2 × 1 reconstructed Si(5 5 12) surface where islands form on top of 2 ML of flat pseudomorphic Ga, yielding a (1 × 1) LEED pattern for coverages of 1.2 ML and above. When this RT adsorbed Ga/Si(5 5 12) interface is annealed at different temperatures, initially the strained Ga adlayers relax by agglomerating into 3D islands on top of a single Ga monolayer with an activation energy of 0.19 eV in the temperature range of 200–300 °C. The remnant Ga monolayer with a sharp (1 × 1) LEED pattern desorbs at temperature >400 °C, yielding the (1 1 2)–6 × 1 and 2 × (3 3 7) sub-monolayer superstructural. Finally at 720 °C Ga completely desorbs from the surface and leaves the clean 2 × 1 reconstructed Si(5 5 12) surface. The studies demonstrate the richness of the atomically trenched high index Si(5 5 12) surface, in obtaining several anisotropic features that can be used as templates to grow self-assembled nanostructures.

  16. Residual thermal desorption studies of Ga adatoms on trenched Si(5 5 12) surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Kumar, Mahesh [Physics and Energy Harvesting Group, National Physical Laboratory, New Delhi 110012 (India); Shivaprasad, S.M., E-mail: smsprasad@jncasr.ac.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2013-10-01

    We present here the thermal stability studies of the room temperature adsorbed Ga/Si(5 5 12) interfaces in the monolayer coverage regime, using AES and LEED as in-situ UHV characterization probes. Ga grows in Stranski–Krastanov growth mode at RT on the 2 × 1 reconstructed Si(5 5 12) surface where islands form on top of 2 ML of flat pseudomorphic Ga, yielding a (1 × 1) LEED pattern for coverages of 1.2 ML and above. When this RT adsorbed Ga/Si(5 5 12) interface is annealed at different temperatures, initially the strained Ga adlayers relax by agglomerating into 3D islands on top of a single Ga monolayer with an activation energy of 0.19 eV in the temperature range of 200–300 °C. The remnant Ga monolayer with a sharp (1 × 1) LEED pattern desorbs at temperature >400 °C, yielding the (1 1 2)–6 × 1 and 2 × (3 3 7) sub-monolayer superstructural. Finally at 720 °C Ga completely desorbs from the surface and leaves the clean 2 × 1 reconstructed Si(5 5 12) surface. The studies demonstrate the richness of the atomically trenched high index Si(5 5 12) surface, in obtaining several anisotropic features that can be used as templates to grow self-assembled nanostructures.

  17. Ultraclean Si/Si interface formation by surface preparation and direct bonding in ultrahigh vacuum

    DEFF Research Database (Denmark)

    Hermansson, Karin; Grey, Francois; Bengtsson, Stefan

    1998-01-01

    Silicon surfaces have been cleaned and bonded in ultrahigh vacuum, at a pressure in the 10(-10) Torr range. The bonded interfaces show extremely low contamination levels as measured by secondary ion mass spectroscopy. Nevertheless, a potential barrier could be detected at the interface by spreading...

  18. Adsorption/desorption kinetics of Na atoms on reconstructed Si (111)-7 x 7 surface

    International Nuclear Information System (INIS)

    Chauhan, Amit Kumar Singh; Govind; Shivaprasad, S.M.

    2010-01-01

    Self-assembled nanostructures on a periodic template are fundamentally and technologically important as they put forward the possibility to fabricate and pattern micro/nano-electronics for sensors, ultra high-density memories and nanocatalysts. Alkali-metal (AM) nanostructure grown on a semiconductor surface has received considerable attention because of their simple hydrogen like electronic structure. However, little efforts have been made to understand the fundamental aspects of the growth mechanism of self-assembled nanostructures of AM on semiconductor surfaces. In this paper, we report organized investigation of kinetically controlled room-temperature (RT) adsorption/desorption of sodium (Na) metal atoms on clean reconstructed Si (111)-7 x 7 surface, by X-ray photoelectron spectroscopy (XPS). The RT uptake curve shows a layer-by-layer growth (Frank-vander Merve growth) mode of Na on Si (111)-7 x 7 surfaces and a shift is observed in the binding energy position of Na (1s) spectra. The thermal stability of the Na/Si (111) system was inspected by annealing the system to higher substrate temperatures. Within a temperature range from RT to 350 o C, the temperature induced mobility to the excess Na atoms sitting on top of the bilayer, allowing to arrange themselves. Na atoms desorbed over a wide temperature range of 370 o C, before depleting the Si (111) surface at temperature 720 o C. The acquired valence-band (VB) spectra during Na growth revealed the development of new electronic-states near the Fermi level and desorption leads the termination of these. For Na adsorption up to 2 monolayers, decrease in work function (-1.35 eV) was observed, whereas work function of the system monotonically increases with Na desorption from the Si surface as observed by other studies also. This kinetic and thermodynamic study of Na adsorbed Si (111)-7 x 7 system can be utilized in fabrication of sensors used in night vision devices.

  19. Fabrication of a bionic microstructure on a C/SiC brake lining surface: Positive applications of surface defects for surface wetting control

    Science.gov (United States)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.; Zhou, C. L.

    2018-05-01

    The material removal processes generate interesting surface topographies, unfortunately, that was usually considered to be surface defects. To date, little attention has been devoted to the positive applications of these interesting surface defects resulted from laser ablation to improve C/SiC surface wettability. In this study, the formation mechanism behind surface defects (residual particles) is discussed first. The results showed that the residual particles with various diameters experienced regeneration and migration, causing them to accumulate repeatedly. The effective accumulation of these residual particles with various diameters provides a new method about fabricating bionic microstructures for surface wetting control. The negligible influence of ablation processes on the chemical component of the subsurface was studied by comparing the C-O-Si weight percentage at the C/SiC subsurface. A group of microstructures were fabricated under different laser trace and different laser parameters. Surface wettability experimental results for different types of microstructures were compared. The results showed that the surface wettability increased as the laser scanning speed decreased. The surface wettability increased with the density of the laser scanning trace. We also demonstrated the application of optimized combination of laser parameters and laser trace to simulate a lotus leaf's microstructure on C/SiC surfaces. The parameter selection depends on the specific material properties.

  20. Disordered electrical potential observed on the surface of SiO2 by electric field microscopy

    International Nuclear Information System (INIS)

    GarcIa, N; Yan Zang; Ballestar, A; Barzola-Quiquia, J; Bern, F; Esquinazi, P

    2010-01-01

    The electrical potential on the surface of ∼300 nm thick SiO 2 grown on single-crystalline Si substrates has been characterized at ambient conditions using electric field microscopy. Our results show an inhomogeneous potential distribution with fluctuations up to ∼0.4 V within regions of 1 μm. The potential fluctuations observed at the surface of these usual dielectric holders of graphene sheets should induce strong variations in the graphene charge densities and provide a simple explanation for some of the anomalous behaviors of the transport properties of graphene.

  1. Desorption dynamics of deuterium molecules from the Si(100)-(3×1) dideuteride surface

    OpenAIRE

    Niida, T; Tsurumaki, Hiroshi; Namiki, Akira

    2006-01-01

    We measured polar angle ()-resolved time-of-flight spectra of D2 molecules desorbing from the Si(100)-(3×1) dideuteride surface. The desorbing D2 molecules exhibit a considerable translational heating with mean desorption kinetic energies of 0.25 eV, which is mostly independent of the desorption angles for 0°30°. The observed desorption dynamics of deuterium was discussed along the principle of detailed balance to predict their adsorption dynamics onto the monohydride Si surface.

  2. Ag/SiO2 surface-enhanced Raman scattering substrate for plasticizer detection

    Science.gov (United States)

    Wu, Ming-Chung; Lin, Ming-Pin; Lin, Ting-Han; Su, Wei-Fang

    2018-04-01

    In this study, we demonstrated a simple method of fabricating a high-performance surface-enhanced Raman scattering (SERS) substrate. Monodispersive SiO2 colloidal spheres were self-assembled on a silicon wafer, and then a silver layer was coated on it to obtain a Ag/SiO2 SERS substrate. The Ag/SiO2 SERS substrates were used to detect three kinds of plasticizer with different concentrations, namely, including bis(2-ethylhexyl)phthalate (DEHP), benzyl butyl phthalate (BBP), and dibutyl phthalate (DBP). The enhancement of Raman scattering intensity caused by surface plasmon resonance can be observed using the Ag/SiO2 SERS substrates. The Ag/SiO2 SERS substrate with a 150-nm-thick silver layer can detect plasticizers, and it satisfies the detection limit of plasticizers at 100 ppm. The developed highly sensitive Ag/SiO2 SERS substrates show a potential for the design and fabrication of functional sensors to identify the harmful plasticizers that plastic products release in daily life.

  3. Nitridation of SiO2 for surface passivation

    Science.gov (United States)

    Lai, S. K. C.

    1985-01-01

    An attempt is made to relate the electrical properties of silicon dioxide film to the process history. A model is proposed to explain some of the observed results. It is shown that with our present knowledge of the dielectric, silicon dioxide film shows a lot of promise for its use in surface passivation, both for its resistance to impurity diffusion and for its resistance to radiation damage effects.

  4. Surface segregation of Ge during Si growth on Ge/Si(0 0 1) at low temperature observed by high-resolution RBS

    International Nuclear Information System (INIS)

    Nakajima, K.; Hosaka, N.; Hattori, T.; Kimura, K.

    2002-01-01

    The Si/Ge/Si(0 0 1) multilayer with about 1 ML Ge layer is fabricated by evaporating Si overlayer on a Ge/Si(0 0 1) surface at 20-300 deg. C. The depth profile of the Ge atoms is observed by high-resolution Rutherford backscattering spectroscopy to investigate the possibility of Ge delta doping in Si. The observed profile of the Ge atoms spreads over several atomic layers even at 20 deg. C and a significant amount of Ge is located in the surface layer at higher temperatures. The results at 20-150 deg. C are well explained with two-layer model for surface segregation of the Ge atoms and the segregation rates are estimated. The activation energy for surface segregation of Ge atoms in amorphous Si is evaluated to be 0.035 eV, which is much smaller than the value reported for Si deposition at 500 deg. C. The small activation energy suggests that local heating during the Si deposition is dominant at low temperature

  5. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  6. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Science.gov (United States)

    Lollobrigida, V.; Basso, V.; Borgatti, F.; Torelli, P.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Tortora, L.; Stefani, G.; Panaccione, G.; Offi, F.

    2014-05-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  7. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-01-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  8. Single OR molecule and OR atomic circuit logic gates interconnected on a Si(100)H surface

    International Nuclear Information System (INIS)

    Ample, F; Joachim, C; Duchemin, I; Hliwa, M

    2011-01-01

    Electron transport calculations were carried out for three terminal OR logic gates constructed either with a single molecule or with a surface dangling bond circuit interconnected on a Si(100)H surface. The corresponding multi-electrode multi-channel scattering matrix (where the central three terminal junction OR gate is the scattering center) was calculated, taking into account the electronic structure of the supporting Si(100)H surface, the metallic interconnection nano-pads, the surface atomic wires and the molecule. Well interconnected, an optimized OR molecule can only run at a maximum of 10 nA output current intensity for a 0.5 V bias voltage. For the same voltage and with no molecule in the circuit, the output current of an OR surface atomic scale circuit can reach 4 μA.

  9. Growth of graphene from SiC{0001} surfaces and its mechanisms

    International Nuclear Information System (INIS)

    Norimatsu, Wataru; Kusunoki, Michiko

    2014-01-01

    Graphene, a one-atom-layer carbon material, can be grown by thermal decomposition of SiC. On Si-terminated SiC(0001), graphene nucleates at steps and grows layer-by-layer, and as a result a homogeneous monolayer or bilayer can be obtained. We demonstrate this mechanism both experimentally and theoretically. On the C-face (000 1-bar ), multilayer graphene nucleates not only at steps, but also on the terraces. These differences reflect the distinct differences in the reactivity of these faces. Due to its high quality and structural controllability, graphene on SiC{0001} surfaces will be a platform for high-speed graphene device applications. (paper)

  10. Development of a classical force field for the oxidized Si surface: application to hydrophilic wafer bonding.

    Science.gov (United States)

    Cole, Daniel J; Payne, Mike C; Csányi, Gábor; Spearing, S Mark; Colombi Ciacchi, Lucio

    2007-11-28

    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.

  11. Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics.

    Science.gov (United States)

    Wang, Z F; Liu, Feng

    2015-07-10

    Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1/3 monolayer halogen coverage. The sp(3) dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (∼10(6)  m/s) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.

  12. SiGe Based Low Temperature Electronics for Lunar Surface Applications

    Science.gov (United States)

    Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John

    2012-01-01

    The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.

  13. Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO2.

    Science.gov (United States)

    Gasvoda, Ryan J; van de Steeg, Alex W; Bhowmick, Ranadeep; Hudson, Eric A; Agarwal, Sumit

    2017-09-13

    Surface phenomena during atomic layer etching (ALE) of SiO 2 were studied during sequential half-cycles of plasma-assisted fluorocarbon (CF x ) film deposition and Ar plasma activation of the CF x film using in situ surface infrared spectroscopy and ellipsometry. Infrared spectra of the surface after the CF x deposition half-cycle from a C 4 F 8 /Ar plasma show that an atomically thin mixing layer is formed between the deposited CF x layer and the underlying SiO 2 film. Etching during the Ar plasma cycle is activated by Ar + bombardment of the CF x layer, which results in the simultaneous removal of surface CF x and the underlying SiO 2 film. The interfacial mixing layer in ALE is atomically thin due to the low ion energy during CF x deposition, which combined with an ultrathin CF x layer ensures an etch rate of a few monolayers per cycle. In situ ellipsometry shows that for a ∼4 Å thick CF x film, ∼3-4 Å of SiO 2 was etched per cycle. However, during the Ar plasma half-cycle, etching proceeds beyond complete removal of the surface CF x layer as F-containing radicals are slowly released into the plasma from the reactor walls. Buildup of CF x on reactor walls leads to a gradual increase in the etch per cycle.

  14. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites

    International Nuclear Information System (INIS)

    Wang, Fuyuan; Cheng, Laifei; Zhang, Qing; Zhang, Litong

    2014-01-01

    Highlights: • The cauliflower-like microstructure improved the infrared emissivity multiply. • The infrared emissivity decreased continually with the improving surface flatness. • The densification process boosted the infrared emissivity. - Abstract: The effects of surface morphology and densification on the infrared emissivity of 2D C/SiC composites were investigated in 6–16 μm from 1000 °C to 1600 °C. As the sample surface was polished, the reflection and scattering for the electromagnetic waves of thermal radiation were reduced, causing a sustained decrease in the infrared emissivity. The space-variant polarizations caused by the cauliflower-like microstructure were enervated in the smooth surface, which enhanced the reduction trendy in the infrared emissivity. In densification process, the increasing SiC content and the growing amount of the cauliflower-like microstructure on sample surface improved the infrared emissivity of C/SiC composites, while the decreasing porosity decreased it. Due to the greater positive effects on the thermal radiation during the densification process, the infrared emissivity of C/SiC composites increased successively with density

  15. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fuyuan, E-mail: wangfy1986@gmail.com; Cheng, Laifei; Zhang, Qing, E-mail: zhangqing@nwpu.edu.cn; Zhang, Litong

    2014-09-15

    Highlights: • The cauliflower-like microstructure improved the infrared emissivity multiply. • The infrared emissivity decreased continually with the improving surface flatness. • The densification process boosted the infrared emissivity. - Abstract: The effects of surface morphology and densification on the infrared emissivity of 2D C/SiC composites were investigated in 6–16 μm from 1000 °C to 1600 °C. As the sample surface was polished, the reflection and scattering for the electromagnetic waves of thermal radiation were reduced, causing a sustained decrease in the infrared emissivity. The space-variant polarizations caused by the cauliflower-like microstructure were enervated in the smooth surface, which enhanced the reduction trendy in the infrared emissivity. In densification process, the increasing SiC content and the growing amount of the cauliflower-like microstructure on sample surface improved the infrared emissivity of C/SiC composites, while the decreasing porosity decreased it. Due to the greater positive effects on the thermal radiation during the densification process, the infrared emissivity of C/SiC composites increased successively with density.

  16. Correlating the silicon surface passivation to the nanostructure of low-temperature a-Si:H after rapid thermal annealing

    NARCIS (Netherlands)

    Macco, B.; Melskens, J.; Podraza, N.J.; Arts, K.; Pugh, C.; Thomas, O.; Kessels, W.M.M.

    2017-01-01

    Using an inductively coupled plasma, hydrogenated amorphous silicon (a-Si:H) films have been prepared at very low temperatures (<50 °C) to provide crystalline silicon (c-Si) surface passivation. Despite the limited nanostructural quality of the a-Si:H bulk, a surprisingly high minority carrier

  17. Adsorption properties of AlN on Si(111) surface: A density functional study

    Science.gov (United States)

    Yuan, Yinmei; Zuo, Ran; Mao, Keke; Tang, Binlong; Zhang, Zhou; Liu, Jun; Zhong, Tingting

    2018-04-01

    In the process of preparing GaN on Si substrate by MOCVD, an AlN buffer layer is very important. In this study, we conducted density functional theory calculations on the adsorption of AlN molecule on Si(111)-(2 × 2) surface, with the AlN molecule located horizontally or vertically above Si(111) surface at different adsorption sites. The calculations revealed that the lowest adsorption energy was at the N-top-Al-bridge site in the horizontal configuration, with the narrowest band gap, indicating that it was the most preferential adsorption growth status of AlN. In the vertical configurations, N adatom was more reactive and convenient to form bonds with the topmost Si atoms than Al adatom. When the N-end of the AlN molecule was located downward, the hollow site was the preferred adsorption site; when the Al-end was located downward, the bridge site was the most energetically favorable. Moreover, we investigated some electronic properties such as partial density of states, electron density difference, Mulliken populations, etc., revealing the microscale mechanism for AlN adsorption on Si(111) surface and providing theoretical support for adjusting the processing parameters during AlN or GaN production.

  18. Self-trapping nature of Tl nanoclusters on the Si(111)-7x7 surface

    International Nuclear Information System (INIS)

    Hwang, C G; Kim, N D; Lee, G; Shin, S Y; Kim, J S; Chung, J W

    2008-01-01

    We have studied properties of thallium (Tl) nanoclusters formed on the Si(111)-7x7 surface at room temperature (RT) by utilizing photoemission spectroscopy (PES) and high-resolution electron-energy-loss spectroscopy (HREELS) combined with first principles calculations. Our PES data reveal that the surface states stemming from the Si substrate remain quite inert with Tl adsorption producing no Tl-induced state until saturation at Tl coverage θ=0.21 monolayers. Such a behavior, in sharp contrast with the extremely reactive surface states upon the formation of Na or Li nanoclusters, together with the presence of a unique Tl-induced loss peak in HREELS spectra suggests no strong Si-Tl bonding, and is well understood in terms of gradual filling of Si dangling bonds with increasing θ. Our calculation further indicates the presence of several metastable atomic structures of Tl nanoclusters at RT rapidly transforming from one to another faster than 10 10 flippings per second. We thus conclude that the highly mobile Tl atoms form self-trapped nanoclusters within the attractive basins of the Si substrate at RT with several metastable phases. The mobile and multi-phased nature of Tl nanoclusters not only accounts for all the existing experimental observations available at present, but also provides an example of self-trapping of atoms in a nanometre-scale region

  19. A conductive surface coating for Si-CNT radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Antonio, E-mail: antonio.valentini@ba.infn.it [Dipartimento di Fisica, Università degli Studi di Bari, Via Orabona 4, 70125 Bari (Italy); Valentini, Marco [INFN, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy); Ditaranto, Nicoletta [Dipartimento di Chimica, Università degli Studi di Bari, Via Amendola 173, 70126 Bari (Italy); Melisi, Domenico [INFN, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy); Aramo, Carla, E-mail: aramo@na.infn.it [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Ambrosio, Antonio [CNR-SPIN U.O.S. di Napoli and Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II”, Via Cintia 2, 80126 Napoli (Italy); Casamassima, Giuseppe [Dipartimento di Fisica, Università degli Studi di Bari, Via Orabona 4, 70125 Bari (Italy); INFN, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy); Cilmo, Marco [INFN, Sezione di Napoli, and Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II”, Via Cintia 2, 80126 Napoli (Italy); Fiandrini, Emanuele [INFN, Sezione di Perugia, and Dipartimento di Fisica, Università degli Studi di Perugia, Piazza Università 1, 06100 Perugia (Italy); Grossi, Valentina [INFN, Sezione di L’Aquila, and Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio 10 Coppito, 67100 L’Aquila (Italy); and others

    2015-08-01

    Silicon–Carbon Nanotube radiation detectors need an electrically conductive coating layer to avoid the nanotube detachment from the silicon substrate and uniformly transmit the electric field to the entire nanotube active surface. Coating material must be transparent to the radiation of interest, and must provide the drain voltage necessary to collect charges generated by incident photons. For this purpose various materials have been tested and proposed in photodetector and photoconverter applications. In this article interface properties and electrical contact behavior of Indium Tin Oxide films on Carbon Nanotubes have been analyzed. Ion Beam Sputtering has been used to grow the transparent conductive layer on the nanotubes. The films were deposited at room temperature with Oxygen/Argon mixture into the sputtering beam, at fixed current and for different beam energies. Optical and electrical analyses have been performed on films. Surface chemical analysis and in depth profiling results obtained by X-ray Photoelectron Spectroscopy of the Indium Tin Oxide layer on nanotubes have been used to obtain the interface composition. Results have been applied in photodetectors realization based on multi wall Carbon Nanotubes on silicon. - Highlights: • ITO was deposited by Ion Beam Sputtering on MWCNT. • ITO on CNT makes an inter-diffusion layer of the order of one hundred nanometers. • Improvements of quantum efficiency of photon detectors based on CNT with ITO.

  20. Room temperature deposition of amorphous p-type CuFeO2 and ...

    Indian Academy of Sciences (India)

    fabrication of CuFeO2/n-Si heterojunction by RF sputtering method. TAO ZHU1 ... Transparent conducting amorphous p-type CuFeO2 (CFO) thin film was prepared by radio-frequency ... Delafossite oxides CuMO2 (M is trivalent cation, such as.

  1. Low energy Ar ion bombardment damage of Si, GaAs, and InP surfaces

    International Nuclear Information System (INIS)

    Williams, R.S.

    1982-01-01

    Argon bombardment damage to (100) surfaces of Si, GaAs, and InP for sputter ion-gun potentials of 1, 2, and 3 kilovolts was studied using Rutherford backscattering. Initial damage rates and saturation damage levels were determined. Bombardment damage sensitivity increased for the sequence Si, GaAs, and InP. Saturation damage levels for Si and GaAs correspond reasonably to LSS projected range plus standard deviation estimates; damage to InP exceeded this level significantly. For an ion-gun potential of 3 keV, the initial sputter yield of P from an InP surface exceeded the sputter yield of In by four atoms per incident Ar projectile. (author)

  2. Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Kuo, Huei Pei; Hu, Min; Li, Zhiyong; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Ou, Fung Suong [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Rice University, Department of Applied Physics, Houston, TX (United States); Stickle, William F. [Hewlett-Packard Company, Advanced Diagnostic Lab, Corvallis, OR (United States)

    2009-09-15

    We created novel surface-enhanced Raman spectroscopy (SERS) substrates by metalization (Ag) of Si nanograss prepared by a Bosch process which involves deep reactive ion etching of single crystalline silicon. No template or lithography was needed for making the Si nanograss, thus providing a simple and inexpensive method to achieve highly sensitive large-area SERS substrates. The dependence of the SERS effect on the thickness of the metal deposition and on the surface morphology and topology of the substrate prior to metal deposition was studied in order to optimize the SERS signals. We observed that the Ag-coated Si nanograss can achieve uniform SERS enhancement over large area ({proportional_to}1 cm x 1 cm) with an average EF (enhancement factor) of 4.2 x 10{sup 8} for 4-mercaptophenol probe molecules. (orig.)

  3. Superstructure of self-aligned hexagonal GaN nanorods formed on nitrided Si(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen; Tuteja, Mohit; Kesaria, Manoj; Waghmare, U. V.; Shivaprasad, S. M. [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064 (India)

    2012-09-24

    We present here the spontaneous formation of catalyst-free, self-aligned crystalline (wurtzite) nanorods on Si(111) surfaces modified by surface nitridation. Nanorods grown by molecular beam epitaxy on bare Si(111) and non-stoichiometric silicon nitride interface are found to be single crystalline but disoriented. Those grown on single crystalline Si{sub 3}N{sub 4} intermediate layer are highly dense c-oriented hexagonal shaped nanorods. The morphology and the self-assembly of the nanorods shows an ordered epitaxial hexagonal superstructure, suggesting that they are nucleated at screw dislocations at the interface and grow spirally in the c-direction. The aligned nanorod assembly shows high-quality structural and optical emission properties.

  4. Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface

    Science.gov (United States)

    Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.

    2017-10-01

    In a recent paper [U. Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], we proposed a robust scheme to set up a system-bath model Hamiltonian, describing the coupling of adsorbate vibrations (system) to surface phonons (bath), from first principles. The method is based on an embedded cluster approach, using orthogonal coordinates for system and bath modes, and an anharmonic phononic expansion of the system-bath interaction up to second order. In this contribution, we use this model Hamiltonian to calculate vibrational relaxation rates of H-Si and D-Si bending modes, coupled to a fully H(D)-covered Si(100)-( 2 × 1 ) surface, at zero temperature. The D-Si bending mode has an anharmonic frequency lying inside the bath frequency spectrum, whereas the H-Si bending mode frequency is outside the bath Debye band. Therefore, in the present calculations, we only take into account one-phonon system-bath couplings for the D-Si system and both one- and two-phonon interaction terms in the case of H-Si. The computation of vibrational lifetimes is performed with two different approaches, namely, Fermi's golden rule, and a generalized Bixon-Jortner model built in a restricted vibrational space of the adsorbate-surface zeroth-order Hamiltonian. For D-Si, the Bixon-Jortner Hamiltonian can be solved by exact diagonalization, serving as a benchmark, whereas for H-Si, an iterative scheme based on the recursive residue generation method is applied, with excellent convergence properties. We found that the lifetimes obtained with perturbation theory, albeit having almost the same order of magnitude—a few hundred fs for D-Si and a couple of ps for H-Si—, are strongly dependent on the discretized numerical representation of the bath spectral density. On the other hand, the Bixon-Jortner model is free of such numerical deficiencies, therefore providing better estimates of vibrational relaxation rates, at a very low computational cost. The results obtained with this model clearly show

  5. Surface Modification of SiO2 Microchannels with Biocompatible Polymer Using Supercritical Carbon Dioxide

    Science.gov (United States)

    Saito, Tatsuro; Momose, Takeshi; Hoshi, Toru; Takai, Madoka; Ishihara, Kazuhiko; Shimogaki, Yukihiro

    2010-11-01

    The surface of 500-mm-long microchannels in SiO2 microchips was modified using supercritical CO2 (scCO2) and a biocompatible polymer was coated on it to confer biocompatibility to the SiO2 surface. In this method, the SiO2 surface of a microchannel was coated with poly(ethylene glycol monomethacrylate) (PEGMA) as the biocompatible polymer using allyltriethoxysilane (ATES) as the anchor material in scCO2 as the reactive medium. Results were compared with those using the conventional wet method. The surface of a microchannel could not be modified by the wet method owing to the surface tension and viscosity of the liquid, but it was modified uniformly by the scCO2 method probably owing to the near-zero surface tension, low viscosity, and high diffusivity of scCO2. The effect of the surface modification by the scCO2 method to prevent the adsorption of protein was as high as that of the modification by the wet method. Modified microchips can be used in biochemical and medical analyses.

  6. An amorphous Si-O film tribo-induced by natural hydrosilicate powders on ferrous surface

    International Nuclear Information System (INIS)

    Zhang, Baosen; Xu, Binshi; Xu, Yi; Ba, Zhixin; Wang, Zhangzhong

    2013-01-01

    The tribological properties of surface-coated serpentine powders suspended in oil were evaluated using an Optimal SRV-IV oscillating friction and wear tester. The worn surface and the tribo-induced protective film were characterized by scanning electron microscope and focused ion beam (SEM/FIB) work station, energy dispersive spectroscopy (EDS) and transmission electron microscope (TEM). Results indicate that with 0.5 wt% addition of serpentine powders to oil, the friction coefficient and wear rate significantly decrease referenced to those of the base oil alone. An amorphous SiO x film with amorphous SiO x particles inserted has formed on the worn surface undergoing the interactions between serpentine particles and friction surfaces. The protective film with excellent lubricating ability and mechanical properties is responsible for the reduced friction and wear.

  7. XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate

    International Nuclear Information System (INIS)

    Fu Yongqing; Du Hejun; Zhang, Sam; Huang Weimin

    2005-01-01

    TiNi films were prepared by co-sputtering TiNi and Ti targets. X-ray photoelectron spectroscopy (XPS) was employed to study surface chemistry of the films and interfacial structure of Si/TiNi system. Exposure of the TiNi film to the ambient atmosphere (23 deg. C and 80% relatively humidity) facilitated quick adsorption of oxygen and carbon on the surface. With time, carbon and oxygen content increased drastically at the surface, while oxygen diffused further into the layer. After a year, carbon content at the surface became as high as 65.57% and Ni dropped below the detection limit of XPS. Depth profiling revealed that significant inter-diffusion occurred between TiNi film and Si substrate with a layer of 90-100 nm. The detailed bond changes of different elements with depth were obtained using XPS and the formation of titanium silicides at the interface were identified

  8. Optical characterization of gold chains and steps on the vicinal Si(557) surface: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Conor [Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, via Fosso del Cavaliere 100, 00133 Rome (Italy); Department of Physics and European Theoretical Spectroscopy Facility (ETSF), University of Rome ' ' Tor Vergata' ' , Via della Ricerca Scientifica 1, 00133 Rome (Italy); McAlinden, Niall; McGilp, John F. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2012-06-15

    We present a joint experimental-theoretical study of the reflectance anisotropy of clean and gold-covered Si(557), a vicinal surface of Si(111) upon which gold forms quasi-one-dimensional (1D) chains parallel to the steps. By means of first-principles calculations, we analyse the close relationship between the various surface structural motifs and the optical properties. Good agreement is found between experimental and computed spectra of single-step models of both clean and Au-adsorbed surfaces. Spectral fingerprints of monoatomic gold chains and silicon step edges are identified. The role of spin-orbit coupling (SOC) on the surface optical properties is examined, and found to have little effect. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. The nanostructure and microstructure of SiC surface layers deposited by MWCVD and ECRCVD

    Science.gov (United States)

    Dul, K.; Jonas, S.; Handke, B.

    2017-12-01

    Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to investigate ex-situ the surface topography of SiC layers deposited on Si(100) by Microwave Chemical Vapour Deposition (MWCVD) -S1,S2 layers and Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) - layers S3,S4, using silane, methane, and hydrogen. The effects of sample temperature and gas flow on the nanostructure and microstructure have been investigated. The nanostructure was described by three-dimensional surface roughness analysis based on digital image processing, which gives a tool to quantify different aspects of surface features. A total of 13 different numerical parameters used to describe the surface topography were used. The scanning electron image (SEM) of the microstructure of layers S1, S2, and S4 was similar, however, layer S3 was completely different; appearing like grains. Nonetheless, it can be seen that no grain boundary structure is present in the AFM images.

  10. Self-assembly of Ge quantum dots on periodically corrugated Si surfaces

    International Nuclear Information System (INIS)

    Buljan, M.; Jerčinović, M.; Radić, N.; Facsko, S.; Baehtz, C.; Muecklich, A.; Grenzer, J.; Delač Marion, I.; Mikšić Trontl, V.; Kralj, M.; Holý, V.

    2015-01-01

    The fabrication of regularly ordered Ge quantum dot arrays on Si surfaces usually requires extensive preparation processing, ensuring clean and atomically ordered substrates, while the ordering parameters are quite limited by the surface properties of the substrate. Here, we demonstrate a simple method for fabrication of ordered Ge quantum dots with highly tunable ordering parameters on rippled Si surfaces. The ordering is achieved by magnetron sputter deposition, followed by an annealing in high vacuum. We show that the type of ordering and lattice vector parameters of the formed Ge quantum dot lattice are determined by the crystallographic properties of the ripples, i.e., by their shape and orientation. Moreover, the ordering is achieved regardless the initial amorphisation of the ripples surface and the presence of a thin oxide layer

  11. Spontaneous dissociation of a conjugated molecule on the Si(100) surface

    DEFF Research Database (Denmark)

    Lin, Rong; Galili, Michael; Quaade, Ulrich

    2002-01-01

    The adsorption mechanism of alpha-sexithiophene (alpha-6T) on the clean Si(100)-(2x1) surface has been investigated using scanning tunneling microscopy (STM) and first principles electronic structure calculations. We find that at submonolayer coverage, the alpha-6T molecules are not stable and di...

  12. Effect of fiber surface state on mechanical properties of Cf/Si-O-C composites

    International Nuclear Information System (INIS)

    Wang Song; Chen Zhaohui; Ma Qingsong; Hu Haifeng; Zheng Wenwei

    2005-01-01

    Three-dimensional braided carbon fiber reinforced silicon oxycarbide composites (3D-B C f /Si-O-C) were fabricated via a polysiloxane infiltration and pyrolysis route. The effects of fiber surface state on microstructure and mechanical properties of C f /Si-O-C composites were investigated. The change of carbon fiber surface state was achieved via heat treatment in vacuum. The results showed that heat treatment decreased carbon fiber surface activity due to the decrease of the amount of oxygen and nitrogen atoms. The C f /Si-O-C composites fabricated from the carbon fiber with low surface activity had excellent mechanical properties, which resulted from perfect interfacial bonding and good in situ fiber strength. The flexural strength and fracture toughness of the C f /Si-O-C composites from the treated fiber were 534 MPa and 23.4 MPa m 1/2 , respectively, which were about 7 and 11 times more than those of the composites from the as-received carbon fiber, respectively

  13. Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Nakayama, T.

    1999-01-01

    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (R) decreases several orders of magnitude when the substrate temperature...

  14. Broadband absorption enhancement in amorphous Si solar cells using metal gratings and surface texturing

    Science.gov (United States)

    Magdi, Sara; Swillam, Mohamed A.

    2017-02-01

    The efficiencies of thin film amorphous silicon (a-Si) solar cells are restricted by the small thickness required for efficient carrier collection. This thickness limitations result in poor light absorption. In this work, broadband absorption enhancement is theoretically achieved in a-Si solar cells by using nanostructured back electrode along with surface texturing. The back electrode is formed of Au nanogratings and the surface texturing consists of Si nanocones. The results were then compared to random texturing surfaces. Three dimensional finite difference time domain (FDTD) simulations are used to design and optimize the structure. The Au nanogratings achieved absorption enhancement in the long wavelengths due to sunlight coupling to surface plasmon polaritons (SPP) modes. High absorption enhancement was achieved at short wavelengths due to the decreased reflection and enhanced scattering inside the a-Si absorbing layer. Optimizations have been performed to obtain the optimal geometrical parameters for both the nanogratings and the periodic texturing. In addition, an enhancement factor (i.e. absorbed power in nanostructured device/absorbed power in reference device) was calculated to evaluate the enhancement obtained due to the incorporation of each nanostructure.

  15. A surface-mediated siRNA delivery system developed with chitosan/hyaluronic acid-siRNA multilayer films through layer-by-layer self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lijuan [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Wu, Changlin, E-mail: Ph.Dclwu1314@sina.cn [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Liu, Guangwan [Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Liao, Nannan [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Zhao, Fang; Yang, Xuxia; Qu, Hongyuan [Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Peng, Bo [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Chen, Li [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Yang, Guang [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China)

    2016-12-15

    Highlights: • We prepared Chitosan/Hyaluronic acid-siRNA multilayer as carrier to effectively load and protect siRNAs. • The stability and integrity of the siRNA was verified in the siRNA-loaded films. • The siRNA-loaded films showed good cells adhesion and gene silencing effect in eGFP-HEK 293T cells. • This is a new type of surface-mediated non-viral multilayer films. - Abstract: siRNA delivery remains highly challenging because of its hydrophilic and anionic nature and its sensitivity to nuclease degradation. Effective siRNA loading and improved transfection efficiency into cells represents a key problem. In our study, we prepared Chitosan/Hyaluronic acid-siRNA multilayer films through layer-by-layer self-assembly, in which siRNAs can be effectively loaded and protected. The construction process was characterized by FTIR, {sup 13}C NMR (CP/MAS), UV–vis spectroscopy, and atomic force microscopy (AFM). We presented the controlled-release performance of the films during incubation in 1 M NaCl solution for several days through UV–vis spectroscopy and polyacrylamide gel electrophoresis (PAGE). Additionally, we verified the stability and integrity of the siRNA loaded on multilayer films. Finally, the biological efficacy of the siRNA delivery system was evaluated via cells adhesion and gene silencing analyses in eGFP-HEK 293T cells. This new type of surface-mediated non-viral multilayer films may have considerable potential in the localized and controlled-release delivery of siRNA in mucosal tissues, and tissue engineering application.

  16. Surface Floating 2D Bands in Layered Nonsymmorphic Semimetals: ZrSiS and Related Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Andreas; Queiroz, Raquel; Grüneis, Andreas; Müchler, Lukas; Rost, Andreas W.; Varykhalov, Andrei; Marchenko, Dmitry; Krivenkov, Maxim; Rodolakis, Fanny; McChesney, Jessica L.; Lotsch, Bettina V.; Schoop, Leslie M.; Ast, Christian R.

    2017-12-01

    In this work, we present a model of the surface states of nonsymmorphic semimetals. These are derived from surface mass terms that lift the high degeneracy imposed in the band structure by the nonsymmorphic bulk symmetries. Reflecting the reduced symmetry at the surface, the bulk bands are strongly modified. This leads to the creation of two-dimensional floating bands, which are distinct from Shockley states, quantum well states or topologically protected surface states. We focus on the layered semimetal ZrSiS to clarify the origin of its surface states. We demonstrate an excellent agreement between DFT calculations and ARPES measurements and present an effective four-band model in which similar surface bands appear. Finally, we emphasize the role of the surface chemical potential by comparing the surface density of states in samples with and without potassium coating. Our findings can be extended to related compounds and generalized to other crystals with nonsymmorphic symmetries.

  17. A novel growth mode of alkane films on a SiO2 surface

    DEFF Research Database (Denmark)

    Mo, H.; Taub, H.; Volkmann, U.G.

    2003-01-01

    on the SiO2 surface with the long-axis of the C32 molecules oriented parallel to the interface followed by a C32 monolayer with the long-axis perpendicular to it. Finally, preferentially oriented bulk particles nucleate having two different crystal structures. This growth model differs from that found...... previously for shorter alkanes deposited from the vapor phase onto solid surfaces....

  18. Effect of input power and gas pressure on the roughening and selective etching of SiO2/Si surfaces in reactive plasmas

    International Nuclear Information System (INIS)

    Zhong, X. X.; Huang, X. Z.; Tam, E.; Ostrikov, K.; Colpo, P.; Rossi, F.

    2010-01-01

    We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as 'laboratory on a chip' and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO 2 can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO 2 /Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.

  19. Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium

    Directory of Open Access Journals (Sweden)

    Puckett S

    2012-09-01

    Full Text Available Deborah Gorth,1 Sabrina Puckett,1 Batur Ercan,1 Thomas J Webster,1 Mohamed Rahaman,2 B Sonny Bal31School of Engineering and Department of Orthopaedics, Brown University, Providence, RI, 2Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO, 3Department of Orthopaedic Surgery, School of Medicine, University of Missouri, Columbia, MO, USAAbstract: A significant need exists for orthopedic implants that can intrinsically resist bacterial colonization. In this study, three biomaterials that are used in spinal implants – titanium (Ti, poly-ether-ether-ketone (PEEK, and silicon nitride (Si3N4 – were tested to understand their respective susceptibility to bacterial infection with Staphylococcus epidermidis, Staphlococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus. Specifically, the surface chemistry, wettability, and nanostructured topography of respective biomaterials, and the effects on bacterial biofilm formation, colonization, and growth were investigated. Ti and PEEK were received with as-machined surfaces; both materials are hydrophobic, with net negative surface charges. Two surface finishes of Si3N4 were examined: as-fired and polished. In contrast to Ti and PEEK, the surface of Si3N4 is hydrophilic, with a net positive charge. A decreased biofilm formation was found, as well as fewer live bacteria on both the as-fired and polished Si3N4. These differences may reflect differential surface chemistry and surface nanostructure properties between the biomaterials tested. Because protein adsorption on material surfaces affects bacterial adhesion, the adsorption of fibronectin, vitronectin, and laminin on Ti, PEEK, and Si3N4 were also examined. Significantly greater amounts of these proteins adhered to Si3N4 than to Ti or PEEK. The findings of this study suggest that surface properties of biomaterials lead to differential adsorption of physiologic proteins, and that this

  20. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    Science.gov (United States)

    Christensen-Dalsgaard, Jorgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2012-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled processes in the Universe. SI is a "LandmarklDiscovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission

  1. Structure compatibility of TiO{sub 2} and SiO{sub 2} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tokarský, Jonáš, E-mail: jonas.tokarsky@vsb.cz; Čapková, Pavla

    2013-11-01

    A simple method for the estimation of the most suitable mutual crystallographic orientations of TiO{sub 2} nanoparticles anchored on SiO{sub 2} substrate is presented in this work. Number of overlapping titanium and oxygen atoms creating atomic pairs can be used to quantify the structure compatibility. These atomic pairs are obtained directly from non-optimized TiO{sub 2} and SiO{sub 2} atomic planes. The descriptions of algorithms being implemented as scripts into the MATLAB environment in order to make the method more effective are also provided. This method can help with the selection of the most promising (h k l) planes of TiO{sub 2} and SiO{sub 2} adjacent surfaces and the outputs are in good agreement with results of molecular modeling of TiO{sub 2} nanoparticles anchored on SiO{sub 2} surfaces within the meaning of ability to determine the optimized models with the highest and the lowest TiO{sub 2}–SiO{sub 2} adhesion energies. To the best of our knowledge, there is no other such simple and efficient method providing this information, which is very important for molecular modeling of nanoparticle-crystalline substrate systems.

  2. Morphology and Surface Energy of a Si Containing Semifluorinated Di-block Copolymer Thin Films.

    Science.gov (United States)

    Shrestha, Umesh; Clarson, Stephen; Perahia, Dvora

    2013-03-01

    The structure and composition of an interface influence stability, adhesiveness and response to external stimuli of thin polymeric films. Incorporation of fluorine affects interfacial energy as well as thermal and chemical stability of the layers. The incompatibility between the fluorinated and non-fluorinated blocks induces segregation that leads to long range correlations where the tendency of the fluorine to migrate to interfaces impacts the surface tension of the films. Concurrently Si in a polymeric backbone enhances the flexibility of polymeric chains. Our previous studies of poly trifluoro propyl methyl siloxane-polystyrene thin films with SiF fraction 0.03-0.5 as a function of temperature have shown that the SiF block drives layering parallel to the surface of the diblock. Here in we report the structure and interfacial energies of SiF-PS in the plane of the films, as a function of the volume fraction of the SiF block obtained from Atomic Force microscopy and contact angle measurement studies. This work is supported by NSF DMR - 0907390

  3. P-type doping of semipolar GaN(11 anti 22) by plasma-assisted molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Das, A.; Lahourcade, L. [Equipe Mixte CEA-CNRS, Nanophysique et Semiconducteurs, CEA-Grenoble, INAC/SP2M, Grenoble (France); Pernot, J. [Institut Neel, CNRS et Universite Joseph Fourier, Grenoble (France); Valdueza-Felip, S. [Equipe Mixte CEA-CNRS, Nanophysique et Semiconducteurs, CEA-Grenoble, INAC/SP2M, Grenoble (France); Dept. Electronica, Escuela Politecnica, Universidad de Alcala, Alcala de Henares, Madrid (Spain); Ruterana, P. [CIMAP, UMR6252, CNRS-ENSICAEN-CEA-UCBN, Caen (France); Laufer, A.; Eickhoff, M. [I. Physikalisches Institut, Justus-Liebig-Universitaet Giessen (Germany); Monroy, E.

    2010-07-15

    We report the effect of Mg doping on the growth kinetics of semipolar GaN(11-22) synthesized by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN(11-22). As a result, the growth widow is reduced for Mg doped layers, and we observe a certain deterioration of the surface morphology. In spite of this difficulties, homogenous Mg incorporation is achieved and layers display p -type conductivity for Mg atomic concentration higher than 7 x 10{sup 18} cm{sup -3}. Microscopy studies show no evidence of the pyramidal defects or polarity inversion domains found in Mg-doped GaN(0001). (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Comparison of structural re-organisations observed on pre-patterned vicinal Si(1 1 1) and Si(1 0 0) surfaces during heat treatment

    International Nuclear Information System (INIS)

    Kraus, A.; Neddermeyer, H.; Wulfhekel, W.; Sander, D.; Maroutian, T.; Dulot, F.; Martinez-Gil, A.; Hanbuecken, M.

    2004-01-01

    The creation of distinct, periodically structured vicinal Si(1 1 1) and (1 0 0) substrates has been studied using scanning tunnelling microscopy at various temperatures. The vicinal Si(1 1 1) and (1 0 0) surfaces transform under heat treatment in a self-organised way into flat and stepped regions. Optical and electron beam lithography is used to produce a regular hole pattern on the surfaces, which interferes with the temperature-driven morphological changes. The step motions are strongly influenced by this pre-patterning. Pre-patterned Si(1 1 1) surfaces transform into regular one-dimensional (1D) and two-dimensional (2D) morphologies, which consist of terraces and arrangements of step bunches and facets. On pre-patterned Si(1 0 0) substrates different re-organisations were observed where checkerboard-like 2D structures are obtained

  5. Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si solar cells

    NARCIS (Netherlands)

    Vermang, B.; Goverde, J.C.; Uruena, A.; Lorenz, A.; Cornagliotti, E.; Rothschild, A.; John, J.; Poortmans, J.; Mertens, R.

    2012-01-01

    Random Al back surface field (BSF) p-type Si solar cells are presented, where a stack of Al2O3 and SiNx is used as rear surface passivation layer containing blisters. It is shown that no additional contact opening step is needed, since during co-firing local Al BSFs are induced at the location of

  6. Surface hardening of 30CrMnSiA steel using continuous electron beam

    Science.gov (United States)

    Fu, Yulei; Hu, Jing; Shen, Xianfeng; Wang, Yingying; Zhao, Wansheng

    2017-11-01

    30CrMnSiA high strength low alloy (HSLA) carbon structural steel is typically applied in equipment manufacturing and aerospace industries. In this work, the effects of continuous electron beam treatment on the surface hardening and microstructure modifications of 30CrMnSiA are investigated experimentally via a multi-purpose electron beam machine Pro-beam system. Micro hardness value in the electron beam treated area shows a double to triple increase, from 208 HV0.2 on the base metal to 520 HV0.2 on the irradiated area, while the surface roughness is relatively unchanged. Surface hardening parameters and mechanisms are clarified by investigation of the microstructural modification and the phase transformation both pre and post irradiation. The base metal is composed of ferrite and troostite. After continuous electron beam irradiation, the micro structure of the electron beam hardened area is composed of acicular lower bainite, feathered upper bainite and part of lath martensite. The optimal input energy density for 30CrMnSiA steel in this study is of 2.5 kJ/cm2 to attain the proper hardened depth and peak hardness without the surface quality deterioration. When the input irradiation energy exceeds 2.5 kJ/cm2 the convective mixing of the melted zone will become dominant. In the area with convective mixing, the cooling rate is relatively lower, thus the micro hardness is lower. The surface quality will deteriorate. Chemical composition and surface roughness pre and post electron beam treatment are also compared. The technology discussed give a picture of the potential of electron beam surface treatment for improving service life and reliability of the 30CrMnSiA steel.

  7. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions

    Science.gov (United States)

    Mitani, Takeshi; Komatsu, Naoyoshi; Takahashi, Tetsuo; Kato, Tomohisa; Fujii, Kuniharu; Ujihara, Toru; Matsumoto, Yuji; Kurashige, Kazuhisa; Okumura, Hajime

    2014-09-01

    The growth rate and surface morphology of 4H-SiC crystals prepared by solution growth with Si1-xCrx and Si1-x-yCrxAly (x=0.4, 0.5 and 0.6; y=0.04) solvents were investigated under various temperature conditions. The growth rate was examined as functions of the temperature difference between the growth surface and C source, the amount of supersaturated C and supersaturation at the growth surface. We found that generation of trench-like surface defects in 4H-SiC crystals was suppressed using Si1-x-yCrxAly solvents even under highly supersaturated conditions where the growth rate exceeded 760 μm/h. Conversely, trench-like defects were observed in crystals grown with Si1-xCrx solvents under all experimental conditions. Statistical observation of the macrostep structure showed that the macrostep height in crystals grown with Si1-x-yCrxAly solvents was maintained at lower levels than that obtained using Si1-xCrx solvents. Addition of Al prevents the macrosteps from developing into large steps, which are responsible for the generation of trench-like surface defects.

  8. On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3

    NARCIS (Netherlands)

    Hoex, B.; Gielis, J.J.H.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2008-01-01

    Al2 O3 is a versatile high- ¿ dielectric that has excellent surface passivation properties on crystalline Si (c-Si), which are of vital importance for devices such as light emitting diodes and high-efficiency solar cells. We demonstrate both experimentally and by simulations that the surface

  9. Adsorption and dissociation of oxygen molecules on Si(111)-(7×7) surface

    International Nuclear Information System (INIS)

    Niu, Chun-Yao; Wang, Jian-Tao

    2013-01-01

    The adsorption and dissociation of O 2 molecules on Si(111)-(7×7) surface have been studied by first-principles calculations. Our results show that all the O 2 molecular species adsorbed on Si(111)-(7×7) surface are unstable and dissociate into atomic species with a small energy barrier about 0.1 eV. The single O 2 molecule adsorption tends to form an ins×2 or a new metastable ins×2* structure on the Si adatom sites and the further coming O 2 molecules adsorb on those structures to produce an ad-ins×3 structure. The ad-ins×3 structure is indeed highly stable and kinetically limited for diving into the subsurface layer to form the ins×3-tri structure by a large barrier of 1.3 eV. Unlike the previous views, we find that all the ad-ins, ins×2, and ad-ins×3 structures show bright images, while the ins×2*, ins×3, and ins×3-tri structures show dark images. The proposed oxidation pathways and simulated scanning tunneling microscope images account well for the experimental results and resolve the long-standing confusion and issue about the adsorption and reaction of O 2 molecules on Si(111) surface

  10. P-type Oxide Semiconductors for Transparent & Energy Efficient Electronics

    KAUST Repository

    Wang, Zhenwei

    2018-01-01

    , the performance of p-type counterparts is lag behind. However, after years of discovery, several p-type TSOs are confirmed with promising performance, for example, tin monoxide (SnO). By using p-type SnO, excellent transistor field-effect mobility of 6.7 cm2 V-1 s

  11. Influence of the growth-surface on the incorporation of phosphorus in SiC

    International Nuclear Information System (INIS)

    Rauls, E.; Gerstmann, U.; Frauenheim, Th.

    2005-01-01

    Phosphorus is a common and desired n-type dopant of SiC, but it turned out that doping by diffusion or during growth is rarely successful. To avoid the efforts and the creation of damage if ion implantation is used instead, these techniques were, though, highly desirable. In this work, we have investigated theoretically the experimental observation that phosphorus obviously hardly diffuses into the material. Not the diffusivity of the dopant but its addiction to occupy a three-fold coordinated surface site are critical, together with the way the surface affects the bulk migration barriers of the dopants. Whereas the most common growth direction for 4H-SiC, the polar silicon terminated (0001) surface, seems to be least appropriate for the incorporation of phosphorus atoms, growth along the nonpolar [112-bar 0] provides a good possibility to achieve efficient P-doping during growth

  12. XPS studies of SiO/sub 2/ surface layers formed by oxygen ion implantation into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, D.; Finster, J. (Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Sektion Chemie); Hensel, E.; Skorupa, W.; Kreissig, U. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))

    1983-03-16

    SiO/sub 2/ surface layers of 160 nm thickness formed by /sup 16/O/sup +/ ion implantation into silicon are examined by X-ray photoelectron spectroscopy measurements into the depth after a step-by-step chemical etching. The chemical nature and the thickness of the transition layer were determined. The results of the XPS measurements show that the outer surface and the bulk of the layers formed by oxygen implantation and subsequent high temperature annealing consist of SiO/sub 2/. There is no evidence for Si or SiO/sub x/ (0SiO/sub x/ transition region between SiO/sub 2/ and Si is similar to that of thin grown oxide layers. Only its thickness is somewhat larger than in thermal oxide.

  13. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    International Nuclear Information System (INIS)

    Angermann, Heike

    2014-01-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D it (E), and density D it,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on

  14. SiO mass spectrometry and Si-2p photoemission spectroscopy for the study of oxidation reaction dynamics of Si(001) surface by supersonic O sub 2 molecular beams under 1000K

    CERN Document Server

    Teraoka, Y; Moritani, K

    2003-01-01

    The Si sup 1 sup 8 O desorption yield was measured in the Si(001) surface temperature region from 900K to 1300K at the sup 1 sup 8 O sub 2 incident energies of 0.7eV, 2.2eV and 3.3eV. The Si sup 1 sup 8 O desorption yield in a surface temperature region higher than 1000K increased with increasing incident energy, indicating the incident-energy-induced oxidation and the variation of angular distribution of Si sup 1 sup 8 O desorption. Inversely, the Si sup 1 sup 8 O desorption yield decreased with increasing incident energy in the region from 900K to 1000K, indicating the coexistence of the passive and the active oxidation. In order to clarify the reaction mechanisms of the later phenomenon, real-time in-situ Si-2p photoemission spectroscopy has been performed. The obtained Si-2p spectra showed the variation of the oxide-nuclei quality from the sub-oxide-rich structure to the SiO sub 2 -rich structure. The formation of the SiO sub 2 structure suppresses the SiO desorption due to the enhanced O sub 2 sticking a...

  15. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Yop Rhee, Kyong; Nahm, Seung-Hoon; Park, Soo-Jin

    2014-01-01

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted

  16. Surface and interfacial structural characterization of MBE grown Si/Ge multilayers

    International Nuclear Information System (INIS)

    Saha, Biswajit; Sharma, Manjula; Sarma, Abhisakh; Rath, Ashutosh; Satyam, P.V.; Chakraborty, Purushottam; Sanyal, Milan K.

    2009-01-01

    Si/Ge multilayer structures have been grown by solid source molecular beam epitaxy (MBE) on Si (1 1 1) and (1 0 0) substrates and were characterized by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), high-depth-resolution secondary ion mass spectroscopy (SIMS) and cross-section high-resolution transmission electron microscopy (HRTEM). A reasonably good agreement has been obtained for layer thickness, interfacial structure and diffusion between SIMS and HRTEM measurements. Epitaxial growth and crystalline nature of the individual layer have been probed using cross-sectional HRTEM and XRD measurements. Surface and interface morphological studies by AFM and HRTEM show island-like growth of both Si and Ge nanostructures.

  17. Continuously tunable monomode mid-infrared vertical external cavity surface emitting laser on Si

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Fill, M.; Felder, F.; Hobrecker, F.; Zogg, H.

    2010-10-01

    A tunable PbTe based mid-infrared vertical external cavity surface emitting laser is described. The active part is a ˜1 μm thick PbTe layer grown epitaxially on a Bragg mirror on the Si-substrate. The cavity is terminated with a curved Si/SiO Bragg top mirror and pumped optically with a 1.55 μm laser. Cavity length is <100 μm in order that only one longitudinal mode is supported. By changing the cavity length, up to 5% wavelength continuous and mode-hop free tuning is achieved at fixed temperature. The total tuning extends from 5.6 to 4.7 μm at 100-170 K operation temperature.

  18. Ge growth on vicinal si(001) surfaces: island's shape and pair interaction versus miscut angle.

    Science.gov (United States)

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2011-10-01

    A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.

  19. Heavy ion induced disorder introduction in the surface and at shallow depths in Si

    International Nuclear Information System (INIS)

    Roosendaal, H.E.; Weick, M.; Hubbes, H.H.; Lutz, H.O.

    1979-01-01

    Disorder in a Si lattice has been produced by bombardment with 220 and 290 keV C + , N + , Ne + and Ar + ions. The production of surface disorder is compared with the disorder production at shallow depths. For random incidence of the damaging projectiles, the surface disorder has been found to scale with the disorder at shallow depths (380 to 800 A). For channeling incidence, a Z 1 dependent reduction of the surface disorder is observed. This reduction is much smaller than that for the disorder in the depth interval 380 to 800 A. (author)

  20. Infrared studies of gold nanochains on the Si(557) stepped surface

    Energy Technology Data Exchange (ETDEWEB)

    Vu Hoang, Chung; Klevenz, Markus; Lovrincic, Robert; Skibbe, Olaf; Neubrech, Frank; Pucci, Annemarie [Kirchhoff-Institut fuer Physik der Universitaet Heidelberg (Germany)

    2008-07-01

    Gold nanochains on Si(557) will be fabricated under ultra high vacuum conditions. The terraces of the stepped surface serve as one-dimensional diffusion channels, which leads to the formation of parallel monoatomic chains. Due to the appearance of metallic chains an anisotropic change of the conductivity of the substrate surface can be expected. The chain growth process and conductivity dependence versus gold composition will be investigated in-situ by using transmittance infrared spectroscopy (IRS) with light polarized parallel and perpendicular to the chains, respectively. IRS is a well-established method to observe conductivity changes on surfaces. The temperature dependent behaviour of gold chains will be studied as well.

  1. Production of nanopoints and nanowires of silver at the surface of Si(557)

    International Nuclear Information System (INIS)

    Zhachuk, R.A.; Tijs, S.A.; Ol'shanetskij, B.Z.

    2004-01-01

    Formation of the silver nanostructures at the room temperature on the Si(557) surface containing the regular atomic stages of three interplanar distances in the height is studied through the methods of the scanning tunnel microscopy and electron Auger-spectroscopy. It is established that the oxygen adsorbed by the silicon surface from the residual atmosphere in the vacuum chamber effects the shape of the formed silver islands. The silver nanostructures of the nanowire-type, extended along the stage edges or nanopoints ordered in lines parallel to the stage edges may be formed depending on the quantity of the oxygen adsorbed on the surface [ru

  2. Effect of electron irradiation on the surface properties of Ge-Si single crystals

    International Nuclear Information System (INIS)

    Bakirov, M.Ya.; Ibragimov, N.I.

    1998-01-01

    It is established that by electron irradiation of the Ge 1-x Si x (x = 0 - 0.15) monocrystals with the dose of ≤ 10 13 cm -2 the concentration of the surface charged centers N t does not change. Some drop in the N t value with tendency to saturation is observed by increase in the dose. The speed of the surface recombination also grows with tendency to saturation. Monotonous growth of the surface recombination is identified by increase in dislocations density [ru

  3. Semi-polar GaN heteroepitaxy an high index Si-surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ravash, Roghaiyeh; Blaesing, Juergen; Hempel, Thomas; Dadgar, Armin; Christen, Juergen; Krost, Alois [Otto-von-Guericke-University Magdeburg, FNW/IEP/AHE, Magdeburg (Germany)

    2011-07-01

    Due to the lack of GaN homosubstrates, the growth of GaN-based devices is usually performed on heterosubstrates as sapphire or SiC. These substrates are either insulating or expensive, and both unavailable in large diameters. Meanwhile, silicon can meet the requirements for a low price and thermally well conducting substrate and also enabling the integration of optoelectronic devices with Si-based electronics. Up to now, the good matching of hexagonal GaN with the three-fold symmetry of Si(111) greatly promotes the c-axis orientated growth of GaN on this surface plane. A large spontaneous and piezoelectric polarization oriented along the c-axis exists in such hexagonal structure leading to low efficiencies for thick quantum wells. The attention to the growth of non-polar or semi-polar GaN based epitaxial structures has been increased recently because of reducing the effect of the polarization fields in these growth directions. Therefore we studied semi-polar GaN epilayers grown by metalorganic vapor phase epitaxy on silicon substrates with different orientations from Si(211) to Si(711). We observed that AlN seeding layer growth time play a significant role in obtaining the different GaN texture.

  4. High resolution electron energy loss spectroscopy of clean and hydrogen covered Si(001) surfaces: first principles calculations.

    Science.gov (United States)

    Patterson, C H

    2012-09-07

    Surface phonons, conductivities, and loss functions are calculated for reconstructed (2×1), p(2×2) and c(4×2) clean Si(001) surfaces, and (2×1) H and D covered Si(001) surfaces. Surface conductivities perpendicular to the surface are significantly smaller than conductivities parallel to the surface. The surface loss function is compared to high resolution electron energy loss measurements. There is good agreement between calculated loss functions and experiment for H and D covered surfaces. However, agreement between experimental data from different groups and between theory and experiment is poor for clean Si(001) surfaces. Formalisms for calculating electron energy loss spectra are reviewed and the mechanism of electron energy losses to surface vibrations is discussed.

  5. P type porous silicon resistivity and carrier transport

    International Nuclear Information System (INIS)

    Ménard, S.; Fèvre, A.; Billoué, J.; Gautier, G.

    2015-01-01

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P % ) was found to be the major contributor to the PS resistivity (ρ PS ). ρ PS increases exponentially with P % . Values of ρ PS as high as 1 × 10 9 Ω cm at room temperature were obtained once P % exceeds 60%. ρ PS was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ PS . Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P % lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P % overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices

  6. Preparation and Oxidation Resistance of Mo-Si-B Coating on Nb-Si Based Alloy Surface

    Directory of Open Access Journals (Sweden)

    PANG Jie

    2018-02-01

    Full Text Available Mo-Si-B coating was prepared on Nb-Si alloys to improve the high-temperature oxidation. The influence of the halide activators (NaF and AlF3 on Si-B co-depositing to obtain Mo-Si-B coating on Nb-Si alloys was analyzed by thermochemical calculations. The results show that NaF proves to be more suitable than AlF3 to co-deposit Si and B. Then Mo-Si-B can be coated on Nb-Si based alloys using detonation gun spraying of Mo followed by Si and B co-deposition. The fabricated coatings consist of outer MoSi2 layer with fine boride phase and inner unreacted Mo layer. The mass gain of the Mo-Si-B coating is 1.52mg/cm2 after oxidation at 1250℃ for 100h. The good oxidation resistance results in a protective borosilicate scale formed on the coating.

  7. Effect of surface water on tritium release behavior from Li4SiO4

    International Nuclear Information System (INIS)

    Hanada, T.; Fukada, S.; Nishikawa, M.; Suematsu, K.; Yamashita, N.; Kanazawa, T.

    2010-01-01

    The tritium release model to represent the release behavior of bred tritium from solid breeder materials has been developed by the blanket group of Kyushu University. It has been found that water is released to the purge gas from solid breeder materials and that this water affects the tritium release behavior. In this study, the amount of surface water released from Li 4 SiO 4 is quantified by the experiment. In addition, the tritium release behavior from Li 4 SiO 4 are estimated based on the tritium release model using parameters obtained in our studies under conditions of commercial reactor operation and ITER test blanket module operation. The effect of the surface water on tritium release behavior is discussed from the obtained results. Moreover, the tritium inventory of Li 4 SiO 4 is discussed based on calculation under the unsteady state condition. Further, the effects of grain size and temperature on distribution of tritium inventory under the steady state condition are evaluated, and the optimal grain size is discussed from the view point of tritium release from Li 4 SiO 4 .

  8. Surface grafting density analysis of high anti-clotting PU-Si-g-P(MPC) films

    Energy Technology Data Exchange (ETDEWEB)

    Lu Chunyan [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing Normal University, Nanjing 210097 (China); Zhou Ninglin, E-mail: ninglinzhou@yahoo.com [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing Normal University, Nanjing 210097 (China); Jiangsu Technological Research Center for Interfacial Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Xiao Yinghong; Tang Yida; Jin Suxing; Wu Yue [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing Normal University, Nanjing 210097 (China); Zhang Jun; Shen Jian [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing Normal University, Nanjing 210097 (China); Jiangsu Technological Research Center for Interfacial Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2012-02-01

    Well-defined zwitterionic polymer brushes with good blood compatibility were studied, grafted from polyurethane (PU) substrate (PU-Si-g-P(MPC)) by surface-initiated reverse atom transfer radical polymerization (SI-RATRP). We found that the structure of polymer brushes and hence their properties greatly depend on the grafting density. To solve the problems of the normal method for grafting density measurement, i.e., more requirements for qualified and proficient instrument operator, we established an effective and feasible way instead of the conventional method of spectroscopic ellipsometer combined with gel permeation chromatograph (ELM/GPC) to calculate the grafting density of PU-Si-g-P(MPC) films by using a software named ImageJ 1.44e in combination with scanning electronic microscope (SEM) or atomic microscope (AFM). X-ray photoelectron spectroscopy (XPS), SEM and AFM were employed to analyze the surface topography and changes of elements before and after graft modification of the synthetic PU-Si-g-P(MPC) biofilms.

  9. Fabrication and Surface Properties of Composite Films of SAM/Pt/ZnO/SiO 2

    KAUST Repository

    Yao, Ke Xin

    2008-12-16

    Through synthetic architecture and functionalization with self-assembled monolayers (SAMs), complex nanocomposite films of SAM/Pt/ZnO/SiO2 have been facilely prepared in this work. The nanostructured films are highly uniform and porous, showing a wide range of tunable wettabilities from superhydrophilicity to superhydrophobicity (water contact angles: 0° to 170°). Our approach offers synthetic flexibility in controlling film architecture, surface topography, coating texture, crystallite size, and chemical composition of modifiers (e.g., SAMs derived from alkanethiols). For example, wettability properties of the nanocomposite films can be finely tuned with both inorganic phase (i.e., ZnO/SiO2 and Pt/ZnO/SiO2) and organic phase (i.e., SAMs on Pt/ZnO/SiO2). Due to the presence of catalytic components Pt/ZnO within the nanocomposites, surface reactions of the organic modifiers can further take place at room temperature and elevated temperatures, which provides a means for SAM formation and elimination. Because the Pt/ZnO forms an excellent pair of metal-semiconductors for photocatalysis, the anchored SAMs can also be modified or depleted by UV irradiation (i.e., the films possess self-cleaning ability). Potential applications of these nanocomposite films have been addressed. Our durability tests also confirm that the films are thermally stable and structurally robust in modification- regeneration cycles. © 2008 American Chemical Society.

  10. Photoconduction spectroscopy of p-type GaSb films

    Energy Technology Data Exchange (ETDEWEB)

    Shura, M.W., E-mail: Megersa.Shura@live.nmmu.ac.za [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Wagener, V.; Botha, J.R.; Wagener, M.C. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    Excess carrier lifetimes (77 K) have been measured as function of the absorbed flux density in undoped p-type gallium antimonide films (GaSb/GaAs) using steady state photoconductivity measurements with the illumination wavelength of 1.1 {mu}m. Using the results from Hall effect measurements along with the relations describing the lifetimes of the excess minority carriers in the bulk of the films and at the surface, the theoretical values of the effective excess carrier lifetime in the materials were also calculated. Discrepancies between the experimental and theoretical results were described using a two-layer model, by considering the variation in the charge distribution within the layer due to the presence of surface states, as well as the band offset between the layer and the substrate. Theoretical modeling of the experimental result yields values of different parameters such as band bending at the surface, minimum value of Shockley-Read-Hall lifetime and maximum value of the surface recombination velocity.

  11. Photoconduction spectroscopy of p-type GaSb films

    International Nuclear Information System (INIS)

    Shura, M.W.; Wagener, V.; Botha, J.R.; Wagener, M.C.

    2012-01-01

    Excess carrier lifetimes (77 K) have been measured as function of the absorbed flux density in undoped p-type gallium antimonide films (GaSb/GaAs) using steady state photoconductivity measurements with the illumination wavelength of 1.1 μm. Using the results from Hall effect measurements along with the relations describing the lifetimes of the excess minority carriers in the bulk of the films and at the surface, the theoretical values of the effective excess carrier lifetime in the materials were also calculated. Discrepancies between the experimental and theoretical results were described using a two-layer model, by considering the variation in the charge distribution within the layer due to the presence of surface states, as well as the band offset between the layer and the substrate. Theoretical modeling of the experimental result yields values of different parameters such as band bending at the surface, minimum value of Shockley–Read–Hall lifetime and maximum value of the surface recombination velocity.

  12. Characterization of stain etched p-type silicon in aqueous HF solutions containing HNO{sub 3} or KMnO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mogoda, A.S., E-mail: awad_mogoda@hotmail.com [Department of Chemistry, Faculty of Science, Cairo University, Giza (Egypt); Ahmad, Y.H.; Badawy, W.A. [Department of Chemistry, Faculty of Science, Cairo University, Giza (Egypt)

    2011-04-15

    Research highlights: {yields} Stain etching of p-Si in aqueous HF solutions containing HNO{sub 3} or KMnO{sub 4} was investigated. {yields} The electrical conductivity of the etched Si surfaces was measured using impedance technique. {yields} Scanning electron microscope and energy disperse X-ray were used to analyze the etched surfaces. {yields} Etching in aqueous HF solution containing HNO{sub 3} led to formation of a porous silicon layer. {yields} The formation of the porous silicon layer in HF/KMnO{sub 4} was accompanied by deposition of K{sub 2}SiF{sub 6} on the pores surfaces. - Abstract: Stain etching of p-type silicon in hydrofluoric acid solutions containing nitric acid or potassium permanganate as an oxidizing agent has been examined. The effects of etching time, oxidizing agent and HF concentrations on the electrochemical behavior of etched silicon surfaces have been investigated by electrochemical impedance spectroscopy (EIS). An electrical equivalent circuit was used for fitting the impedance data. The morphology and the chemical composition of the etched Si surface were studied using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques, respectively. A porous silicon layer was formed on Si etched in HF solutions containing HNO{sub 3}, while etching in HF solutions containing KMnO{sub 4} led to the formation of a porous layer and simultaneous deposition of K{sub 2}SiF{sub 6} inside the pores. The thickness of K{sub 2}SiF{sub 6} layer increases with increasing the KMnO{sub 4} concentration and decreases as the concentration of HF increases.

  13. Surface modification and its role in the preparation of FeSi gradient alloys with good magnetic property and ductility

    Science.gov (United States)

    Yu, Haiyuan; Bi, Xiaofang

    2018-04-01

    Realization of the effective Si penetration at a lower processing temperature is a challenge, but of significance in reducing the strict requirements for the equipment and realizing cost-cutting in production. In this work, we have modified the surface microstructure of Fe-3 wt%Si alloy by using surface mechanical attrition treatment. The modified surface microstructure is characteristic of nanocrystalline, which is found to significantly enhance the efficiency of subsequent Si penetration into the alloy, and successively leading to the decrease of penetration temperature up to 200 °C. As a consequence, the Si gradient distribution across thickness can be readily controlled by changing penetration time, and FeSi alloys with various gradients are prepared by chemical vapor deposition along with subsequent annealing process. The dependence of magnetic and mechanical properties on Si gradient for demonstrates that the increase of Si gradient reduces core losses, especially at higher frequencies, and meanwhile improves ductility of FeSi alloys as well. The mechanism underlying the effect of Si gradient is clarified by combining magnetostriction measurement and domain structure observations. This work provides a facile and effective way for achieving gradient FeSi alloys with good magnetic property and ductility.

  14. Facile and efficient synthesis of the surface tantalum hydride (≡SiO)2TaIIIH and tris-siloxy tantalum (≡SiO)3TaIII starting from novel tantalum surface species (≡SiO)TaMe4 and (≡SiO)2TaMe 3

    KAUST Repository

    Chen, Yin

    2014-03-10

    By grafting of TaMe5 (1) on the surface of silica partially dehydroxylated at 500 C (silica500), a mixture of (≡SiO)TaMe4 (2a; major, 65 ± 5%) and (≡SiO) 2TaMe3 (2b; minor, 35 ± 5%) was produced, which has been characterized by microanalysis, IR, and SS NMR (1H, 13C, 1H-13C HETCOR, proton double and triple quantum). After grafting, these surface organometallic compounds are more stable than the precursor TaMe5. Treatment of 2a,b with water and H 2 resulted in the formation of methane in amount of 3.6 ± 0.2 and 3.4 ± 0.2 mol/grafted Ta, respectively. 2a,b react with H2 (800 mbar) to form (≡SiO)2TaH. After (≡SiO) 2TaH was heated to 500 C under hydrogen or vacuum, [(≡SiO) 3Ta][≡SiH] was produced, and the structure was confirmed by IR, NMR, and EXAFS. Considering the difficulty of the previous preparation method, these syntheses represent a facile and convenient way to prepare tantalum surface species (≡SiO)2TaH and (≡SiO)3Ta via the intermediate of the new surface organometallic precursors: (≡SiO)TaMe4/(≡SiO)2TaMe3. (≡SiO)2TaH and (≡SiO)3Ta exhibit equal reactivities in alkane metathesis and ethylene polymerization in comparison to those in previous reports. © 2014 American Chemical Society.

  15. Facile and efficient synthesis of the surface tantalum hydride (≡SiO)2TaIIIH and tris-siloxy tantalum (≡SiO)3TaIII starting from novel tantalum surface species (≡SiO)TaMe4 and (≡SiO)2TaMe 3

    KAUST Repository

    Chen, Yin; Ould-Chikh, Samy; Abou-Hamad, Edy; Callens, Emmanuel; Mohandas, Janet Chakkamadathil; Khalid, Syed M.; Basset, Jean-Marie

    2014-01-01

    By grafting of TaMe5 (1) on the surface of silica partially dehydroxylated at 500 C (silica500), a mixture of (≡SiO)TaMe4 (2a; major, 65 ± 5%) and (≡SiO) 2TaMe3 (2b; minor, 35 ± 5%) was produced, which has been characterized by microanalysis, IR, and SS NMR (1H, 13C, 1H-13C HETCOR, proton double and triple quantum). After grafting, these surface organometallic compounds are more stable than the precursor TaMe5. Treatment of 2a,b with water and H 2 resulted in the formation of methane in amount of 3.6 ± 0.2 and 3.4 ± 0.2 mol/grafted Ta, respectively. 2a,b react with H2 (800 mbar) to form (≡SiO)2TaH. After (≡SiO) 2TaH was heated to 500 C under hydrogen or vacuum, [(≡SiO) 3Ta][≡SiH] was produced, and the structure was confirmed by IR, NMR, and EXAFS. Considering the difficulty of the previous preparation method, these syntheses represent a facile and convenient way to prepare tantalum surface species (≡SiO)2TaH and (≡SiO)3Ta via the intermediate of the new surface organometallic precursors: (≡SiO)TaMe4/(≡SiO)2TaMe3. (≡SiO)2TaH and (≡SiO)3Ta exhibit equal reactivities in alkane metathesis and ethylene polymerization in comparison to those in previous reports. © 2014 American Chemical Society.

  16. Magnetic-field-dependent morphology of self-organized Fe on stepped Si(111) surfaces

    International Nuclear Information System (INIS)

    Cougo dos Santos, M.; Geshev, J.; Pereira, L. G.; Schmidt, J. E.

    2009-01-01

    The present work reports on Fe thin films grown on vicinal Si(111) substrates via rf magnetron sputtering. The dependencies of the growth mode and magnetic properties of the obtained iron nanostructures on both crystallographic surface orientation and on the direction of the very weak stray magnetic field from the magnetron gun were studied. Scanning tunneling microscopy images showed strong dependence of the Fe grains' orientation on the stray field direction in relation to the substrate's steps demonstrating that, under appropriately directed magnetic field, Si surfaces can be used as templates for well-defined self-assembled iron nanostructures. Magneto-optical Kerr effect hysteresis loops showed an easy-axis coercivity almost one order of magnitude smaller for the film deposited with stray field applied along the steps, accompanied with a change in the magnetization reversal mode. Phenomenological models involving coherent rotation and/or domain-wall unpinning were used for the interpretation of these results.

  17. Model, First-Principle Calculation of Ammonia Dissociation on Si(100 Surface. Importance of Proton Tunneling

    Directory of Open Access Journals (Sweden)

    Marek Z. Zgierski

    2003-06-01

    Full Text Available Abstract: The dissociation of an ammonia molecule on a cluster of Si atoms simulating the 100 silicon crystal structure with two Si dimers has been investigated by means of the DFT and an approximate instanton methods. The model corresponds to the low coverage limit of the surface. Absolute rate constants of two different dissociation paths are evaluated together with deuterium isotope effects. It is demonstrated that, even at room temperatures, the process is dominated by tunneling and that dissociation to a silicon atom of the adjacent dimer, rather than a silicon within the same dimer, is the prevailing mechanism. This leads to creation of a metastable structure which will slowly decay through a two-step hydrogen atom migration towards the absolute minimum on the potential energy surface corresponding to the NH2 group and the hydrogen atom residing in the same dimer.

  18. Gas-source molecular beam epitaxy of Si(111) on Si(110) substrates by insertion of 3C-SiC(111) interlayer for hybrid orientation technology

    Energy Technology Data Exchange (ETDEWEB)

    Bantaculo, Rolando, E-mail: rolandobantaculo@yahoo.com; Saitoh, Eiji; Miyamoto, Yu; Handa, Hiroyuki; Suemitsu, Maki

    2011-11-01

    A method to realize a novel hybrid orientations of Si surfaces, Si(111) on Si(110), has been developed by use of a Si(111)/3C-SiC(111)/Si(110) trilayer structure. This technology allows us to use the Si(111) portion for the n-type and the Si(110) portion for the p-type channels, providing a solution to the current drive imbalance between the two channels confronted in Si(100)-based complementary metal oxide semiconductor (CMOS) technology. The central idea is to use a rotated heteroepitaxy of 3C-SiC(111) on Si(110) substrate, which occurs when a 3C-SiC film is grown under certain growth conditions. Monomethylsilane (SiH{sub 3}-CH{sub 3}) gas-source molecular beam epitaxy (GSMBE) is used for this 3C-SiC interlayer formation while disilane (Si{sub 2}H{sub 6}) is used for the top Si(111) layer formation. Though the film quality of the Si epilayer leaves a lot of room for betterment, the present results may suffice to prove its potential as a new technology to be used in the next generation CMOS devices.

  19. Si+ ion implantation reduces the bacterial accumulation on the Ti6Al4V surface

    International Nuclear Information System (INIS)

    Gallardo-Moreno, A M; Pacha-Olivenza, M A; Perera-Nunez, J; Gonzalez-Carrasco, J L; Gonzalez-Martin, M L

    2010-01-01

    Ti6Al4V is one of the most commonly used biomaterials in orthopedic applications due to its interesting mechanical properties and reasonable biocompatibility. Nevertheless, after the implantation, microbial adhesion to its surface can provoke severe health problems associated to the development of biofilms and subsequent infectious processes. This work shows a modification of the Ti6Al4V surface by Si+ ion implantation which reduces the bacterial accumulation under shear forces. Results have shown that the number of bacteria remaining on the surface at the end of the adhesion experiments decreased for silicon-treated surface. In general, the new surface also behaved as less adhesive under in vitro flow conditions. Since no changes are observed in the electrical characteristics between the control and implanted samples, differences are likely related to small changes observed in hydrophobicity.

  20. Surface morphology and structure of Ge layer on Si(111) after solid phase epitaxy

    Science.gov (United States)

    Yoshida, Ryoma; Tosaka, Aki; Shigeta, Yukichi

    2018-05-01

    The surface morphology change of a Ge layer on a Si(111) surface formed by solid phase epitaxy has been investigated with a scanning tunneling microscope (STM). The Ge film was deposited at room temperature and annealed at 400 °C or 600 °C. The STM images of the sample surface after annealing at 400 °C show a flat wetting layer (WL) with small three-dimensional islands on the WL. After annealing at 600 °C, the STM images show a surface roughening with large islands. From the relation between the average height of the roughness and the deposited layer thickness, it is confirmed that the diffusion of Ge atoms becomes very active at 600 °C. The Si crystal at the interface is reconstructed and the intermixing occurs over 600 °C. However, the intermixing is fairly restricted in the solid phase epitaxy growth at 400 °C. The surface morphology changes with the crystallization at 400 °C are discussed by the shape of the islands formed on the WL surface. It is shown that the diffusion of the Ge atoms in the amorphous phase is active even at 400 °C.

  1. Characterization, modeling and physical mechanisms of different surface treatment methods at room temperature on the oxide and interfacial quality of the SiO2 film using the spectroscopic scanning capacitance microscopy

    Directory of Open Access Journals (Sweden)

    Kin Mun Wong

    Full Text Available In this article, a simple, low cost and combined surface treatment method [pre-oxidation immersion of the p-type silicon (Si substrate in hydrogen peroxide (H2O2 and post oxidation ultra-violet (UV irradiation of the silicon-dioxide (SiO2 film] at room temperature is investigated. The interface trap density at midgap [Dit(mg] of the resulting SiO2 film (denoted as sample 1A is quantified from the full width at half-maximum of the scanning capacitance microscopy (SCM differential capacitance (dC/dV characteristics by utilizing a previously validated theoretical model. The Dit(mg of sample 1A is significantly lower than the sample without any surface treatments which indicates that it is a viable technique for improving the interfacial quality of the thicker SiO2 films prepared by wet oxidation. Moreover, the proposed combined surface treatment method may possibly complement the commonly used forming gas anneal process to further improve the interfacial quality of the SiO2 films. The positive shift of the flatband voltage due to the overall oxide charges (estimated from the probe tip dc bias at the peak dC/dV spectra of sample 1A suggests the presence of negative oxide fixed charge density (Nf in the oxide. In addition, an analytical formula is derived to approximate the difference of the Nf values between the oxide samples that are immersed in H2O2 and UV irradiated from their measured SCM dC/dV spectra. Conversely, some physical mechanisms are proposed that result in the ionization of the SiO− species (which are converted from the neutral SiOH groups that originate from the pre-oxidation immersion in H2O2 and ensuing wet oxidation during the UV irradiation as well as the UV photo-injected electrons from the Si substrate (which did not interact with the SiOH groups. They constitute the source of mobile electrons which partially passivate the positively charged empty donor-like interface traps at the Si-SiO2 interface. Keywords: Dielectrics

  2. Surface damage on 6H–SiC by highly-charged Xeq+ ions irradiation

    International Nuclear Information System (INIS)

    Zhang, L.Q.; Zhang, C.H.; Han, L.H.; Xu, C.L.; Li, J.J.; Yang, Y.T.; Song, Y.; Gou, J.; Li, J.Y.; Ma, Y.Z.

    2014-01-01

    Surface damage on 6H–SiC irradiated by highly-charged Xe q+ (q = 18, 26) ions to different fluences in two geometries was studied by means of AFM, Raman scattering spectroscopy and FTIR spectrometry. The FTIR spectra analysis shows that for Xe 26+ ions irradiation at normal incidence, a deep reflection dip appears at about 930 cm −1 . Moreover, the reflectance on top of reststrahlen band decreases as the ion fluence increases, and the reflectance at tilted incidence is larger than that at normal incidence. The Raman scattering spectra reveal that for Xe 26+ ions at normal incidence, surface reconstruction occurs and amorphous stoichiometric SiC and Si–Si and C–C bonds are generated and original Si–C vibrational mode disappears. And the intensity of scattering peaks decreases with increasing dose. The AFM measurement shows that the surface swells after irradiation. With increasing ion fluence, the step height between the irradiated and the unirradiated region increases for Xe 18+ ions irradiation; while for Xe 26+ ions irradiation, the step height first increases and then decreases with increasing ion fluence. Moreover, the step height at normal incidence is higher than that at tilted incidence by the irradiation with Xe 18+ to the same ion fluence. A good agreement between the results from the three methods is found

  3. Benchmarking surface signals when growing GaP on Si in CVD ambients

    Energy Technology Data Exchange (ETDEWEB)

    Doescher, Henning

    2010-10-26

    The present work investigates the formation of GaP films prepared on Si(100) surfaces and their anti-phase disorder in metalorganic vapor phase epitaxy (MOVPE) ambients. GaP films grown on Si(100) substrates served as a lattice matched model system for the crucial III-V/Si(100) interface to form silicon-based quasi substrates. A variety of surface-sensitive methods was required to establish suitable silicon substrate preparation and subsequent GaP growth free of anti-phase domains (APDs) by analyzing the substrate surface, the interface and the epitaxial films resulting from the heteroepitaxial nucleation process. Thorough investigations in the MOVPE ambients and an appropriate improvement of the equipment and of the VPE preparation process of the substrates led to clean Si(100) surfaces free of oxygen and other contaminants, as was evidenced by Xray photoelectron spectroscopy. Predominantly double-layer stepped Si(100) surfaces, as a prerequisite for subsequent III-V integration, were obtained for 0.1 , 2 and 6 misorientation in [011] direction. In contrast to standard preparation in ultra-high vacuum (UHV), the double-layer steps on 0.1 and 2 samples featured dimers oriented perpendicular to the step edges, contradicting well-established results with and without hydrogen coverage obtained in UHV. This striking difference was attributed to the presence of hydrogen as a process gas in the MOVPE environment leading to a silicon surface covered by monohydrides after substrate preparation, as was determined by Fourier-transform infrared spectroscopy (FTIR), while reflectance anisotropy spectroscopy (RAS) showed the absence of hydrogen termination at higher temperatures. On these substrates, optical in situ spectroscopy was established as a method for the quantitative evaluation of the APD content in GaP heteroepitaxy. The analysis required a detailed understanding of the GaP(100) surface reconstructions, which have been described theoretically in the literature and

  4. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  5. Scanning tunneling microscopy of monoatomic gold chains on vicinal Si(335) surface: experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, M.; Kwapinski, T.; Jalochowski, M. [Institute of Physics and Nanotechnology Center, M. Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 1, 20-031 Lublin (Poland)

    2005-02-01

    We study electronic and topographic properties of the Si(335) surface, containing Au wires parallel to the steps. We use scanning tunneling microscopy (STM) supplemented by reflection of high energy electron diffraction (RHEED) technique. The STM data show the space and voltage dependent oscillations of the distance between STM tip and the surface which can be explained within one band tight binding Hubbard model. We calculate the STM current using nonequilibrium Keldysh Green function formalism. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. TXRF with synchrotron radiation. Analysis of Ni on Si-wafer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wobrauschek, P [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Kregsamer, P [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Ladisich, W [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Streli, C [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Pahlke, S [Wacker Chemitronic GmbH, D-84479 Burghausen (Germany); Fabry, L [Wacker Chemitronic GmbH, D-84479 Burghausen (Germany); Garbe, S [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany); Haller, M [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany); Knoechel, A [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany); Radtke, M [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany)

    1995-09-11

    SR-TXRF (Synchrotron Radiation excited Total Reflection X-ray Fluorescence Analysis) with monoenergetic radiation produced by a W/C multilayer monochromator has been applied to the analysis of Ni on a Si-wafer surface. An intentionally contaminated wafer with 100 pg has been used to determine the detection limits. 13 fg have been achieved for Ni at a beam current of 73 mA and extrapolated to 1000 s. This technique simulates the sample preparation technique of Vapour Phase Decomposition (VPD) on a wafer surface. (orig.).

  7. TXRF with synchrotron radiation. Analysis of Ni on Si-wafer surfaces

    International Nuclear Information System (INIS)

    Wobrauschek, P.; Kregsamer, P.; Ladisich, W.; Streli, C.; Pahlke, S.; Fabry, L.; Garbe, S.; Haller, M.; Knoechel, A.; Radtke, M.

    1995-01-01

    SR-TXRF (Synchrotron Radiation excited Total Reflection X-ray Fluorescence Analysis) with monoenergetic radiation produced by a W/C multilayer monochromator has been applied to the analysis of Ni on a Si-wafer surface. An intentionally contaminated wafer with 100 pg has been used to determine the detection limits. 13 fg have been achieved for Ni at a beam current of 73 mA and extrapolated to 1000 s. This technique simulates the sample preparation technique of Vapour Phase Decomposition (VPD) on a wafer surface. (orig.)

  8. Structural origin of Si-2p core-level shifts from Si(100)-c[4x2] surface: A spectral x-ray photoelectron diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Tonner, B.P. [Univ. of Wisconsin, Milwaukee, WI (United States); Denlinger, J. [Univ. of Wisconsin, Milwaukee, WI (United States)][Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have performed angle-resolved x-ray photoelectron diffraction (XPD) from a Si(100)-c(4x2) surface to study the structural origin of Si-2p core-level shifts. In the experiment, the highly resolved surface Si-2p core-level spectra were measured as a fine grid of hemisphere and photon energies, using the SpectroMicroscopy Facility {open_quotes}ultraESCA{close_quotes} instrument. By carefully decomposing the spectra into several surface peaks, the authors are able to obtain surface-atom resolved XPD patterns. Using a multiple scattering analysis, they derived a detailed atomic model for the Si(100)-c(4x2) surface. In this model, the asymmetric dimers were found tilted by 11.5 plus/minus 2.0 degrees with bond length of 2.32 plus/minus 0.05{angstrom}. By matching model XPD patterns to experiment, the authors can identify which atoms in the reconstructed surface are responsible for specific photoemission lines in the 2p spectrum.

  9. UHV-TEM/TED observation of Ag islands grown on Si( 1 1 1 ) 3× 3-Ag surface

    Science.gov (United States)

    Oshima, Yoshifumi; Nakade, Hiroyuki; Shigeki, Sinya; Hirayama, Hiroyuki; Takayanagi, Kunio

    2001-11-01

    Growths of Ag islands on Si(1 1 1)3×3-Ag surface at room temperature were observed by UHV transmission electron microscopy and diffraction. The Ag islands grown after six monolayer deposition had neither (1 0 0) nor (1 1 0) orientation, but had two complex epitaxial orientations dominantly. One was striped islands which gave rise to a diffraction pattern commensurate with the 3×3 lattice of the Si(1 1 1) surface. The other was the coagulated islands whose diffraction pattern indicated the Ag(1 -3 4) sheet grown parallel to the Si(1 1 1) surface.

  10. Thermal and UV Hydrosilylation of Alcohol-Based Bifunctional Alkynes on Si (111) surfaces: How surface radicals influence surface bond formation.

    Science.gov (United States)

    Khung, Y L; Ngalim, S H; Scaccabarozi, A; Narducci, D

    2015-06-12

    Using two different hydrosilylation methods, low temperature thermal and UV initiation, silicon (111) hydrogenated surfaces were functionalized in presence of an OH-terminated alkyne, a CF3-terminated alkyne and a mixed equimolar ratio of the two alkynes. XPS studies revealed that in the absence of premeditated surface radical through low temperature hydrosilylation, the surface grafting proceeded to form a Si-O-C linkage via nucleophilic reaction through the OH group of the alkyne. This led to a small increase in surface roughness as well as an increase in hydrophobicity and this effect was attributed to the surficial etching of silicon to form nanosize pores (~1-3 nm) by residual water/oxygen as a result of changes to surface polarity from the grafting. Furthermore in the radical-free thermal environment, a mix in equimolar of these two short alkynes can achieve a high contact angle of ~102°, comparable to long alkyl chains grafting reported in literature although surface roughness was relatively mild (rms = ~1 nm). On the other hand, UV initiation on silicon totally reversed the chemical linkages to predominantly Si-C without further compromising the surface roughness, highlighting the importance of surface radicals determining the reactivity of the silicon surface to the selected alkynes.

  11. Absence of surface stress change during pentacene thin film growth on the Si(111)-(7 x 7) surface: a buried reconstruction interface

    International Nuclear Information System (INIS)

    Kury, P; Horn von Hoegen, M; Heringdorf, F-J Meyer zu; Roos, K R

    2008-01-01

    We use high-resolution surface stress measurements to monitor the surface stress during the growth of pentacene (C 22 H 14 ) on the (7x7) reconstructed silicon (111) surface. No significant change in the surface stress is observed during the pentacene growth. Compared to the changes in the surface stress observed for Si and Ge deposition on the Si(111)-(7x7) surface, the insignificant change in the surface stress observed for the pentacene growth suggests that the pentacene molecules of the first adsorbate layer, although forming strong covalent bonds with the Si adatoms, do not alter the structure of the (7x7) reconstruction. The (7x7) reconstruction remains intact and, with subsequent deposition of pentacene, eventually becomes buried under the growing film. This failure of the pentacene to affect the structure of the reconstruction may represent a fundamental difference between the growth of organic thin films and that of inorganic thin films on semiconductor surfaces

  12. Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(=CH2)Me2]/[(≡SiO)2Ta(=CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)TaVMe4

    KAUST Repository

    Chen, Yin; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Hamzaoui, Bilel; Emsley, Lyndon; Basset, Jean-Marie

    2015-01-01

    By grafting TaMe5 on Aerosil700, a stable, well-defined, silica-supported tetramethyl tantalum(V) complex, [(≡SiO)TaMe4], is obtained on the silica surface. After thermal treatment at 150 °C, the complex is transformed into two surface tantalum methylidenes, [(≡SiO)2Ta(=CH2)Me] and [(≡SiO)Ta(=CH2)Me2], which are active in alkane metathesis and comparable to the previously reported [(≡SiO)2TaHx]. Here we present the first experimental study to isolate and identify a surface tantalum carbene as the intermediate in alkane metathesis. A systematic experimental study reveals a new reasonable pathway for this reaction.

  13. Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(=CH2)Me2]/[(≡SiO)2Ta(=CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)TaVMe4

    KAUST Repository

    Chen, Yin

    2015-01-21

    By grafting TaMe5 on Aerosil700, a stable, well-defined, silica-supported tetramethyl tantalum(V) complex, [(≡SiO)TaMe4], is obtained on the silica surface. After thermal treatment at 150 °C, the complex is transformed into two surface tantalum methylidenes, [(≡SiO)2Ta(=CH2)Me] and [(≡SiO)Ta(=CH2)Me2], which are active in alkane metathesis and comparable to the previously reported [(≡SiO)2TaHx]. Here we present the first experimental study to isolate and identify a surface tantalum carbene as the intermediate in alkane metathesis. A systematic experimental study reveals a new reasonable pathway for this reaction.

  14. Simulation, microstructure and microhardness of the nano-SiC coating formed on Al surface via laser shock processing

    International Nuclear Information System (INIS)

    Cui, C.Y.; Cui, X.G.; Zhao, Q.; Ren, X.D.; Zhou, J.Z.; Liu, Z.; Wang, Y.M.

    2014-01-01

    Highlights: • Nano-SiC coating is successfully fabricated on pure Al surface via LSPC. • Movement states of the nano-SiC particles are analyzed by FEM. • Formation mechanism of the nano-SiC coating is put forward and discussed. • Microhardness of the Al is significantly improved due to the nano-SiC coating. - Abstract: A novel method, laser shock processing coating (LSPC), has been developed to fabricate a particle-reinforced coating based on laser shock processing (LSP). In this study, a nano-SiC coating is successfully prepared on pure Al surface via LSPC. The surface and cross section morphologies as well as the compositions of nano-SiC coating are investigated. Moreover, a finite element method (FEM) is employed to clarify the formation process of nano-SiC coating. On the basis of the above analyzed results, a possible formation mechanism of the nano-SiC coating is tentatively put forward and discussed. Furthermore, the nano-SiC coating shows superior microhardness over the Al substrate

  15. Early stage oxynitridation process of Si(001) surface by NO gas: Reactive molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Cao, Haining; Kim, Seungchul; Lee, Kwang-Ryeol; Srivastava, Pooja; Choi, Keunsu

    2016-01-01

    Initial stage of oxynitridation process of Si substrate is of crucial importance in fabricating the ultrathin gate dielectric layer of high quality in advanced MOSFET devices. The oxynitridation reaction on a relaxed Si(001) surface is investigated via reactive molecular dynamics (MD) simulation. A total of 1120 events of a single nitric oxide (NO) molecule reaction at temperatures ranging from 300 to 1000 K are statistically analyzed. The observed reaction kinetics are consistent with the previous experimental or calculation results, which show the viability of the reactive MD technique to study the NO dissociation reaction on Si. We suggest the reaction pathway for NO dissociation that is characterized by the inter-dimer bridge of a NO molecule as the intermediate state prior to NO dissociation. Although the energy of the inter-dimer bridge is higher than that of the intra-dimer one, our suggestion is supported by the ab initio nudged elastic band calculations showing that the energy barrier for the inter-dimer bridge formation is much lower. The growth mechanism of an ultrathin Si oxynitride layer is also investigated via consecutive NO reactions simulation. The simulation reveals the mechanism of self-limiting reaction at low temperature and the time evolution of the depth profile of N and O atoms depending on the process temperature, which would guide to optimize the oxynitridation process condition.

  16. Bistable Si dopants in the GaAs (1 1 0) surface

    International Nuclear Information System (INIS)

    Smakman, E P; Koenraad, P M

    2015-01-01

    In this review, recent work is discussed on bistable Si dopants in the GaAs (1 1 0) surface, studied by scanning tunneling microscopy (STM). The bistability arises because the dopant atom can switch between a positive and a negative charge state, which are associated with two different lattice configurations. Manipulation of the Si atom charge configuration is achieved by tuning the local band bending with the STM tip. Furthermore, illuminating the sample with a laser also influences the charge state, allowing the operation of the dopant atom as an optical switch. The switching dynamics without illumination is investigated in detail as a function of temperature, lateral tip position, and applied tunneling conditions. A physical model is presented that independently describes the thermal and quantum tunneling contributions to the switching frequency and charge state occupation of a single Si atom. The basic functionality of a memory cell is demonstrated employing a single bistable Si dopant as the active element, using the STM tip as a gate to write and read the information. (topical review)

  17. Early stage oxynitridation process of Si(001) surface by NO gas: Reactive molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Haining; Kim, Seungchul; Lee, Kwang-Ryeol, E-mail: krlee@kist.re.kr [Computational Science Research Center, Korea Institute of Science and Technology, 5, Hwarangno 14-gil, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Department of Nanomaterial Science and Technology, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Srivastava, Pooja; Choi, Keunsu [Computational Science Research Center, Korea Institute of Science and Technology, 5, Hwarangno 14-gil, Seongbuk-gu, Seoul 02792 (Korea, Republic of)

    2016-03-28

    Initial stage of oxynitridation process of Si substrate is of crucial importance in fabricating the ultrathin gate dielectric layer of high quality in advanced MOSFET devices. The oxynitridation reaction on a relaxed Si(001) surface is investigated via reactive molecular dynamics (MD) simulation. A total of 1120 events of a single nitric oxide (NO) molecule reaction at temperatures ranging from 300 to 1000 K are statistically analyzed. The observed reaction kinetics are consistent with the previous experimental or calculation results, which show the viability of the reactive MD technique to study the NO dissociation reaction on Si. We suggest the reaction pathway for NO dissociation that is characterized by the inter-dimer bridge of a NO molecule as the intermediate state prior to NO dissociation. Although the energy of the inter-dimer bridge is higher than that of the intra-dimer one, our suggestion is supported by the ab initio nudged elastic band calculations showing that the energy barrier for the inter-dimer bridge formation is much lower. The growth mechanism of an ultrathin Si oxynitride layer is also investigated via consecutive NO reactions simulation. The simulation reveals the mechanism of self-limiting reaction at low temperature and the time evolution of the depth profile of N and O atoms depending on the process temperature, which would guide to optimize the oxynitridation process condition.

  18. Switchable Super-Hydrophilic/Hydrophobic Indium Tin Oxide (ITO) Film Surfaces on Reactive Ion Etching (RIE) Textured Si Wafer.

    Science.gov (United States)

    Kim, Hwa-Min; Litao, Yao; Kim, Bonghwan

    2015-11-01

    We have developed a surface texturing process for pyramidal surface features along with an indium tin oxide (ITO) coating process to fabricate super-hydrophilic conductive surfaces. The contact angle of a water droplet was less than 5 degrees, which means that an extremely high wettability is achievable on super-hydrophilic surfaces. We have also fabricated a super-hydrophobic conductive surface using an additional coating of polytetrafluoroethylene (PTFE) on the ITO layer coated on the textured Si surface; the ITO and PTFE films were deposited by using a conventional sputtering method. We found that a super-hydrophilic conductive surface is produced by ITO coated on the pyramidal Si surface (ITO/Si), with contact angles of approximately 0 degrees and a resistivity of 3 x 10(-4) Ω x cm. These values are highly dependent on the substrate temperature during the sputtering process. We also found that the super-hydrophobic conductive surface produced by the additional coating of PTFE on the pyramidal Si surface with an ITO layer (PTFE/ITO/Si) has a contact angle of almost 160 degrees and a resistivity of 3 x 10(-4) Ω x cm, with a reflectance lower than 9%. Therefore, these processes can be used to fabricate multifunctional features of ITO films for switchable super-hydrophilic and super-hydrophobic surfaces.

  19. Dual-Functionalized Graphene Oxide Based siRNA Delivery System for Implant Surface Biomodification with Enhanced Osteogenesis.

    Science.gov (United States)

    Zhang, Li; Zhou, Qing; Song, Wen; Wu, Kaimin; Zhang, Yumei; Zhao, Yimin

    2017-10-11

    Surface functionalization by small interfering RNA (siRNA) is a novel strategy for improved implant osseointegration. A gene delivery system with safety and high transfection activity is a crucial factor for an siRNA-functionalized implant to exert its biological function. To this end, polyethylene glycol (PEG) and polyethylenimine (PEI) dual-functionalized graphene oxide (GO; nGO-PEG-PEI) may present a promising siRNA vector. In this study, nanosized nGO-PEG-PEI was prepared and optimized for siRNA delivery. Titania nanotubes (NTs) fabricated by anodic oxidation were biomodified with nGO-PEG-PEI/siRNA by cathodic electrodeposition, designated as NT-GPP/siRNA. NT-GPP/siRNA possessed benign cytocompatibility, as evaluated by cell adhesion and proliferation. Cellular uptake and knockdown efficiency of the NT-GPP/siRNA were assessed by MC3T3-E1 cells, which exhibited high siRNA delivery efficiency and sustained target gene silencing. Casein kinase-2 interacting protein-1 (Ckip-1) is a negative regulator of bone formation. siRNA-targeting Ckip-1 (siCkip-1) was introduced to the implant, and a series of in vitro and in vivo experiments were carried out to evaluate the osteogenic capacity of NT-GPP/siCkip-1. NT-GPP/siCkip-1 dramatically improved the in vitro osteogenic differentiation of MC3T3-E1 cells in terms of improved osteogenesis-related gene expression, and increased alkaline phosphatase (ALP) production, collagen secretion, and extracellular matrix (ECM) mineralization. Moreover, NT-GPP/siCkip-1 led to apparently enhanced in vivo osseointegration, as indicated by histological staining and EDX line scanning. Collectively, these findings suggest that NT-GPP/siRNA represents a practicable and promising approach for implant functionalization, showing clinical potential for dental and orthopedic applications.

  20. Probing Surface-Adlayer Conjugation on Organic-Modified Si(111) Surfaces with Microscopy, Scattering, Spectroscopy, and Density Functional Theory

    International Nuclear Information System (INIS)

    Kellar, Joshua A.; Lin, Jui-Ching; Kim, Jun-Hyun; Yoder, Nathan L.; Bevan, Kirk H.; Stokes, Grace Y.; Geiger, Franz M.; Nguyen, SonBinh T.; Bedzyk, Michael J.; Hersam, Mark C.

    2009-01-01

    Highly conjugated molecules bound to silicon are promising candidates for organosilicon electronic devices and sensors. In this study, 1-bromo-4-ethynylbenzene was synthesized and reacted with a hydrogen-passivated Si(111) surface via ultraviolet irradiation. Through an array of characterization and modeling tools, the binding configuration and morphology of the reacted molecule were thoroughly analyzed. Atomic force microscopy confirmed an atomically flat surface morphology following reaction, while X-ray photoelectron spectroscopy verified reaction to the surface via the terminal alkyne moiety. In addition, synchrotron X-ray characterization, including X-ray reflectivity, X-ray fluorescence, and X-ray standing wave measurements, enabled sub-angstrom determination of the position of the bromine atom with respect to the silicon lattice. This structural characterization was quantitatively compared with density functional theory (DFT) calculations, thus enabling the π-conjugation of the terminal carbon atoms to be deduced. The X-ray and DFT results were additionally corroborated with the vibrational spectrum of the organic adlayer, which was measured with sum frequency generation. Overall, these results illustrate that the terminal carbon atoms in 1-bromo-4-ethynylbenzene adlayers on Si(111) retain π-conjugation, thus revealing alkyne molecules as promising candidates for organosilicon electronics and sensing.

  1. Effects of nano-SiO{sub 2} particles on surface tracking characteristics of silicone rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong, E-mail: tjuliuyong@tju.edu.cn; Li, Zhonglei; Du, Boxue [Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-08

    Compared with neat silicone rubber composites (SiRCs), SiRCs filled with nano-sized SiO{sub 2} particles at weight ratios from 0.1 to 1.0 wt. % exhibit a higher surface flashover voltage and a greater resistance to surface tracking. Scanning electron microscopy images of tracking morphologies indicate that the SiO{sub 2} particles are situated in close proximity to the polymeric chains and act as bridges to stabilize the chains and maintain the structure of the composite. Higher concentrations of nano-sized SiO{sub 2} particles, however, (above 0.3 wt. %) produce defects in the molecular network which lead to reductions in both the surface flashover voltage and the resistance to surface tracking, although these reduced values are still superior to those of neat SiRCs. Therefore, SiRCs filled with nano-sized SiO{sub 2} particles, especially at an optimal weight ratio (0.1 to 0.3 wt. %), may have significant potential applications as outdoor insulators for power systems.

  2. Modulation of surface wettability of superhydrophobic substrates using Si nanowire arrays and capillary-force-induced nanocohesion

    NARCIS (Netherlands)

    Dawood, M.K.; Zheng, H.; Kurniawan, N.A.; Leong, K.C.; Foo, Y.L.; Rajagopalan, Raj; Khan, S.A.; Choi, W.K.

    2012-01-01

    We describe a new scalable method to fabricate large-area hybrid superhydrophobic surfaces with selective adhesion properties on silicon (Si) nanowire array substrates by exploiting liquid-medium-dependent capillary-force-induced nanocohesion. Gold (Au) nanoparticles were deposited on Si by glancing

  3. Surface texturing of Si3N4–SiC ceramic tool components by pulsed laser machining

    CSIR Research Space (South Africa)

    Tshabalala, LC

    2016-03-01

    Full Text Available texturing of Si(sub3)N(sub4)–SiC composites in the fabrication of machining tool inserts for various tribological applications. The samples were machined at varied laser energy (0.1–0.6 mJ) and lateral pulse overlap (50–88%) in order to generate a sequence...

  4. Dissociative scattering of low-energy SiF{sub 3}{sup +} and SiF{sup +} ions (5-200 eV) on Cu(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hiroyuki; Baba, Yuji; Sasaki, T A [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Dissociative scattering of molecular SiF{sub 3}{sup +} and SiF{sup +} ions from a Cu(100) single crystal surface has been investigated in the incident energy range from 5 eV to 200 eV with a scattering angle of 77deg. The scattered ion intensity of dissociative ions and parent molecular ions were measured as a function of incident ion energy. The observed data show that onset energies of dissociation for SiF{sub 3}{sup +} and SiF{sup +} ions are 30 eV and 40 eV, respectively. The obtained threshold energies are consistent with a impulsive collision model where the dissociation of incident ion is caused by vibrational excitation during collision. (author)

  5. Highly conducting p-type nanocrystalline silicon thin films preparation without additional hydrogen dilution

    Science.gov (United States)

    Patra, Chandralina; Das, Debajyoti

    2018-04-01

    Boron doped nanocrystalline silicon thin film has been successfully prepared at a low substrate temperature (250 °C) in planar inductively coupled RF (13.56 MHz) plasma CVD, without any additional hydrogen dilution. The effect of B2H6 flow rate on structural and electrical properties of the films has been studied. The p-type nc-Si:H films prepared at 5 ≤ B2H6 (sccm) ≤ 20 retains considerable amount of nanocrystallites (˜80 %) with high conductivity ˜101 S cm-1 and dominant crystallographic orientation which has been correlated with the associated increased ultra- nanocrystalline component in the network. Such properties together make the material significantly effective for utilization as p-type emitter layer in heterojunction nc-Si solar cells.

  6. Surface photovoltage investigation of gold chains on Si(111) by two-photon photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Sebastian; Biedermann, Kerstin; Fauster, Thomas [Lehrstuhl fuer Festkoerperphysik, Universitaet Erlangen-Nuernberg, Staudtstr. 7, D-91058 Erlangen (Germany)

    2011-07-01

    We present surface photovoltage measurements on Si(111)-(7 x 7) with monoatomic gold chains. The gold coverage was varied between zero and 0.6 ML, where the Si(111)-(5 x 2)-Au reconstruction covers the surface completely. During the two-photon photoemission experiments the p- or n-doped samples were illuminated by infrared (IR, E{sub IR}=1.55 eV) and ultraviolet (UV, E{sub UV}=4.65 eV) laser pulses. For all coverages the photovoltage was determined for sample temperatures of 90 K and 300 K by variation of the IR and UV laser power. P-doped as well as n-doped Si(111) wafers show a linear dependence of the photovoltage on gold coverage. This stands in contrast to scanning tunneling spectroscopy measurements, which show a coverage-independent photovoltage over a wide coverage range for n-doped wafers. While for p-doped wafers our experimentally determined photovoltage is in agreement with previous reports, for n-doped wafers the observed values are lower than expected.

  7. Mössbauer spectroscopy study of surfactant sputtering induced Fe silicide formation on a Si surface

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, C.; Zhang, K. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Hofsäss, H., E-mail: hans.hofsaess@phys.uni-goettingen.de [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Brüsewitz, C.; Vetter, U. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Bharuth-Ram, K. [Physics Department, Durban University of Technology, Durban 4001 (South Africa)

    2015-12-01

    Highlights: • We study the formation of self-organized nanoscale dot and ripple patterns on Si. • Patterns are created by keV noble gas ion irradiation and simultaneous {sup 57}Fe co-deposition. • Ion-induced phase separation and the formation of a-FeSi{sub 2} is identified as relevant process. - Abstract: The formation of Fe silicides in surface ripple patterns, generated by erosion of a Si surface with keV Ar and Xe ions and simultaneous co-deposition of Fe, was investigated with conversion electron Mössbauer spectroscopy, atomic force microscopy and Rutherford backscattering spectrometry. For the dot and ripple patterns studied, we find an average Fe concentration in the irradiated layer between 6 and 25 at.%. The Mössbauer spectra clearly show evidence of the formation of Fe disilicides with Fe content close to 33 at.%, but very little evidence of the formation of metallic Fe particles. The results support the process of ion-induced phase separation toward an amorphous Fe disilicide phase as pattern generation mechanism. The observed amorphous phase is in agreement with thermodynamic calculations of amorphous Fe silicides.

  8. Effect of Current Density on Thermal and Optical Properties of p-Type Porous Silicon

    International Nuclear Information System (INIS)

    Kasra Behzad; Wan Mahmood Mat Yunus; Zainal Abidin Talib; Azmi Zakaria; Afarin Bahrami

    2011-01-01

    The different parameters of the porous silicon (PSi) can be tuned by changing some parameters in preparation process. We have chosen the anodization as formation method, so the related parameters should be changed. In this study the porous silicon (PSi) layers were formed on p-type Si wafer. The samples were anodized electrically in a fixed etching time under some different current densities. The structural and optical properties of porous silicon (PSi) on silicon (Si) substrates were investigated using photoluminescence (PL) and Photoacoustic Spectroscopy (PAS). (author)

  9. Graphitization of boron predeposited 6H-SiC(0 0 0 1) surface

    International Nuclear Information System (INIS)

    Okonogi, Yuta; Aoki, Yuki; Hirayama, Hiroyuki

    2012-01-01

    Highlights: ► We have tried to dope the B atoms into epitaxial graphene during the graphene growing process. ► The B induced changes in the surface were characterized by low-energy electron microscopy, auger electron spectroscopy, atomic force microscopy, and scanning tunneling icroscopy. ► No obvious B atoms doping evidence into the graphene was observed. - Abstract: We examined the substitutional doping of B atoms into epitaxial graphene on the SiC(0 0 0 1) surface. B atoms were deposited on the SiC(0 0 0 1) surface in advance of the growth of graphene. The B-induced changes in the surface morphology and chemical composition were characterized at the four thermal treatment stages in the growth of graphene (at 1120, 1370, 1520, and 1770 K) by low-energy electron diffraction (LEED), auger electron spectroscopy (AES), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). The B atoms were found to hinder the formation of a spatially uniform graphene layer. However, local deformation of the graphene lattice, which should be observed if B atoms are successfully doped substitutionally, was not observed in STM.

  10. Bonding of Si wafers by surface activation method for the development of high efficiency high counting rate radiation detectors

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Yamashita, Makoto; Onabe, Hideaki

    2006-01-01

    Si wafers with two different resistivities ranging over two orders of magnitude were bonded by the surface activation method. The resistivities of bonded Si wafers were measured as a function of annealing temperature. Using calculations based on a model, the interface resistivities of bonded Si wafers were estimated as a function of the measured resistivities of bonded Si wafers. With thermal treatment from 500degC to 900degC, all interfaces showed high resistivity, with behavior that was close to that of an insulator. Annealing at 1000degC decreased the interface resistivity and showed close to ideal bonding after thermal treatment at 1100degC. (author)

  11. One-dimensional silicon nanolines in the Si(001):H surface

    International Nuclear Information System (INIS)

    Bianco, F.; Köster, S. A.; Longobardi, M.; Owen, J. H.G.; Renner, Ch.; Bowler, D. R.

    2013-01-01

    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the monohydride Si(001):H surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometer long at a constant width of exactly four Si dimers (1.54 nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality

  12. Adsorption of selenium atoms at the Si(1 1 1)-7 x 7 surface: A combination of scanning tunnelling microscopy and density functional theory studies

    International Nuclear Information System (INIS)

    Wu, S.Q.; Zhou Yinghui; Wu Qihui; Pakes, C.I.; Zhu Zizhong

    2011-01-01

    Graphical abstract: A selenium atom, which adsorbs at site close to a Si adatom and bonds with this Si adatom and one of its backbonding Si atoms on the Si(1 1 1)-7 x 7 surface, will break the Si-Si bond and consequently disorder the Si reconstruction surface. Research highlights: → STM and DFT are used to study the adsorption properties of Se atoms on a Si surface. → The adsorption site of Se atom on the Si surface has been identified. → The electronic effect of Se atom on the adsorbed Si surface has been ivestigaed. → The Se atom weakens the bond between two Si atom bonding with the Se atom. - Abstract: The adsorption of selenium (Se) atoms at the Si(1 1 1)-7 x 7 surface has been investigated using both scanning tunnelling microscopy (STM) and density functional theory calculations. A single Se atom prefers to adsorb at sites close to a Si adatom and bonds with this Si adatom and one of its backbonding Si atoms. The adsorption sites are referred to as A*-type sites in this article. The density of the conduction band (empty states) of the Si adatom increases as a result of the adsorption of a Se atom, which causes the Si adatom to become brighter in the empty state STM images. At the same time, the adsorption of the Se atom weakens the bonding between the Si adatom and its backbonding Si atom due to the charge transfer from them to the Se atom, and consequently destructs the ordered Si(1 1 1)-7 x 7 surface with increasing Se coverage.

  13. Initial oxidation processes of Si(001) surfaces by supersonic O2 molecular beams. Different oxidation mechanisms for clean and partially-oxidized surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2002-01-01

    Potential energy barriers for dissociative chemisorption of O 2 molecules on Si(001) clean surfaces were investigated using supersonic O 2 molecular beams and photoemission spectroscopy. Relative initial sticking probabilities of O 2 molecules and the saturated oxygen amount on the Si(001) surface were measured as a function of incident energy of O 2 molecules. Although the probability was independent on the incident energy in the region larger than 1 eV, the saturated oxygen amount was dependent on the incident energy without energy thresholds. An Si-2p photoemission spectrum of the Si(001) surface oxidized by thermal O 2 gas revealed the oxygen insertion into dimer backbond sites. These facts indicate that a reaction path of the oxygen insertion into dimer backbonds through bridge sites is open for the clean surface oxidation, and the direct chemisorption probability at the backbonds is negligibly small comparing with that at the bridge sites. (author)

  14. A computational study on the adsorption configurations and reactions of SiH{sub x}(x = 1-4) on clean and H-covered Si(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Le, Thong N-M [Molecular Science and Nano-Materials Laboratory, Institute for Computational Science and Technology, Quang Trung Software Park, Dist. 12, Ho Chi Minh City (Viet Nam); Raghunath, P. [Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan (China); Huynh, Lam K., E-mail: lamhuynh.us@gmail.com [Department of Applied Chemistry, School of Biotechnology,International University, VNU-HCMC, Quarter 6, Linh Trung, Thu Duc District, Ho Chi Minh City (Viet Nam); Lin, M.C., E-mail: chemmcl@emory.edu [Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2016-11-30

    Highlights: • Possible adsorption configurations of all adsorbates on Si(100) surface are systematically explored. • The mechanisms leading to the formation of silicon adatoms on the surface are proposed. • The barriers for hydrogen abstractions from the surface are negligible comparing to the barriers for the hydrogen migrations. • The barriers for hydrogen abstractions from the adsorbed speices are negligible comparing to the barriers for the decompositions. - Abstract: Possible adsorption configurations of H and SiH{sub x} (x = 1 − 4) on clean and H-covered Si(100) surfaces are determined by using spin-polarized DFT calculations. The results show that, on the clean surface, the gas-phase hydrogen atom and SiH{sub 3} radicals effectively adsorb on the top sites, while SiH and SiH{sub 2} prefer the bridge sites of the first layer. Another possibility for SiH is to reside on the hollow sites with a triple-bond configuration. For a partially H-coverd Si(100) surface, the mechanism is similar but with higher adsorption energies in most cases. This suggests that the surface species become more stable in the presence of surface hydrogens. The minimum energy paths for the adsorption/migration and reactions of H/SiH{sub x} species on the surfaces are explored using the climbing image-nudged elastic band method. The competitive surface processes for Si thin-film formation from SiH{sub x} precursors are also predicted. The study reveals that the migration of hydrogen adatom is unimportant with respect to leaving open surface sites because of its high barriers (>29.0 kcal/mol). Alternatively, the abstraction of hydrogen adatoms by H/SiH{sub x} radicals is more favorable. Moreover, the removal of hydrogen atoms from adsorbed SiH{sub x}, an essential step for forming Si layers, is dominated by abstraction rather than the decomposition processes.

  15. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations.

    Science.gov (United States)

    Tan, Chih-Shan; Huang, Michael H

    2017-09-04

    Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering

    International Nuclear Information System (INIS)

    Ziberi, B; Cornejo, M; Frost, F; Rauschenbach, B

    2009-01-01

    The bombardment of surfaces with low-energy ion beams leads to material erosion and can be accompanied by changes in the topography. Under certain conditions this surface erosion can result in well-ordered nanostructures. Here an overview of the pattern formation on Si and Ge surfaces under low-energy ion beam erosion at room temperature will be given. In particular, the formation of ripple and dot patterns, and the influence of different process parameters on their formation, ordering, shape and type will be discussed. Furthermore, the internal ion beam parameters inherent to broad beam ion sources are considered as an additional degree of freedom for controlling the pattern formation process. In this context: (i) formation of ripples at near-normal ion incidence, (ii) formation of dots at oblique ion incidence without sample rotation, (iii) transition between patterns, (iv) formation of ripples with different orientations and (v) long range ordered dot patterns will be presented and discussed.

  17. Reaction paths of alane dissociation on the Si(0 0 1) surface

    Science.gov (United States)

    Smith, Richard; Bowler, David R.

    2018-03-01

    Building on our earlier study, we examine the kinetic barriers to decomposition of alane, AlH3, on the Si(0 0 1) surface, using the nudged elastic band approach within density functional theory. We find that the initial decomposition to AlH with two H atoms on the surface proceeds without a significant barrier. There are several pathways available to lose the final hydrogen, though these present barriers of up to 1 eV. Incorporation is more challenging, with the initial structures less stable in several cases than the starting structures, just as was found for phosphorus. We identify a stable route for Al incorporation following selective surface hydrogen desorption (e.g. by scanning tunneling microscope tip). The overall process parallels PH3, and indicates that atomically precise acceptor doping should be possible.

  18. Ripple structures on surfaces and underlying crystalline layers in ion beam irradiated Si wafers

    Energy Technology Data Exchange (ETDEWEB)

    Grenzer, J.; Muecklich, A. [Forschungszentrum Rossendorf, Institut fuer Ionenstrahlphysik und Materialforschung, Dresden (Germany); Biermanns, A.; Grigorian, S.A.; Pietsch, U. [Institute of Physics, University of Siegen (Germany)

    2009-08-15

    We report on the formation of ion beam induced ripples in Si(001) wafers when bombarded with Ar+ ions at an energy of 60 keV. A set of samples varying incidence and azimuthal angles of the ion beam with respect to the crystalline surface orientation was studied by two complementary near surface sensitive techniques, namely atomic force microscopy and depth-resolved X-ray grazing incidence diffraction (GID). Additionally, cross-section TEM investigations were carried out. The ripple-like structures are formed at the sample surface as well as at the buried amorphous-crystalline interface. Best quality of the ripple pattern was found when the irradiating ion beam was aligned parallel to the (111) planes. The quality decreases rapidly if the direction of the ion beam deviates from (111). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Determination of Groundwater and Surface Water Qualities at Si Racha, Chon Buri

    International Nuclear Information System (INIS)

    Wangsawang, Jarinee; Naenorn, Warinlada; Khuntong, Soontree; Wongsorntam, Krirk; Udomsomporn, Suchin

    2011-06-01

    Full text: Groundwater (13 wells) and surface water (7 ponds) at Si Racha, Chon Buri province were collected for measurement of water qualities and radionuclides. The water qualities included physical and chemical analysis such as pH, EC, TS, TDS, TSS, TKN, total phosphate, BOD, COD, total hardness and FOG based on standard methods for examination of water and wastewater. Heavy metals (Cd, Cu, Cr, Fe, Mn, Ni and Zn) were analyzed by ICP-AES while total coliform was determined by Multiple Tube Methods. Moreover, radionuclides were analyzed by gamma spectrometer and gross beta and gross alpha were obtained from low background gas proportional counter. Values of most parameters in groundwater were below water qualities standards but all parameters in surface water samples were exceeded water qualities standards. It was found that all radionuclides in water samples were originated from natural uranium and thorium series. The data obtained enabled evaluation of pollutants in groundwater and surface water

  20. AES study of the reaction between a thin Fe-film and β-SiC (100) surface

    International Nuclear Information System (INIS)

    Mizokawa, Yusuke; Nakanishi, Shigemitsu; Miyase, Sunao

    1989-01-01

    The solid state reaction between thin Fe-films and β-SiC(100) in UHV has been studied using AES. Even at room temperature, the reaction between the thin Fe-film and SiC occurred and formed Fe-silicide and graphite with a minor product of Fe-carbide (Fe 3 C). The reaction proceeded with an increase of Fe-coverage to some extent. With annealing of 15 A-Fe-film/SiC below 540degC, the Fe-silicide formation was accelerated, but because the amount of available Fe was small, the dissolved carbon atoms were forced to form not the Fe-carbide but the graphite phase. Above 640degC, the Fe-silicide started to decompose and the carbon atoms diffused to the surface and formed surface graphite layers. With annealing at 1080degC, the free-Si segregats at the surface and formed Si-Si bonds, as well as the Si-C bonds consuming the surface graphite phase. (author)

  1. Ge clusters and wetting layers forming from granular films on the Si(001) surface

    International Nuclear Information System (INIS)

    Storozhevykh, M S; Arapkina, L V; Yuryev, V A

    2016-01-01

    The report studies the transformation of a Ge granular film deposited on the Si(001) surface at room temperature into a Ge/Si(001) heterostructure as a result of rapid heating and annealing at 600 °C. As a result of the short-term annealing at 600 °C in conditions of a closed system, the Ge granular film transforms into a usual wetting layer and Ge clusters with multimodal size distribution and Ge oval drops having the highest number density. After the long-term thermal treatment of the Ge film at the same temperature, Ge drops disappear; the large clusters increase their sizes at the expense of the smaller ones. The total density of Ge clusters on the surface drastically decreases. The wetting layer mixed c(4 x 2) + p(2 x 2) reconstruction transforms into a single c(4 x 2) one which is likely to be thermodynamically favoured. Pyramids or domes are not observed on the surface after any annealing. (paper)

  2. Fabrication mechanism of friction-induced selective etching on Si(100) surface.

    Science.gov (United States)

    Guo, Jian; Song, Chenfei; Li, Xiaoying; Yu, Bingjun; Dong, Hanshan; Qian, Linmao; Zhou, Zhongrong

    2012-02-23

    As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surface. To understand the mechanism involved, the cross-sectional microstructure of a scratched area was examined, and the mask ability of the tip-disturbed silicon layer was studied. Transmission electron microscope observation and scanning Auger nanoprobe analysis suggested that the scratched area was covered by a thin superficial oxidation layer followed by a thick distorted (amorphous and deformed) layer in the subsurface. After the surface oxidation layer was removed by HF etching, the residual amorphous and deformed silicon layer on the scratched area can still serve as an etching mask in KOH solution. The results may help to develop a low-destructive, low-cost, and flexible nanofabrication technique suitable for machining of micro-mold and prototype fabrication in micro-systems.

  3. Enhanced protein loading on a planar Si(111)-H surface with second generation NTA

    Science.gov (United States)

    Liu, Xiang; Han, Huan-Mei; Liu, Hong-Bo; Xiao, Shou-jun

    2010-08-01

    A Si(111)-H surface was modified via a direct reaction between Si-H and 1-undecylenic acid (UA) under microwave irradiation to form molecular monolayers with terminal carboxyl groups. After esterifying carboxylic acid being esterified with N-hydroxysuccinimide (NHS), aminobutyl nitrilotriacetic acid (ANTA) was bound to the silicon surface through amidation (pH = 8.0) between its primary amino group and NHS-ester, producing nitrilotriacetic acid (NTA) anions. Then hexa-histidine tagged thioredoxin-urodilatin (his-tagged protein) and FITC-labeled hexa-histidine tagged thioredoxin-urodilatin (FITC-his-tagged protein) can be anchored after NTA was coordinated with Ni 2+. Furthermore, the NTA-terminated chip was acidified with 0.1 M HCl and subsequently esterified with NHS and then amidated with ANTA again to produce a second generation NTA. Thus the surface density of nitrilotriacetic acid anions was improved and resultantly that of anchored proteins was also enhanced through the iterative reactions. Both multiple transmission-reflection infrared spectroscopy (MTR-IR) and fluorescence scanning measurements demonstrated a proximate 1.63 times of anchored proteins on the second generation NTA/Ni 2+ as that on the first generation NTA/Ni 2+ monolayer.

  4. Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces

    International Nuclear Information System (INIS)

    Wang, Haibin; Chen, Eryu; Jia, Xianbu; Liang, Lijun; Wang, Qi

    2015-01-01

    Graphical abstract: - Highlights: • The SiO 2 and PTFE NP-filled coatings exhibit excellent superhydrophobicity. • PTFE-filled coatings show denser structures and better liquid resistance than SiO 2 . • Air pocket of Wentzel model explains the difference in the superhydrophobicity. - Abstract: Superhydrophobicity is extensively investigated because of the numerous methods developed for water-repellant interface fabrication. Many suitable functional materials for the production of superhydrophobic surfaces on various substrates are still being explored. In this study, inorganic SiO 2 and organic polytetrafluoroethylene (PTFE) nanoparticles (NPs) are used for a comparative study on the performance of superhydrophobic coating on carbon steel surfaces. The NPs are added to PTFE coating emulsions by physical blending to form coating mixtures. Raw SiO 2 NPs are then hydrophobized using KH-570 and validated by Fourier transform-infrared spectroscopy (FT-IR) and Dynamic Laser Scattering (DLS) grain size analyses. The microstructures of the surfaces are characterized by contact angle (CA) measurements and field emission-scanning electron microscope (FE-SEM) images. The prepared surfaces are subjected to adhesion, hardness, water resistance, and acid/alkali erosion tests. Hydrophobized SiO 2 -filled coating surfaces are found to have better uniformity than raw SiO 2 regardless of their similar maximum static contact angles (SCAs) about 150°. A SCA of 163.1° is obtained on the PTFE NP-filled coating surfaces that have a considerably denser structure than SiO 2 . Thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses reveal that all fabricated surfaces have good thermal stability and tolerate temperatures up to 550 °C. The PTFE NP-filled coating surfaces also exhibit excellent water and acid resistance. A possible mechanism concerning the amount of trapped air is proposed in relation to practical superhydrophobic surface fabrication

  5. Magic angle and height quantization in nanofacets on SiC(0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Keisuke; Iwata, Jun-Ichi; Oshiyama, Atsushi [Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656 (Japan)

    2014-02-03

    We report on the density-functional calculations that provide microscopic mechanism of the facet formation on the SiC (0001) surface. We first identify atom-scale structures of single-, double-, and quad-bilayer steps and find that the single-bilayer (SB) step has the lowest formation energy. We then find that the SB steps are bunched to form a nanofacet with a particular angle relative to the (0001) plane (magic facet angle) and with a discretized height along the (0001) direction (height quantization). We also clarify a microscopic reason for the self-organization of the nanofacet observed experimentally.

  6. Ion bombardment induced surface topography modification of clean and contaminated single crystal Cu and Si

    International Nuclear Information System (INIS)

    Lewis, G.W.; Kiriakides, G.; Carter, G.; Nobes, M.J.

    1982-01-01

    Among the several factors which lead to depth resolution deterioration during sputter profiling, surface morphological modification resulting from local differences of sputtering rate can be important. This paper reports the results of direct scanning, electron microscopic studies obtained quasi-dynamically during increasing fluence ion bombardment of the evolution of etch pit structures on Si and Cu, and how such elaboration may be suppressed. It also reports on the elaboration of contaminant-induced cone generation for different ion species bombardment. The influence of such etch pit and cone generation on achievable depth resolution is assessed. (author)

  7. Disentangling surface, bulk, and space-charge-layer conductivity in Si(111)-(7x7)

    DEFF Research Database (Denmark)

    Wells, J.W.; Kallehauge, J.F.; Hansen, Torben Mikael

    2006-01-01

    A novel approach for extracting genuine surface conductivities is presented and illustrated using the unresolved example of Si(111)-(7x7). Its temperature-dependent conductivity was measured with a microscopic four point probe between room temperature and 100 K. At room temperature the measured...... conductance corresponds to that expected from the bulk doping level. However, as the temperatures is lowered below approximate to 200 K, the conductance decreases by several orders of magnitude in a small temperature range and it saturates at a low temperature value of approximate to 4x10(-8) Omega(-1...

  8. Plasmon-Enhanced Photoluminescence of an Amorphous Silicon Quantum Dot Light-Emitting Device by Localized Surface Plasmon Polaritons in Ag/SiOx:a-Si QDs/Ag Sandwich Nanostructures

    Directory of Open Access Journals (Sweden)

    Tsung-Han Tsai

    2015-01-01

    Full Text Available We investigated experimentally the plasmon-enhanced photoluminescence of the amorphous silicon quantum dots (a-Si QDs light-emitting devices (LEDs with the Ag/SiOx:a-Si QDs/Ag sandwich nanostructures, through the coupling between the a-Si QDs and localized surface plasmons polaritons (LSPPs mode, by tuning a one-dimensional (1D Ag grating on the top. The coupling of surface plasmons at the top and bottom Ag/SiOx:a-Si QDs interfaces resulted in the localized surface plasmon polaritons (LSPPs confined underneath the Ag lines, which exhibit the Fabry-Pérot resonance. From the Raman spectrum, it proves the existence of a-Si QDs embedded in Si-rich SiOx film (SiOx:a-Si QDs at a low annealing temperature (300°C to prevent the possible diffusion of Ag atoms from Ag film. The photoluminescence (PL spectra of a-Si QDs can be precisely tuned by a 1D Ag grating with different pitches and Ag line widths were investigated. An optimized Ag grating structure, with 500 nm pitch and 125 nm Ag line width, was found to achieve up to 4.8-fold PL enhancement at 526 nm and 2.46-fold PL integrated intensity compared to the a-Si QDs LEDs without Ag grating structure, due to the strong a-Si QDs-LSPPs coupling.

  9. Mechanism of bonding and debonding using surface activated bonding method with Si intermediate layer

    Science.gov (United States)

    Takeuchi, Kai; Fujino, Masahisa; Matsumoto, Yoshiie; Suga, Tadatomo

    2018-04-01

    Techniques of handling thin and fragile substrates in a high-temperature process are highly required for the fabrication of semiconductor devices including thin film transistors (TFTs). In our previous study, we proposed applying the surface activated bonding (SAB) method using Si intermediate layers to the bonding and debonding of glass substrates. The SAB method has successfully bonded glass substrates at room temperature, and the substrates have been debonded after heating at 450 °C, in which TFTs are fabricated on thin glass substrates for LC display devices. In this study, we conducted the bonding and debonding of Si and glass in order to understand the mechanism in the proposed process. Si substrates are also successfully bonded to glass substrates at room temperature and debonded after heating at 450 °C using the proposed bonding process. By the composition analysis of bonding interfaces, it is clarified that the absorbed water on the glass forms interfacial voids and cause the decrease in bond strength.

  10. Deposition of phospholipid layers on SiO{sub 2} surface modified by alkyl-SAM islands

    Energy Technology Data Exchange (ETDEWEB)

    Tero, R.; Takizawa, M.; Li, Y.J.; Yamazaki, M.; Urisu, T

    2004-11-15

    Formation of the supported planar bilayer of dipalmitoylphosphatidylcholine (DPPC) on SiO{sub 2} surfaces modified with the self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) has been investigated by atomic force microscopy (AFM). DPPC was deposited by the fusion of vesicles on SiO{sub 2} surfaces with OTS-SAM islands of different sizes and densities. The DPPC bilayer membrane formed self-organizingly on the SiO{sub 2} surface with small and sparse OTS islands, while did not when the OTS islands were larger and denser. The relative size between the vesicles and the SiO{sub 2} regions is the critical factor for the formation of the DPPC bilayer membrane.

  11. Analysis of the Si(111) surface prepared in chemical vapor ambient for subsequent III-V heteroepitaxy

    International Nuclear Information System (INIS)

    Zhao, W.; Steidl, M.; Paszuk, A.; Brückner, S.; Dobrich, A.; Supplie, O.; Kleinschmidt, P.; Hannappel, T.

    2017-01-01

    Highlights: • We investigate the Si(111) surface prepared in CVD ambient at 1000 °C in 950 mbar H_2. • UHV-based XPS, LEED, STM and FTIR as well as ambient AFM are applied. • After processing the Si(111) surface is free of contamination and atomically flat. • The surface exhibits a (1 × 1) reconstruction and monohydride termination. • Wet-chemical pretreatment and homoepitaxy are required for a regular step structure. - Abstract: For well-defined heteroepitaxial growth of III-V epilayers on Si(111) substrates the atomic structure of the silicon surface is an essential element. Here, we study the preparation of the Si(111) surface in H_2-based chemical vapor ambient as well as its atomic structure after contamination-free transfer to ultrahigh vacuum (UHV). Applying complementary UHV-based techniques, we derive a complete picture of the atomic surface structure and its chemical composition. X-ray photoelectron spectroscopy measurements after high-temperature annealing confirm a Si surface free of any traces of oxygen or other impurities. The annealing in H_2 ambient leads to a monohydride surface termination, as verified by Fourier-transform infrared spectroscopy. Scanning tunneling microscopy confirms a well ordered, atomically smooth surface, which is (1 × 1) reconstructed, in agreement with low energy electron diffraction patterns. Atomic force microscopy reveals a significant influence of homoepitaxy and wet-chemical pretreatment on the surface morphology. Our findings show that wet-chemical pretreatment followed by high-temperature annealing leads to contamination-free, atomically flat Si(111) surfaces, which are ideally suited for subsequent III-V heteroepitaxy.

  12. Analysis of the Si(111) surface prepared in chemical vapor ambient for subsequent III-V heteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W.; Steidl, M.; Paszuk, A. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Brückner, S. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institut für Solare Brennstoffe, 14109 Berlin (Germany); Dobrich, A. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Supplie, O. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institut für Solare Brennstoffe, 14109 Berlin (Germany); Kleinschmidt, P. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Hannappel, T., E-mail: thomas.hannappel@tu-ilmenau.de [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institut für Solare Brennstoffe, 14109 Berlin (Germany)

    2017-01-15

    Highlights: • We investigate the Si(111) surface prepared in CVD ambient at 1000 °C in 950 mbar H{sub 2}. • UHV-based XPS, LEED, STM and FTIR as well as ambient AFM are applied. • After processing the Si(111) surface is free of contamination and atomically flat. • The surface exhibits a (1 × 1) reconstruction and monohydride termination. • Wet-chemical pretreatment and homoepitaxy are required for a regular step structure. - Abstract: For well-defined heteroepitaxial growth of III-V epilayers on Si(111) substrates the atomic structure of the silicon surface is an essential element. Here, we study the preparation of the Si(111) surface in H{sub 2}-based chemical vapor ambient as well as its atomic structure after contamination-free transfer to ultrahigh vacuum (UHV). Applying complementary UHV-based techniques, we derive a complete picture of the atomic surface structure and its chemical composition. X-ray photoelectron spectroscopy measurements after high-temperature annealing confirm a Si surface free of any traces of oxygen or other impurities. The annealing in H{sub 2} ambient leads to a monohydride surface termination, as verified by Fourier-transform infrared spectroscopy. Scanning tunneling microscopy confirms a well ordered, atomically smooth surface, which is (1 × 1) reconstructed, in agreement with low energy electron diffraction patterns. Atomic force microscopy reveals a significant influence of homoepitaxy and wet-chemical pretreatment on the surface morphology. Our findings show that wet-chemical pretreatment followed by high-temperature annealing leads to contamination-free, atomically flat Si(111) surfaces, which are ideally suited for subsequent III-V heteroepitaxy.

  13. Surface layer determination for the Si spheres of the Avogadro project

    Science.gov (United States)

    Busch, I.; Azuma, Y.; Bettin, H.; Cibik, L.; Fuchs, P.; Fujii, K.; Krumrey, M.; Kuetgens, U.; Kuramoto, N.; Mizushima, S.

    2011-04-01

    For the accurate determination of the Avogadro constant, two 28Si spheres were produced, whose macroscopic density, in addition to other values, must be determined. To make a contribution to the new definition of the kilogram, a relative standard uncertainty of less than 2 × 10-8 has to be achieved. Each silicon surface is covered by a surface layer (SL). Consequently, correction parameters for the SL are determined to be applied to the mass and volume determination of the enriched spheres. With the use of a large set of surface analysing techniques, the structure of the SL is investigated. An unexpected metallic contamination existing on the sphere surface enlarges the uncertainty contribution of the correction parameters above the originally targeted value of 1 × 10-8. In the framework of this investigation this new obstacle is resolved in two ways. A new combination of analytical methods is applied to measure the SL mass mSL and the thickness dSL, including this new contamination, with an uncertainty of u(mSL) = 14.5 µg and 14.4 µg, respectively, and u(dSL) = 0.33 nm and 0.32 nm for the 28Si spheres AVO28-S5 and AVO28-S8, respectively. In the second part of the work, the chemical composition of these metallic contaminations is found to be Cu, Ni and Zn silicide compounds. For the removal of this contamination, a special procedure is developed, tested and applied to the spheres to produce the originally expected surface structure on the spheres. After the application of this new procedure the use of x-ray reflectometry directly at the spheres will be possible. It is expected to reduce the uncertainty contribution due to the SL down to 1 × 10-8.

  14. Influence of Group-III-metal and Ag adsorption on the Ge growth on Si(111) and its vicinal surface

    Energy Technology Data Exchange (ETDEWEB)

    Speckmann, Moritz

    2011-12-15

    In the framework of this thesis the surfactant-mediated heteroepitaxial growth of Ge on different Si surfaces has been investigated by means of low-energy electron microscopy, low-energy electron diffraction, spot-profile analysing low-energy electron diffraction, X-ray standing waves, grazing-incidence X-ray diffraction, x-ray photoemission electron microscopy, X-ray photoemission spectroscopy, scanning tunneling microscopy, scanning electron microscopy, transmission electron microscopy, and density functional theory calculations. As surfactants gallium, indium, and silver were used. The adsorption of Ga or In on the intrinsically faceted Si(112) surface leads to a smoothing of the surface and the formation of (N x 1) reconstructions, where a mixture of building blocks of different sizes is always present. For both adsorbates the overall periodicity on the surface is strongly dependent on the deposition temperature and the coverage. For the experimental conditions chosen here, the periodicities are in the range of 5.2{<=}N{<=}6.5 and 3.4{<=}N{<=}3.7 for Ga and In, respectively. The (N x 1) unit cells of Ga/Si(112) and In/Si(112) are found to consist of adsorbate atoms on terrace and step-edge sites, forming two atomic chains along the [110] direction. In the Ga-induced structures two Ga-vacancies per unit cell (one in the terrace and one in the step-edge site) are found and a continuous vacancy line on the surface is formed. In the In/Si(112) structure only one vacancy per unit cell in the step-edge site exists and, thus, a continuous adsorbate chain on the terrace sites is present. The adsorption of Ga or In on Si(112) strongly influences the subsequent Ge growth. Ge deposition on the Ga-terminated Si(112) surface leads to the formation of Ge nanowires, which are elongated along the Ga chains and reach lengths of up to 2000 nm for a growth temperature of 600 C. On In-covered Si(112), both small dash-like Ge islands and triangularly shaped islands are found, where

  15. Formation of Si{sup 1+} in the early stages of the oxidation of the Si[001] 2 × 1 surface

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Gomez, Alberto, E-mail: aherrerag@cinvestav.mx [CINVESTAV-Unidad Queretaro, Queretaro 76230 (Mexico); Aguirre-Tostado, Francisco-Servando [Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600 (Mexico); Pianetta, Piero [SLAC National Accelerator Center, Menlo Park, California 94025 (United States)

    2016-03-15

    The early stages of the oxidation of the Si[001] 2 × 1 surface were studied with synchrotron radiation photoelectron spectroscopy. The analysis was based on the block approach, which is a refinement of spectra-subtraction that accounts for changes on the background signal and for band-bending shifts. By this method, it was possible to robustly show that the formation of Si{sup 1+} is due to oxygen bonding to the upper dimer atoms. Our results contrast with ab initio calculation, which indicates that the most favorable bonding site is the back-bond of the down-dimer.

  16. DC heating induced shape transformation of Ge structures on ultraclean Si(5 5 12) surfaces.

    Science.gov (United States)

    Dash, J K; Rath, A; Juluri, R R; Raman, P Santhana; Müller, K; Rosenauer, A; Satyam, P V

    2011-04-06

    We report the growth of Ge nanostructures and microstructures on ultraclean, high vicinal angle silicon surfaces and show that self-assembled growth at optimum thickness of the overlayer leads to interesting shape transformations, namely from nanoparticle to trapezoidal structures, at higher thickness values. Thin films of Ge of varying thickness from 3 to 12 ML were grown under ultrahigh vacuum conditions on a Si(5 5 12) substrate while keeping the substrate at a temperature of 600 °C. The substrate heating was achieved by two methods: (i) by heating a filament under the substrate (radiative heating, RH) and (ii) by passing direct current through the samples in three directions (perpendicular, parallel and at 45° to the (110) direction of the substrate). We find irregular, more spherical-like island structures under RH conditions. The shape transformations have been found under DC heating conditions and for Ge deposition more than 8 ML thick. The longer sides of the trapezoid structures are found to be along (110) irrespective of the DC current direction. We also show the absence of such a shape transformation in the case of Ge deposition on Si(111) substrates. Scanning transmission electron microscopy measurements suggested the mixing of Ge and Si. This has been confirmed with a quantitative estimation of the intermixing using Rutherford backscattering spectrometry (RBS) measurements. The role of DC heating in the formation of aligned structures is discussed. Although the RBS simulations show the presence of a possible SiO(x) layer, under the experimental conditions of the present study, the oxide layer would not play a role in determining the formation of the various structures that were reported here.

  17. On Allosteric Modulation of P-Type Cu+-ATPases

    DEFF Research Database (Denmark)

    Mattle, Daniel; Sitsel, Oleg; Autzen, Henriette Elisabeth

    2013-01-01

    P-type ATPases perform active transport of various compounds across biological membranes and are crucial for ion homeostasis and the asymmetric composition of lipid bilayers. Although their functional cycle share principles of phosphoenzyme intermediates, P-type ATPases also show subclass...... of intramembranous Cu+ binding, and we suggest an alternative role for the proposed second site in copper translocation and proton exchange. The class-specific features demonstrate that topological diversity in P-type ATPases may tune a general energy coupling scheme to the translocation of compounds with remarkably...

  18. HPDL Remelting of Anodised Al-Si-Cu Cast Alloys Surfaces

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2012-12-01

    Full Text Available The results of the investigations of the laser remelting of the AlSi9Cu4 cast aluminium alloy with the anodised and non-anodised surfacelayer and hardness changes have been presented in this paper. The surface layer of the tested aluminium samples was remelted with thelaser of a continuous work. The power density was from 8,17•103 W/cm2 to 1,63•104 W/cm2. The metallographic tests were conducted inform of light microscope investigations of the received surface layer. The main goal of the investigation was to find the relation betweenthe laser beam power and its power density falling on a material, evaluating the shape and geometry of the remelted layers and theirhardness. As the substrate material two types of surfaces of the casted AlSi9Cu4 alloy were applied – the non–treated as cast surface aswell the anodized surface. As a device for this type of surface laser treatment the High Power Diode Laser was applied with a maximumpower of 2.2 kW and the dimensions of the laser beam focus of 1.8 x 6.8 mm. By mind of such treatment it is also possible to increasehardness as well eliminate porosity and develop metallurgical bonding at the coating-substrate interface. Suitable operating conditions forHPDL laser treatment were finally determined, ranging from 1.0 to 2.0 kW. Under such conditions, taking into account the absorptionvalue, the effects of laser remelting on the surface shape and roughness were studied. The results show that surface roughness is reducedwith increasing laser power by the remelting process only for the non-anodised samples, and high porosity can be found in the with highpower remelted areas. The laser influence increases with the heat input of the laser processing as well with the anodisation of the surface,because of the absorption enhancement ensured through the obtained alumina layer.

  19. Surface PIXE analysis of phosphorus in a thin SiO2 (P, B) CVD layer deposited onto Si substrate

    International Nuclear Information System (INIS)

    Roumie, M.; Nsouli, B.

    2001-01-01

    Phosphorus determination, at level of percent, in Si matrix is not an easy analytical task. The analyzed materials arc Borophosphosilicate glass which are an important component of silicon based semiconductor technology. It's a thin SiO2 layer (400 nm) doped with boron and phosphorus using, in general, CVD (Chemical Vapor Deposition) process, in order to improve its plasticity, and deposited onto Si substrate. Therefore, the mechanical behaviour of the CVD SiO2 (P, B) layer is very sensitive to the phosphorus concentration. In this work we explore the capability of FIXE (Particle Induced X-ray Emission) to monitor a rapid and accurate quantification of P which is usually very low in such materials (few percent of the thin CVD layer deposited onto a silicon substrate). A systematic study is undertaken using Proton (0.5-3 MeV energy) and helium (1-3 MeV energy) beams, different thickness of X-ray absorber (131 and 146 μm of Kapton filter) and different tilting angles (0,45,60 and 80 deg.). The optimized measurement conditions should improve the P signal detection comparing to the Si and Background ones

  20. p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation.

    Science.gov (United States)

    Chen, Le; Yang, Jinhui; Klaus, Shannon; Lee, Lyman J; Woods-Robinson, Rachel; Ma, Jie; Lum, Yanwei; Cooper, Jason K; Toma, Francesca M; Wang, Lin-Wang; Sharp, Ian D; Bell, Alexis T; Ager, Joel W

    2015-08-05

    Achieving stable operation of photoanodes used as components of solar water splitting devices is critical to realizing the promise of this renewable energy technology. It is shown that p-type transparent conducting oxides (p-TCOs) can function both as a selective hole contact and corrosion protection layer for photoanodes used in light-driven water oxidation. Using NiCo2O4 as the p-TCO and n-type Si as a prototypical light absorber, a rectifying heterojunction capable of light driven water oxidation was created. By placing the charge separating junction in the Si using a np(+) structure and by incorporating a highly active heterogeneous Ni-Fe oxygen evolution catalyst, efficient light-driven water oxidation can be achieved. In this structure, oxygen evolution under AM1.5G illumination occurs at 0.95 V vs RHE, and the current density at the reversible potential for water oxidation (1.23 V vs RHE) is >25 mA cm(-2). Stable operation was confirmed by observing a constant current density over 72 h and by sensitive measurements of corrosion products in the electrolyte. In situ Raman spectroscopy was employed to investigate structural transformation of NiCo2O4 during electrochemical oxidation. The interface between the light absorber and p-TCO is crucial to produce selective hole conduction to the surface under illumination. For example, annealing to produce more crystalline NiCo2O4 produces only small changes in its hole conductivity, while a thicker SiOx layer is formed at the n-Si/p-NiCo2O4 interface, greatly reducing the PEC performance. The generality of the p-TCO protection approach is demonstrated by multihour, stable, water oxidation with n-InP/p-NiCo2O4 heterojunction photoanodes.

  1. AlSiTiN and AlSiCrN multilayer coatings: Effects of structure and surface composition on tribological behavior under dry and lubricated conditions

    International Nuclear Information System (INIS)

    Faga, Maria Giulia; Gautier, Giovanna; Cartasegna, Federico; Priarone, Paolo C.; Settineri, Luca

    2016-01-01

    Graphical abstract: - Highlights: • The demand for high performance nanostructured coatings has been increasing. • AlSiTiN and AlSiCrN nanocomposite coatings were deposited by PVD technique. • Coatings were analyzed in terms of structure, hardness and adhesion. • Tribological properties under dry and lubricated conditions were studied. • The effects of surface and bulk properties on friction evolution were assessed. - Abstract: Nanocomposite coatings have been widely studied over the last years because of their high potential in several applications. The increased interest for these coatings prompted the authors to study the tribological properties of two nanocomposites under dry and lubricated conditions (applying typical MQL media), in order to assess the influence of the surface and bulk properties on friction evolution. To this purpose, multilayer and nanocomposite AlSiTiN and AlSiCrN coatings were deposited onto tungsten carbide-cobalt (WC-Co) samples. Uncoated WC-Co materials were used as reference. Coatings were analyzed in terms of hardness and adhesion. The structure of the samples was assessed by X-ray diffraction (XRD), while the surface composition was studied by XPS analysis. Friction tests were carried out under both dry and lubricated conditions using an inox ball as counterpart. Both coatings showed high hardness and good adhesion to the substrate. As far as the friction properties are concerned, in dry conditions the surface properties affect the sliding contact at the early beginning, while bulk structure and tribolayer formation determine the main behavior. Only AlSiTiN coating shows a low and stable coefficient of friction (COF) under dry condition, while the use of MQL media results in a rapid stabilization of the COF for all the materials.

  2. Potassium ions in SiO2: electrets for silicon surface passivation

    Science.gov (United States)

    Bonilla, Ruy S.; Wilshaw, Peter R.

    2018-01-01

    This manuscript reports an experimental and theoretical study of the transport of potassium ions in thin silicon dioxide films. While alkali contamination was largely researched in the context of MOSFET instability, recent reports indicate that potassium ions can be embedded into oxide films to produce dielectric materials with permanent electric charge, also known as electrets. These electrets are integral to a number of applications, including the passivation of silicon surfaces for optoelectronic devices. In this work, electric field assisted migration of ions is used to rapidly drive K+ into SiO2 and produce effective passivation of silicon surfaces. Charge concentrations of up to ~5  ×  1012 e cm-2 have been achieved. This charge was seen to be stable for over 1500 d, with decay time constants as high as 17 000 d, producing an effectively passivated oxide-silicon interface with SRV  industrial manufacture of silicon optoelectronic devices.

  3. Low Temperature Scanning Force Microscopy of the Si(111)-( 7x7) Surface

    International Nuclear Information System (INIS)

    Lantz, M. A.; Hug, H. J.; Schendel, P. J. A. van; Hoffmann, R.; Martin, S.; Baratoff, A.; Abdurixit, A.; Guentherodt, H.-J.; Gerber, Ch.

    2000-01-01

    A low temperature scanning force microscope (SFM) operating in a dynamic mode in ultrahigh vacuum was used to study the Si(111)-(7x7) surface at 7.2 K. Not only the twelve adatoms but also the six rest atoms of the unit cell are clearly resolved for the first time with SFM. In addition, the first measurements of the short range chemical bonding forces above specific atomic sites are presented. The data are in good agreement with first principles computations and indicate that the nearest atoms in the tip and sample relax significantly when the tip is within a few Angstrom of the surface. (c) 2000 The American Physical Society

  4. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, Heike, E-mail: angermann@helmholtz-berlin.de

    2014-09-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D{sub it}(E), and density D{sub it,min} of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly

  5. Morphological Evolution of Pit-Patterned Si(001) Substrates Driven by Surface-Energy Reduction

    Science.gov (United States)

    Salvalaglio, Marco; Backofen, Rainer; Voigt, Axel; Montalenti, Francesco

    2017-09-01

    Lateral ordering of heteroepitaxial islands can be conveniently achieved by suitable pit-patterning of the substrate prior to deposition. Controlling shape, orientation, and size of the pits is not trivial as, being metastable, they can significantly evolve during deposition/annealing. In this paper, we exploit a continuum model to explore the typical metastable pit morphologies that can be expected on Si(001), depending on the initial depth/shape. Evolution is predicted using a surface-diffusion model, formulated in a phase-field framework, and tackling surface-energy anisotropy. Results are shown to nicely reproduce typical metastable shapes reported in the literature. Moreover, long time scale evolutions of pit profiles with different depths are found to follow a similar kinetic pathway. The model is also exploited to treat the case of heteroepitaxial growth involving two materials characterized by different facets in their equilibrium Wulff's shape. This can lead to significant changes in morphologies, such as a rotation of the pit during deposition as evidenced in Ge/Si experiments.

  6. Understanding the growth mechanism of graphene on Ge/Si(001) surfaces.

    Science.gov (United States)

    Dabrowski, J; Lippert, G; Avila, J; Baringhaus, J; Colambo, I; Dedkov, Yu S; Herziger, F; Lupina, G; Maultzsch, J; Schaffus, T; Schroeder, T; Kot, M; Tegenkamp, C; Vignaud, D; Asensio, M-C

    2016-08-17

    The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene "molecules" nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.

  7. Ozone Oxidation of Self-Assembled Monolayers on SiOx-Coated Zinc Selenide Surfaces

    Science.gov (United States)

    McIntire, T. M.; Ryder, O. S.; Finlayson-Pitts, B. J.

    2008-12-01

    Airborne particles are important for visibility, human health, climate, and atmospheric reactions. Atmospheric particles contain a significant fraction of organics and such compounds present on airborne particles are susceptible to oxidation by atmospheric oxidants, such as OH, ozone, halogen atoms, and nitrogen trioxide. Oxidized organics associated with airborne particles are thought to be polar, hygroscopic species with enhanced cloud-nucleating properties. Oxide layers on silicon, or SiO2-coated substrates, act as models of environmentally relevant surfaces such as dust particles upon which organics adsorb. We have shown previously that ozone oxidation of unsaturated self-assembled monolayers (SAMs) on silicon attenuated total reflectance (ATR) crystals leads to the formation of carbonyl groups and micron-sized, hydrophobic organic aggregates surrounded by carbon depleted substrate that do not have increased water uptake as previously assumed. Reported here are further ATR-FTIR studies of the oxidation of alkene SAMs on ZnSe and SiO2-coated ZnSe. These substrates have the advantage that they transmit below 1500 cm-1, allowing detection of additional product species. These experiments show that the loss of C=C and formation of carbonyl groups is also accompanied by formation of a peak at 1110 cm-1, attributed to the secondary ozonide. Details concerning the products and mechanism of ozonolysis of alkene SAMs on surfaces based on these new data are presented and the implications for the oxidation of alkenes on airborne dust particles are discussed.

  8. Fabrication of Surface Level Cu/Si Cp Nano composites by Friction Stir Processing Route

    International Nuclear Information System (INIS)

    Srinivasan, R. C.; Karunanithi, M.

    2015-01-01

    Friction stir processing (FSP) technique has been successfully employed as low energy consumption route to prepare copper based surface level nano composites reinforced with nano sized silicon carbide particles (Si Cp). The effect of FSP parameters such as tool rotational speed, processing speed, and tool tilt angle on microstructure and microhardness was investigated. Single pass FSP was performed based on Box-Behnken design at three factors in three levels. A cluster of blind holes 2 mm in diameter and 3 mm in depth was used as particulate deposition technique in order to reduce the agglomeration problem during composite fabrication. K-type thermocouples were used to measure temperature histories during FSP. The results suggest that the heat generation during FSP plays a significant role in deciding the microstructure and microhardness of the surface composites. Microstructural observations revealed a uniform dispersion of nano sized Si Cp without any agglomeration problem and well bonded with copper matrix at different process parameter combinations. X-ray diffraction study shows that no intermetallic compound was produced after processing. The microhardness of nano composites was remarkably enhanced and about 95% more than that of copper matrix

  9. Fabrication of Surface Level Cu/SiCp Nanocomposites by Friction Stir Processing Route

    Directory of Open Access Journals (Sweden)

    Cartigueyen Srinivasan

    2015-01-01

    Full Text Available Friction stir processing (FSP technique has been successfully employed as low energy consumption route to prepare copper based surface level nanocomposites reinforced with nanosized silicon carbide particles (SiCp. The effect of FSP parameters such as tool rotational speed, processing speed, and tool tilt angle on microstructure and microhardness was investigated. Single pass FSP was performed based on Box-Behnken design at three factors in three levels. A cluster of blind holes 2 mm in diameter and 3 mm in depth was used as particulate deposition technique in order to reduce the agglomeration problem during composite fabrication. K-type thermocouples were used to measure temperature histories during FSP. The results suggest that the heat generation during FSP plays a significant role in deciding the microstructure and microhardness of the surface composites. Microstructural observations revealed a uniform dispersion of nanosized SiCp without any agglomeration problem and well bonded with copper matrix at different process parameter combinations. X-ray diffraction study shows that no intermetallic compound was produced after processing. The microhardness of nanocomposites was remarkably enhanced and about 95% more than that of copper matrix.

  10. Ripple formation on Si surfaces during plasma etching in Cl2

    Science.gov (United States)

    Nakazaki, Nobuya; Matsumoto, Haruka; Sonobe, Soma; Hatsuse, Takumi; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2018-05-01

    Nanoscale surface roughening and ripple formation in response to ion incidence angle has been investigated during inductively coupled plasma etching of Si in Cl2, using sheath control plates to achieve the off-normal ion incidence on blank substrate surfaces. The sheath control plate consisted of an array of inclined trenches, being set into place on the rf-biased electrode, where their widths and depths were chosen in such a way that the sheath edge was pushed out of the trenches. The distortion of potential distributions and the consequent deflection of ion trajectories above and in the trenches were then analyzed based on electrostatic particle-in-cell simulations of the plasma sheath, to evaluate the angular distributions of ion fluxes incident on substrates pasted on sidewalls and/or at the bottom of the trenches. Experiments showed well-defined periodic sawtooth-like ripples with their wave vector oriented parallel to the direction of ion incidence at intermediate off-normal angles, while relatively weak corrugations or ripplelike structures with the wave vector perpendicular to it at high off-normal angles. Possible mechanisms for the formation of surface ripples during plasma etching are discussed with the help of Monte Carlo simulations of plasma-surface interactions and feature profile evolution. The results indicate the possibility of providing an alternative to ion beam sputtering for self-organized formation of ordered surface nanostructures.

  11. Occupied and unoccupied electronic states on vicinal Si(111) surfaces decorated with monoatomic gold chains; Besetzte und unbesetzte elektronische Zustaende vizinaler Si(111)-Oberflaechen mit atomaren Goldketten

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Kerstin

    2012-07-12

    In this work, the occupied and unoccupied electronic states of vicinal Si(111)-Au surfaces were investigated. The research focused on amending the experimental electronic band structure by two-photon photoemission and laser-based photoemission and bringing it in line with theoretical band structure calculations. This work dealt with the Si(553)-Au, the Si(111)-(5x2)-Au and the Si(557)-Au surface. Angle-resolved UV-photoelectron spectroscopy gave access to the occupied part of the band structure and thus to the energetic position, the dispersion and the symmetry of the occupied states. Bichromatic two-photon photoemission, however, revealed information about the energetics and, in addition, about the dynamics of unoccupied states on a femtosecond timescale. Notably, the selective polarization of the laser pulses allowed for distinguishing and classifying many of the states with respect to their symmetry. All three surfaces exhibited both surface and bulk states in the occupied part of the band structure. They could be clearly identified and separated from surface contributions by means of tight-binding calculations of the bulk band structure of silicon and by comparison to each other. An added similarity of these surfaces are the one-dimensional Rashba-split gold states, which definitely show dispersion along the chains but not perpendicular to them. All surfaces exhibit states which can easily be assigned to the gold chains. Additional features, however, cannot be attributed clearly to the characteristics of the complex surface reconstruction in all cases. An assignment to surface states was only successfully accomplished for Si(553)-Au. The primary emphasis of this photoemission study was on the Si(553)-Au surface, which shows the smallest defect density in comparison to the other surfaces and hence exhibits the sharpest peaks in the experimental spectra. In accordance with ab-initio band structure calculations this surface also displays, in addition to one

  12. Ion beam effects on the surface and near-surface composition of TaSi sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Valeri, S.; Di Bona, A.; Ottaviani, G. (Dipt. di Fisica, Univ. di Modena (Italy)); Procop, M. (Zentralinstitut fuer Elektronenphysik, Berlin (Germany))

    1991-07-01

    Low-energy (0.7-4.5 keV) ion bombardment effects on polycrystalline TaSi{sub 2} at sputter steady state and in various intermediate steps have been investigated, in the temperature range up to 550degC, to determine the time and temperature dependence of the altered layer formation. This in turn enables a better knowledge of the synergistic effects of the processes mentioned above. At low temperatures (T{<=}410degC) the surface is silicon depleted, and the depletion is even more severe in the subsurface region up to a depth of several tens of angstroems; silicon preferential sputtering and radiation-enhanced segregation assisted by the displacement mixing-induced motion of atoms are assumed to be responsible for this composition profile, while thermally activated diffusion processes become operative above 410degC, reducing progressively the concentration gradient between the surface and the subsurface zone. The composition at different depths has been determined from Auger peaks for different kinetic energies, by varying the take-off angle and finally by sputter profiling at low in energy the high energy processed surfaces. Quantitative analysis has been performed by XPS and AES by using the elemental standard method. (orig.).

  13. Surface damage versus defect microstructures in He and H ion co-implanted Si{sub 3}N{sub 4}/Si

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, F. [School of Science, Tianjin University, Tianjin 300072 (China); Liu, C.L., E-mail: liuchanglong@tju.edu.cn [School of Science, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics Faculty of Science, Tianjin 300072 (China); Gao, Y.J.; Wang, Z.; Wang, J. [School of Science, Tianjin University, Tianjin 300072 (China)

    2012-09-01

    Cz n-type Si (1 0 0) wafers with a top Si{sub 3}N{sub 4} layer of about 170 nm in thickness were sequentially implanted with 40 keV He ions at a fluence of 5 Multiplication-Sign 10{sup 16}/cm{sup 2} and 35 keV H ions at fluences of 1 Multiplication-Sign 10{sup 15}, 5 Multiplication-Sign 10{sup 15} and 1 Multiplication-Sign 10{sup 16}/cm{sup 2}, respectively. Creation and evolution of surface damage as well as micro-defects have been studied. Our results clearly show that production of surface damage depends strongly on both the H implant fluence and annealing temperature. Only blistering or localized exfoliation of the top Si{sub 3}N{sub 4} layer has been observed for post H implantation at fluences of 1 Multiplication-Sign 10{sup 15} and 5 Multiplication-Sign 10{sup 15}/cm{sup 2} upon 800 Degree-Sign C annealing. However, serious surface exfoliation has been found for the 1 Multiplication-Sign 10{sup 16}/cm{sup 2} H co-implanted samples after annealing at 450 Degree-Sign C and above. The exfoliation occurs at a depth of about 360 nm from the surface, which is obviously larger than the He or H ion range. Moreover, the exfoliated craters show clear two-step structures. Cross-sectional transmission electron microscopy (XTEM) observations reveal formation of micro-cracks in Si bulk and along the original interface, which is mainly responsible for the observed surface phenomena. The formation mechanism of micro-cracks has been discussed in combination of He and H implant-induced defects, impurities as well as their interactions upon annealing.

  14. D2 dissociative adsorption on and associative desorption from Si(100): Dynamic consequences of an ab initio potential energy surface

    DEFF Research Database (Denmark)

    Luntz, A. C.; Kratzer, Peter

    1996-01-01

    favors the symmetric one. Under the conditions of many experiments, either could dominate. The calculations show quite weak dynamic coupling to the Si lattice for both paths, i.e., weak surface temperature dependences to dissociation and small energy loss to the lattice upon desorption......Dynamical calculations are reported for D-2 dissociative chemisorption on and associative desorption from a Si(100) surface. These calculations use the dynamically relevant effective potential which is based on an ab initio potential energy surface for the ''pre-paired'' species. Three coordinates...

  15. Surface donor states distribution post SiN passivation of AlGaN/GaN heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Nitin, E-mail: nitin@unik.no [Carinthian Tech Research CTR AG, Europastraße 4/1, Technologiepark Villach, A- 9524 Villach/St. Magdalen (Austria); Department of Electronics and Telecommunication, Norwegian University of Science and Technology, Trondheim NO7034 (Norway); Fjeldly, Tor A. [Department of Electronics and Telecommunication, Norwegian University of Science and Technology, Trondheim NO7034 (Norway)

    2014-07-21

    In this paper, we present a physics based analytical model to describe the effect of SiN passivation on two-dimensional electron gas density and surface barrier height in AlGaN/GaN heterostructures. The model is based on an extraction technique to calculate surface donor density and surface donor level at the SiN/AlGaN interface. The model is in good agreement with the experimental results and promises to become a useful tool in advanced design and characterization of GaN based heterostructures.

  16. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily f...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society...

  17. Atomic force microscopy measurements of topography and friction on dotriacontane films adsorbed on a SiO2 surface

    DEFF Research Database (Denmark)

    Trogisch, S.; Simpson, M.J.; Taub, H.

    2005-01-01

    We report comprehensive atomic force microscopy (AFM) measurements at room temperature of the nanoscale topography and lateral friction on the surface of thin solid films of an intermediate-length normal alkane, dotriacontane (n-C32H66), adsorbed onto a SiO2 surface. Our topographic and frictional...

  18. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas

    2016-01-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface fo...

  19. Interaction of tetraethoxysilane with OH-terminated SiO{sub 2} (0 0 1) surface: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiaodi, E-mail: dixiaodeng@gmail.com [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Song, Yixu, E-mail: songyixu@163.com [State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084 (China); Li, Jinchun [Institute of Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China); Pu, Yikang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2014-06-01

    First principles calculates have been performed to investigate the surface reaction mechanism of tetraethoxysilane (TEOS) with fully hydroxylated SiO{sub 2}(0 0 1) substrate. In semiconductor industry, this is the key step to understand and control the SiO{sub 2} film growth in chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes. During the calculation, we proposed a model which breaks the surface dissociative chemisorption into two steps and we calculated the activation barriers and thermochemical energies for each step. Our calculation result for step one shows that the first half reaction is thermodynamically favorable. For the second half reaction, we systematically studied the two potential reaction pathways. The comparing result indicates that the pathway which is more energetically favorable will lead to formation of crystalline SiO{sub 2} films while the other will lead to formation of disordered SiO{sub 2} films.

  20. Buffer-eliminated, charge-neutral epitaxial graphene on oxidized 4H-SiC (0001) surface

    International Nuclear Information System (INIS)

    Sirikumara, Hansika I.; Jayasekera, Thushari

    2016-01-01

    Buffer-eliminated, charge-neutral epitaxial graphene (EG) is important to enhance its potential in device applications. Using the first principles Density Functional Theory calculations, we investigated the effect of oxidation on the electronic and structural properties of EG on 4H-SiC (0001) surface. Our investigation reveals that the buffer layer decouples from the substrate in the presence of both silicate and silicon oxy-nitride at the interface, and the resultant monolayer EG is charge-neutral in both cases. The interface at 4H-SiC/silicate/EG is characterized by surface dangling electrons, which opens up another route for further engineering EG on 4H-SiC. Dangling electron-free 4H-SiC/silicon oxy-nitride/EG is ideal for achieving charge-neutral EG.

  1. Tailoring Si(100) substrate surfaces for GaP growth by Ga deposition: A low-energy electron microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Rienäcker, Michael; Borkenhagen, Benjamin, E-mail: b.borkenhagen@pe.tu-clausthal.de; Lilienkamp, Gerhard; Daum, Winfried [TU Clausthal, Institut für Energieforschung und Physikalische Technologien, Leibnizstraße 4, D-38678 Clausthal-Zellerfeld (Germany)

    2015-08-07

    For GaP-on-Si(100) heteroepitaxy, currently considered as a model system for monolithic integration of III–V semiconductors on Si(100), the surface steps of Si(100) have a major impact on the quality of the GaP film. Monoatomic steps cause antiphase domains in GaP with detrimental electronic properties. A viable route is to grow the III–V epilayer on single-domain Si(100) with biatomic steps, but preferably not at the expense of reduced terrace widths introduced by miscut substrates. We have performed in situ investigations of the influence of Ga deposition on the kinetics of surface steps and terraces of Si(100) at substrate temperatures above 600 °C by low-energy electron microscopy. Starting from nearly equally distributed T{sub A} and T{sub B} terraces of a two-domain Si(100) surface, submonolayer deposition of Ga results in a transformation into a surface dominated by T{sub A} terraces and biatomic D{sub A} steps. This transformation is reversible, and Si(100) with monoatomic steps is recovered upon termination of the Ga flux. Under conditions of higher coverages (but still below 0.25 monolayer), we observe restructuring into a surface with T{sub B} dominance, similar to the findings of Hara et al. [J. Appl. Phys. 98, 083515 (2005)]. The occurrence and mutual transformations of surface structures with different terrace and step structures in a narrow range of temperatures and Ga deposition rates is discussed.

  2. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.; Kahaly, M. Upadhyay; Cheng, Yingchun; Schwingenschlö gl, Udo

    2012-01-01

    deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition

  3. Real-time monitoring of initial thermal oxidation on Si(001) surfaces by synchrotron radiation photoemission spectroscopy

    CERN Document Server

    Yoshigoe, A; Teraoka, Y

    2003-01-01

    The thermal oxidation of Si(001) surfaces at 860 K, 895 K, 945 K and 1000 K under the O sub 2 pressure of 1 x 10 sup - sup 4 Pa has been investigated by time-resolved photoemission measurements with synchrotron radiation. Based on time evolution analyses by reaction kinetics models, it was found that the oxidation at 860 K, 895 K and 945 K has progressed with the Langmuir adsorption type, whereas the oxidation at 1000 K has showed the character of the two-dimensional island growth involving SiO desorption. The oxidation rates increases with increasing surface temperature in the passive oxidation condition. The time evolution of each Si oxidation state (Si sup n sup + : n = 1, 2, 3, 4) derived from the Si-2p core-level shifts has also been analyzed. The results revealed that the thermal energy contribution to the migration process of the adsorbed oxygen and the emission of the bulk silicon atoms. Thus, the fraction of the Si sup 4 sup + bonding state, i.e. SiO sub 2 structure, was increased. (author)

  4. The performance of Y2O3 as interface layer between La2O3 and p-type silicon substrate

    Directory of Open Access Journals (Sweden)

    Shulong Wang

    2016-11-01

    Full Text Available In this study, the performance of Y2O3 as interface layer between La2O3 and p-type silicon substrate is studied with the help of atomic layer deposition (ALD and magnetron sputtering technology. The surface morphology of the bilayer films with different structures are observed after rapid thermal annealing (RTA by atomic force microscopy (AFM. The results show that Y2O3/Al2O3/Si structure has a larger number of small spikes on the surface and its surface roughness is worse than Al2O3/Y2O3/Si structure. The reason is that the density of Si substrate surface is much higher than that of ALD growth Al2O3. With the help of high-frequency capacitance-voltage(C-V measurement and conductivity method, the density of interface traps can be calculated. After a high temperature annealing, the metal silicate will generate at the substrate interface and result in silicon dangling bond and interface trap charge, which has been improved by X-ray photoelectron spectroscopy (XPS and interface trap charge density calculation. The interface trapped charge density of La2O3/Al2O3/Si stacked gate structure is lower than that of La2O3/Y2O3/Si gate structure. If Y2O3 is used to replace Al2O3 as the interfacial layer, the accumulation capacitance will increase obviously, which means lower equivalent oxide thickness (EOT. Our results show that interface layer Y2O3 grown by magnetron sputtering can effectively ensure the interface traps near the substrate at relative small level while maintain a relative higher dielectric constant than Al2O3.

  5. Core-shell Si/Cu nanocomposites synthesized by self-limiting surface reaction as anodes for lithium ion batteries

    Science.gov (United States)

    Xu, Kaiqi; Zhang, Zhizhen; Su, Wei; Huang, Xuejie

    Core-shell Si/Cu nanocomposites were synthesized via a flexible self-limiting surface reaction without extra reductant for the first time. The nano Si was uniformly coated with Cu nanoparticles with a diameter of 5-10nm, which can enhance the electronic conductivity of the nanocomposites and buffer the huge volume change during charge/discharge owing to its high ductility. Benefited from the unique structure, the Si/Cu nanocomposites exhibited a good electrochemical performance as anodes for lithium ion batteries, which exhibited a capacity retention of 656mAh/g after 50 cycles and a coulombic efficiency of more than 99%.

  6. Ab initio study of the adsorption of antimony and arsenic on the Si(110) surface

    International Nuclear Information System (INIS)

    Huitzil-Tepanecatl, Arely; Cocoletzi, Gregorio H.; Takeuchi, Noboru

    2010-01-01

    We have performed first principles total energy calculations to investigate the adsorption of Sb and As adatoms on the Si(110) surface using a (2 x 3) supercell. The energetics and atomic structures have been investigated in four atomic configurations. One structure is obtained by placing 1/3 of a monolayer (ML) of Sb (As) atoms on the Si(110) surface. The other three geometries are obtained by depositing 1 ML of Sb (As) atoms on the surface. In the first case the structure is formed by four trimers, in the second case the geometry is formed by zigzag atomic chains and in the third case the structure contains 'microfacets'. The energetics results of the Sb adsorption show that for low coverage the tetrahedrons formed by the adsorption of 1/3 ML is the most stable configuration, while in the monolayer region the zigzag atomic chain is the most stable structure. However, the total energies of the trimer and microfacet structures are slightly higher, indicating that under some conditions, they may be formed. In an experimental report it has been suggested that the adsorption of 1/3 and 1 ML of Sb corresponds to the low and high coverage in the experiments of Zotov et al. [A. V. Zotov, V. G. Lifshifts, and A. N. Demidchik, Surf. Sci. 274, L583 (1992)]. On the other hand, our results of the As adsorption show that for low coverage, the tetrahedrons in the adsorption of 1/3 ML also give the most stable configuration. However, at the 1 ML coverage, a structure formed by microfacets is the most stable structure, in agreement with previous results.

  7. Ab initio study of the adsorption of antimony and arsenic on the Si(110) surface

    Energy Technology Data Exchange (ETDEWEB)

    Huitzil-Tepanecatl, Arely [Postgrado en Fisica Aplicada, Facultad de Ciencias Fisico-Matematicas, BUAP, Apartado Postal 52, Puebla 72000 (Mexico); Cocoletzi, Gregorio H., E-mail: cocoletz@sirio.ifuap.buap.m [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, Codigo Postal 22860, Apartado Postal 2732 Ensenada, Baja California (Mexico); Centro de Nanociencia y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 2681, Ensenada, Baja California, 22800 (Mexico); Instituto de Fisica, Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla 72570 (Mexico); Takeuchi, Noboru [Centro de Nanociencia y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 2681, Ensenada, Baja California, 22800 (Mexico)

    2010-10-29

    We have performed first principles total energy calculations to investigate the adsorption of Sb and As adatoms on the Si(110) surface using a (2 x 3) supercell. The energetics and atomic structures have been investigated in four atomic configurations. One structure is obtained by placing 1/3 of a monolayer (ML) of Sb (As) atoms on the Si(110) surface. The other three geometries are obtained by depositing 1 ML of Sb (As) atoms on the surface. In the first case the structure is formed by four trimers, in the second case the geometry is formed by zigzag atomic chains and in the third case the structure contains 'microfacets'. The energetics results of the Sb adsorption show that for low coverage the tetrahedrons formed by the adsorption of 1/3 ML is the most stable configuration, while in the monolayer region the zigzag atomic chain is the most stable structure. However, the total energies of the trimer and microfacet structures are slightly higher, indicating that under some conditions, they may be formed. In an experimental report it has been suggested that the adsorption of 1/3 and 1 ML of Sb corresponds to the low and high coverage in the experiments of Zotov et al. [A. V. Zotov, V. G. Lifshifts, and A. N. Demidchik, Surf. Sci. 274, L583 (1992)]. On the other hand, our results of the As adsorption show that for low coverage, the tetrahedrons in the adsorption of 1/3 ML also give the most stable configuration. However, at the 1 ML coverage, a structure formed by microfacets is the most stable structure, in agreement with previous results.

  8. Magnetic and surface properties of Fe-Nb (Mo, V)-Cu-B-Si ribbons

    International Nuclear Information System (INIS)

    Butvinova, B.; Butvin, P.; Svec, P. Sr.; Matko, I.; Svec, P.; Janickovic, D.; Kadlecikova, M.

    2014-01-01

    The rapidly quenched Finemet (FeNbCuBSi) ribbons prepared by planar flow casting of the melt are very variable to obtain very good soft-magnetic properties. An appropriate thermal treatment leading to ultra-fine grain structure enables to attain such properties as desired for practical use. Increasing Fe percentage to the detriment of non-magnetic components lifts saturation induction above 1.3 T, preserves low coercivity and makes the alloy even cheaper to suit its mass production for use in power electronics. Apart from the plenty of benefits the ribbons show some risks. One of them is macroscopic heterogeneity, which often manifests via differences between surfaces and interior of a ribbon [3]. The surfaces squeeze (by in-plane force) the interior of many such ribbons and if engaged in magnetoelastic interaction, the force affects the resulting magnetic anisotropy [4]. Current research shows that changes of hysteresis loop shape come rather from surface crystallization and not from oxides namely in positively magnetostrictive alloys FeNbCuBSi known as low- Si Finemets. The object of this work is to verify whether the substitution of another element instead of Nb (usually incorporated as the grain-growth blocker) can change surface properties and affects the resulting magnetic properties. We chose V and Mo instead of Nb. Oxides, oxyhydroxides and a possible squeezing layer was looked for after higher temperature annealing which ensures partially nanocrystalline structure. (authors)

  9. Effect of La surface treatments on corrosion resistance of A3xx.x/SiCp composites in salt fog

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Merino, S.; Viejo, F.; Coy, A.E.

    2006-01-01

    The influence of the SiC p proportion and the matrix concentration of four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) modified by lanthanum-based conversion or electrolysis coating was evaluated in neutral salt fog according to ASTM B 117. Lanthanum-based conversion coatings were obtained by immersion in 50 deg. C solution of La(III) salt and lanthanum electrolysis treatments were performed in ethylene glycol mono-butyl ether solution. These treatments preferentially covered cathodic areas such as intermetallic compounds, Si eutectic and SiC p . The kinetic of the corrosion process was studied on the basis of gravimetric tests. Both coating microstructure and nature of corrosion products were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDS) and low angle X-ray diffraction (XRD) before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The corrosion process was more influenced by the concentration of alloy elements in the matrix than by the proportion of SiC p reinforcement. Both conversion and electrolysis surface treatments improved the behaviour to salt fog corrosion in comparison with original composites without treatment. Additionally, electrolysis provided a higher degree of protection than the conversion treatment because the coating was more extensive

  10. Response function of a p type - HPGe detector

    International Nuclear Information System (INIS)

    Lopez-Pino, Neivy; Cabral, Fatima Padilla; D'Alessandro, Katia; Maidana, Nora Lia; Vanin, Vito Roberto

    2011-01-01

    The response function of a HPGe detector depends on Ge crystal dimensions and dead layers thicknesses; most of them are not given by the manufacturers or change with detector damage from neutrons or contact with the atmosphere and therefore must be experimentally determined. The response function is obtained by a Monte-Carlo simulation procedure based on the Ge crystal characteristics. In this work, a p-type coaxial HPGe detector with 30% efficiency, manufactured in 1989, was investigated. The crystal radius and length and the inner hole dimensions were obtained scanning the capsule both in the radial and axial directions using 4 mm collimated beams from 137 Cs, 207 Bi point sources placed on a x-y table in steps of 2,00 mm. These dimensions were estimated comparing the experimental peak areas with those obtained by simulation using several hole configurations. In a similar procedure, the frontal dead layer thickness was determined using 2 mm collimated beams of the 59 keV gamma-rays from 241 Am and 81 keV from 133 Ba sources hitting the detector at 90 deg and 45 deg with respect to the capsule surface. The Monte Carlo detector model included, besides the crystal, hole and capsules sizes, the Ge dead-layers. The obtained spectra were folded with a gaussian resolution function to account for electronic noise. The comparison of simulated and experimental response functions for 4 mm collimated beams of 60 Co, 137 Cs, and 207 Bi points sources placed at distances of 7, 11 and 17 cm from the detector end cap showed relative deviations of about 10% in general and below 10% in the peak. The frontal dead layer thickness determined by our procedure was different from that specified by the detector manufacturer. (author)

  11. Different growth mechanisms of Ge by Stranski-Krastanow on Si (111) and (001) surfaces: An STM study

    Energy Technology Data Exchange (ETDEWEB)

    Teys, S.A., E-mail: teys@isp.nsc.ru

    2017-01-15

    Highlights: • Different atomic mechanisms of transition from two-dimensional to three-dimensional-layer growth on Sransky-Krastanov observed. • The transition from 2D–3D Ge growth on Si (111) and (001) is very different. • Various changes in morphology, surface structures and sequence Ge redistribution during the growth shown. • The sequence of appearance of different incorporation places of Ge atoms was shown. - Abstract: Structural and morphological features of the wetting layer formation and the transition to the three-dimensional Ge growth on (111) and (100) Si surfaces under quasi-equilibrium growth conditions were studied by means of scanning tunneling microscopy. The mechanism of the transition from the wetting layer to the three-dimensional Ge growth on Si was demonstrated. The principal differences and general trends of the atomic processes involved in the wetting layers formation on substrates with different orientations were demonstrated. The Ge growth is accompanied by the Ge atom redistribution and partial strain relaxation due to the formation of new surfaces, vacancies and surface structures of a decreased density. The analysis of three-dimensional Ge islands sites nucleation of after the wetting layer formation was carried out on the (111) surface. The transition to the three-dimensional growth at the Si(100) surface begins with single {105} facets nucleation on the rough Ge(100) surface.

  12. Different growth mechanisms of Ge by Stranski-Krastanow on Si (111) and (001) surfaces: An STM study

    International Nuclear Information System (INIS)

    Teys, S.A.

    2017-01-01

    Highlights: • Different atomic mechanisms of transition from two-dimensional to three-dimensional-layer growth on Sransky-Krastanov observed. • The transition from 2D–3D Ge growth on Si (111) and (001) is very different. • Various changes in morphology, surface structures and sequence Ge redistribution during the growth shown. • The sequence of appearance of different incorporation places of Ge atoms was shown. - Abstract: Structural and morphological features of the wetting layer formation and the transition to the three-dimensional Ge growth on (111) and (100) Si surfaces under quasi-equilibrium growth conditions were studied by means of scanning tunneling microscopy. The mechanism of the transition from the wetting layer to the three-dimensional Ge growth on Si was demonstrated. The principal differences and general trends of the atomic processes involved in the wetting layers formation on substrates with different orientations were demonstrated. The Ge growth is accompanied by the Ge atom redistribution and partial strain relaxation due to the formation of new surfaces, vacancies and surface structures of a decreased density. The analysis of three-dimensional Ge islands sites nucleation of after the wetting layer formation was carried out on the (111) surface. The transition to the three-dimensional growth at the Si(100) surface begins with single {105} facets nucleation on the rough Ge(100) surface.

  13. Hall and thermoelectric evaluation of p-type InAs

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, M.C., E-mail: magnus.wagener@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Wagener, V.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2009-12-15

    This paper compares the galvanometric and thermoelectric evaluation of the electrical characteristics of narrow gap semiconductors. In particular, the influence of a surface inversion layer is incorporated into the analysis of the temperature-dependent Hall and thermoelectric measurements of p-type InAs. The temperature at which the Seebeck coefficient of p-type material changes sign is shown to be unaffected by the presence of degenerate conduction paths. This finding consequently facilitated the direct determination of the acceptor density of lightly doped thin film InAs.

  14. Hall and thermoelectric evaluation of p-type InAs

    International Nuclear Information System (INIS)

    Wagener, M.C.; Wagener, V.; Botha, J.R.

    2009-01-01

    This paper compares the galvanometric and thermoelectric evaluation of the electrical characteristics of narrow gap semiconductors. In particular, the influence of a surface inversion layer is incorporated into the analysis of the temperature-dependent Hall and thermoelectric measurements of p-type InAs. The temperature at which the Seebeck coefficient of p-type material changes sign is shown to be unaffected by the presence of degenerate conduction paths. This finding consequently facilitated the direct determination of the acceptor density of lightly doped thin film InAs.

  15. Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks

    Science.gov (United States)

    van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.

    2017-06-01

    Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.

  16. Synthesis of p-type GaN nanowires.

    Science.gov (United States)

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  17. Secondary ion mass spectrometry analysis of In-doped p-type GaN films

    International Nuclear Information System (INIS)

    Chiou, C.Y.; Wang, C.C.; Ling, Y.C.; Chiang, C.I.

    2003-01-01

    SIMS was used to investigate the isoelectronic In-doped p-type GaN films. The growth rate of the p-type GaN film decreased with increasing Mg and In doping. The Mg saturation in GaN was 3.55x10 19 atoms/cm 3 . The role of In as surfactant was evaluated by varying In concentrations and it was observed that the surface appeared smooth with increasing In incorporation. The Mg solubility in p-type GaN improved to 0.0025% molar ratio of the GaN with In incorporation. The In concentration results observed in neutron activation analysis (NAA) were found to be higher by a factor of 2.88 than that observed in SIMS and can be attributed to the difference in sensitivity of the two techniques. Good linearity in the results was observed from both techniques

  18. Influence of surface oxidation on the radiative properties of ZrB{sub 2}-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning, E-mail: lncaep@163.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Xing, Pifeng; Li, Cui [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Peng [School of Material Science and Engineering, Shandong University of Technology, Zibo 255049 (China); Jin, Xinxin [College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Zhang, Xinghong [Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001 (China)

    2017-07-01

    Highlights: • Surface component affected radiative properties of ZrB{sub 2}-SiC composites significantly. • Emissivity in long-wave range gradually increased with the thickness of oxide scale. • The surface temperature had a little effect on radiative properties of composites. • Influence of surface roughness on emissivity could be negligible. • Covering the surface with glass is a method for improving radiative properties. - Abstract: The spectral emissivities of ZrB{sub 2}-20 vol.% SiC composites with various surface components of ZrB{sub 2}/SiC (ZS1), silica-rich glass (ZS2) and porous zirconia (ZS3) were measured using infrared spectrometer in the wavelength range from 2.5 to 25.0 μm. The relationship between surface oxidation (associated with surface component, thickness of oxide scale, testing temperature as well as roughness) and the radiative properties of ZrB{sub 2}-SiC composites were investigated systematically. Surface component affected the radiative properties of composites significantly. The total emissivity of ZS1 varied from 0.22 to 0.81 accompanied with surface oxidation in the temperature range 300–900 °C. The emissivity of ZS2 was about 1.5 times as that of ZS3 under the same testing conditions. The oxide scale on specimen surface enhanced the radiative properties especially in terms of short-wave range, and the emissivity in the long-wave range gradually increased with the thickness of oxide scale within a certain range. The influence of testing temperature and surface roughness was also investigated. The testing temperature had a little effect on radiative properties, whereas effect of surface roughness could be negligible.

  19. Structure of layered C[sub 60] on Si(100) surface studied by ab initio and classical molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kawazoe, Yoshiyuki (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Maruyama, Yutaka (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Rafii-Tabar, H. (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Ikeda, Makoto (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Kamiyama, Hiroshi (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Ohno, Kaoru (Inst. for Materials Research, Tohoku Univ., Sendai (Japan))

    1993-04-19

    The recent scanning tunnelling microscopy (STM) observations by Hashizume et al. concerning C[sub 60] buckeyballs deposited on an Si(100) surface revealed self-aligned c(4 x 4) and c(4 x 3) structures. Specific stripes on the buckeyballs in the STM images are also reported and this result proves that the buckeyballs on the Si surface are standing still, showing them to be pseudoatoms. A mixed-basis, all-electron calculation with the Car-Parinnello formalism has been introduced and performed to obtain a detailed understanding of the electronic states and dynamics of a single buckeyball. Based on the knowledge concerning a single buckeyball, a band structure calculation using the same formalism has been carried out and the experimental results have been explained clearly. A classical molecular dynamics simulation has also been performed to obtain the dynamics of the buckeyball motion on the Si surface. (orig.)

  20. Site-specific Pt deposition and etching on electrically and thermally isolated SiO2 micro-disk surfaces

    International Nuclear Information System (INIS)

    Saraf, Laxmikant V

    2010-01-01

    Electrically and thermally isolated surfaces are crucial for improving the detection sensitivity of microelectronic sensors. The site-specific in situ growth of Pt nano-rods on thermally and electrically isolated SiO 2 micro-disks using wet chemical etching and a focused ion/electron dual beam (FIB-SEM) is demonstrated. Fabrication of an array of micro-cavities on top of a micro-disk is also demonstrated. The FIB source is utilized to fabricate through-holes in the micro-disks. Due to the amorphous nature of SiO 2 micro-disks, the Ga implantation possibly modifies through-hole sidewall surface chemistry rather than affecting its transport properties. Some sensor design concepts based on micro-fabrication of SiO 2 micro-disks utilizing thermally and electrically isolated surfaces are discussed from the viewpoint of applications in photonics and bio-sensing.

  1. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  2. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei; Nayak, Pradipta K.; Caraveo-Frescas, Jesus Alfonso; Alshareef, Husam N.

    2016-01-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  3. Formation of p-type ZnO thin film through co-implantation

    Science.gov (United States)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  4. Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence

    Science.gov (United States)

    Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.

    2018-05-01

    Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.

  5. Partially gapped Fermi surface in the heavy-electron superconductor URu2Si2

    International Nuclear Information System (INIS)

    Maple, M.B.; Chen, J.W.; Dalichaouch, Y.; Kohara, T.; Rossel, C.; Torikachvili, M.S.; McElfresh, M.W.; Thompson, J.D.

    1986-01-01

    Transport, thermal, and magnetic data for the heavy electron system URu 2 Si 2 indicate that a charge- or spin-density-wave transition opens an energy gap of approx.11 meV over a portion of the Fermi surface below T 0 roughly-equal17.5 K and demonstrate that bulk superconductivity occurs below T/sub c/roughly-equal1.5 K. The pressure dependences of T 0 and T/sub c/ support this interpretation. The unusually large initial slope of the upper critical magnetic field (9.2 T/K) is consistent with the high values of the electronic-specific-heat coefficient and the electrical resistivity

  6. The influence of Ni, Mo, Si, Ti on the surface alloy layer quality

    Directory of Open Access Journals (Sweden)

    A. Walasek

    2011-07-01

    Full Text Available The paper presents research results of microstructure and selected mechanical properties of alloy layer. The aim of the researches was to determine the influence of Ni, Mo, Si and Ti with high-carbon ferrochromium (added separately to pad on the alloy layer on the steel cast. Metallographic studies were made with use of light microscopy. During studies of usable properties measurements of hardness, microhardness and abrasive wear resistance of type metal-mineral for creation alloy layer were made. As thick as possible composite layer without any defects and discontinuity was required. The conducted researches allowed to take the suitable alloy addition of the pad material which improved the quality of the surface alloy layer.

  7. Surface and magnetic characteristics of Ni-Mn-Ga/Si (100) thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Vinodh; Pandyan, R. Kodi; Mahendran, M., E-mail: manickam-mahendran@tce.edu, E-mail: perialangulam@gmail.com [Smart Materials Lab, Department of Physics, Thiagarajar College of Engineering, Madurai – 625 015 (India); Raja, M. Manivel [Defence Metallurgical Research Laboratory, Hyderabad – 500 058 (India); Pandi, R. Senthur [School of Advanced Sciences, VIT University, Vellore – 632 014 (India)

    2016-05-23

    Polycrystalline Ni-Mn-Ga thin films have been deposited on Si (100) substrate with different film thickness. The influence of film thickness on the phase structure and magnetic domain of the films has been examined by scanning electron microscope, atomic force microscopy and magnetic force microscopy. Analysis of structural parameters indicates that the film at lower thickness exhibits the coexistence of both austenite and martensite phase, whereas at higher thickness L1{sub 2} cubic non magnetic phase is noticed. The grains size and the surface roughness increase along with the film thickness and attain the maximum of 45 nm and 34.96 nm, respectively. At lower film thickness, the magnetic stripe domain is found like maze pattern with dark and bright images, while at higher thickness the absence of stripe domains is observed. The magnetic results reveal that the films strongly depend on their phase structure and microstructure which influence by the film thickness.

  8. Adsorption of metal-phthalocyanine molecules onto the Si(111) surface passivated by δ doping: Ab initio calculations

    Science.gov (United States)

    Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.

    2016-03-01

    We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.

  9. Particulate silica and Si recycling in the surface waters of the Eastern Equatorial Pacific

    DEFF Research Database (Denmark)

    Adjou, Mohamed; Tréguer, Paul; Dumousseaud, Cynthia

    2011-01-01

    SiO2) was generally waters. These low concentrations confirm low atmospheric inputs of particulate Si, consistent with reported low inputs of wind-borne material in the EEP. In spite of active upwelling of silicic acid......-rich waters the biogenic silica (bSiO2) concentrations were generally low, falling between 100 and 180 nmol Si l-1 in the upper 50 m and decreasing to less than 50 nmol Si l-1 below ~90 m. Estimates of net bSiO2 production rates revealed that the rate of production exceeded that of dissolution in the upper...

  10. Investigation of split-off dimers on the Si(001)2x1 surface

    International Nuclear Information System (INIS)

    Schofield, S.R.; O'Brien, J.L.; Curson, N.J.; Simmons, M.Y.; Clark, R.G.

    2002-01-01

    Full text: A detailed knowledge of the nature of crystalline defects on the Si(001)2x1 surface is becoming increasingly important as more research effort is dedicated to producing atomic-scale electronic devices. Here we present high-resolution scanning tunnelling microscopy (STM) images and ab initio pseudopotential calculations of an unusual defect of the silicon (001) surface called the split-off dimer. In high-resolution filled-state images, split-off dimers appear as a pair of protrusions, in contrast to the surrounding surface dimers that appear as 'bean-shaped' protrusions. We show that π-bonding does not exist between the atoms of the split-off dimer, but instead, the dimer atoms form π-bonds with two second layer atoms as part of a tetramer bonding arrangement. We discuss the strain associated with split-off dimer defects and describe how this strain significantly affects the bonding arrangements and local density of states around these defects

  11. Fabrication of Si surface pattern by Ar beam irradiation and annealing method

    International Nuclear Information System (INIS)

    Zhang, J.; Momota, S.; Maeda, K.; Terauchi, H.; Furuta, M.; Kawaharamura, T.; Nitta, N.; Wang, D.

    2012-01-01

    The fabrication process of crater structures on Si crystal has been studied by an irradiation of Ar beam and a thermal annealing at 600 °C. The fabricated surface was measured by field emission scanning electron microscope and atomic force microscope. The results have shown the controllability of specifications of crater formation such as density, diameter and depth by changing two irradiation parameters, fluence and energy of Ar ions. By changing the fluence over a range of 1 ∼ 10 × 10 16 /cm 2 , we could control a density of crater 0 ∼ 39 counts/100μm 2 . By changing the energy over a range of 90 ∼ 270 keV, we could control a diameter and a depth of crater in 0.8 ∼ 4.1μm and 99 ∼ 229nm, respectively. The present result is consistent with the previously proposed model that the crater structure would be arising from an exfoliated surface layer of silicon. The present result has indicated the possibility of the crater production phenomena as a hopeful method to fabricate the surface pattern on a micro-nano meter scale.

  12. Activities towards p-type doping of ZnO

    International Nuclear Information System (INIS)

    Brauer, G; Kuriplach, J; Ling, C C; Djurisic, A B

    2011-01-01

    Zinc oxide (ZnO) is an interesting and promising semiconductor material for many potential applications, e.g. in opto-electronics and for sensor devices. However, its p-type doping represents a challenging problem, and the physical reasons of its mostly n-type conductivity are not perfectly clear at present. Efforts to achieve p-type conductivity by ion implantation are reviewed, and ways to achieve p-type ZnO nanorods and thin films through various growth conditions are summarized. Then, issues associated with the preparation of Schottky contacts is discussed in some detail as this is a requirement of the device formation process. Finally, the possible incorporation of hydrogen and nitrogen into structural defects, which can act as trapping sites for positrons, is discussed in the context of experimental and theoretical positron results and the estimated H and N content in a variety of ZnO materials.

  13. Activities towards p-type doping of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, G [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Kuriplach, J [Department of Low Temperature Physics, Charles University, V Holetovickach 2, CZ-18000 Prague (Czech Republic); Ling, C C; Djurisic, A B, E-mail: g.brauer@fzd.de [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong)

    2011-01-10

    Zinc oxide (ZnO) is an interesting and promising semiconductor material for many potential applications, e.g. in opto-electronics and for sensor devices. However, its p-type doping represents a challenging problem, and the physical reasons of its mostly n-type conductivity are not perfectly clear at present. Efforts to achieve p-type conductivity by ion implantation are reviewed, and ways to achieve p-type ZnO nanorods and thin films through various growth conditions are summarized. Then, issues associated with the preparation of Schottky contacts is discussed in some detail as this is a requirement of the device formation process. Finally, the possible incorporation of hydrogen and nitrogen into structural defects, which can act as trapping sites for positrons, is discussed in the context of experimental and theoretical positron results and the estimated H and N content in a variety of ZnO materials.

  14. ZnO nanocrystals on SiO2/Si surfaces thermally cleaned in ultrahigh vacuum and characterized using spectroscopic photoemission and low energy electron microscopy

    International Nuclear Information System (INIS)

    Ericsson, Leif K. E.; Magnusson, Kjell O.; Zakharov, Alexei A.

    2010-01-01

    Thermal cleaning in ultrahigh vacuum of ZnO nanocrystals distributed on SiO 2 /Si surfaces has been studied using spectroscopic photoemission and low energy electron microscopy (SPELEEM). This study thus concern weakly bound ZnO nanocrystals covering only 5%-10% of the substrate. Chemical properties, crystallinity, and distribution of nanocrystals are used to correlate images acquired with the different techniques showing excellent correspondence. The nanocrystals are shown to be clean enough after thermal cleaning at 650 deg. C to be imaged by LEEM and x-ray PEEM as well as chemically analyzed by site selective x-ray photoelectron spectroscopy (μ-XPS). μ-XPS shows a sharp Zn 3d peak and resolve differences in O 1s states in oxides. The strong LEEM reflections together with the obtained chemical information indicates that the ZnO nanocrystals were thermally cleaned, but do not indicate any decomposition of the nanocrystals. μ-XPS was also used to determine the thickness of SiO 2 on Si. This article is the first to our knowledge where the versatile technique SPELEEM has been used to characterize ZnO nanocrystals.

  15. P-type Oxide Semiconductors for Transparent & Energy Efficient Electronics

    KAUST Repository

    Wang, Zhenwei

    2018-03-11

    Emerging transparent semiconducting oxide (TSO) materials have achieved their initial commercial success in the display industry. Due to the advanced electrical performance, TSOs have been adopted either to improve the performance of traditional displays or to demonstrate the novel transparent and flexible displays. However, due to the lack of feasible p-type TSOs, the applications of TSOs is limited to unipolar (n-type TSOs) based devices. Compared with the prosperous n-type TSOs, the performance of p-type counterparts is lag behind. However, after years of discovery, several p-type TSOs are confirmed with promising performance, for example, tin monoxide (SnO). By using p-type SnO, excellent transistor field-effect mobility of 6.7 cm2 V-1 s-1 has been achieved. Motivated by this encouraging performance, this dissertation is devoted to further evaluate the feasibility of integrating p-type SnO in p-n junctions and complementary metal oxide semiconductor (CMOS) devices. CMOS inverters are fabricated using p-type SnO and in-situ formed n-type tin dioxide (SnO2). The semiconductors are simultaneously sputtered, which simplifies the process of CMOS inverters. The in-situ formation of SnO2 phase is achieved by selectively sputtering additional capping layer, which serves as oxygen source and helps to balance the process temperature for both types of semiconductors. Oxides based p-n junctions are demonstrated between p-type SnO and n-type SnO2 by magnetron sputtering method. Diode operating ideality factor of 3.4 and rectification ratio of 103 are achieved. A large temperature induced knee voltage shift of 20 mV oC-1 is observed, and explained by the large band gap and shallow states in SnO, which allows minor adjustment of band structure in response to the temperature change. Finally, p-type SnO is used to demonstrating the hybrid van der Waals heterojunctions (vdWHs) with two-dimensional molybdenum disulfide (2D MoS2) by mechanical exfoliation. The hybrid vdWHs show

  16. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    International Nuclear Information System (INIS)

    Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M

    2016-01-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed. (paper)

  17. The Effectiveness of HCl and HF Cleaning of Si0.85Ge0.15 Surface

    International Nuclear Information System (INIS)

    Sun, Y

    2008-01-01

    The cleaning of Si 0.85 Ge 0.15 surfaces using HCl and HF solutions is studied using synchrotron radiation photoelectron spectroscopy. The HF solution is found to be effective in removing both the Si oxide and the Ge oxide while the HCl solution can only remove part of the Ge oxide. For samples treated with HF, four spectral components are needed to fit the Ge 3d photoemission spectra. One is the bulk component and the other three are attributed to the surface Ge atoms with mono-hydride, di-hydride and tri-hydride terminations, respectively

  18. Silicate formation at the interface of Pr-oxide as a high-K dielectric and Si(001) surfaces

    International Nuclear Information System (INIS)

    Schmeisser, D.; Zheng, F.; Perez-Dieste, V.; Himpsel, F.J.; LoNigro, R.; Toro, R.G.; Malandrino, G.; Fragala, I.L.

    2006-01-01

    The composition and chemical bonding of the first atoms across the interface between Si(001) and the dielectric determine the quality of dielectric gate stacks. An analysis of that hidden interface is a challenge as it requires both, high sensitivity and elemental and chemical state information. We used X-ray absorption spectroscopy in total electron yield and total fluorescence yield at the Si2p and the O1s edges to address that issue. We report on results of Pr 2 O 3 /Si(001) as prepared by both, epitaxial growth and metal organic chemical vapor deposition (MOCVD), and compare to the SiO 2 /Si(001) system as a reference. We find evidence for the silicate formation at the interface as derived from the characteristic features at the Si2p and the O1s edges. The results are in line with model experiments in which films of increasing film thickness are deposited in situ on bare Si(001) surfaces

  19. Effect of cerium conversion of A3xx.x/SiCp composites surfaces on salt fog corrosion behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Viejo, F.; Carboneras, M.; Coy, A.E. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040, Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain)

    2004-07-01

    A study of the effect of cerium conversion treatment on surface of four composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) on their salt fog corrosion behaviour was performed. The conversion treatment was carried out using thermal activated full immersion in Ce(III) aqueous solutions. The matrix of A360/SiC/xxp composites is virtually free of Cu while the A380/SiC/xxp matrix contains 1.39-1.44 wt.%Ni and 3.13-3.45 wt.%Cu. Conversion performance was evaluated in neutral salt fog environment according to ASTM B117. The kinetics of the corrosion process were studied on the basis of gravimetric tests. The influence of SiCp proportion and matrix composition was evaluated and the nature of corrosion products was analysed by SEM and low angle XRD before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The Ce(III) precipitates on the cathodic sites, mainly on the intermetallic compounds, decreased both the cathodic current density and the corrosion rate of the composites tested. The presence of Cu in the matrix composition increased the corrosion rate, due to the galvanic couple Al/Cu. (authors)

  20. Inhibition of quantum size effects from surface dangling bonds: The first principles study on different morphology SiC nanowires

    Science.gov (United States)

    Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Fang, Xiao-Yong; Jia, Ya-Hui; Cao, Mao-Sheng

    2018-06-01

    In recent years, we investigated the structure and photoelectric properties of Silicon carbide nanowires (SiCNWs) with different morphologies and sizes by using the first-principle in density functional theory, and found a phenomenon that is opposite to quantum size effect, namely, the band gap of nanowires increases with the increase of the diameter. To reveal the nature of this phenomenon, we further carry out the passivation of SiCNWs. The results show that the hydrogenated SiCNWs are direct band gap semiconductors, and the band gap decreases with the diameter increasing, which indicates the dangling bonds of the SiCNWs suppress its quantum size effect. The optical properties of SiCNWs with different diameters before and after hydrogenated are compared, we found that these surface dangling bonds lead to spectral shift which is different with quantum size effect of SiCNWs. These results have potential scientific value to deepen the understanding of the photoelectric properties of SiCNWs and to promote the development of optoelectronic devices.

  1. Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting

    Science.gov (United States)

    Wang, Lin-zhi; Wang, Sen; Wu, Jiao-jiao

    2017-11-01

    Effects of laser energy density (LED) on densities and surface roughness of AlSi10Mg samples processed by selective laser melting were studied. The densification behaviors of the SLM manufactured AlSi10Mg samples at different LEDs were characterized by a solid densitometer, an industrial X-ray and CT detection system. A field emission scanning electron microscope, an automatic optical measuring system, and a surface profiler were used for measurements of surface roughness. The results show that relatively high density can be obtained with the point distance of 80-105 μm and the exposure time of 140-160 μs. The LED has an important influence on the surface morphology of the forming part, too high LED may lead to balling effect, while too low LED tends to produce defects, such as porosity and microcrack, and then affect surface roughness and porosities of the parts finally.

  2. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.

    2006-09-21

    Germanium detector arrays are needed for low-level counting facilities. The practical applications of such user facilities include characterization of low-level radioactive samples. In addition, the same detector arrays can also perform important fundamental physics measurements including the search for rare events like neutrino-less double-beta decay. Coaxial germanium detectors having segmented outer contacts will provide the next level of sensitivity improvement in low background measurements. The segmented outer detector contact allows performance of advanced pulse shape analysis measurements that provide additional background reduction. Currently, n-type (reverse electrode) germanium coaxial detectors are used whenever a segmented coaxial detector is needed because the outer boron (electron barrier) contact is thin and can be segmented. Coaxial detectors fabricated from p-type germanium cost less, have better resolution, and are larger than n-type coaxial detectors. However, it is difficult to reliably segment p-type coaxial detectors because thick (~1 mm) lithium-diffused (hole barrier) contacts are the standard outside contact for p-type coaxial detectors. During this Phase 1 Small Business Innovation Research (SBIR) we have researched the possibility of using amorphous germanium contacts as a thin outer contact of p-type coaxial detectors that can be segmented. We have developed amorphous germanium contacts that provide a very high hole barrier on small planar detectors. These easily segmented amorphous germanium contacts have been demonstrated to withstand several thousand volts/cm electric fields with no measurable leakage current (<1 pA) from charge injection over the hole barrier. We have also demonstrated that the contact can be sputter deposited around and over the curved outside surface of a small p-type coaxial detector. The amorphous contact has shown good rectification properties on the outside of a small p-type coaxial detector. These encouraging

  3. Surface modification of 5083 Al alloy by electrical discharge alloying processing with a 75 mass% Si-Fe alloy electrode

    Energy Technology Data Exchange (ETDEWEB)

    Stambekova, Kuralay [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China); Lin, Hung-Mao [Department of Mechanical Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan (China); Uan, Jun-Yen, E-mail: jyuan@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China)

    2012-03-01

    This study experimentally investigates the surface modification of 5083 Al alloy by the electrical discharge alloying (EDA) process with a Si-Fe alloy as an electrode. Samples were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), micro-hardness and corrosion resistance tests. The micro-hardness of EDA alloyed layer was evidently higher than that of the base metal (5083 Al alloy). The TEM results show that the matrix of the alloyed layer has an amorphous-like structure; the matrix contains fine needle-like Si particles, block-like Si particles and nano-size Al{sub 4.5}FeSi and Al{sub 13}Fe{sub 4} particles. The TEM results support experimental results for the high hardness of the alloyed layer. Moreover, the EDA alloyed layer with composite microstructures has good corrosion resistance in NaCl aqueous solution.

  4. Precursor state of oxygen molecules on the Si(001) surface during the initial room-temperature adsorption

    Science.gov (United States)

    Hwang, Eunkyung; Chang, Yun Hee; Kim, Yong-Sung; Koo, Ja-Yong; Kim, Hanchul

    2012-10-01

    The initial adsorption of oxygen molecules on Si(001) is investigated at room temperature. The scanning tunneling microscopy images reveal a unique bright O2-induced feature. The very initial sticking coefficient of O2 below 0.04 Langmuir is measured to be ˜0.16. Upon thermal annealing at 250-600 °C, the bright O2-induced feature is destroyed, and the Si(001) surface is covered with dark depressions that seem to be oxidized structures with -Si-O-Si- bonds. This suggests that the observed bright O2-induced feature is an intermediate precursor state that may be either a silanone species or a molecular adsorption structure.

  5. Modification of H2O adsorbed Si(100)-(2 x 1) surface by photon and electron beam

    International Nuclear Information System (INIS)

    Moon, S.W.; Chung, S.M.; Hwang, C.C.; Ihm, K.W.; Kang, T.-H.; Chen, C.H.; Park, C.-Y.

    2004-01-01

    Full text: Oxidation of silicon has been the subject of intense scientific and technological interest due to the several uses of thin oxide films as insulating layers in microelectronic devices. The great strides have been made in understanding about the formation and thermal evolution of the Si/SiO 2 interface. In this presentation, we provide synchrotron radiation photoemission spectroscopy (SRPES) and photoemission electron microscope (PEEM) results, showing how a H 2 O adsorbed Si(100) surface evolves into an ultra-thin silicon oxide m when exposed to monochromatized synchrotron radiation and electron beam at room temperature. All SRPES, PEEM experiments have been performed at the beam line, 4B1, of Pohang Light Source (PLS) in Korea. Water dissociates into OH(a) and H(a) species upon adsorption on the Si(100)-(2 - 1) at room temperature. The bonding (b 2 ) and antibonding (a 1 ) OH orbital and the oxygen lone pair orbital (b 1 ) from the dissociated OH and H species has been identified in ultraviolet photoemission spectra (UPS). These structures gradually changed and a new silicon oxide peak appeared with the photon/E-beam irradiation. This indicates that the H 2 O adsorbed on Si surface transforms into a thin silicon oxide film by photon/E-beam irradiation. We have shown in our PEEM images that one can make micro-patterns on silicon surface by using the photon induced surface modification. The fabricated patterns can be clearly identified through the inverse contrast images between photon exposed region and unexposed one. The near edge x-ray absorption fine structure (NEXAFS) results revealed that the OH adsorbed Si surface transforms into a thin silicon oxide film by photon irradiation

  6. Structural And Energetic Changes of Si (100 Surface With Fluorine in Presence of Water – A Density Functional Study

    Directory of Open Access Journals (Sweden)

    Takeo Ebina

    2001-05-01

    Full Text Available Abstract: We report density functional electronic structure calculations to monitor the change in the surface characteristics of the Si (100-2x1 surface after fluorination followed by interaction with water. Embedded finite silicon clusters are used to model an extended Si (100-2x1 surface. Two high symmetry pathways and subsequent adsorption sites were examined: (i adsorption of an fluorine atom directing onto a silicon dangling bond to form a monocoordinated fluorine atom (ii adsorption of a fluorine atom directing on top of silicon dimer to form a bridging dicoordinated fluorine atom. However, in the later case we find that no barrier exists for the bridging fluorine atom to slide towards silicon dimer dangling bond to form more stable mono coordinated Si-F bond. We calculated activation barriers and equilibrium surface configuration as a function of fluorine coverage upto 2.0 ML. We compared the stability of the fluorinated surface. The results were compared with existing experimental and theoretical results. The reaction of water with HF treated Si surface is monitored. It produces, as a first step, the exchange of Si-F with water to form Si-OH groups reducing the concentration of the fluorine on the surface, followed by a rapture of Si-Si bonds and finally the Si-O-Si bridge formation in the lattice.

  7. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    International Nuclear Information System (INIS)

    Kaushik, Priya Darshni; Ivanov, Ivan G.; Lin, Pin-Cheng; Kaur, Gurpreet; Eriksson, Jens; Lakshmi, G.B.V.S.; Avasthi, D.K.; Gupta, Vinay; Aziz, Anver; Siddiqui, Azher M.; Syväjärvi, Mikael; Yazdi, G. Reza

    2017-01-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO_2 and NH_3 gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10"1"3 ions/cm"2). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and spintronic

  8. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Priya Darshni, E-mail: kaushik.priyadarshni@gmail.com [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Ivanov, Ivan G.; Lin, Pin-Cheng [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Kaur, Gurpreet [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Eriksson, Jens [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Lakshmi, G.B.V.S. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Amity Institute of Nanotechnology, Noida 201313 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Aziz, Anver; Siddiqui, Azher M. [Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Syväjärvi, Mikael [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Yazdi, G. Reza, E-mail: yazdi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2017-05-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO{sub 2} and NH{sub 3} gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10{sup 13} ions/cm{sup 2}). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and

  9. Development and Processing of p-type Oxide Thermoelectric Materials

    DEFF Research Database (Denmark)

    Wu, NingYu; Van Nong, Ngo

    The main aim of this research is to investigate and develop well-performing p-type thermoelectric oxide materials that are sufficiently stable at high temperatures for power generating applications involving industrial processes. Presently, the challenges facing the widespread implementation...

  10. Vibrational properties of the Au-(√{3 }×√{3 } )/Si(111) surface reconstruction

    Science.gov (United States)

    Halbig, B.; Liebhaber, M.; Bass, U.; Geurts, J.; Speiser, E.; Räthel, J.; Chandola, S.; Esser, N.; Krenz, M.; Neufeld, S.; Schmidt, W. G.; Sanna, S.

    2018-01-01

    The vibrational properties of the Au-induced (√{3 }×√{3 })R 30∘ reconstruction of the Si(111) surface are investigated by polarized surface Raman spectroscopy and density-functional theory. The Raman measurements are performed in situ at room temperature as well as 20 K, and they reveal the presence of vibrational eigenmodes in the spectral range from 20 to 450 cm-1. In particular, two peaks of E symmetry at 75 and 183 cm-1 dominate the spectra. No substantial difference between room- and low-temperature spectra is observed, suggesting that the system does not undergo a phase transition down to 20 K. First-principles calculations are performed based on the structural models discussed in the literature. The thermodynamically stable conjugate honeycomb-chained-trimer model (CHCT) [Surf. Sci. 275, L691 (1992), 10.1016/0039-6028(92)90785-5] leads to phonon eigenvalues compatible with the experimental observations in the investigated spectral range. On the basis of the phonon eigenfrequencies, symmetries, and Raman intensities, we assign the measured spectral features to the calculated phonon modes. The good agreement between measured and calculated modes provides a strong argument in favor of the CHCT model.

  11. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Aji, A. S., E-mail: aji.ravazes70@gmail.com; Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y. [Quantum Semiconductor and Devices Lab., Physics of Material Electronics Research Division, Department of Physics, Institut Teknologi Bandung (Indonesia)

    2015-04-16

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  12. GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating.

    Science.gov (United States)

    Shindo, Takahiko; Okumura, Tadashi; Ito, Hitomi; Koguchi, Takayuki; Takahashi, Daisuke; Atsumi, Yuki; Kang, Joonhyun; Osabe, Ryo; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa

    2011-01-31

    We fabricated a novel lateral-current-injection-type distributed feedback (DFB) laser with amorphous-Si (a-Si) surface grating as a step to realize membrane lasers. This laser consists of a thin GaInAsP core layer grown on a semi-insulating InP substrate and a 30-nm-thick a-Si surface layer for DFB grating. Under a room-temperature continuous-wave condition, a low threshold current of 7.0 mA and high efficiency of 43% from the front facet were obtained for a 2.0-μm stripe width and 300-μm cavity length. A small-signal modulation bandwidth of 4.8 GHz was obtained at a bias current of 30 mA.

  13. Synthesis, crystallization behavior and surface modification of Ni-Cr-Si-Fe amorphous alloy

    International Nuclear Information System (INIS)

    Iqbal, M.; Akhter, J.I.; Rajput, M.U.; Mahmood, K.; Hussain, Z.; Hussain, S.; Rafiq, M.

    2011-01-01

    A quaternary Ni/sub 86/Cr/sub 7/Si/sub 4/Fe/sub 3/ amorphous alloy was synthesized by melt spinning technique. Surface modification was done by electron beam melting (EBM), neutron irradiation and gamma-rays. Microstructure of as cast, annealed and modified samples was examined by scanning electron microscope. Crystallization behavior was studied by annealing the samples in vacuum at different temperatures in the range 773-1073 K. Techniques of X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used for characterization. Differential scanning calorimetry (DSC) was conducted at various heating rates in the range 10-40 K/min. Thermal parameters like glass transition temperature T/sub g/, crystallization temperature T/sub x/, supercooled liquid region delta T/sub x/ and reduced glass transition temperature T/sub rg/ were measured. The Ni/sub 86/Cr/sub 7/Si/sub 4/Fe/sub 3/ alloy exhibits wide supercooled liquid region of 60 K indicating good thermal stability. The activation energy was calculated to be 160 +- 4 kJ/mol using Kissinger and Ozawa equations respectively which indicates high resistance against crystallization. The XRD results of the samples annealed at 773 K, 923 K, 973 K and 1073 K/20 min show nucleation of Ni/sub 2/Cr/sub 3/ and NiCrFe crystalline phases. Vickers microhardness of the as cast ribbon was measured to be 680. About 30-50 % increase in hardness was achieved by applying EBM technique. (author)

  14. Effects of surface passivation on α-Si_3N_4 nanobelts: A first-principles study

    International Nuclear Information System (INIS)

    Xiong, Li; Dai, Jianhong; Song, Yan; Wen, Guangwu; Qin, Chunlin

    2016-01-01

    Highlights: • The stability and electronic properties of α-Si_3N_4 nanobelts are theoretically studied. • The surface of α-Si_3N_4 nanobelts are passivated with H, OH, F and Cl atoms. • The structural stability of nanobelts decreases in the order of OH, F, Cl, and H passivations. • The surface passivation greatly changes the electronic structures of α-Si_3N_4 nanobelts. - Abstract: The energetic stability and electronic structures of H, OH, F, or Cl passivated α-Si_3N_4 nanobelts orientating along various directions are systematically investigated via first-principles calculations. The results show that the stability of nanobelts is more sensitive to the surface passivation than growth direction. It decreases in the order of (100% OH), (50% H, 50% OH), (50% H, 50% F), (100% F), (50% H, 50% Cl), (100% Cl), (100% H), and unpassivation. H atoms prefer to bond with surface N atoms of nanobelts, while OH, F and Cl prefer to bond with Si atoms of nanobelts. In addition, the surface passivation greatly changes the electronic structures of nanobelts. The OH and F passivations result in the larger band gaps than the Cl passivation. While the coverage of OH, F or Cl increases to 100%, their band gaps decrease significantly, indicating an improvement of electrical properties, which is good agreement with the experimental findings. The 100% Cl-passivated nanobelt orientating along the [011] direction possesses the smallest band gap of 1.038 eV. The band gaps are found to be affected by a competition between quantum confinement effect and the role of the surface passivated groups or atoms at the band-gap edges.

  15. Can Silicon-Smelting Contribute to the Low O/Si Ratio on the Surface of Mercury?

    Science.gov (United States)

    McCubbin, F. M.; Vander Kaaden, K. E.; Hogancamp, J.; Archer, P. D., Jr.; Boyce, J. W.

    2018-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft collected data that provided important insights into the structure, chemical makeup, and compositional diversity of Mercury. Among the many discoveries about Mercury made by MESSENGER, several surprising compositional characteristics of the surface were observed. These discoveries include elevated sulfur abundances (up to 4 wt.%), elevated abundances of graphitic carbon (0-4.1 wt.% across the surface with an additional 1-3 wt.% graphite above the global average in low reflectance materials), low iron abundances (less than 2 wt.%), and low oxygen abundances (O/Si weight ratio of 1.20+/-0.1). These exotic characteristics likely have important implications for the thermochemical evolution of Mercury and point to a planet that formed under highly reducing conditions. In the present study, we focus specifically on the low O/Si ratio of Mercury, which is anomalous compared to all other planetary materials. A recent study that considered the geochemical implications of the low O/Si ratio reported that 12-20% of the surface materials on Mercury are composed of Si-rich, Si-Fe alloys. They further postulated that the origin of the metal is best explained by a combination of space weathering and graphite-induced smelting that was facilitated by interaction of graphite with boninitic and komatiitic parental liquids. The goal of the present study is to assess the plausibility of smelting on Mercury through experiments run at the conditions that McCubbin et al. indicated would be favorable for Si-smelting.

  16. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  17. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf Ewald

    2017-01-01

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  18. Prospects and limitations for p-type doping in boron nitride polymorphs

    Science.gov (United States)

    Weston, Leigh; van de Walle, Chris G.

    Using first-principles calculations, we examine the potential for p-type doping of BN polymorphs via substitutional impurities. Based on density functional theory with a hybrid functional, our calculations reveal that group-IV elements (C, Si) substituting at the N site result in acceptor levels that are more than 1 eV above the valence-band maximum in all of the BN polymorphs, and hence far too deep to allow for p-type doping. On the other hand, group-II elements (Be, Mg) substituting at the B site lead to shallower acceptor levels. However, for the ground-state hexagonal phase (h-BN), we show that p-type doping at the B site is inhibited by the formation of hole polarons. Our calculations reveal that hole localization is intrinsic to sp2 bonded h-BN, and this places fundamental limits on hole conduction in this material. In contrast, the sp3 bonded wurtzite (w-BN) and cubic (c-BN) polymorphs are capable of forming shallow acceptor levels. For Be dopants, the acceptor ionization energies are 0.31 eV and 0.24 eV for w-BN and c-BN, respectively; these values are only slightly larger than the ionization energy of the Mg acceptor in GaN. This work was supported by NSF.

  19. Controlled amino-functionalization by electrochemical reduction of bromo and nitro azobenzene layers bound to Si(111) surfaces

    NARCIS (Netherlands)

    Ullien, D.; Thüne, P.C.; Jager, W.F.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2014-01-01

    4-Nitrobenzenediazonium (4-NBD) and 4-bromobenzenediazonium (4-BBD) salts were grafted electrochemically onto H-terminated, p-doped silicon (Si) surfaces. Atomic force microscopy (AFM) and ellipsometry experiments clearly showed layer thicknesses of 2–7 nm, which indicate multilayer formation.

  20. A surface science study of model catalysts : II metal-support interactions in Cu/SiO2 model catalysts

    NARCIS (Netherlands)

    Oetelaar, van den L.C.A.; Partridge, A.; Toussaint, S.L.G.; Flipse, C.F.J.; Brongersma, H.H.

    1998-01-01

    The thermal stability of wet-chemically prepared Cu/SiO2 model catalysts containing nanometer-sized Cu particles on silica model supports was studied upon heating in hydrogen and ultrahigh vacuum. The surface and interface phenomena that occur are determined by the metal-support interactions.

  1. An SFG study of interfacial amino acids at the hydrophilic SiO2 and hydrophobic deuterated polystyrene surfaces.

    Science.gov (United States)

    Holinga, George J; York, Roger L; Onorato, Robert M; Thompson, Christopher M; Webb, Nic E; Yoon, Alfred P; Somorjai, Gabor A

    2011-04-27

    Sum frequency generation (SFG) vibrational spectroscopy was employed to characterize the interfacial structure of eight individual amino acids--L-phenylalanine, L-leucine, glycine, L-lysine, L-arginine, L-cysteine, L-alanine, and L-proline--in aqueous solution adsorbed at model hydrophilic and hydrophobic surfaces. Specifically, SFG vibrational spectra were obtained for the amino acids at the solid-liquid interface between both hydrophobic d(8)-polystyrene (d(8)-PS) and SiO(2) model surfaces and phosphate buffered saline (PBS) at pH 7.4. At the hydrophobic d(8)-PS surface, seven of the amino acids solutions investigated showed clear and identifiable C-H vibrational modes, with the exception being l-alanine. In the SFG spectra obtained at the hydrophilic SiO(2) surface, no C-H vibrational modes were observed from any of the amino acids studied. However, it was confirmed by quartz crystal microbalance that amino acids do adsorb to the SiO(2) interface, and the amino acid solutions were found to have a detectable and widely varying influence on the magnitude of SFG signal from water at the SiO(2)/PBS interface. This study provides the first known SFG spectra of several individual amino acids in aqueous solution at the solid-liquid interface and under physiological conditions.

  2. Microstructures induced by excimer laser surface melting of the SiC{sub p}/Al metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Qian, D.S., E-mail: Daishu.qian@postgrad.manchester.ac.uk; Zhong, X.L.; Yan, Y.Z.; Hashimoto, T.; Liu, Z.

    2017-08-01

    Highlights: • Microstructural analysis of the excimer laser-melted SiC{sub p}/AA2124;. • Analytical, FEM, and SPH simulation of the laser-material interaction;. • Mechanism of the formation of the laser-induced microstructure. - Abstract: Laser surface melting (LSM) was carried out on the SiC{sub p}/Al metal matrix composite (MMC) using a KrF excimer laser with a fluence of 7 J/cm{sup 2}. The re-solidification microstructure was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector, and X-ray diffraction (XRD) analysis. It was found that a 2.5 μm thick melted layer was formed in the near-surface region, in which dissolution of the intermetallics and removal of the SiC particles occurred. The thermal and material response upon laser irradiation was simulated using three models, i.e. analytical model, finite element model (FEM) and smoothed-particle hydrodynamics (SPH) model. The effect of SiC particles on the LSM process, the mechanism of the SiC removal and the re-solidification microstructures in the melted layer were discussed. The simulation results were in good agreement with the experimental results and contributed to the generic understanding of the re-solidification microstructures induced by ns-pulsed lasers.

  3. On the origin of near-IR luminescence in SiO{sub 2} glass with bismuth as the single dopant. Formation of the photoluminescent univalent bismuth silanolate by SiO{sub 2} surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A.N., E-mail: alexey.romanov@list.ru; Haula, E.V.; Shashkin, D.P.; Vtyurina, D.N.; Korchak, V.N.

    2017-03-15

    Near infrared photoluminescent bismuth(I) silanolate centers ((≡Si-O){sub 3}Si–O-Bi) were prepared on the surface of SiO{sub 2} xerogel, by the treatment in the vapors of bismuth(I) chloride. The optical properties of these groups are almost identical to that of photoluminescent centers in the bulk SiO{sub 2} glasses with bismuth as the single dopant. - Highlights: • univalent bismuth silanolate can be prepared on