WorldWideScience

Sample records for p-type polycrystalline silicon

  1. Comparing n- and p-type polycrystalline silicon absorbers in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Deckers, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium); Bourgeois, E. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Jivanescu, M. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Abass, A. [Photonics Research Group (INTEC), Ghent University-imec, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Van Gestel, D.; Van Nieuwenhuysen, K.; Douhard, B. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); D' Haen, J.; Nesladek, M.; Manca, J. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Gordon, I.; Bender, H. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); Stesmans, A. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Mertens, R.; Poortmans, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium)

    2015-03-31

    We have investigated fine grained polycrystalline silicon thin films grown by direct chemical vapor deposition on oxidized silicon substrates. More specifically, we analyze the influence of the doping type on the properties of this model polycrystalline silicon material. This includes an investigation of defect passivation and benchmarking of minority carrier properties. In our investigation, we use a variety of characterization techniques to probe the properties of the investigated polycrystalline silicon thin films, including Fourier Transform Photoelectron Spectroscopy, Electron Spin Resonance, Conductivity Activation, and Suns-Voc measurements. Amphoteric silicon dangling bond defects are identified as the most prominent defect type present in these layers. They are the primary recombination center in the relatively lowly doped polysilicon thin films at the heart of the current investigation. In contrast with the case of solar cells based on Czochralski silicon or multicrystalline silicon wafers, we conclude that no benefit is found to be associated with the use of n-type dopants over p-type dopants in the active absorber of the investigated polycrystalline silicon thin-film solar cells. - Highlights: • Comparison of n- and p-type absorbers for thin-film poly-Si solar cells • Extensive characterization of the investigated layers' characteristics • Literature review pertaining the use of n-type and p-type dopants in silicon.

  2. Recrystallization of polycrystalline silicon

    Science.gov (United States)

    Lall, C.; Kulkarni, S. B.; Graham, C. D., Jr.; Pope, D. P.

    1981-01-01

    Optical metallography is used to investigate the recrystallization properties of polycrystalline semiconductor-grade silicon. It is found that polycrystalline silicon recrystallizes at 1380 C in relatively short times, provided that the prior deformation is greater than 30%. For a prior deformation of about 40%, the recrystallization process is essentially complete in about 30 minutes. Silicon recrystallizes at a substantially slower rate than metals at equivalent homologous temperatures. The recrystallized grain size is insensitive to the amount of prestrain for strains in the range of 10-50%.

  3. Piezoresistance in p-type silicon revisited

    DEFF Research Database (Denmark)

    Richter, Jacob; Pedersen, Jesper; Brandbyge, Mads;

    2008-01-01

    We calculate the shear piezocoefficient pi44 in p-type Si with a 6×6 k·p Hamiltonian model using the Boltzmann transport equation in the relaxation-time approximation. Furthermore, we fabricate and characterize p-type silicon piezoresistors embedded in a (001) silicon substrate. We find that the ...

  4. Casting larger polycrystalline silicon ingots

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  5. Transparent polycrystalline cubic silicon nitride

    Science.gov (United States)

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-01-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948

  6. ISOTROPIC TEXTURING OF POLYCRYSTALLINE SILICON WAFERS

    Institute of Scientific and Technical Information of China (English)

    L. Wang; H. Shen; Y.F. Hu

    2005-01-01

    An isotropic etching technique of texturing silicon solar cells has been applied to polycrystalline silicon wafers with different acid concentrations. Optimal etching conditions have been determined by etching rate calculation, scanning electron microscope (SEM) image and reflectance measurement. The surface morphology of the textured wafers varies in accordance with the different etchant concentration which in turn leads to the dissimilarity of etching speed. Textured polycrystalline silicon wafer surfaces display randomly located etched pits which can reduce the surface reflection and enhance the light absorption. The special relationship between reflectivity and etching rate was studied. Reflectance measurements show that isotropic texturing is one of the suitable techniques for texturing polycrystalline silicon wafers and benefits solar cells performances.

  7. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  8. Enhanced thermopower and low thermal conductivity in p-type polycrystalline ZrTe5

    Science.gov (United States)

    Hooda, M. K.; Yadav, C. S.

    2017-07-01

    Thermoelectric properties of polycrystalline p-type ZrTe5 are reported in the temperature (T) range of 2-340 K. Thermoelectric power (S) is positive and reaches up to 458 μV/K at 340 K on increasing T. The value of Fermi energy 16 meV suggests a low carrier density of ≈9.5 × 1018 cm-3. A sharp anomaly in S data is observed at 38 K, which seems intrinsic to p-type ZrTe5. The thermal conductivity (κ) value is low (2 W/m K at T = 300 K) with major contribution from the lattice part. Electrical resistivity data show the metal to semiconductor transition at T ˜ 150 K and non-Arrhenius behavior in the semiconducting region. The figure of merit zT (0.026 at T = 300 K) is ˜63% higher than that of HfTe5 (0.016) and better than those of the conventional SnTe, p-type PbTe, and bipolar pristine ZrTe5 compounds.

  9. Efficiency Enhancement of Nanoporous Silicon/Polycrystalline-Silicon Solar Cells by Application of Trenched Electrodes

    OpenAIRE

    Kuen-Hsien Wu; Chia-Chun Tang

    2014-01-01

    Trenched electrodes were proposed to enhance the short-circuit current and conversion efficiency of polycrystalline-silicon (poly-Si) solar cells with nanoporous silicon (NPS) surface layers. NPS films that served as textured surface layers were firstly prepared on heavily doped p+-type (100) poly-Si wafers by anodic etching process. Interdigitated trenches were formed in the NPS layers by a reactive-ion-etch (RIE) process and Cr/Al double-layered metal was then deposited to fill the trenches...

  10. Equilibrium shapes of polycrystalline silicon nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Korzec, M. D., E-mail: korzec@math.tu-berlin.de; Wagner, B., E-mail: bwagner@math.tu-berlin.de [Department of Mathematics, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin (Germany); Roczen, M., E-mail: maurizio.roczen@physik.hu-berlin.de [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schade, M., E-mail: martin.schade@physik.uni-halle.de [Zentrum für Innovationskompetenz SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120 Halle (Germany); Rech, B., E-mail: bernd.rech@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute for Silicon Photovoltaics, Kekuléstraße 5, 12489 Berlin (Germany)

    2014-02-21

    This study is concerned with the topography of nanostructures consisting of arrays of polycrystalline nanodots. Guided by transmission electron microscopy (TEM) measurements of crystalline Si (c-Si) nanodots that evolved from a “dewetting” process of an amorphous Si (a-Si) layer from a SiO{sub 2} coated substrate, we investigate appropriate formulations for the surface energy density and transitions of energy density states at grain boundaries. We introduce a new numerical minimization formulation that allows to account for adhesion energy from an underlying substrate. We demonstrate our approach first for the free standing case, where the solutions can be compared to well-known Wulff constructions, before we treat the general case for interfacial energy settings that support “partial wetting” and grain boundaries for the polycrystalline case. We then use our method to predict the morphologies of silicon nanodots.

  11. Polycrystalline silicon semiconducting material by nuclear transmutation doping

    Science.gov (United States)

    Cleland, John W.; Westbrook, Russell D.; Wood, Richard F.; Young, Rosa T.

    1978-01-01

    A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.

  12. P type porous silicon resistivity and carrier transport

    Energy Technology Data Exchange (ETDEWEB)

    Ménard, S., E-mail: samuel.menard@st.com [STMicroelectronics, 10, rue Thalès de Milet, 37071 Tours Cedex 2 (France); Fèvre, A. [STMicroelectronics, 10, rue Thalès de Milet, 37071 Tours Cedex 2 (France); Université François Rabelais de Tours, CNRS, CEA, INSA CVL, GREMAN UMR 7347, Tours (France); Billoué, J.; Gautier, G. [Université François Rabelais de Tours, CNRS, CEA, INSA CVL, GREMAN UMR 7347, Tours (France)

    2015-09-14

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P{sub %}) was found to be the major contributor to the PS resistivity (ρ{sub PS}). ρ{sub PS} increases exponentially with P{sub %}. Values of ρ{sub PS} as high as 1 × 10{sup 9} Ω cm at room temperature were obtained once P{sub %} exceeds 60%. ρ{sub PS} was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ{sub PS}. Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P{sub %} lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P{sub %} overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices.

  13. Polycrystalline silicon ion sensitive field effect transistors

    Science.gov (United States)

    Yan, F.; Estrela, P.; Mo, Y.; Migliorato, P.; Maeda, H.; Inoue, S.; Shimoda, T.

    2005-01-01

    We report the operation of polycrystalline silicon ion sensitive field effect transistors. These devices can be fabricated on inexpensive disposable substrates such as glass or plastics and are, therefore, promising candidates for low cost single-use intelligent multisensors. In this work we have developed an extended gate structure with a Si3N4 sensing layer. Nearly ideal pH sensitivity (54mV /pH) and stable operation have been achieved. Temperature effects have been characterized. A penicillin sensor has been fabricated by functionalizing the sensing area with penicillinase. The sensitivity to penicillin G is about 10mV/mM, in solutions with concentration lower than the saturation value, which is about 7 mM.

  14. Polycrystalline silicon study: Low-cost silicon refining technology prospects and semiconductor-grade polycrystalline silicon availability through 1988

    Science.gov (United States)

    Costogue, E. N.; Ferber, R.; Lutwack, R.; Lorenz, J. H.; Pellin, R.

    1984-01-01

    Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed.

  15. Application of neutron transmutation doping method to initially p-type silicon material.

    Science.gov (United States)

    Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun

    2009-01-01

    The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established.

  16. Microstructure evolution of polycrystalline silicon by molecular dynamics simulation

    Science.gov (United States)

    Chen, Xiao; Ding, Jianning; Jiang, Cunhua; Liu, Zunfeng; Yuan, Ningyi

    2017-06-01

    Polycrystalline silicon is the dominant material in solar cells and plays an important role in photovoltaic industry. It is important for not only the conventional production of silicon ingots but also the direct growth of silicon wafers to control crystallization for obtaining the desired polycrystalline silicon. To the best of our knowledge, few studies have systematically reported about the effects of crystalline planes on the solidification behavior of liquid silicon and the analysis of the microstructural features of the polysilicon structure. In this study, molecular dynamics simulations were employed to investigate the solidification and microstructure evolution of polysilicon, with focus on the effects of the seed distribution and cooling rate on the growth of polycrystalline silicon. The (110), (111), and (112) planes were extruded by the (100) plane and formed the inclusion shape. The crystallization of silicon consisted of diamond-type structures is relatively high at a low cooling rate. The simulations provide substantial information regarding microstructures and serve as guidance for the growth of polycrystalline silicon.

  17. Microstructure evolution of polycrystalline silicon by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-06-01

    Full Text Available Polycrystalline silicon is the dominant material in solar cells and plays an important role in photovoltaic industry. It is important for not only the conventional production of silicon ingots but also the direct growth of silicon wafers to control crystallization for obtaining the desired polycrystalline silicon. To the best of our knowledge, few studies have systematically reported about the effects of crystalline planes on the solidification behavior of liquid silicon and the analysis of the microstructural features of the polysilicon structure. In this study, molecular dynamics simulations were employed to investigate the solidification and microstructure evolution of polysilicon, with focus on the effects of the seed distribution and cooling rate on the growth of polycrystalline silicon. The (110, (111, and (112 planes were extruded by the (100 plane and formed the inclusion shape. The crystallization of silicon consisted of diamond-type structures is relatively high at a low cooling rate. The simulations provide substantial information regarding microstructures and serve as guidance for the growth of polycrystalline silicon.

  18. Schottky Contact of Gallium on p-Type Silicon

    Directory of Open Access Journals (Sweden)

    B.P. Modi

    2011-01-01

    Full Text Available The evolution of barrier at Schottky contact and its stabilization to value characterized by the barrier height and unambiguous measurement is still being curiously perused as they hold the key control and manufacture of tailor made Schottky devices for a host of existing and potential for future applications in electronics, optoelectronics and microwave devices. In this context, gallium – silicon Schottky diode has been fabricated and analyzed.

  19. Porous silicon damage enhanced phosphorus and aluminium gettering of p-type Czochralski silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hassen, M. [Institut National de Recherche Scientifique et Technique, Laboratoire de Photovoltaique et des Semiconducteurs, PB 95 2050 Hammam-Lif (Tunisia); Ben Jaballah, A. [Institut National de Recherche Scientifique et Technique, Laboratoire de Photovoltaique et des Semiconducteurs, PB 95 2050 Hammam-Lif (Tunisia)]. E-mail: gadour2003@yahoo.fr; Hajji, M. [Institut National de Recherche Scientifique et Technique, Laboratoire de Photovoltaique et des Semiconducteurs, PB 95 2050 Hammam-Lif (Tunisia); Rahmouni, H. [Laboratoire de Physique des Semiconducteurs et des Composants Electroniques, Faculte des Sciences de Monastir, Rue de Kairouan, 5000 Monastir (Tunisia); Selmi, A. [Laboratoire de Physique des Semiconducteurs et des Composants Electroniques, Faculte des Sciences de Monastir, Rue de Kairouan, 5000 Monastir (Tunisia); Ezzaouia, H. [Institut National de Recherche Scientifique et Technique, Laboratoire de Photovoltaique et des Semiconducteurs, PB 95 2050 Hammam-Lif (Tunisia)

    2005-12-05

    In this work, porous silicon damage (PSD) is presented as a simple sequence for efficient external purification techniques. The method consists of using thin nanoporous p-type silicon on both sides of the silicon substrates with randomly hemispherical voids. Then, two main sample types are processed. In the first type, thin aluminium layers ({>=}1 {mu}m) are thermally evaporated followed by photo-thermal annealing treatments in N{sub 2} atmosphere at one of several temperatures ranging between 600 and 800 deg. C. In the second type, phosphorus is continually diffused in N{sub 2}/O{sub 2} ambient in a solid phase from POCl{sub 3} solution during heating at one of several temperatures ranging between 750 and 1000 deg. C for 1 h. Hall Effect and Van Der Pauw methods prove the existence of an optimum temperature in the case of phosphorus gettering at 900 deg. C yielding a Hall mobility of about 982 cm{sup 2} V{sup -1} s{sup -1}. However, in the case of aluminium gettering, there is no gettering limit in the as mentioned temperature range. Metal/Si Schottky diodes are elaborated to clarify these improvements. In this study, we demonstrate that enhanced metal solubility model cannot explain the gettering effect. The solid solubility of aluminium is higher than that of P atoms in silicon; however, the device yield confirms the effectiveness of phosphorus as compared to aluminium.

  20. Single-structure heater and temperature sensor using a p-type polycrystalline diamond resistor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.S.; Aslam, D.M. [Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical Engineering

    1996-05-01

    Heat generation and temperature sensing are required for heating applications and for liquid level sensors, mass flow meters, and vacuum and pressure gauges which are based on variations of heat dissipation. Heat generation and temperature sensing are reported in a single p-type diamond resistor fabricated on an oxidized Si substrate using diamond film technology compatible with integrated circuit (IC) processing. Power densities in excess of 600 W/in.{sup 2} are observed for the heaters. The temperature response of the sensor is characterized in the temperature range of 300--725 K. Such a diamond heater/sensor device is reported for the first time.

  1. Determination of grain boundary impurity effects in polycrystalline silicon

    Science.gov (United States)

    Kazmerski, L. L.; Dick, J. R.

    1984-06-01

    An analysis is made of the relationships existing between the chemistry and composition of the intergrain regions in polycrystalline silicon, the electrooptical properties of the grain boundaries, and the performance of polycrystalline Si solar cells. The following two impurity mechanisms are emphasized: segregation of oxygen to grain boundaries during heat treatments and the passivation of grain boundaries by incorporation of hydrogen. It is shown that hydrogen is localized at the defects; the effects of hydrogen localization on the electrical characteristics of the grain boundary and of the solar cell are discussed.

  2. Kinetics of self-interstitials reactions in p-type silicon irradiated with alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Makarenko, L.F., E-mail: makarenko@bsu.by [Department of Applied Mathematics and Computer Science, Belarusian State University, Independence Ave. 4, 220030 Minsk (Belarus); Moll, M. [CERN, Geneva (Switzerland); Evans-Freeman, J.H. [University of Canterbury, Christchurch (New Zealand); Lastovski, S.B.; Murin, L.I.; Korshunov, F.P. [Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk (Belarus)

    2012-08-01

    New findings on the self-interstitial migration in p-type silicon are presented. They are based on experimental studies of the formation kinetics of defects related to interstitial carbon after irradiation with alpha particles. The main parameters characterizing the interaction rate of silicon self-interstitials with substitutional carbon atoms have been determined. A preliminary interpretation of the experimental data is given. The interpretation takes into account different diffusivities of self-interstitials in their singly and doubly ionized states.

  3. Efficiency Enhancement of Nanoporous Silicon/Polycrystalline-Silicon Solar Cells by Application of Trenched Electrodes

    Directory of Open Access Journals (Sweden)

    Kuen-Hsien Wu

    2014-01-01

    Full Text Available Trenched electrodes were proposed to enhance the short-circuit current and conversion efficiency of polycrystalline-silicon (poly-Si solar cells with nanoporous silicon (NPS surface layers. NPS films that served as textured surface layers were firstly prepared on heavily doped p+-type (100 poly-Si wafers by anodic etching process. Interdigitated trenches were formed in the NPS layers by a reactive-ion-etch (RIE process and Cr/Al double-layered metal was then deposited to fill the trenches and construct trenched-electrode-contacts (TEC’s. Cells with TEC structures (called “TEC cells” obtained 5.5 times higher short-circuit current than that of cells with planar electrode contacts (called “non-TEC cells”. Most significantly, a TEC cell achieved 8 times higher conversion efficiency than that of a non-TEC cell. The enhanced short-circuit current and conversion efficiency in TEC cells were ascribed to the reduced overall series resistance of devices. In a TEC cell, trenched electrodes provided photocurrent flowing routes that directly access the poly-Si substrates without passing through the high resistive NPS layers. Therefore, the application of NPS surface layers with trenched electrodes is a novel approach to development of highly efficient poly-Si solar cells.

  4. P-Type Silicon Strip Sensors for the new CMS Tracker at HL-LHC

    Science.gov (United States)

    Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; Delannoy, H.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, Th.; Léonard, A.; Luetic, J.; Postiau, N.; Seva, T.; Vanlaer, P.; Vannerom, D.; Wang, Q.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Tuuva, T.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Lapsien, T.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Caselle, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmayer, A.; Kudella, S.; Muller, Th.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Silvestris, L.; Maggi, G.; Martiradonna, S.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Patterson, A.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K. A.

    2017-06-01

    The upgrade of the LHC to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at the CMS experiment. Based on these results, the collaboration has chosen to use n-in-p type silicon sensors and focus further investigations on the optimization of that sensor type. This paper describes the main measurement results and conclusions that motivated this decision.

  5. EBIC AND DLTS MEASUREMENTS OF SI-AND POLYCRYSTALLINE SILICON

    OpenAIRE

    Bary, A.; Hamet, J.; Ihlal, A.; Chermant, J.; Nouet, G.

    1988-01-01

    Influence of grain boundaries on the electronic properties of silicon has been studied by electron-beam induced current (EBIC), thermally stimulated capacitance (TSCAP) and deep-level transient spectroscopy (DLTS). Low-angle grain boundaries taken from as-grown polycrystalline wafers for solar cells have been analyzed by EBIC and their behaviors have been compared after the junction diffusion treatment. This treatment gives a decrease of the local diffusion length and recombination velocity o...

  6. Laser annealing of thin film polycrystalline silicon solar cell

    Directory of Open Access Journals (Sweden)

    Chowdhury A.

    2013-11-01

    Full Text Available Performances of thin film polycrystalline silicon solar cell grown on glass substrate, using solid phase crystallization of amorphous silicon can be limited by low dopant activation and high density of defects. Here, we investigate line shaped laser induced thermal annealing to passivate some of these defects in the sub-melt regime. Effect of laser power and scan speed on the open circuit voltage of the polysilicon solar cells is reported. The processing temperature was measured by thermal imaging camera. Enhancement of the open circuit voltage as high as 210% is achieved using this method. The results are discussed.

  7. Microhardness of carbon-doped (111) p-type Czochralski silicon

    Science.gov (United States)

    Danyluk, S.; Lim, D. S.; Kalejs, J.

    1985-01-01

    The effect of carbon on (111) p-type Czochralski silicon is examined. The preparation of the silicon and microhardness test procedures are described, and the equation used to determine microhardness from indentations in the silicon wafers is presented. The results indicate that as the carbon concentration in the silicon increases the microhardness increases. The linear increase in microhardness is the result of carbon hindering dislocation motion, and the effect of temperature on silicon deformation and dislocation mobility is explained. The measured microhardness was compared with an analysis which is based on dislocation pinning by carbon; a good correlation was observed. The Labusch model for the effect of pinning sites on dislocation motion is given.

  8. Polycrystalline Silicon ISFETs on Glass Substrate

    Directory of Open Access Journals (Sweden)

    Hiroshi Maeda

    2005-05-01

    Full Text Available The Ion Sensitive Field Effect Transistor (ISFET operation based onpolycrystalline silicon thin film transistors is reported. These devices can be fabricated oninexpensive disposable substrates such as glass or plastics and are, therefore, promisingcandidates for low cost single-use intelligent multisensors. In this work we have developedan extended gate structure with PE-CVD Si3N4 deposited on top of a conductor, which alsoprovides the electrical connection to the remote TFT gate. Nearly ideal pH sensitivity(54 mV/pH and stable operation have been achieved. Temperature effects have also beencharacterized. A penicillin sensor has been fabricated by functionalizing the sensing areawith penicillinase. The shift increases almost linearly upon the increase of penicillinconcentration until saturation is reached for ~ 7 mM. Poly-Si TFT structures with a goldsensing area have been also successfully applied to field-effect detection of DNA.

  9. Dual ohmic contact to N- and P-type silicon carbide

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  10. Extraction of interface state density and resistivity of suspended p-type silicon nanobridges

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiahong; Liu Qingquan; Ge Yixian; Gu Fang; Li Min; Mao Xiaoli; Cao Hongxia

    2013-01-01

    The evaluation of the influence of the bending deformation of silicon nanobridges on their electrical properties is crucial for sensing and actuating applications.A combined theory/experimental approach for determining the resistivity and the density of interface states of the bending silicon nanobridges is presented.The suspended p-type silicon nanobridge test structures were fabricated from silicon-on-insulator wafers by using a standard CMOS lithography and anisotropic wet etching release process.After that,we measured the resistance of a set of silicon nanobridges versus their length and width under different bias voltages.In conjunction with a theoretical model,we have finally extracted both the interface state density of and resistivity suspended silicon nanobridges under different bending deformations,and found that the resistivity of silicon nanobridges without bending was 9.45 mΩ·cm and the corresponding interface charge density was around 1.7445 × 1013 cm-2.The bending deformation due to the bias voltage slightly changed the resistivity of the silicon nanobridge,however,it significantly changed the distribution of interface state charges,which strongly depends on the intensity of the stress induced by bending deformation.

  11. CCE measurements and annealing studies on proton-irradiated p-type MCz silicon diodes

    CERN Document Server

    Hoedlmoser, H; Köhler, M; Nordlund, H

    2007-01-01

    Magnetic Czochralski (MCz) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of p-type MCz Silicon diodes irradiated with protons up to a fluence of has been performed by means of Charge Collection Efficiency (CCE) measurements as well as standard CV/IV characterizations. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. A subsequent annealing study of the irradiated detectors shows an increase in effective doping concentration and a decrease in the leakage current, whereas the CCE remains basically unchanged. Two different series of detectors have been compared differing in the implantation dose of p-spray isolation as well as effective doping concentration (Neff) of the p-type bulk presumably due to a difference in thermal donor (TD) activation during processing. The series with the higher concentration of TDs shows a delayed reverse annealing of Neff after irradia...

  12. p-Type Quasi-Mono Silicon Solar Cell Fabricated by Ion Implantation

    Directory of Open Access Journals (Sweden)

    Chien-Ming Lee

    2013-01-01

    Full Text Available The p-type quasi-mono wafer is a novel type of silicon material that is processed using a seed directional solidification technique. This material is a promising alternative to traditional high-cost Czochralski (CZ and float-zone (FZ material. Here, we evaluate the application of an advanced solar cell process featuring a novel method of ion implantation on p-type quasi-mono silicon wafer. The ion implantation process has simplified the normal industrial process flow by eliminating two process steps: the removal of phosphosilicate glass (PSG and the junction isolation process that is required after the conventional thermal POCl3 diffusion process. Moreover, the good passivation performance of the ion implantation process improves Voc. Our results show that, after metallization and cofiring, an average cell efficiency of 18.55% can be achieved using 156 × 156 mm p-type quasi-mono silicon wafer. Furthermore, the absolute cell efficiency obtained using this method is 0.47% higher than that for the traditional POCl3 diffusion process.

  13. Activation Energy of Polycrystalline Silicon Thin Film Transistor

    Directory of Open Access Journals (Sweden)

    B.P. Tyagi

    2011-01-01

    Full Text Available The activation energy of a poly-Si thin film transistor is observed to be influenced by the grain size, trap state density and the inversion layer thickness. The present study aims to investigate these parameters theoretically so as to explore optimum conditions for the working of a polycrystalline silicon thin film transistor. Our computations have revealed that the activation energy decreases with the increase of gate bias for all values of grain size, trap states density and the inversion layer thickness. These findings are compared with the experimental results.

  14. Empirical model predicting the layer thickness and porosity of p-type mesoporous silicon

    Science.gov (United States)

    Wolter, Sascha J.; Geisler, Dennis; Hensen, Jan; Köntges, Marc; Kajari-Schröder, Sarah; Bahnemann, Detlef W.; Brendel, Rolf

    2017-04-01

    Porous silicon is a promising material for a wide range of applications because of its versatile layer properties and the convenient preparation by electrochemical etching. Nevertheless, the quantitative dependency of the layer thickness and porosity on the etching process parameters is yet unknown. We have developed an empirical model to predict the porosity and layer thickness of p-type mesoporous silicon prepared by electrochemical etching. The impact of the process parameters such as current density, etching time and concentration of hydrogen fluoride is evaluated by ellipsometry. The main influences on the porosity of the porous silicon are the current density, the etching time and their product while the etch rate is dominated by the current density, the concentration of hydrogen fluoride and their product. The developed model predicts the resulting layer properties of a certain porosification process and can, for example be used to enhance the utilization of the employed chemicals.

  15. Polycrystalline silicon availability for photovoltaic and semiconductor industries

    Science.gov (United States)

    Ferber, R. R.; Costogue, E. N.; Pellin, R.

    1982-01-01

    Markets, applications, and production techniques for Siemens process-produced polycrystalline silicon are surveyed. It is noted that as of 1982 a total of six Si materials suppliers were servicing a worldwide total of over 1000 manufacturers of Si-based devices. Besides solar cells, the Si wafers are employed for thyristors, rectifiers, bipolar power transistors, and discrete components for control systems. An estimated 3890 metric tons of semiconductor-grade polycrystalline Si will be used in 1982, and 6200 metric tons by 1985. Although the amount is expected to nearly triple between 1982-89, research is being carried out on the formation of thin films and ribbons for solar cells, thereby eliminating the waste produced in slicing Czolchralski-grown crystals. The free-world Si production in 1982 is estimated to be 3050 metric tons. Various new technologies for the formation of polycrystalline Si at lower costs and with less waste are considered. New entries into the industrial Si formation field are projected to produce a 2000 metric ton excess by 1988.

  16. Use of hexamethyldisiloxane for p-type microcrystalline silicon oxycarbide layers

    Directory of Open Access Journals (Sweden)

    Goyal Prabal

    2016-01-01

    Full Text Available The use of hexamethyldisiloxane (HMDSO as an oxygen source for the growth of p-type silicon-based layers deposited by Plasma Enhanced Chemical Vapor Deposition is evaluated. The use of this source led to the incorporation of almost equivalent amounts of oxygen and carbon, resulting in microcrystalline silicon oxycarbide thin films. The layers were examined with characterisation techniques including Spectroscopic Ellipsometry, Dark Conductivity, Fourier Transform Infrared Spectroscopy, Secondary Ion Mass Spectrometry and Transmission Electron Microscopy to check material composition and structure. Materials studies show that the refractive indices of the layers can be tuned over the range from 2.5 to 3.85 (measured at 600 nm and in-plane dark conductivities over the range from 10-8 S/cm to 1 S/cm, suggesting that these doped layers are suitable for solar cell applications. The p-type layers were tested in single junction amorphous silicon p-i-n type solar cells.

  17. About the Nature of Electroluminescence Centers in Plastically Deformed Crystals of p-type Silicon

    Directory of Open Access Journals (Sweden)

    B.V. Pavlyk

    2015-10-01

    Full Text Available The paper describes research of dislocation electroluminescence of single crystal p-type silicon with a high concentration of dislocations on the surface (111. It is shown the reaction of the luminescence spectra and capacitive-modulation spectra of samples after high-temperature annealing in an atmosphere of flowing oxygen. The analysis of the results lets us to establish the nature of recombination centers and their reorganization under high-temperature annealing. It is shown that deposition of Al film on the substrate p-Si leads to the formation of strain capacity and the localization of defects in the surface layer that corresponds to luminescence centers.

  18. Nanopore formation on low-doped p-type silicon under illumination

    Energy Technology Data Exchange (ETDEWEB)

    Chiboub, N. [UDTS, 02 Bd. Frantz Fanon, B.P. 140, Alger-7 Merveilles, 16200 Algiers (Algeria); Gabouze, N., E-mail: ngabouze@yahoo.fr [UDTS, 02 Bd. Frantz Fanon, B.P. 140, Alger-7 Merveilles, 16200 Algiers (Algeria); Chazalviel, J.-N.; Ozanam, F. [Physique de la Matiere Condensee, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Moulay, S. [Universite Saad Dahleby, B.P. 270, Route de Soumaa, Blida (Algeria); Manseri, A. [UDTS, 02 Bd. Frantz Fanon, B.P. 140, Alger-7 Merveilles, 16200 Algiers (Algeria)

    2010-04-01

    Porous silicon layers were elaborated by anodization of highly resistive p-type silicon in HF/ethylene glycol solution under front side illumination, as a function of etching time, HF concentration and illumination intensity. The porous layer morphology was investigated by scanning electron microscopy (SEM). The illumination during anodization was provided by a tungsten lamp or lasers of different wavelengths. Under anodization, a microporous layer is formed up to a critical thickness above which macropores appear. Under illumination, the instability limiting the growth of the microporous layer occurs at a critical thickness much larger than in the dark. This critical thickness depends on HF concentration, illumination wavelength and intensity. These non-trivial dependencies are rationalized in a model in which photochemical etching in the electrochemically formed porous layer plays the central role.

  19. Improving the radiation hardness properties of silicon detectors using oxygenated n-type and p-type silicon

    CERN Document Server

    Casse, G L; Hanlon, M

    2000-01-01

    The degradation of the electrical properties of silicon detectors exposed to 24 GeV/c protons were studied using pad diodes made from different silicon materials. Standard high-grade p-type and n-type substrates and oxygenated n-type substrates have been used. The diodes were studied in terms of reverse current (I/sub r/) and full depletion voltage (V/sub fd/) as a function of fluence. The oxygenated devices from different suppliers with a variety of starting materials and techniques, all show a consistent improvement of the degradation rate of V/sub fd/ and CCE compared to un- oxygenated substrate devices. Radiation damage of n-type detectors introduces stable defects acting as effective p-type doping and leads to the change of the conductivity type of the silicon bulk (type inversion) at a neutron equivalent fluence of a few 10/sup 13/ cm/sup -2/. The diode junction after inversion migrates from the original side to the back plane of the detector. The migration of the junction is avoided using silicon detec...

  20. Lateral photovoltaic effect in p-type silicon induced by surface states

    Science.gov (United States)

    Huang, Xu; Mei, Chunlian; Gan, Zhikai; Zhou, Peiqi; Wang, Hui

    2017-03-01

    A colossal lateral photovoltaic effect (LPE) was observed at the surface of p-type silicon, which differs from the conventional thought that a large LPE is only observed in Schottky junctions and PN junctions consisting of several layers with different conductivities. It shows a high sensitivity of 499.24 mV/mm and an ultra-broadband spectral responsivity (from 405 nm to 980 nm) at room temperature, which makes it an attractive candidate for near-infrared detection. We propose that this phenomenon can be understood by considering the surface band bending near the surface of p-Si induced by charged surface states. The energy band diagrams of the samples are shown based on X-ray photoelectron spectroscopy suggesting the correlation between the LPE and surface band bending. The conjectures are validated by changing the surface states of p-type silicon using Ni nano-films. These findings reveal a generation mechanism of the LPE and may lead to p-Si based, broadband-responsivity, low-cost, and high-precision optical and optoelectronic applications.

  1. Predicting fracture in micron-scale polycrystalline silicon MEMS structures.

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Siddharth S. (Carnegie Mellon University, Pittsburgh, PA); de Boer, Maarten Pieter (Carnegie Mellon University, Pittsburgh, PA); Boyce, Brad Lee; Ohlhausen, James Anthony; Foulk, James W., III; Reedy, Earl David, Jr.

    2010-09-01

    Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use a measured tensile strength distribution to predict the strength of a complex MEMS structure. To address such issues, two recently developed high throughput MEMS tensile test techniques have been used to measure strength distribution tails. The measured tensile strength distributions enable the definition of a threshold strength as well as an inferred maximum flaw size. The nature of strength-controlling flaws has been identified and sources of the observed variation in strength investigated. A double edge-notched specimen geometry was also tested to study the effect of a severe, micron-scale stress concentration on the measured strength distribution. Strength-based, Weibull-based, and fracture mechanics-based failure analyses were performed and compared with the experimental results.

  2. Electrical band-gap narrowing in n- and p-type heavily doped silicon at 300 K

    Science.gov (United States)

    Van Cong, H.; Brunet, S.

    1986-09-01

    Based on previous results band-gap narrowing in heavily doped silicon at 300 K is investigated and expressed in terms of impurity size-and-doping effects. The results obtained for n- and p-type heavily doped silicon are compared with other theories and experiments.

  3. A re-examination of cobalt-related defects in n- and p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, Leopold; Kolkovsky, Vladimir; Weber, Joerg [Technische Universitaet Dresden, 01069 Dresden (Germany)

    2012-10-15

    In the present work cobalt-doped n- and p-type silicon samples were studied by means of deep level transient spectroscopy (DLTS) and Laplace-DLTS (LDLTS). We demonstrate that two dominant DLTS peaks previously assigned to a substitutional Co defect have different annealing behaviour and therefore belong to different defects. After wet chemical etching three other peaks (E90, E140 and H160) were observed in the samples. The intensity of the peaks becomes larger in the H-plasma treated samples. This together with depth profiling demonstrates that the peaks are hydrogen-related defects. The origin of the peaks will be discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Low-temperature TCT characterization of heavily proton irradiated p-type magnetic Czochralski silicon detectors

    CERN Document Server

    Härkönen, J; Luukka, P; Kassamakov, I; Autioniemi, M; Tuominen, E; Sane, P; Pusa, P; Räisänen, J; Eremin, V; Verbitskaya, E; Li, Z

    2007-01-01

    n+/p−/p+ pad detectors processed at the Microelectronics Center of Helsinki University of Technology on boron-doped p-type high-resistivity magnetic Czochralski (MCz-Si) silicon substrates have been investigated by the transient current technique (TCT) measurements between 100 and 240 K. The detectors were irradiated by 9 MeV protons at the Accelerator Laboratory of University of Helsinki up to 1 MeV neutron equivalent fluence of 2×1015 n/cm2. In some of the detectors the thermal donors (TD) were introduced by intentional heat treatment at 430 °C. Hole trapping time constants and full depletion voltage values were extracted from the TCT data. We observed that hole trapping times in the order of 10 ns were found in heavily (above 1×1015 neq/cm2) irradiated samples. These detectors could be fully depleted below 500 V in the temperature range of 140–180 K.

  5. The development of p-type silicon detectors for the high radiation regions of the LHC

    CERN Document Server

    Hanlon, M D L

    1998-01-01

    This thesis describes the production and characterisation of silicon microstrip detectors and test structures on p-type substrates. An account is given of the production and full parameterisation of a p-type microstrip detector, incorporating the ATLAS-A geometry in a beam test. This detector is an AC coupled device incorporating a continuous p-stop isolation frame and polysilicon biasing and is typical of n-strip devices proposed for operation at the LHC. It was successfully read out using the FELix-128 analogue pipeline chip and a signal to noise (s/n) of 17+-1 is reported, along with a spatial resolution of 14.6+-0.2 mu m. Diode test structures were fabricated on both high resistivity float zone material and on epitaxial material and subsequently irradiated with 24 GeV protons at the CERN PS up to a dose of (8.22+-0.23) x 10 sup 1 sup 4 per cm sup 2. An account of the measurement program is presented along with results on the changes in the effective doping concentration (N sub e sub f sub f) with irradiat...

  6. Evidence for an iron-hydrogen complex in p-type silicon

    Science.gov (United States)

    Leonard, S.; Markevich, V. P.; Peaker, A. R.; Hamilton, B.; Murphy, J. D.

    2015-07-01

    Interactions of hydrogen with iron have been studied in Fe contaminated p-type Czochralski silicon using capacitance-voltage profiling and deep level transient spectroscopy (DLTS). Hydrogen has been introduced into the samples from a silicon nitride layer grown by plasma enhanced chemical vapor deposition. After annealing of the Schottky diodes on Si:Fe + H samples under reverse bias in the temperature range of 90-120 °C, a trap has been observed in the DLTS spectra which we have assigned to a Fe-H complex. The trap is only observed when a high concentration of hydrogen is present in the near surface region. The trap concentration is higher in samples with a higher concentration of single interstitial Fe atoms. The defect has a deep donor level at Ev + 0.31 eV. Direct measurements of capture cross section of holes have shown that the capture cross section is not temperature dependent and its value is 5.2 × 10-17 cm2. It is found from an isochronal annealing study that the Fe-H complex is not very stable and can be eliminated completely by annealing for 30 min at 125 °C.

  7. RF performances of inductors integrated on localized p+-type porous silicon regions

    National Research Council Canada - National Science Library

    Capelle, Marie; Billoué, Jérôme; Poveda, Patrick; Gautier, Gaël

    2012-01-01

    To study the influence of localized porous silicon regions on radiofrequency performances of passive devices, inductors were integrated on localized porous silicon regions, full porous silicon sheet...

  8. Study of polycrystalline silicon obtained by aluminum-induced crystallization depending on process conditions

    Science.gov (United States)

    Pereyaslavtsev, Alexander; Sokolov, Igor; Sinev, Leonid

    2016-11-01

    In this paper, we have decided to consider an alternative method of producing polycrystalline silicon and study change of its electrophysical characteristics depending on process parameters. As an alternative low-pressure chemical vapor deposition method appears aluminum-induced crystallization (AIC), which allows to obtain a polycrystalline silicon film is significantly larger grain size, thereby reducing contribution of grain boundaries. A comprehensive study of polycrystalline silicon was carried out using a variety of microscopic (OM, SEM) and spectroscopic (RAMAN, XPS) and diffraction (EBSD, XRD) analytic methods. We also considered possibility of self-doping in AIC, result of which was obtained polycrystalline silicon with different resistance. Additionally considered changes in temperature coefficient of resistance depending on technological parameters of AIC process.

  9. Effective surface passivation of p-type crystalline silicon with silicon oxides formed by light-induced anodisation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jie, E-mail: j.cui@unsw.edu.au [School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney 2052 (Australia); Grant, Nicholas [Centre for Sustainable Energy Systems, Australian National University, Canberra, A.C.T. 0200 (Australia); Lennon, Alison [School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney 2052 (Australia)

    2014-12-30

    Highlights: • The surface passivation by anodic SiO{sub 2} formed by light-induced anodisation is investigated. • The anodic SiO{sub 2} grows lower temperatures with shorter growth times. After annealing in oxygen and then forming gas the effective minority carrier lifetime is increased to 150 μs. • It shows a very low positive Q{sub eff} of 3.4 × 10{sup 11} cm{sup −2}, a moderate D{sub it} of 6 × 10{sup 11} eV{sup −1} cm{sup −2}. • It has a very low leakage current density suggesting its application in solar cell as a functional dielectric. - Abstract: Electronic surface passivation of p-type crystalline silicon by anodic silicon dioxide (SiO{sub 2}) was investigated. The anodic SiO{sub 2} was grown by light-induced anodisation (LIA) in diluted sulphuric acid at room temperature, a process that is significantly less-expensive than thermal oxidation which is widely-used in silicon solar cell fabrication. After annealing in oxygen and then forming gas at 400 °C for 30 min, the effective minority carrier lifetime of 3–5 Ω cm, boron-doped Czochralski silicon wafers with a phosphorus-doped 80 Ω/□ emitter and a LIA anodic SiO{sub 2} formed on the p-type surface was increased by two orders of magnitude to 150 μs. Capacitance–voltage measurements demonstrated a very low positive charge density of 3.4 × 10{sup 11} cm{sup −2} and a moderate density of interface states of 6 × 10{sup 11} eV{sup −1} cm{sup −2}. This corresponded to a silicon surface recombination velocity of 62 cm s{sup −1}, which is comparable with values reported for other anodic SiO{sub 2} films, which required higher temperatures and longer growth times, and significantly lower than oxides grown by chemical vapour deposition techniques. Additionally, a very low leakage current density of 3.5 × 10{sup −10} and 1.6 × 10{sup −9} A cm{sup −2} at 1 and −1 V, respectively, was measured for LIA SiO{sub 2} suggesting its potential application as insulation layer in

  10. Ebic and Dlts measurements of Si-and polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Bary, A.; Hamet, J.F.; Ihlal, A.; Chermant, J.L.; Nouet, G.

    1988-10-01

    Influence of grain boundaries on the electronic properties of silicon has been studied by electron-beam induced current (EBIC), thermally stimulated capacitance (TSCAP) and deep-level transient spectroscopy (DLTS). Low-angle grain boundaries taken from as-grown polycrystalline wafers for solar cells have been analyzed by EBIC and their behaviors have been compared after the junction diffusion treatment. This treatment gives a decrease of the local diffusion length and recombination velocity of the minority carriers. TSCAP and DLTS methods have been applied to a coincidence orientation grain boundary ..sigma..13. These measurements have been made on a gold diffused bicrystal. These results are then compared with those of a bicrystal without gold diffusion. After annealing a narrow interface state continuum appears. On the contrary the gold diffusion prevents the formation of this continuum and only the donor level of gold is detected in the space charge region of the grain boundary (0 - 0.5 ..mu..m). This diffusion of phosphorus or gold can be interpreted as a grain boundary passivation.

  11. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Minden 11800 Penang (Malaysia)

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  12. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    Science.gov (United States)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  13. First results on charge collection efficiency of heavily irradiated microstrip sensors fabricated on oxygenated p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Casse, G. E-mail: gcasse@hep.ph.liv.ac.uk; Allport, P.P.; Marti i Garcia, S.; Lozano, M.; Turner, P.R

    2004-02-01

    Heavy hadron irradiation leads to type inversion of n-type silicon detectors. After type inversion, the charge collected at low bias voltages by silicon microstrip detectors is higher when read out from the n-side compared to p-side read out. The n-side read out has been successfully used in combination with oxygen-enriched n-type silicon substrate to maximise the radiation hardness of microstrip detectors. Alternatively, the n-side read out can be implemented on p-type substrates reducing the complexity of fabrication. Miniature silicon microstrip detectors made on standard and oxygen-enriched p-type substrate have been produced. The charge collection properties of such detectors with and without oxygenation are here compared for the first time after severe charged hadron irradiation.

  14. Investigations of nanoreactors on the basis of p-type porous silicon: Electron structure and phase composition

    Energy Technology Data Exchange (ETDEWEB)

    Lenshin, A.S. [Voronezh State University, Solid State Physics and Nanostructures Department, Universitetskaya pl. 1, Voronezh 394006 (Russian Federation); Kashkarov, V.M., E-mail: kash@phys.vsu.ru [Voronezh State University, Solid State Physics and Nanostructures Department, Universitetskaya pl. 1, Voronezh 394006 (Russian Federation); Spivak, Yu. M. [SPbGETU ' LETI' , Department of Microelectronics (Russian Federation); Moshnikov, V.A., E-mail: vamoshnikov@mail.ru [SPbGETU ' LETI' , Department of Microelectronics (Russian Federation)

    2012-08-15

    Investigations of the electron structure and phase composition of the surface layers in porous silicon with a developed system of nanopores were made with the use of ultrasoft X-ray spectroscopy and X-ray photoelectron spectroscopy. The samples of porous silicon were obtained on the substrates with p-type conductivity under different modes of electrochemical etching. Porous surface layer represents a system of weakly connected pores oriented mainly perpendicular to the surface of silicon wafer. The mean transverse pore dimension is of {approx}50 nm. Silicon dioxide and sub-oxide were found in porous layer. We assume that these phases cover pores surface thus providing a possibility of the use of the structures as nanoreactors. -- Highlights: Black-Right-Pointing-Pointer Nanoporous silicon layers were obtained. Black-Right-Pointing-Pointer A system of weakly connected pores was detected. Black-Right-Pointing-Pointer Electron structure and phase composition of the surface layers in porous silicon were investigated.

  15. Aluminum induced crystallization of strongly (111) oriented polycrystalline silicon thin film and nucleation analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and α-Si layers were deposited by magnetron sputtering respectively and annealed at 480°C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between γ-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of γ-Al2O3, which was formed at the early stage of annealing.

  16. Precipitation of Cu and Ni in n- and p-type Czochralski-grown silicon characterized by photoluminescence imaging

    Science.gov (United States)

    Sun, Chang; Nguyen, Hieu T.; Rougieux, Fiacre E.; Macdonald, Daniel

    2017-02-01

    Photoluminescence (PL) images and micro-PL maps were taken on Cu- or Ni-doped monocrystalline silicon wafers, to investigate the distribution of the metal precipitates. Several n-type and p-type wafers were used in which Cu or Ni were introduced in the starting melt of the ingots and precipitated during the ingot cooling (as opposed to surface contamination). The micro-PL mapping allowed investigation of the metal precipitates with a higher spatial resolution. Markedly different precipitation patterns were observed in n- and p-type samples: in both Cu- and Ni-doped n-type samples, circular central regions and edge regions were observed. In these regions, particles were distributed randomly and homogeneously. In the p-type Cu-doped and Ni-doped samples, by contrast, the precipitates occurred in lines along orientations. The difference in the precipitation behaviour in n- and p-type samples is conjectured to be caused by different concentrations of self-interstitials and vacancies remaining in the crystal during the ingot cooling: there are more vacancies in the n-type ingots but more interstitials in the p-type ingots. The dopant effects on the intrinsic point defect concentrations in silicon crystals and possible precipitation mechanisms are discussed based on the findings in this work and the literature.

  17. Depletion effect of polycrystalline-silicon gate electrode by phosphorus deactivation

    Science.gov (United States)

    Jeon, Woojin; Ahn, Ji-Hoon

    2017-01-01

    A study of the polycrystalline silicon depletion effect generated from the subsequent thermal process is undertaken. Although phosphorus out-diffusion, which causes the polycrystalline silicon depletion effect, is increased with an increase in the thermal process temperature, the polysilicon depletion effect is stronger when inducing rapid thermal annealing in lower temperatures of 600-800 °C than in 900 °C. This indicates that the major reason for the polysilicon depletion effect is not the out-diffusion of phosphorus but the electrical deactivation of phosphorus, which is segregated at the grain boundary. Therefore, by increasing the size of polycrystalline silicon grain, we can efficiently reduce the polysilicon depletion effect and enhance the tolerance to deactivation.

  18. Effect of Etching Time on Optical and Thermal Properties of p-Type Porous Silicon Prepared by Electrical Anodisation Method

    Directory of Open Access Journals (Sweden)

    Kasra Behzad

    2012-01-01

    Full Text Available The porous silicon (PSi layers were formed on p-type silicon (Si wafer. The six samples were anodised electrically with 30 mA/cm2 fixed current density for different etching times. The structural, optical, and thermal properties of porous silicon on silicon substrates were investigated by photoluminescence (PL, photoacoustic spectroscopy (PAS, and UV-Vis-NIR spectrophotometer. The thickness and porosity of the layers were measured using the gravimetric method. The band gap of the samples was measured through the photoluminescence (PL peak and absorption spectra, then they were compared. It shows that band gap value increases by raising the porosity. Photoacoustic spectroscopy (PAS was carried out for measuring the thermal diffusivity (TD of the samples.

  19. On the effect of the amorphous silicon microstructure on the grain size of solid phase crystallized polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kashish; Branca, Annalisa; Illiberi, Andrea; Creatore, Mariadriana; Sanden, Mauritius C.M. van de [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Tichelaar, Frans D. [Kavli Institute of Nanoscience, Delft University of Technology (Netherlands)

    2011-05-15

    In this paper the effect of the microstructure of remote plasma-deposited amorphous silicon films on the grain size development in polycrystalline silicon upon solid-phase crystallization is reported. The hydrogenated amorphous silicon films are deposited at different microstructure parameter values R* (which represents the distribution of SiH{sub x} bonds in amorphous silicon), at constant hydrogen content. Amorphous silicon films undergo a phase transformation during solid-phase crystallization and the process results in fully (poly-)crystallized films. An increase in amorphous film structural disorder (i.e., an increase in R*), leads to the development of larger grain sizes (in the range of 700-1100 nm). When the microstructure parameter is reduced, the grain size ranges between 100 and 450 nm. These results point to the microstructure parameter having a key role in controlling the grain size of the polycrystalline silicon films and thus the performance of polycrystalline silicon solar cells. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Polycrystalline silicon material availability and market pricing outlook study for 1980 to 88: January 1983 update

    Science.gov (United States)

    Costogue, E.; Pellin, R.

    1983-01-01

    Photovoltaic solar cell arrays which convert solar energy into electrical energy can become a cost effective, alternative energy source provided that an adequate supply of low priced materials and automated fabrication techniques are available. Presently, silicon is the most promising cell material for achieving the near term cost goals of the Photovoltaics Program. Electronic grade silicon is produced primarily for the semiconductor industry with the photovoltaic industry using, in most cases, the production rejects of slightly lower grade material. Therefore, the future availability of adequate supplies of low cost silicon is one of the major concerns of the Photovoltaic Program. The supply outlook for silicon with emphasis on pricing is updated and is based primarily on an industry survey conducted by a JPL consultant. This survey included interviews with polycrystalline silicon manufacturers, a large cross section of silicon users and silicon solar cell manufacturers.

  1. Chemical etching investigation of polycrystalline p-type 6H-SiC in HF/Na{sub 2}O{sub 2} solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gabouze, Noureddine [Silicon Technology Development Unit (UDTS), 2 Bd Frantz Fanon, B.P. 140, Algiers (Algeria); Keffous, Aissa, E-mail: ngabouze@yahoo.fr [Silicon Technology Development Unit (UDTS), 2 Bd Frantz Fanon, B.P. 140, Algiers (Algeria); Kerdja, Tahar; Belaroussi, Yasmine [Advanced Techniques Development Center (CDTA), Haouch Loukil, Baba Hassen, Algiers (Algeria)

    2009-05-15

    In this work, an experimental study on the chemical etching reaction of polycrystalline p-type 6H-SiC was carried out in HF/Na{sub 2}O{sub 2} solutions. The morphology of the etched surface was examined with varying Na{sub 2}O{sub 2} concentration, etching time, agitation speed and temperature. The surfaces of the etched samples were analyzed using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) Fourier transform infrared spectroscopy (FT-IR) and photoluminescence. The surface morphology of samples etched in HF/Na{sub 2}O{sub 2} is shown to depend on the solution composition and bath temperature. The investigation of the HF/Na{sub 2}O{sub 2} solutions on 6H-SiC surface shows that as Na{sub 2}O{sub 2} concentration increases, the etch rate increases to reach a maximum value at about 0.5 M and then decreases. A similar behaviour has been observed when temperature of the solution is increased. The maximum etch rate is found for 80 deg. C. In addition, a new polishing etching solution of 6H-SiC has been developed. This result is very interesting since to date no chemical polishing solution has been developed on the material.

  2. Effects of Germanium on Movement of Dislocations in p-Type Czochralski Silicon

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    By indentation at room temperature followed by annealing at high temperatures, the pinning effect of germanium on dislocations in germanium-doped Czochralski silicon was investigated. Experimental results show that the dislocations in germanium-doped Czochralski silicon move shorter and slower than those in Czochralski silicon undoping with germanium when the concentration of germanium is over 1×1018 cm-3. The retarding velocity of dislocations is contributed to the dislocations pinning effect of the strain field introduced by the high concentration germanium, and the Ge4B cluster and the oxygen precipitation those are preferred to form at higher concentration germanium.

  3. Thin film polycrystalline silicon photoelectric converter and fabricating method; Hakumaku takkesho shirikon koden henkan sochi oyobi sono seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K. [Kobe (Japan); Suzuki, T. [Kobe (Japan); Yoshimi, M. [Kobe (Japan)

    1995-04-07

    This invention relates to a fabricating method for a thin film polycrystalline silicon photoelectric converter which has a large area and can be produced at low cost. Successive formation of mono-conductive polycrystalline silicon thin film and reverse conducting polycrystalline silicon thin film on a translucent substrate requires no vapor phase epitaxial growth, and the film formation temperature for silicon thin film can be lowered. Orientation of the monocrystalline silicon thin film to any of the surface bearings of (100), (111), and (110) results in the function of determining the orientation of the reverse conducting polycrystalline silicon thin film formed thereon. This orientation is effective to obtain excellent characteristics, and results in effective surface orientation of the entire power generating area. In addition, the supporting substrate and the surface protective film of the solar cell can be combined by orienting the translucent substrate side to the light incident side. 2 figs., 1 tab.

  4. Grain boundaries analysis in polycrystalline silicon by TEM

    Energy Technology Data Exchange (ETDEWEB)

    Komninou, F.; Karakostas, T.; Bleris, G.L.; Economou, N.A. (Aristoteles University, Thessaloniki (Greece))

    1982-01-01

    Polycrystalline Si interfaces were examined within the CSL's approach. The rotation relationship of every bicrystal has been analyzed with the technique of the instrumental system and the small angle description has been used for the CSL characterization. The most frequently occuring descriptions are CSL' ..sigma..=3 coherent and incoherent twins, the later being microscopically coherent. Cases of multiple boundaries were also examined and interelations were found between low or high angle boundaries for CSL's with ..sigma..>3. A special case of interest is a ..sigma..=39 CSL which is formed from a combination of ..sigma..=13b and ..sigma..=3 and is a triclinic CSL lacking 180/sup 0/ rotational operations. The results presented indicate that for polycrystalline Si the CSL model could be used in describing the interfaces occuring.

  5. Infrared Insight into the Network of Hydrogenated Amorphous and Polycrystalline Silicon thin Films

    Directory of Open Access Journals (Sweden)

    Jarmila Mullerova

    2006-01-01

    Full Text Available IR measurements were carried out on both amorphous and polycrystalline silicon samples deposited by PECVDon glass substrate. The transition from amorphous to polycrystalline phase was achieved by increasing dilution of silaneplasma at the deposition process. The samples were found to be mixed phase materials. Commonly, infrared spectra ofhydrogenated silicon thin films yield information about microstructure, hydrogen content and hydrogen bonding to silicon. Inthis paper, additional understanding was retrieved from infrared response. Applying standard optical laws, effective mediatheory and Clausius-Mossoti approach concerning the Si-Si and Si-H bonds under IR irradiation as individual oscillators,refractive indices in the long wavelength limit, crystalline, amorphous and voids volume fractions and the mass density of thefilms were determined. The mass density was found to decrease with increasing crystalline volume fraction, which can beattributed to the void-dominated mechanism of network formation.

  6. Hot-wire chemical vapor deposition prepared aluminum doped p-type microcrystalline silicon carbide window layers for thin film silicon solar cells

    Science.gov (United States)

    Chen, Tao; Köhler, Florian; Heidt, Anna; Carius, Reinhard; Finger, Friedhelm

    2014-01-01

    Al-doped p-type microcrystalline silicon carbide (µc-SiC:H) thin films were deposited by hot-wire chemical vapor deposition at substrate temperatures below 400 °C. Monomethylsilane (MMS) highly diluted in hydrogen was used as the SiC source in favor of SiC deposition in a stoichiometric form. Aluminum (Al) introduced from trimethylaluminum (TMAl) was used as the p-type dopant. The material property of Al-doped p-type µc-SiC:H thin films deposited with different deposition pressure and filament temperature was investigated in this work. Such µc-SiC:H material is of mainly cubic (3C) SiC polytype. For certain conditions, like high deposition pressure and high filament temperature, additional hexagonal phase and/or stacking faults can be observed. P-type µc-SiC:H thin films with optical band gap E04 ranging from 2.0 to 2.8 eV and dark conductivity ranging from 10-5 to 0.1 S/cm can be prepared. Such transparent and conductive p-type µc-SiC:H thin films were applied in thin film silicon solar cells as the window layer, resulting in an improved quantum efficiency at wavelengths below 480 nm.

  7. Vacuum deposited polycrystalline silicon films for solar cell applications. Second quarterly technical progress report. January 1-March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, C.; Arlington, III, C. H.; Blum, N. A.; Satkiewicz, F. G.

    1980-05-01

    A careful study of a specially formed thin silicon layer on TiB/sub 2/-coated sapphire reveals that the interaction layer of TiSi/sub 2/ is composed of larger grains. Processing steps were developed which lead closer to the goal of fabricating polycrystalline silicon photovoltaic devices completely by vacuum deposition. Both n-type and p-type silicon are now being deposited. New deposition masks were made for depositing the n-regions upon the p-layers. New electrode deposition masks were also made for a direct electroding process to replace the photolithographic process used previously. The TiB/sub 2/ bottom electrode fabrication has been achieved in a single vacuum chamber. Reaction constants and activation energy for TiB/sub 2/ layer formation were determined to be less than those reported by other authors for bulk material. Studies of crystallite growth and interfacial interactions have continued. Major sources of undesirable impurities have been identified and removed from the vacuum chambers. The changes made this quarter have not been incorporated into a completed photovoltaic device.

  8. Polycrystalline Silicon Sheets for Solar Cells by the Improved Spinning Method

    Science.gov (United States)

    Maeda, Y.; Yokoyama, T.; Hide, I.

    1984-01-01

    Cost reduction of silicon materials in the photovoltaic program of materials was examined. The current process of producing silicon sheets is based entirely on the conventional Czochralski ingot growth and wafering used in the semiconductor industry. The current technology cannot meet the cost reduction demands for producing low cost silicon sheets. Alternative sheet production processes such as unconventional crystallization are needed. The production of polycrystalline silicon sheets by unconventional ingot technology is the casting technique. Though large grain sheets were obtained by this technique, silicon ribbon growth overcomes deficiencies of the casting process by obtaining the sheet directly from the melt. The need to solve difficulties of growth stability and impurity effects are examined. The direct formation process of polycrystalline silicon sheets with large grain size, smooth surface, and sharp edges from the melt with a high growth rate which will yield low cost silicon sheets for solar cells and the photovoltaic characteristics associated with this type of sheet to include an EBIC study of the grain boundaries are described.

  9. Primary defect transformations in high-resistivity p-type silicon irradiated with electrons at cryogenic temperatures

    CERN Document Server

    Makarenko, L F; Korshunov, F P; Murin, L I; Moll, M

    2009-01-01

    It has been revealed that self-interstitials formed under low intensity electron irradiationin high resistivity p-type silicon can be retained frozen up to room temperature. Low thermal mobility of the self-interstitials suggests that Frenkelpair sinsilicon can be stable at temperatures of about or higher than 100K. A broad DLTS peak with activation energy of 0.14–0.17eV can be identified as related to Frenkel pairs. This peak anneals out at temperatures of 120 140K. Experimental evidences are presented that be coming more mobile under forwardcurrent injection the self-interstitials change their charge state to a less positive one.

  10. Primary defect transformations in high-resistivity p-type silicon irradiated with electrons at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Makarenko, L.F., E-mail: makarenko@bsu.b [Department of Applied Mathematics and Computer Science, Belarusian State University, Independence Ave. 4, 220030 Minsk (Belarus); Lastovski, S.B.; Korshunov, F.P.; Murin, L.I. [Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk (Belarus); Moll, M. [CERN, Geneva (Switzerland)

    2009-12-15

    It has been revealed that self-interstitials formed under low intensity electron irradiation in high resistivity p-type silicon can be retained frozen up to room temperature. Low thermal mobility of the self-interstitials suggests that Frenkel pairs in silicon can be stable at temperatures of about or higher than 100 K. A broad DLTS peak with activation energy of 0.14-0.17 eV can be identified as related to Frenkel pairs. This peak anneals out at temperatures of 120-140 K. Experimental evidences are presented that becoming more mobile under forward current injection the self-interstitials change their charge state to a less positive one.

  11. Ultrasonic study of point defects in electron-irradiated p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.L.

    1987-01-01

    The mechanisms of interaction of ultrasonic waves with point defects in crystals are reviewed, and a perturbation approach is introduced that leads to general expressions for the resonance and relaxation strengths in terms of matrix elements of the ultrasonic perturbation. These expressions provide the basis for a discussion of the polarization dependence of resonance and relaxation. Selection rules for cubic crystals are presented. An exploratory ultrasonic study is performed on electron-irradiated B-doped and Al-doped silicon. Neutral substitutional boron is detected before irradiation, as expected from previous ultrasonic studies on unirradiated silicon. This defect produces both resonance and relaxation. Similar effects are observed for substitutional aluminum. After irradiation, a relaxation is observed when the sample is exposed to 0.18-0.39 eV light. By comparison with previous EPR results, this relaxation is identified as the singly positively charged state of the vacancy, V/sup +/. Preliminary results on the relaxation time and strength of V/sup +/ suggest that it may have several populated vibronic levels. Another relaxation is observed in irradiated Al-doped silicon when the sample is exposed to white light. From its annealing behavior and dopant dependence, it is identified as a nonequilibrium charge state of interstitial aluminum.

  12. Development of transparent polycrystalline beta-silicon carbide

    Science.gov (United States)

    Bayya, Shyam S.; Villalobos, Guillermo R.; Hunt, Michael P.; Sanghera, Jasbinder S.; Sadowski, Bryan M.; Aggarwal, Ishwar D.; Cinibulk, Michael; Carney, Carmen; Keller, Kristin

    2013-09-01

    Transparent beta-SiC is of great interest because its high strength, low coefficient of thermal expansion, very high thermal conductivity, and cubic crystal structure give it a very high thermal shock resistance. A transparent, polycrystalline beta-SiC window will find applications in armor, hypersonic missiles, and thermal control for thin disc lasers. SiC is currently available as either small transparent vapor grown disks or larger opaque shapes. Neither of which are useful in window applications. We are developing sintering technology to enable transparent SiC ceramics. This involves developing procedures to make high purity powders and studying their densification behavior. We have been successful in demonstrating transparency in thin sections using Field Assisted Sintering Technology (FAST). This paper will discuss the reaction mechanisms in the formation of beta-SiC powder and its sintering behavior in producing transparent ceramics.

  13. Defect engineering by ultrasound treatment in polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ostapenko, S.; Jastrzebski, L. [Univ. of South Florida, Tampa, FL (United States)

    1995-08-01

    By applying ultrasound treatment (UST) to bulk and thin film polycrystalline Si (poly-Si) we have found a dramatic improvement of recombination and transport properties. The increasing of minority carrier lifetime by as much as one order of magnitude was found in short diffusion length regions, while exhibiting a strong dispersion for entire solar-grade poly-Si wafer. Relevant mechanisms are attributed to ultrasound processing on crystallographic defects, as well as UST stimulated dissociation of Fe-B pairs followed by Fe{sub i} gettering. A spectacular improvement of hydrogenation efficiency in poly-Si thin-films on glass substrate is demonstrated by resistivity study and confirmed using spatially resolved photoluminescence and nanoscale contact potential difference mapping. By applying UST to commercial solar cells we found the increasing of cell efficiency at low light excitation.

  14. Photon-Enhanced Thermionic Emission in Cesiated p-Type and n-Type Silicon

    DEFF Research Database (Denmark)

    Reck, Kasper; Dionigi, Fabio; Hansen, Ole

    2014-01-01

    electrons. Efficiencies above 60% have been predicted theoretically for high solar concentration systems. Silicon is an interesting absorber material for high efficiency PETE solar cells, partly due to its mechanical and thermal properties and partly due to its electrical properties, including a close......Photon-enhanced thermionic emission (PETE) is a relatively new concept for high efficiency solar cells that utilize not only the energy of electrons excited across the band gap by photons, as in conventional photovoltaic solar cells, but also the energy usual lost to thermalization of the excited...

  15. P-stop isolation study of irradiated n-in-p type silicon strip sensors for harsh radiation environment

    CERN Document Server

    AUTHOR|(CDS)2084505

    2015-01-01

    In order to determine the most radiation hard silicon sensors for the CMS Experiment after the Phase II Upgrade in 2023 a comprehensive study of silicon sensors after a fluence of up to $1.5\\times10^{15} n_{eq}/cm^{2}$ corresponding to $3000 fb^{-1}$ after the HL-LHC era has been carried out. The results led to the decision that the future Outer Tracker (20~cm${<}R{<}$110~cm) of CMS will consist of n-in-p type sensors. This technology is more radiation hard but also the manufacturing is more challenging compared to p-in-n type sensors due to additional process steps in order to suppress the accumulation of electrons between the readout strips. One possible isolation technique of adjacent strips is the p-stop structure which is a p-type material implantation with a certain pattern for each individual strip. However, electrical breakdown and charge collection studies indicate that the process parameters of the p-stop structure have to be carefully calibrated in order to achieve a sufficient strip isolatio...

  16. Short p-type silicon microstrip detectors in 3D-stc technology

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S. [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder Strasse 3b, D-79104 Freiburg i. Br. (Germany)], E-mail: simon.eckert@physik.uni-freiburg.de; Jakobs, K.; Kuehn, S.; Parzefall, U. [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder Strasse 3b, D-79104 Freiburg i. Br. (Germany); Dalla-Betta, G.-F.; Zoboli, A. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita degli Studi di Trento, via Sommarive 14, I-38050 Povo di Trento (Italy); Pozza, A.; Zorzi, N. [FBK-irst Trento, Microsystems Division, via Sommarive 18, I-38050 Povo di Trento (Italy)

    2008-10-21

    The luminosity upgrade of the Large Hadron Collider (LHC), the sLHC, will constitute an extremely challenging radiation environment for tracking detectors. Significant improvements in radiation hardness are needed to cope with the increased radiation dose, requiring new tracking detectors. In the upgraded ATLAS detector the region from 20 to 50 cm distance to the beam will be covered by silicon strip detectors (SSD) with short strips. These will have to withstand a 1 MeV neutron equivalent fluence of about 1x10{sup 15}n{sub eq}/cm{sup 2}, hence extreme radiation resistance is necessary. For the short strips, we propose to use SSD realised in the radiation tolerant 3D technology, where rows of columns-etched into the silicon bulk-are joined together to form strips. To demonstrate the feasibility of 3D SSD for the sLHC, we have built prototype modules using 3D-single-type-column (stc) SSD with short strips and front-end electronics from the present ATLAS SCT. The modules were read out with the SCT Data Acquisition system and tested with an IR-laser. We report on the performance of these 3D modules, in particular the noise at 40 MHz which constitutes a measurement of the effective detector capacitance. Conclusions about options for using 3D SSD detectors for tracking at the sLHC are drawn.

  17. Influence of Grain Structure and Doping on the Deformation and Fracture of Polycrystalline Silicon for MEMS/NEMS

    Science.gov (United States)

    2012-08-01

    Champaign Influence of Grain Structure and Doping on the Deformation and Fracture of Polycrystalline Silicon for MEMS/ NEMS AFOSR Grant # FA9550-09-1...Structure and Doping on the Deformation and Fracture of Polycrystalline Silicon for MEMS/ NEMS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Behavior of PZT Films for MEMS  PZT thin films are used in MEMS devices, such as micro- sensors , actuators, and RF-MEMS  Always fabricated in

  18. Laser-beam-induced current mapping evaluation of porous silicon-based passivation in polycrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, M. Ben; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes pour l' Energie, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia); Dimassi, W.; Bouaicha, M.; Ezzaouia, H. [Laboratoire de photovoltaique, des semiconducteurs et des nanostructures, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia)

    2009-05-15

    In the present work, we report on the effect of introducing a superficial porous silicon (PS) layer on the performance of polycrystalline silicon (pc-Si) solar cells. Laser-beam-induced current (LBIC) mapping shows that the PS treatment on the emitter of pc-Si solar cells improves their quantum response and reduce the grain boundaries (GBs) activity. After the porous silicon treatment, mapping investigation shows an enhancement of the LBIC and the internal quantum efficiency (IQE), due to an improvement of the minority carrier diffusion length and the passivation of recombination centers at the GBs as compared to the reference substrate. It was quantitatively shown that porous silicon treatment can passivate both the grains and GBs. (author)

  19. Wuxi Suntech Prepares to Launch 4 500 T/A Polycrystalline Silicon Project

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Construction on the 4 500 t/a poly-crystalli-ne silicon project to belaunched by Wuxi Suntech Power Co.,Ltd. (Wuxi Suntech) in Qinghai will bestarted in the first half 2007. The com-pany is engaged in the research, pro-duction and sales of crystal silicon so-lar cells, components and photovol-talc power generation systems. Theearly-stage design of the project is al-ready completed and the productionwill be started after one year and ahalf of the construction.

  20. Correlation Between the Raman Crystallinity of p-Type Micro-Crystalline Silicon Layer and Open Circuit Voltage of n-i-p Solar Cells.

    Science.gov (United States)

    Jung, Junhee; Kim, Sunbo; Park, Jinjoo; Shin, Chonghoon; Pham, Duy Phong; Kim, Jiwoong; Chung, Sungyoun; Lee, Youngseok; Yi, Junsin

    2015-10-01

    This article mainly discusses the difference between p-i-n and n-i-p type solar cells. Their structural difference has an effect on cell performance, such as open circuit voltage and fill factor. Although the deposition conditions are the same for both p-i-n and n-i-p cases, the substrate layers for depositing p-type microcrystalline silicon layers differ. In n-i-p cells, the substrate layer is p-type amorphous silicon oxide layer; whereas, in p-i-n cells, the substrate layer is ZnO:Al. The interfacial change leads to a 12% difference in the crystallinity of the p-type microcrystalline silicon layers. When the p-type microcrystalline silicon layer's crystallinity was not sufficient to activate an internal electric field, the open circuit voltage and fill factor decreased 0.075 V and 7.36%, respectively. We analyzed this problem by comparing the Raman spectra, electrical conductivity, activation energy and solar cell performance. By adjusting the thickness of the p-type microcrystalline silicon layer, we increased the open circuit voltage of the n-i-p cell from 0.835 to 0.91 V.

  1. Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge

    Energy Technology Data Exchange (ETDEWEB)

    Agostinelli, G.; Delabie, A.; Dekkers, H.F.W.; De Wolf, S.; Beaucarne, G. [IMEC vzw, Kapeldreef 75, Leuven (Belgium); Vitanov, P.; Alexieva, Z. [CL SENES, Sofia (Bulgaria)

    2006-11-23

    Surface recombination velocities as low as 10cm/s have been obtained by treated atomic layer deposition (ALD) of Al{sub 2}O{sub 3} layers on p-type CZ silicon wafers. Low surface recombination is achieved by means of field induced surface passivation due to a high density of negative charges stored at the interface. In comparison to a diffused back surface field, an external field source allows for higher band bending, that is, a better performance. While this process yields state of the art results, it is not suited for large-scale production. Preliminary results on an industrially viable, alternative process based on a pseudo-binary system containing Al{sub 2}O{sub 3} are presented, too. With this process, surface recombination velocities of 500-1000cm/s have been attained on mc-Si wafers. (author)

  2. Characterization of micro-strip detectors made with high resistivity n- and p-type Czochralski silicon

    Energy Technology Data Exchange (ETDEWEB)

    Macchiolo, A. [INFN and Universita degli Studi di Florence (Italy)]. E-mail: Anna.Macchiolo@fi.infn.it; Borrello, L. [INFN and Universita degli Studi di Pisa (Italy); Boscardin, M. [ITC-IRST Trento, Povo, Trento (Italy); Bruzzi, M. [INFN and Universita degli Studi di Florence (Italy); Creanza, D. [INFN and Dipartimento Interateneo di Fisica, Bari (Italy); Dalla Betta, G.-F. [ITC-IRST Trento, Povo, Trento (Italy); DePalma, M. [INFN and Dipartimento Interateneo di Fisica, Bari (Italy); Focardi, E. [INFN and Universita degli Studi di Florence (Italy); Manna, N. [INFN and Dipartimento Interateneo di Fisica, Bari (Italy); Menichelli, D. [INFN and Universita degli Studi di Florence (Italy); Messineo, A. [INFN and Universita degli Studi di Pisa (Italy); Piemonte, C. [ITC-IRST Trento, Povo, Trento (Italy); Radicci, V. [INFN and Dipartimento Interateneo di Fisica, Bari (Italy); Ronchin, S. [ITC-IRST Trento, Povo, Trento (Italy); Scaringella, M. [INFN and Universita degli Studi di Florence (Italy); Segneri, G. [INFN and Universita degli Studi di Pisa (Italy); Sentenac, D. [INFN and Universita degli Studi di Pisa (Italy); Zorzi, N. [ITC-IRST Trento, Povo, Trento (Italy)

    2007-04-01

    The results of the pre- and post-irradiation characterization of n- and p-type magnetic Czochralski silicon micro-strip sensors are reported. This work has been carried out within the INFN funded SMART project aimed at the development of radiation-hard semiconductor detectors for the luminosity upgrade of the large Hadron collider (LHC). The detectors have been fabricated at ITC-IRST (Trento, Italy) on 4 in wafers and the layout contains 10 mini-sensors. The devices have been irradiated with 24 GeV/c and 26 MeV protons in two different irradiation campaigns up to an equivalent fluence of 3.4x10{sup 15} 1-MeV n/cm{sup 2}. The post-irradiation results show an improved radiation hardness of the magnetic Czochralski mini-sensors with respect to the reference float-zone sample.

  3. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  4. 11% efficient single-crystal solar cells and 10% efficient polycrystalline cells made from refined metallurgical silicon

    Science.gov (United States)

    Hanoka, J. I.; Strock, H. B.; Kotval, P. S.

    1981-09-01

    The performances of single-crystal and polycrystalline solar cells fabricated from a refined form of low-cost metallurgical silicon are presented. Czochralski-pulled single crystal and cast polycrystalline silicon solar cells with an n on p structure were made from metallurgical silicon processed by Al dissolution followed by Al removal through slagging and directional solidification to obtain material purities in the fractional ppm by weight range. For the single-crystal cells, measurements reveal AM1 efficiencies up to 11.1%, open circuit voltages up to 596 mV and fill factors up to 81%. The cast polycrystalline substrates have yielded cells with efficiencies up to 10.1%, fill factors of 79% and open circuit voltages of 585 mV. The low short circuit current densities are attributed to impurities in the base region in the single-crystal cell, and to grain boundary segregation of impurities and grain boundary recombination in the polycrystalline cells.

  5. Effect of doping on the modification of polycrystalline silicon by spontaneous reduction of diazonium salts

    Energy Technology Data Exchange (ETDEWEB)

    Girard, A.; Coulon, N. [UMR-CNRS 6164, Institut d’Electronique et de Télécommunications de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex (France); Cardinaud, C. [UMR-CNRS 6502, Institut des Matériaux Jean Rouxel, Université de Nantes, 2 rue de la Houssinière, BP32229, F-44322 Nantes cedex 3 (France); Mohammed-Brahim, T. [UMR-CNRS 6164, Institut d’Electronique et de Télécommunications de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex (France); Geneste, F., E-mail: Florence.Geneste@univ-rennes1.fr [UMR-CNRS 6226, Institut des Sciences Chimiques de Rennes, Equipe MaCSE, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex (France)

    2014-09-30

    Highlights: • Spontaneous grafting of aryl diazonium salts on polycrystalline silicon surfaces. • Effect of the nature and level of doping on the efficiency of the functionalization. • The grafting process was more efficient on PolySi substrates than on monosilicon. • Influence of the crystal structure and grain boundaries on the modification procedure. • Role of the reducing power of the substrate on the grafting procedure. - Abstract: The chemical modification of doped polycrystalline silicon materials (N+, N++ and P++) and silicon (1 0 0) and (1 1 1) used as references is investigated by spontaneous reduction of diazonium salts. The effectiveness of the grafting process on all polySi surfaces is shown by AFM and XPS analyses. The effect of substrate doping on the efficiency of the electrografting process is compared by using the thicknesses of the deposited organic films. For a better accuracy, two methods are used to estimate the thicknesses: XPS and the coupling of a O{sub 2} plasma etching with AFM measurement. Structural characteristics of the poly-Si films were investigated by Scanning Electron Microscopy and X-ray diffraction to find a correlation between the structure of the material and its reactivity. Different parameters that could have an impact on the efficiency of the grafting procedure are discussed. The observed differences between differently doped silicon surfaces is rather limited, this is in agreement with the radical character of the reacting species.

  6. Connections between morphological and mechanical evolution during galvanic corrosion of micromachined polycrystalline and monocrystalline silicon

    Science.gov (United States)

    Miller, David C.; Boyce, Brad L.; Kotula, Paul G.; Stoldt, Conrad R.

    2008-06-01

    Many microsystems fabrication technologies currently employ a metallic overlayer, such as gold, in electrical contact with silicon structural layers. During postprocessing in hydrofluoric-based acid solutions, a galvanic cell is created between the silicon and the metallic layer. Micromachined tensile specimens reveal that such etching in the presence of a galvanic cell can cause a catastrophic reduction in the tensile strength and apparent modulus of silicon. Detailed failure analysis was also used to compare fractured corroded Si to otherwise identical reference specimens via surface based (electron and scanning probe) microscopy as well as cross-section based structural- and composition-characterization techniques. For both polycrystalline and single-crystal silicon, galvanic corrosion can result in a thick corroded surface layer created via porous silicon formation, and/or generalized material removal depending on the etch chemistry and conditions. Under certain etching conditions, the porous silicon formation process results in cavity formation as well as preferential grain-boundary attack leading to intergranular fracture. The nature and severity of corrosion damage are shown to be influenced by the surface wetting characteristics of the etch chemistry, with poor wetting resulting in localized attack facilitated by the microstructure and good wetting resulting in generalized attack. The measured stiffness of the tensile specimens can be used to determine the effective modulus and porosity of the corroded surface layer. Extending beyond previous investigations, the present work examines the quantitative connection between the choice of chemical etchant, the corresponding damage morphology, and the resulting degradation in strength and apparent modulus. The present work also uniquely identifies important differences in polycrystalline and single-crystal Si based on their disparate damage evolution and related mechanical performance.

  7. A novel method to enhance the gettering efficiency in p-type Czochralski silicon by a sacrificial porous silicon layer

    Institute of Scientific and Technical Information of China (English)

    Zhang Caizhen; Wang Yongshun; Wang Zaixing

    2011-01-01

    A new two-step phosphorous diffusion gettering (TSPDG) process using a sacrificial porous silicon layer (PSL) is proposed.Due to a decrease in high temperature time,the TSPDG (PSL) process weakens the deterioration in performances of PSL,and increases the capability of impurity clusters to dissolve and diffuse to the gettering regions.By means of the TSPDG (PSL) process under conditions of 900 ℃/60 min + 700 ℃/30 min,the effective lifetime of minority carriers in solar-grade (SOG) Si is increased to 14.3 times its original value,and the short-circuit current density of solar cells is improved from 23.5 o 28.7 mA/cm2,and the open-circuit voltage from 0.534 to 0.596 V along with the transform efficiency from 8.1% to 11.8%,which are much superior to the results achieved by the PDG (PSL) process at 900 ℃ for 90 min.

  8. Methods of removal of defects arising at liquid etching of polycrystalline silicon

    Directory of Open Access Journals (Sweden)

    Ivanchykou A. E.

    2008-02-01

    Full Text Available The paper presents a model of generation of defects having the form of spots on the surface of the polycrystalline silicon during processing of semiconductor wafers with hydrofluoric acid based etchant, and a model of removal of such defects in chemical solutions. The authors investigate how the centrifuge speed during drying and the relief of structures, produced on the plate, effect the number of defects. It is shown that there is a possibility to remove defects by chemical treatment in the peroxide-ammonia solutions (PAS and also by sequence of chemical cleaning in Karo mixture, SiO2 etching and treatment in PAS.

  9. Hadron-therapy beam monitoring: Towards a new generation of ultra-thin p-type silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bouterfa, M.; Aouadi, K. [Inst. of Information and Communication Technologies, Electronics and Applied Mathematics ICTEAM, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Bertrand, D. [Particle Therapy Dept., Ion Beam Application IBA, 1348 Louvain-la-Neuve (Belgium); Olbrechts, B.; Delamare, R. [Inst. of Information and Communication Technologies, Electronics and Applied Mathematics ICTEAM, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Raskin, J. P.; Gil, E. C. [Institut de Recherche en Mathematique et Physique IRMP, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Flandre, D. [Inst. of Information and Communication Technologies, Electronics and Applied Mathematics ICTEAM, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2011-07-01

    Hadron-therapy has gained increasing interest for cancer treatment especially within the last decade. System commissioning and quality assurance procedures impose to monitor the particle beam using 2D dose measurements. Nowadays, several monitoring systems exist for hadron-therapy but all show a relatively high influence on the beam properties: indeed, most devices consist of several layers of materials that degrade the beam through scattering and energy losses. For precise treatment purposes, ultra-thin silicon strip detectors are investigated in order to reduce this beam scattering. We assess the beam size increase provoked by the Multiple Coulomb Scattering when passing through Si, to derive a target thickness. Monte-Carlo based simulations show a characteristic scattering opening angle lower than 1 mrad for thicknesses below 20 {mu}m. We then evaluated the fabrication process feasibility. We successfully thinned down silicon wafers to thicknesses lower than 10 {mu}m over areas of several cm{sup 2}. Strip detectors are presently being processed and they will tentatively be thinned down to 20 {mu}m. Moreover, two-dimensional TCAD simulations were carried out to investigate the beam detector performances on p-type Si substrates. Additionally, thick and thin substrates have been compared thanks to electrical simulations. Reducing the pitch between the strips increases breakdown voltage, whereas leakage current is quite insensitive to strips geometrical configuration. The samples are to be characterized as soon as possible in one of the IBA hadron-therapy facilities. For hadron-therapy, this would represent a considerable step forward in terms of treatment precision. (authors)

  10. Effect of hydrogen on low temperature epitaxial growth of polycrystalline silicon by hot wire chemical vapor deposition

    Science.gov (United States)

    Yong, Cao; Hailong, Zhang; Fengzhen, Liu; Meifang, Zhu; Gangqiang, Dong

    2015-02-01

    Polycrystalline silicon (poly-Si) films were prepared by hot-wire chemical vapor deposition (HWCVD) at a low substrate temperature of 525 °C. The influence of hydrogen on the epitaxial growth of ploy-Si films was investigated. Raman spectra show that the poly-Si films are fully crystallized at 525 °C with a different hydrogen dilution ratio (50%-91.7%). X-ray diffraction, grazing incidence X-ray diffraction and SEM images show that the poly-Si thin films present (100) preferred orientation on (100) c-Si substrate in the high hydrogen dilution condition. The P-type poly-Si film prepared with a hydrogen dilution ratio of 91.7% shows a hall mobility of 8.78 cm2/(V·s) with a carrier concentration of 1.3 × 1020 cm-3, which indicates that the epitaxial poly-Si film prepared by HWCVD has the possibility to be used in photovoltaic and TFT devices.

  11. Study of nanoparticles TiO2 thin films on p-type silicon substrate using different alcoholic solvents

    Science.gov (United States)

    Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.

    2016-07-01

    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.

  12. Phase transitions from semiconductive amorphous to conductive polycrystalline in indium silicon oxide thin films

    Science.gov (United States)

    Mitoma, Nobuhiko; Da, Bo; Yoshikawa, Hideki; Nabatame, Toshihide; Takahashi, Makoto; Ito, Kazuhiro; Kizu, Takio; Fujiwara, Akihiko; Tsukagoshi, Kazuhito

    2016-11-01

    The enhancement in electrical conductivity and optical transparency induced by a phase transition from amorphous to polycrystalline in lightly silicon-doped indium oxide (InSiO) thin films is studied. The phase transition caused by simple thermal annealing transforms the InSiO thin films from semiconductors to conductors. Silicon atoms form SiO4 tetrahedra in InSiO, which enhances the overlap of In 5s orbitals as a result of the distortion of InO6 octahedral networks. Desorption of weakly bonded oxygen releases electrons from deep subgap states and enhances the electrical conductivity and optical transparency of the films. Optical absorption and X-ray photoelectron spectroscopy measurements reveal that the phase transition causes a Fermi energy shift of ˜0.2 eV.

  13. Investigation of diffusion length distribution on polycrystalline silicon wafers via photoluminescence methods

    Science.gov (United States)

    Lou, Shishu; Zhu, Huishi; Hu, Shaoxu; Zhao, Chunhua; Han, Peide

    2015-01-01

    Characterization of the diffusion length of solar cells in space has been widely studied using various methods, but few studies have focused on a fast, simple way to obtain the quantified diffusion length distribution on a silicon wafer. In this work, we present two different facile methods of doing this by fitting photoluminescence images taken in two different wavelength ranges or from different sides. These methods, which are based on measuring the ratio of two photoluminescence images, yield absolute values of the diffusion length and are less sensitive to the inhomogeneity of the incident laser beam. A theoretical simulation and experimental demonstration of this method are presented. The diffusion length distributions on a polycrystalline silicon wafer obtained by the two methods show good agreement. PMID:26364565

  14. Incoherent-light processing of single- and poly-crystalline silicon solar cells

    Science.gov (United States)

    Nielsen, L. D.; Larsen, A. N.

    Transient heating with incoherent continuous light from a xenon arc-lamp has been studied as a possible process step in the production of single- and poly-crystalline silicon solar cells. Annealing of phosphorus and arsenic ion implantations have been made, with phosphorus implantations leading to solar cell efficiences of 8.3 and 5.8 percent for 100 single crystal and Wacker-SILSO materials, respectively, both without AR-coating. Furthermore, incoherent-light induced diffusion of phosphorus from spin-on deposited doped oxide layer has been studied and has resulted in efficiencies of 7.9 and 6.6 percent, respectively, for the same two types of material. This latter process is concluded to be a promising technique for production of low-cost silicon solar cells with efficiencies of at least 10 percent without any vacuum or high-temperature furnace process steps.

  15. Integration of field emitter array and thin-film transistor using polycrystalline silicon process technology

    CERN Document Server

    Song, Y H; Kang, S Y; Park Jeong Man; Cho, K I

    1998-01-01

    We present the monolithic integration of a gated polycrystalline silicon field emitter array (poly-Si FEA) and a thin-film transistor(TFT) on an insulating substrate for active-matrix field emission displays (AMFEDs). The TFT was designed to have low off-state currents even at a high drain voltage. Amorphous silicon has been used as a starting material of the poly-Si FEA for improving surface smoothness and uniformity of the tips, and the gate holes have been formed by using an etch-back process. The integrated poly-Si TFT controlled electron emissions of the poly-Si FEA actively, resulting in great improvement in the emission reliability along with a low-voltage control, below 15 V, of field emission, The developed technology has potential applications in AMFEDs on glass substrates.

  16. Defect annealing processes for polycrystalline silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Steffens, S., E-mail: simon.steffens@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Berlin (Germany); Becker, C. [Helmholtz-Zentrum Berlin, Berlin (Germany); Zollondz, J.-H., E-mail: hzollondz@masdarpv.com [CSG Solar AG, Thalheim (Germany); Chowdhury, A.; Slaoui, A. [L’Institut d’Électronique du Solide et des Systèmes, Strasbourg (France); Lindekugel, S. [Fraunhofer-Institut für Solare Energiesysteme, Freiburg (Germany); Schubert, U.; Evans, R. [Suntech R and D Australia Pty Ltd, Sydney (Australia); Rech, B. [Helmholtz-Zentrum Berlin, Berlin (Germany)

    2013-05-15

    Highlights: ► Defect annealing processes were applied to polycrystalline silicon thin films. ► Conventional rapid thermal annealing was compared to novel annealing processes using a laser system and a zone-melting recrystallization setup. ► The open circuit voltages could be enhanced from below 170 mV up to 482 mV. ► Increase in Sun's-V{sub OC} values with decrease in FWHM of the TO Raman phonon of crystalline silicon. ► Solar cells were fabricated for I–V-measurements: Best solar cell efficiency of 6.7%. -- Abstract: A variety of defect healing methods was analyzed for optimization of polycrystalline silicon (poly-Si) thin-film solar cells on glass. The films were fabricated by solid phase crystallization of amorphous silicon deposited either by plasma enhanced chemical vapor deposition (PECVD) or by electron-beam evaporation (EBE). Three different rapid thermal processing (RTP) set-ups were compared: A conventional rapid thermal annealing oven, a dual wavelength laser annealing system and a movable two sided halogen lamp oven. The two latter processes utilize focused energy input for reducing the thermal load introduced into the glass substrates and thus lead to less deformation and impurity diffusion. Analysis of the structural and electrical properties of the poly-Si thin films was performed by Suns-V{sub OC} measurements and Raman spectroscopy. 1 cm{sup 2} cells were prepared for a selection of samples and characterized by I–V-measurements. The poly-Si material quality could be extremely enhanced, resulting in increase of the open circuit voltages from about 100 mV (EBE) and 170 mV (PECVD) in the untreated case up to 480 mV after processing.

  17. Optical and Electrical Effects of p-type μc-SiOx:H in Thin-Film Silicon Solar Cells on Various Front Textures

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2014-01-01

    Full Text Available p-type hydrogenated microcrystalline silicon oxide (µc-SiOx:H was developed and implemented as a contact layer in hydrogenated amorphous silicon (a-Si:H single junction solar cells. Higher transparency, sufficient electrical conductivity, low ohmic contact to sputtered ZnO:Al, and tunable refractive index make p-type µc-SiOx:H a promising alternative to the commonly used p-type hydrogenated microcrystalline silicon (µc-Si:H contact layers. In this work, p-type µc-SiOx:H layers were fabricated with a conductivity of up to 10−2 S/cm and a Raman crystallinity of above 60%. Furthermore, we present p-type µc-SiOx:H films with a broad range of optical properties (2.1 eV < band gap E04<2.8 eV and 1.6 < refractive index n<2.6. These properties can be tuned by adapting deposition parameters, for example, the CO2/SiH4 deposition gas ratio. A conversion efficiency improvement of a-Si:H solar cells is achieved by applying p-type µc-SiOx:H contact layer compared to the standard p-type µc-Si:H contact layer. As another aspect, the influence of the front side texture on a-Si:H p-i-n solar cells with different p-type contact layers, µc-Si:H and µc-SiOx:H, is investigated. Furthermore, we discuss the correlation between the decrease of Voc and the cell surface area derived from AFM measurements.

  18. 1/f noise in positive-negative-positive (PNP) polycrystalline silicon-emitter bipolar transistors

    Science.gov (United States)

    Hoque, Md Mazhar Ul; Celik-Butler, Zeynep; Trogolo, Joe; Weiser, Douglas; Green, Keith

    2005-04-01

    The origin of 1/f fluctuations in positive-negative-positive (PNP) polycrystalline silicon-emitter bipolar-junction transistors is described. The interfacial oxide (IFO) at the monosilicon-polycrystalline silicon interface is found to significantly affect the noise behavior. The low-frequency noise originates from two independent fluctuation mechanisms: in the diffusion and tunneling components of the base current noise power spectral density (SI_B) and from the diffusion current and carrier number fluctuations in the collector current noise power spectral density (SI_C). The Hooge noise parameters for electrons and holes are calculated from the diffusion fluctuation models for SI_B and SI_C, respectively. Noise measurements on devices with different sizes and different IFO thicknesses indicate that the fluctuations occur in the minority-carrier (electron) tunneling current component of SI_B through the IFO. The thickness of the IFO is estimated using this noise model. The tunneling fluctuations dominate over the diffusion fluctuations for the smaller (0.7×0.7μm2) transistors, while the opposite is the case for the larger (0.7×100μm2) ones. The scaling effect on the noise performance of these transistors is discussed. The effect of the IFO on the dc characteristics and the noise behavior of the PNP transistors is compared to that of the negative-positive-negative (NPN) counterparts on the same wafer.

  19. Ultrafast carrier dynamics and the role of grain boundaries in polycrystalline silicon thin films grown by molecular beam epitaxy

    Science.gov (United States)

    Titova, Lyubov V.; Cocker, Tyler L.; Xu, Sijia; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Hegmann, Frank A.

    2016-10-01

    We have used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 °C to 572 °C. By controlling the growth temperature, thin silicon films ranging from completely amorphous to polycrystalline with minimal amorphous phase can be achieved. Film morphology, in turn, determines its photoconductive properties: in the amorphous phase, carriers are trapped in bandtail states on sub-picosecond time scales, while the carriers excited in crystalline grains remain free for tens of picoseconds. We also find that in polycrystalline silicon the photoexcited carrier mobility is carrier-density-dependent, with higher carrier densities mitigating the effects of grain boundaries on inter-grain transport. In a film grown at the highest temperature of 572 °C, the morphology changes along the growth direction from polycrystalline with needles of single crystals in the bulk of the film to small crystallites interspersed with amorphous silicon at the top of the film. Depth profiling using different excitation wavelengths shows corresponding differences in the photoconductivity: the photoexcited carrier lifetime and mobility are higher in the first 100-150 nm from the substrate, suggesting that thinner, low-temperature grown polycrystalline silicon films are preferable for photovoltaic applications.

  20. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.

    Science.gov (United States)

    Varlamov, Sergey; Rao, Jing; Soderstrom, Thomas

    2012-07-02

    One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach. The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles. To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm(2), which can be increased up to 17-18 mA/cm(2) (~25% higher) after application of a simple diffuse back reflector made of a white paint. To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing

  1. a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base

    Energy Technology Data Exchange (ETDEWEB)

    Rostan, Philipp Johannes

    2010-07-01

    This thesis reports on low temperature amorphous silicon back and front contacts for high-efficiency crystalline silicon solar cells with a p-type base. The back contact uses a sequence of intrinsic amorphous (i-a-Si:H) and boron doped microcrystalline (p-{mu}c-Si:H) silicon layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) and a magnetron sputtered ZnO:Al layer. The back contact is finished by evaporating Al onto the ZnO:Al and altogether prepared at a maximum temperature of 220 C. Analysis of the electronic transport of mobile charge carriers at the back contact shows that the two high-efficiency requirements low back contact series resistance and high quality c-Si surface passivation are in strong contradiction to each other, thus difficult to achieve at the same time. The preparation of resistance- and effective lifetime samples allows one to investigate both requirements independently. Analysis of the majority charge carrier transport on complete Al/ZnO:Al/a-Si:H/c-Si back contact structures derives the resistive properties. Measurements of the effective minority carrier lifetime on a-Si:H coated wafers determines the back contact surface passivation quality. Both high-efficiency solar cell requirements together are analyzed in complete photovoltaic devices where the back contact series resistance mainly affects the fill factor and the back contact passivation quality mainly affects the open circuit voltage. The best cell equipped with a diffused emitter with random texture and a full-area a-Si:H/c-Si back contact has an independently confirmed efficiency {eta} = 21.0 % with an open circuit voltage V{sub oc} = 681 mV and a fill factor FF = 78.7 % on an area of 1 cm{sup 2}. An alternative concept that uses a simplified a-Si:H layer sequence combined with Al-point contacts yields a confirmed efficiency {eta} = 19.3 % with an open circuit voltage V{sub oc} = 655 mV and a fill factor FF = 79.5 % on an area of 2 cm{sup 2}. Analysis of the

  2. a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base

    Energy Technology Data Exchange (ETDEWEB)

    Rostan, Philipp Johannes

    2010-07-01

    This thesis reports on low temperature amorphous silicon back and front contacts for high-efficiency crystalline silicon solar cells with a p-type base. The back contact uses a sequence of intrinsic amorphous (i-a-Si:H) and boron doped microcrystalline (p-{mu}c-Si:H) silicon layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) and a magnetron sputtered ZnO:Al layer. The back contact is finished by evaporating Al onto the ZnO:Al and altogether prepared at a maximum temperature of 220 C. Analysis of the electronic transport of mobile charge carriers at the back contact shows that the two high-efficiency requirements low back contact series resistance and high quality c-Si surface passivation are in strong contradiction to each other, thus difficult to achieve at the same time. The preparation of resistance- and effective lifetime samples allows one to investigate both requirements independently. Analysis of the majority charge carrier transport on complete Al/ZnO:Al/a-Si:H/c-Si back contact structures derives the resistive properties. Measurements of the effective minority carrier lifetime on a-Si:H coated wafers determines the back contact surface passivation quality. Both high-efficiency solar cell requirements together are analyzed in complete photovoltaic devices where the back contact series resistance mainly affects the fill factor and the back contact passivation quality mainly affects the open circuit voltage. The best cell equipped with a diffused emitter with random texture and a full-area a-Si:H/c-Si back contact has an independently confirmed efficiency {eta} = 21.0 % with an open circuit voltage V{sub oc} = 681 mV and a fill factor FF = 78.7 % on an area of 1 cm{sup 2}. An alternative concept that uses a simplified a-Si:H layer sequence combined with Al-point contacts yields a confirmed efficiency {eta} = 19.3 % with an open circuit voltage V{sub oc} = 655 mV and a fill factor FF = 79.5 % on an area of 2 cm{sup 2}. Analysis of the

  3. Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle

    Science.gov (United States)

    Stupca, M.; Alsalhi, M.; Al Saud, T.; Almuhanna, A.; Nayfeh, M. H.

    2007-08-01

    Ultrathin films of highly monodispersed luminescent Si nanoparticles are directly integrated on polycrystalline Si solar cells. The authors monitor the open-circuit voltage and the short circuit current. The results demonstrate that films of 1nm blue luminescent or 2.85nm red luminescent Si nanoparticles produce large voltage enhancements with improved power performance of 60% in the UV/blue range. In the visible, the enhancements are ˜10% for the red and ˜3% for the blue particles. The results point to a significant role for charge resonant transport across the nanofilm and Schottky-like rectification at nanoparticle-metal interface.

  4. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan)

    2002-06-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  5. (100)-textured self-assembled square-shaped polycrystalline silicon grains by multiple shot excimer laser crystallization

    NARCIS (Netherlands)

    He, M.; Ishihara, R.; Metselaar, W.; Beenakker, K.

    2006-01-01

    Strong preference for (100) surface and in-plane orientations has been observed in polycrystalline silicon film on SiO2 after crystallization with multiple excimer laser pulses. Laser induced periodic surface structure (LIPSS) is developed in the film, constructing self-assembled square-shaped grain

  6. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  7. Modeling and simulation of temperature effect in polycrystalline silicon PV cells

    Science.gov (United States)

    Marcu, M.; Niculescu, T.; Slusariuc, R. I.; Popescu, F. G.

    2016-06-01

    Due to the human needs of energy, there is a need to apply new technologies in energy conversion to supply the demand of clean and cheap energy in the context of environmental issues. Renewable energy sources like solar energy has one of the highest potentials. In this paper, solar panel is the key part of a photovoltaic system which converts solar energy to electrical energy. The purpose of this paper is to give a MATLAB/ Simulink simulation for photovoltaic module based on the one-diode model of a photovoltaic cell made of polycrystalline silicon. This model reveals the effect of the ambient temperature and the heating of the panel due to the solar infrared radiation. Also the measurements on the solar cell exposed to solar radiation can confirm the simulation.

  8. Graphitization of n-type polycrystalline silicon carbide for on-chip supercapacitor application

    Science.gov (United States)

    Liu, Fang; Gutes, Albert; Laboriante, Ian; Carraro, Carlo; Maboudian, Roya

    2011-09-01

    Synthesis of silicon carbide-derived carbon films with excellent supercapacitor characteristics is demonstrated by a process that is fully compatible with standard microfabrication technology. NiTi alloy deposited on nitrogen-doped polycrystalline SiC films is shown to result in the growth of a rough, porous, high conductivity, nanocrystalline graphitic carbon film upon rapid thermal annealing to 1050 °C. Electrodes fabricated in this manner exhibit high charge/discharge rates with a time constant of about 0.062 s. Analysis shows that the incorporated nitrogen in the carbon electrode may induce pseudo-capacitance, and the electrodes exhibit the capacitance/area values comparable to those reported on carbon nanotube-based supercapacitors.

  9. THE INFLUENCE OF SUNLIGHT AND WIND ON THE POLYCRYSTALLINE SILICON MODULES

    Directory of Open Access Journals (Sweden)

    Piotr Lichograj

    2016-12-01

    Full Text Available Changing conditions have a significant impact on the efficiency and durability of photovoltaic cells. On photovoltaic modules have also influence such external factors as temperature of the module, which changes during the long exposure to light radiation, wind, pollution and the frequency of rainfall. Parameters of PV modules provided by the manufacturers differ significantly from the results achieved under natural conditions. This work presents the laboratory study on the impact of temperature of the polycrystalline silicon module to the change of generated voltage tested with no load. Research confirms the correlation of temperature increase during the long exposure to light radiation with a voltage drop. At the same time simulation of wind causes the cooling of the module and increase the voltage circuit. Further development of research on the effects of environmental conditions will allow for accurate placement optimization of photovoltaic farms.

  10. Preparation and properties of polycrystalline silicon seed layers on graphite substrate

    Institute of Scientific and Technical Information of China (English)

    Li Ning; Chen Nuofu; Bai Yiming; He Haiyang

    2012-01-01

    Polycrystalline silicon (poly-Si) seed layers were fabricated on graphite substrates by magnetron sputtering.It was found that the substrate temperature in the process of magnetron sputtering had an important effect on the crystalline quality,and 700 ℃ was the critical temperature in the formation of Si (220) preferred orientation.When the substrate temperature is higher than 700 ℃,the peak intensity of X-ray diffraction (XRD) from Si (220) increases distinctly with the increasing of substrate temperature.Moreover,the XRD measurements indicate that the structural property and crystalline quality of poly-Si seed layers are determined by the rapid thermal annealing (RTA) temperatures and time.Specifically,a higher annealing temperature and a longer annealing time could enhance the Si (220) preferred orientation of poly-Si seed layers.

  11. XANES and IR spectroscopy study of the electronic structure and chemical composition of porous silicon on n- and p-type substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lenshin, A. S., E-mail: lenshinas@phys.vsu.ru; Kashkarov, V. M.; Seredin, P. V. [Voronezh State University (Russian Federation); Spivak, Yu. M.; Moshnikov, V. A. [LETI St. Petersburg State Electrotechnical University (Russian Federation)

    2011-09-15

    The differences in the electronic structure and composition of porous silicon samples obtained under identical conditions of electrochemical etching on the most commonly used n- and p-type substrates with different conductivities are demonstrated by X-ray absorption near-edge spectroscopy (XANES) and Fourier transform IR spectroscopy (FTIR) methods. It is shown that significantly higher oxidation and saturation with hydrogen is observed for the porous layer on n-type substrates.

  12. Influence of polycrystalline silicon layer on flow through «metal — p-Si» contact

    Directory of Open Access Journals (Sweden)

    Smyntyna V. A.

    2011-11-01

    Full Text Available Based on the results of investigations of charge transport in the "metal — p-Si" contacts with different thickness of polycrystalline p-Si layer the mechanisms of charge transport through such structures are shown. It is established that with increasing thickness of the layer of polycrystalline p-Si current transport mechanism changes from a double injection into the drift-diffusion. This change is due to an increase in the drift current component in the space charge zone of "metal — p-Si" contact, which arises as a result of increased surface density of scattering barriers, which are localized at the boundaries of neighboring silicon polycrystals.

  13. Study of an Amorphous Silicon Oxide Buffer Layer for p-Type Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells and Their Temperature Dependence

    Directory of Open Access Journals (Sweden)

    Taweewat Krajangsang

    2014-01-01

    Full Text Available Intrinsic hydrogenated amorphous silicon oxide (i-a-SiO:H films were used as front and rear buffer layers in crystalline silicon heterojunction (c-Si-HJ solar cells. The surface passivity and effective lifetime of these i-a-SiO:H films on an n-type silicon wafer were improved by increasing the CO2/SiH4 ratios in the films. Using i-a-SiO:H as the front and rear buffer layers in c-Si-HJ solar cells was investigated. The front i-a-SiO:H buffer layer thickness and the CO2/SiH4 ratio influenced the open-circuit voltage (Voc, fill factor (FF, and temperature coefficient (TC of the c-Si-HJ solar cells. The highest total area efficiency obtained was 18.5% (Voc=700 mV, Jsc=33.5 mA/cm2, and FF=0.79. The TC normalized for this c-Si-HJ solar cell efficiency was −0.301%/°C.

  14. Production of cheaper silicon polycrystalline diodes and photovoltaic cells by LPCVD

    Energy Technology Data Exchange (ETDEWEB)

    Laghla, Y.; Scheid, E. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Laboratoire d`Analyse et d`Architecture des Systemes; Vergnes, H.; Couderc, J.P. [ENSIGC, 31 - Toulouse (France)

    1998-12-01

    In a previous paper, a cheap procedure and equipment to elaborate thin silicon polycrystalline films was presented. This work included also the design of a small scale pilot plant, representative of an industrial reactor and particularly useful to perform rapid and less expensive experiments. This new paper will first recall the organization of the new reactors used throughout this work and will summarize their advantages. It will, then, mainly be concentrated on the analysis of the optical and electrical properties of thin layers deposited using this technique. Combination of optical properties and electrical properties assessments allow us to determine the thickness of the layers which will be necessary to build efficient photovoltaic solar cells. As a first check of electrical properties, a series of diodes has been produced and tested in darkness. Results obtained so far look promising and encourage to go further. Let us recall that numerical simulation has strongly suggested that the new technology of reactor, which has been tested with silicon wafers 0.1 m in diameter for a total area of 1.5 m{sup 2} by run, certainly be extrapolated up to sizes necessary to treat disks 0.5 m in diameter, or square plates 0.5 x 0.5 m, for a total of 50 m{sup 2} by run. (authors) 9 refs.

  15. Iron-boron pairing kinetics in illuminated p-type and in boron/phosphorus co-doped n-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Möller, Christian, E-mail: cmoeller@cismst.de [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany); TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau (Germany); Bartel, Til; Gibaja, Fabien [Calisolar GmbH, Magnusstraße 11, 12489 Berlin (Germany); Lauer, Kevin [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany)

    2014-07-14

    Iron-boron (FeB) pairing is observed in the n-type region of a boron and phosphorus co-doped silicon sample which is unexpected from the FeB pair model of Kimerling and Benton. To explain the experimental data, the existing FeB pair model is extended by taking into account the electronic capture and emission rates at the interstitial iron (Fe{sub i}) trap level as a function of the charge carrier densities. According to this model, the charge state of the Fe{sub i} may be charged in n-type making FeB association possible. Further, FeB pair formation during illumination in p-type silicon is investigated. This permits the determination of the charge carrier density dependent FeB dissociation rate and in consequence allows to determine the acceptor concentration in the co-doped n-type silicon by lifetime measurement.

  16. P-stop isolation study of irradiated n-in-p type silicon strip sensors for harsh radiation environments

    Science.gov (United States)

    Printz, Martin

    2016-09-01

    In order to determine the most radiation hard silicon sensors for the CMS Experiment after the Phase II Upgrade in 2023 a comprehensive study of silicon sensors after a fluence of up to 1.5 ×1015neq /cm2 corresponding to 3000fb-1 after the HL-LHC era has been carried out. The results led to the decision that the future Outer Tracker (20 cm MIPs penetrating the sensor between two strips.

  17. 11% efficient single-crystal solar cells and 10% efficient polycrystalline cells made from refined metallurgical silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hanoka, J.I.; Strock, H.B.; Kotval, P.S.

    1981-09-01

    Refined metallurgical silicon has been utilized as a feedstock material both for Czochralski-pulled single crystal and for cast polycrystalline silicon solar cells. Using a phosphorous diffused junction for an n on p structure, the single-crystal cells have yielded AM1 efficiencies up to 11.1%, open circuit voltages up to 596 mV, and fill factors as high as 81% (not all on the same cell). The cast polycrystalline substrates have produced cells up to 10.1% efficient (AM1) with fill factors of 79% and V/sub o/c = 585 mV. Properties of the single-crystal and polycrystalline cells are quite similar, with the principal limiting factor being J/sub s/c , which is typically 20--23 mA/cm/sup 2/. Spectral response and EBIC data indicate that a considerable amount of the recombination is due to impurities. For the cast polycrystalline cells, the electron beam induced current data shows that grain boundary recombination is significant.

  18. Low temperature deposition of polycrystalline silicon thin films on a flexible polymer substrate by hot wire chemical vapor deposition

    Science.gov (United States)

    Lee, Sang-hoon; Jung, Jae-soo; Lee, Sung-soo; Lee, Sung-bo; Hwang, Nong-moon

    2016-11-01

    For the applications such as flexible displays and solar cells, the direct deposition of crystalline silicon films on a flexible polymer substrate has been a great issue. Here, we investigated the direct deposition of polycrystalline silicon films on a polyimide film at the substrate temperature of 200 °C. The low temperature deposition of crystalline silicon on a flexible substrate has been successfully made based on two ideas. One is that the Si-Cl-H system has a retrograde solubility of silicon in the gas phase near the substrate temperature. The other is the new concept of non-classical crystallization, where films grow by the building block of nanoparticles formed in the gas phase during hot-wire chemical vapor deposition (HWCVD). The total amount of precipitation of silicon nanoparticles decreased with increasing HCl concentration. By adding HCl, the amount and the size of silicon nanoparticles were reduced remarkably, which is related with the low temperature deposition of silicon films of highly crystalline fraction with a very thin amorphous incubation layer. The dark conductivity of the intrinsic film prepared at the flow rate ratio of RHCl=[HCl]/[SiH4]=3.61 was 1.84×10-6 Scm-1 at room temperature. The Hall mobility of the n-type silicon film prepared at RHCl=3.61 was 5.72 cm2 V-1s-1. These electrical properties of silicon films are high enough and could be used in flexible electric devices.

  19. Finite element analysis of temperature distribution of polycrystalline silicon thin film transistors under self-heating stress

    Institute of Scientific and Technical Information of China (English)

    Huaisheng WANG; Mingxiang WANG; Zhenyu YANG

    2009-01-01

    The temperature distribution of typical n-type polycrystalline silicon thin film transistors under selfheating (SH) stress is studied by finite element analysis.From both steady-state and transient thermal simulation,the influence of device power density, substrate material,and channel width on device temperature distribution is analyzed. This study is helpful to understand the mechanism of SH degradation, and to effectively alleviate the SH effect in device operation.

  20. Superparamagnetic iron oxide nanoparticle attachment on array of micro test tubes and microbeakers formed on p-type silicon substrate for biosensor applications

    Science.gov (United States)

    Ghoshal, Sarmishtha; Ansar, Abul Am; Raja, Sufi O.; Jana, Arpita; Bandyopadhyay, Nil R.; Dasgupta, Anjan K.; Ray, Mallar

    2011-10-01

    A uniformly distributed array of micro test tubes and microbeakers is formed on a p-type silicon substrate with tunable cross-section and distance of separation by anodic etching of the silicon wafer in N, N-dimethylformamide and hydrofluoric acid, which essentially leads to the formation of macroporous silicon templates. A reasonable control over the dimensions of the structures could be achieved by tailoring the formation parameters, primarily the wafer resistivity. For a micro test tube, the cross-section (i.e., the pore size) as well as the distance of separation between two adjacent test tubes (i.e., inter-pore distance) is typically approximately 1 μm, whereas, for a microbeaker the pore size exceeds 1.5 μm and the inter-pore distance could be less than 100 nm. We successfully synthesized superparamagnetic iron oxide nanoparticles (SPIONs), with average particle size approximately 20 nm and attached them on the porous silicon chip surface as well as on the pore walls. Such SPION-coated arrays of micro test tubes and microbeakers are potential candidates for biosensors because of the biocompatibility of both silicon and SPIONs. As acquisition of data via microarray is an essential attribute of high throughput bio-sensing, the proposed nanostructured array may be a promising step in this direction.

  1. Superparamagnetic iron oxide nanoparticle attachment on array of micro test tubes and microbeakers formed on p-type silicon substrate for biosensor applications

    Directory of Open Access Journals (Sweden)

    Raja Sufi

    2011-01-01

    Full Text Available Abstract A uniformly distributed array of micro test tubes and microbeakers is formed on a p-type silicon substrate with tunable cross-section and distance of separation by anodic etching of the silicon wafer in N, N-dimethylformamide and hydrofluoric acid, which essentially leads to the formation of macroporous silicon templates. A reasonable control over the dimensions of the structures could be achieved by tailoring the formation parameters, primarily the wafer resistivity. For a micro test tube, the cross-section (i.e., the pore size as well as the distance of separation between two adjacent test tubes (i.e., inter-pore distance is typically approximately 1 μm, whereas, for a microbeaker the pore size exceeds 1.5 μm and the inter-pore distance could be less than 100 nm. We successfully synthesized superparamagnetic iron oxide nanoparticles (SPIONs, with average particle size approximately 20 nm and attached them on the porous silicon chip surface as well as on the pore walls. Such SPION-coated arrays of micro test tubes and microbeakers are potential candidates for biosensors because of the biocompatibility of both silicon and SPIONs. As acquisition of data via microarray is an essential attribute of high throughput bio-sensing, the proposed nanostructured array may be a promising step in this direction.

  2. Structural and Electrical Properties of Polysilicon Films Prepared by AIC Process for a Polycrystalline Silicon Solar Cell Seed Layer

    Directory of Open Access Journals (Sweden)

    Hyejeong Jeong

    2012-01-01

    Full Text Available Polycrystalline silicon (pc-Si films are produced by aluminum-induced crystallization (AIC process for a polycrystalline silicon solar cell seed layer, and the structural and electrical properties of the films are analyzed. The used structure is glass/Al/ Al2O3/a-Si, and the thickness of Al2O3 layer was varied from 2 nm to 20 nm to investigate the influence of the Al2O3 layer thickness on the formation of the polycrystalline silicon. The annealing temperature and annealing time were fixed to 400∘C and 5 hours, respectively, for the AIC process conditions. As a result, it is observed that the average grain size of the pc-Si films is rapidly smaller with increasing the thickness of Al2O3 layer, whereas the film quality, as defects and Hall mobility, was gradually degraded with only small difference. We obtained the maximum average grain size of 15 μm for the pc-Si film with the thickness of Al2O3 layer of 4 nm. The best resistivity and the Hall mobility was 6.1×10−2 Ω⋅cm and 90.91 cm2/Vs, respectively, in the case of 8 nm thick Al oxide layer.

  3. Interface modification effect between p-type a-SiC:H and ZnO:Al in p-i-n amorphous silicon solar cells.

    Science.gov (United States)

    Baek, Seungsin; Lee, Jeong Chul; Lee, Youn-Jung; Iftiquar, Sk Md; Kim, Youngkuk; Park, Jinjoo; Yi, Junsin

    2012-01-18

    Aluminum-doped zinc oxide (ZnO:Al) [AZO] is a good candidate to be used as a transparent conducting oxide [TCO]. For solar cells having a hydrogenated amorphous silicon carbide [a-SiC:H] or hydrogenated amorphous silicon [a-Si:H] window layer, the use of the AZO as TCO results in a deterioration of fill factor [FF], so fluorine-doped tin oxide (Sn02:F) [FTO] is usually preferred as a TCO. In this study, interface engineering is carried out at the AZO and p-type a-SiC:H interface to obtain a better solar cell performance without loss in the FF. The abrupt potential barrier at the interface of AZO and p-type a-SiC:H is made gradual by inserting a buffer layer. A few-nanometer-thick nanocrystalline silicon buffer layer between the AZO and a-SiC:H enhances the FF from 67% to 73% and the efficiency from 7.30% to 8.18%. Further improvements in the solar cell performance are expected through optimization of cell structures and doping levels.

  4. Fabrication and its characteristics of low-temperature polycrystalline silicon thin films

    Institute of Scientific and Technical Information of China (English)

    LASSAUT; J

    2009-01-01

    In order to reduce the cost of solar cells or flat-panel display, it is very important to synthesis poly-crystalline silicon films on low cost substrate such as glass at low temperature. In this work, electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (PECVD) system was successfully applied to synthesize poly-Si thin-film on common glass substrate using H2 as the plasma source and SiH4 (Ar:SiH4=19:1) as the precursor gas at low temperature. Since the multicusp cav- ity-coupling ECR plasma source was adopted to provide active precursors, the growth temperature decreased to lower than 200℃. In the plasma, the electron temperatures kTe are ~2―3 eV and the ion temperatures kTi≤1 eV. This leads to non-remarkable ion impacts during the film deposition. The characteristic of poly-Si films was investigated. It was shown that the crystalline fraction Xc of the films can be up to 90% even deposit at room temperature, and the film was (220) preferably oriented. The growth behaviors of the film between the interface of glass and Si films were also discussed in detail.

  5. Off-current in polycrystalline silicon thin film transistors: An analysis of the thermally generated component

    Science.gov (United States)

    Pecora, A.; Schillizzi, M.; Tallarida, G.; Fortunato, G.; Reita, C.; Migliorato, P.

    1995-04-01

    The thermal generation component of polycrystalline silicon TFTs off-current is analysed experimentally and theoretically. In order to minimize the field-enhanced component of the leakage current, hot-hole injection, obtained by stressing the device at negative gate voltage and high source-drain voltage, has been used to reduce the electric field at the drain junction. After stress, the electrical characteristics in the off-regime are channel length independent and do not depend on gate voltage. This behaviour has been associated with the thermal generation-recombination processes occurring at the drain junction. Two-dimensional numerical simulations have been carried out with the program HFIELD, which has been modified to take into account the presence of gap states in polysilicon, and to incorporate the thermal generation-recombination processes by using the Shockley-Read-Hall statistics. Numerical simulations confirm that the generation occurs in the depletion region of the drain junction. The experimental Id- Vds characteristics measured at negative gate voltage have been compared with the calculated characteristics. The best fit with the experimental data was obtained only by using a rather short carrier lifetime (10 -12 s). The simulations indicate that a decrease of the density of states produces a lower off-current owing to a longer carrier lifetime and to a reduction of the drain junction depletion layer.

  6. Simulation of polycrystalline silicon thin film solar cells - model calibration and sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Teodoreanu, Ana-Maria; Leendertz, Caspar; Sontheimer, Tobias; Rech, Bernd [Helmholtz-Zentrum Berlin, Kekulestr. 5. 12489 Berlin (Germany)

    2011-07-01

    To gain a better insight into the efficiency-limiting processes in polycrystalline silicon (poly-Si) thin film solar cells, we developed a simulation model for the J-V characteristics and minority carrier lifetime based on experimental results using the numerical 1D simulation program AFORS-HET. The calibration of the model has been achieved through simultaneously fitting the measured dark and light J-V curves of twelve poly-Si thin film minimodules with dissimilar thickness and absorber doping concentration. Effective defect density, capture cross section products of 10..100 cm{sup -1} have been determined in the poly-Si absorber by this procedure. Transient photoconductance decay measurements of the poly-Si absorbers have also been conducted in the low injection regime (4.5.10{sup 14} cm{sup -3}). High lifetimes of 100 {mu} s have been found which can be explained within our simulation model by field effect passivation. Furthermore simulations indicate that this field effect leads to a strong injection-dependence of carrier lifetime in the operation range of the solar cell. The sensitivity analysis performed with our calibrated model shows that the defects in the absorber layer are crucial for the cell efficiency. Thus, the improvement of the emitter and back surface field layers becomes important only if the absorber itself is of better quality. Moreover we discuss the optimum absorber thickness subject to different doping levels and absorber defect densities.

  7. Influence of Grain Size on the Thermoelectric Properties of Polycrystalline Silicon Nanowires

    Science.gov (United States)

    Suriano, F.; Ferri, M.; Moscatelli, F.; Mancarella, F.; Belsito, L.; Solmi, S.; Roncaglia, A.; Frabboni, S.; Gazzadi, G. C.; Narducci, D.

    2015-01-01

    The thermoelectric properties of doped polycrystalline silicon nanowires have been investigated using doping techniques that impact grain growth in different ways during the doping process. In particular, As- and P-doped nanowires were fabricated using a process flow which enables the manufacturing of surface micromachined nanowires contacted by Al/Si pads in a four-terminal configuration for thermal conductivity measurement. Also, dedicated structures for the measurement of the Seebeck coefficient and electrical resistivity were prepared. In this way, the thermoelectric figure of merit of the nanowires could be evaluated. The As-doped nanowires were heavily doped by thermal doping from spin-on-dopant sources, whereas predeposition from POCl3 was utilized for the P-doped nanowires. The thermal conductivity measured on the nanowires appeared to depend on the doping type. The P-doped nanowires showed, for comparable cross-sections, higher thermal conductivity values than As-doped nanowires, most probably because of their finer grain texture, resulting from the inhibition effect that such doping elements have on grain growth during high-temperature annealing.

  8. Synthesis and characterization of large-grain solid-phase crystallized polycrystalline silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avishek, E-mail: avishek.kumar@nus.edu.sg, E-mail: dalapatig@imre.a-star.edu.sg [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Law, Felix; Widenborg, Per I. [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 (Singapore); Dalapati, Goutam K., E-mail: avishek.kumar@nus.edu.sg, E-mail: dalapatig@imre.a-star.edu.sg; Subramanian, Gomathy S.; Tan, Hui R. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Aberle, Armin G. [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 and Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

    2014-11-01

    n-type polycrystalline silicon (poly-Si) films with very large grains, exceeding 30 μm in width, and with high Hall mobility of about 71.5 cm{sup 2}/V s are successfully prepared by the solid-phase crystallization technique on glass through the control of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The effect of this gas flow ratio on the electronic and structural quality of the n-type poly-Si thin film is systematically investigated using Hall effect measurements, Raman microscopy, and electron backscatter diffraction (EBSD), respectively. The poly-Si grains are found to be randomly oriented, whereby the average area weighted grain size is found to increase from 4.3 to 18 μm with increase of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The stress in the poly-Si thin films is found to increase above 900 MPa when the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio is increased from 0.025 to 0.45. Finally, high-resolution transmission electron microscopy, high angle annular dark field-scanning tunneling microscopy, and EBSD are used to identify the defects and dislocations caused by the stress in the fabricated poly-Si films.

  9. Fabrication and its characteristics of low-temperature polycrystalline silicon thin films

    Institute of Scientific and Technical Information of China (English)

    WU AiMin; DENG WanTing; QIN FuWen; LI BoHai; LASSAUT J; JIANG Xin; DONG Chuang

    2009-01-01

    In order to reduce the cost of solar cells or flat-panel display, it is very important to synthesis poly-crystalline silicon films on low cost substrate such as glass at low temperature. In this work, electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (PECVD) system was suc-cessfully applied to synthesize poly-Si thin-film on common glass substrate using H2 as the plasma source and SiH4 (Ar'SiH4=19:1) as the precursor gas at low temperature. Since the multicusp cav-ity-coupling ECR plasma source was adopted to provide active precursors, the growth temperature decreased to lower than 200℃. In the plasma, the electron temperatures kTe are -2--3 eV and the ion temperatures kTi≤1 eV. This leads to non-remarkable ion impacts during the film deposition. The characteristic of poly-Si films was investigated. It was shown that the crystalline fraction Xc of the films can be up to 90% even deposit at room temperature, and the film was (220) preferably oriented. The growth behaviors of the film between the interface of glass and Si films were also discussed in detail.

  10. A study of defect evolution in multi-energy helium implanted monocrystalline and polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, K.J.; Donnelly, S.E. [Institute for Materials Research, University of Salford (United Kingdom); Beaufort, M.F. [Laboratoire de Metallurgie Physique, UMR 6630, Universite de Poitiers, Futuroscope-Chasseneuill (France); Terry, J.; Haworth, L.I. [Scottish Microelectronics Centre, University of Edinburgh (United Kingdom); Alquier, D. [Universite Francois Rabelais Tours, L.M.P, Tours (France)

    2009-08-15

    Upon implantation, He ions interact with radiation damage in metals and semiconductors to form bubbles (V. Raineri, Phys. Rev. B 2, 937 (2000)). As far as Si is concerned, recent literature contains much information on the effects of ion implantation, defect formation and the transport of point defects in He-irradiated crystalline silicon (c-Si) whereas little information exists on the effects of He implantation on polycrystalline Si (poly-Si). This paper reports on a systematic comparison of the effects of He implantation on c-Si and poly-Si. Interesting and significant differences were observed in the defect morphology in the two cases. Results on the differences between the two materials are presented and discussed in terms of the role that grain boundaries in poly-Si play in trapping interstitials and the effects that this may have on the overall defect morphology. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Protein patterning on polycrystalline silicon-germanium via standard UV lithography for bioMEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Lenci, S., E-mail: silvia.lenci@gmail.com [Dipartimento di Ingegneria dell' Informazione, University of Pisa, Via G. Caruso 16, I-56122 Pisa (Italy); imec, Kapeldreef 75, Leuven B-3001 (Belgium); Tedeschi, L.; Domenici, C.; Lande, C. [Istituto di Fisiologia Clinica, CNR, via G. Moruzzi 1, Pisa I-56124 (Italy); Nannini, A.; Pennelli, G.; Pieri, F. [Dipartimento di Ingegneria dell' Informazione, University of Pisa, Via G. Caruso 16, I-56122 Pisa (Italy); Severi, S. [imec, Kapeldreef 75, Leuven B-3001 (Belgium)

    2010-10-12

    Polycrystalline silicon-germanium (poly-SiGe) is a promising structural material for the post-processing of micro electro-mechanical systems (MEMS) on top of complementary metal-oxide-semiconductor (CMOS) substrates. Combining MEMS and CMOS allows for the development of high-performance devices. We present for the first time selective protein immobilization on top of poly-SiGe surfaces, an enabling technique for the development of novel poly-SiGe based MEMS biosensors. Active regions made of 3-aminopropyl-triethoxysilane (APTES) were defined using silane deposition onto photoresist patterns followed by lift-off in organic solvents. Subsequently, proteins were covalently bound on the created APTES patterns. Fluorescein-labeled human serum albumin (HSA) was used to verify the immobilization procedure while the binding capability of the protein layer was tested by an antigen-labeled antibody pair. Inspection by fluorescence microscopy showed protein immobilization inside the desired bioactive areas and low non-specific adsorption outside the APTES pattern. Furthermore, the quality of the silane patches was investigated by treatment with 30 nm-diameter gold nanoparticles and scanning electron microscope observation. The developed technique is therefore a promising first step towards the realization of poly-SiGe based biosensors.

  12. Low-damage surface smoothing of laser crystallized polycrystalline silicon using gas cluster ion beam

    Science.gov (United States)

    Tokioka, H.; Yamarin, H.; Fujino, T.; Inoue, M.; Seki, T.; Matsuo, J.

    2007-04-01

    Surface smoothing of laser crystallized polycrystalline silicon (poly-Si) films using gas cluster ion beam (GCIB) technology has been studied. It is found that both SF6-GCIB and O2-GCIB decrease the height of hillocks and reduce the surface roughness of the irradiated films. The mean surface roughness value of poly-Si films was reduced from 10.8 nm to 2.8 nm by SF6-GCIB irradiation at 80°. Ultraviolet reflectance measurement reveals that GCIB irradiation causes damage near-surface of the poly-Si films. Formation of the damage, however, can be suppressed by using GCIB irradiation at high incident angle. Effect of GCIB irradiation in a metal-insulator-semiconductor (MIS) capacitor has also been investigated. The capacitance-voltage curves of MIS capacitor with SF6-GCIB irradiation are distorted. On the contrary, the distortion is reduced by O2-GCIB irradiation at 80, which suggests that electrical-activated damage of the films can be decreased by using O2-GCIB irradiation.

  13. Thin film polycrystalline silicon: Promise and problems in displays and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fonash, S.J. [Pennsylvania State Univ., University Park, PA (United States)

    1995-08-01

    Thin film polycrystalline Si (poly-Si) with its carrier mobilities, potentially good stability, low intragrain defect density, compatibility with silicon processing, and ease of doping activation is an interesting material for {open_quotes}macroelectronics{close_quotes} applications such as TFTs for displays and solar cells. The poly-Si films needed for these applications can be ultra-thin-in the 500{Angstrom} to 1000{Angstrom} thickness range for flat panel display TFTs and in the 4{mu}m to 10{mu}m thickness range for solar cells. Because the films needed for these microelectronics applications can be so thin, an effective approach to producing the films is that of crystallizing a-Si precursor material. Unlike cast materials, poly-Si films made this way can be produced using low temperature processing. Unlike deposited poly-Si films, these crystallized poly-Si films can have grain widths that are much larger than the film thickness and almost atomically smooth surfaces. This thin film poly-Si crystallized from a-Si precursor films, and its promise and problems for TFTs and solar cells, is the focus of this discussion.

  14. Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P.Q. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)], E-mail: robt@sjtu.edu.cn; Zhou, Z.B. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)], E-mail: zbzhou@sjtu.edu.cn; Chan, K.Y. [Thin Film Laboratory, Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya 63100, Selangor (Malaysia); Tang, D.Y.; Cui, R.Q.; Dou, X.M. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2008-12-30

    Hydrogenated nanocrystalline silicon (nc-Si:H) grown by hot-wire chemical vapor deposition (HWCVD) has recently drawn significant attention in the area of thin-film large area optoelectronics due to possibility of high deposition rate. We report on the effects of diborane (B{sub 2}H{sub 6}) doping ratio on the microstructural and optoelectrical properties of the p-type nc-Si:H thin films grown by HWCVD at low substrate temperature of 200 deg. C and with high hydrogen dilution ratio of 98.8%. An attempt has been made to elucidate the boron doping mechanism of the p-type nc-Si:H thin films deposited by HWCVD and the correlation between the B{sub 2}H{sub 6} doping ratio, crystalline volume fraction, optical band gap and dark conductivity.

  15. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Beccherle, R. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste (Italy); INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2016-09-21

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  16. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    Science.gov (United States)

    Calderini, G.; Bagolini, A.; Beccherle, R.; Bomben, M.; Boscardin, M.; Bosisio, L.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2016-09-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  17. Performance of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    INSPIRE-00052711; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Ducourthial, Audrey; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola

    2016-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The paper reports on the performance of novel n-on-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology an overview of the first beam test results will be given.

  18. Photoelectron yield spectroscopy and inverse photoemission spectroscopy evaluations of p-type amorphous silicon carbide films prepared using liquid materials

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tatsuya, E-mail: mtatsuya@jaist.ac.jp, E-mail: mtakashi@jaist.ac.jp [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Masuda, Takashi, E-mail: mtatsuya@jaist.ac.jp, E-mail: mtakashi@jaist.ac.jp; Inoue, Satoshi; Shimoda, Tatsuya [Green Device Research Center, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211 (Japan); Yano, Hiroshi; Iwamuro, Noriyuki [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki 305-8573 (Japan)

    2016-05-15

    Phosphorus-doped amorphous silicon carbide films were prepared using a polymeric precursor solution. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage, providing semiconducting properties in the films. The valence and conduction states of resultant films were determined directly through the combination of inverse photoemission spectroscopy and photoelectron yield spectroscopy. The incorporated carbon widened energy gap and optical gap comparably in the films with lower carbon concentrations. In contrast, a large deviation between the energy gap and the optical gap was observed at higher carbon contents because of exponential widening of the band tail.

  19. Design and analysis of nanowire p-type MOSFET coaxially having silicon core and germanium peripheral channel

    Science.gov (United States)

    Yu, Eunseon; Cho, Seongjae

    2016-11-01

    In this work, a nanowire p-type metal-oxide-semiconductor field-effect transistor (PMOSFET) coaxially having a Si core and a Ge peripheral channel is designed and characterized by device simulations. Owing to the high hole mobility of Ge, the device can be utilized for high-speed CMOS integrated circuits, with the effective confinement of mobile holes in Ge by the large valence band offset between Si and Ge. Source/drain doping concentrations and the ratio between the Si core and Ge channel thicknesses are determined. On the basis of the design results, the channel length is aggressively scaled down by evaluating the primary DC parameters in order to confirm device scalability and low-power applicability in sub-10-nm technology nodes.

  20. Study the Characteristic of P-Type Junction-Less Side Gate Silicon Nanowire Transistor Fabricated by Atomic Force Microscopy Lithography

    Directory of Open Access Journals (Sweden)

    Arash Dehzangi

    2011-01-01

    Full Text Available Problem statement: Nanotransistor now is one of the most promising fields in nanoelectronics in order to decrease the energy consuming and application to create developed programmable information processors. Most of Computing and communications companies invest hundreds of millions of dollars in research funds every year to develop smaller transistors. Approach: The Junction-less side gate silicon Nano-wire transistor has been fabricated by Atomic Force Microscopy (AFM and wet etching on p-type Silicon On Insulator (SOI wafer. Then, we checked the characteristic and conductance trend in this device regarding to semi-classical approach by Semiconductor Probe Analyser (SPA. Results: We observed in characteristic of the device directly proportionality of the negative gate voltage and Source-Drain current. In semi classical approach, negative Gate voltage decreased the energy States of the Nano-wire between the source and the drain. The graph for positive gate voltage plotted as well to check. In other hand, the conductance will be following characteristic due to varying the gate voltage under the different drain-source voltage. Conclusion: The channel energy states are supposed to locate between two electrochemical potentials of the contacts in order to transform the charge. For the p-type channel the transform of the carriers is located in valence band and changing the positive or negative gate voltage, making the valence band energy states out of or in the area between the electrochemical potentials of the contacts causing the current reduced or increased.

  1. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays

    Science.gov (United States)

    Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2014-10-01

    Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly

  2. Thin film polycrystalline silicon solar cells. Quarterly report No. 1, January 1, 1979-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, A.K.; Feng, T.; Maruska, H.P.; Fishman, C.

    1979-01-01

    A theory capable of predicting the performance of polycrystalline silicon solar cells is formulated. It relates grain size to mobility, lifetime, diffusion length, reverse saturation current, open circuit photovoltage and fill factor. Only the diffusion lengths measured by the surface photovoltage technique for grains less than or equal to 5 ..mu..m do not agree with our theory. The reason for this discrepancy is presently being investigated. We conclude that grains greater than or equal to 100 ..mu..m are necessary to achieve efficiencies greater than or equal to 10 percent at AM1 irradiance. The calculations were performed for the case of no grain boundary passivation. At present we are investigating the improvements to be expected from grain boundary passivation. We have determined that the parameters that best fit the available data are as follows: (1) Number of surface states at grain boundaries acting as recombination centers - 1.6 x 10/sup 13//cm/sup 2/. (2) Capture cross section - 2 x 10/sup -16/ cm/sup 2/. (3) Surface recombination velocity at grain boundary - 3.2 x 10/sup 4/ cm/sec. The following types of solar cells are considered in the model: SnO/sub 2//Si Heterostructure, MIS, and p/n junction. In all types of solar cells considered, grain boundary recombination plays a dominant role, especially for small grains. Though the calculations were originally expected to yield only order of magnitude results, they have proven to be accurate for most parameters within 10 percent.

  3. A first passage based model for probabilistic fracture of polycrystalline silicon MEMS structures

    Science.gov (United States)

    Xu, Zhifeng; Le, Jia-Liang

    2017-02-01

    Experiments have shown that the failure loads of Microelectromechanical Systems (MEMS) devices usually exhibit a considerable level of variability, which is believed to be caused by the random material strength and the geometry-induced random stress field. Understanding the strength statistics of MEMS devices is of paramount importance for the device design guarding against a tolerable failure risk. In this study, we develop a continuum-based probabilistic model for polycrystalline silicon (poly-Si) MEMS structures within the framework of first passage analysis. The failure of poly-Si MEMS structures is considered to be triggered by fracture initiation from the sidewalls governed by a nonlocal failure criterion. The model takes into account an autocorrelated random field of material tensile strength. The nonlocal random stress field is obtained by stochastic finite element simulations based on the information of the uncertainties of the sidewall geometry. The model is formulated within the contexts of both stationary and non-stationary stochastic processes for MEMS structures of various geometries and under different loading configurations. It is shown that the model agrees well with the experimentally measured strength distributions of uniaxial tensile poly-Si MEMS specimens of different gauge lengths. The model is further used to predict the strength distribution of poly-Si MEMS beams under three-point bending, and the result is compared with the Monte Carlo simulation. The present model predicts strong size effects on both the strength distribution and the mean structural strength. It is shown that the mean size effect curve consists of three power-law asymptotes in the small, intermediate, and large-size regimes. By matching these three asymptotes, an approximate size effect equation is proposed. The present model is shown to be a generalization of the classical weakest-link statistical model, and it provides a physical interpretation of the material length

  4. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    Calderini, G; Bomben, M; Boscardin, M; Bosisio, L; Chauveau, J; Giacomini, G; La Rosa, A; Marchiori, G; Zorzi, N

    2014-01-01

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R&D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  5. Characterization of stain etched p-type silicon in aqueous HF solutions containing HNO{sub 3} or KMnO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mogoda, A.S., E-mail: awad_mogoda@hotmail.com [Department of Chemistry, Faculty of Science, Cairo University, Giza (Egypt); Ahmad, Y.H.; Badawy, W.A. [Department of Chemistry, Faculty of Science, Cairo University, Giza (Egypt)

    2011-04-15

    Research highlights: {yields} Stain etching of p-Si in aqueous HF solutions containing HNO{sub 3} or KMnO{sub 4} was investigated. {yields} The electrical conductivity of the etched Si surfaces was measured using impedance technique. {yields} Scanning electron microscope and energy disperse X-ray were used to analyze the etched surfaces. {yields} Etching in aqueous HF solution containing HNO{sub 3} led to formation of a porous silicon layer. {yields} The formation of the porous silicon layer in HF/KMnO{sub 4} was accompanied by deposition of K{sub 2}SiF{sub 6} on the pores surfaces. - Abstract: Stain etching of p-type silicon in hydrofluoric acid solutions containing nitric acid or potassium permanganate as an oxidizing agent has been examined. The effects of etching time, oxidizing agent and HF concentrations on the electrochemical behavior of etched silicon surfaces have been investigated by electrochemical impedance spectroscopy (EIS). An electrical equivalent circuit was used for fitting the impedance data. The morphology and the chemical composition of the etched Si surface were studied using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques, respectively. A porous silicon layer was formed on Si etched in HF solutions containing HNO{sub 3}, while etching in HF solutions containing KMnO{sub 4} led to the formation of a porous layer and simultaneous deposition of K{sub 2}SiF{sub 6} inside the pores. The thickness of K{sub 2}SiF{sub 6} layer increases with increasing the KMnO{sub 4} concentration and decreases as the concentration of HF increases.

  6. The electrical properties of photodiodes based on nanostructure gallium doped cadmium oxide/p-type silicon junctions

    Science.gov (United States)

    Çavaş, M.; Yakuphanoğlu, F.; Karataş, Ş.

    2017-01-01

    Gallium doped cadmium-oxide (CdO: Ga) thin films were successfully deposited by sol-gel spin coating method on p-type Si substrate. The electrical properties of the photodiode based on nanostructure Ga doped n-CdO/p-Si junctions were investigated. The current-voltage (I-V) characteristics of the structure were investigated under various light intensity and dark. It was observed that generated photocurrent of the Au/n-CdO/p-Si junctions depended on light intensity. The capacitance-voltage and conductance-voltage measurements were carried out for this diode in the frequency range between 100 and 1000 kHz at room temperature by steps of 100 kHz. The capacitance decreased with increasing frequency due to a continuous distribution of the interface states. These results suggested that the Au/n-CdO/p-Si Schottky junctions could be utilized as a photosensor. Furthermore, the voltage and frequency dependence of series resistance were calculated from the C-V and G/ω-V measurements and plotted as functions of voltage and frequency. The distribution profile of R S -V gave a peak in the depletion region at low frequencies and disappeared with increasing frequencies.

  7. Potential imaging of Si /HfO2/polycrystalline silicon gate stacks: Evidence for an oxide dipole

    Science.gov (United States)

    Ludeke, R.; Narayanan, V.; Gusev, E. P.; Cartier, E.; Chey, S. J.

    2005-03-01

    Surface potential profiles of the junction area of a cleaved n-Si(100)/HfO2/p +-polycrystalline silicon (poly-Si) gate stack reveal a dipole potential in the oxide, hole trapping at the HfO2/poly-Si interface, with the Fermi level ˜0.4eV below the Si conduction bandedge and enhanced and inhomogeneous hole depletion in the p +-poly-Si. The dipole accounts for band bending reduction in the n-Si and is consistent with flatband voltage shifts reported for similar gate stacks.

  8. Sub-band transport mechanism and switching properties for resistive switching nonvolatile memories with structure of silver/aluminum oxide/p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanhong; Li, La; Wang, Song; Gao, Ping; Pan, Lujun; Zhang, Jialiang [School of Physics and Optoelectronic Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024 (China); Zhou, Peng [Department of Microelectronics, State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433 (China); Li, Jinhua; Weng, Zhankun [Center for Nano Metrology and Manufacturing Technologies and International Joint Research Center for Nanophotonics and Biophotonics, Changchun University of Science and Technology, Changchun 130022 (China)

    2015-02-09

    In this paper, we discuss a model of sub-band in resistive switching nonvolatile memories with a structure of silver/aluminum oxide/p-type silicon (Ag/Al{sub x}O{sub y}/p-Si), in which the sub-band is formed by overlapping of wave functions of electron-occupied oxygen vacancies in Al{sub x}O{sub y} layer deposited by atomic layer deposition technology. The switching processes exhibit the characteristics of the bipolarity, discreteness, and no need of forming process, all of which are discussed deeply based on the model of sub-band. The relationships between the SET voltages and distribution of trap levels are analyzed qualitatively. The semiconductor-like behaviors of ON-state resistance affirm the sub-band transport mechanism instead of the metal filament mechanism.

  9. 多晶硅薄膜太阳电池%Polycrystalline Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    何海洋; 陈诺夫; 李宁; 白一鸣; 仲琳; 弭辙; 辛雅焜; 吴强; 高征

    2013-01-01

    Polycrystalline silicon (poly-Si) thin film solar cells are attracted much attention due to their low material consumption, low cost, high stability, and the mature technology of poly-Si thin film microelectronic devices. The structure and preparation processes of poly-Si thin film solar cells are reviewed in detail, and it is pointed out that the suitable substrate selection and high quality materials realization are the key research directions of poly-Si thin film solar cells at present. Then the principles, characteristics, advantages and disadvantages of the preparation methods are introduced systematically, including the chemical vapor deposition (CVD), magnetron sputtering (MS), solid-phase crystallization (SPC), laser crystallization (LC) and rapid thermal annealing (RTA). Finally, the development status of the technologies above is elaborated, and the application prospects of these methods in poly-Si thin film solar cells are reviewed objectively.%多晶硅薄膜太阳电池因兼具低材料消耗、低成本、高稳定性及多晶硅薄膜微电子器件的成熟工艺而备受瞩目.对多晶硅薄膜太阳电池的结构和制备工艺流程进行了详细阐述,指出当前多晶硅薄膜太阳电池的关键研究方向,即衬底的选择和高质量多晶硅薄膜的实现.特别是针对高质量多晶硅薄膜的制备,系统地介绍了化学气相沉积(CVD)、磁控溅射(MS)、固相晶化(SPC)、激光晶化(LC)以及快速热退火(RTA)等制备方法的工作原理、特点和优劣.综合阐述了各项技术的发展现状,并对上述技术及其在多晶硅薄膜太阳电池中的应用前景进行了客观评述与展望.

  10. Selected area laser-crystallized polycrystalline silicon thin films by a pulsed Nd:YAG laser with 355 nm wavelength

    Institute of Scientific and Technical Information of China (English)

    Duan Chunyan; Liu Chao; Ai Bin; Lai Jianjun; Deng Youjun; Shen Hui

    2011-01-01

    Selected area laser-crystallized polycrystalline silicon(p-Si)thin films were prepared by the third harmonics(355 nm wavelength)generated by a solid-state pulsed Nd:YAG laser.Surface morphologies of 400 nm thick films after laser irradiation were analyzed.Raman spectra show that film crystallinity is improved with increase of laser energy.The optimum laser energy density is sensitive to the film thickness.The laser energy density for efficiently crystallizing amorphous silicon films is between 440-634 mJ/cm2 for 300 nm thick films and between 777-993 mJ/cm2 for 400 nm thick films.The optimized laser energy density is 634,975 and 1571 mJ/cm2 for 300,400 and 500 nm thick films,respectively.

  11. Synthesis and characterization of silicon-doped polycrystalline GaN films by r.f. sputtering

    Indian Academy of Sciences (India)

    S Gupta

    2015-09-01

    Silicon-doped polycrystalline GaN films were successfully deposited at temperatures ranging from 300 to 623 K on fused silica and silicon substrates by radio frequency (r.f.) magnetron sputtering at a system pressure of ~ 5 Pa. The films were characterized by optical as well as microstructural measurements. The optical properties were studied by UV–vis–NIR spectrometer and photoluminicence (PL) measurements. The microstructural information was obtained from scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and X-ray diffraction (XRD) studies. PL measurement at 80 K exhibited two strong transitions located at ~ 2.1 and ~ 2.7 eV along with lower intensity peaks for luminescence at the higher energy side at ~ 3.45 and ~ 3.3 eV for all the films deposited here, and the peaks at ~ 3.45 and ~ 3.3 eV could be ascribed to transitions related to excitons bound to a neutral donor for h-GaN and c-GaN, respectively. A broad peak at ~ 2.1 eV indicated the presence of yellow luminescence in all the films. The SEM and AFM images revealed that the films are compact with well-dispersed polycrystalline constituting the films. The XRD traces contained the signature of both the hexagonal and cubic phases of GaN.

  12. Theoretical investigation of the noise performance of active pixel imaging arrays based on polycrystalline silicon thin film transistors.

    Science.gov (United States)

    Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Liang, Albert K; Zhao, Qihua

    2017-07-01

    Active matrix flat-panel imagers, which typically incorporate a pixelated array with one a-Si:H thin-film transistor (TFT) per pixel, have become ubiquitous by virtue of many advantages, including large monolithic construction, radiation tolerance, and high DQE. However, at low exposures such as those encountered in fluoroscopy, digital breast tomosynthesis and breast computed tomography, DQE is degraded due to the modest average signal generated per interacting x-ray relative to electronic additive noise levels of ~1000 e, or greater. A promising strategy for overcoming this limitation is to introduce an amplifier into each pixel, referred to as the active pixel (AP) concept. Such circuits provide in-pixel amplification prior to readout as well as facilitate correlated multiple sampling, enhancing signal-to-noise and restoring DQE at low exposures. In this study, a methodology for theoretically investigating the signal and noise performance of imaging array designs is introduced and applied to the case of AP circuits based on low-temperature polycrystalline silicon (poly-Si), a semiconductor suited to manufacture of large area, radiation tolerant arrays. Computer simulations employing an analog circuit simulator and performed in the temporal domain were used to investigate signal characteristics and major sources of electronic additive noise for various pixel amplifier designs. The noise sources include photodiode shot noise and resistor thermal noise, as well as TFT thermal and flicker noise. TFT signal behavior and flicker noise were parameterized from fits to measurements performed on individual poly-Si test TFTs. The performance of three single-stage and three two-stage pixel amplifier designs were investigated under conditions relevant to fluoroscopy. The study assumes a 20 × 20 cm(2) , 150 μm pitch array operated at 30 fps and coupled to a CsI:Tl x-ray converter. Noise simulations were performed as a function of operating conditions, including

  13. Polycrystalline silicon thin-film solar cells prepared by layered laser crystallization with 540 mV open circuit voltage

    Energy Technology Data Exchange (ETDEWEB)

    Plentz, Jonathan, E-mail: jonathan.plentz@ipht-jena.de [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany); Experimental Physics I, Institute of Physics, Ilmenau University of Technology, Weimarer Str. 32, 98693 Ilmenau (Germany); Andrä, Gudrun; Gawlik, Annett; Höger, Ingmar; Jia, Guobin; Falk, Fritz [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany)

    2014-07-01

    Polycrystalline silicon thin film solar cells on a glass substrate are investigated. The solar cell layer structure was generated by a two-step process in which first a 100–600 nm thin seed layer is formed by diode laser crystallization of electron beam evaporated amorphous silicon. In a second step this layer is epitaxially thickened to 2–3.5 μm by layered laser crystallization. In this process further amorphous silicon is deposited and in situ repeatedly is irradiated by excimer laser pulses. The polycrystalline layer consists of grains several hundreds of microns long and several tens of microns wide and it contains a p{sup +}–p–n{sup +} doping profile. After deposition a rapid thermal annealing and hydrogen passivation steps follow. The back and front contacts are prepared after mesa structuring. The influence of the seed layer thickness on the solar cell performance was investigated. In addition, the absorber contamination due to the background pressure during absorber deposition and its influence on the short circuit current density was investigated. The best parameters reached for various solar cells are 540 mV open circuit voltage, 20.3 mA/cm{sup 2} short circuit current density (without light trapping), 75% fill factor, and 5.2% efficiency. - Highlights: • Layered laser crystallization leads to grain sizes of 10–300 μm on glass. • Open circuit voltage of 540 mV and efficiency of 5.2% are achieved. • Short circuit current is influenced by background pressure during deposition. • Short circuit current density of 20.3 mA/cm{sup 2} is reached without light trapping. • Progress requires pressures below 10{sup −7} hPa and deposition rates over 100 nm/min.

  14. A method for polycrystalline silicon delineation applicable to a double-diffused MOS transistor

    Science.gov (United States)

    Halsor, J. L.; Lin, H. C.

    1974-01-01

    Method is simple and eliminates requirement for unreliable special etchants. Structure is graded in resistivity to prevent punch-through and has very narrow channel length to increase frequency response. Contacts are on top to permit planar integrated circuit structure. Polycrystalline shield will prevent creation of inversion layer in isolated region.

  15. The performance of Y2O3 as interface layer between La2O3 and p-type silicon substrate

    Directory of Open Access Journals (Sweden)

    Shulong Wang

    2016-11-01

    Full Text Available In this study, the performance of Y2O3 as interface layer between La2O3 and p-type silicon substrate is studied with the help of atomic layer deposition (ALD and magnetron sputtering technology. The surface morphology of the bilayer films with different structures are observed after rapid thermal annealing (RTA by atomic force microscopy (AFM. The results show that Y2O3/Al2O3/Si structure has a larger number of small spikes on the surface and its surface roughness is worse than Al2O3/Y2O3/Si structure. The reason is that the density of Si substrate surface is much higher than that of ALD growth Al2O3. With the help of high-frequency capacitance-voltage(C-V measurement and conductivity method, the density of interface traps can be calculated. After a high temperature annealing, the metal silicate will generate at the substrate interface and result in silicon dangling bond and interface trap charge, which has been improved by X-ray photoelectron spectroscopy (XPS and interface trap charge density calculation. The interface trapped charge density of La2O3/Al2O3/Si stacked gate structure is lower than that of La2O3/Y2O3/Si gate structure. If Y2O3 is used to replace Al2O3 as the interfacial layer, the accumulation capacitance will increase obviously, which means lower equivalent oxide thickness (EOT. Our results show that interface layer Y2O3 grown by magnetron sputtering can effectively ensure the interface traps near the substrate at relative small level while maintain a relative higher dielectric constant than Al2O3.

  16. Rapid recovery of polycrystalline silicon from kerf loss slurry using double-layer organic solvent sedimentation method

    Science.gov (United States)

    Xing, Peng-fei; Guo, Jing; Zhuang, Yan-xin; Li, Feng; Tu, Gan-feng

    2013-10-01

    The rapid development of photovoltaic (PV) industries has led to a shortage of silicon feedstock. However, more than 40% silicon goes into slurry wastes due to the kerf loss in the wafer slicing process. To effectively recycle polycrystalline silicon from the kerf loss slurry, an innovative double-layer organic solvent sedimentation process was presented in the paper. The sedimentation velocities of Si and SiC particles in some organic solvents were investigated. Considering the polarity, viscosity, and density of solvents, the chloroepoxy propane and carbon tetrachloride were selected to separate Si and SiC particles. It is found that Si and SiC particles in the slurry waste can be successfully separated by the double-layer organic solvent sedimentation method, which can greatly reduce the sedimentation time and improve the purity of obtained Si-rich and SiC-rich powders. The obtained Si-rich powders consist of 95.04% Si, and the cast Si ingot has 99.06% Si.

  17. Fabrication and characterization of silicon nanowire p-i-n MOS gated diode for use as p-type tunnel FET

    Science.gov (United States)

    Brouzet, V.; Salem, B.; Periwal, P.; Rosaz, G.; Baron, T.; Bassani, F.; Gentile, P.; Ghibaudo, G.

    2015-11-01

    In this paper, we present the fabrication and electrical characterization of a MOS gated diode based on axially doped silicon nanowire (NW) p-i-n junctions. These nanowires are grown by chemical vapour deposition (CVD) using the vapour-liquid-solid (VLS) mechanism. NWs have a length of about 7 \\upmu {m} with 3 \\upmu {m} of doped regions (p-type and n-type) and 1 \\upmu {m} of intrinsic region. The gate stack is composed of 15 nm of hafnium dioxide ({HfO}2), 80 nm of nickel and 120 nm of aluminium. At room temperature, I_{{on}} =-52 {nA}/\\upmu {m} (V_{{DS}}=-0.5 {V}, V_{{GS}}=-4 {V}), and an I_{{on}}/I_{{off}} ratio of about 104 with a very low I_{{off}} current has been obtained. Electrical measurements are carried out between 90 and 390 K, and we show that the I on current is less temperature dependent below 250 K. We also observe that the ON current is increasing between 250 and 390 K. These transfer characteristics at low and high temperature confirm the tunnelling transport mechanisms in our devices.

  18. Impact of strain on gate-induced floating body effect for partially depleted silicon-on-insulator p-type metal–oxide–semiconductor-field-effect-transistors

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Wen-Hung [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Chang, Ting-Chang, E-mail: tcchang@mail.phys.nsysu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Dai, Chih-Hao [Department of Photonics, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Chung, Wan-Lin [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Chen, Ching-En; Ho, Szu-Han [Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Tsai, Jyun-Yu [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Chen, Hua-Mao [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Liu, Guan-Ru [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Cheng, Osbert; Huang, Cheng-Tung [Device Department, United Microelectronics Corporation, Tainan Science Park, Taiwan, ROC (China)

    2013-01-01

    This work investigates impact of mechanical strain on gate-induced-floating-body-effect (GIFBE) for partially depleted silicon-on-insulator p-type metal–oxide–semiconductor field effect transistors (PD SOI p-MOSFETs). First part, the original mechanism of GIFBE on PD SOI p-MOSFETs is studied. The experimental results indicate that GIFBE causes a reduction in oxide electric field (E{sub ox}), resulting in an underestimate of negative-bias temperature instability (NBTI) degradation. This can be attributed to the electrons tunneling from the process-induced partial n{sup +} poly gate and anode electron injection (AEI) model, rather than the electron valence band tunneling (EVB) widely accepted as the mechanism for n-MOSFETs. And then, the second part shows that the strained FB device has less NBTI degradation than the unstrained devices. This behavior can be attributed to the fact that more electron accumulation was induced by strain-induced band gap narrowing, reducing NBTI significantly. - Highlights: ► This work investigates the impact of mechanical strain on GIFBE for PD SOI p-MOSFETs. ► FB device shows an insignificant NBTI due to GIFBE. ► GIFBE results from the partial n{sup +} poly gate and anode electron injection model. ► The strained FB device has less NBTI degradation than unstrained devices. ► We verify the band gap narrowing causes less NBTI on strained FB device.

  19. Effect of Rapid Thermal Processing on Light-Induced Degradation of Carrier Lifetime in Czochralski p-Type Silicon Bare Wafers

    Science.gov (United States)

    Kouhlane, Y.; Bouhafs, D.; Khelifati, N.; Belhousse, S.; Menari, H.; Guenda, A.; Khelfane, A.

    2016-11-01

    The electrical properties of Czochralski silicon (Cz-Si) p-type boron-doped bare wafers have been investigated after rapid thermal processing (RTP) with different peak temperatures. Treated wafers were exposed to light for various illumination times, and the effective carrier lifetime ( τ eff) measured using the quasi-steady-state photoconductance (QSSPC) technique. τ eff values dropped after prolonged illumination exposure due to light-induced degradation (LID) related to electrical activation of boron-oxygen (BO) complexes, except in the sample treated with peak temperature of 785°C, for which the τ eff degradation was less pronounced. Also, a reduction was observed when using the 830°C peak temperature, an effect that was enhanced by alteration of the wafer morphology (roughness). Furthermore, the electrical resistivity presented good stability under light exposure as a function of temperature compared with reference wafers. Additionally, the optical absorption edge shifted to higher wavelength, leading to increased free-carrier absorption by treated wafers. Moreover, a theoretical model is used to understand the lifetime degradation and regeneration behavior as a function of illumination time. We conclude that RTP plays an important role in carrier lifetime regeneration for Cz-Si wafers via modification of optoelectronic and structural properties. The balance between an optimized RTP cycle and the rest of the solar cell elaboration process can overcome the negative effect of LID and contribute to achievement of higher solar cell efficiency and module performance.

  20. A novel technique based on a plasma focus device for nano-porous gallium nitride formation on P-type silicon

    Science.gov (United States)

    Sharifi Malvajerdi, S.; Salar Elahi, A.; Habibi, M.

    2017-04-01

    A new deposition formation was observed with a Mather-type Plasma Focus Device (MPFD). MPFD was unitized to fabricate porous Gallium Nitride (GaN) on p-type Silicon (Si) substrate with a (100) crystal orientation for the first time in a deposition process. GaN was deposited on Si with 4 and 7 shots. The samples were subjected to a 3 phase annealing procedure. First, the semiconductors were annealed in the PFD with nitrogen plasma shots after their deposition. Second, a thermal chemical vapor deposition annealed the samples for 1 h at 1050 °C by nitrogen gas at a pressure of 1 Pa. Finally, an electric furnace annealed the samples for 1 h at 1150 °C with continuous flow of nitrogen. Porous GaN structures were observed by Field emission scanning electron microscopy and atomic force microscopy. Furthermore, X-Ray diffraction analysis was carried out to determine the crystallinity of GaN after the samples were annealed. Energy-Dispersive X-Ray Spectroscopy indicated the amount of gallium, nitrogen, and oxygen due to the self-oxidation of the samples. Photoluminescence spectroscopy revealed emissions at 2.94 eV and 3.39 eV, which shows that hexagonal wurtzite crystal structures were formed.

  1. Impact of mechanical stress on gate tunneling currents of germanium and silicon p-type metal-oxide-semiconductor field-effect transistors and metal gate work function

    Science.gov (United States)

    Choi, Youn Sung; Numata, Toshinori; Nishida, Toshikazu; Harris, Rusty; Thompson, Scott E.

    2008-03-01

    Uniaxial four-point wafer bending stress-altered gate tunneling currents are measured for germanium (Ge)/silicon (Si) channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with HfO2/SiO2 gate dielectrics and TiN/P+ poly Si electrodes. Carrier separation is used to measure electron and hole currents. The strain-altered hole tunneling current from the p-type inversion layer of Ge is measured to be ˜4 times larger than that for the Si channel MOSFET, since the larger strain-induced valence band-edge splitting in Ge results in more hole repopulation into a subband with a smaller out-of-plane effective mass and a lower tunneling barrier height. The strain-altered electron tunneling current from the metal gate is measured and shown to change due to strain altering the metal work function as quantified by flatband voltage shift measurements of Si MOS capacitors with TaN electrodes.

  2. A New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode

    Science.gov (United States)

    Fan, Ching-Lin; Lin, Yi-Yan; Chang, Jyu-Yu; Sun, Bo-Jhang; Liu, Yan-Wei

    2010-06-01

    This study presents one novel compensation pixel design and driving method for active matrix organic light-emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage feed-back method and the simulation results are proposed and verified by SPICE simulator. The measurement and simulation of LTPS TFT characteristics demonstrate the good fitting result. The proposed circuit consists of four TFTs and two capacitors with an additional signal line. The error rates of OLED anode voltage variation are below 0.3% under the threshold voltage deviation of driving TFT (ΔVTH = ±0.33 V). The simulation results show that the pixel design can improve the display image non-uniformity by compensating the threshold voltage deviation of driving TFT and the degradation of OLED threshold voltage at the same time.

  3. 4H-SiC Schottky barrier diodes with semi-insulating polycrystalline silicon field plate termination

    Science.gov (United States)

    Yuan, Hao; Tang, Xiao-Yan; Zhang, Yi-Men; Zhang, Yu-Ming; Song, Qing-Wen; Yang, Fei; Wu, Hao

    2014-05-01

    Based on the theoretical analysis of the 4H-SiC Schottky-barrier diodes (SBDs) with field plate termination, 4H-SiC SBD with semi-insulating polycrystalline silicon (SIPOS) FP termination has been fabricated. The relative dielectric constant of the SIPOS dielectric first used in 4H-SiC devices is 10.4, which is much higher than that of the SiO2 dielectric, leading to benefitting the performance of devices. The breakdown voltage of the fabricated SBD could reach 1200 V at leakage current 20 μA, about 70% of the theoretical breakdown voltage. Meanwhile, both of the simulation and experimental results show that the length of the SIPOS FP termination is an important factor for structure design.

  4. THE RETENTION OF KRYPTON IN POLYCRYSTALLINE SILICON DURING HIGH-TEMPERATURE ANNEALING

    NARCIS (Netherlands)

    GREUTER, MJW; NIESEN, L; VANVEEN, A; EVANS, JH

    1994-01-01

    In a study into the annealing behaviour of silicon containing a few atomic per cent of krypton, it was found that, even at 0.87 of the silicon melting temperature, approximately 90% of the original krypton was still present. This result is compared with analogous work on metals where copious inert g

  5. Fatigue of polycrystalline silicon for MEMS applications: Crack growth and stability under resonant loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Muhlstein, C.L.; Howe, R.T.; Ritchie, R.O.

    2001-12-05

    Although bulk silicon is not known to exhibit susceptibility to cyclic fatigue, micron-scale structures made from silicon films are known to be vulnerable to degradation by fatigue in ambient air environments, a phenomenon that has been recently modeled in terms of a mechanism of sequential oxidation and stress-corrosion cracking of the native oxide layer.

  6. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Narayanan, M.

    2006-07-01

    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  7. MIS solar cells on thin polycrystalline silicon. Progress report No. 3, September 1-November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, W.A.

    1980-12-01

    The first task of this project involves electron-beam deposition of thin silicon films on low cost substrates. The goal is to obtain 20 ..mu..m thick films having 20 ..mu..m diameter crystallites which may be recrystallized to > 40 ..mu..m. Material characterization and device studies are to be included in efforts to reach a 6% conversion efficiency. The second task deals with MIS solar cell fabrication on various types of silicon including poly-Si, ribbon-Si, silicon on ceramic, and thin film silicon. Conduction mechanism studies, optimum engineering design, and modification of the fabrication process are to be used to achieve 13% efficiency on Xtal-Si and 11% efficiency on poly-Si. The third task involves more detailed test procedures and includes spectral response, interface and grain boundary effects, computer analysis, materials studies, and grain boundary passivation. Progress is detailed. (WHK)

  8. Comparison between laser terahertz emission microscope and conventional methods for analysis of polycrystalline silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hidetoshi, E-mail: nakanisi@screen.co.jp; Ito, Akira, E-mail: a.ito@screen.co.jp [SCREEN Holdings Co., Ltd., Kyoto, 612-8486 (Japan); Takayama, Kazuhisa, E-mail: takayama.k0123@gmail.com; Kawayama, Iwao, E-mail: kawayama@ile.osaka-u.ac.jp; Murakami, Hironaru, E-mail: hiro@ile.osaka-u.ac.jp; Tonouchi, Masayoshi, E-mail: tonouchi@ile.osaka-u.ac.jp [Institute of Laser Engineering, Osaka University, Suita, 565-0871 (Japan)

    2015-11-15

    A laser terahertz emission microscope (LTEM) can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL), photoluminescence (PL), and laser beam induced current (LBIC), as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.

  9. Comparison between laser terahertz emission microscope and conventional methods for analysis of polycrystalline silicon solar cell

    Directory of Open Access Journals (Sweden)

    Hidetoshi Nakanishi

    2015-11-01

    Full Text Available A laser terahertz emission microscope (LTEM can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL, photoluminescence (PL, and laser beam induced current (LBIC, as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.

  10. Impurity segregation behavior in polycrystalline silicon ingot grown with variation of electron-beam power

    Science.gov (United States)

    Lee, Jun-Kyu; Lee, Jin-Seok; Jang, Bo-Yun; Kim, Joon-Soo; Ahn, Young-Soo; Cho, Churl-Hee

    2014-08-01

    Electron beam melting (EBM) systems have been used to improve the purity of metallurgical grade silicon feedstock for photovoltaic application. Our advanced EBM system is able to effectively remove volatile impurities using a heat source with high energy from an electron gun and to continuously allow impurities to segregate at the top of an ingot solidified in a directional solidification (DS) zone in a vacuum chamber. Heat in the silicon melt should move toward the ingot bottom for the desired DS. However, heat flux though the ingot is changed as the ingot becomes longer due to low thermal conductivity of silicon. This causes a non-uniform microstructure of the ingot, finally leading to impurity segregation at its middle. In this research, EB power irradiated on the silicon melt was controlled during the ingot growth in order to suppress the change of heat flux. EB power was reduced from 12 to 6.6 kW during the growth period of 45 min with a drop rate of 0.125 kW/min. Also, the silicon ingot was grown under a constant EB power of 12 kW to estimate the effect of the drop rate of EB power. When the EB power was reduced, the grains with columnar shape were much larger at the middle of the ingot compared to the case of constant EB power. Also, the present research reports a possible reason for the improvement of ingot purity by considering heat flux behaviors.

  11. Neutralization and bonding mechanisms of shallow acceptors at grain boundaries in polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L.; Nelson, A.J.; Dhere, R.G.; Yahia, A.; Abou-Elfotouh, F.

    1988-05-01

    Interactions between shallow acceptors (B, Al, Ga, and In) and hydrogen in polycrystalline Si are investigated. The bonding mechanisms involved in the acceptor neutralization process at grain boundaries are examined using microanalytical techniques. Differences in the incorporation of molecular and atomic hydrogen, and corresponding variations in electrical passivation at grain boundaries, are observed. Low-temperature Auger difference spectroscopy confirms Si--H bonding to dominate B, Ga, and In-doped cases, with no direct acceptor--hydrogen bonding. Al-rich grain boundaries show H-complex and hydroxyl bonding. The data confirm chemical bond strength trends with B

  12. Large Polycrystalline Silicon Grains Prepared by Excimer Laser Crystallization of Sputtered Amorphous Silicon Film with Process Temperature at 100 °C

    Science.gov (United States)

    He, Ming; Ishihara, Ryoichi; Neihof, Ellen J. J.; van Andel, Yvonne; Schellevis, Hugo; Metselaar, Wim; Beenakker, Kees

    2007-03-01

    Large polycrystalline silicon (poly-Si) grains with a diameter of 1.8 μm are successfully prepared by excimer laser crystallization (ELC) of a sputtered amorphous silicon (α-Si) film at a maximum process temperature of 100 °C. By pulsed DC magnetron sputtering, α-Si is deposited on a non-structured oxidized wafer. It is found that the α-Si film deposited with a bias is easily ablated during ELC, even at an energy density below the super lateral growth (SLG) region. However, the α-Si film deposited without a bias can endure an energy density well beyond the SLG region without ablation. This zero-bias sputtered α-Si film with a high compressive stress has a low Ar content and a high density, which is beneficial for the suppression of ablation. Large grains with a petal-like shape can be obtained in a wide energy density window, which can be a result from some fine crystallites in the α-Si matrix. These large grains with a low process temperature are promising for the direct formation of system circuits as well as a high-quality display on a plastic foil.

  13. Observation of field-induced electron emission in porous polycrystalline silicon nano-structured diode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Won; Kim, Hoon; Ju, Byeong Kwon [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Yun Hi [Korea Univ., Seoul (Korea, Republic of); Jang, Jin [Kyunghee Univ., Seoul (Korea, Republic of)

    2003-02-01

    Field-induced electron emission properties of porous poly-silicon nano-structured (PNS) diodes were investigated as a function of anodizing conditions, including morphological analysis, various kinds of top electrode thickness and the measuring substrate temperature. Also, the vacuum packaging process was performed by the normal glass frit method. The PNS layer was formed on heavily-dope n-type <100> Si substrate. Non-doped poly-silicon layer was grown by low-pressure chemical vapor deposition (LPCVD) to a thickness of 2mm. Subsequently, the poly-silicon layer was anodized in a mixed solution HF (50 wt%): ethanol(99.8 wt%) = 1:1 as a function of anodizing condition. After anodizing, the PNS layer was thermally oxidized for 1 hr at 900 .deg. C. Subsequently, the top electrode was deposited as a function of Au thickness using E-beam evaporator and, in order to establish ohmic contact, thermally evaporated Al was deposited on the back side of a Si substrate. The prepared PNS diode was packaged using the normal vacuum sealing method. After the vacuum sealing process, the PNS diode was mounted on the PC measurement table. When a positive bias was applied to the top electrode, the electron emission was observed, which was caused by field-induced electron emission through the top metal.

  14. Electrical and optical properties of silicon-doped gallium nitride polycrystalline films

    Indian Academy of Sciences (India)

    S R Bhattacharyya; A K Pal

    2008-02-01

    Si-doped GaN films in polycrystalline form were deposited on quartz substrates at deposition temperatures ranging from 300–623 K using r.f. sputtering technique. Electrical, optical and microstructural properties were studied for these films. It was observed that films deposited at room temperature contained mainly hexagonal gallium nitride (ℎ-GaN) while films deposited at 623 K were predominantly cubic (-GaN) in nature. The films deposited at intermediate temperatures were found to contain both the hexagonal and cubic phases of GaN. Studies on the variation of conductivity with temperature indicated Mott’s hopping for films containing -GaN while Efros and Shklovskii (E–S) hopping within the Coulomb gap was found to dominate the carrier transport mechanism in the films containing ℎ-GaN. A crossover from Mott’s hopping to E–S hopping in the `soft’ Coulomb gap was noticed with lowering of temperature for films containing mixed phases of GaN. The relative intensity of the PL peak at ∼ 2.73 eV to that for peak at ∼ 3.11 eV appearing due to transitions from deep donor to valence band or shallow acceptors decreased significantly at higher temperature. Variation of band gap showed a bowing behaviour with the amount of cubic phase present in the films.

  15. Investigation of Melting and Solidification of Thin Polycrystalline Silicon Films via Mixed-Phase Solidification

    Science.gov (United States)

    Wang, Ying

    Melting and solidification constitute the fundamental pathways through which a thin-film material is processed in many beam-induced crystallization methods. In this thesis, we investigate and leverage a specific beam-induced, melt-mediated crystallization approach, referred to as Mixed-Phase Solidification (MPS), to examine and scrutinize how a polycrystalline Si film undergoes the process of melting and solidification. On the one hand, we develop a more general understanding as to how such transformations can transpire in polycrystalline films. On the other hand, by investigating how the microstructure evolution is affected by the thermodynamic properties of the system, we experimentally reveal, by examining the solidified microstructure, fundamental information about such properties (i.e., the anisotropy in interfacial free energy). Specifically, the thesis consists of two primary parts: (1) conducting a thorough and extensive investigation of the MPS process itself, which includes a detailed characterization and analysis of the microstructure evolution of the film as it undergoes MPS cycles, along with additional development and refinement of a previously proposed thermodynamic model to describe the MPS melting-and-solidification process; and (2) performing MPS-based experiments that were systematically designed to reveal more information on the anisotropic nature of Si-SiO2 interfacial energy (i.e., sigma Si-SiO2). MPS is a recently developed radiative-beam-based crystallization technique capable of generating Si films with a combination of several sought-after microstructural characteristics. It was conceived, developed, and characterized within our laser crystallization laboratory at Columbia University. A preliminary thermodynamic model was also previously proposed to describe the overall melting and solidification behavior of a polycrystalline Si film during an MPS cycle, wherein the grain-orientation-dependent solid-liquid interface velocity is identified

  16. Direct correlation of solar cell performance with metal impurity distributions in polycrystalline silicon using synchrotron-based x-ray analysis

    Energy Technology Data Exchange (ETDEWEB)

    McHugo, S.A.; Thompson, A.C.; Lamble, G. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1998-12-31

    The work presented here directly measures metal impurity distributions and their chemical state in as-grown and fully processed polycrystalline silicon sued for terrestrial-based solar cells. The goal was to determine if a correlation exists between poorly performing regions of solar cells and metal impurity distributions as well as to ascertain the chemical state of the impurities. Synchrotron-based x-ray fluorescence mapping and x-ray absorption spectroscopy, both with a spatial resolution of 1 {micro}m, were used to measure impurity distributions and chemical state, respectively, in poorly performing regions of polycrystalline silicon. The Light Beam Induced Current method was used to measure minority carrier recombination in the material in order to identify poor performance regions. The authors have detected iron, chromium, nickel, gold and copper impurity precipitates and they have recognized a direct correlation between impurity distributions and poor performing regions in both as-grown and fully processed material. Furthermore, from x-ray absorption studies, they have initial results, indicating that the Fe in this material is in oxide form, not FeSi{sub 2}. These results provide a fundamental understanding into the efficiency-limiting factors of polycrystalline silicon solar cells as well as yielding insight for methods of solar cell improvement.

  17. 8% Efficient thin-film polycrystalline-silicon solar cells based on aluminium-induced crystallization and thermal CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, I.; Carnel, L.; Van Gestel, D.; Beaucarne, G.; Poortmans, J. [IMEC VZW, Leuven (Belgium)

    2006-07-01

    A considerable cost reduction could be achieved in photovoltaics if efficient solar cells could be made from polycrystalline-silicon (pc-Si) thin films on inexpensive substrates. We recently showed promising solar cells results using pc-Si layers obtained by aluminium-induced crystallization (AlC) of amorphous silicon in combination with thermal chemical vapor deposition (CVD). To obtain highly efficient pc-Si solar cells, however, the material quality has to be optimized and cell processes different from those applied for standard bulk-Si solar cells have to be developed. In this work, we present the different process steps that we recently developed to enhance the efficiency of pc-Si solar cells on alumina substrates made by AlC in combination with thermal CVD. Our present pc-Si solar cell process yields cells in substrate configuration with efficiencies so far of up to 8.0%. Spin-on oxides are used to smoothen the alumina substrate surface to enhance the electronic quality of the absorber layers. The cells have heterojunction emitters consisting of thin a-Si layers that yield much higher V{sub oc} values than classical diffused emitters. Base and emitter contacts are on top of the cell in interdigitated finger patterns, leading to fill factors above 70%. The front surface of the cells is plasma textured to increase the current density. Our present pc-Si solar cell efficiency of 8% together with the fast progression that we have made over the last few years indicate the large potential of pc-Si solar cells based on the AlC seed layer approach. (author)

  18. Optimal angle of polycrystalline silicon solar panels placed in a building using the ant colony optimization algorithm

    Science.gov (United States)

    Saouane, I.; Chaker, A.; Zaidi, B.; Shekhar, C.

    2017-03-01

    This paper describes the mathematical model used to determine the amount of solar radiation received on an inclined solar photovoltaic panel. The optimum slope angles for each month, season, and year have also been calculated for a solar photovoltaic panel. The optimization of the procedure to maximize the solar energy collected by the solar panel by varying the tilt angle is also presented. As a first step, the global solar radiation on the horizontal surface of a thermal photovoltaic panel during clear sky is estimated. Thereafter, the Muneer model, which provides the most accurate estimation of the total solar radiation at a given geographical point has been used to determine the optimum collector slope. Also, the Ant Colony Optimization (ACO) algorithm was applied to obtain the optimum tilt angle settings for PV collector to improve the PV collector efficiency. The results show good agreement between calculated and predicted results. Additionally, this paper presents studies carried out on the polycrystalline silicon solar panels for electrical energy generation in the city of Ghardaia. The electrical energy generation has been studied as a function of amount of irradiation received and the angle of optimum orientation of the solar panels.

  19. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.

    Science.gov (United States)

    Sayer, Robert A; Piekos, Edward S; Phinney, Leslie M

    2012-12-01

    Accurate knowledge of thermophysical properties is needed to predict and optimize the thermal performance of microsystems. Thermal conductivity is experimentally determined by measuring quantities such as voltage or temperature and then inferring a thermal conductivity from a thermal model. Thermal models used for data analysis contain inherent assumptions, and the resultant thermal conductivity value is sensitive to how well the actual experimental conditions match the model assumptions. In this paper, a modified data analysis procedure for the steady state Joule heating technique is presented that accounts for bond pad effects including thermal resistance, electrical resistance, and Joule heating. This new data analysis method is used to determine the thermal conductivity of polycrystalline silicon (polysilicon) microbridges fabricated using the Sandia National Laboratories SUMMiT V™ micromachining process over the temperature range of 77-350 K, with the value at 300 K being 71.7 ± 1.5 W/(m K). It is shown that making measurements on beams of multiple lengths is useful, if not essential, for inferring the correct thermal conductivity from steady state Joule heating measurements.

  20. Low Temperature Deposition of PECVD Polycrystalline Silicon Thin Films using SiF4 / SiH4 mixture

    Science.gov (United States)

    Syed, Moniruzzaman; Inokuma, Takao; Kurata, Yoshihiro; Hasegawa, Seiichi

    2016-03-01

    Polycrystalline silicon films with a strong (110) texture were prepared at 400°C by a plasma-enhanced chemical vapor deposition using different SiF4 flow rates ([SiF4] = 0-0.5 sccm) under a fixed SiH4 flow rate ([SiH4] = 1 or 0.15 sccm). The effects of the addition of SiF4 to SiH4 on the structural properties of the films were studied by Raman scattering, X-ray diffraction (XRD), Atomic force microscopy and stress measurements. For [SiH4] = 1 sccm, the crystallinity and the (110) XRD grain size monotonically increased with increasing [SiF4] and their respective maxima reach 90% and 900 Å. However, for [SiH4] = 0.15 sccm, both the crystallinity and the grain size decreased with [SiF4]. Mechanisms causing the change in crystallinity are discussed, and it was suggested that an improvement in the crystallinity, due to the addition of SiF4, is likely to be caused by the effect of a change in the surface morphology of the substrates along with the effect of in situ chemical cleaning.

  1. Magnetic-composite-modified polycrystalline silicon nanowire field-effect transistor for vascular endothelial growth factor detection and cancer diagnosis.

    Science.gov (United States)

    Chen, Hsiao-Chien; Qiu, Jian-Tai; Yang, Fu-Liang; Liu, Yin-Chih; Chen, Min-Cheng; Tsai, Rung-Ywan; Yang, Hung-Wei; Lin, Chia-Yi; Lin, Chu-Chi; Wu, Tzong-Shoon; Tu, Yi-Ming; Xiao, Min-Cong; Ho, Chia-Hua; Huang, Chien-Chao; Lai, Chao-Sung; Hua, Mu-Yi

    2014-10-01

    This study proposes a vascular endothelial growth factor (VEGF) biosensor for diagnosing various stages of cervical carcinoma. In addition, VEGF concentrations at various stages of cancer therapy are determined and compared to data obtained by computed tomography (CT) and cancer antigen 125 (CA-125). The increase in VEGF concentrations during operations offers useful insight into dosage timing during cancer therapy. This biosensor uses Avastin as the biorecognition element for the potential cancer biomarker VEGF and is based on a n-type polycrystalline silicon nanowire field-effect transistor (poly-SiNW-FET). Magnetic nanoparticles with poly[aniline-co-N-(1-one-butyric acid) aniline]-Fe3O4 (SPAnH-Fe3O4) shell-core structures are used as carriers for Avastin loading and provide rapid purification due to their magnetic properties, which prevent the loss of bioactivity; furthermore, the high surface area of these structures increases the quantity of Avastin immobilized. Average concentrations in human blood for species that interfere with detection specificity are also evaluated. The detection range of the biosensor for serum samples covers the results expected from both healthy individuals and cancer patients.

  2. Rapid Thermal Annealing and Hydrogen Passivation of Polycrystalline Silicon Thin-Film Solar Cells on Low-Temperature Glass

    Directory of Open Access Journals (Sweden)

    Mason L. Terry

    2007-01-01

    Full Text Available The changes in open-circuit voltage (Voc, short-circuit current density (Jsc, and internal quantum efficiency (IQE of aLuminum induced crystallization, ion-assisted deposition (ALICIA polycrystalline silicon thin-film solar cells on low-temperature glass substrates due to rapid thermal anneal (RTA treatment and subsequent remote microwave hydrogen plasma passivation (hydrogenation are examined. Voc improvements from 130 mV to 430 mV, Jsc improvements from 1.2 mA/cm2 to 11.3 mA/cm2, and peak IQE improvements from 16% to > 70% are achieved. A 1-second RTA plateau at 1000°C followed by hydrogenation increases the Jsc by a factor of 5.5. Secondary ion mass spectroscopy measurements are used to determine the concentration profiles of dopants, impurities, and hydrogen. Computer modeling based on simulations of the measured IQE data reveals that the minority carrier lifetime in the absorber region increases by 3 orders of magnitude to about 1 nanosecond (corresponding to a diffusion length of at least 1 μm due to RTA and subsequent hydrogenation. The evaluation of the changes in the quantum efficiency and Voc due to RTA and hydrogenation with computer modeling significantly improves the understanding of the limiting factors to cell performance.

  3. Integration of a 2D Periodic Nanopattern Into Thin Film Polycrystalline Silicon Solar Cells by Nanoimprint Lithography

    CERN Document Server

    Abdo, Islam; Deckers, Jan; Depauw, Valérie; Tous, Loic; Van Gestel, Dries; Guindi, Rafik; Gordon, Ivan; Daif, Ounsi El

    2015-01-01

    The integration of two-dimensional (2D) periodic nanopattern defined by nanoimprint lithography and dry etching into aluminum induced crystallization (AIC) based polycrystalline silicon (Poly-Si) thin film solar cells is investigated experimentally. Compared to the unpatterned cell an increase of 6% in the light absorption has been achieved thanks to the nanopattern which, in turn, increased the short circuit current from 20.6 mA/cm2 to 23.8 mA/cm2. The efficiency, on the other hand, has limitedly increased from 6.4% to 6.7%. We show using the transfer length method (TLM) that the surface topography modification caused by the nanopattern has increased the sheet resistance of the antireflection coating (ARC) layer as well as the contact resistance between the ARC layer and the emitter front contacts. This, in turn, resulted in increased series resistance of the nanopatterned cell which has translated into a decreased fill factor, explaining the limited increase in efficiency.

  4. Enhanced Extraction of Silicon-Vacancy Centers Light Emission Using Bottom-Up Engineered Polycrystalline Diamond Photonic Crystal Slabs.

    Science.gov (United States)

    Ondič, Lukáš; Varga, Marian; Hruška, Karel; Fait, Jan; Kapusta, Peter

    2017-03-28

    Silicon vacancy (SiV) centers are optically active defects in diamond. The SiV centers, in contrast to nitrogen vacancy (NV) centers, possess narrow and efficient luminescence spectrum (centered at ≈738 nm) even at room temperature, which can be utilized for quantum photonics and sensing applications. However, most of light generated in diamond is trapped in the material due to the phenomenon of total internal reflection. In order to overcome this issue, we have prepared two-dimensional photonic crystal slabs from polycrystalline diamond thin layers with high density of SiV centers employing bottom-up growth on quartz templates. We have shown that the spectral overlap between the narrow light emission of the SiV centers and the leaky modes extracting the emission into almost vertical direction (where it can be easily detected) can be obtained by controlling the deposition time. More than 14-fold extraction enhancement of the SiV centers photoluminescence was achieved compared to an uncorrugated sample. Computer simulation confirmed that the extraction enhancement originates from the efficient light-matter interaction between light emitted from the SiV centers and the photonic crystal slab.

  5. Sodium Accumulation at Potential-Induced Degradation Shunted Areas in Polycrystalline Silicon Modules

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Steven P.; Aguiar, Jeffery A.; Hacke, Peter; Guthrey, Harvey; Johnston, Steve; Al-Jassim, Mowafak

    2016-11-01

    We investigated potential-induced degradation (PID) in silicon mini-modules that were subjected to accelerated stressing to induce PID conditions. Shunted areas on the cells were identified with photoluminescence and dark lock-in thermography (DLIT) imaging. The identical shunted areas were then analyzed via time-of-flight secondary-ion mass spectrometry (TOFSIMS) imaging, 3-D tomography, and high-resolution transmission electron microscopy. The TOF-SIMS imaging indicates a high concentration of sodium in the shunted areas, and 3-D tomography reveals that the sodium extends more than 2 um from the surface below shunted regions. Transmission electron microscopy investigation reveals that a stacking fault is present at an area identified as shunted by DLIT imaging. After the removal of surface sodium, tomography reveals persistent sodium present around the junction depth of 300 nm and a drastic difference in sodium content at the junction when comparing shunted and nonshunted regions.

  6. Influence of laser annealing on hydrogen bonding in compensated polycrystalline silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, R. [Jurusan Fisika, Fakultas MIPA, Universitas Indonesia, 16424 Depok (Indonesia)]. E-mail: rosarisaleh@research-ui.org; Nickel, N.H. [Hahn-Meitner-Institut Berlin, Kekulestr.5, 12489 Berlin (Germany); Maydell, K.V. [Hahn-Meitner-Institut Berlin, Kekulestr.5, 12489 Berlin (Germany)

    2005-09-01

    Compensated hydrogenated amorphous silicon films were crystallized using a step-by-step laser dehydrogenation and crystallization procedure. The influence of laser crystallization on hydrogen bonding is investigated employing Raman spectroscopy and hydrogen effusion measurements. In P-doped samples a considerable amount of hydrogen is accommodated in the clustered phase, while for B-doped samples most of the H atoms are accommodated in isolated Si-H bonds. In specimens where the boron and phosphorous doping is at equal levels, the hydrogen bonding configuration is close to that found for singly P-doped samples. From hydrogen effusion measurements, the hydrogen density-of-states distribution in fully crystallized poly-Si is derived. For the compensated poly-Si films four peaks arise in the H density-of-states distribution that are located at 2.0, 2.2, 2.5 and 2.8 eV below the hydrogen transport states. The peak observed at 2.8 eV below the hydrogen transport states is not observed in singly B-doped samples.

  7. 超声喷雾热分解法制备p型氧化锌多晶薄膜%Preparation of p-type polycrystalline ZnO thin films by ultrasonic spray pyrolysis method

    Institute of Scientific and Technical Information of China (English)

    郑春蕊

    2011-01-01

    采用超声喷雾热分解法在玻璃衬底上以醋酸锌水溶液[Zn(CH3COO)2·2H2O]、醋酸铵(CH3COONH4)和硝酸铝[Al(NO3)3·9H2O]的混合溶液为前驱体生成了N-Al共掺P型氧化锌薄膜.考察了前驱体溶液浓度、载气流速、热解温度对实验结果的影响.用XRD和SEM测试手段对薄膜进行了晶体结构和表面形貌的表征,结果表明所制备的薄膜为六角纤锌矿结构的氧化锌薄膜,表面均匀,结构致密,具有强烈的呈c轴垂直于衬底的(002)择优取向.对薄膜进行了电学测试和光致发光性能测试,结果表明制备的薄膜为P型氧化锌薄膜,薄膜的光致发光明显具有氧化锌薄膜的特点.%p -type N -Al co-doped ZnO thin films were deposited on quartz glass substrates by ultrasonic spray pyrolysis method from a mixed aqueous solution of Zn ( CH3COO )2 · 2H2O, CH3 COONH4, and Al ( NO3 )3 · 9H2O. Effects of precursor solution concentration, flow rate of carrier gas, and pyrolysis temperature on the experiment result were studied.XRD and SEM were employed to characterize the crystalline structure and surface morphology of prepared ZnO thin films.Results indicated that the ZnO thin films belonged to hexagonal wurtzite structure,had a uniform surface, dense structure,and a strong preferred orientation( 002 )with the c axis perpendicular to the substrates. Photoluminescence performances and electrical properties of the thin films had been tested and the results indicated that the films were p - type ZnO thin films and their photoluminescence had obvious features of ZnO thin films.

  8. Opportunities and challenges in the use of heavily doped polycrystalline silicon as a thermoelectric material. An experimental study

    OpenAIRE

    2010-01-01

    Large-volume deployment of Si-based Seebeck generators can be foreseen only if polycrystalline rather than single crystalline materials can be actually used. The aim of this study was therefore to verify whether polycrystalline Si films deposited on top of a SiO$_2$ insulating layer can develop interesting thermoelectric power factors. We prepared 450-nm thick heavily boron doped polysilicon layers, setting the initial boron content in the film to be in excess of the boron solubility in polyc...

  9. Recombination activity of light-activated copper defects in p-type silicon studied by injection- and temperature-dependent lifetime spectroscopy

    Science.gov (United States)

    Inglese, Alessandro; Lindroos, Jeanette; Vahlman, Henri; Savin, Hele

    2016-09-01

    The presence of copper contamination is known to cause strong light-induced degradation (Cu-LID) in silicon. In this paper, we parametrize the recombination activity of light-activated copper defects in terms of Shockley—Read—Hall recombination statistics through injection- and temperature dependent lifetime spectroscopy (TDLS) performed on deliberately contaminated float zone silicon wafers. We obtain an accurate fit of the experimental data via two non-interacting energy levels, i.e., a deep recombination center featuring an energy level at Ec-Et=0.48 -0.62 eV with a moderate donor-like capture asymmetry ( k =1.7 -2.6 ) and an additional shallow energy state located at Ec-Et=0.1 -0.2 eV , which mostly affects the carrier lifetime only at high-injection conditions. Besides confirming these defect parameters, TDLS measurements also indicate a power-law temperature dependence of the capture cross sections associated with the deep energy state. Eventually, we compare these results with the available literature data, and we find that the formation of copper precipitates is the probable root cause behind Cu-LID.

  10. Controllability of self-aligned four-terminal planar embedded metal double-gate low-temperature polycrystalline-silicon thin-film transistors on a glass substrate

    Science.gov (United States)

    Ohsawa, Hiroki; Sasaki, Shun; Hara, Akito

    2016-03-01

    Self-aligned four-terminal n-channel (n-ch) and p-channel (p-ch) planar embedded metal double-gate polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) were fabricated on a glass substrate at a low temperature of 550 °C. This device includes a metal top gate (TG) and a metal bottom gate (BG), which are used as the drive and control gates or vice versa. The BG was embedded in a glass substrate, and a poly-Si channel with large lateral grains was fabricated by continuous-wave laser lateral crystallization. The threshold voltage modulation factors under various control gate voltages (γ = ΔVth/ΔVCG) were nearly equal to the theoretical predictions in both the n- and p-ch TFTs. By exploiting this high controllability, an enhancement depletion (ED) inverter was fabricated, and successful operation at 2.0 V was confirmed.

  11. Low-cost conversion of polycrystalline silicon into sheet by HEM and FAST. [Heat Exchanger Method and Fixed Abrasive Slicing Technique

    Science.gov (United States)

    Khattak, C. P.; Schmid, F.

    1980-01-01

    The conversion of polycrystalline silicon to sheet form (the wafers produced are 10 cm x 10 cm cross section with minimum surface damage) by the Heat Exchanger Method (HEM) and multi-wire Fixed Abrasive Slicing Technique (FAST), as a means of reducing the cost of solar arrays for adaptation of photovoltaic technology for terrestrial applications, is given. A schematic of a HEM furnace, which includes a silica crucible, and developments in the HEM process are presented. A new machine for slicing with wire was designed and fabricated. The high-speed slicer has been used to slice 19 wafers per cm from 10 cm diameter crystals. Both HEM and FAST are low-cost processes and they have the potential of giving one of the lowest add-on costs ($6.24 and $6.48 per square meter of sheet respectively, with the combination add-on cost of $14.87 per square meter) of this conversion.

  12. Low-cost conversion of polycrystalline silicon into sheet by HEM and FAST. [Heat Exchanger Method and Fixed Abrasive Slicing Technique

    Science.gov (United States)

    Khattak, C. P.; Schmid, F.

    1980-01-01

    The conversion of polycrystalline silicon to sheet form (the wafers produced are 10 cm x 10 cm cross section with minimum surface damage) by the Heat Exchanger Method (HEM) and multi-wire Fixed Abrasive Slicing Technique (FAST), as a means of reducing the cost of solar arrays for adaptation of photovoltaic technology for terrestrial applications, is given. A schematic of a HEM furnace, which includes a silica crucible, and developments in the HEM process are presented. A new machine for slicing with wire was designed and fabricated. The high-speed slicer has been used to slice 19 wafers per cm from 10 cm diameter crystals. Both HEM and FAST are low-cost processes and they have the potential of giving one of the lowest add-on costs ($6.24 and $6.48 per square meter of sheet respectively, with the combination add-on cost of $14.87 per square meter) of this conversion.

  13. Driving Method Compensating for the Hysteresis of Polycrystalline Silicon Thin-Film Transistors for Active-Matrix Organic Light-Emitting Diode Displays

    Science.gov (United States)

    Jung, Myoung-Hoon; Kim, Ohyun; Kim, Byeong-Koo; Chung, Hoon-Ju

    2009-05-01

    A new driving method for active-matrix organic light-emitting diode displays is proposed and evaluated. The pixel structure of the proposed driving method is composed of three thin-film transistors (TFTs) and one capacitor. It inserts black data into display images to reset driving TFTs for the purpose of maintaining constant electrical characteristics of driving TFTs. The proposed driving scheme is less sensitive to the hysteresis of low-temperature polycrystalline silicon (LTPS) TFTs than the conventional pixel structure with two TFTs and one capacitor, and this scheme can virtually eliminate the recoverable residual image that occurs owing to the hysteresis characteristics of LTPS TFTs. In the proposed driving scheme, black data are inserted into displayed images so that the motion image quality is improved.

  14. Characterization of nanometer-thick polycrystalline silicon with phonon-boundary scattering enhanced thermoelectric properties and its application in infrared sensors.

    Science.gov (United States)

    Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo

    2015-01-14

    Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK(-1) which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 10(8) and 1.83 × 10(8) cm Hz(1/2) W(-1) for sensors of 52 nm thick poly-Si, and 5.75 × 10(7) and 3.95 × 10(7) cm Hz(1/2) W(-1) for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.

  15. Predoping effects of boron and phosphorous on arsenic diffusion along grain boundaries in polycrystalline silicon investigated by atom probe tomography

    Science.gov (United States)

    Takamizawa, Hisashi; Shimizu, Yasuo; Inoue, Koji; Nozawa, Yasuko; Toyama, Takeshi; Yano, Fumiko; Inoue, Masao; Nishida, Akio; Nagai, Yasuyoshi

    2016-10-01

    The effect of P or B predoping on As diffusion in polycrystalline Si was investigated by atom probe tomography. In all samples, a high concentration of As was found at grain boundaries, indicating that such boundaries are the main diffusion path. However, As grain-boundary diffusion was suppressed in the B-doped sample and enhanced in the P-doped sample. In a sample codoped with both P and B, As diffusion was somewhat enhanced, indicating competition between the effects of the two dopants. The results suggest that As grain-boundary diffusion can be controlled by varying the local concentration of P or B.

  16. Morphology and electronic transport of polycrystalline silicon films deposited by SiF sub 4 /H sub 2 at a substrate temperature of 200 deg. C

    CERN Document Server

    Hazra, S; Ray, S

    2002-01-01

    Undoped and phosphorous doped polycrystalline silicon (poly-Si) films were deposited using a SiF sub 4 /H sub 2 gas mixture at a substrate temperature of 200 deg. C by radio frequency plasma enhanced chemical vapor deposition (rf-PECVD). Fourier transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) experiments reveal that the present poly-Si films are equivalent to the poly-Si films deposited at high temperature (>600 deg. C). XRD and scanning electron microscope observations show that the crystalline quality of slightly P-doped film is better compared to that of undoped poly-Si films. Phosphorus atom concentration in the slightly P-doped poly-Si film is 5.0x10 sup 1 sup 6 atoms/cm sup 3. Association of a few phosphorous atoms in the silicon matrix enhances crystallization as eutectic-forming metals do. Dark conductivity of slightly P-doped film is 4 orders of magnitude higher, although mobility-lifetime product (eta mu tau) is 2 orders of magnitude lower than that of undoped film. The presence o...

  17. 用稻壳硅源水热合成P型分子筛的研究%Study on the hydrothermal synthesis of P-type zeolite from rice husk silicon

    Institute of Scientific and Technical Information of China (English)

    杨君; 马红超; 付颖寰; 宋宇; 王永为; 于春玲; 董晓丽

    2011-01-01

    利用稻壳中丰富的氧化硅为硅源,以Al(OH)3为外加铝源,采用水热法合成P型分子筛.通过实验得到制备P型分子筛的最佳条件:硅铝摩尔比(SiO2/A12O3)为5.6,钠硅摩尔比(Na2O/SiO2)为1.43,水钠摩尔比(H2O/Na2O)为18.3,反应温度为85℃,反应时间为24 h.X射线衍射(XRD)与扫描电镜分析表明,该条件下合成的P型分子筛具有较高的结晶度,无杂相,其Ca2+(以CaCO3计)交换容量可达320 mg/g.该方法为农业副产物的再利用提供了一条有效途径.%P-type zeolite was hydrothermal synthesized with rice husk as silicon source and A1(OH)3 as Al source. Results showed that the optimum composition for synthesis of P-type zeolite was SiO2/AlzO3 molar ratio of 5. 6, Na2O/SiO2 molar ratio of 1. 43, and H2O/Na2O molar ratio of 18. 3, which could give maximum calcium ionic exchange capacity of P-type zeolite for 320 mg/g (equivalent to CaCO3) when the crystallization temperature was 85 ℃ and reacted for 24 h. Analysis of XRD and SEM indicated that the P zeolite synthesized under optimum condition had pure form, single phase and high crystalline, it could be used as wash auxiliary. The method provided an effective way for the reuse of agricultural by-products.

  18. Photovoltaic mechanisms in polycrystalline thin film silicon solar cells. Quarterly technical progress report No. 1, July 30-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.

    1980-07-30

    Major accomplishments during the first quarter of the contract period are reported. Small area diode fabrication and analysis has been continued. This technique has further been applied to many RTR ribbons. An optical technique for determination of crystallite orientations has been placed in operation. This technique has many distinct advantages. These are: (1) rapid; (2) can be set-up very inexpensively; (3) well suited for polycrystalline substrates of small grain size; and (4) can easily characterize twins. Accuracies obtained with this technique are about the same as that of the Laue technique. A technique to qualitatively evaluate grain boundary activity in unprocessed substrates has been used and valuable results obtained. Further analysis is being done to use this technique for quantitative evaluation. A major study of G.B. orientation effects is underway. Initial results on RTR ribbons have shown a good correlation of G.B. barrier height with misorientation (tilt boundaries).

  19. Extraction of Kinetic Parameters for the Chemical Vapor Deposition of Polycrystalline Silicon at Medium and Low Pressures

    NARCIS (Netherlands)

    Holleman, J.; Verweij, J.F.; Verweij, Jan F.

    1993-01-01

    The deposition of silicon (Si) from silane (SiH4) was studied in the silane pressure range from 0.5 to 100 Pa (0.005 to1 mbar) and total pressure range from 10 to 1000 Pa using N2 or He as carrier gases. The two reaction paths, namely,heterogeneous and homogeneous decomposition could be separated by

  20. Extraction of Kinetic Parameters for the Chemical Vapor Deposition of Polycrystalline Silicon at Medium and Low Pressures

    NARCIS (Netherlands)

    Holleman, Jisk; Verweij, Jan F.

    1993-01-01

    The deposition of silicon (Si) from silane (SiH4) was studied in the silane pressure range from 0.5 to 100 Pa (0.005 to1 mbar) and total pressure range from 10 to 1000 Pa using N2 or He as carrier gases. The two reaction paths, namely,heterogeneous and homogeneous decomposition could be separated by

  1. Influence of temperature on power output of a panel of polycrystalline silicon in the west region of Parana, Brazil; Influencia da temperatura sobre a potencia de saida de um painel de silicio policristalino na regiao oeste paranaense

    Energy Technology Data Exchange (ETDEWEB)

    Michels, Roger Nabeyama; Santos, Jose Airton Azevedo dos; Gnoatto, Estor; Kawanagh, Edward; Fischborn, Marcos [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil); Halmeman, Maria Cristina Rodrigues [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)

    2008-07-01

    Photovoltaic panels have been confirmed as an alternative source of electric energy. However, the output power of a photovoltaic panel is strongly dependent on solar intensity modifications and ambient temperature too. Then, it is necessary to know like the panels work under these alterations. This work intend to analyze the influence of the temperature on the output power of a polycrystalline silicon photovoltaic panel in Medianeira City located in West Region of Parana State by one year observation period. (author)

  2. Influence of temperature on power output of a panel of polycrystalline silicon in the west region of Parana, Brazil; Influencia da temperatura sobre a potencia de saida de um painel de silicio policristalino na regiao oeste paranaense

    Energy Technology Data Exchange (ETDEWEB)

    Michels, Roger Nabeyama; Santos, Jose Airton Azevedo dos; Gnoatto, Estor; Kawanagh, Edward; Fischborn, Marcos [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil); Halmeman, Maria Cristina Rodrigues [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)

    2008-07-01

    Photovoltaic panels have been confirmed as an alternative source of electric energy. However, the output power of a photovoltaic panel is strongly dependent on solar intensity modifications and ambient temperature too. Then, it is necessary to know like the panels work under these alterations. This work intend to analyze the influence of the temperature on the output power of a polycrystalline silicon photovoltaic panel in Medianeira City located in West Region of Parana State by one year observation period. (author)

  3. Surface Engineering of Polycrystalline Silicon for Long-term Mechanical Stress Endurance Enhancement in Flexible Low Temperature Poly-Si Thin-Film Transistors.

    Science.gov (United States)

    Chen, Bo-Wei; Chang, Ting-Chang; Hung, Yu-Ju; Huang, Shin-Ping; Chen, Hua-Mao; Liao, Po-Yung; Lin, Yu-Ho; Huang, Hui-Chun; Chiang, Hsiao-Cheng; Yang, Chung-I; Zheng, Yu-Zhe; Chu, Ann-Kuo; Li, Hung-Wei; Tsai, Chih-Hung; Lu, Hsueh-Hsing; Wang, Terry Tai-Jui; Chang, Tsu-Chiang

    2017-02-08

    Surface morphology in polycrystalline silicon (poly-Si) film is an issue regardless of whether conventional excimer laser annealing (ELA) or the newer metal-induced lateral crystallization (MILC) process is used. This paper investigates the stress distribution while undergoing long-term mechanical stress and the influence of stress on electrical characteristics. Our simulated results show that the non-uniform stress in the gate insulator is more pronounced near the polysilicon/gate insulator edge and at the two sides of the polysilicon protrusion. This stress results in defects in the gate insulator and leads to a non-uniform degradation phenomenon, which affects both the performance and reliability in thin-film transistors (TFTs). The degree of degradation is similar regardless of bending axis (channel-length axis, channel-width axis) or bending type (compression, tension), which means that the degradation is dominated by the protrusion effects. Furthermore, by utilizing long-term electrical bias stresses after undergoing long-tern bending stress, it is apparent that the carrier injection is severe in the sub-channel region, which confirms that the influence of protrusions is crucial. To eliminate the influence of surface morphology in poly-Si, three kinds of laser energy density were used during crystallization to control the protrusion height. The device with lowest protrusions demonstrates the smallest degradation after undergoing long-term bending.

  4. SIMULATION OF HETEROJUNCTION SOLAR CELLS BASED ON p-TYPE SILICON WAFER%p型晶体硅异质结太阳电池光电特性模拟研究

    Institute of Scientific and Technical Information of China (English)

    程雪梅; 孟凡英; 汪建强; 李祥; 黄建华

    2012-01-01

    利用AFORS-HET软件模拟以p型晶体硅为衬底的异质结太阳电池的特性.太阳电池的基本结构为:TCO/n-a-Si∶ H/i-a-Si∶ H/p-c-Si/Ag,通过改变电池材料的特征参量,分析电池输出特性随相关参量变化的规律.结果表明,与ITO相比,以ZnO为透明导电极的电池在短波光和可见光波段光谱响应更强,短路电流密度和电池效率更高.此外,在所建立的电池模型中,限定掺杂型非晶硅层的厚度为10nm,改变本征非晶硅层厚度,模拟研究找到了电池的短路电流、开路电压、填充因子及光电转换效率随本征层厚度变化的规律和最优值,通过模拟研究发现有背场的双面电池比无背场电池的开路电压增加4.8%,最高转换效率达21.25%.%The performance of heterojunction solar cells was investigated in p-type silicon crystalline by using AFORS-HET. From the simulation results, it is found that comparing with using ITO as TCO, the absorption of solar cell with ZnO as its TCO is much stronger in visible light, and the short current(Jsc) is bigger than the former, so the efficiency(Eff) increase. After inserting a thin intrinsic amorphous silicon (a-Si) between the n a-Si and c-Si, the short current and the fill factor both increased rapidly, and the Eff raised. However, the thickness of the intrinsic layer must be strict controlled within 0. 1-1. 0nm in this model. The bifacial heterojunction solar cells with the structure ZnO(80nm)/a-Si n(10nm)/a-Si i(lnm)/c-Si p(0. 3cm)/a-Si i(lnm)/a-Si p+(10nm) was simulated, and the best performance of Eff is 21. 25% .

  5. Phosphorus and boron diffusion paths in polycrystalline silicon gate of a trench-type three-dimensional metal-oxide-semiconductor field effect transistor investigated by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bin, E-mail: hanbin@imr.tohoku.ac.jp; Takamizawa, Hisashi, E-mail: takamizawa.hisashi@jaea.go.jp; Shimizu, Yasuo; Inoue, Koji; Nagai, Yasuyoshi [The Oarai Center, Institute for Materials Research, Tohoku University, 2145-2 Narita, Oarai, Ibaraki 311-1313 (Japan); Yano, Fumiko [Department of Electrical Engineering, Faculty of Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557 (Japan); Kunimune, Yorinobu [Renesas Semiconductor Manufacturing Co., Ltd., 1120 Shimokuzawa, Sagamihara, Kanagawa 252-5298 (Japan); Inoue, Masao; Nishida, Akio [Renesas Electronics Corporation, 751 Horiguchi, Hitachinaka, Ibaraki 312-8504 (Japan)

    2015-07-13

    The dopant (P and B) diffusion path in n- and p-types polycrystalline-Si gates of trench-type three-dimensional (3D) metal-oxide-semiconductor field-effect transistors (MOSFETs) were investigated using atom probe tomography, based on the annealing time dependence of the dopant distribution at 900 °C. Remarkable differences were observed between P and B diffusion behavior. In the initial stage of diffusion, P atoms diffuse into deeper regions from the implanted region along grain boundaries in the n-type polycrystalline-Si gate. With longer annealing times, segregation of P on the grain boundaries was observed; however, few P atoms were observed within the large grains or on the gate/gate oxide interface distant from grain boundaries. These results indicate that P atoms diffuse along grain boundaries much faster than through the bulk or along the gate/gate oxide interface. On the other hand, in the p-type polycrystalline-Si gate, segregation of B was observed only at the initial stage of diffusion. After further annealing, the B atoms became uniformly distributed, and no clear segregation of B was observed. Therefore, B atoms diffuse not only along the grain boundary but also through the bulk. Furthermore, B atoms diffused deeper than P atoms along the grain boundaries under the same annealing conditions. This information on the diffusion behavior of P and B is essential for optimizing annealing conditions in order to control the P and B distributions in the polycrystalline-Si gates of trench-type 3D MOSFETs.

  6. P型硅衬底异质结太阳电池的优化设计%Design Optimization of Heterojunction Solar Cells on p-type Silicon Substrates

    Institute of Scientific and Technical Information of China (English)

    汪骏康; 徐静平

    2012-01-01

    The performance of TCO/a-Si∶H(n)/a-Si∶H(i)/c-Si(p)/a-Si∶H(p+)/Ag heterojunction solar cells on p-type silicon substrates was simulated by Afors-het software.Optimal structural parameters of thickness,band gap,doping concentration and interface states density were obtained by the results of software optimization and theoretical analysis.The results indicate that well-performed heterojunction solar cells can be designed by using thin and high doping window layer,passivating the defect states of heterojunction interface with intrinsic layer,and making full use of the mirror effect of back surface field.The optimum performance parameters are Voc=678.9 mV,Jsc=38.33 mA/cm2,FF=84.05%,η=21.87%.%采用Afors-het软件模拟分析了结构为TCO/a-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(p+)/Ag的p型硅衬底异质结太阳电池的性能,研究了各层厚度、带隙、掺杂浓度以及界面态密度等结构参数和物理参数对电池性能的影响。通过模拟优化,结合理论分析和实际工艺,得到合适的各结构参数取值。采用厚度薄且掺杂高的窗口层,嵌入本征层以钝化异质结界面缺陷,合理利用背场对于少子的背反作用,获得了较佳的太阳电池综合性能:开路电压Voc为678.9mV、短路电流密度Jsc为38.33mA/cm2、填充因子FF为84.05%、转换效率η为21.87%。

  7. Polycrystalline strengthening

    DEFF Research Database (Denmark)

    Hansen, Niels

    1985-01-01

    . The strength-grain size relationships can be described in a number of empirical equations relating the yield stress and the flow stress in tension to various structural parameters. A number of such equations are reviewed and their predictive capability is discussed. Structural information of importance...... found, and this structural information is correlated with a number of strength structural equations. Finally, the flow stress of fcc and bcc polycrystalline specimens is related to the occurrence of microstructures formed by macroscopic and microscopic strain accommodation processes during plastic...... for the understanding of polycrystalline strengthening is obtained mainly from surface relief patterns and from bulk structures observed by transmission electron microscopy of thin foils. The results obtained by these methods are discussed and correlations are proposed. A number of features characterizing the deformed...

  8. Pixel structures to compensate nonuniform threshold voltage and mobility of polycrystalline silicon thin-film transistors using subthreshold current for large-size active matrix organic light-emitting diode displays

    Science.gov (United States)

    Na, Jun-Seok; Kwon, Oh-Kyong

    2014-01-01

    We propose pixel structures for large-size and high-resolution active matrix organic light-emitting diode (AMOLED) displays using a polycrystalline silicon (poly-Si) thin-film transistor (TFT) backplane. The proposed pixel structures compensate the variations of the threshold voltage and mobility of the driving TFT using the subthreshold current. The simulated results show that the emission current error of the proposed pixel structure B ranges from -2.25 to 2.02 least significant bit (LSB) when the variations of the threshold voltage and mobility of the driving TFT are ±0.5 V and ±10%, respectively.

  9. Al2O3衬底上多晶硅薄膜的外延和区熔再结晶%Polycrystalline Silicon Thin Films on Al2O3 Substrates for Solar Cells

    Institute of Scientific and Technical Information of China (English)

    励旭东; 许颖; 顾亚华; 李艳; 王文静; 赵玉文

    2003-01-01

    研究了陶瓷衬底上多晶硅薄膜的生长和区熔再结晶.利用快速热化学气相沉积(RTCVD)方法,在低成本的Al2O3衬底上沉积了重掺杂的致密多晶硅薄膜,薄膜的晶粒尺寸在微米级.经区熔再结晶(ZMR)后,薄膜的晶粒尺寸有了较大的提高,而且迁移率较高,这样的薄膜可以用作晶体硅薄膜太阳电池的籽晶层.最大的晶粒达到毫米量级,空穴迁移率超过50 cm2·V-1·s-1.在籽晶层上外延的活性层形貌与此类似.这些结果显示这种薄膜在光伏应用方面有较大的潜力.%In this paper, growth and recrystallization of silicon films on ceramic substrates were studied. Heavily doped polycrystalline silicon thin films were deposited on low cost Al2O3 by thermal rapid chemical vapor deposition (RTCVD). Compact and uniform films with grain size in the order of some micrometers were fabricated. By means of zone melting recrystallization (ZMR) method, polycrystalline silicon thin films with large grains and relative high carrier mobility were obtained, which could act as a seeding layer. The maximum grain of these films was about one millimeter in width and some millimeters in length, and hole mobility exceeded 50 cm2·V-1·s-1. Active silicon films deposited on these seeding layers showed the same morphologies. These results showed that these films have great potential for photovoltaic applications.

  10. 太阳能电池用多晶硅晶界的EBSD研究%Electron Back Scattered Diffraction Study on Grain Boundaries in Polycrystalline Silicon of Solar Cells

    Institute of Scientific and Technical Information of China (English)

    马会娜; 张智慧; 左玉婷; 杜风贞; 李继东

    2012-01-01

    利用电子背散射衍射(Electron back scattered diffraction,EBSD)对太阳能电池用多晶硅的晶界进行了研究.结果表明,太阳能电池用多晶硅中的大部分晶界为大角度晶界,且以特殊晶界∑3和普通晶界为主,同时还存在少量小角度晶界.在制作太阳能电池用多晶硅时,重点要降低小角度晶界和∑3的含量.%The grain boundary in polycrystalline silicon of solar cells was studied by electron back scattered diffraction (EBSD). The results show that most grain boundaries observed are large angle grain boundaries. ∑3 and common grain boundaries are the chief of these large angle grain boundaries. Small angle grain boundaries were also observed with a low ratio. Decrease the content of small angle grain boundaries and ∑3 in preparing polycrystalline silicon of solar cells is the emphasis.

  11. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  12. Realization of Ultraviolet Electroluminescence from ZnO Homo junction Fabricated on Silicon Substrate with p-Type ZnO:N Layer Formed by Radical N2O Doping

    Institute of Scientific and Technical Information of China (English)

    SUN Jing-Chang; LIANG Hong-Wei; ZHAO Jian-Ze; BIAN Ji-Ming; FENG Qiu-Ju; WANG Jing-Wei; ZHAO Zi-Wen; DU Guo-Tong

    2008-01-01

    @@ ZnO homojunction light-emitting diodes are fabricated on Si(100) substrates by plasma assisted metal organic chemical vapour deposition, A p-type layer of nitrogen-doped ZnO film is formed using radical N2O as the acceptor precursor.The n-type ZnO layer is composed of un-doped ZnO film.The device exhibits desirable rectifying behaviour with a turn-on voltage of 3.3 V and a reverse breakdown voltage higher than 6 V.Distinct electroluminescence emissions centred at 395nm and 49Ohm are detected from this device at forvcard current higher than 20mA at room temperature.

  13. Low-Programmable-Voltage Nonvolatile Memory Devices Based on Omega-shaped Gate Organic Ferroelectric P(VDF-TrFE) Field Effect Transistors Using p-type Silicon Nanowire Channels

    Institute of Scientific and Technical Information of China (English)

    Ngoc Huynh Van; Jae-Hyun Lee; Dongmok Whang; Dae Joon Kang

    2015-01-01

    A facile approach was demonstrated for fabricating high-performance nonvolatile memory devices based on ferroelectric-gate field effect transistors using a p-type Si nanowire coated with omega-shaped gate organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)). We overcame the interfacial layer problem by incorporating P(VDF-TrFE) as a ferroelectric gate using a low-temperature fabrication process. Our memory devices exhibited excellent memory characteristics with a low programming voltage of ±5 V, a large modulation in channel conductance between ON and OFF states exceeding 105, a long retention time greater than 3 9 104 s, and a high endurance of over 105 programming cycles while maintaining an ION/IOFF ratio higher than 102.

  14. 边界层对三氯氢硅-氢气系统中多晶硅化学气相沉积的影响%Effect of Boundary Layers on Polycrystalline Silicon Chemical Vapor Deposition in a Trichlorosilane and Hydrogen System

    Institute of Scientific and Technical Information of China (English)

    张攀; 王伟文; 陈光辉; 李建隆

    2011-01-01

    This paper presents the numerical investigation of the effects of momentum, thermal and species boundary layers on the characteristics of polycrystalline silicon deposition by comparing the deposition rates in three chemical vapor deposition (CVD) reactor. A two-dimensional model for the gas flow, heat transfer, and mass transfer was coupled to the gas-phase reaction and surface reaction mechanism for the deposition of polycrystalline silicon from trichlorosilane (TCS)-hydrogen system. The model was verified by comparing the simulated growth rate with the experimental and numerical data in the open literature. Computed results in the reactors indicate that the deposition characteristics are closely related to the momentum, thermal and mass boundary layer thickness. To yield higher deposition rate, there should be higher concentration of TCS gas on the substrate, and there should also be thinner boundary layer of HCI gas so that HCI gas could be pushed away from the surface of the substrate immediately.

  15. Preparation of coarse grained polycrystalline thin films for silicon solar cells. Final report; Praeparation von grobkoernig-polykristallinen Duennschichten fuer Solarzellen aus Silizium. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Andrae, G.; Bergmann, J.; Falk, F.; Ose, E.

    1999-06-01

    The project was to test methods for preparation of large-crystallite silicon thin films on glass by laser crystallization of amorphous silicon. Further, the properties of those thin films were examined for their suitability of use in solar cells. As the film thickness of some 10{mu}m, required for light absorption by crystalline silicon (unless light traps are used), cannot be achieved in one step via laser crystallization, a multi-step technique was proposed, the first step consisting of a conventional PECVD process for deposition of amorphous silicon films of some nm in thickness. This process was optimized, achieving the thin film properties required for subsequent laser crystallization, including resolution of some other problems involved, primarily those of reliable adhesive strength of the thin films, and their hydrogen content. As a second step, various techniques for laser crystallization of the amorphous thin films were tested and optimized. The objective was to prepare crystalline silicon thin films with a thickness of some hundred nm, consisting of crystallites as large as possible. The targeted size of crystallites was a lateral size of 100 {mu}m. (orig./CB) [German] In dem hier beschriebenen Projekt sollten Laserverfahren erprobt werden, um auf Glas moeglichst grosse Siliciumkristallite durch Kristallisation aus amorphem Siliciumschichten herzustellen. Weiterhin sollten die Eigenschaften dieser kristallinen Schichten mit Hinblick auf ihre Eignung fuer Solarzellen untersucht werden. Da die fuer die Lichtabsorption in kristallinem Silicum erforderliche Schichtdicke von einigen 10 {mu}m (wenn keine Lichtfallen eingesetzt werden) nicht in einem einzigen Schritt mit dem Laser kristallisiert werden kann, wurde ein Mehrschrittverfahren vorgeschlagen. In einem ersten Schritt sollte amorphes Silicium mit einer Schichtdicke von einigen hundert nm Dicke durch einen konventionellen PECVD-Prozess abgeschieden werden. Das Abscheideverfahren sollte so optimiert

  16. Pixel-Level Digital-to-Analog Conversion Scheme for Compact Data Drivers of Active Matrix Organic Light-Emitting Diodes with Low-Temperature Polycrystalline Silicon Thin-Film Transistors

    Science.gov (United States)

    Tae-Wook Kim,; Byong-Deok Choi,

    2010-03-01

    This paper shows that a part of a digital-to-analog conversion (DAC) function can be included in a pixel circuit to save the circuit area of an integrated data driver fabricated with low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs). Because the pixel-level DAC can be constructed by two TFTs and one small capacitor, the pixel circuit does not become markedly complex. The design of an 8-bit DAC, which combines a 6-bit resistor-string-based DAC and a 2-bit pixel-level DAC for a 4-in. diagonal VGA format active matrix organic light-emitting diode (AMOLED), is shown in detail. In addition, analysis results are presented, revealing that the 8-bit DAC scheme including a 2-bit pixel-level DAC with 1:3 demultiplexing can be applied to very high video formats, such as XGA, for a 3 to 4-in. diagonal AMOLED. Even for a 9- to 12-in. diagonal AMOLED, the proposed scheme can still be applied to the XGA format, even though no demultiplexing is allowed. The total height of the proposed 8-bit DAC is approximately 960 μm, which is almost one-half of that of the previous 6-bit resistor-string-based DAC.

  17. Electrical characteristics of polycrystalline Si layers embedded into high- k Al 2O 3 gate layers

    Science.gov (United States)

    Park, Byoungjun; Cho, Kyoungah; Kim, Sangsig

    2008-09-01

    The electrical characteristics of polycrystalline Si (poly Si) layers embedded into high- k Al 2O 3 (alumina) gate layers are investigated in this work. The capacitance versus voltage ( C- V) curves obtained from the metal-alumina-polysilicon-alumina-silicon (MASAS) capacitors exhibit significant threshold voltage shifts, and the width of their hysteresis window is dependent on the range of the voltage sweep. The counterclockwise hysteresis observed in the C- V curves indicates that electrons originating from the p-type Si substrate in the inversion condition are trapped in the floating gate layer consisting of the poly Si layer present between the top and bottom Al 2O 3 layers in the MASAS capacitor. Also, current versus voltage ( I- V) measurements are performed to examine the electrical characteristics of the fabricated capacitors. The I- V measurements reveal that our MASAS capacitors show a very low leakage current density, compared to the previously reported results.

  18. CuNb3O8: A p-Type Semiconducting Metal Oxide Photoelectrode.

    Science.gov (United States)

    Joshi, Upendra A; Maggard, Paul A

    2012-06-07

    A new p-type CuNb3O8 polycrystalline photoelectrode was investigated and was determined to have indirect and direct bandgap sizes of 1.26 and 1.47 eV, respectively. The p-type polycrystalline film could be prepared on fluorine-doped tin oxide glass and yielded a cathodic photocurrent under visible-light irradiation (λ > 420 nm) with incident photon-to-current efficiencies of up to ∼6-7% and concomitant hydrogen evolution. A Mott-Schottky analysis yielded a flat band potential of +0.35 V versus RHE (pH = 6.3) and a calculated p-type dopant concentration of ∼7.2 × 10(15) cm(-3). The conduction band energies are found to be negative enough for the reduction of water under visible light irradiation. A hole mobility of ∼145 cm(2)/V·s was obtained from J(I)-V(2) measurements using the Mott-Gurney relation, which is ∼50% higher than that typically found for p-type Cu2O. DFT-based electronic structure calculations were used to probe the atomic and structural origins of the band gap transitions and carrier mobility. Thus, a new p-type semiconductor is discovered for potential applications in solar energy conversion.

  19. 典型分解炉中硅烷分解沉积速率的研究%Deposition Rate of Polycrystalline Silicon from Monosilane Phyrolysis

    Institute of Scientific and Technical Information of China (English)

    罗列; 姚晓晖; 姚奎鸿

    2012-01-01

    This paper studies the deposition rate of monosilane pyrolysis. Experiment is performed in a typical chemical vapor deposition reactor in a temperature range of 790-900°C and the pressure of 5×104 Pa. It is examined on relationship of silicon rod temperature and gas flow rate to deposition rate during the decomposition process. The activation energy of deposition is estimated to be 53. 4kJ/mol. Compared with reported results on deposition in vacuum reactor, there are some possibilities to increase the deposition rate in a typical chemical vapor deposition reactor.%研究在典型硅烷分解炉中硅烷分解沉积多晶硅的沉积速率.硅烷分解沉积多晶硅实验在硅棒表面温度790~900℃、炉内气压5×104 Pa条件下,探讨硅棒温度、硅烷流速与沉积速率的关系.结果显示:沉积反应活化能53.4kJ/mol.并与真空条件下沉积硅的过程进行对比,提出在典型硅烷分解炉中提高多晶硅沉积速率的可能途径.

  20. Evolution of plant P-type ATPases

    Directory of Open Access Journals (Sweden)

    Christian N.S. Pedersen

    2012-02-01

    Full Text Available Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauria and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a moss, Selaginella moellendorffii (a primitive vascular plant, and Arabidopsis thaliana (a model flowering plant. Each organism contained sequences for all five subfamilies of P-type ATPases. Our analysis demonstrates when specific subgroups of P-type ATPases disappeared in the evolution of Angiosperms. Na/K-pump related P2C ATPases were lost with the evolution of streptophytes whereas Na+ or K+ pumping P2D ATPases and secretory pathway Ca2+-ATPases remained until mosses. An N-terminally located calmodulin binding domain in P2B ATPases can only be detected in pumps from Streptophytae, whereas, like in animals, a C-terminally localized calmodulin binding domain might be present in chlorophyte P2B Ca2+-ATPases. Chlorophyte genomes encode P3A ATPases resembling protist plasma membrane H+-ATPases and a C-terminal regulatory domain is missing. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps.

  1. Thin-film polycrystalline silicon solar cells

    Science.gov (United States)

    Ghosh, A. K.; Feng, T.; Eustace, D. J.; Maruska, H. P.

    1981-07-01

    The highest efficiencies achieved with single crystals are 14.1% for ITO/n-SI and 13.3% of SnO2/n-Si, while the corresponding values for polysilicon are 11.2% and 10.1%. For large area single crystal devices the efficiency values are 11.7% and 11.2% for ITO and SnO2 cells, respectively, while for polysilicon the corresponding values are 9.82% and 8.55%. The lower efficiency for large area devices is mainly due to lower J sub sc and FF. Results are presented to show the optimum grid spacing required. From stability studies it is shown that there are two distinct mechanisms for degradation, one optical and the other thermal. The optical degradation could be eliminated if the cells could be protected from uv light and the thermal degradation can be prevented if the cells are operated below 100 C.

  2. Solution-processed polycrystalline silicon on paper

    NARCIS (Netherlands)

    Trifunovic, M.; Shimoda, T.; Ishihara, R.

    2015-01-01

    Printing electronics has led to application areas which were formerly impossible with conventional electronic processes. Solutions are used as inks on top of large areas at room temperatures, allowing the production of fully flexible circuitry. Commonly, research in these inks have focused on organi

  3. Thermal conductivity measurements of Summit polycrystalline silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

    2006-11-01

    A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

  4. Solution-processed polycrystalline silicon on paper

    NARCIS (Netherlands)

    Trifunovic, M.; Shimoda, T.; Ishihara, R.

    2015-01-01

    Printing electronics has led to application areas which were formerly impossible with conventional electronic processes. Solutions are used as inks on top of large areas at room temperatures, allowing the production of fully flexible circuitry. Commonly, research in these inks have focused on organi

  5. Doping Silicon Wafers with Boron by Use of Silicon Paste

    Institute of Scientific and Technical Information of China (English)

    Yu Gao; Shu Zhou; Yunfan Zhang; Chen Dong; Xiaodong Pi; Deren Yang

    2013-01-01

    In this work we introduce recently developed silicon-paste-enabled p-type doping for silicon.Boron-doped silicon nanoparticles are synthesized by a plasma approach.They are then dispersed in solvents to form silicon paste.Silicon paste is screen-printed at the surface of silicon wafers.By annealing,boron atoms in silicon paste diffuse into silicon wafers.Chemical analysis is employed to obtain the concentrations of boron in silicon nanoparticles.The successful doping of silicon wafers with boron is evidenced by secondary ion mass spectroscopy (SIMS) and sheet resistance measurements.

  6. Recycling of p-type mc-si Top Cuts into p-type mono c-Si Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bronsveld, P.C.P.; Manshanden, P.; Lenzmann, F.O. [ECN Solar Energy, Westerduinweg 3, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Gjerstad, O. [Si Pro Holding AS, Ornesveien 3, P.O. Box 37, 8161, Glomfjord (Norway); Oevrelid, E.J. [SINTEF, Alfred Getz Vei 2, 7465, Trondheim (Norway)

    2013-07-01

    Solar cell results and material analysis are presented of 2 p-type Czochralski (Cz) ingots pulled from a charge consisting of 100% and 50% recycled multicrystalline silicon top cuts. The top cuts were pre-cleaned with a dedicated low energy consuming technology. No structure loss was observed in the bodies of the ingots. The performance of solar cells made from the 100% recycled Si ingot decreases towards the seed end of the ingot, which could be related to a non-optimal pulling process. Solar cells from the tail end of this ingot and from the 50% recycled Si ingot demonstrated an average solar cell efficiency of 18.6%. This is only 0.1% absolute lower than the efficiency of higher resistivity reference solar cells from commercially available wafers that were co-processed.

  7. Elastic constants determined by nanoindentation for p-type thermoelectric half-Heusler

    Energy Technology Data Exchange (ETDEWEB)

    Gahlawat, S.; Wheeler, L.; White, K. W., E-mail: zren@uh.edu, E-mail: kwwhite@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); He, R.; Chen, S.; Ren, Z. F., E-mail: zren@uh.edu, E-mail: kwwhite@uh.edu [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States)

    2014-08-28

    This paper presents a study of the elastic properties of the p-type thermoelectric half-Heusler material, Hf{sub 0.44}Zr{sub 0.44}Ti{sub 0.12}CoSb{sub 0.8}Sn{sub 0.2}, using nanoindentation. Large grain-sized polycrystalline specimens were fabricated for these measurements, providing sufficient indentation targets within single grains. Electron Backscatter Diffraction methods indexed the target grains for the correlation needed for our elastic analysis of individual single crystals for this cubic thermoelectric material. Elastic properties, including the Zener ratio and the Poisson ratio, obtained from the elasticity tensor are also reported.

  8. Sputtering deposition of P-type SnO films with SnO₂ target in hydrogen-containing atmosphere.

    Science.gov (United States)

    Hsu, Po-Ching; Hsu, Chao-Jui; Chang, Ching-Hsiang; Tsai, Shiao-Po; Chen, Wei-Chung; Hsieh, Hsing-Hung; Wu, Chung-Chih

    2014-08-27

    In this work, we had investigated sputtering deposition of p-type SnO using the widely used and robust SnO2 target in a hydrogen-containing reducing atmosphere. The effects of the hydrogen-containing sputtering gas on structures, compositions, optical, and electrical properties of deposited SnOx films were studied. Results show that polycrystalline and SnO-dominant films could be readily obtained by carefully controlling the hydrogen gas ratio in the sputtering gas and the extent of reduction reaction. P-type conductivity was unambiguously observed for SnO-dominant films with traceable Sn components, exhibiting a p-type Hall mobility of up to ∼3 cm(2) V(-1) s(-1). P-type SnO thin-film transistors using such SnO-dominant films were also demonstrated.

  9. P-type transparent conducting oxides

    Science.gov (United States)

    Zhang, Kelvin H. L.; Xi, Kai; Blamire, Mark G.; Egdell, Russell G.

    2016-09-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d 10 orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu+-based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr3+-based oxides (3d 3) and post-transition metal oxides with lone pair state (ns 2). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

  10. Anelasticity of polycrystalline indium

    Energy Technology Data Exchange (ETDEWEB)

    Sapozhnikov, K., E-mail: k.sapozhnikov@mail.ioffe.ru [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Golyandin, S. [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Kustov, S. [Dept. de Fisica, Universitat de les Illes Balears, Cra Valldemossa km 7.5, E 07122 Palma de Mallorca (Spain)

    2009-09-15

    Mechanisms of anelasticity of polycrystalline indium have been studied over wide ranges of temperature (7-320 K) and strain amplitude (2 x 10{sup -7}-3.5 x 10{sup -4}). Measurements of the internal friction and Young's modulus have been performed by means of the piezoelectric resonant composite oscillator technique using longitudinal oscillations at frequencies of about 100 kHz. The stages of the strain amplitude dependence of the internal friction and Young's modulus defect, which can be attributed to dislocation - point defect and dislocation - dislocation interactions, have been revealed. It has been shown that thermal cycling gives rise to microplastic straining of polycrystalline indium due to the anisotropy of thermal expansion and to appearance of a 'recrystallization' internal friction maximum in the temperature spectra of amplitude-dependent anelasticity. The temperature range characterized by formation of Cottrell's atmospheres of point defects around dislocations has been determined from the acoustic data.

  11. Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    Science.gov (United States)

    Whitehead, A. B.; Zook, J. D.; Grung, B. L.; Heaps, J. D.; Schmit, F.; Schuldt, S. B.; Chapman, P. W.

    1981-01-01

    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized.

  12. Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers

    Directory of Open Access Journals (Sweden)

    Chun-You Wei

    2013-11-01

    Full Text Available Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency of cells based on p-type single-crystalline Si wafers could provide broader options for the development of HIT solar cells. In this study, we varied the thickness of intrinsic hydrogenated amorphous Si layer to improve the efficiency of HIT solar cells on p-type Si wafers.

  13. Gelcasting Polycrystalline Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A.; Zuk, K.J.; Wei, G.C.

    2000-01-01

    OSRAM SYLVANIA INC. is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux TM line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency ({approximately}97% total transmittance in the visible), their refractoriness (inner wall temperature can reach l2OOC), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, up to 100 initial lumens per watt. (Compare incandescent lamps 10-20 lumens per watt, fluorescent lamps 25-90 lumens per watt.)

  14. Low temperature production of large-grain polycrystalline semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Naseem, Hameed A. (Fayetteville, AR); Albarghouti, Marwan (Loudonville, NY)

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  15. Abnormality in fracture strength of polycrystalline silicene

    Science.gov (United States)

    Liu, Ning; Hong, Jiawang; Pidaparti, Ramana; Wang, Xianqiao

    2016-09-01

    Silicene, a silicon-based homologue of graphene, arouses great interest in nano-electronic devices due to its outstanding electronic properties. However, its promising electronic applications are greatly hindered by lack of understanding in the mechanical strength of silicene. Therefore, in order to design mechanically reliable devices with silicene, it is necessary to thoroughly explore the mechanical properties of silicene. Due to current fabrication methods, graphene is commonly produced in a polycrystalline form; the same may hold for silicene. Here we perform molecular dynamics simulations to investigate the mechanical properties of polycrystalline silicene. First, an annealing process is employed to construct a more realistic modeling structure of polycrystalline silicene. Results indicate that a more stable structure is formed due to the breaking and reformation of bonds between atoms on the grain boundaries. Moreover, as the grain size decreases, the efficiency of the annealing process, which is quantified by the energy change, increases. Subsequently, biaxial tensile tests are performed on the annealed samples in order to explore the relation between grain size and mechanical properties, namely in-plane stiffness, fracture strength and fracture strain etc. Results indicate that as the grain size decreases, the fracture strain increases while the fracture strength shows an inverse trend. The decreasing fracture strength may be partly attributed to the weakening effect from the increasing area density of defects which acts as the reservoir of stress-concentrated sites on the grain boundary. The observed crack localization and propagation and fracture strength are well-explained by a defect-pileup model.

  16. Seebeck effect in polycrystalline semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Jerhot, J.; Vlcek, J.

    1982-06-18

    The paper deals with the interpretation of the Seebeck coefficient measured for a polycrystalline semiconductor. Polycrystalline semiconductors are considered to be composed of grains separated from one another by intergrain domains. An isotype heterojunction with a certain density of interface states is assumed to exist at the grain-intergrain domain interface. The general formula for the Seebeck coefficient under these conditions is derived. The relations valid for systems of practical interest are shown as limiting cases of the formula presented.

  17. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  18. Gelcasting polycrystalline alumina

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This work is being done as part of a CRADA with Osram-Sylvania, Inc. (OSI) OSI is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux{reg_sign} line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency (95% total transmittance in the visible region), their refractoriness (inner wall temperature can reach 1400{degrees}C), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, on the order of several hundred lumens / watt. (Compare - incandescent lamps -13 lumens/watt fluorescent lamps -30 lumens/watt.) Osram-Sylvania would like to explore using gelcasting to form PCA tubes for Lumalux{reg_sign} lamps, and eventually for metal halide lamps (known as quartz-halogen lamps). Osram-Sylvania, Inc. currently manufactures PCA tubes by isostatic pressing. This process works well for the shapes that they presently use. However, there are several types of tubes that are either difficult or impossible to make by isostatic pressing. It is the desire to make these new shapes and sizes of tubes that has prompted Osram-Sylvania`s interest in gelcasting. The purpose of the CRADA is to determine the feasibility of making PCA items having sufficient optical quality that they are useful in lighting applications using gelcasting.

  19. Impact of common metallurgical impurities on ms-Si solar cell efficiency. P-type versus n-type doped ingots

    Energy Technology Data Exchange (ETDEWEB)

    Geerligs, L.J.; Manshanden, P. [ECN Solar Energy, Petten (Netherlands); Solheim, I.; Ovrelid, E.J.; Waernes, A.N. [Sintef materials technology, Trondheim (Norway)

    2006-09-15

    Silicon solar cells based on n-type silicon wafers are less sensitive to carrier lifetime degradation due to several common metal impurities than p-base cells. The theoretical and experimental indications for this have recently received considerable attention. This paper compares p-type and n-type cells purposely contaminated with relatively high levels of impurities, processed by industrial techniques. The impurities considered are Al, Ti, and Fe, which are the dominant impurities in metallurgical silicon and natural quartz. The work also preliminary addresses the question whether the optimal wafer resistivity is the same for n-type as for p-type base mc-Si cells.

  20. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  1. Silicon materials task of the Low-Cost Solar Array Project (Phase IV). Effects of impurities and processing on silicon solar cells. Nineteenth quarterly report, April 1980-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Rai-Choudhury, P.; Hanes, M.H.; Mollenkopf, H.C.; McCormick, J.R.

    1980-07-01

    The overall objective of this program is to define the effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Nine 4 ohm-cm p type silicon ingots were grown and evaluated in support of the experimental program this quarter. Of these, three were polycrystalline ingots doped with Cr, Mo, and V, respectively, produced under conditions which successfully eliminated the metal-rich inclusions formed when growth of these heavily-doped specimens was attempted during the last quarter. Evaluation of polycrystalline ingots doped to the mid 10/sup 13/ cm/sup -3/ range with Ti or V showed little evidence for grain boundary segregation. Deep level spectroscopy on both as-grown wafers and solar cells showed little variation in impurity concentration from place to place across the ingot regardless of the presence of grain boundaries or other structural features. Deep level spectroscopy was also used to monitor the electrically active impurity concentrations in ingots to be used for process studies, aging experiments, and high efficiency cells. The basic aspects of a model to describe efficiency behavior in high efficiency cells have been formulated and a computer routine is being implemented for back field type devices to analyze the functional relationships between impurity concentrations and cell performance.

  2. An integrated driving circuit implemented with p-type LTPS TFTs for AMOLED

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li-qing; WU Chun-ya; HAO Da-shou; YAO Ying; MENG Zhi-guo; XIONG Shao-zhen

    2009-01-01

    Based on the technology of low temperature poly silicon thin film transistors (poly-Si-TFTs), a novel p-type TFT AMOLED panel with self-scanned driving circuit is introduced in this paper. A shift register formed with novel p-type TFTs is pro-posed to realize the gate driver. A flip-latch cooperated with the shift register is designed to conduct the data writing. In order to verify the validity of the proposed design, the circuits are simulated with SILVACO TCAD tools, using the MODEL in which the parameters of LTPS TFTs were extracted from the LTPS TFTs made in our lab. The simulation results indicate that the circuit can fulfill the driving function.

  3. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei

    2009-03-11

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive atomic force microscope (AFM) in contact mode. The output voltage pulse is generated when the tip contacts the stretched side (positive piezoelectric potential side) of the NW. In contrast, the n-type ZnO NW produces negative output voltage when scanned by the AFM tip, and the output voltage pulse is generated when the tip contacts the compressed side (negative potential side) of the NW. In reference to theoretical simulation, these experimentally observed phenomena have been systematically explained based on the mechanism proposed for a nanogenerator. © 2009 American Chemical Society.

  4. Silicon germanium as a novel mask for silicon deep reactive ion etching

    KAUST Repository

    Serry, Mohamed Y.

    2013-10-01

    This paper reports on the use of p-type polycrystalline silicon germanium (poly-Si1-xGex) thin films as a new masking material for the cryogenic deep reactive ion etching (DRIE) of silicon. We investigated the etching behavior of various poly-Si1-xGex:B (0silicon, silicon oxide, and photoresist was determined at different etching temperatures, ICP and RF powers, and SF6 to O2 ratios. The study demonstrates that the etching selectivity of the SiGe mask for silicon depends strongly on three factors: Ge content; boron concentration; and etching temperature. Compared to conventional SiO2 and SiN masks, the proposed SiGe masking material exhibited several advantages, including high etching selectivity to silicon (>1:800). Furthermore, the SiGe mask was etched in SF6/O2 plasma at temperatures ≥ - 80°C and at rates exceeding 8 μm/min (i.e., more than 37 times faster than SiO2 or SiN masks). Because of the chemical and thermodynamic stability of the SiGe film as well as the electronic properties of the mask, it was possible to deposit the proposed film at CMOS backend compatible temperatures. The paper also confirms that the mask can easily be dry-removed after the process with high etching-rate by controlling the ICP and RF power and the SF6 to O2 ratios, and without affecting the underlying silicon substrate. Using low ICP and RF power, elevated temperatures (i.e., > - 80°C), and an adjusted O2:SF6 ratio (i.e., ~6%), we were able to etch away the SiGe mask without adversely affecting the final profile. Ultimately, we were able to develop deep silicon- trenches with high aspect ratio etching straight profiles. © 1992-2012 IEEE.

  5. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    Directory of Open Access Journals (Sweden)

    Rafal Pietruszka

    2014-02-01

    Full Text Available Selected properties of photovoltaic (PV structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100 are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

  6. Silicon on ceramic process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Science.gov (United States)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Butter, C. D.; Schuldt, S. B.

    1977-01-01

    The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program.

  7. Positron lifetime in polycrystalline gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, A.M.; Serna, J. (Universidad Complutense de Madrid (Spain). Dept. de Fisica del Estado Solido)

    1984-06-16

    Positron lifetimes are measured on polycrystalline gadolinium between 15 and 25 /sup 0/C taking into account the microstructure of the specimens, especially the grain sizes of untreated or annealed sheets. Results show the existence of a trapping effect of positrons in Gd due to different trapping centers such as point defects, dislocations, grain boundaries, and other defects.

  8. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu; Yin, Wan-Jian; Wu, Yelong; Shi, Tingting; Paudel, Naba R. [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); Li, Chen [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Poplawsky, Jonathan [The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, Zhiwei [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Moseley, John; Guthrey, Harvey; Moutinho, Helio; Al-Jassim, Mowafak M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can be chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.

  9. Sputtered Al-doped ZnO transparent conducting thin films suitable for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ayadi, Z., E-mail: Zouhaier.BenAyadi@fsg.rnu.tn [Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l' Environnement, Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia); Mahdhi, H. [Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l' Environnement, Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia); Djessas, K. [Laboratoire Procédés, Matériaux et Energie Solaire (PROMES-CNRS), TECNOSUD, Rambla de la Thermodynamique, 66100 Perpignan (France); Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 68860, Perpignan Cedex9 (France); Gauffier, J.L. [Département de Génie Physique, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse cedex 4 (France); and others

    2014-02-28

    Highly transparent conducting Al-doped zinc oxide (AZO) thin films have been grown onto p-type porous silicon substrates by RF-magnetron sputtering at room temperature using aluminum doped nanocrystalline powder. The obtained AZO films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction. The films are highly transparent in the visible wavelength region with a transmittance higher than 85% and an electrical resistivity of 1.56 × 10{sup −4} Ω·cm was obtained at room temperature. On the other hand, we have studied the position of the p–n junction involved in the In{sub 2}O{sub 3}:SnO{sub 2}/(n)AZO/Si(p) structure, by electron-beam induced current technique. Current density–voltage characterizations in dark and under illumination were also investigated. The cell exhibits an efficiency of 5%. - Highlights: • Al-doped zinc oxide (AZO) thin films were grown by RF-magnetron sputtering. • AZO nanopowder compacted target was prepared by a sol–gel method. • AZO thin films are polycrystalline and have preferred orientation along c-axis. • We report a photovoltaic effect in Si(p)/porous silicon/AZO heterostructure. • The cell exhibits an efficiency of 5%.

  10. P-type electronic and thermal transport properties of Mg2Sn1-xSix

    Science.gov (United States)

    Kim, Sunphil; Wiendlocha, Bartlomiej; Heremans, Joseph P.

    2013-03-01

    P-type Mg2Sn doped with various acceptors(1)(2) has been studied as a potential thermoelectric material. Because of its narrow band gap and high lattice thermal conductivity, the zT values of the binary compound are limited: zTmax reported is 0.3(3). In this work, we synthesize and characterize p-type-doped Mg2Sn1-xSix with various acceptors. Silicon is added in order to widen the band gap and scatter the phonons. The conduction band degeneracy that yields excellent zT in n-type material in the Mg2Sn1-xSix alloy system unfortunately does not apply to p-type material. Thermomagnetic and galvanomagnetic properties (electrical resistivity, Seebeck, Hall, and Nernst coefficients) are measured, along with thermal conductivity and band gap measurements. Finally, zT values are reported. (1) H. Y. Chen et al. Journal of Electronic Materials, Vol. 38, No. 7, 2009 (2) S. Choi et al. Journal of Electronic Materials, Vol. 41, No. 6, 2012 (3) H. Y. Chen et al. Phys. Status Solidi A 207, No. 11, 2523-2531 (2010) The work is supported by the joint NSF/DOE program on thermoelectrics, NSF-CBET-1048622

  11. Research and development of photovoltaic power system. Research on surface passivation for high-efficiency silicon solar cells; Taiyoko hatsuden system no kenkyu kaihatsu. Hyomen passivation no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan). Faculty of Technology

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on research on surface passivation of high-efficiency silicon solar cells. In research on carrier recombination on SiO2/doped silicon interface, measurements were carried out on minority carrier life with respect to p-type silicon substrates with which phosphorus with high and low concentrations are diffused uniformly on the surface and non-uniformly on the back and then oxidized. The measurements were performed for the purpose of evaluating the carrier recombination at p-n junctions. Effective life time of oxidized test samples increased longer than that of prior to the oxidization as a result of effect of surface passivation contributing remarkably. In research on reduction in carrier recombination on SiO2/Si interface by using H radical annealing, experiments were conducted by using a method that uses more active H-atoms. As a result, it was revealed that the reduction effect is recognized at as low temperature as 200{degree}C, and photo-bias effect is also noticeable. Other research activities included analytic research on minority carrier recombination on micro crystalline silicon/crystalline silicon interface, and experimental research on evaluation of minority carrier life of poly-crystalline silicon wafers. 6 figs.

  12. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  13. Performances of miniature microstrip detectors made on oxygen enriched p-type substrates after very high proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Casse, G. [Oliver Lodge Laboratory, Department of Physics, University of Liverpool, P.O. Box 147, Liverpool L69 3BX (United Kingdom)]. E-mail: gcasse@hep.ph.liv.ac.uk; Allport, P.P. [Oliver Lodge Laboratory, Department of Physics, University of Liverpool, P.O. Box 147, Liverpool L69 3BX (United Kingdom); Marti i Garcia, S. [IFIC CSIC, Edificio Institutos de Investigacion Apartado de Correos 22085 E-46071, Valencia-Spain (Spain); Lozano, M. [IMB-CNM (CSIC), Campus Universidad Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Turner, P.R. [Oliver Lodge Laboratory, Department of Physics, University of Liverpool, P.O. Box 147, Liverpool L69 3BX (United Kingdom)

    2004-12-11

    Silicon microstrip detectors with n-type implant read-out strips on FZ p-type bulk (n-in-p) show superior charge collection properties, after heavy irradiation, to the more standard p-strips in n-type silicon (p-in-n). It is also well established that oxygen-enriched n-type silicon substrates show better performance, in terms of degradation of the full depletion voltage after charged hadron irradiation, than the standard FZ silicon used for high energy physics detectors. Silicon microstrip detectors combining both the advantages of oxygenation and of n-strip read-out (n-in-n) have achieved high radiation tolerance to charged hadrons. The manufacturing of n-in-n detectors though requires double-sided processing, resulting in more complicated and expensive devices than standard p-in-n. A cheaper single-sided option, that still combines these advantages, is to use n-in-p devices. P-type FZ wafers have been oxygen-enriched by high temperature diffusion from an oxide layer and successfully used to process miniature (1x1 cm{sup 2}) microstrip detectors. These detectors have been irradiated with 24 GeV/c protons in the CERN/PS T7 irradiation area up to {approx}7.5x10{sup 15} cm{sup -2}. We report results with these irradiated detectors in terms of the charge collection efficiency as a function of the applied bias voltage.

  14. Performances of miniature microstrip detectors made on oxygen enriched p-type substrates after very high proton irradiation

    Science.gov (United States)

    Casse, G.; Allport, P. P.; Martí i Garcia, S.; Lozano, M.; Turner, P. R.

    2004-12-01

    Silicon microstrip detectors with n-type implant read-out strips on FZ p-type bulk (n-in-p) show superior charge collection properties, after heavy irradiation, to the more standard p-strips in n-type silicon (p-in-n). It is also well established that oxygen-enriched n-type silicon substrates show better performance, in terms of degradation of the full depletion voltage after charged hadron irradiation, than the standard FZ silicon used for high energy physics detectors. Silicon microstrip detectors combining both the advantages of oxygenation and of n-strip read-out (n-in-n) have achieved high radiation tolerance to charged hadrons. The manufacturing of n-in-n detectors though requires double-sided processing, resulting in more complicated and expensive devices than standard p-in-n. A cheaper single-sided option, that still combines these advantages, is to use n-in-p devices. P-type FZ wafers have been oxygen-enriched by high temperature diffusion from an oxide layer and succesfully used to process miniature (1×1 cm 2) microstrip detectors. These detectors have been irradiated with 24 GeV/c protons in the CERN/PS T7 irradiation area up to ˜7.5×10 15 cm -2. We report results with these irradiated detectors in terms of the charge collection efficiency as a function of the applied bias voltage.

  15. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  16. Junction like behavior in polycrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, Shivakumar, E-mail: sbhaskar@mail.uh.edu [Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, TX 77004 (United States); Charlson, Earl Joe; Litvinov, Dmitri [Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, TX 77004 (United States); Makarenko, Boris [Department of Chemistry, University of Houston, TX 77004 (United States)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer The result that we obtained are compared with single crystalline diamond devices. Black-Right-Pointing-Pointer The barrier height of 4.4 eV matches the ideal pn-junction barrier height of diamond thin film. - Abstract: We have successfully fabricated polycrystalline diamond rectifying junction devices on n-type (1 0 0) silicon substrates by Hot Filament Chemical Vapor Deposition (HFCVD) using methane/hydrogen process gas and trimethyl borate and trimethyl phosphite dissolved in acetone as p- and n-type dopants, respectively. Impedance spectroscopy and current-voltage analysis indicates that the conduction is vertical down the grains and facets and not due to surface effects. Electrical characteristics were analyzed with In and Ti/Au top metal contacts with Al as the substrate contact. Current-voltage characteristics as a function of temperature showed barrier potentials of 1.1 eV and 0.77 eV for the In and Ti/Au contacts, respectively. Barrier heights of 4.8 eV (In) and 4.4 eV (Ti/Au) were obtained from capacitance-voltage measurements.

  17. Transmutation doping of silicon solar cells

    Science.gov (United States)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  18. The effect of the polycrystalline furnace in Mono -like growth process

    Institute of Scientific and Technical Information of China (English)

    Li Liu; Zhenzhen Yao; Yan Feng Ning; Xie Min Peng

    2015-01-01

    In this work,we found that the polycrystalline furnace of the thermal field simulation,which has a very important role in this class the growth of monocrystalline silicon.The software is Fluent.Polycrystalline furnace thermal field change process is closely related to the nucleation.we have improved the ration of the grain crystal,and reduce the height of the seed crystal.It is proved that the electrical of the mono like wafer is rather perfect,and the efficiency of the cell is improved greatly.The simulation cal-culation is well agree with the experimental results.

  19. Deposited low temperature silicon GHz modulator

    CERN Document Server

    Lee, Yoon Ho Daniel; Lipson, Michal

    2013-01-01

    The majority of silicon photonics is built on silicon-on-insulator (SOI) wafers while the majority of electronics, including CPUs and memory, are built on bulk silicon wafers, limiting broader acceptance of silicon photonics. This discrepancy is a result of silicon photonics's requirement for a single-crystalline silicon (c-Si) layer and a thick undercladding for optical guiding that bulk silicon wafers to not provide. While the undercladding problem can be partially addressed by substrate removal techniques, the complexity of co-integrating photonics with state-of-the-art transistors and real estate competition between electronics and photonics remain problematic. We show here a platform for deposited GHz silicon photonics based on polycrystalline silicon with high optical quality suitable for high performance electro-optic devices. We demonstrate 3 Gbps polysilicon electro-optic modulator fabricated on a deposited polysilicon layer fully compatible with CMOS backend integration. These results open up an arr...

  20. Research on anti-PID performance of double-layer SiN film poly-crystalline silicon solar cell%双层SiN 膜多晶硅太阳电池抗PID性能研究

    Institute of Scientific and Technical Information of China (English)

    罗旌旺; 王祺; 芮春保; 孔凡建

    2014-01-01

    Double-layer SiN film poly-crystal ine silicon solar cel was the research point. Different refractive index and thickness double-layer SiN film solar cel by modifying PECVD process were prepared. The cel s with glass, EVA, backsheet etc were encapsulated. PID (Potential Induced Degradation) test at 85℃, 85%RH was conducted. The results show (1)that the cel s with a low refractive index of outer SiNx layer cause serious PID effect regardless of the refractive index or thickness of inner SiN layer;(2), but as the outer layer refractive index increasing the cel s PID effects decreased conspicuously, the cel s with a outer layer refractive index≥2.15 past PID 600 h test with a power loss less than 5%;(3) compared to conventional cel , double-layers SiN film anti-PID solar cel efficiency is a slightly lower, but the cel to module encapsulation power loss is smal er and its module power is equivalent to conventional cel 's. Therefore, the application of this anti-PID solar cel is promising.%以双层SiN 膜多晶硅太阳电池为研究对象,通过调整PECVD工艺参数制备不同折射率和厚度的双层氮化硅减反射膜太阳电池,并用玻璃、EVA和背板等将电池片封装成光伏组件,进行85℃、85%RH条件下组件电势诱导衰减(PID)实验。研究结果表明:(1)改变内层折射率和厚度保持外层较低的折射率时,双层氮化硅膜太阳电池均会发生严重的PID效应;(2)但随着外层折射率提高,电池PID效应显著减小,外层折射率≥2.15的电池PID实验600 h功率衰减小于5%;(3)双层氮化硅膜抗PID太阳电池的转化效率略低于普通太阳电池,但其组件的封装损失较小,与普通电池的组件功率相当,因此具有很好的应用前景。

  1. Metal induced crystallization of silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gjukic, M.

    2007-05-15

    In the framework of this thesis the applicability of the aluminium-induced layer exchange on binary silicon germanium alloys was studied. It is here for the first time shown that polycrstalline silicon-germanium layers can be fabricated over the whole composition range by the aluminium-induced layer exchange. The experimental results prove thet the resulting material exhibits a polycrystalline character with typocal grain sizes of 10-100 {mu}m. Raman measurements confirm that the structural properties of the resulting layers are because of the large crystallites more comparable with monocrystalline than with nano- or microcrystalline silicon-germanium. The alloy ratio of the polycrystalline layer correspondes to the chemical composition of the amorphous starting layer. The polycrystalline silicon-germanium layers possess in the range of the interband transitions a reflection spectrum, as it is otherwise only known from monocrystalline reference layers. The improvement of the absorption in the photovoltaically relevant spectral range aimed by the application of silicon-germanium could be also proved by absorption measurments. Strongly correlated with the structural properties of the polycrystalline layers and the electronic band structure resulting from this are beside the optical properties also the electrical properties of the material, especially the charge-carrier mobility and the doping concentration. For binary silicon-germanium layers the hole concentration of about 2 x 10{sup 18} cm{sup -3} for pure silicon increrases to about 5 x 10{sup 20} cm{sub -3} for pure germanium. Temperature-resolved measurements were applied in order to detect doping levels respectively semiconductor-metal transitions. In the last part of the thesis the hydrogen passivation of polycrystalline thin silicon-germanium layers, which were fabricated by means of aluminium-induced layer exchange, is treated.

  2. Structural change and power factor enhancement of thermoelectric p-type films

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Katrin; Leipner, Hartmut; Heyroth, Frank [Interdisziplinaeres Zentrum fuer Materialwissenschaften, Martin-Luther-Universitaet 06099 Halle (Germany); Stordeur, Matthias; Engers, Bernd [angaris GmbH, Heinrich-Damerow-Str. 1, 06120 Halle (Germany)

    2008-07-01

    By sputter-deposition thin films of the thermoelectric effective p-type compound semiconductor (Bi{sub 0.15}Sb{sub 0.85}){sub 2}Te{sub 3} were prepared. For the first time a distinct increase of the electrical conductivity s was observed after heating of the as-deposited films and afterwards cooling. For the enlightenment of this typical behavior, which seems to be similar found for phase change materials consisting of (Ge, Sb, Te)-alloys, also the Seebeck (S) and the Hall coefficient were measured. It was established that the increase of the electrical conductivity is not connected with an expected decrease of the Seebeck coefficient, because the charge carrier density is reduced but at the same time the hole mobility is increasing. Corresponding analytical investigations by XRD, EDX, and REM shows that besides a grain growth in the polycrystalline films a Te-rich phase appears after the heat treatment. The increase of the electrical conductivity at nearly unchanged Seebeck coefficient can be exploited for the enhancement of the film power factor (S{sup 2}s). This is important for the efficiency of thermoelectric thin films devices as miniaturized coolers, generators, and sensors. Nevertheless for a quantitative interpretation of the presented new experimental results further investigations and theoretical considerations are required.

  3. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-02-25

    In today\\'s traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry\\'s most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. © 2014 American Chemical Society.

  4. Low resistance polycrystalline diamond thin films deposited by hot filament chemical vapour deposition

    Indian Academy of Sciences (India)

    Mahtab Ullah; Ejaz Ahmed; Abdelbary Elhissi; Waqar Ahmed

    2014-05-01

    Polycrystalline diamond thin films with outgrowing diamond (OGD) grains were deposited onto silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemical vapour deposition (HFCVD) reactor with a range of gas flow rates. X-ray diffraction (XRD) and SEM showed polycrystalline diamond structure with a random orientation. Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth was observed in flowerish character at high gas flow rates. Isolated single crystals with little openings appeared at various stages at low gas flow rates. Thus, changing gas flow rates had a beneficial influence on the grain size, growth rate and electrical resistivity. CVD diamond films gave an excellent performance for medium film thickness with relatively low electrical resistivity and making them potentially useful in many industrial applications.

  5. Fracture behaviour of polycrystalline tungsten

    Science.gov (United States)

    Gaganidze, Ermile; Rupp, Daniel; Aktaa, Jarir

    2014-03-01

    Fracture behaviour of round blank polycrystalline tungsten was studied by means of three point bending Fracture-Mechanical (FM) tests at temperatures between RT and 1000 °C and under high vacuum. To study the influence of the anisotropic microstructure on the fracture toughness (FT) and ductile-to-brittle transition (DBT) the specimens were extracted in three different, i.e. longitudinal, radial and circumferential orientations. The FM tests yielded distinctive fracture behaviour for each specimen orientation. The crack propagation was predominantly intergranular for longitudinal orientation up to 600 °C, whereas transgranular cleavage was observed at low test temperatures for radial and circumferentially oriented specimens. At intermediate test temperatures the change of the fracture mode took place for radial and circumferential orientations. Above 800 °C all three specimen types showed large ductile deformation without noticeable crack advancement. For longitudinal specimens the influence of the loading rate on the FT and DBT was studied in the loading rate range between 0.06 and 18 MPa m1/2/s. Though an increase of the FT was observed for the lowest loading rate, no resolvable dependence of the DBT on the loading rate was found partly due to loss of FT validity. A Master Curve approach is proposed to describe FT vs. test temperature data on polycrystalline tungsten. Fracture safe design space was identified by analysis compiled FT data.

  6. Characterization of electrical and optical properties of silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Guobin

    2009-12-04

    characteristic DRL lines D1 to D4 has been detected, indicating the dislocations in the Alile sample are relatively clean. Test p-n junction diodes with dislocation networks (DNs) produced by silicon wafer direct bonding have been investigated by EBIC technique. Charge carriers collection and electrical conduction phenomena by the DNs were observed. Inhomogeneities in the charge collection were detected in n- and p-type samples under appropriate beam energy. The diffusion lengths in the thin top layer of silicon-on-insulator (SOI) have been measured by EBIC with full suppression of the surface recombination at the buried oxide (BOX) layer and at surface of the top layer by biasing method. The measured diffusion length is several times larger than the layer thickness. Silicon nanostructures are another important subject of this work. Electrical and optical properties of various silicon based materials like silicon nanowires, silicon nano rods, porous silicon, and Si/SiO{sub 2} multi quantum wells (MQWs) samples were investigated in this work. Silicon sub-bandgap infrared (IR) luminescence around 1570 nm was found in silicon nanowires, nano rods and porous silicon. PL measurements with samples immersed in different liquid media, for example, in aqueous HF (50%), concentrated H{sub 2}SO{sub 4} (98%) and H{sub 2}O{sub 2} established that the subbandgap IR luminescence originated from the Si/SiO{sub x} interface. EL in the sub-bandgap IR range has been observed in simple devices prepared on porous silicon and MQWs at room temperature. (orig.)

  7. DLTS of p-type Czochralski Si wafers containing processing-induced macropores

    Science.gov (United States)

    Simoen, E.; Depauw, V.; Gordon, I.; Poortmans, J.

    2012-01-01

    The deep levels present in p-type Czochralski silicon with processing-induced macropores in the depletion region have been studied by the deep-level transient (DLT) spectroscopy technique. It is shown that a broad band is present for a bias pulse close to the interface with the Al Schottky contact, which exhibits anomalously slow hole capture and is ascribed to the internal interface states of the macropores. For depths beyond the pore region, other deep levels, associated with point defects—possibly metal contamination during the high-temperature annealing step under H2 ambient--have been observed. The impact of the observed defects on the lifetime of thin-film solar cells, fabricated using macropore-based layer transfer is discussed. Finally, it is shown that the presence of pores in the depletion region, which also affects the DLT-spectrum, alters the capacitance-voltage characteristics.

  8. Effect on thickness of Al layer in poly-crystalline Si thin films using aluminum(Al) induced crystallization method.

    Science.gov (United States)

    Jeong, Chaehwan; Na, Hyeon Sik; Lee, Suk Ho

    2011-02-01

    The polycrystalline silicon (poly-Si) thin films were prepared by aluminum induced crystallization. Aluminum (Al) and amorphous silicon (a-Si) layers were deposited using DC sputtering and plasma enhanced chemical vapor deposition method, respectively. For the whole process Al properties of bi-layers can be one of the important factors. In this paper we investigated the structural and electrical properties of poly-crystalline Si thin films with a variation of Al thickness through simple annealing process. All samples showed the polycrystalline phase corresponding to (111), (311) and (400) orientation. Process time, defined as the time required to reach 95% of crystalline fraction, was within 60 min and Al(200 nm)/a-Si(400 nm) structure of bi-layer showed the fast response for the poly-Si films. The conditions with a variation of Al thickness were executed in preparing the continuous poly-Si films for solar cell application.

  9. Quasi-perpetual discharge behaviour in p-type Ge-air batteries.

    Science.gov (United States)

    Ocon, Joey D; Kim, Jin Won; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2014-11-07

    Metal-air batteries continue to become attractive energy storage and conversion systems due to their high energy and power densities, safer chemistries, and economic viability. Semiconductor-air batteries - a term we first define here as metal-air batteries that use semiconductor anodes such as silicon (Si) and germanium (Ge) - have been introduced in recent years as new high-energy battery chemistries. In this paper, we describe the excellent doping-dependent discharge kinetics of p-type Ge anodes in a semiconductor-air cell employing a gelled KOH electrolyte. Owing to its Fermi level, n-type Ge is expected to have lower redox potential and better electronic conductivity, which could potentially lead to a higher operating voltage and better discharge kinetics. Nonetheless, discharge measurements demonstrated that this prediction is only valid at the low current regime and breaks down at the high current density region. The p-type Ge behaves extremely better at elevated currents, evident from the higher voltage, more power available, and larger practical energy density from a very long discharge time, possibly arising from the high overpotential for surface passivation. A primary semiconductor-air battery, powered by a flat p-type Ge as a multi-electron anode, exhibited an unprecedented full discharge capacity of 1302.5 mA h gGe(-1) (88% anode utilization efficiency), the highest among semiconductor-air cells, notably better than new metal-air cells with three-dimensional and nanostructured anodes, and at least two folds higher than commercial Zn-air and Al-air cells. We therefore suggest that this study be extended to doped-Si anodes, in order to pave the way for a deeper understanding on the discharge phenomena in alkaline metal-air conversion cells with semiconductor anodes for specific niche applications in the future.

  10. High temperature thermoelectric properties of p-type skutterudites BaxYbyCo4-zFezSb12

    KAUST Repository

    Dong, Y.

    2012-01-01

    Several polycrystalline p-type skutterudites with compositions Ba xYb yCo 4-zFe zSb 12, with varying filler concentrations x and y, and z = 1 to 2, were synthesized by reacting the constituents and subsequent solid state annealing, followed by densification by hot-pressing. Their thermoelectric properties were evaluated from 300 to 820 K. The Yb filling fraction increased with Fe content while the amount of Fe substitution had little influence on the Ba filling fraction. High purity specimens were obtained when the Fe content was low. Bipolar conduction contributed to the thermal conductivity at elevated temperatures. A maximum ZT value of 0.7 was obtained at 750 K for the specimen with the highest Fe content and filling fraction. The potential for thermoelectric applications is also discussed. © 2012 American Institute of Physics.

  11. Enhancement of photocathodic stability of p-type copper(I) oxide electrodes by surface etching treatment

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Fumiaki, E-mail: amano@kitakyu-u.ac.jp [Catalysis Research Center, Hokkaido University, Sapporo 001-0021 (Japan); Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemical and Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135 (Japan); Ebina, Toshihiro [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Ohtani, Bunsho [Catalysis Research Center, Hokkaido University, Sapporo 001-0021 (Japan); Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2014-01-01

    The photoelectrochemical properties of electrodeposited p-type copper(I) oxide (Cu{sub 2}O) films were investigated using methyl viologen (MV{sup 2+}) as an electron acceptor. The pristine Cu{sub 2}O films were deactivated during the photocathodic reaction as a result of self-reduction, whereas the (111)-oriented Cu{sub 2}O films treated in an aqueous solution containing hexamethylenetetramine at pH 5 and 90 °C exhibited stable photocurrent for MV{sup 2+} reduction into the cation radical. Scanning electron microscope images showed that the treated films contained smaller crystal grains than untreated ones. X-ray photoelectron spectroscopy revealed that the treatment etched the thin layer of copper(II) oxide from the Cu{sub 2}O polycrystalline surface. Etching of the film surface enhanced the stability and steady-state photocurrent for photocathodic reduction of MV{sup 2+}, suggesting that the crystalline composition and structures exposed on the outermost surface of Cu{sub 2}O polycrystalline films have a considerable influence on the selectivity for the photocathodic reaction over self-reduction. - Highlights: • Photoelectrochemical reduction of methyl viologen by (111)-oriented Cu{sub 2}O thin films • Cu{sub 2}O films are etched using an aqueous solution containing hexamethylenetetramine. • Etching decreases crystal grain size and removes the thin layer of CuO. • Etching enhances the stability of Cu{sub 2}O photoelectrodes.

  12. 责权融资对公司价值的影响研究——以多晶硅行业为例%The Influence of Debt Financing to the Company Value: a Case Study of the Polycrystalline Silicon Industry

    Institute of Scientific and Technical Information of China (English)

    闫自杰

    2012-01-01

    Based on the data of listed Chinese polycrystalline silicon companies from 2008 to 2010, the paper studies the relationship between debt financing and company value and finds that the debt financing ratio of these companies is low and decreasing and that the ratio has a positive relation with the company value, an active influence in improving a company's value. When facing financing options, a cornparty should give priority to internal financing, then choose the short-term and long-term debt financing, and finally the equity financing. Meanwhile, China should speed up the reform in banks, enhancing the supervisory function of banks; complete the bond market, promoting the company's bond financing rate to improve the current situation in terms of the low debt financing ratio and unreasonable financial structure and to raise the company value in the end.%运用中国多晶硅上市公司2008—2010年的数据,对债权融资与公司价值的关系进行研究,发现中国多晶硅上市公司债权融资比例偏低,且有减少的趋势;债权融资率与企业价值具有正相关关系,债权融资对提高公司价值有积极的影响。其表现是公司在选择融资的时候,应该优先考虑内部融资,其次是短期和长期的债务融资,最后选择股权融资。与此同时,我国应加快银行改革,强化银行的监督作用;完善债券市场,提高公司债券融资率,从而改善我国企业债权融资比率偏低、融资结构不合理的现状,提升企业价值。

  13. Shock waves in polycrystalline iron.

    Science.gov (United States)

    Kadau, Kai; Germann, Timothy C; Lomdahl, Peter S; Albers, Robert C; Wark, Justin S; Higginbotham, Andrew; Holian, Brad Lee

    2007-03-30

    The propagation of shock waves through polycrystalline iron is explored by large-scale atomistic simulations. For large enough shock strengths the passage of the wave causes the body-centered-cubic phase to transform into a close-packed phase with most structure being isotropic hexagonal-close-packed (hcp) and, depending on shock strength and grain orientation, some fraction of face-centered-cubic (fcc) structure. The simulated shock Hugoniot is compared to experiments. By calculating the extended x-ray absorption fine structure (EXAFS) directly from the atomic configurations, a comparison to experimental EXAFS measurements of nanosecond-laser shocks shows that the experimental data is consistent with such a phase transformation. However, the atomistically simulated EXAFS spectra also show that an experimental distinction between the hcp or fcc phase is not possible based on the spectra alone.

  14. Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide

    Science.gov (United States)

    Saint-Cast, Pierre; Kania, Daniel; Hofmann, Marc; Benick, Jan; Rentsch, Jochen; Preu, Ralf

    2009-10-01

    Aluminum oxide layers can provide excellent passivation for lowly and highly doped p-type silicon surfaces. Fixed negative charges induce an accumulation layer at the p-type silicon interface, resulting in very effective field-effect passivation. This paper presents highly negatively charged (Qox=-2.1×1012 cm-2) aluminum oxide layers produced using an inline plasma-enhanced chemical vapor deposition system, leading to very low effective recombination velocities (˜10 cm s-1) on low-resistivity p-type substrates. A minimum static deposition rate (100 nm min-1) at least one order of magnitude higher than atomic layer deposition was achieved on a large carrier surfaces (˜1 m2) without significantly reducing the resultant passivation quality.

  15. Development in p-type Doping of ZnO

    Institute of Scientific and Technical Information of China (English)

    YU Liping; ZHU Qiqiang; FAN Dayong; LAN Zili

    2012-01-01

    Zinc oxide (ZnO) is a wide band-gap material of the Ⅱ-Ⅵ group with excellent optical properties for optoelectronics applications,such as the flat panel displays and solar cells used in sports tournament.Despite its advantages,the application of ZnO is hampered by the lack of stable p-type doping.In this paper,the recent progress in this field was briefly reviewed,and a comprehensive summary of the research was carried out on ZnO fabrication methods and its electrical,optical,and magnetic properties were presented.

  16. P-type conductivity in annealed strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D., E-mail: mattmcc@wsu.edu [Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2814 (United States)

    2015-12-15

    Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO{sub 3}, or STO) samples that were annealed at 1200°C. Room-temperature mobilities above 100 cm{sup 2}/V s were measured, an order of magnitude higher than those for electrons (5-10 cm{sup 2}/V s). Average hole densities were in the 10{sup 9}-10{sup 10} cm{sup −3} range, consistent with a deep acceptor.

  17. Bi-Se doped with Cu, p-type semiconductor

    Science.gov (United States)

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  18. Metal Fluoride Inhibition of a P-type H+ Pump

    Science.gov (United States)

    Pedersen, Jesper Torbøl; Falhof, Janus; Ekberg, Kira; Buch-Pedersen, Morten Jeppe; Palmgren, Michael

    2015-01-01

    The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state. PMID:26134563

  19. Effect of hydrogen annealing on characteristics of polycrystalline silicon

    Institute of Scientific and Technical Information of China (English)

    GOU Xianfang; XU Ying; LI Xudong; HENG Yang; MA Lifen; REN Bingyan

    2006-01-01

    The characteristics of mc-Si used for solar cells during H2 ambient annealing at 800-1200 ℃ were investigated by means of FTIR and QSSPCD. The results reveal that grain boundaries or defects in mc-Si may facilitate the formation of oxygen precipitates, and the formation of oxygen precipitates has deleterious effect on the lifetime of mc-Si. Decreasing lifetime could result from the formation of new recombination during annealing. Additionally, It is found that hydrogen may facilitate the formation of oxygen precipitates in mc-Si. On the other hand, the diffusion of hydrogen may passivate the defects/boundaries and it is beneficial to the lifetime of mc-Si.

  20. Study of Thermal Treatment on Properties of Polycrystalline Silicon

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of thermal annealing on oxygen behavior and carrier lifetimes of mc-Si wafers were investigated by means of FTIR and QSSPCD during single step and two step heat treatments in N2 and O2 ambient. It reveals that interstitial oxygen concentration of mc-Si and CZ-Si has a slighter decrease in N2 and O2 ambient during single-step annealing, which means oxygen precipitates are not generated. But oxygen concentration greatly decreases and generates a number of oxygen precipitates during two-step annealing. Bulk lifetime of mc-Si increases in N2 ambient at 850, 950, 1150 ℃ respectively, and annealing in O2 shows better results than that in N2 and annealing in two-step reflected better consequence than annealing in single-step. But lifetime of CZ-Si annealed in N2 or O2 decreases rapidly. The reason of lifetime increase is probably considered due to the fact that interstitial Si atoms of Si/SiO2 interface fill vacancies or some recombination centers at high temperature annealing. Moreover, a number of impurities in mc-Si probably diffuse to grain boundaries so that greatly reduce recombination centers result to lifetime rising.

  1. Self-aligned metal double-gate junctionless p-channel low-temperature polycrystalline-germanium thin-film transistor with thin germanium film on glass substrate

    Science.gov (United States)

    Hara, Akito; Nishimura, Yuya; Ohsawa, Hiroki

    2017-03-01

    Low-temperature (LT) polycrystalline-germanium (poly-Ge) thin-film transistors (TFTs) are viable contenders for use in the backplanes of flat-panel displays and in systems-on-glass because of their superior electrical properties compared with silicon and oxide semiconductors. However, LT poly-Ge shows strong p-type characteristics. Therefore, it is not easy to reduce the leakage current using a single-gate structure such as a top-gate or bottom-gate structure. In this study, self-aligned planar metal double-gate p-channel junctionless LT poly-Ge TFTs are fabricated on a glass substrate using a 15-nm-thick solid-phase crystallized poly-Ge film and aluminum-induced lateral metallization source-drain regions (Al-LM-SD). A nominal field-effect mobility of 19 cm2 V-1 s-1 and an on/off ratio of 2 × 103 were obtained by optimizing the Al-LM-SD on a glass substrate through a simple, inexpensive LT process.

  2. Electrical characteristics of polycrystalline Si layers embedded into high-k Al{sub 2}O{sub 3} gate layers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungjun; Cho, Kyoungah [Department of Electrical Engineering and Institute of Nano Science, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Sangsig [Department of Electrical Engineering and Institute of Nano Science, Korea University, Seoul 136-701 (Korea, Republic of)], E-mail: sangsig@korea.ac.kr

    2008-09-30

    The electrical characteristics of polycrystalline Si (poly Si) layers embedded into high-k Al{sub 2}O{sub 3} (alumina) gate layers are investigated in this work. The capacitance versus voltage (C-V) curves obtained from the metal-alumina-polysilicon-alumina-silicon (MASAS) capacitors exhibit significant threshold voltage shifts, and the width of their hysteresis window is dependent on the range of the voltage sweep. The counterclockwise hysteresis observed in the C-V curves indicates that electrons originating from the p-type Si substrate in the inversion condition are trapped in the floating gate layer consisting of the poly Si layer present between the top and bottom Al{sub 2}O{sub 3} layers in the MASAS capacitor. Also, current versus voltage (I-V) measurements are performed to examine the electrical characteristics of the fabricated capacitors. The I-V measurements reveal that our MASAS capacitors show a very low leakage current density, compared to the previously reported results.

  3. Eye-Safe Polycrystalline Lasers

    Science.gov (United States)

    2013-03-01

    examination the fiber ends were mechanically polished with 600 grit silicon carbide ( SiC ) bonded paper. Un-coated samples were investigated using a...additionally be a seed project on ceramic fiber lasers. Figure I.1. (a) Schematic of process flow for fabricating high purity and quality...Hydrothermal techniques developed at Clemson to grow high purity single crystals were advanced and employed to produce doped nanopowders that

  4. Extrinsic doping in silicon revisited

    KAUST Repository

    Schwingenschlögl, Udo

    2010-06-17

    Both n-type and p-type doping of silicon is at odds with the charge transfer predicted by Pauling electronegativities and can only be reconciled if we no longer regarding dopant species as isolated atoms but rather consider them as clusters consisting of the dopant and its four nearest neighbor silicon atoms. The process that gives rise to n-type and p-type effects is the charge redistribution that occurs between the dopant and its neighbors, as we illustrate here using electronic structure calculations. This view point is able to explain why conventional substitutional n-type doping of carbon has been so difficult.

  5. Extrinsic doping in silicon revisited

    Energy Technology Data Exchange (ETDEWEB)

    Schwingenschloegl, Udo [PSE Division, KAUST, Thuwal, Kingdom of Saudi Arabia (Saudi Arabia); Chroneos, Alexander; Grimes, Robin [Department of Materials, Imperial College London, London SW7 2BP (United Kingdom); Schuster, Cosima [Institut fuer Physik, Universitaet Augsburg, 86135 Augsburg (Germany)

    2011-07-01

    Both n-type and p-type doping of silicon is at odds with the charge transfer predicted by Pauling electronegativities and can only be reconciled if we no longer regard dopant species as isolated atoms but rather consider them as clusters consisting of the dopant and its four nearest neighbor silicon atoms. The process that gives rise to n-type and p-type effects is the charge redistribution that occurs between the dopant and its neighbors, as we illustrate here using electronic structure calculations. This view point is able to explain why conventional substitutional n-type doping of carbon has been so difficult.

  6. p-Type NiO Hybrid Visible Photodetector.

    Science.gov (United States)

    Mallows, John; Planells, Miquel; Thakare, Vishal; Bhosale, Reshma; Ogale, Satishchandra; Robertson, Neil

    2015-12-23

    A novel hybrid visible-light photodetector was created using a planar p-type inorganic NiO layer in a junction with an organic electron acceptor layer. The effect of different oxygen pressures on formation of the NiO layer by pulsed laser deposition shows that higher pressure increases the charge carrier density of the film and lowers the dark current in the device. The addition of a monolayer of small molecules containing conjugated π systems and carboxyl groups at the device interface was also investigated and with correct alignment of the energy levels improves the device performance with respect to the quantum efficiency, responsivity, and photogeneration. The thickness of the organic layer was also optimized for the device, giving a responsivity of 1.54 × 10(-2) A W(-1) in 460 nm light.

  7. Elucidating Functional Aspects of P-type ATPases

    DEFF Research Database (Denmark)

    Autzen, Henriette Elisabeth

    2015-01-01

    similar to that of the wild type (WT) protein. The discrepancy between the newly determined crystal structure of LpCopA and the functional manifestations of the missense mutation in human CopA, could indicate that LpCopA is insufficient in structurally elucidating the effect of disease-causing mutations...... cancer and pathogenic microbes. The goal of this Ph.D. dissertation was to functionally characterize SERCA1a and CopA from Legionella pneumophila (LpCopA) through a range of different methods within structural biology. Crystallographic studies of SERCA1a led to a newly determined crystal structure......P-type ATPases are proteins that act to maintain ion homeostasis and electrochemical gradients through the translocation of cations across cell membranes. Underscoring their significance in humans, dysfunction of the ATPases can lead to crucial diseases. Dysfunction of the sarco...

  8. Study on the p-type QWIP-LED device

    Institute of Scientific and Technical Information of China (English)

    ZHEN; Honglou; XIONG; Dayuan; ZHOU; Xuchang; LI; Ning; SHAO; Jun; LU; Wei

    2006-01-01

    A p-type quantum well infrared photodetector (QWIP) integrated with a light-emitting diode (LED) (named QWIP-LED) was fabricated and studied. The infrared photo-response spectrum was obtained from the device resistance variation and the near-infrared photo-emission intensity variation. A good agreement between these two spectra was observed, which demonstrates that the long-wavelength infrared radiation around 7.5 μm has been transferred to the near-infrared light at 0.8 μm by the photo-electronic process in the QWIP-LED structure. Moreover, the experimentally observed infrared response wavelength is in good agreement with the theoretical calculation value of 7.7 μm. The results on the upconversion of the infrared radiation will be very useful for the new infrared focal plane array technology.

  9. Extremal Overall Elastic Response of Polycrystalline Materials

    DEFF Research Database (Denmark)

    Bendsøe, Martin P; Lipton, Robert

    1996-01-01

    Polycrystalline materials comprised of grains obtained froma single anisotropic material are considered in the frameworkof linear elasticity. No assumptions on the symmetry of thepolycrystal are made. We subject the material to independentexternal strain and stress fields with prescribed mean...

  10. Disposal of metal fragments released during polycrystalline slicing by multi-wire saw

    Science.gov (United States)

    Boutouchent-Guerfi, N.; Drouiche, N.; Medjahed, S.; Ould-Hamou, M.; Sahraoui, F.

    2016-08-01

    The environmental and economic impacts linked with solar systems are largely based on discharges of slurry generated during the various stages of sawing and cutting ingots. These discharges into the environment are subject to the general regulations on hazardous and special industrial waste disposal. Therefore, they should not be abandoned or burned in open air. The cutting of Silicon ingots leads to the production of Silicon wafers additional costs, losing more than 30% of Silicon material. Abrasive grains (Silicon Carbide) trapped between the wire and the block of Silicon need to be removed by various mechanisms to be later evacuated by slurry fragments. In the interest of decreasing operational costs during polycrystalline ingot slicing at Semiconductors Research Center, and, avoid environmental problems; it is necessary to recover the solar grade Silicon from the Silicon sawing waste. For this reason, the removal of metal fragments has become a preliminary requirement to regenerate the slurry; in addition, the solid phase needs to be separated from the liquid phase after the dissolution PEG with the solvent. In the present study, magnetic separation and centrifugation methods were adopted for metals removal, followed by the analysis of some operating parameters such as: washing time, pH, and initial concentration of Silicon. Finally, analytical, morphological and basic methods were performed in order to evaluate the efficiency of the process undertaken.

  11. Nitrogen-monoxide gas-sensing properties of transparent p-type copper-oxide nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soojeong; Kim, Hyojin; Kim, Dojin [Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-15

    We report the nitrogen-monoxide (NO) gas-sensing properties of transparent p-type copper-oxide (CuO) nanorod arrays synthesized by using the hydrothermal method with a CuO nanoparticle seed layer deposited on a glass substrate via sputtering process. We synthesized polycrystalline CuO nanorods measuring 200 to 300 nm in length and 20 to 30 nm in diameter for three controlled molarity ratios of 1:1, 1:2 and 1:4 between copper nitrate trihydrate [Cu(NO{sub 2}){sub 2}·3H{sub 2}O] and hexamethylenetetramine (C{sub 6}H{sub 12}N{sub 4}). The crystal structures and morphologies of the synthesized CuO nanorod arrays were examined using grazing incidence X-ray diffraction and scanning electron microscopy. The gas-sensing measurements for NO gas in dry air indicated that the CuO nanorodarray-based gas sensors synthesized under hydrothermal condition at a molarity ratio of 1:2 showed the best gas sensing response to NO gas. These CuO nanorod-array gas sensors exhibited a highly sensitive response to NO gas, with a maximum sensitivity of about 650% for 10 ppm NO in dry air at an operating temperature of 100 .deg. C. These transparent p-type CuO nanorod-array gas sensors have shown a reversible and reliable response to NO gas over a range of operating temperatures. These results indicate certain potential use of p-type oxide semiconductor CuO nanorods as sensing materials for several types of gas sensors, including p - n junction gas sensors.

  12. (Ga,Fe)Sb: A p-type ferromagnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Nguyen Thanh; Anh, Le Duc; Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan)

    2014-09-29

    A p-type ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 3.9%–13.7%) has been grown by low-temperature molecular beam epitaxy (MBE) on GaAs(001) substrates. Reflection high energy electron diffraction patterns during the MBE growth and X-ray diffraction spectra indicate that (Ga,Fe)Sb layers have the zinc-blende crystal structure without any other crystallographic phase of precipitates. Magnetic circular dichroism (MCD) spectroscopy characterizations indicate that (Ga,Fe)Sb has the zinc-blende band structure with spin-splitting induced by s,p-d exchange interactions. The magnetic field dependence of the MCD intensity and anomalous Hall resistance of (Ga,Fe)Sb show clear hysteresis, demonstrating the presence of ferromagnetic order. The Curie temperature (T{sub C}) increases with increasing x and reaches 140 K at x = 13.7%. The crystal structure analyses, magneto-transport, and magneto-optical properties indicate that (Ga,Fe)Sb is an intrinsic ferromagnetic semiconductor.

  13. Infrared Transparent Spinel Films with p -Type Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Charles F.; Exarhos, Gregory J.; Ferris, Kim F.; Engelhard, Mark H.; Stewart, Donald C.

    2001-11-29

    Spinel oxide films containing at least two transition metal cations were found to exhibit p-type conductivity with high optical transparency from the visible to wavelengths near 15 micrometers. Resistivities as low as 0.003 ohm-cm were measured on 100 nm thick rf sputter deposited films that contained nickel and cobalt. Optical spectra, Raman scattering and XPS measurements indicated the valency of nickel localized on octahedral sites within the spinel lattice determines these properties. Electronic band structure calculations corroborated the experimental results. A resistivity minimum was found at the composition NiCo2O4 deposited from aqueous or alcoholic solutions followed by subsequent annealing at 400 degrees C in air. Solution deposited films richer in nickel than this stoichiometry always were found to phase separate into nickel oxide and a spinel phase with concomitant loss in conductivity. However, the phase stability region could be extended to higher nickel contents when rf-sputter deposition techniques were used. Sputter deposited spinel films having a nickel to cobalt ratio less than 2 were found to exhibit the highest conductivity. Results suggest that the phase stability region for these materials can be extended through appropriate choice of deposition conditions. A possible mechanism that promotes high conductivity in this system is thought to be charge transfer between the resident di- and trivalent cations that may be assisted by the magnetic nature of the oxide film.

  14. Electronic processes in uniaxially stressed p-type germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dubon, Jr., Oscar Danilo [Univ. of California, Berkeley, CA (United States)

    1996-02-01

    Effect of uniaxial stress on acceptor-related electronic processes in Ge single crystals doped with Ga, Be, and Cu were studied by Hall and photo-Hall effect measurements in conjunction with infrared spectroscopy. Stress dependence of hole lifetime in p-type Ge single crystals is used as a test for competing models of non-radiative capture of holes by acceptors. Photo-Hall effect shows that hole lifetime in Ga- and Be-doped Ge increases by over one order of magnitude with uniaxial stress at liq. He temps. Photo-Hall of Ge:Be shows a stress-induced change in the temperature dependence of hole lifetime. This is consistent with observed increase of responsivity of Ge:Ga detectors with uniaxial stress. Electronic properties of Ge:Cu are shown to change dramatically with uniaxial stress; the results provide a first explanation for the performance of uniaxially stressed, Cu-diffused Ge:Ga detectors which display a high conductivity in absence of photon signal and therefore have poor sensitivity.

  15. Photoconduction spectroscopy of p-type GaSb films

    Energy Technology Data Exchange (ETDEWEB)

    Shura, M.W., E-mail: Megersa.Shura@live.nmmu.ac.za [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Wagener, V.; Botha, J.R.; Wagener, M.C. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    Excess carrier lifetimes (77 K) have been measured as function of the absorbed flux density in undoped p-type gallium antimonide films (GaSb/GaAs) using steady state photoconductivity measurements with the illumination wavelength of 1.1 {mu}m. Using the results from Hall effect measurements along with the relations describing the lifetimes of the excess minority carriers in the bulk of the films and at the surface, the theoretical values of the effective excess carrier lifetime in the materials were also calculated. Discrepancies between the experimental and theoretical results were described using a two-layer model, by considering the variation in the charge distribution within the layer due to the presence of surface states, as well as the band offset between the layer and the substrate. Theoretical modeling of the experimental result yields values of different parameters such as band bending at the surface, minimum value of Shockley-Read-Hall lifetime and maximum value of the surface recombination velocity.

  16. Piezoresistive effect in top-down fabricated silicon nanowires

    DEFF Research Database (Denmark)

    Reck, Kasper; Richter, Jacob; Hansen, Ole

    2008-01-01

    We have designed and fabricated silicon test chips to investigate the piezoresistive properties of both crystalline and polycrystalline nanowires using a top-down approach, in order to comply with conventional fabrication techniques. The test chip consists of 5 silicon nanowires and a reference...... resistor, each with integrated contacts for electrical 4-point measurements. We show an increase in the piezoresistive effect of 633% compared to bulk silicon. Preliminary temperature measurements indicate a larger temperature dependence of silicon nanowires, compared to bulk silicon. An increase of up...

  17. Growth of silicon sheets from metallurgical-grade silicon

    Science.gov (United States)

    Ciszek, T.; Schietzelt, M.; Kazmerski, L. L.; Hurd, J. L.; Fernelius, B.

    1981-05-01

    Impure silicon is difficult to solidify in sheet form because of morphological proturberances which may result from constitutional supercooling. Sheet growth methods which require a specific crystallographic orientation or which are characterized by a narrow melt meniscus are most affected by this problem. The edge-supported pulling technique was applied to sheet growth of metallurgical grade silicon and DAR (Direct Arc Reactor) silicon. The 7 mm meniscus height associated with this technique allowed the growth of 5 cm wide sheets from both materials. In each case, the sheets were p-type.

  18. Construction of High-Performance, Low-Cost Photoelectrodes with Controlled Polycrystalline Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Kyoung-Shin Choi

    2013-06-30

    The major goal of our research was to gain the ability in electrochemical synthesis to precisely control compositions and morphologies of various oxide-based polycrystalline photoelectrodes in order to establish the composition-morphology-photoelectrochemical property relationships while discovering highly efficient photoelectrode systems for use in solar energy conversion. Major achievements include: development of porous n-type BiVO{sub 4} photoanode for efficient and stable solar water oxidation; development of p-type CuFeO{sub 2} photocathode for solar hydrogen production; and junction studies on electrochemically fabricated p-n Cu{sub 2}O homojunction solar cells for efficiency enhancement.

  19. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  20. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating.

    Science.gov (United States)

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-06-28

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors.

  1. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

    Science.gov (United States)

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-06-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors.

  2. TSC measurements on proton-irradiated p-type Si-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Donegani, Elena; Fretwurst, Eckhart; Garutti, Erika; Junkes, Alexandra [University of Hamburg (Germany)

    2016-07-01

    Thin n{sup +}p Si sensors are potential candidates for coping with neutron equivalent fluences up to 2.10{sup 16} n{sub eq}/cm{sup 2} and an ionizing dose in the order of a few MGy, which are expected e.g. for the HL-LHC upgrade. The aim of the present work is to provide experimental data on radiation-induced defects in order to: firstly, get a deeper understanding of the properties of hadron induced defects, and secondly develop a radiation damage model based on microscopic measurements. Therefore, the outcomes of Thermally Stimulated Current measurements on 200 μm thick Float-Zone (FZ) and Magnetic Czochralski (MCz) diodes will be shown, as a results of irradiation with 23 MeV protons and isothermal annealing. The samples were irradiated in the fluence range (0.3-1).10{sup 14} n{sub eq}/cm{sup 2}, so that the maximal temperature at which the TSC signal is still sharply distinguishable from the dark current is 200 K. In particular, special focus will be given to the defect introduction rate and to the issue of boron removal in p-type silicon. Annealing studies allow to distinguish which defects mainly contribute to the leakage current and which to the space charge, and thus correlate microscopic defects properties with macroscopic sensor properties.

  3. Results with p-type pixel sensors with different geometries for the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Allport, P.P. [Department of Physics, University of Liverpool, Oxford Road, Liverpool, L69 7ZE (United Kingdom); Bates, R.; Butter, C. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Casse, G. [Department of Physics, University of Liverpool, Oxford Road, Liverpool, L69 7ZE (United Kingdom); Dervan, P.J., E-mail: Paul.Dervan@cern.ch [Department of Physics, University of Liverpool, Oxford Road, Liverpool, L69 7ZE (United Kingdom); Forshaw, D.; Tsurin, I. [Department of Physics, University of Liverpool, Oxford Road, Liverpool, L69 7ZE (United Kingdom)

    2013-12-11

    Pixel detectors will be extensively used for the four innermost layers of the upgraded ATLAS experiment at the future High Luminosity LHC (HL-LHC) at CERN. The total area of pixel sensors will be over 5 m{sup 2}. The silicon sensors that will instrument the pixel volume will have to face several technology challenges. They will have to withstand doses up to 2×10{sup 16} n{sub eq}cm{sup −2}, to have a reduced inactive area at the edge of the sensors still being able to hold 1000 V bias voltage and to be relatively low cost considering the large area to be covered. N-side readout on p-type bulk is the most promising technology for satisfying the various requirements. Several sensor types have been produced in the UK, conceived for various readout systems, for studying the properties of n-in-p and n-in-n sensors before and after irradiation with test beam and laboratory measurements. The status of these studies is presented here.

  4. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2009-04-01

    Full Text Available In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors.

  5. Scaling properties of polycrystalline graphene: a review

    Science.gov (United States)

    Isacsson, Andreas; Cummings, Aron W.; Colombo, Luciano; Colombo, Luigi; Kinaret, Jari M.; Roche, Stephan

    2017-03-01

    We present an overview of the electrical, mechanical, and thermal properties of polycrystalline graphene. Most global properties of this material, such as the charge mobility, thermal conductivity, or Young’s modulus, are sensitive to its microstructure, for instance the grain size and the presence of line or point defects. Both the local and global features of polycrystalline graphene have been investigated by a variety of simulations and experimental measurements. In this review, we summarize the properties of polycrystalline graphene, and by establishing a perspective on how the microstructure impacts its large-scale physical properties, we aim to provide guidance for further optimization and improvement of applications based on this material, such as flexible and wearable electronics, and high-frequency or spintronic devices.

  6. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji-Hui; Park, Ji-Sang; Metzger, Wyatt [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Yin, Wan-Jian [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); College of Physics, Optoelectronics and Energy and Collaborative, Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Wei, Su-Huai, E-mail: suhuaiwei@csrc.ac.cn [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Beijing Computational Science Research Center, Beijing 100094 (China)

    2016-01-28

    Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance p-type doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.

  7. Polycrystalline CVD diamond device level modeling for particle detection applications

    Science.gov (United States)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-12-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  8. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    Science.gov (United States)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation

  9. Stochastic Multiscale Modeling of Polycrystalline Materials

    Science.gov (United States)

    2013-01-01

    Thrun, and K. Ober- mayer , editors, Advances in Neural Information Processing Systems 15, pages 705–712, Cambridge, MA, 2003. MIT Press. [19] E Van der...modeling of polycrystalline IN 100. International Journal of Plasticity, 24(10):1694–1730, 2008. Special Issue in Honor of Jean - Louis Chaboche. [111] V. B

  10. Extremal Overall Elastic Response of Polycrystalline Materials

    DEFF Research Database (Denmark)

    Bendsøe, Martin P; Lipton, Robert

    1997-01-01

    Polycrystalline materials comprised of grains obtained from a single anisotropic material are considered in the framework of linear elasticity. No assumptions on the symmetry of the polycrystal are made. We subject the material to independent external strain and stress fields with prescribed mean...

  11. Study on AlSb Polycrystalline Thin Films Prepared by Vacuum Co-Evaporation

    Science.gov (United States)

    Song, Huijin; Wu, Lili; Zheng, Jiagui; Feng, Lianghuan; Lei, Zhi; Zhang, Jingquan

    In this paper, the AlSb polycrystalline thin films were prepared by vacuum co-evaporation technology and their structural, optical and electrical properties have been studied. XRD results showed that the as-deposited AlSb amorphous thin films transformed to polycrystalline state after annealed in vacuum at temperatures higher than 540°C. The process of phase change was observed to depend on the annealing temperature and the film composition. Some irreversible changes took place in the annealed films during the measurement of the temperature dependence of the film conductance. The conductance activation energy of the film was 0.132 and 0.32 eV during the heating and cooling process, respectively, which suggests the decrease of Sb vacancies in the AlSb film after the heating. Hall effect and optical absorption measurement showed that the AlSb polycrystalline thin films were p-type, indirect bandgap semiconductors with absorption coefficient higher than 8 × 104 cm-1. TCO/CdS/AlSb photovoltaic devices with the local open circuit voltage of over 200 mV have been fabricated.

  12. Stochastic multiscale modeling of polycrystalline materials

    Science.gov (United States)

    Wen, Bin

    Mechanical properties of engineering materials are sensitive to the underlying random microstructure. Quantification of mechanical property variability induced by microstructure variation is essential for the prediction of extreme properties and microstructure-sensitive design of materials. Recent advances in high throughput characterization of polycrystalline microstructures have resulted in huge data sets of microstructural descriptors and image snapshots. To utilize these large scale experimental data for computing the resulting variability of macroscopic properties, appropriate mathematical representation of microstructures is needed. By exploring the space containing all admissible microstructures that are statistically similar to the available data, one can estimate the distribution/envelope of possible properties by employing efficient stochastic simulation methodologies along with robust physics-based deterministic simulators. The focus of this thesis is on the construction of low-dimensional representations of random microstructures and the development of efficient physics-based simulators for polycrystalline materials. By adopting appropriate stochastic methods, such as Monte Carlo and Adaptive Sparse Grid Collocation methods, the variability of microstructure-sensitive properties of polycrystalline materials is investigated. The primary outcomes of this thesis include: (1) Development of data-driven reduced-order representations of microstructure variations to construct the admissible space of random polycrystalline microstructures. (2) Development of accurate and efficient physics-based simulators for the estimation of material properties based on mesoscale microstructures. (3) Investigating property variability of polycrystalline materials using efficient stochastic simulation methods in combination with the above two developments. The uncertainty quantification framework developed in this work integrates information science and materials science, and

  13. Ultraviolet light-emitting diodes with polarization-doped p-type layer

    Science.gov (United States)

    Hu, Wenxiao; Qin, Ping; Song, Weidong; Zhang, Chongzhen; Wang, Rupeng; Zhao, Liangliang; Xia, Chao; Yuan, Songyang; Yin, Yian; Li, Shuti

    2016-09-01

    We report ultraviolet light emitting diode (LEDs) with polarization doped p-type layer. Fabricated LEDs with polarization doped p-type layer exhibited reduced forward voltage and enhanced light output power, compared to those with traditional p-type AlGaN layer. The improvement is attributed to improved hole concentration and the smooth valence band by the polarization enhanced p-type doping. Our simulated results reveal that this p-type layer can further enhance the performance of ultraviolet LEDs by removing the electron blocking layer (EBL).

  14. The low resistive and transparent Al-doped SnO{sub 2} films: p-type conductivity, nanostructures and photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Benouis, C.E. [Department of Material Technology, Physics Faculty, USTOMB University, BP1505 Oran (Algeria); Benhaliliba, M., E-mail: mbenhaliliba@gmail.com [Department of Material Technology, Physics Faculty, USTOMB University, BP1505 Oran (Algeria); Mouffak, Z. [Department of Electrical and Computer Engineering California State University, Fresno, CA (United States); Avila-Garcia, A. [Cinvestav-IPN, Dept. Ingeniería Eléctrica-SEES, Apdo. Postal 14-740, 07000 México, D.F. (Mexico); Tiburcio-Silver, A. [ITT-DIE, Apdo, Postal 20, Metepec 3, 52176 Estado de Mexico (Mexico); Ortega Lopez, M.; Romano Trujillo, R. [Centro de Investigación en Dispositivos Semiconductores, Instituto de Ciencias-BUAP, 14 Sur y Av. San Claudio, C.U. Puebla, Pue. (Mexico); Ocak, Y.S. [Dicle University, Education Faculty, Science Department, 21280 Diyarbakir (Turkey)

    2014-08-01

    Highlights: • Low resistive and high transparency Al doped SnO{sub 2} films. • Films are deposited onto ITO substrate by spray pyrolysis. • Nanostructured films are revealed. • p-Type conductivity is exhibited. • Photoluminescence of films is studied. - Abstract: In this work, we study the crystalline structure, surface morphology, transmittance, optical bandgap and n/p type inversion of tin oxide (SnO{sub 2}). The Nanostructured films of Al-doped SnO{sub 2} were successfully produced onto ITO-coated glass substrates via the spray pyrolysis method at a deposition temperature of 300 °C. A (1 0 1) and (2 1 1)-oriented tetragonal crystal structure was confirmed by X-ray patterns; and grain sizes varied within the range 8−42 nm. The films were polycrystalline, showing a high transparency in the visible (VIS) and infrared (IR) spectra. The optical bandgap was estimated to be around 3.4 eV. The atomic force microscopy (AFM) analysis showed the nanostructures consisting of nanotips, nanopatches, nanopits and nanobubbles. The samples exhibited high conductivity that ranged from 0.55 to 10{sup 4} (S/cm) at ambient and showed an inversion from n to p-type as well as a degenerate semiconductor characters with a bulk concentration reaching 1.7 x 10{sup 19} cm{sup −3}. The photoluminescence measurements reveal the detection of violet, green and yellow emissions.

  15. Combinatorial discovery through a distributed outreach program: investigation of the photoelectrolysis activity of p-type Fe, Cr, Al oxides.

    Science.gov (United States)

    Rowley, John G; Do, Thanh D; Cleary, David A; Parkinson, B A

    2014-06-25

    We report the identification of a semiconducting p-type oxide containing iron, aluminum, and chromium (Fe2-x-yCrxAlyO3) with previously unreported photoelectrolysis activity that was discovered by an undergraduate scientist participating in the Solar Hydrogen Activity research Kit (SHArK) program. The SHArK program is a distributed combinatorial science outreach program designed to provide a simple and inexpensive way for high school and undergraduate students to participate in the search for metal oxide materials that are active for the photoelectrolysis of water. The identified Fe2-x-yCrxAlyO3 photoelectrolysis material possesses many properties that make it a promising candidate for further optimization for potential application in a photoelectrolysis device. In addition to being composed of earth abundant elements, the FeCrAl oxide material has a band gap of 1.8 eV. Current-potential measurements for Fe2-x-yCrxAlyO3 showed an open circuit photovoltage of nearly 1 V; however, the absorbed photon conversion efficiency for hydrogen evolution was low (2.4 × 10(-4) at 530 nm) albeit without any deposited hydrogen evolution catalyst. X-ray diffraction of the pyrolyzed polycrystalline thin Fe2-x-yCrxAlyO3 film on fluorine-doped tin oxide substrates shows a hexagonal phase (hematite structure) and scanning electron microscope images show morphology consisting of small crystallites.

  16. Engineering piezoresistivity using biaxially strained silicon

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Richter, Jacob; Brandbyge, Mads;

    2008-01-01

    We calculate the shear piezocoefficient of p-type silicon with grown-in biaxial strain using a 66 k·p method. We find a significant increase in the value of the shear piezocoefficient for compressive grown-in biaxial strain, while tensile strain decreases the piezocoefficient. The dependence...... of the piezocoefficient on temperature and dopant density is altered qualitatively for strained silicon. In particular, we find that a vanishing temperature coefficient may result for silicon with grown-in biaxial tensile strain. These results suggest that strained silicon may be used to engineer the iezoresistivity...

  17. Influence of direct current plasma magnetron sputtering parameters on the material characteristics of polycrystalline copper films

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.-Y. [Thin Film Laboratory, Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)], E-mail: k.y.chan@fz-juelich.de; Luo, P.-Q.; Zhou, Z.-B. [Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai (China); Tou, T.-Y.; Teo, B.-S. [Thin Film Laboratory, Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)

    2009-03-01

    Physical vapor processes using glow plasma discharge are widely employed in microelectronic industry. In particular magnetron sputtering is a major technique employed for the coating of thin films. This paper addresses the influence of direct current (DC) plasma magnetron sputtering parameters on the material characteristics of polycrystalline copper (Cu) thin films coated on silicon substrates. The influence of the sputtering parameters including DC plasma power and argon working gas pressure on the electrical and structural properties of the thin Cu films was investigated by means of surface profilometer, four-point probe and atomic force microscopy.

  18. Short circuit current in indium tin oxide/silicon solar cells

    Science.gov (United States)

    Singh, R.

    1980-09-01

    The short-circuit current density of indium tin oxide/single and polycrystalline silicon solar cells reported by Schunck and Coche (1979) is much higher than other silicon solar cells. It is shown that the short-circuit current density reported in the above reference does not represent the true value of these devices.

  19. Formation of thin-film crystalline silicon on glass observed by in-situ XRD

    NARCIS (Netherlands)

    Westra, J.M.; Vavrunkova, V.; Sutta, P.; Van Swaaij, R.A.C.M.M.; Zeman, M.

    2010-01-01

    Thin-film poly-crystalline silicon (poly c-Si) on glass obtained by crystallization of an amorphous silicon (a-Si) film is a promising material for low cost, high efficiency solar cells. Our approach to obtain this material is to crystallize a-Si films on glass by solid phase crystallization (SPC).

  20. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology

    Energy Technology Data Exchange (ETDEWEB)

    Dehzangi, Arash, E-mail: arashd53@hotmail.com [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Larki, Farhad [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Naseri, Mahmud G. [Department of Physics, Faculty of Science, Malayer University, Malayer, Hamedan (Iran, Islamic Republic of); Navasery, Manizheh [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Majlis, Burhanuddin Y.; Razip Wee, Mohd F. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Halimah, M.K. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Islam, Md. Shabiul; Md Ali, Sawal H. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Saion, Elias [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2015-04-15

    Highlights: • Single crystal silicon nanowire is fabricated on Si on insulator substrate, using atomic force microscope (AFM) nanolithography and KOH + IPA chemical wet etching. • Some of major parameters in fabrication process, such as writing speed and applied voltage along with KOH etching depth are investigated, and then the I–V characteristic of Si nanowires is measured. • For better understanding of the charge transmission through the nanowire, 3D-TCAD simulation is performed to simulate the Si nanowires with the same size of the fabricated ones, and variation of majority and minority carriers, hole quasi-Fermi level and generation/recombination rate are investigated. - Abstract: Si nanowires (SiNWs) as building blocks for nanostructured materials and nanoelectronics have attracted much attention due to their major role in device fabrication. In the present work a top-down fabrication approach as atomic force microscope (AFM) nanolithography was performed on Si on insulator (SOI) substrate to fabricate a single crystal p-type SiNW. To draw oxide patterns on top of the SOI substrate local anodic oxidation was carried out by AFM in contact mode. After the oxidation procedure, an optimized solution of 30 wt.% KOH with 10 vol.% IPA for wet etching at 63 °C was applied to extract the nanostructure. The fabricated SiNW had 70–85 nm full width at half maximum width, 90 nm thickness and 4 μm length. The SiNW was simulated using Sentaurus 3D software with the exact same size of the fabricated device. I–V characterization of the SiNW was measured and compared with simulation results. Using simulation results variation of carrier's concentrations, valence band edge energy and recombination generation rate for different applied voltage were investigated.

  1. Energy and angular anisotropy optimisation of a p-type diode for in vivo dosimetry in photon-beam radiotherapy.

    Science.gov (United States)

    Greene, Simon; Price, Robert A

    2005-01-01

    We present simulation work using the Monte Carlo code MCNPX that shows that there is a possibility of improving the silicon p-type diode as a radiation dosemeter, by altering the construction of the diode. Altering the diode die thickness can reduce the inherent angular anisotropy of the diode, with little effect on its energy response. Conversely, the contact material and geometry have a large impact on the energy response with little effect on the inherent angular anisotropy. By correct choice of contact material, the typical over-response -100 keV relative to the response at 60Co energy can be reduced from approximately 20 to 4. It is expected that further enhancements may be made with different geometries and materials.

  2. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. [ed.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  3. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. (ed.)

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  4. CHEMICAL AND ELECTRICAL CHARACTERIZATION OF POLYCRYSTALLINE SEMICONDUCTORS

    OpenAIRE

    1982-01-01

    The chemistry and composition of inter- and intragrain regions in polycrystalline semiconductors can be related to, as well as dominate, the electrical characteristics of the materials, and devices fabricated from them. In this paper, high-resolution, complementary surface analysis techniques, including Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy (XPS) and low-energy electron loss spectroscopy (EELS), are used to investigate the ...

  5. Thermoelectric properties of polycrystalline NiSi3P4

    Science.gov (United States)

    May, Andrew F.; McGuire, Michael A.; Wang, Hsin

    2013-03-01

    The Hall and Seebeck coefficients, electrical resistivity, and thermal conductivity of polycrystalline NiSi3P4 were characterized from 2 to 775 K. Undoped NiSi3P4 behaves like a narrow gap semiconductor, with activated electrical resistivity ρ below room temperature and a large Seebeck coefficient of ˜400 μV/K at 300 K. Attempts to substitute boron for silicon resulted in the production of extrinsic holes, yielding moderately doped semiconductor behavior with ρ increasing with increasing temperature above ˜150 K. Hall carrier densities are limited to approximately 5 × 1019 cm-3 at 200 K, which would suggest the solubility limit of boron is reached if boron is indeed incorporated into the lattice. These extrinsic samples have a Hall mobility of ˜12 cm2/V/s at 300 K, and a parabolic band equivalent effective mass of ˜3.5 times the free electron mass. At 700 K, the thermoelectric figure of merit zT reaches ˜0.1. Further improvements in thermoelectric performance would require reaching higher carrier densities, as well as a mechanism to further reduce the lattice thermal conductivity, which is ˜5 W/m/K at 700 K. Alloying in Ge results in a slight reduction of the thermal conductivity at low temperatures, with little influence observed at higher temperatures.

  6. Crystal structure and high temperature transport properties of Yb-filled p-type skutterudites YbxCo2.5Fe1.5Sb12

    KAUST Repository

    Dong, Yongkwan

    2014-01-01

    Partially Yb-filled Fe substituted polycrystalline p-type skutterudites with nominal compositions YbxCo2.5Fe1.5Sb 12, with varying filler concentrations x, were synthesized by reacting the constituent elements and subsequent solid state annealing, followed by densification by hot-pressing. The compositions and filling fractions were confirmed with a combination of Rietveld refinement and elemental analysis. Their thermoelectric properties were evaluated from 300 to 800 K. The Seebeck coefficients for the specimens increase with increasing temperature and plateau at around 750 K. The thermal conductivity decreases with increasing Yb filling fraction, and bipolar conduction becomes evident and increases at elevated temperatures. A maximum ZT value of 0.8 was obtained at 750 K for Yb 0.47Co2.6Fe1.4Sb12. The thermoelectric properties and potential for further optimization are discussed in light of our results. © 2013 Elsevier Inc.

  7. Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3

    Directory of Open Access Journals (Sweden)

    Hyeona Mun

    2015-03-01

    Full Text Available The substitutional doping approach has been shown to be an effective strategy to improve ZT of Bi2Te3-based thermoelectric raw materials. We herein report the Fe-doping effects on electronic and thermal transport properties of polycrystalline bulks of p-type Bi0.48Sb1.52Te3. After a small amount of Fe-doping on Bi/Sb-sites, the power factor could be enhanced due to the optimization of carrier concentration. Additionally, lattice thermal conductivity was reduced by the intensified point-defect phonon scattering originating from the mass difference between the host atoms (Bi/Sb and dopants (Fe. An enhanced ZT of 1.09 at 300 K was obtained in 1.0 at% Fe-doped Bi0.48Sb1.52Te3 by these synergetic effects.

  8. Conductivity size effect of polycrystalline metal nanowires

    Directory of Open Access Journals (Sweden)

    Weihuang Xue

    2016-11-01

    Full Text Available It is well known that the conductivity of metal nanowires decreases with the wire diameter. This size effect was first studied for metal thin films when the film thickness approaches the electron mean free path. Fuchs & Sondheimer (FS pointed out that the external surface scattering of the electrons contributes to the conductivity decrease. Mayadas and Shatzkes (MS pointed out that the grain boundary scattering plays a major role for polycrystalline thin films. As is clear that nanowires are 2-d constrained instead of 1-d for thin film, so the size effect would be more eminent. However, today the mostly used physical model for the conductivity of metal nanowires is still the MS theory. This paper proposes a more complete model suitable for circular cross-section polycrystalline metal nanowires, which takes into account of background scattering, external surface scattering, as well as grain boundary scattering. Comparison with experiment data showed that our model can well explain the conductivity size effect of polycrystalline metal nanowires.

  9. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  10. Basic research challenges in crystalline silicon photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Werner, J.H. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1995-08-01

    Silicon is abundant, non-toxic and has an ideal band gap for photovoltaic energy conversion. Experimental world record cells of 24 % conversion efficiency with around 300 {mu}m thickness are only 4 % (absolute) efficiency points below the theoretical Auger recombination-limit of around 28 %. Compared with other photovoltaic materials, crystalline silicon has only very few disadvantages. The handicap of weak light absorbance may be mastered by clever optical designs. Single crystalline cells of only 48 {mu}m thickness showed 17.3 % efficiency even without backside reflectors. A technology of solar cells from polycrystalline Si films on foreign substrates arises at the horizon. However, the disadvantageous, strong activity of grain boundaries in Si could be an insurmountable hurdle for a cost-effective, terrestrial photovoltaics based on polycrystalline Si on foreign substrates. This talk discusses some basic research challenges related to a Si based photovoltaics.

  11. Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector

    Energy Technology Data Exchange (ETDEWEB)

    Menasce, D.; et al.

    2013-06-01

    We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, ε = 0.99860±0.00006, and the position-resolution for shared hits was about 6 μm. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke$-$), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector.

  12. Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Bill; Young, David L.; Page, Matthew R.; LaSalvia, Vincenzo; Johnston, Steve; Reedy, Robert; Stradins, Paul

    2016-03-01

    Abstract

  13. Superhydrophobic Porous Silicon Surfaces

    Directory of Open Access Journals (Sweden)

    Paolo NENZI

    2011-12-01

    Full Text Available In this paper, we present an inexpensive technique to produce superhydrophobic surfaces from porous silicon. Superhydrophobic surfaces are a key technology for their ability to reduce friction losses in microchannels and their self cleaning properties. The morphology of a p-type silicon wafer is modified by a electrochemical wet etch to produce pores with controlled size and distribution and coated with a silane hydrophobic layer. Surface morphology is characterized by means of scanning electron microscope images. Large contact angles are observed on such surfaces and the results are compared with classical wetting models (Cassie and Wenzel suggesting a mixed Wenzel-Cassie behavior. The presented technique represents a cost-effective means for friction reduction in microfluidic applications, such as lab-on-a-chip.

  14. Investigation of L-cystine assisted Cu3BiS 3 synthesis for energetically and environmentally improved integration as thin-film solar cell p-type semiconductor absorber

    Science.gov (United States)

    Viezbicke, Brian D.

    Solar photovoltaic energy technology is increasingly implemented in response to continuously growing global energy needs. While legacy technology utilizing silicon has captured much of the market, thin-film solar modules are projected to rise particularly in the U.S. production sector. Current materials utilized in production and deployment encounter resource and environmental impact constraints. This research investigates the viably controllable synthesis of multi-crystalline copper bismuth sulfide for potential use as an absorber layer in thin-film solar cells and early investigation of thin-film growth parameters which may enable a cost-effective route to full scale production of epitaxial copper bismuth sulfide films. The first step of this investigation has entailed a novel route for the solvo-thermally grown Cu3BiS 3 films facilitated by L-cystine as a sulfur donating and complexing agent. In the characterization of the nanoparticulate product UV-VIS spectra were analyzed via the Tauc method of bandgap interpolation. The validity of the Tauc method in application to polycrystalline films has been investigated and proven to be robust for the material class. This justifies the bandgap assessment of the subject material and provides support for wider use of the method. With the synthesis method established, the reaction was transferred to a custom built continuous flow reactor to explore this process and help understand its capabilities and limits with respect to producing single layers for an eventual photovoltaic cell stack. Though the published work has established novel chemistry, the need to deposit and/or grow a functional p-type layer for further characterization and eventual device incorporation is key to the material evolution. First evidence of continuous flow micro-reactor deposition of Cu3BiS3 has been shown with an array of resulting microstructures. The grown microstructures are evaluated with relevance to prior synthesis laboratory procedure and

  15. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein

    DEFF Research Database (Denmark)

    Ekberg, Kira; Palmgren, Michael; Veierskov, Bjarke;

    2010-01-01

    The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H+-ATPases has long been recognized to be part of a regulatory apparatus...

  16. Demethoxycurcumin is a potent inhibitor of P-type ATPases from diverse kingdoms of life

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Sehgal, Pankaj; Thanh Tung, Truong;

    2016-01-01

    P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used ...

  17. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.

    Science.gov (United States)

    Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H

    2013-06-18

    Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the ground state, creating a pair of triplet excitons. Researchers first reported this phenomenon in the 1960s, an event that sparked further studies in the following decade. These investigations used fluorescence spectroscopy to establish that exciton fission occurred in single crystals of several acenes. However, research interest has been recently rekindled by the possibility that singlet fission could be used as a carrier multiplication technique to enhance the efficiency of photovoltaic cells. The most successful architecture to-date involves sensitizing a red-absorbing photoactive layer with a blue-absorbing material that undergoes fission, thereby generating additional photocurrent from higher-energy photons. The quest for improved solar cells has spurred a drive to better understand the fission process, which has received timely aid from modern techniques for time-resolved spectroscopy, quantum chemistry, and small-molecule device fabrication. However, the consensus interpretation of the initial studies using ultrafast transient absorption spectroscopy was that exciton fission was suppressed in polycrystalline thin films of pentacene, a material that would be otherwise expected to be an ideal model system, as well as a viable candidate for fission-sensitized photovoltaic devices. In this Account, we review the results of our recent transient absorption and device-based studies of polycrystalline pentacene. We address the controversy surrounding the assignment of spectroscopic features in transient absorption data, and illustrate how a consistent interpretation is possible. This work underpins our conclusion that singlet fission in pentacene is extraordinarily rapid (∼80 fs) and is thus the dominant decay channel for the photoexcited singlet exciton. Further, we discuss our demonstration that triplet excitons

  18. Luminance behavior of lithium-doped ZnO nanowires with p-type conduction characteristics.

    Science.gov (United States)

    Ko, Won Bae; Lee, Jun Seok; Lee, Sang Hyo; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Park, Young Jun; Kim, Hyun Jung; Hong, Jin Pyo

    2013-09-01

    The present study describes the room-temperature cathodeluminescence (CL) and temperature-dependent photoluminescence (PL) properties of p-type lithium (Li)-doped zinc oxide (ZnO) nanowires (NWs) grown by hydrothermal doping and post-annealing processes. A ZnO thin film was used as a seed layer in NW growth. The emission wavelengths and intensities of undoped ZnO NWs and p-type Li-doped ZnO NWs were analyzed for comparison. CL and PL observations of post-annealed p-type Li-doped ZnO NWs clearly exhibited a dominant sharp band-edge emission. Finally, a n-type ZnO thin film/p-type annealed Li-doped ZnO NW homojunction diode was prepared to confirm the p-type conduction of annealed Li-doped ZnO NWs as well as the structural properties measured by transmission electron microscopy.

  19. Interstellar extinction by fractal polycrystalline graphite clusters?

    CERN Document Server

    Andersen, A C; Pustovit, V N; Niklasson, G A

    2001-01-01

    Certain dust particles in space are expected to appear as clusters of individual grains. The morphology of these clusters could be fractal or compact. To determine how these structural features would affect the interpretation of the observed interstellar extinction peak at $\\sim 4.6~\\mu$m, we have calculated the extinction by compact and fractal polycrystalline graphite clusters consisting of touching identical spheres. We compare three general methods for computing the extinction of the clusters, namely, a rigorous solution and two different discrete-dipole approximation methods.

  20. High vacuum tribology of polycrystalline diamond coatings

    Indian Academy of Sciences (India)

    Awadesh K Mallik; S A Shivashankar; S K Biswas

    2009-10-01

    Polycrystalline diamond coatings have been grown on unpolished side of Si(100) wafers by hot filament chemical vapour deposition process. The morphology of the grown coatings has been varied from cauliflower morphology to faceted morphology by manipulation of the growth temperature from 700°C to 900°C and methane gas concentration from 3% to 1·5%. It is found that the coefficient of friction of the coatings under high vacuum of 133·32 × 10-7 Pa (10-7 torr) with nanocrystalline grains can be manipulated to 0·35 to enhance tribological behaviour of bare Si substrates.

  1. Novel mercuric iodide polycrystalline nuclear particles counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ. of Jerusalem (Israel)]|[Sandia National Lab., Livermore, CA (United States); Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ. of Jerusalem (Israel)] [and others

    1996-12-31

    Polycrystalline mercuric iodide nuclear radiation detectors having areas between 0.01 to 100 cm{sup 2} and thicknesses 30 to 600 microns, have been fabricated with single, linear strip and square pixel contact. The large area detectors 10 to 600 cm{sup 2} were produced by industrial ceramic equipment while the smaller ones, about 1 cm{sup 2} area, were produced in the laboratory. The large detectors still had large leakage currents and the production process is being revised. The smaller detectors were tested and their response to lower and higher gamma energy, beta and even 100 GeV muons at CERN will be reported.

  2. Superelastic effect in polycrystalline ferrous alloys.

    Science.gov (United States)

    Omori, T; Ando, K; Okano, M; Xu, X; Tanaka, Y; Ohnuma, I; Kainuma, R; Ishida, K

    2011-07-01

    In superelastic alloys, large deformation can revert to a memorized shape after removing the stress. However, the stress increases with increasing temperature, which limits the practical use over a wide temperature range. Polycrystalline Fe-Mn-Al-Ni shape memory alloys show a small temperature dependence of the superelastic stress because of a small transformation entropy change brought about by a magnetic contribution to the Gibbs energies. For one alloy composition, the superelastic stress varies by 0.53 megapascal/°C over a temperature range from -196 to 240°C.

  3. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  4. Electron drift-mobility measurements in polycrystalline CuIn1-xGaxSe2 solar cells

    Science.gov (United States)

    Dinca, S. A.; Schiff, E. A.; Shafarman, W. N.; Egaas, B.; Noufi, R.; Young, D. L.

    2012-03-01

    We report photocarrier time-of-flight measurements of electron drift mobilities for the p-type CuIn1-xGaxSe2 films incorporated in solar cells. The electron mobilities range from 0.02 to 0.05 cm2/Vs and are weakly temperature-dependent from 100-300 K. These values are lower than the range of electron Hall mobilities (2-1100 cm2/Vs) reported for n-type polycrystalline thin films and single crystals. We propose that the electron drift mobilities are properties of disorder-induced mobility edges and discuss how this disorder could increase cell efficiencies.

  5. Comparison of junctionless and inversion-mode p-type metal-oxide-semiconductor field-effect transistors in presence of hole-phonon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dib, E., E-mail: elias.dib@for.unipi.it [Dipartimento di Ingegneria dell' Informazione, Università di Pisa, 56122 Pisa (Italy); Carrillo-Nuñez, H. [Integrated Systems Laboratory ETH Zürich, Gloriastrasse 35, 8092 Zürich (Switzerland); Cavassilas, N.; Bescond, M. [IM2NP, UMR CNRS 6242, Bât. IRPHE, Technopôle de Château-Gombert, 13384 Marseille Cedex 13 (France)

    2016-01-28

    Junctionless transistors are being considered as one of the alternatives to conventional metal-oxide field-effect transistors. In this work, it is then presented a simulation study of silicon double-gated p-type junctionless transistors compared with its inversion-mode counterpart. The quantum transport problem is solved within the non-equilibrium Green's function formalism, whereas hole-phonon interactions are tackled by means of the self-consistent Born approximation. Our findings show that junctionless transistors should perform as good as a conventional transistor only for ultra-thin channels, with the disadvantage of requiring higher supply voltages in thicker channel configurations.

  6. Laser characterisation of a 3D single-type column p-type prototype module read out with ATLAS SCT electronics

    Energy Technology Data Exchange (ETDEWEB)

    Ehrich, T. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder Str. 3, 79104 Freiburg (Germany); Kuehn, S. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder Str. 3, 79104 Freiburg (Germany)], E-mail: susanne.kuehn@physik.uni-freiburg.de; Boscardin, M.; Dalla Betta, G.-F. [ITC-irst Trento, Microsystems Division, via Sommarive, 18 38050 Povo di Trento (Italy); Eckert, S.; Jakobs, K.; Maassen, M.; Parzefall, U. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder Str. 3, 79104 Freiburg (Germany); Piemonte, C.; Pozza, A.; Ronchin, S.; Zorzi, N. [ITC-irst Trento, Microsystems Division, via Sommarive, 18 38050 Povo di Trento (Italy)

    2007-12-11

    In this paper measurements of a 3D single-type column (3D-stc) microstrip silicon device are shown. The 3D-stc sensor has n-type columns in p-type substrate. It has been connected to an ATLAS SCT ABCD3T chip and is readout with ATLAS SCT electronics at 40 MHz. Spatial measurements were done with a laser setup to investigate the expected low field region in 3D devices. An influence of the p-stops on the collected charge has been observed.

  7. Light and current induced degradation in p-type multi-crystalline cells and development of an inspection method and a stabilization method

    Energy Technology Data Exchange (ETDEWEB)

    Broek, K.M.; Bennett, I.J.; Jansen, M.J.; Borg, Van der N.J.C.M.; Eerenstein, W. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    Stable solar cells are needed for durability testing of different combinations of module materials. In such a test, significant power losses in full-size modules with multi-crystalline cells after thermal cycling have been observed. This has been related to degradation of the solar cells used and it appeared that this was caused by current induced degradation. This phenomenon is not limited to boron doped Cz-Si, but can also occur in p-type multi-crystalline silicon. Work was done to develop an incoming inspection method for new batches of cells. Also, stabilisation procedures for modules containing cells that are sensitive to degradation have been determined.

  8. The Fabrication, Microstructural Characterization, and Internal Photoresponse of Platinum Silicide/P-Type Silicon and Iridium Silicide/P-Type Silicon Schottky Barrier Photodetectors for Infrared Focal Plane Arrays

    Science.gov (United States)

    1991-10-01

    34)H(hv-20)X (r(I)+J/~+/ ~ jh ) D ~ ~ k/ (d Id______jrh+ X si /Y Po(X cos(fTtx’)dX (3.46) sin rd) 0 Poe where Pog represents the total number of carriers...that Cd/D o 1, so that Ym will be well estimated by the formula jhv -2\\ 2d I(Crh)] 2 H(hv-20) (3.47) In contrast to the normal photoyield expressions, Eq

  9. Polycrystalline thin film materials and devices

    Energy Technology Data Exchange (ETDEWEB)

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. (Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  10. Thermal effect mechanism of magnetoresistance in p-type diamond films

    Institute of Scientific and Technical Information of China (English)

    Qin Guo-Ping; Kong Chun-Yang; Ruan Hai-Bo; Huang Gui-Juan; Cui Yu-Ting; Fang Liang

    2010-01-01

    Based on the analysis and the discussion of the influence of thermal ionization energy and various scatterings on magnetoresistance(MR) of p-type diamond films, a revised model of valence band split-off over temperature is put forward, and a corresponding calculation formula is given for the MR of p-type diamond films (Corbino discs). It is shown that the theoretical calculation that the MR of diamond films changes with temperature is consistent with the experiment. The influence of Fermi energy level on MR of diamond films is discussed. Additionally, the thermal effect mechanism of MR in p-type diamond films is also explored.

  11. Characterization of plasma etching damage on p -type GaN using Schottky diodes

    OpenAIRE

    2008-01-01

    The plasma etching damage in p-type GaN has been characterized. From current-voltage and capacitance-voltage characteristics of Schottky diodes, it was revealed that inductively coupled plasma (ICP) etching causes an increase in series resistance of the Schottky diodes and compensation of acceptors in p-type GaN. We investigated deep levels near the valence band of p-type GaN using current deep level transient spectroscopy (DLTS), and no deep level originating from the ICP etching damage was ...

  12. Quantum conductance in silicon quantum wires

    CERN Document Server

    Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A

    2002-01-01

    The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)

  13. Lateral boron distribution in polycrystalline SiC source materials

    DEFF Research Database (Denmark)

    Linnarsson, M. K.; Kaiser, M.; Liljedahl, R.

    2013-01-01

    Polycrystalline SiC containing boron and nitrogen are used in growth of fluorescent SiC for white LEDs. Two types of doped polycrystalline SiC have been studied in detail with secondary ion mass spectrometry: sintered SiC and poly-SiC prepared by sublimation in a physical vapor transport setup...

  14. Origin of Photovoltage Enhancement via Interfacial Modification with Silver Nanoparticles Embedded in an a-SiC:H p-Type Layer in a-Si:H Solar Cells.

    Science.gov (United States)

    Li, Tiantian; Zhang, Qixing; Ni, Jian; Huang, Qian; Zhang, Dekun; Li, Baozhang; Wei, Changchun; Yan, Baojie; Zhao, Ying; Zhang, Xiaodan

    2017-03-17

    We used silver nanoparticles (Ag-NPs) embedded in the p-type semiconductor layer of hydrogenated amorphous silicon (a-Si:H) solar cells in the Schottky barrier contact design to modify the interface between aluminum-doped ZnO (ZnO:Al, AZO) and p-type hydrogenated amorphous silicon carbide (p-a-SiC:H) without plasmonic absorption. The high work function of the Ag-NPs provided a good channel for the transport of photogenerated holes. A p-type nanocrystalline SiC:H layer was used to compensate for the real surface defects and voids on the surface of Ag-NPs to reduce recombination at the AZO/p-type layer interface, which then enhanced the photovoltage of single-junction a-Si:H solar cells to values as high as 1.01 V. The Ag-NPs were around 10 nm in diameter and thermally stable in the p-type a-SiC:H film at the solar-cell process temperature. We will also show that a wide range of photovoltages between 1.01 and 2.89 V could be obtained with single-, double-, and triple-junction solar cells based on the single-junction a-Si:H solar cells with tunable high photovoltage. These solar cells are suitable photocathodes for solar water-splitting applications.

  15. Origin of the p-type character of AuCl3 functionalized carbon nanotubes

    KAUST Repository

    Murat, Altynbek

    2014-02-13

    The microscopic origin of the p-type character of AuCl3 functionalized carbon nanotubes (CNTs) is investigated using first-principles self-interaction corrected density functional theory (DFT). Recent DFT calculations suggest that the p-type character of AuCl3 functionalized CNTs is due to the Cl atoms adsorbed on the CNTs. We test this hypothesis and show that adsorbed Cl atoms only lead to a p-type character for very specific concentrations and arrangements of the Cl atoms, which furthermore are not the lowest energy configurations. We therefore investigate alternative mechanisms and conclude that the p-type character is due to the adsorption of AuCl4 molecules. The unraveling of the exact nature of the p-doping adsorbates is a key step for further development of AuCl3 functionalized CNTs in water sensor applications. © 2014 American Chemical Society.

  16. Theoretical prediction of p-type transparent conductivity in Zn-doped TiO2.

    Science.gov (United States)

    Han, Xiaoping; Shao, Guosheng

    2013-06-28

    It is very difficult and yet extremely important to fill the wide technological gap in developing transparent conducting oxides (TCOs) that exhibit excellent p-type conducting characteristics. Here, on the basis of extensive first-principles calculations, we discover for the first time potentially promising p-type transparent conductivity in Zn-doped TiO2 under oxygen rich conditions. Efforts have been made to elaborate the effects of possible defects and their interaction with Zn doping on the p-type transparent conductivity. This work offers a fundamental road map for cost-effective development of p-type TCOs based on TiO2, which is a cheap and stable material system of large natural resources.

  17. Formation and annealing of metastable (interstitial oxygen)-(interstitial carbon) complexes in n- and p-type silicon

    CERN Document Server

    Makarenko, L F; Lastovskii, S B; Murin, L I; Moll, M; Pintilie, I

    2014-01-01

    It is shown experimentally that, in contrast to the stable configuration of (interstitial carbon)-(interstitial oxygen) complexes (CiOi), the corresponding metastable configuration (CiOi{*}) cannot be found in n-Si based structures by the method of capacitance spectroscopy. The rates of transformation CiOi{*} -> CiOi are practically the same for both n- and p-Si with a concentration of charge carriers of no higher than 10(13) cm(-3). It is established that the probabilities of the simultaneous formation of stable and metastable configurations of the complex under study in the case of the addition of an atom of interstitial carbon to an atom of interstitial oxygen is close to 50\\%. This is caused by the orientation dependence of the interaction potential of an atom of interstitial oxygen with an interstitial carbon atom, which diffuses to this oxygen atom.

  18. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.

    Science.gov (United States)

    Mortazavi, Bohayra; Pötschke, Markus; Cuniberti, Gianaurelio

    2014-03-21

    We developed a multiscale approach to explore the effective thermal conductivity of polycrystalline graphene sheets. By performing equilibrium molecular dynamics (EMD) simulations, the grain size effect on the thermal conductivity of ultra-fine grained polycrystalline graphene sheets is investigated. Our results reveal that the ultra-fine grained graphene structures have thermal conductivity one order of magnitude smaller than that of pristine graphene. Based on the information provided by the EMD simulations, we constructed finite element models of polycrystalline graphene sheets to probe the thermal conductivity of samples with larger grain sizes. Using the developed multiscale approach, we also investigated the effects of grain size distribution and thermal conductivity of grains on the effective thermal conductivity of polycrystalline graphene. The proposed multiscale approach on the basis of molecular dynamics and finite element methods could be used to evaluate the effective thermal conductivity of polycrystalline graphene and other 2D structures.

  19. Research on fabrication technology for thin film solar cells for practical use. Technological development for qualitative improvement (development of fabrication technology of thin film polycrystalline Si solar cell); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Kohinshitsuka gijutsu (usumaku takessho silicon kei taiyo denchi seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of thin film polycrystalline Si solar cells in fiscal 1994. (1) On the fabrication technology of high-quality Si thin films, the new equipment was studied which allows uniform stable melting recrystallization over a large area. The new equipment adopted a heating method based on RTP system, and is now under adjustment. (2) On the fabrication technology of light/carrier confinement structure, degradation of hydrogen-treated thin film Si solar cells by light irradiation was examined. As a result, since any characteristic degradation was not found even by long time light irradiation, the high quality of the cells was confirmed regardless of hydrogen-treatment. Fabrication of stable reproducible fine texture structure became possible by using fabrication technology of light confinement structure by texture treatment of cell surfaces. (3) On low-cost process technology, design by VEST process, estimation of cell characteristics by simulation, and characteristics of prototype cells were reported. 33 figs., 1 tab.

  20. Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida)

    OpenAIRE

    2014-01-01

    Metal ATPases are a subfamily of P-type ATPases involved in the transport of metal cations across biological membranes. They all share an architecture featuring eight transmembrane domains in pairs of two and are found in prokaryotes as well as in a variety of Eukaryotes. In Arabidopsis thaliana, eight metal P-type ATPases have been described, four being specific to copper transport and four displaying a broader metal specificity, including zinc, cadmium and possibly copper and calcium. So fa...

  1. Epitaxial growth of cadmium telluride films on silicon with a buffer silicon carbide layer

    Science.gov (United States)

    Antipov, V. V.; Kukushkin, S. A.; Osipov, A. V.

    2017-02-01

    An epitaxial 1-3-μm-thick cadmium telluride film has been grown on silicon with a buffer silicon carbide layer using the method of open thermal evaporation and condensation in vacuum for the first time. The optimum substrate temperature was 500°C at an evaporator temperature of 580°C, and the growth time was 4 s. In order to provide more qualitative growth of cadmium telluride, a high-quality 100-nm-thick buffer silicon carbide layer was previously synthesized on the silicon surface using the method of topochemical substitution of atoms. The ellipsometric, Raman, X-ray diffraction, and electron-diffraction analyses showed a high structural perfection of the CdTe layer in the absence of a polycrystalline phase.

  2. Silicon nanocrystal films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Robert W.

    2009-02-06

    Whether nanoparticles of silicon are really suited for such applications, whether layers fabricated from this exhibit semiconducting properties, whether they can be doped, and whether for instance via the doping the conductivity can be tuned, was studied in the present thesis. Starting material for this were on the one hand spherical silicon nanocrystals with a sharp size distribution and mean diameters in the range from 4-50 nm. Furthermore silicon particle were available, which are with 50-500 nm distinctly larger and exhibit a broad distribution of the mean size and a polycrystalline fine structure with strongly bifurcated external morphology. The small conductivities and tje low mobility values of the charge carriers in the layers of silicon nanocrystals suggest to apply suited thermal after-treatment procedures. So was found that the aluminium-induced layer exchange (ALILE) also can be transferred to the porous layers of nanocrystals. With the deuteron passivation a method was available to change the charge-carrier concentration in the polycrystalline layers. Additionally to ALILE laser crystallization as alternative after-treatment procedure of the nanocrystal layers was studied.

  3. Convergence of valence bands for high thermoelectric performance for p-type InN

    Science.gov (United States)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-12-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of ZeT is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  4. Structural, electrical and optical properties of p-type transparent conducting SnO{sub 2}:Al film derived from thermal diffusion of Al/SnO{sub 2}/Al multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J. [Key Laboratory of Silicate Materials Science and Engineering (Wuhan University of Technology), Ministry of Education, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070 (China); Zhao, X.J., E-mail: opluse@whut.edu.cn [Key Laboratory of Silicate Materials Science and Engineering (Wuhan University of Technology), Ministry of Education, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070 (China); Ni, J.M.; Tao, H.Z. [Key Laboratory of Silicate Materials Science and Engineering (Wuhan University of Technology), Ministry of Education, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070 (China)

    2010-11-15

    Highly transparent, p-type conducting SnO{sub 2}:Al films derived from thermal diffusion of a sandwich structure Al/SnO{sub 2}/Al multilayer thin films deposited on quartz substrate have been prepared by direct current and radio-frequency magnetron sputtering using Al and SnO{sub 2} targets. The deposited films were annealed at various temperatures for different durations. The effect of thermal diffusing temperature and time on the structural, electrical and optical performances of SnO{sub 2}:Al films has been studied. X-ray diffraction results show that all p-type conducting films possessed polycrystalline SnO{sub 2} with tetragonal rutile structure. Hall-effect results indicate that 450 deg. C for 4 h were the optimum annealing parameters for p-type SnO{sub 2}:Al films, resulting in a relatively high hole concentration of 7.2 x 10{sup 18} cm{sup -3} and a low resistivity of 0.81 {Omega} cm. The transmission of the p-type SnO{sub 2}:Al films was above 80%.

  5. Modeling of Irradiation Hardening of Polycrystalline Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  6. Polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  7. Multifunctional Polycrystalline Ferroelectric Materials Processing and Properties

    CERN Document Server

    Pardo, Lorena

    2011-01-01

    This book presents selected topics on processing and properties of ferroelectric materials that are currently the focus of attention in scientific and technical research. Ferro-piezoelectric ceramics are key materials in devices for many applications, such as automotive, healthcare and non-destructive testing. As they are polycrystalline, non-centrosymmetric materials, their piezoelectricity is induced by the so-called poling process. This is based on the principle of polarization reversal by the action of an electric field that characterizes the ferroelectric materials. This book was born with the aim of increasing the awareness of the multifunctionality of ferroelectric materials among different communities, such as researchers, electronic engineers, end-users and manufacturers, working on and with ferro-piezoelectric ceramic materials and devices which are based on them. The initiative to write this book comes from a well-established group of researchers at the Laboratories of Ferroelectric Materials, Mate...

  8. Novel mercuric iodide polycrystalline nuclear particle counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ. of Jerusalem (Israel)]|[Sandia National Labs., Livermore, CA (United States); Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ. of Jerusalem (Israel); Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L. [LEPSI, Strasbourg (France)

    1997-12-01

    Polycrystalline mercuric iodide nuclear radiation detectors have been produced in a novel technology. Unlike the normal single-crystal technology, there is no intrinsic limit to the surface on which these detectors can be produced. Detectors with areas up to about 1.5 cm{sup 2}, thicknesses from 30 to 600 {micro}m, and with single electrodes as well as microstrip and pixel contacts have been fabricated and successfully tested with photons in the range of 40--660 keV, {beta} particle`s emitted from a Sr-Y source, and high energy (100 GeV) muons. Results on both charge collection and counting efficiency are reported as well as some very preliminary imaging results. The experimental results on charge collection have been compared with simulation, and a combined {mu}{tau} product 10{sup {minus}7} cm{sup 2}/V for electrons has been estimated.

  9. IMPEDANCE SPECTROSCOPY OF POLYCRYSTALLINE TIN DIOXIDE FILMS

    Directory of Open Access Journals (Sweden)

    D. V. Adamchuck

    2016-01-01

    Full Text Available The aim of this work is the analysis of the influence of annealing in an inert atmosphere on the electrical properties and structure of non-stoichiometric tin dioxide films by means of impedance spectroscopy method. Non-stoichiometric tin dioxide films were fabricated by two-step oxidation of metallic tin deposited on the polycrystalline Al2O3 substrates by DC magnetron sputtering. In order to modify the structure and stoichiometric composition, the films were subjected to the high temperature annealing in argon atmosphere in temperature range 300–800 °С. AC-conductivity measurements of the films in the frequency range 20 Hz – 2 MHz were carried out. Variation in the frequency dependencies of the real and imaginary parts of the impedance of tin dioxide films was found to occur as a result of high-temperature annealing. Equivalent circuits for describing the properties of films with various structure and stoichiometric composition were proposed. Possibility of conductivity variation of the polycrystalline tin dioxide films as a result of аnnealing in an inert atmosphere was demonstrated by utilizing impedance spectroscopy. Annealing induces the recrystallization of the films, changing in their stoichiometry as well as increase of the sizes of SnO2 crystallites. Variation of electrical conductivity and structure of tin dioxide films as a result of annealing in inert atmosphere was confirmed by X-ray diffraction analysis. Analysis of the impedance diagrams of tin dioxide films was found to be a powerful tool to study their electrical properties. 

  10. High-performance porous silicon solar cell development. Final report, October 1, 1993--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Maruska, P [Spire Corp., Bedford, MA (United States)

    1996-09-01

    The goal of the program was to demonstrate use of porous silicon in new solar cell structures. Porous silicon technology has been developed at Spire for producing visible light-emitting diodes (LEDs). The major aspects that they have demonstrated are the following: porous silicon active layers have been made to show photovoltaic action; porous silicon surface layers can act as antireflection coatings to improve the performance of single-crystal silicon solar cells; and porous silicon surface layers can act as antireflection coatings on polycrystalline silicon solar cells. One problem with the use of porous silicon is to achieve good lateral conduction of electrons and holes through the material. This shows up in terms of poor blue response and photocurrents which increase with increasing reverse bias applied to the diode.

  11. Study of silicon strip waveguides with diffraction gratings and photonic crystals tuned to a wavelength of 1.5 µm

    Energy Technology Data Exchange (ETDEWEB)

    Barabanenkov, M. Yu., E-mail: barab@iptm.ru; Vyatkin, A. F.; Volkov, V. T.; Gruzintsev, A. N.; Il’in, A. I.; Trofimov, O. V. [Russian Academy of Sciences, Institute of Microelectronics Technology and High-Purity Materials (Russian Federation)

    2015-12-15

    Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.

  12. Fabrication and electrical characterization of Al/DNA-CTMA/ p-type a-Si:H photodiode based on DNA-CTMA biomaterial

    Science.gov (United States)

    Siva Pratap Reddy, M.; Puneetha, Peddathimula; Lee, Young-Woong; Jeong, Seong-Hoon; Park, Chinho

    2017-01-01

    In this work, a deoxyribonucleic acid-cetyltrimethylammonium chloride (DNA-CTMA) biomaterial based p-type hydrogenated amorphous silicon ( a-Si:H) photodiode (PD) is fabricated and its electrical characteristics are investigated. The Al/DNA-CTMA/ p-type a-Si:H PD parameters are studied using current-voltage ( I-V), capacitancevoltage-frequency ( C-V-f) and conductance-voltage-frequency ( G/ω-V-f) measurements. The barrier height and the ideality factor of the diode are found to be 0.78 eV and 1.9, respectively. The electrical and photoconductivity properties of the diode are analyzed by using dark I-V and transient photocurrent techniques. The C-V-f and G/ω-V-f measurements indicate that the capacitance and conductance of the diode depend on the voltage and frequency, respectively. The experimental results reveal that the decreases in capacitance and the increases in conductance with an increase in frequency can be explained on the basis of interface states ( N SS ). Series resistance ( R S ) measurements are performed on the diode and discussed here. The obtained electrical parameters confirm that the Al/DNA-CTMA/ p-type a-Si:H PD can be used as an optical sensor for the development of commercial applications that are environmentally benign. [Figure not available: see fulltext.

  13. Improvement in thermoelectric power factor of mechanically alloyed p-type SiGe by incorporation of TiB2

    Science.gov (United States)

    Ahmad, Sajid; Dubey, K.; Bhattacharya, Shovit; Basu, Ranita; Bhatt, Ranu; Bohra, A. K.; Singh, Ajay; Aswal, D. K.; Gupta, S. K.

    2016-05-01

    Nearly 60% of the world's useful energy is wasted as heat and recovering a fraction of this waste heat by converting it as useful electrical power is an important area of research[1]. Thermoelectric power generators (TEG) are solid state devices which converts heat into electricity. TEG consists of n and p-type thermoelements connected electrically in series and thermally in parallel[2]. Silicon germanium (SiGe) alloy is one of the conventional high temperature thermoelectric materials and is being used in radio-isotopes based thermoelectric power generators for deep space exploration programs.Temperature (T) dependence of thermoelectric (TE) properties of p-type SiGe and p-type SiGe-x wt.%TiB2 (x=6,8,10%) nanocomposite materials has been studied with in the temperature range of 300 K to 1100 K. It is observed that there is an improvement in the power factor (α2/ρ) of SiGe alloy on addition of TiB2 upto 8 wt.% that is mainly due to increase in the Seebeck coefficient (α) and electrical conductivity (σ) of the alloy.

  14. Improvement in thermoelectric power factor of mechanically alloyed p-type SiGe by incorporation of TiB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Sajid, E-mail: sajidahmadiitkgp@gmail.com [Nuclear Research Laboratory, Astrophysical Sciences Division, B.A.R.C., Zakura, Srinagar, Kashmir-190024 (India); Dubey, K. [Barkatullah University, Bhopal–462026 (India); Bhattacharya, Shovit; Basu, Ranita; Bhatt, Ranu; Bohra, A. K.; Singh, Ajay; Aswal, D. K.; Gupta, S. K. [Technical Physics Division, B.A.R.C., Trombay, Mumbai – 400085 (India)

    2016-05-23

    Nearly 60% of the world’s useful energy is wasted as heat and recovering a fraction of this waste heat by converting it as useful electrical power is an important area of research{sup [1]}. Thermoelectric power generators (TEG) are solid state devices which converts heat into electricity. TEG consists of n and p-type thermoelements connected electrically in series and thermally in parallel{sup [2]}. Silicon germanium (SiGe) alloy is one of the conventional high temperature thermoelectric materials and is being used in radio-isotopes based thermoelectric power generators for deep space exploration programs.Temperature (T) dependence of thermoelectric (TE) properties of p-type SiGe and p-type SiGe-x wt.%TiB{sub 2} (x=6,8,10%) nanocomposite materials has been studied with in the temperature range of 300 K to 1100 K. It is observed that there is an improvement in the power factor (α{sup 2}/ρ) of SiGe alloy on addition of TiB{sub 2} upto 8 wt.% that is mainly due to increase in the Seebeck coefficient (α) and electrical conductivity (σ) of the alloy.

  15. Compositional analysis of polycrystalline hafnium oxide thin films by heavy-ion elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, F.L. [Departamento de Electronica y Tecnologia de Computadoras, Universidad Politecnica de Cartagena, Campus Universitario Muralla del Mar, E-30202 Cartagena (Spain)]. E-mail: Felix.Martinez@upct.es; Toledano, M. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); San Andres, E. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Martil, I. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Gonzalez-Diaz, G. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Bohne, W. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany); Roehrich, J. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany); Strub, E. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany)

    2006-10-25

    The composition of polycrystalline hafnium oxide thin films has been measured by heavy-ion elastic recoil detection analysis (HI-ERDA). The films were deposited by high-pressure reactive sputtering (HPRS) on silicon wafers using an oxygen plasma at pressures between 0.8 and 1.6 mbar and during deposition times between 0.5 and 3.0 h. Hydrogen was found to be the main impurity and its concentration increased with deposition pressure. The composition was always slightly oxygen-rich, which is attributed to the oxygen plasma. Additionally, an interfacial silicon oxide thin layer was detected and taken into account. The thickness of the hafnium oxide film was found to increase linearly with deposition time and to decrease exponentially with deposition pressure, whereas the thickness of the silicon oxide interfacial layer has a minimum as a function of pressure at around 1.2 mbar and increases slightly as a function of time. The measurements confirmed that this interfacial layer is formed mainly during the early stages of the deposition process.

  16. Formation of p-type ZnO thin film through co-implantation

    Science.gov (United States)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  17. Nanostructured p-Type Semiconductor Electrodes and Photoelectrochemistry of Their Reduction Processes

    Directory of Open Access Journals (Sweden)

    Matteo Bonomo

    2016-05-01

    Full Text Available This review reports the properties of p-type semiconductors with nanostructured features employed as photocathodes in photoelectrochemical cells (PECs. Light absorption is crucial for the activation of the reduction processes occurring at the p-type electrode either in the pristine or in a modified/sensitized state. Beside thermodynamics, the kinetics of the electron transfer (ET process from photocathode to a redox shuttle in the oxidized form are also crucial since the flow of electrons will take place correctly if the ET rate will overcome that one of recombination and trapping events which impede the charge separation produced by the absorption of light. Depending on the nature of the chromophore, i.e., if the semiconductor itself or the chemisorbed dye-sensitizer, different energy levels will be involved in the cathodic ET process. An analysis of the general properties and requirements of electrodic materials of p-type for being efficient photoelectrocatalysts of reduction processes in dye-sensitized solar cells (DSC will be given. The working principle of p-type DSCs will be described and extended to other p-type PECs conceived and developed for the conversion of the solar radiation into chemical products of energetic/chemical interest like non fossil fuels or derivatives of carbon dioxide.

  18. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  19. Chemical-free n-type and p-type multilayer-graphene transistors

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com [Voxtel Inc, Lockey Laboratories, University of Oregon, Eugene Oregon 97402 (United States); Eisaman, M. D. [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794 (United States); Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-08-01

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping. When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.

  20. Recent Developments in p-Type Oxide Semiconductor Materials and Devices.

    Science.gov (United States)

    Wang, Zhenwei; Nayak, Pradipta K; Caraveo-Frescas, Jesus A; Alshareef, Husam N

    2016-05-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  1. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiCx(p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiCx(p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiCx(p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm(-2) on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a Voc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p(+)/p-wafer full-side-passivated rear-side scheme shown here.

  2. Long carrier lifetimes in large-grain polycrystalline CdTe without CdCl2

    Science.gov (United States)

    Jensen, S. A.; Burst, J. M.; Duenow, J. N.; Guthrey, H. L.; Moseley, J.; Moutinho, H. R.; Johnston, S. W.; Kanevce, A.; Al-Jassim, M. M.; Metzger, W. K.

    2016-06-01

    For decades, polycrystalline CdTe thin films for solar applications have been restricted to grain sizes of microns or less whereas other semiconductors such as silicon and perovskites have produced devices with grains ranging from less than a micron to more than 1 mm. Because the lifetimes in as-deposited polycrystalline CdTe films are typically limited to less than a few hundred picoseconds, a CdCl2 treatment is generally used to improve the lifetime; but this treatment may limit the achievable hole density by compensation. Here, we establish methods to produce CdTe films with grain sizes ranging from hundreds of nanometers to several hundred microns by close-spaced sublimation at industrial manufacturing growth rates. Two-photon excitation photoluminescence spectroscopy shows a positive correlation of lifetime with grain size. Large-grain, as-deposited CdTe exhibits lifetimes exceeding 10 ns without Cl, S, O, or Cu. This uncompensated material allows dopants such as P to achieve a hole density of 1016 cm-3, which is an order of magnitude higher than standard CdCl2-treated devices, without compromising the lifetime.

  3. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading.

    Science.gov (United States)

    Lambert, P K; Hustedt, C J; Vecchio, K S; Huskins, E L; Casem, D T; Gruner, S M; Tate, M W; Philipp, H T; Woll, A R; Purohit, P; Weiss, J T; Kannan, V; Ramesh, K T; Kenesei, P; Okasinski, J S; Almer, J; Zhao, M; Ananiadis, A G; Hufnagel, T C

    2014-09-01

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ~10(3)-10(4) s(-1) in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10-20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (~40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  4. Long Carrier Lifetimes in Large-Grain Polycrystalline CdTe Without CdCl2

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Soren A.; Burst, James M.; Duenow, Joel N.; Guthrey, Harvey L.; Moseley, John; Moutinho, Helio R.; Johnston, Steve W.; Kanevce, Ana; Al-Jassim, Mowafak M.; Metzger, Wyatt K.

    2016-06-27

    For decades, polycrystalline CdTe thin films for solar applications have been restricted to grain sizes of microns or less whereas other semiconductors such as silicon and perovskites have produced devices with grains ranging from less than a micron to more than 1 mm. Because the lifetimes in as-deposited polycrystalline CdTe films are typically limited to less than a few hundred picoseconds, a CdCl2 treatment is generally used to improve the lifetime; but this treatment may limit the achievable hole density by compensation. Here, we establish methods to produce CdTe films with grain sizes ranging from hundreds of nanometers to several hundred microns by close-spaced sublimation at industrial manufacturing growth rates. Two-photon excitation photoluminescence spectroscopy shows a positive correlation of lifetime with grain size. Large-grain, as-deposited CdTe exhibits lifetimes exceeding 10 ns without Cl, S, O, or Cu. This uncompensated material allows dopants such as P to achieve a hole density of 1016 cm-3, which is an order of magnitude higher than standard CdCl2-treated devices, without compromising the lifetime.

  5. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C. [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vecchio, K. S. [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States); Huskins, E. L. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Casem, D. T. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Gruner, S. M. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853 (United States); Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Woll, A. R. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kannan, V.; Ramesh, K. T. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kenesei, P.; Okasinski, J. S.; Almer, J. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  6. Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors

    KAUST Repository

    Caraveo-Frescas, J. A.

    2013-11-25

    p-type tin monoxide (SnO) nanowire field-effect transistors with stable enhancement mode behavior and record performance are demonstrated at 160 °C. The nanowire transistors exhibit the highest field-effect hole mobility (10.83 cm2 V−1 s−1) of any p-type oxide semiconductor processed at similar temperature. Compared to thin film transistors, the SnO nanowire transistors exhibit five times higher mobility and one order of magnitude lower subthreshold swing. The SnO nanowire transistors show three times lower threshold voltages (−1 V) than the best reported SnO thin film transistors and fifteen times smaller than p-type Cu 2O nanowire transistors. Gate dielectric and process temperature are critical to achieving such performance.

  7. DyP-type peroxidases comprise a novel heme peroxidase family.

    Science.gov (United States)

    Sugano, Y

    2009-04-01

    Dye-decolorizing peroxidase (DyP) is produced by a basidiomycete (Thanatephorus cucumeris Dec 1) and is a member of a novel heme peroxidase family (DyP-type peroxidase family) that appears to be distinct from general peroxidases. Thus far, 80 putative members of this family have been registered in the PeroxiBase database (http://peroxibase.isbsib.ch/) and more than 400 homologous proteins have been detected via PSI-BLAST search. Although few studies have characterized the function and structure of these proteins, they appear to be bifunctional enzymes with hydrolase or oxygenase, as well as typical peroxidase activities. DyP-type peroxidase family suggests an ancient root compared with other general peroxidases because of their widespread distribution in the living world. In this review, firstly, an outline of the characteristics of DyP from T. cucumeris is presented and then interesting characteristics of the DyP-type peroxidase family are discussed.

  8. Demethoxycurcumin is a potent inhibitor of P-type ATPases from diverse kingdoms of life

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Sehgal, Pankaj; Thanh Tung, Truong;

    2016-01-01

    the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site......P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used...... as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among...

  9. Silicon-on-ceramic coating process. Silicon sheet growth development for the Large-Area Silicon Sheet and Cell Development Tasks of the Low-Cost Silicon Solar Array Project. Quarterly report No. 8, December 28, 1977--March 28, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P.W. Zook, J.D.; Heaps, J D; Maclolek, R B; Koepke, B; Butter, C D; Schult, S B

    1978-04-20

    A research program to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon is described. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 12 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A dip-coating method for putting silicon on ceramic (SOC) has been shown to produce solar-cell-quality sheet silicon. This method and a continuous coating process also being investigated have excellent scale-up potential which offers an outstanding cost-effective way to manufacture large-area solar cells. A variety of ceramic materials have been dip-coated with silicon. The investigation has shown that mullite substrates containing an excess of SiO/sub 2/ best match the thermal expansion coefficient of silicon and hence produce the best SOC layers. With such substrates, smooth and uniform silicon layers 25 cm/sup 2/ in area have been achieved with single-crystal grains as large as 4 mm in width and several cm in length. Solar cells with areas from 1 to 10 cm/sup 2/ have been fabricated from material withas-grown surface. Recently, an antireflection (AR) coating has been applied to SOC cells. Conversion efficiencies greater than 9% have been achieved without optimizing series resistance characteristics. Such cells typically have open-circuit voltages and short-circuit current densities of 0.51 V and 20 mA/cm/sup 2/, respectively.

  10. A simple model to estimate the optimal doping of p - Type oxide superconductors

    Directory of Open Access Journals (Sweden)

    Adir Moysés Luiz

    2008-12-01

    Full Text Available Oxygen doping of superconductors is discussed. Doping high-Tc superconductors with oxygen seems to be more efficient than other doping procedures. Using the assumption of double valence fluctuations, we present a simple model to estimate the optimal doping of p-type oxide superconductors. The experimental values of oxygen content for optimal doping of the most important p-type oxide superconductors can be accounted for adequately using this simple model. We expect that our simple model will encourage further experimental and theoretical researches in superconducting materials.

  11. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  12. Hall and thermoelectric evaluation of p-type InAs

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, M.C., E-mail: magnus.wagener@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Wagener, V.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2009-12-15

    This paper compares the galvanometric and thermoelectric evaluation of the electrical characteristics of narrow gap semiconductors. In particular, the influence of a surface inversion layer is incorporated into the analysis of the temperature-dependent Hall and thermoelectric measurements of p-type InAs. The temperature at which the Seebeck coefficient of p-type material changes sign is shown to be unaffected by the presence of degenerate conduction paths. This finding consequently facilitated the direct determination of the acceptor density of lightly doped thin film InAs.

  13. Determination of Shear Deformation Potentials from the Free-Carrier Piezobirefringence in Germanium and Silicon

    DEFF Research Database (Denmark)

    Riskaer, Sven

    1966-01-01

    The present investigations of the free-carrier piezobirefringence phenomenon verify that in n-type germanium and silicon as well as in p-type silicon this effect can be ascribed to intraband transitions of the carriers. It is demonstrated how a combined investigation of the low-stress and high-st......, experimental evidence is given to support the assumption, that in p-type germanium intraband transitions alone cannot account for the free-carrier piezobirefringence....

  14. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  15. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  16. Features of the Real Structure of Lanthanum Hexaboride Polycrystalline

    Institute of Scientific and Technical Information of China (English)

    郑树起; 闵光辉; 邹增大; 于普涟; 韩建德; Y. B. Paderno

    2001-01-01

    The microstructure of lanthanum hexaboride (LaB6) polycrystalline has been studied by using transmission electron microscopy. This shows that the ideal LaB6 polycrystalline can be obtained by sintering ingots at the temperature of 2273 K for a holding time of 120min in Ar pressure of 800Torr, where the ingots are formed by pressing LaB6 powder at room temperature at a pressure of 0.4-0.5 GPa. The particles in LaB6 polycrystalline hardly bind; there are only a few pores at the joint parts of three particles and a few impurities exist in some pores. The sintering process for fabricating LaB6 polycrystalline is analysed and the formation of the pore and the impurities are studied from the point of surface tension.

  17. Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers

    OpenAIRE

    Chun-You Wei; Chu-Hsuan Lin; Hao-Tse Hsiao; Po-Chuan Yang; Chih-Ming Wang; Yen-Chih Pan

    2013-01-01

    Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT) structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency ...

  18. Silicon spintronics.

    Science.gov (United States)

    Jansen, Ron

    2012-04-23

    Worldwide efforts are underway to integrate semiconductors and magnetic materials, aiming to create a revolutionary and energy-efficient information technology in which digital data are encoded in the spin of electrons. Implementing spin functionality in silicon, the mainstream semiconductor, is vital to establish a spin-based electronics with potential to change information technology beyond imagination. Can silicon spintronics live up to the expectation? Remarkable advances in the creation and control of spin polarization in silicon suggest so. Here, I review the key developments and achievements, and describe the building blocks of silicon spintronics. Unexpected and puzzling results are discussed, and open issues and challenges identified. More surprises lie ahead as silicon spintronics comes of age.

  19. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution.

    Science.gov (United States)

    Kye, Joohong; Shin, Muncheol; Lim, Bora; Jang, Jae-Won; Oh, Ilwhan; Hwang, Seongpil

    2013-07-23

    Pt monolayer decorated gold nanostructured film on planar p-type silicon is utilized for photoelectrochemical H2 generation in this work. First, gold nanostructured film on silicon was spontaneously produced by galvanic displacement of the reduction of gold ion and the oxidation of silicon in the presence of fluoride anion. Second, underpotential deposition (UPD) of copper under illumination produced Cu monolayer on gold nanostructured film followed by galvanic exchange of less-noble Cu monolayer with more-noble PtCl6(2-). Pt(shell)/Au(core) on p-type silicon showed the similar activity with platinum nanoparticle on silicon for photoelectrochemical hydrogen evolution reaction in spite of low platinum loading. From Tafel analysis, Pt(shell)/Au(core) electrocatalyst shows the higher area-specific activity than platinum nanoparticle on silicon demonstrating the significant role of underlying gold for charge transfer reaction from silicon to H(+) through platinum catalyst.

  20. Research and development of photovoltaic power system. Development of novel technologies for fabrication of high quality silicon thin films for solar cells; Taiyoko hatsuden system no kenkyu kaihatsu. Kohinshitsu silicon usumaku sakusei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T. [Kanazawa University, Ishikawa (Japan). Faculty of Engineering

    1994-12-01

    Described herein are the results of the FY1994 research program for development of novel technologies for fabrication of high quality thin films of silicon for solar cells. The study on the mechanisms and effects of chemical annealing reveals that the film structure greatly varies depending on substrate temperature during the hydrotreatment process, based on the tests with substrate temperature, deposition of superthin film (T1) and hydrotreatment (T2) as the variable parameters. Chemical annealing at low temperature produces a high-quality a-Si:H film of low defect content. The study on fabrication of thin polycrystalline silicon films at low temperature observes on real time the process of deposition of the thin films on polycrystalline silicon substrates, where a natural oxide film is removed beforehand from the substrate. The results indicate that a thin polycrystalline silicon film of 100% crystallinity can be formed even on a polycrystalline silicon substrate by controlling starting gas composition and substrate temperature. The layer-by-layer method is used as the means for forming the seed crystals on a glass substrate, where deposition and hydrotreatment are repeated alternately, to produce the thin crystalline silicon films of high crystallinity. 3 figs.

  1. Abnormal hopping conduction in semiconducting polycrystalline graphene

    Science.gov (United States)

    Park, Jeongho; Mitchel, William C.; Elhamri, Said; Grazulis, Larry; Altfeder, Igor

    2013-07-01

    We report the observation of an abnormal carrier transport phenomenon in polycrystalline semiconducting graphene grown by solid carbon source molecular beam epitaxy. At the lowest temperatures in samples with small grain size, the conduction does not obey the two-dimensional Mott-type variable-range hopping (VRH) conduction often reported in semiconducting graphene. The hopping exponent p is found to deviate from the 1/3 value expected for Mott VRH with several samples exhibiting a p=2/5 dependence. We also show that the maximum energy difference between hopping sites is larger than the activation energy for nearest-neighbor hopping, violating the assumptions of the Mott model. The 2/5 dependence more closely agrees with the quasi-one-dimensional VRH model proposed by Fogler, Teber, and Shklovskii (FTS). In the FTS model, conduction occurs by tunneling between neighboring metallic wires. We suggest that metallic edge states and conductive grain boundaries play the role of the metallic wires in the FTS model.

  2. Polishing of dental porcelain by polycrystalline diamond.

    Science.gov (United States)

    Nakamura, Yoshiharu; Sato, Hideaki; Ohtsuka, Masaki; Hojo, Satoru

    2010-01-01

    Polycrystalline diamond (PCD) exhibits excellent abrasive characteristics and is commonly used as loose grains for precision machining of hard ceramics and other materials that are difficult to grind and polish. In the present study, we investigated using bonded PCD for polishing dental porcelain, for which a lustrous surface is difficult to obtain by polishing. We compared the surface texture and characteristics of dental porcelain after polishing with bonded PCD with that obtained using bonded monocrystalline diamond (MCD), which is commonly used for this purpose. Polishing was performed at various pressures and rotational speeds on a custom-built polishing apparatus using bonded PCD or MCD with grain sizes of 3.92 μm on specimens consisting of VITA Omega 900 dentin porcelain after firing and then glazing to a specified surface roughness. The surface roughness of the polished porcelain and the abrasion quantity in terms of its polishing depth were measured, and its surface texture and characteristics were investigated. At low polishing pressures, PCD yielded a finer polished surface than MCD. The polishing depth after polishing for 20-30 min was approximately 2-3 μm with PCD and 1-2 μm with MCD. The polished surface was more uniform and smooth with PCD than with MCD.

  3. Water vapor interactions with polycrystalline titanium surfaces

    Science.gov (United States)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  4. Deformation localization and cyclic strength in polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, O.T.; Rakshin, A.F.; Fenyuk, M.I.

    1983-06-01

    Conditions of deformation localization and its interrelation with cyclic strength in polycrystalline molybdenum were investigated. A fatigue failure of polycrystalline molybdenum after rolling and in an embrittled state reached by recrystallization annealing under cyclic bending at room temperature takes place under nonuniform distribution of microplastic strain resulting in a temperature rise in separate sections of more than 314 K. More intensive structural changes take place in molybdenum after rolling than in recrystallized state.

  5. Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Science.gov (United States)

    Heaps, J. D.; Maciolek, R. B.; Harrison, W. B.; Wolner, H. A.

    1975-01-01

    The research program to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon is reported. The initial effort concentrated on the design and construction of the experimental dip-coating facility. The design was completed and its experimental features are discussed. Current status of the program is reported, including progress toward solar cell junction diffusion and miscellaneous ceramic substrate procurement.

  6. Realization of Ag-S codoped p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tian Ning, E-mail: xtn9886@zju.edu.cn [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Xiang; Lu, Zhong [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Chen, Yong Yue [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Sui, Cheng Hua [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Wu, Hui Zhen [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2014-10-15

    Highlights: • Ag-S codoped p-type ZnO thin films have been fabricated. • The films exhibit low resistivity and high Hall mobility and hole concentration. • A ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction has been fabricated and shows rectifying behaviors. - Abstract: Ag-S codoped ZnO films have been grown on quartz substrates by e-beam evaporation at low temperature (100 °C). The effects of Ag{sub 2}S content on the structural and electrical properties of the films were investigated. The results showed that 2 wt% Ag{sub 2}S doped films exhibited p-type conduction, with a resistivity of 0.0347 Ω cm, a Hall mobility of 9.53 cm{sup 2} V{sup −1} s{sup −1}, and a hole concentration of 1.89 × 10{sup 19} cm{sup −3} at room temperature. The X-ray photoelectron spectroscopy measurements showed that Ag and S have been incorporated into the films. To further confirm the p-type conduction of Ag-S codoped ZnO films, a ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction was fabricated and rectifying behaviors of which was measured. High electrical performance and low growth temperature indicate that Ag{sub 2}S is a promising dopant to fabricate p-type Ag-S codoped ZnO films.

  7. Relative Frequencies of G and P Types among Rotaviruses from Indian Diarrheic Cow and Buffalo Calves

    Science.gov (United States)

    Gulati, Baldev R.; Nakagomi, Osamu; Koshimura, Yumi; Nakagomi, Toyoko; Pandey, Ramayan

    1999-01-01

    While an increasing number of studies suggest that there is a high prevalence of rotaviruses with P8[11], a typical P type of bovine rotavirus (BRV), among human neonates or infants in India, no data are available on the distribution of G and P types of Indian BRVs. Thus, fecal specimens were collected from cow and buffalo calves under 1 month of age on organized dairy farms in India during the period between 1994 and 1997, and 36 rotavirus-positive specimens were used to determine the relative frequencies of the G and P types of Indian BRVs. As to the G type, G10 was predominant (83%), followed by G6 (6%). The majority (94%) of BRVs had P8[11], and only one isolate possessed P6[1]. The most common combination of G and P types was G10P8[11] (81%), followed by G6P6[1] (3%) and G6P8[11] (3%). The high prevalence of BRVs possessing P8[11] VP4s strongly supports the hypothesis that BRVs may cross the host species barrier and circulate among neonates in India. PMID:10325385

  8. Characterization of 3D-DDTC detectors on p-type substrates

    CERN Document Server

    Betta, G -F Dalla; Bosisio, Luciano; Darbo, Giovanni; Gabos, Paolo; Gemme, Claudia; Koehler, Michael; La Rosa, Alessandro; Parzefall, Ulrich; Pernegger, Heinz; Piemonte, Claudio; Povoli, Marco; Rachevskaia, Irina; Ronchin, Sabina; Wiik, Liv; Zoboli, Aanrea; Zorzi, Nicola

    2009-01-01

    We report on the electrical and functional characterization of 3D Double-side, Double-Type-Column (3D- DDTC) detectors fabricated on p-type substrates. Results relevant to detectors in the diode, strip and pixel configurations are presented, and demonstrate a clear improvement in the charge collection performance compared to the first prototypes of these detectors.

  9. Origin and evolution of metal p-Type ATPases in Plantae (Archaeplastida

    Directory of Open Access Journals (Sweden)

    Marc eHanikenne

    2014-01-01

    Full Text Available Metal ATPases are a subfamily of P-type ATPases involved in the transport of metal cations across biological membranes. They all share an architecture featuring eight transmembrane domains in pairs of two and are found in prokaryotes as well as in a variety of Eukaryotes. In Arabidopsis thaliana, eight metal P-type ATPases have been described, four being specific to copper transport and four displaying a broader metal specificity, including zinc, cadmium and possibly copper and calcium. So far, few efforts have been devoted to elucidating the origin and evolution of these proteins in Eukaryotes. In this work, we use large-scale phylogenetics to show that metal P-type ATPases form a homogenous group among P-type ATPases and that their specialisation into either monovalent (Cu or divalent (Zn, Cd… metal transport stems from a gene duplication that took place early in the evolution of Life. Then, we demonstrate that the four subgroups of plant metal ATPases all have a different evolutionary origin and a specific taxonomic distribution, only one tracing back to the cyanobacterial progenitor of the chloroplast. Finally, we examine the subsequent evolution of these proteins in green plants and conclude that the genes thoroughly characterised in model organisms are often the result of lineage-specific gene duplications, which calls for caution when attempting to infer function from sequence similarity alone in non-model organisms.

  10. Synthesis of p-type and n-type nickel ferrites and associated electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Šutka, Andris, E-mail: andris.sutka@rtu.lv [Faculty of Material Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, Riga, LV-1048 (Latvia); Institute of Physics, University of Tartu, Ravila 14c, 50411, 51014 Tartu (Estonia); Pärna, Rainer [Institute of Physics, University of Tartu, Ravila 14c, 50411, 51014 Tartu (Estonia); Estonian Nanotechnology Competence Centre, Ravila 14c, 50411, 51014 Tartu (Estonia); Käämbre, Tanel [Institute of Physics, University of Tartu, Ravila 14c, 50411, 51014 Tartu (Estonia); Kisand, Vambola [Institute of Physics, University of Tartu, Ravila 14c, 50411, 51014 Tartu (Estonia); Estonian Nanotechnology Competence Centre, Ravila 14c, 50411, 51014 Tartu (Estonia)

    2015-01-01

    We used sol–gel auto combustion to synthesize nickel ferrites of p-type and n-type conductivity by controlling the relative amounts of nickel and iron during synthesis. The obtained samples have been characterized by XRD, FE-SEM, electrical measurements and XPS. We observe huge differences in the effect of grain size on the electrical resistivity between the p-type and the n-type material when the grain size increases from nano to micro scale during annealing at temperatures from 900 {sup o}C to 1300 {sup o}C. The observed resistivity decrease (due to grain size) is four orders of magnitude in the n-type nickel ferrite, whereas the p-type material remains virtually unaffected. We rationalize this drastic difference to stem from a reverse contrast of the surface (grain shell) versus bulk (grain core) conductivity between p- and n-type ferrite. With the grain shells in p-type the easier charge carrier path the effect of scatter at grain boundaries is accordingly diminished, whereas in the n-type charge transport properties are controlled by (the number of) grain boundaries in a conduction path.

  11. A structural and functional perspective of DyP-type peroxidase family.

    Science.gov (United States)

    Yoshida, Toru; Sugano, Yasushi

    2015-05-15

    Dye-decolorizing peroxidase from the basidiomycete Bjerkandera adusta Dec 1 (DyP) is a heme peroxidase. This name reflects its ability to degrade several anthraquinone dyes. The substrate specificity, the amino acid sequence, and the tertiary structure of DyP are different from those of the other heme peroxidase (super)families. Therefore, many proteins showing the similar amino acid sequences to that of DyP are called DyP-type peroxidase which is a new family of heme peroxidase identified in 2007. In fact, all structures of this family show a similar structure fold. However, this family includes many proteins whose amino acid sequence identity to DyP is lower than 15% and/or whose catalytic efficiency (kcat/Km) is a few orders of magnitude less than that of DyP. A protein showing an activity different from peroxidase activity (dechelatase activity) has been also reported. In addition, the precise physiological roles of DyP-type peroxidases are unknown. These facts raise a question of whether calling this family DyP-type peroxidase is suitable. Here, we review the differences and similarities of structure and function among this family and propose the reasonable new classification of DyP-type peroxidase family, that is, class P, I and V. In this contribution, we discuss the adequacy of this family name.

  12. Low-temperature strain gauges based on silicon whiskers

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2008-08-01

    Full Text Available To create low-temperature strain gauges based on p-type silicon whiskers tensoresistive characteristics of these crystals in 4,2—300 K temperature range were studied. On the basis of p-type Si whiskers with different resistivity the strain gauges for different materials operating at cryogenic temperatures with extremely high gauge factor at 4,2 K were developed, as well as strain gauges operating at liquid helium temperatures in high magnetic fields.

  13. Dip-coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Science.gov (United States)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Gutter, C. D.; Schuldt, S. B.

    1977-01-01

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. The past quarter demonstrated significant progress in several areas. Seeded growth of silicon-on-ceramic (SOC) with an EFG ribbon seed was demonstrated. Different types of mullite were successfully coated with silicon. A new method of deriving minority carrier diffusion length, L sub n from spectral response measurements was evaluated. ECOMOD cost projections were found to be in good agreement with the interim SAMIS method proposed by JPL. On the less positive side, there was a decrease in cell performance which we believe to be due to an unidentified source of impurities.

  14. Poly-crystalline thin-film by aluminum induced crystallization on aluminum nitride substrate

    Science.gov (United States)

    Bhopal, Muhammad Fahad; Lee, Doo Won; Lee, Soo Hong

    2016-09-01

    Thin-film polycrystalline silicon ( pc-Si) on foreign (non-silicon) substrates has been researched by various research groups for the production of photovoltaic cells. High quality pc-Si deposition on foreign substrates with superior optical properties is considered to be the main hurdle in cell fabrication. Metal induced crystallization (MIC) is one of the renowned techniques used to produce this quality of material. In the current study, an aluminum induced crystallization (AIC) method was adopted to produce pc-Si thin-film on aluminum nitride (AlN) substrate by a seed layer approach. Aluminum and a-Si layer were deposited using an e-beam evaporator. Various annealing conditions were used in order to investigate the AIC grown pc-Si seed layers for process optimization. The effect of thermal annealing on grain size, defects preferentially crystallographic orientation of the grains were analyzed. Surface morphology was studied using an optical microscope. Poly-silicon film with a crystallinity fraction between 95-100% and an FWHM between 5-6 cm-1 is achievable at low temperatures and for short time intervals. A grain size of about 10 micron can be obtained at a low deposition rate on an AIN substrate. Similarly, Focused ion beam (FIB) also showed that at 425 °C sample B and at 400 °C sample A were fully crystallized. The crystalline quality of pc-Si was evaluated using μ-Raman spectroscopy as a function of annealed conditions and Grazing incidence X-ray diffraction (GIXRD) was used to determine the phase direction of the pc-Si layer. The current study implicates that a poly-silicon layer with good crystallographic orientation and crystallinity fraction is achievable on AIN substrate at low temperatures and short time frames.

  15. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    Science.gov (United States)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  16. Characterization of thermal, optical and carrier transport properties of porous silicon using the photoacoustic technique

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Chan Kok [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Mahmood Mat Yunus, W. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)], E-mail: mahmood@science.upm.edu.my; Yunus, Wan Md. Zin Wan [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Abidin Talib, Zainal [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Kassim, Anuar [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia)

    2008-08-01

    In this work, the porous silicon layer was prepared by the electrochemical anodization etching process on n-type and p-type silicon wafers. The formation of the porous layer has been identified by photoluminescence and SEM measurements. The optical absorption, energy gap, carrier transport and thermal properties of n-type and p-type porous silicon layers were investigated by analyzing the experimental data from photoacoustic measurements. The values of thermal diffusivity, energy gap and carrier transport properties have been found to be porosity-dependent. The energy band gap of n-type and p-type porous silicon layers was higher than the energy band gap obtained for silicon substrate (1.11 eV). In the range of porosity (50-76%) of the studies, our results found that the optical band-gap energy of p-type porous silicon (1.80-2.00 eV) was higher than that of the n-type porous silicon layer (1.70-1.86 eV). The thermal diffusivity value of the n-type porous layer was found to be higher than that of the p-type and both were observed to increase linearly with increasing layer porosity.

  17. Vacuum arc on the polycrystalline silica cathode

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Thin films of silica and its compounds are used in modern technology to produce Li-ion batteries, wear-resistant and protective coatings, thin-films insulators, etc. This coating is produced with CVD methods, with magnetron sputtering systems or with electron-beam evaporation. The vacuum arc evaporation method, presently, is not used.The paper demonstrates a possibility for a long-term operation of vacuum arc evaporator with polycrystalline silica-aluminum alloy (90% of silica cathode and with magnetic system to create a variable form of arch-like magnetic field on the cathode surface. It was shown that archlike configuration of magnetic field provides a stable discharge and uniform cathode spots moving with the velocities up to 5 m/s with magnetic fields induction about 10 mT. Thus, there is no local melting of the cathode, and this provides its long-term work without chips, cracks and destruction. Cathodes spots move over the cathode surface leaving t big craters with melted edges on its surface. The craters size was 150-450μm. The cathode spot movement character and the craters on the cathode surface were like the spots movement, when working on the copper or aluminum cathodes. With the magnetic field induction less than 1 mT, the cathode spots movement was the same as that of on the silica mono-crystal without magnetic field. Thus, the discharge volt-ampere characteristics for different values of magnetic fields were obtained. Voltampere characteristics were increasing and were shifted to the higher voltage with increasing magnetic field. The voltage was 18.7-26.5 V for the arc current 30-140 A.So, it was confirmed that vacuum arc evaporation method could be used for effective evaporation of silica and silica-based alloys and for thin films deposition of this materials.

  18. A New Polycrystalline Co-Ni Superalloy

    Science.gov (United States)

    Knop, M.; Mulvey, P.; Ismail, F.; Radecka, A.; Rahman, K. M.; Lindley, T. C.; Shollock, B. A.; Hardy, M. C.; Moody, M. P.; Martin, T. L.; Bagot, P. A. J.; Dye, D.

    2014-12-01

    In 2006, a new-ordered L12 phase, Co3(Al,W), was discovered that can form coherently in a face-centered cubic (fcc) A1 Co matrix. Since then, a community has developed that is attempting to take these alloys forward into practical applications in gas turbines. A new candidate polycrystalline Co-Ni γ/ γ' superalloy, V208C, is presented that has the nominal composition 36Co-35Ni-15Cr-10Al-3W-1Ta (at.%). The alloy was produced by conventional powder metallurgy superalloy methods. After forging, a γ' fraction of ~56% and a secondary γ' size of 88 nm were obtained, with a grain size of 2.5 μm. The solvus temperature was 1000°C. The density was found to be 8.52 g cm-3, which is similar to existing Ni alloys with this level of γ'. The alloy showed the flow stress anomaly and a yield strength of 920 MPa at room temperature and 820 MPa at 800°C, similar to that of Mar-M247. These values are significantly higher than those found for either conventional solution and carbide-strengthened Co alloys or the γ/ γ' Co superalloys presented in the literature thus far. The oxidation resistance, with a mass gain of 0.08 mg cm-2 in 100 h at 800°C, is also comparable with that of existing high-temperature Ni superalloys. These results suggest that Co-based and Co-Ni superalloys may hold some promise for the future in gas turbine applications.

  19. A MONTÉ CARLO MODEL FOR SIMULATING THE NITROGEN DIFFUSION EFFECT INTO B-LPCVD-NIDOS POLYCRYSTALLINE THIN FILMS

    Directory of Open Access Journals (Sweden)

    S ALLAG

    2012-06-01

    Full Text Available The principal objective of our current work, is to study the influence of different treatment from surface which makes it possible to improve the properties of materials by technique of beam of ions (diffusion – implantation, on the distribution of the particles in a semiconductor the prone polycrystalline Silicon of our study, largely used in micro-electronics.  The interest of this study is related to the ceaseless requirements in industry for increasingly reduced, powerful materials and with the weakest possible cost price.       We thus have, makes a nitriding in gas phase during the phase of deposit LPCVD of polycrystalline Silicon, then one made an ionic implantation with the Bore ions.  The results obtained, starting from a simulation based on the Monte Carlo method, although they are carried out with amounts much lower than the really introduced amounts, being given the limitation of the machine used, satisfied the predictions established at the beginning and encourage us to continue this study from the point of view of the use of this material in particular in varied fields.

  20. A holistic view of crystalline silicon module reliability

    Energy Technology Data Exchange (ETDEWEB)

    Hanoka, J.I. [Evergreen Solar, Inc., Waltham, MA (United States)

    1995-11-01

    Several aspects of module reliability are discussed, particularly with reference to the encapsulant and its interaction with the metallization and interconnection of a module. A need to look at the module as a whole single unit is stressed. Also, the issue of a slight light degradation effect in crystalline silicon cells is discussed. A model for this is mentioned and it may well be that polycrystalline cells with dislocations may have an advantage.

  1. Silicon-on Ceramic Process: Silicon Sheet Growth and Device Development for the Large-area Silicon Sheet and Cell Development Tasks of the Low-cost Solar Array Project

    Science.gov (United States)

    Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Grung, B. L.; Koepke, B.; Schuldt, S. B.

    1979-01-01

    The technical and economic feasibility of producing solar cell-quality silicon was investigated. This was done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress in the following areas was demonstrated: (1) fabricating a 10 sq cm cell having 9.9 percent conversion efficiency; (2) producing a 225 sq cm layer of sheet silicon; and (3) obtaining 100 microns thick coatings at pull speed of 0.15 cm/sec, although approximately 50 percent of the layer exhibited dendritic growth.

  2. Fabrication of hexagonal gallium nitride films on silicon (111) substrates

    Institute of Scientific and Technical Information of China (English)

    YANG Li; XUE Chengshan; WANG Cuimei; LI Huaixiang; REN Yuwen

    2003-01-01

    Hexagonal gallium nitride films were successfully fabricated through ammoniating Ga2O3 films deposited on silicon (111 ) substrates by electrophoresis. The structure, composition, and surface morphology of the formed films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM),and transmission electron microscopy (TEM). The measurement results reveal that the polycrystalline GaN films with hexagonal wurtzite structure were successfully grown on the silicon (111) substrates. Preliminary results suggest that varying the ammoniating temperature has obvious effect on the quality of the GaN films formed with this method.

  3. Infrared absorption and visible transparency in heavily doped p-type BaSnO3

    Science.gov (United States)

    Li, Yuwei; Sun, Jifeng; Singh, David J.

    2017-01-01

    The recent experimental work shows that perovskite BaSnO3 can be heavily doped by K to become a stable p-type semiconductor. Here, we find that p-type perovskite BaSnO3 retains transparency for visible light while absorbing strongly in the infrared below 1.5 eV. The origin of the remarkable optical transparency even with heavy doping is that the interband transitions that are enabled by empty states at the top of the valence band are concentrated mainly in the energy range from 0.5 to 1.5 eV, i.e., not extending past the near IR. In contrast to n-type, the Burstein-Moss shift is slightly negative, but very small reflecting the heavier valence bands relative to the conduction bands.

  4. Fabrication of p-type lithium niobate crystals by molybdenum doping and polarization

    Science.gov (United States)

    Tian, Tian; Kong, Yongfa; Liu, Hongde; Liu, Shiguo; Li, Wei; Chen, Shaolin; Xu, Jiayue

    2017-06-01

    The lack of p-type lithium niobate limits it serving as an active material. A series of Mo-doped and pure congruent lithium niobate crystals were grown by Czochralski method under different polarization conditions. Their dominant carrier species were characterized by holographic experiment. The results showed dominant charge carrier species may be changed from electrons to holes when lithium niobate crystal was doped with Mo ions and polarized under the current of 70mA for 30 minutes. It indicated that p-type lithium niobate crystal could be fabricated by Mo-doping and suitably controlling the polarization condition. Mo-doped lithium niobate crystals can be a promising candidate for active components.

  5. Enhancement of p-type mobility in tin monoxide by native defects

    KAUST Repository

    Granato, D. B.

    2013-05-31

    Transparent p-type materials with good mobility are needed to build completely transparent p-n junctions. Tin monoxide (SnO) is a promising candidate. A recent study indicates great enhancement of the hole mobility of SnO grown in Sn-rich environment [E. Fortunato et al., Appl. Phys. Lett. 97, 052105 (2010)]. Because such an environment makes the formation of defects very likely, we study defect effects on the electronic structure to explain the increased mobility. We find that Sn interstitials and O vacancies modify the valence band, inducing higher contributions of the delocalized Sn 5p orbitals as compared to the localized O 2p orbitals, thus increasing the mobility. This mechanism of valence band modification paves the way to a systematic improvement of transparent p-type semiconductors.

  6. A Density Functional Theory Study of Doped Tin Monoxide as a Transparent p-type Semiconductor

    KAUST Repository

    Bianchi Granato, Danilo

    2012-05-01

    In the pursuit of enhancing the electronic properties of transparent p-type semiconductors, this work uses density functional theory to study the effects of doping tin monoxide with nitrogen, antimony, yttrium and lanthanum. An overview of the theoretical concepts and a detailed description of the methods employed are given, including a discussion about the correction scheme for charged defects proposed by Freysoldt and others [Freysoldt 2009]. Analysis of the formation energies of the defects points out that nitrogen substitutes an oxygen atom and does not provide charge carriers. On the other hand, antimony, yttrium, and lanthanum substitute a tin atom and donate n-type carriers. Study of the band structure and density of states indicates that yttrium and lanthanum improves the hole mobility. Present results are in good agreement with available experimental works and help to improve the understanding on how to engineer transparent p-type materials with higher hole mobilities.

  7. Comment on 'Electronic Properties of Red P-Type T12S5 Single Crystals'

    Institute of Scientific and Technical Information of China (English)

    M. Cankurtaran; H. (C)elik

    2007-01-01

    Recently, Gamal et al. [Chin. Phys. Lett. 22 (2005) 1530] reported the results of electrical conductivity, Hall effect and thermoelectric measurements on p-type Th2S5 single crystals. From the experimental data for the temperature dependence of differential thermoelectric power, Gamal et al. determined the values of 2.66 × 10-41 kg and 2.50 × 10-41 kg, respectively, for the effective masses of electrons and holes in p-type Tl2S5, which are about ten orders of magnitude smaller than the free electron mass (9.11 × 10-31 kg). We argue that the anomalously small values obtained for the effective mass of charge carriers in Tl2S5 have no physical significance.

  8. Measurement of the dead layer thickness in a p-type point contact germanium detector

    Science.gov (United States)

    Jiang, Hao; Yue, Qian; Li, Yu-Lan; Kang, Ke-Jun; Li, Yuan-Jing; Li, Jin; Lin, Shin-Ted; Liu, Shu-Kui; Ma, Hao; Ma, Jing-Lu; Su, Jian; Tsz-King Wong, Henry; Yang, Li-Tao; Zhao, Wei; Zeng, Zhi

    2016-09-01

    A 994 g mass p-type PCGe detector has been deployed during the first phase of the China Dark matter EXperiment, aiming at direct searches for light weakly interacting massive particles. Measuring the thickness of the dead layer of a p-type germanium detector is an issue of major importance since it determines the fiducial mass of the detector. This work reports a method using an uncollimated 133Ba source to determine the dead layer thickness. The experimental design, data analysis and Monte Carlo simulation processes, as well as the statistical and systematic uncertainties are described. A dead layer thickness of 1.02 mm was obtained based on a comparison between the experimental data and the simulated results. Supported by National Natural Science Foundation of China (10935005, 10945002, 11275107, 11175099)

  9. Preparation and Photovoltaic Properties of p-Type Nano-ZnFe2O4

    Institute of Scientific and Technical Information of China (English)

    LI Zi-heng; ZOU Xu; LI Gen; ZOU Guang-tian

    2012-01-01

    p-Type nano-ZnFe2O4 semiconductors were gained by high-prssure treatment.Surface photovoltaic spectrum(SPS) and transient photovoltaic technology(TPV) were used for studying the photogenerated charge of nano-ZnFe2O4.Results show that the photovoltaic behavior of nano-ZnFe2O4 changed as the processing pressure increased.When the processing pressure was higher than 2 GPa,both SPS response interval and peak changed significantly.XPS results show that the non-lattice oxygen entered into the lattice and the content of lattice oxygen increased with the increase of processing pressure.The material changed from oxygen vacancy type to oxygen excess type and the photoelectric properties changed from n-type to p-type when the processing pressure is higher than 2GPa.

  10. In and out of the cation pumps: P-type ATPase structure revisited

    DEFF Research Database (Denmark)

    Bublitz, Maike; Poulsen, Hanne; Morth, Jens Preben

    2010-01-01

    Active transport across membranes is a crucial requirement for life. P-type ATPases build up electrochemical gradients at the expense of ATP by forming and splitting a covalent phosphoenzyme intermediate, coupled to conformational changes in the transmembrane section where the ions are translocated....... The marked increment during the last three years in the number of crystal structures of P-type ATPases has greatly improved our understanding of the similarities and differences of pumps with different ion specificities, since the structures of the Ca2+-ATPase, the Na+,K+-ATPase and the H+-ATPase can now...... be compared directly. Mechanisms for ion gating, charge neutralization and backflow prevention are starting to emerge from comparative structural analysis; and in combination with functional studies of mutated pumps this provides a framework for speculating on how the ions are bound and released as well...

  11. Perspectives of High-Temperature Thermoelectric Applications and p-type and n-type Aluminoborides

    Science.gov (United States)

    Mori, T.

    2016-10-01

    A need exists to develop high-temperature thermoelectric materials which can utilize high-temperature unutilized/waste heat in thermal power plants, steelworks, factories, incinerators, etc., and also focused solar power. The thermal power plant topping application is of potential high impact since it can sizably increase the efficiency of power plants which are the major supply of electrical power for many countries. Higher borides are possible candidates for their particular high-temperature stability, generally large Seebeck coefficients, α, and intrinsic low thermal conductivity. Excellent (|α| > 200 μV/K) p-type or n-type behavior was recently achieved in the aluminoboride YAl x B14 by varying the occupancy of Al sites, x. Finding p-type and n-type counterparts has long been a difficulty of thermoelectric research not limited to borides. This paper reviews possible high-temperature thermoelectric applications, and recent developments and perspectives of thermoelectric aluminoborides.

  12. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  13. Sensitization of p-type NiO using n-type conducting polymers

    NARCIS (Netherlands)

    Chavhan, S.D.; Abellon, R.D.; Breemen, A.J.J.M. van; Koetse, M.M.; Sweelssen, J.; Savenije, T.J.

    2010-01-01

    We report on the sensitization of a p-type inorganic semiconductor, NiO, by n-type conjugated polymers. NiO thin films were deposited using RF sputtering in pure Ar (NiO A) or in Ar + O2 (90% + 10%) (NiO B). XPS and Kelvin probe measurements indicate the incorporation of oxygen in NiO B

  14. Sensitization of p-type NiO using n-type conducting polymers

    NARCIS (Netherlands)

    Chavhan, S.D.; Abellon, R.D.; Breemen, A.J.J.M. van; Koetse, M.M.; Sweelssen, J.; Savenije, T.J.

    2010-01-01

    We report on the sensitization of a p-type inorganic semiconductor, NiO, by n-type conjugated polymers. NiO thin films were deposited using RF sputtering in pure Ar (NiO A) or in Ar + O2 (90% + 10%) (NiO B). XPS and Kelvin probe measurements indicate the incorporation of oxygen in NiO B l

  15. Investigation of negative photoconductivity in p-type Pb1-xSnxTe film

    Science.gov (United States)

    Tavares, M. A. B.; da Silva, M. J.; Peres, M. L.; de Castro, S.; Soares, D. A. W.; Okazaki, A. K.; Fornari, C. I.; Rappl, P. H. O.; Abramof, E.

    2017-01-01

    We investigated the negative photoconductivity (NPC) effect that was observed in a p-type Pb1-xSnxTe film for temperatures varying from 300 K down to 85 K. We found that this effect is a consequence of defect states located in the bandgap which act as trapping levels, changing the relation between generation and recombination rates. Theoretical calculations predict contributions to the NPC from both conduction and valence bands, which are in accordance with the experimental observations.

  16. Sensitization of p-type NiO using n-type conducting polymers

    NARCIS (Netherlands)

    Chavhan, S.D.; Abellon, R.D.; Breemen, A.J.J.M. van; Koetse, M.M.; Sweelssen, J.; Savenije, T.J.

    2010-01-01

    We report on the sensitization of a p-type inorganic semiconductor, NiO, by n-type conjugated polymers. NiO thin films were deposited using RF sputtering in pure Ar (NiO A) or in Ar + O2 (90% + 10%) (NiO B). XPS and Kelvin probe measurements indicate the incorporation of oxygen in NiO B l

  17. Radiation damage studies of multi-guard ring p-type bulk diodes

    CERN Document Server

    Bortoletto, D; Günther, M; Grim, G P; Lander, R L; Willard, S; Li, Z

    1999-01-01

    Several diodes with different multi-guard ring structures were fabricated from 10 k OMEGA cm p-type bulk material. Studies on the performance of such devices are presented here. They include the measurement of the leakage current, breakdown voltage and charge collection efficiency before and after 2x10 sup 1 sup 4 p/cm sup 2 irradiation with 63.3 MeV kinetic protons. (author)

  18. Method for producing high carrier concentration p-Type transparent conducting oxides

    Science.gov (United States)

    Li, Xiaonan; Yan, Yanfa; Coutts, Timothy J.; Gessert, Timothy A.; Dehart, Clay M.

    2009-04-14

    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  19. Record mobility in transparent p-type tin monoxide films and devices by phase engineering

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso

    2013-06-25

    Here, we report the fabrication of nanoscale (15 nm) fully transparent p-type SnO thin film transistors (TFT) at temperatures as low as 180 C with record device performance. Specifically, by carefully controlling the process conditions, we have developed SnO thin films with a Hall mobility of 18.71 cm2 V-1 s-1 and fabricated TFT devices with a linear field-effect mobility of 6.75 cm2 V-1 s -1 and 5.87 cm2 V-1 s-1 on transparent rigid and translucent flexible substrates, respectively. These values of mobility are the highest reported to date for any p-type oxide processed at this low temperature. We further demonstrate that this high mobility is realized by careful phase engineering. Specifically, we show that phase-pure SnO is not necessarily the highest mobility phase; instead, well-controlled amounts of residual metallic tin are shown to substantially increase the hole mobility. A detailed phase stability map for physical vapor deposition of nanoscale SnO is constructed for the first time for this p-type oxide. © 2013 American Chemical Society.

  20. Electronic inhomogeneity in n- and p-type PbTe detected by 125Te NMR

    Science.gov (United States)

    Levin, E. M.; Heremans, J. P.; Kanatzidis, M. G.; Schmidt-Rohr, K.

    2013-09-01

    125Te nuclear magnetic resonance spectra and spin-lattice relaxation of n- and p-type PbTe, self-doping narrow band-gap semiconductors, have been studied and compared to those of p-type GeTe. Spin-lattice relaxation in GeTe can be fit by one component, while that in both PbTe samples must be fit by at least two components, showing electronically homogeneous and inhomogeneous materials, respectively. For PbTe-based materials, the spin-lattice relaxation rate 1/T1 increases linearly with carrier concentration. The data for GeTe fall on the same line and allow us to extend this plot to higher concentrations. Long and short T1 components in both PbTe samples reflect “low,” ˜1017 cm-3, and “high,” ˜1018 cm-3, carrier concentration components. Carrier concentrations in both n- and p-type PbTe samples obtained from the Hall and Seebeck effects generally match the “high” carrier concentration component, and to some extent, ignore the “low” one. This demonstrates that the Hall and Seebeck effects may have a limited ability for the determination of carrier concentration in complex thermoelectric PbTe-based and other multicomponent materials.

  1. Effective p-type N-doped WS{sub 2} monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xu, E-mail: zhaoxu@htu.cn; Xia, Congxin; Wang, Tianxing; Peng, Yuting; Dai, Xianqi

    2015-11-15

    Based on density functional theory, the characteristics of n- and p-type dopants are investigated by means of group V and VII atoms substituting sulfur in the WS{sub 2} monolayer. Numerical results show that for each doping case, the formation energy is lower under W-rich condition, which indicates that it is energy favorable to incorporate group V and VII atoms into WS{sub 2} under W-rich experimental conditions. Moreover, compared with other dopant cases, N-doped WS{sub 2} monolayer owns the lowest formation energy. In particular, the transition level of (−1/0) is only 75 meV in the N-doped case, which indicates that N impurities can offer effective p-type carriers in the WS{sub 2} monolayer. - Highlights: • The formation energy is lower under W-rich conditions. • N-doped system owns the lowest formation energy compared with other atoms. • The transition level of N-doping in WS{sub 2} is 75 meV. • N impurities can offer effective p-type carriers in the WS{sub 2}.

  2. Demethoxycurcumin Is A Potent Inhibitor of P-Type ATPases from Diverse Kingdoms of Life.

    Science.gov (United States)

    Dao, Trong Tuan; Sehgal, Pankaj; Tung, Truong Thanh; Møller, Jesper Vuust; Nielsen, John; Palmgren, Michael; Christensen, Søren Brøgger; Fuglsang, Anja Thoe

    2016-01-01

    P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site of these pumps. Future research on biological effects of commercial preparations of curcumin should consider the heterogeneity of the material.

  3. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    Science.gov (United States)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-05-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4‧-(2,2-dicyanovinyl)-[1,1‧-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up.

  4. Silicon bulk growth for solar cells: Science and technology

    Science.gov (United States)

    Kakimoto, Koichi; Gao, Bing; Nakano, Satoshi; Harada, Hirofumi; Miyamura, Yoshiji

    2017-02-01

    The photovoltaic industry is in a phase of rapid expansion, growing by more than 30% per annum over the last few decades. Almost all commercial solar cells presently use single-crystalline or multicrystalline silicon wafers similar to those used in microelectronics; meanwhile, thin-film compounds and alloy solar cells are currently under development. The laboratory performance of these cells, at 26% solar energy conversion efficiency, is now approaching thermodynamic limits, with the challenge being to incorporate these improvements into low-cost commercial products. Improvements in the optical design of cells, particularly in their ability to trap weakly absorbed light, have also led to increasing interest in thin-film cells based on polycrystalline silicon; these cells have advantages over other thin-film photovoltaic candidates. This paper provides an overview of silicon-based solar cell research, especially the development of silicon wafers for solar cells, from the viewpoint of growing both single-crystalline and multicrystalline wafers.

  5. Laser-induced phase separation of silicon carbide

    Science.gov (United States)

    Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae

    2016-11-01

    Understanding the phase separation mechanism of solid-state binary compounds induced by laser-material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (~2.5 nm) and polycrystalline silicon (~5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system.

  6. Si-C Linked Organic Monolayers on Crystalline Silicon Surfaces as Alternative Gate Insulators

    NARCIS (Netherlands)

    Faber, Erik J.; Smet, de Louis C.P.M.; Olthuis, Wouter; Zuilhof, Han; Sudhölter, Ernst J.R.; Bergveld, Piet; Berg, van den Albert

    2005-01-01

    Herein, the influence of silicon surface modification via Si-CnH2n+1 (n=10,12,16,22) monolayer-based devices on p-type (100) and n-type (100) silicon is studied by forming MIS (metal–insulator–semiconductor) diodes using a mercury probe. From current density–voltage (J–V) and capacitance–voltage (C–

  7. Silicon Film[trademark] photovoltaic manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Bottenberg, W.R.; Hall, R.B.; Jackson, E.L.; Lampo, S.; Mulligan, W.E.; Barnett, A.M. (AstroPower, Inc., Newark, DE (United States))

    1993-04-01

    This report describes work on a project to develop an advanced low-cost manufacturing process for a new utility-scale flatplate module based on thin active layers of polycrystalline silicon on a low-cost substrate. This is called the Silicon-Film[trademark] process. This new power module is based on a new large solar cell that is 675 cm[sup 2] in area. Eighteen of these solar cells form a 170-W module. Twelve ofthese modules form a 2-kW array. The program has three components: (1) development of a Silicon-Film[trademark] wafer machine that can manufacture wafer 675 cm[sup 2] in size with a total product cost reductionof 70%; (2) development of an advanced solar cell manufacturing process that will turn the Silicon-Film[trademark] wafer into a 14%-efficient solar cell; and (3) development of an advanced module design based on these large-area, efficient silicon solar cells with an average power of 170 watts. The completion of these three tasks will lead to a new power module designed for utility and other power applications with asubstantially lower cost.

  8. Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH33

    Directory of Open Access Journals (Sweden)

    Sergej Alexandrovich Filonovich, Hugo Águas, Tito Busani, António Vicente, Andreia Araújo, Diana Gaspar, Marcia Vilarigues, Joaquim Leitão, Elvira Fortunato and Rodrigo Martins

    2012-01-01

    Full Text Available We have characterized the structure and electrical properties of p-type nanocrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition and explored optimization methods of such layers for potential applications in thin-film solar cells. Particular attention was paid to the characterization of very thin (~20 nm films. The cross-sectional morphology of the layers was studied by fitting the ellipsometry spectra using a multilayer model. The results suggest that the crystallization process in a high-pressure growth regime is mostly realized through a subsurface mechanism in the absence of the incubation layer at the substrate-film interface. Hydrogen plasma treatment of a 22-nm-thick film improved its electrical properties (conductivity increased more than ten times owing to hydrogen insertion and Si structure rearrangements throughout the entire thickness of the film.

  9. Synthesis and Electronic Transport of Hydrothermally Synthesized p-Type Na-Doped SnSe

    Science.gov (United States)

    Yang, Zong-Ren; Chen, Wei-Hao; Liu, Chia-Jyi

    2016-11-01

    A series of polycrystalline Sn1-x Na x Se with x = 0.00, 0.02, 0.04 and 0.10 were fabricated using hydrothermal synthesis followed by evacuated-and-encapsulated sintering. The as-fabricated materials were characterized using powder x-ray diffraction and electronic transport. The resulting materials were single phase. Partial replacement of Na for Sn leads to a simultaneous increase of electrical conductivity and thermopower. The x = 0.04 sample has the largest power factor among the series of the samples. Upon partial replacement of Na for Sn, the power factor is significantly enhanced as compared to the undoped SnSe. The maximum ZT value of ˜0.4 was achieved for Sn0.96Na0.04Se at 550 K.

  10. Surface property modification of silicon

    Science.gov (United States)

    Danyluk, S.

    1984-01-01

    The main emphasis of this work has been to determine the wear rate of silicon in fluid environments and the parameters that influence wear. Three tests were carried out on single crystal Czochralski silicon wafers: circular and linear multiple-scratch tests in fluids by a pyramidal diamond simulated fixed-particle abrasion; microhardness and three-point bend tests were used to determine the hardness and fracture toughness of abraded silicon and the extent of damage induced by abrasion. The wear rate of (100) and (111) n and p-type single crystal Cz silicon abraded by a pyramidal diamond in ethanol, methanol, acetone and de-ionized water was determined by measuring the cross-sectional areas of grooves of the circular and linear multiple-scratch tests. The wear rate depends on the loads on the diamond and is highest for ethanol and lowest for de-ionized water. The surface morphology of the grooves showed lateral and median cracks as well as a plastically deformed region. The hardness and fracture toughness are critical parameters that influence the wear rate. Microhardness tests were conducted to determine the hardness as influenced by fluids. Median cracks and the damage zone surrounding the indentations were also related to the fluid properties.

  11. The electrical conductivity of polycrystalline metallic films

    Science.gov (United States)

    Moraga, Luis; Arenas, Claudio; Henriquez, Ricardo; Bravo, Sergio; Solis, Basilio

    2016-10-01

    We calculate the electrical conductivity of polycrystalline metallic films by means of a semi-numerical procedure that provides solutions of the Boltzmann transport equation, that are essentially exact, by summing over classical trajectories according to Chambers' method. Following Mayadas and Shatzkes (MS), grain boundaries are modeled as an array of parallel plane barriers situated perpendicularly to the direction of the current. Alternatively, according to Szczyrbowski and Schmalzbauer (SS), the model consists in a triple array of these barriers in mutual perpendicular directions. The effects of surface roughness are described by means of Fuchs' specularity parameters. Following SS, the scattering properties of grain boundaries are taken into account by means of another specularity parameter and a probability of coherent passage. The difference between the sum of these and one is the probability of diffuse scattering. When this formalism is compared with the approximate formula of Mayadas and Shatzkes (Phys. Rev. B 1, 103 (1986)) it is shown that the latter greatly overestimates the film resistivity over most values of the reflectivity of the grain boundaries. The dependence of the conductivity of thin films on the probability of coherent passage and grain diameters is examined. In accordance with MS we find that the effects of disorder in the distribution of grain diameters is quite small. Moreover, we find that it is not safe to neglect the effects of the scattering by the additional interfaces created by stacked grains. However, when compared with recent resitivity-thickness data, it is shown that all three formalisms can provide accurate fits to experiment. In addition, it is shown that, depending on the respective reflectivities and distance from a surface, some of these interfaces may increase or diminish considerably the conductivity of the sample. As an illustration of this effect, we show a tentative fit of resistivity data of gold films measured by

  12. Field effect passivation of high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aberle, A.G. (Fraunhofer-Inst. fuer Solare Energiesysteme (ISE), Freiburg (Germany)); Glunz, S. (Fraunhofer-Inst. fuer Solare Energiesysteme (ISE), Freiburg (Germany)); Warta, W. (Fraunhofer-Inst. fuer Solare Energiesysteme (ISE), Freiburg (Germany))

    1993-03-01

    In this paper effective surface recombination velocities S[sub eff] at the rear Si-SiO[sub 2] interface of the presently best one-sun silicon solar cell structure are calculated on the basis of measured oxide parameters. A new cell design is proposed allowing for a control of the surface space charge region by a gate voltage. It is shown that the electric field introduced by the positive fixed oxide charge density typically found at thermally oxidized silicon surfaces and the favorable work function difference between the gate metal aluminum and silicon leads to a reduction of S[sub eff] to values well below 1 cm/s at AM1.5 illumination for n-type as well as p-type silicon. At low illumination levels, however, oxidized n-type silicon has much better surface passivation properties than p-type silicon due to the small hole capture cross section ([sigma][sub n]/[sigma][sub p][approx]1000 at midgap). Only at small illumination intensities for p-type substrates or in the case of poor Si-SiO[sub 2] interface quality the incorporation of a gate electrode on the rear surface is a promising tool for further reducing surface recombination losses. (orig.)

  13. Silicon-on-ceramic process: silicon sheet growth and device development for the Large-Area Silicon Sheet and Cell Development Tasks of the Low-Cost Solar Array Project. Quarterly report No. 11, January 1-March 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P.W.; Zook, J.D.; Heaps, J.D.; Grung, B.L.; Koepke, B.; Schuldt, S.B.

    1979-04-30

    The purpose of the research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 12 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A dip-coating method for putting silicon on ceramic (SOC) has been shown to produce solar-cell-quality sheet silicon. This method and a continuous coating process also being investigated have excellent scale-up potential which offers an outstanding, cost-effective way to manufacture large-area solar cells. Results and accomplishments are described.

  14. Comparison of electrical characteristics of silicon solar cells

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2006-08-01

    Full Text Available Purpose: The aim of this work is comparison of the operational characteristics of photovoltaic silicon cells:monocrystalline silicon, polycrystalline silicon and amorphous silicon.Design/methodology/approach: The notion of fill factor (FF, which is characteristic for Photovoltaic quality,has been introduced to compare properties of different silicon solar cells. Basing on the indicated characteristicthe analysis of cell power efficiency has been carried out and the maximum power points PMM have beendetermined.Findings: It has been pointed out that crystal structure and surface texture affect utility properties of theinvestigated Photovoltaic Silicon Cells. Moreover, it has been stated that along with the radiation intensity growththe maximum cell power increases accompanied by its efficiency deterioration and simultaneous change of themaximum power point position, what causes and short-circuit current increase.Research limitations/implications: It has been found that the cell surface texture has an important influenceon utility properties of the photovoltaic cells, which is connected with the high refractivity of silicon. Therefore,development of the cell surface forming methods is of a significant influence on improvement of the photovoltaiccells properties.Practical implications: Currently the photovoltaic industry is based mostly on the crystalline and polycrystallinesilicon. Limitations of the utility properties resulting from the relationships presented in this paper accompanythe advantages of cells fabricated from the amorphous and polycrystalline silicon, like the low manufacturingcosts and no geometrical limitations. Analysis of the discussed relationships makes optimization of the cellparameters possible, depending on the service requirements.Originality/value: Known cells were compared as regards their conversion efficiency in various lightingconditions, depending on their design and material properties.

  15. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.

    Science.gov (United States)

    Vabbina, PhaniKiran; Choudhary, Nitin; Chowdhury, Al-Amin; Sinha, Raju; Karabiyik, Mustafa; Das, Santanu; Choi, Wonbong; Pala, Nezih

    2015-07-22

    Two dimensional (2D) Molybdenum disulfide (MoS2) has evolved as a promising material for next generation optoelectronic devices owing to its unique electrical and optical properties, such as band gap modulation, high optical absorption, and increased luminescence quantum yield. The 2D MoS2 photodetectors reported in the literature have presented low responsivity compared to silicon based photodetectors. In this study, we assembled atomically thin p-type MoS2 with graphene to form a MoS2/graphene Schottky photodetector where photo generated holes travel from graphene to MoS2 over the Schottky barrier under illumination. We found that the p-type MoS2 forms a Schottky junction with graphene with a barrier height of 139 meV, which results in high photocurrent and wide spectral range of detection with wavelength selectivity. The fabricated photodetector showed excellent photosensitivity with a maximum photo responsivity of 1.26 AW(-1) and a noise equivalent power of 7.8 × 10(-12) W/√Hz at 1440 nm.

  16. In-Situ Characterization of Potential-Induced Degradation in Crystalline Silicon Photovoltaic Modules Through Dark I–V Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Hacke, Peter; Singh, Jai Prakash; Chai, Jing; Wang, Yan; Ramakrishna, Seeram; Aberle, Armin G.; Khoo, Yong Sheng

    2017-01-01

    A temperature correction methodology for in-situ dark I-V(DIV) characterization of conventional p-type crystalline silicon photovoltaic (PV) modules undergoing potential-induced degradation (PID) is proposed.

  17. Silicon heterojunction solar cell and crystallization of amorphous silicon

    Science.gov (United States)

    Lu, Meijun

    The rapid growth of photovoltaics in the past decade brings on the soaring price and demand for crystalline silicon. Hence it becomes necessary and also profitable to develop solar cells with over 20% efficiency, using thin (˜100mum) silicon wafers. In this respect, diffused junction cells are not the best choice, since the inescapable heating in the diffusion process not only makes it hard to handle thin wafers, but also reduces carriers' bulk lifetime and impairs the crystal quality of the substrate, which could lower cell efficiency. An alternative is the heterojunction cells, such as amorphous silicon/crystalline silicon heterojunction (SHJ) solar cell, where the emitter layer can be grown at low temperature (solar cell, including the importance of intrinsic buffer layer; the discussion on the often observed anomalous "S"-shaped J-V curve (low fill factor) by using band diagram analysis; the surface passivation quality of intrinsic buffer and its relationship to the performance of front-junction SHJ cells. Although the a-Si:H is found to help to achieve high efficiency in c-Si heterojuntion solar cells, it also absorbs short wavelength (cells. Considering this, heterojunction with both a-Si:H emitter and base contact on the back side in an interdigitated pattern, i.e. interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell, is developed. This dissertation will show our progress in developing IBC-SHJ solar cells, including the structure design; device fabrication and characterization; two dimensional simulation by using simulator Sentaurus Device; some special features of IBC-SHJ solar cells; and performance of IBC-SHJ cells without and with back surface buffer layers. Another trend for solar cell industry is thin film solar cells, since they use less materials resulting in lower cost. Polycrystalline silicon (poly-Si) is one promising thin-film material. It has the potential advantages to not only retain the performance and stability of c

  18. Patterned growth of high aspect ratio silicon wire arrays at moderate temperature

    Science.gov (United States)

    Morin, Christine; Kohen, David; Tileli, Vasiliki; Faucherand, Pascal; Levis, Michel; Brioude, Arnaud; Salem, Bassem; Baron, Thierry; Perraud, Simon

    2011-04-01

    High aspect ratio silicon wire arrays with excellent pattern fidelity over wafer-scale area were grown by chemical vapor deposition at moderate temperature, using a gas mixture of silane and hydrogen chloride. An innovative two-step process was developed for in situ doping of silicon wires by diborane. This process led to high p-type doping levels, up to 10 18-10 19 cm -3, without degradation of the silicon wire array pattern fidelity.

  19. Improved transport properties of polycrystalline YBCO thin-films

    Science.gov (United States)

    Azoulay, J.; Verdyan, A.; Lapsker, I.

    1994-12-01

    Resistive evaporation technique was used to fabricate polycrystalline YBaCuO and YBaNaCuO thin films on MgO substrates. Heat treatment was carried out in a low oxygen partial pressure. Polycrystalline YBCO and Na doped YBCO thin films samples were thus obtained using the same technique and conditions. The critical current density of Na doped YBCO sample was measured to be significantly higher than that of the undoped YBCO one. The results are discussed in terms of the Na contribution to the intragrain conductivity.

  20. One-Dimensional Reaction-Diffusion Simulation of Cu Migration in Polycrystalline CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Da [Arizona State University; Akis, Richard [Arizona State University; Brinkman, Daniel [Arizona State University; Sankin, Igor [First Solar; Fang, Tian [First Solar; Vasileska, Dragica [Arizona State University; Ringhofer, Christain [Arizona State University

    2014-06-13

    In this work, we report on developing 1D reaction-diffusion solver to understand the kinetics of p-type doping formation in CdTe absorbers and to shine some light on underlying causes of metastabilities observed in CdTe PV devices. Evolution of intrinsic and Cu-related defects in CdTe solar cell has been studied in time-space domain self-consistently with free carrier transport and Poisson equation. Resulting device performance was simulated as a function of Cu diffusion anneal time showing pronounced effect the evolution of associated acceptor and donor states can cause on device characteristics. Although 1D simulation has intrinsic limitations when applied to poly-crystalline films, the results suggest strong potential of the approach in better understanding of the performance and metastabilities of CdTe photovoltaic device.

  1. Ivermectin is a nonselective inhibitor of mammalian P-type ATPases.

    Science.gov (United States)

    Pimenta, Paulo Henrique Cotrim; Silva, Claudia Lucia Martins; Noël, François

    2010-02-01

    Ivermectin is a large spectrum antiparasitic drug that is very safe at the doses actually used. However, as it is being studied for new applications that would require higher doses, we should pay attention to its effects at high concentrations. As micromolar concentrations of ivermectin have been reported to inhibit the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), we decided to investigate its putative inhibitory effect on other two important P-type ATPases, namely the Na(+) , K(+)-ATPase and H(+)/K(+)-ATPase. We first extended the data on SERCA, using preparations from rat enriched in SERCA1a (extensor digitorum longus) and 1b (heart) isoforms. Secondly, we tested the effect of ivermectin in two preparations of rat Na(+), K(+)-ATPase in order to appreciate its putative selectivity towards the alpha(1) isoform (kidney) and the alpha(2)/alpha(3) isoforms (brain), and in an H(+)/K(+)-ATPase preparation from rat stomach. Ivermectin inhibited all these ATPases with similar IC(50) values (6-17 microM). With respect to the inhibition of the Na(+), K(+)-ATPase, ivermectin acts by a mechanism different from the classical cardiac glycosides, based on selectivity towards the isoforms, sensibility to the antagonistic effect of K(+) and to ionic conditions favoring different conformations of the enzyme. We conclude that ivermectin is a nonselective inhibitor of three important mammalian P-type ATPases, which is indicative of putative important adverse effects if this drug were used at high doses. As a consequence, we propose that novel analogs of ivermectin should be developed and tested both for their parasitic activity and in vitro effects on P-type ATPases.

  2. Enhanced photovoltaic effect of ruthenium complex-modified graphene oxide with P-type conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: jj_zw_js@sina.com.cn; Bai, Huicong; Zhang, Yu; Sun, Ying; Lin, Shen; Liu, Jian; Yang, Qi; Song, Xi-Ming, E-mail: songlab@lnu.edu.cn

    2014-10-15

    A graphene oxide nanocomposite with bis(1,10-phenanthroline)(N-(2-aminoethyl)-4-(4-methyl-2,2-bipyridine-4-yl) formamide) ruthenium (Ru(phen){sub 2}(bpy-NH{sub 2})(PF{sub 6}){sub 2}), a ruthenium complex, was synthesized by amidation reaction between amino group of the ruthenium complex and carboxyl group of GO. The as-prepared Ru(II)–GO composite was characterized by infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet–visible (UV–Vis) absorption spectra, fluorescence spectra, surface photovoltage (SPV) spectrum and transient photovoltage (TPV) technology. This nanocomposite showed a typical p-type character and an enhanced photovoltaic effect at long timescale of about 3 × 10{sup −3} s compared to GO alone. A reversible rise/decay of the photocurrent in response to the on/off illumination step was also observed in a photoelectrochemical cell of the Ru(II)–GO composite. The photocurrent response of the Ru(II)–GO film was remarkably higher than that of GO film. Therefore, this Ru(II)–GO composite is believed to be a promising p-type photoelectric conversion material for further photovoltaic applications. - Highlights: • A new dye-sensitized graphene oxide nanocomposite was reported. • A photo-induced charge transfer process in this nanocomposite was confirmed. • This composite showed a typical p-type conductivity. • This composite showed an enhanced photovoltaic effect at a long timescale.

  3. Electroforming-free resistive switching memory effect in transparent p-type tin monoxide

    KAUST Repository

    Hota, M. K.

    2014-04-14

    We report reproducible low bias bipolar resistive switching behavior in p-type SnO thin film devices without extra electroforming steps. The experimental results show a stable resistance ratio of more than 100 times, switching cycling performance up to 180 cycles, and data retention of more than 103 s. The conduction mechanism varied depending on the applied voltage range and resistance state of the device. The memristive switching is shown to originate from a redox phenomenon at the Al/SnO interface, and subsequent formation/rupture of conducting filaments in the bulk of the SnO layer, likely involving oxygen vacancies and Sn interstitials.

  4. Does p-type ohmic contact exist in WSe2-metal interfaces?

    Science.gov (United States)

    Wang, Yangyang; Yang, Ruo Xi; Quhe, Ruge; Zhong, Hongxia; Cong, Linxiao; Ye, Meng; Ni, Zeyuan; Song, Zhigang; Yang, Jinbo; Shi, Junjie; Li, Ju; Lu, Jing

    2015-12-01

    Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for the selection of favorable metal electrodes in ML/BL WSe2 devices.Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for

  5. Initial results from 3D-DDTC detectors on p-type substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zoboli, A., E-mail: zoboli@disi.unitn.i [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38100 Povo di Trento (Italy); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38100 Povo di Trento (Italy); Bosisio, L. [Dipartimento di Fisica, Universita di Trieste, and INFN, Sezione di Trieste, Via A. Valerio, 2, I-34127 Trieste (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38100 Povo di Trento (Italy); Piemonte, C.; Ronchin, S.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38100 Povo di Trento (Italy)

    2010-01-11

    Owing to their superior radiation hardness compared to planar detectors, 3D detectors are one of the most promising technologies for the LHC upgrade foreseen in 2017. Fondazione Bruno Kessler has developed 3D Double-side Double-Type Column (3D-DDTC) detectors providing a technological simplifications with respect to a standard 3D process while aiming at comparable detector performance. We present selected results from the electrical characterization of 3D-DDTC structures from the second batch made on p-type substrates, supported also by TCAD simulations.

  6. Structure and mechanism of Zn2+-transporting P-type ATPases

    DEFF Research Database (Denmark)

    Wang, Kaituo; Sitsel, Oleg; Meloni, Gabriele

    2014-01-01

    Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis1. In prokaryotes and photosynthetic eukaryotes, Zn2+-transporting P-type ATPases of class IB (Znt....... The structures reveal a similar fold to Cu+-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn2+ ions by the transporter. The E2P structure...

  7. Ferromagnetic-resonance induced electromotive forces in Ni81Fe19 | p-type diamond

    Science.gov (United States)

    Fukui, Naoki; Morishita, Hiroki; Kobayashi, Satoshi; Miwa, Shinji; Mizuochi, Norikazu; Suzuki, Yoshishige

    2016-10-01

    We report on direct-current (DC) electromotive forces (emfs) in a nickel-iron alloy (Ni81 Fe19) | p-type diamond under the ferromagnetic resonance of the Ni81Fe19 layer at room temperature. The observed DC emfs take its maximum around the ferromagnetic resonant frequency of the Ni81Fe19, and their signs are reversed by reversing the direction of an externally-applied magnetic field; it shows that the observed DC emfs are spin-related emfs.

  8. Methods for enhancing P-type doping in III-V semiconductor films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Feng; Stringfellow, Gerald; Zhu, Junyi

    2017-08-01

    Methods of doping a semiconductor film are provided. The methods comprise epitaxially growing the III-V semiconductor film in the presence of a dopant, a surfactant capable of acting as an electron reservoir, and hydrogen, under conditions that promote the formation of a III-V semiconductor film doped with the p-type dopant. In some embodiments of the methods, the epitaxial growth of the doped III-V semiconductor film is initiated at a first hydrogen partial pressure which is increased to a second hydrogen partial pressure during the epitaxial growth process.

  9. P-Type Doping of GaN by Mg+ Implantation

    Institute of Scientific and Technical Information of China (English)

    YAO Shu-De; ZHAO Qiang; ZHOU Sheng-Qiang; YANG Zi-Jian; LU Yi-Hong; SUN Chang-Chun; SUN Chang; ZHANG Guo-Yi; VANTOMME Andre; PIPELEERS Bert

    2003-01-01

    Mg+ and Mg++P+ were introduced into GaN by ion implantation. The structure and crystalline quality of the GaN samples were analysed by Rutherford backscattering and channelling spectrometry before (xmin = 1.6%) and after implantation (Xmin = 4.1%). X-ray diffraction reveals the existence of implantation-induced damage in the case of post-implantation followed by rapid thermal annealing. The resistivity, average factor, carrier concentration and carrier mobility were measured by the Hall effect. The transformation from n-type to p-type for GaN was observed.

  10. Transient expression of P-type ATPases in tobacco epidermal cells

    DEFF Research Database (Denmark)

    Pedas, Lisbeth Rosager; Palmgren, Michael Broberg; Lopez Marques, Rosa Laura

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellular...... for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits....

  11. Above bandgap luminescence of p-type GaAs epitaxial layers

    Science.gov (United States)

    Sapriel, J.; Chavignon, J.; Alexandre, F.; Azoulay, R.; Sermage, B.; Rao, K.; Voos, M.

    1991-08-01

    New photoluminescence bands are observed in p-type GaAs epitaxial layers at 300 and 80 K, above the bandgap. These bands are independent of the nature of the dopant (Zn, Be, C) and of the growth technique (MBE or MOCVD). Their intensities increase as a function of the p doping (1 × 10 17 < p < 2 × 10 20cm-3) and peak at energies which correspond to transitions between the Γ 6, L 6 and X 6 minima of the conduction band and the Γ 8 and Γ 7 maxima of the valence band.

  12. Optical properties of ZnO nanowire arrays electrodeposited on n- and p-type Si(1 1 1): Effects of thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Lupan, O., E-mail: oleg-lupan@chimie-paristech.fr [Laboratoire d' Electrochimie, Chimie des Interfaces et Modelisation pour l' Energie (LECIME), UMR 7575 CNRS, Chimie ParisTech, 11 rue P. et M. Curie, 75231 Paris (France); Pauporte, Th., E-mail: thierry-pauporte@chimie-paristech.fr [Laboratoire d' Electrochimie, Chimie des Interfaces et Modelisation pour l' Energie (LECIME), UMR 7575 CNRS, Chimie ParisTech, 11 rue P. et M. Curie, 75231 Paris (France); Tiginyanu, I.M.; Ursaki, V.V. [Institute of Electronic Engineering and Nanotechnologies, Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau MD-2028 (Moldova, Republic of); Heinrich, H.; Chow, L. [Department of Physics, University of Central Florida, PO Box 162385 Orlando, FL 32816-2385 (United States)

    2011-09-25

    Highlights: > A new template-free electrochemical deposition method for the synthesis of ZnO nanorods/nanowires directly on n- and p-type silicon (Si) substrates. > Improved structural, electrical and optical properties of the ZnO nanowires/p-Si (1 1 1) heterojunction have been demonstrated. > Photodetectors have been fabricated based on the n-ZnO nanowires/p-Si heterojunction obtained by electrodeposition. - Abstract: Electrodeposition is a low temperature and low cost growth method of high quality nanostructured active materials for optoelectronic devices. We report the electrochemical preparation of ZnO nanorod/nanowire arrays on n-Si(1 1 1) and p-Si(1 1 1). The effects of thermal annealing and type of substrates on the optical properties of ZnO nanowires electroplated on silicon (1 1 1) substrate are reported. We fabricated ZnO nanowires/p-Si structure that exhibits a strong UV photoluminescence emission and a negligible visible emission. This UV photoluminescence emission proves to be strongly influenced by the thermal annealing at 150-800 deg. C. Photo-detectors have been fabricated based on the ZnO nanowires/p-Si heterojunction.

  13. Angular-Dependent EDMR Linewidth for Spin-Dependent Space-Charge-Limited Conduction in a Polycrystalline Pentacene

    Directory of Open Access Journals (Sweden)

    Kunito Fukuda

    2017-08-01

    Full Text Available Spin-dependent space-charge-limited carrier conduction in a Schottky barrier diode using polycrystalline p-type π-conjugated molecular pentacene is explored using multiple-frequency electrically detected magnetic resonance (EDMR spectroscopy with a variable-angle configuration. The measured EDMR spectra are decomposed into two components derived, respectively, from mobile and trapped positive polarons. The linewidth of the EDMR signal for the trapped polarons increases with increasing resonance magnetic field for an in-plane configuration where the normal vector of the device substrate is perpendicular to the resonance magnetic field, while it is independent of the field for an out-of-plane configuration. This difference is consistent with the pentacene arrangement on the device substrate, where pentacene molecules exhibit a uniaxial orientation on the out-of-substrate plane. By contrast, the mobile polarons do not show anisotropic behavior with respect to the resonance magnetic field, indicating that the anisotropic effect is averaged out owing to carrier motion. These results suggest that the orientational arrangements of polycrystalline pentacene molecules in a nano thin film play a crucial role in spin-dependent electrical conduction.

  14. High-field EPR spectroscopy of thermal donors in silicon

    DEFF Research Database (Denmark)

    Dirksen, R.; Rasmussen, F.B.; Gregorkiewicz, T.

    1997-01-01

    Thermal donors generated in p-type boron-doped Czochralski-grown silicon by a 450 degrees C heat treatment have been studied by high-field magnetic resonance spectroscopy. In the experiments conducted at a microwave frequency of 140 GHz and in a magnetic field of approximately 5 T four individual...

  15. Porous silicon localization for implementation in matrix biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, A. [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, BP 163-69131 Ecully Cedex (France) and Kyiv Taras Shevchenko National University, 64 Volodymyrska, 01033 Kiev (Ukraine)]. E-mail: arthur@univ.kiev.ua; Cabrera, M. [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, BP 163-69131 Ecully Cedex (France); Skryshevsky, V. [Kyiv Taras Shevchenko National University, 64 Volodymyrska, 01033 Kiev (Ukraine); Martin, J.-R. [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, BP 163-69131 Ecully Cedex (France)

    2007-05-15

    The search of appropriate substrates and methods of surface DNA functionalisation is one of the important tasks of semiconductor biosensors. In this work we develop a method of light-assisted porous silicon etching in order to localize porous silicon spots on silicon substrate for matrix fluorophore-labeled DNA sensors implementation. The principal difference of porous spots localization proposed is considered for n- and p-type Si substrates under the condition of supplementary illumination. The tuning of the porous profile via applying of lateral electric field is proposed and experimentally proved.

  16. Review. Industrial silicon wafer solar cells. Status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Aberle, Armin G.; Boreland, Matthew B.; Hoex, Bram; Mueller, Thomas [National Univ. of Singapore (Singapore). Solar Energy Research Institute of Singapore (SERIS)

    2012-11-01

    Crystalline silicon solar cells dominate today's global photovoltaic (PV) market. This paper presents the status and trends of the most important industrial silicon wafer solar cells, ranging from standard p-type homojunction cells to heterojunction cells on n-type wafers. Owing to ongoing technological innovations such as improved surface passivation and the use of increasingly thinner wafers, the trend towards higher cell efficiencies and lower dollar/watt costs is expected to continue during the next 10 years, making silicon wafer based PV modules a moving target for any competing PV technology. (orig.)

  17. SUBSTRATE MATERIALS FOR POLY-CSiTF SOLAR CELLS:OPTIMIZATION OF SILICON SHEET FROM POWDER

    Institute of Scientific and Technical Information of China (English)

    Q. Ban; H. Shen; X.J. Wang; X.W. Zou; Z.C. Liang

    2005-01-01

    The optimization of silicon sheet from powder (SSP) technology as polycrystalline silicon thin film (poly-CSiTF) solar cells' substrate materials is studied by orthogonal design experimental method. Based on technological optimization of SSP prepared from electronic grade silicon powder, SSP solar cell devices with simple structure are prepared and the effect of SSP substrate is discussed. Up to now, the conversion efficiency of the prepared solar cells on low purity SSP substrate with fundamental structure has reached 8.25% (with area of 1 cm×1 cm).

  18. Fully-depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen E.; Groom, Donald E.; Palaio, Nick P.; Stover, Richard J.; Wei, Mingzhi

    2002-03-28

    Charge-coupled devices (CCD's) have been fabricated on high-resistivity silicon. The resistivity, on the order of 10,000 {Omega}-cm, allows for depletion depths of several hundred microns. Fully-depleted, back-illuminated operation is achieved by the application of a bias voltage to a ohmic contact on the wafer back side consisting of a thin in-situ doped polycrystalline silicon layer capped by indium tin oxide and silicon dioxide. This thin contact allows for good short wavelength response, while the relatively large depleted thickness results in good near-infrared response.

  19. A P-type ATPase importer that discriminates between essential and toxic transition metals.

    Science.gov (United States)

    Lewinson, Oded; Lee, Allen T; Rees, Douglas C

    2009-03-24

    Transition metals, although being essential cofactors in many physiological processes, are toxic at elevated concentrations. Among the membrane-embedded transport proteins that maintain appropriate intracellular levels of transition metals are ATP-driven pumps belonging to the P-type ATPase superfamily. These metal transporters may be differentiated according to their substrate specificities, where the majority of pumps can extrude either silver and copper or zinc, cadmium, and lead. In the present report, we have established the substrate specificities of nine previously uncharacterized prokaryotic transition-metal P-type ATPases. We find that all of the newly identified exporters indeed fall into one of the two above-mentioned categories. In addition to these exporters, one importer, Pseudomonas aeruginosa Q9I147, was also identified. This protein, designated HmtA (heavy metal transporter A), exhibited a different substrate recognition profile from the exporters. In vivo metal susceptibility assays, intracellular metal measurements, and transport experiments all suggest that HmtA mediates the uptake of copper and zinc but not of silver, mercury, or cadmium. The substrate selectivity of this importer ensures the high-affinity uptake of essential metals, while avoiding intracellular contamination by their toxic counterparts.

  20. Thermal oxidation of Ni films for p-type thin-film transistors

    KAUST Repository

    Jiang, Jie

    2013-01-01

    p-Type nanocrystal NiO-based thin-film transistors (TFTs) are fabricated by simply oxidizing thin Ni films at temperatures as low as 400 °C. The highest field-effect mobility in a linear region and the current on-off ratio are found to be 5.2 cm2 V-1 s-1 and 2.2 × 103, respectively. X-ray diffraction, transmission electron microscopy and electrical performances of the TFTs with "top contact" and "bottom contact" channels suggest that the upper parts of the Ni films are clearly oxidized. In contrast, the lower parts in contact with the gate dielectric are partially oxidized to form a quasi-discontinuous Ni layer, which does not fully shield the gate electric field, but still conduct the source and drain current. This simple method for producing p-type TFTs may be promising for the next-generation oxide-based electronic applications. © 2013 the Owner Societies.

  1. Analysis of carrier concentration, lifetime, and electron mobility on p-type HgCdTe

    Science.gov (United States)

    Yoo, Sang Dong; Kwack, Kae Dal

    1998-03-01

    Minority carrier transport characteristics of vacancy-doped p-type HgCdTe such as carrier concentration, lifetime, and mobility are investigated. In the calculation of the carrier concentration two acceptor levels—a donor level and a trap level—were taken into account. The acceptor levels have been described by two models—two independent singly ionized levels and a divalent level with two ionization energies. When each model was examined by calculating electron mobility as a function of temperature, the latter was found to be more accurate. Electron mobility as a function of majority carrier concentration was also presented for both n-type and p-type HgCdTe with 0.225 Cd mole fraction. Steady state electron lifetime was computed assuming the acceptor levels and the trap level would act as Schokley-Read-Hall type recombination centers. The calculated results using the divalent acceptor model were in good agreement with the experimental data.

  2. Synthesis and characterization of p-type boron-doped IIb diamond large single crystals

    Institute of Scientific and Technical Information of China (English)

    Li Shang-Sheng; Ma Hong-An; Li Xiao-Lei; Su Tai-Chao; Huang Guo-Feng; Li Yong; Jia Xiao-Peng

    2011-01-01

    High-quality p-type boron-doped II0b diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively. The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique. The electrical properties including resistivities, Hall coefficients, Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method. The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized. With the increase of quantity of additive boron, some high-index crystal faces such as {113} gradually disappear, and some stripes and triangle pits occur on the crystal surface. This work is helpful for the further research and application of boron-doped semiconductor diamond.

  3. EEG/MEG forward simulation through h- and p-type finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Pursiainen, S [Institute of Mathematics, Box 1100, FI-02015 Helsinki University of Technology (Finland)], E-mail: sampsa.pursiainen@tkk.fi

    2008-07-15

    Electro/Magnetoencephalography (EEG/MEG) is a non-invasive imaging modality, in which a primary current density generated by the neural activity in the brain is to be reconstructed from external electric potential/magnetic field measurements. This work focuses on effective and accurate simulation of the EEG/MEG forward model through the h- and p-versions of the finite element method (h- and p-FEM). The goal is to compare the effectiveness of these two versions in forward simulation. Both h- and p-type forward simulations are described and implemented, and the technical solutions found are discussed. These include, for example, suitable ways to generate a finite element mesh for a real head geometry through the use of different element types. Performances of the two implemented forward simulation types are compared by measuring directly the forward modeling error, as well as by computing reconstructions through a regularized FOCUSS (FOCal Underdetermined System Solver) algorithm. The results obtained suggest that the p-type performs better in terms of the forward modeling error. However, both types perform well in regularized FOCUSS reconstruction.

  4. Wide band gap p-type windows by CBD and SILAR methods

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Goncalves, E.; Ennaoui, A.; Lux-Steiner, M.Ch

    2004-03-22

    Chemical deposition methods, namely, chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) have been used to deposit wide band gap p-type CuI and CuSCN thin films at room temperature (25 deg. C) in aqueous medium. Growth of these films requires the use of Cu (I) cations as a copper ions source. This is achieved by complexing Cu (II) ions using Na{sub 2}S{sub 2}O{sub 3}. The anion sources are either KI as iodine or KSCN as thiocyanide ions for CuI and CuSCN films, respectively. The preparative parameters are optimized with the aim to use these p-type materials as windows for solar cells. Different substrates are used, namely: glass, fluorine doped tin oxide coated glass and CuInS{sub 2} (CIS). X-ray diffraction, scanning electron microscopy, atomic force microscopy and optical absorption spectroscopy are used for structural, surface morphological and optical studies, and the results are discussed.

  5. Carrier induced local moment magnetization in p-type Sn1-xMnxTe

    Science.gov (United States)

    Behera, Sashi S.; Tripathi, Pratibha; Nayak, Sanjeev K.; Tripathi, Gouri S.

    2017-08-01

    We derive a theory of carrier induced local moment magnetization of p-type Sn1-xMnxTe based on the Hubbard model, k → · π → electronic structure method (k → is the electronic wave vector and π → is the relativistic momentum operator) and the statistical paramagnetic approach for the localized moments. The Hubbard model is used to derive an internal exchange magnetic field. The difference in exchange self-energy is expressed in terms of an internal exchange field that is proportional to the parameter U, the onsite Coulomb repulsion, and the spin-density of carriers. In the present theory, the k → · π → + U model is integrated with the statistical paramagnetic theory for localized spins, which is then solved in a self-consistent manner by adding the exchange field to the applied field. The technique is applied to study the magnetic properties of p-type Sn1-xMnxTe, an important material for spintronics devices. The local moment magnetization calculated using the total magnetic field self-consistently agrees with the experimental observations. Magnetization and the exchange field studied as functions of the applied field, temperature and carrier concentration yield results on expected lines. Ours is a mechanism that is different from the RKKY interaction, normally invoked for carrier induced ferromagnetism and is thus a novelty.

  6. Anabaena sp. DyP-type peroxidase is a tetramer consisting of two asymmetric dimers.

    Science.gov (United States)

    Yoshida, Toru; Ogola, Henry Joseph Oduor; Amano, Yoshimi; Hisabori, Toru; Ashida, Hiroyuki; Sawa, Yoshihiro; Tsuge, Hideaki; Sugano, Yasushi

    2016-01-01

    DyP-type peroxidases are a newly discovered family of heme peroxidases distributed from prokaryotes to eukaryotes. Recently, using a structure-based sequence alignment, we proposed the new classes, P, I and V, as substitutes for classes A, B, C, and D [Arch Biochem Biophys 2015;574:49-55]. Although many class V enzymes from eukaryotes have been characterized, only two from prokaryotes have been reported. Here, we show the crystal structure of one of these two enzymes, Anabaena sp. DyP-type peroxidase (AnaPX). AnaPX is tetramer formed from Cys224-Cys224 disulfide-linked dimers. The tetramer of wild-type AnaPX was stable at all salt concentrations tested. In contrast, the C224A mutant showed salt concentration-dependent oligomeric states: in 600 mM NaCl, it maintained a tetrameric structure, whereas in the absence of salt, it dissociated into monomers, leading to a reduction in thermostability. Although the tetramer exhibits non-crystallographic, 2-fold symmetry in the asymmetric unit, two subunits forming the Cys224-Cys224 disulfide-linked dimer are related by 165° rotation. This asymmetry creates an opening to cavities facing the inside of the tetramer, providing a pathway for hydrogen peroxide access. Finally, a phylogenetic analysis using structure-based sequence alignments showed that class V enzymes from prokaryotes, including AnaPX, are phylogenetically closely related to class V enzymes from eukaryotes.

  7. Valence band states in Si-based p-type delta-doped field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Orozco, J C; Vlaev, Stoyan J, E-mail: jcmover@correo.unam.m [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico)

    2009-05-01

    We present tight-binding calculations of the hole level structure of delta-doped Field Effect Transistor in a Si matrix within the first neighbors sp{sup 3}s* semi-empirical tight-binding model including spin. We employ analytical expressions for Schottky barrier potential and the p-type delta-doped well based on a Thomas-Fermi approximation, we consider these potentials as external ones, so in the computations they are added to the diagonal terms of the tight-binding Hamiltonian, by this way we have the possibility to study the energy levels behavior as we vary the backbone parameters in the system: the two-dimensional impurity density (p{sub 2d}) of the p-type delta-doped well and the contact voltage (V{sub c}). The aim of this calculation is to demonstrate that the tight-binding approximation is suitable for device characterization that permits us to propose optimal values for the input parameters involved in the device design.

  8. Atomic layer deposition of undoped TiO2 exhibiting p-type conductivity.

    Science.gov (United States)

    Iancu, Andrei T; Logar, Manca; Park, Joonsuk; Prinz, Fritz B

    2015-03-11

    With prominent photocatalytic applications and widespread use in semiconductor devices, TiO2 is one of the most popular metal oxides. However, despite its popularity, it has yet to achieve its full potential due to a lack of effective methods for achieving p-type conductivity. Here, we show that undoped p-type TiO2 films can be fabricated by atomic layer deposition (ALD) and that their electrical properties can be controlled across a wide range using proper postprocessing anneals in various ambient environments. Hole mobilities larger than 400 cm(2)/(V·s) are accessible superseding the use of extrinsic doping, which generally produces orders of magnitude smaller values. Through a combination of analyses and experiments, we provide evidence that this behavior is primarily due to an excess of oxygen in the films. This discovery enables entirely new categories of TiO2 devices and applications, and unlocks the potential to improve existing ones. TiO2 homojunction diodes fabricated completely by ALD are developed as a demonstration of the utility of these techniques and shown to exhibit useful rectifying characteristics even with minimal processing refinement.

  9. Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films.

    Science.gov (United States)

    Hu, Youfan; Zhang, Yan; Lin, Long; Ding, Yong; Zhu, Guang; Wang, Zhong Lin

    2012-07-11

    We present that the electroluminescence (EL) properties of Mg-doped p-type GaN thin films can be tuned by the piezo-phototronic effect via adjusting the minority carrier injection efficiency at the metal-semiconductor (M-S) interface by strain induced polarization charges. The device is a metal-semiconductor-metal structure of indium tin oxide (ITO)-GaN-ITO. Under different straining conditions, the changing trend of the transport properties of GaN films can be divided into two types, corresponding to the different c-axis orientations of the films. An extreme value was observed for the integral EL intensity under certain applied strain due to the adjusted minority carrier injection efficiency by piezoelectric charges introduced at the M-S interface. The external quantum efficiency of the blue EL at 430 nm was changed by 5.84% under different straining conditions, which is 1 order of magnitude larger than the change of the green peak at 540 nm. The results indicate that the piezo-phototronic effect has a larger impact on the shallow acceptor states related EL process than on the one related to the deep acceptor states in p-type GaN films. This study has great significance on the practical applications of GaN in optoelectronic devices under a working environment where mechanical deformation is unavoidable such as for flexible/printable light emitting diodes.

  10. Effect of temperature and silicon resistivity on the elaboration of silicon nanowires by electroless etching

    Energy Technology Data Exchange (ETDEWEB)

    Fellahi, Ouarda, E-mail: fellahi_warda@yahoo.fr [Silicon Technology Development Unit, 02 Bd Frantz Fanon, BP 140 Alger-7 Merveilles, Algiers (Algeria); Hadjersi, Toufik [Silicon Technology Development Unit, 02 Bd Frantz Fanon, BP 140 Alger-7 Merveilles, Algiers (Algeria); Maamache, Mustapha [Laboratoire de Physique Quantique et Systemes Dynamiques, Universite Ferhat Abbas de Setif (Algeria); Bouanik, Sihem; Manseri, Amar [Silicon Technology Development Unit, 02 Bd Frantz Fanon, BP 140 Alger-7 Merveilles, Algiers (Algeria)

    2010-11-01

    The morphology of silicon nanowire (SiNW) layers formed by Ag-assisted electroless etching in HF/H{sub 2}O{sub 2} solution was studied. Prior to the etching, the Ag nanoparticles were deposited on p-type Si(1 0 0) wafers by electroless metal deposition (EMD) in HF/AgNO{sub 3} solution at room temperature. The effect of etching temperature and silicon resistivity on the formation process of nanowires was studied. The secondary ion mass spectra (SIMS) technique is used to study the penetration of silver in the etched layers. The morphology of etched layers was investigated by scanning electron microscope (SEM).

  11. Silicon Spintronics

    NARCIS (Netherlands)

    Jansen, R.

    2008-01-01

    Integration of magnetism and mainstream semiconductor electronics could impact information technology in ways beyond imagination. A pivotal step is implementation of spin-based electronic functionality in silicon devices. Remarkable progress made during the last two years gives confidence that this

  12. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities.

    Science.gov (United States)

    Odobel, Fabrice; Le Pleux, Loïc; Pellegrin, Yann; Blart, Errol

    2010-08-17

    Because solar energy is the most abundant renewable energy resource, the clear connection between human activity and global warming has strengthened the interest in photovoltaic science. Dye-sensitized solar cells (DSSCs) provide a promising low-cost technology for harnessing this energy source. Until recently, much of the research surrounding DSSCs had been focused on the sensitization of n-type semiconductors, such as titanium dioxide (Gratzel cells). In an n-type dye-sensitized solar cell (n-DSSC), an electron is injected into the conduction band of an n-type semiconductor (n-SC) from the excited state of the sensitizer. Comparatively few studies have examined the sensitization of wide bandgap p-type semiconductors. In a p-type DSSC (p-DSSC), the photoexcited sensitizer is reductively quenched by hole injection into the valence band of a p-type semiconductor (p-SC). The study of p-DSSCs is important both to understand the factors that control the rate of hole photoinjection and to aid the rational design of efficient p-DSSCs. In theory, p-DSSCs should be able to work as efficiently as n-DSSCs. In addition, this research provides a method for preparing tandem DSSCs consisting of a TiO(2)-photosensitized anode and a photosensitized p-type SC as a cathode. Tandem DSSCs are particularly important because they represent low-cost photovoltaic devices whose photoconversion efficiencies could exceed 15%. This Account describes recent research results on p-DSSCs. Because these photoelectrochemical devices are the mirror images of conventional n-DSSCs, they share some structural similarities, but they use different materials and have different charge transfer kinetics. In this technology, nickel oxide is the predominant p-SC material used, but much higher photoconversion efficiencies could be achieved with new p-SCs materials with deeper valence band potential. Currently, iodide/triiodide is the main redox mediator of electron transport within these devices, but we expect

  13. Surface morphology and impurity distribution of electron beam recrystallized silicon films on low cost substrates for solar cell absorber

    Institute of Scientific and Technical Information of China (English)

    FU Li; GROMBALL F; MüLLER J

    2006-01-01

    A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, thecapping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification.

  14. Anomalous photoelectric effect of a polycrystalline topological insulator film.

    Science.gov (United States)

    Zhang, Hongbin; Yao, Jiandong; Shao, Jianmei; Li, Hai; Li, Shuwei; Bao, Dinghua; Wang, Chengxin; Yang, Guowei

    2014-07-29

    A topological insulator represents a new state of quantum matter that possesses an insulating bulk band gap as well as a spin-momentum-locked Dirac cone on the surface that is protected by time-reversal symmetry. Photon-dressed surface states and light-induced surface photocurrents have been observed in topological insulators. Here, we report experimental observations of an anomalous photoelectric effect in thin films of Bi2Te3, a polycrystalline topological insulator. Under illumination with non-polarised light, transport measurements reveal that the resistance of the topological surface states suddenly increases when the polycrystalline film is illuminated. The resistance variation is positively dependent on the light intensity but has no relation to the applied electric field; this finding can be attributed to the gap opening of the surface Dirac cone. This observation of an anomalous photoelectric effect in polycrystalline topological insulators offers exciting opportunities for the creation of photodetectors with an unusually broad spectral range. Moreover, polycrystalline topological insulator films provide an attractive material platform for exploring the nature and practical application of topological insulators.

  15. The decoration of vicinal copper polycrystalline surface by Antimony

    CSIR Research Space (South Africa)

    Ndlovu, GF

    2011-07-01

    Full Text Available An Ultra-high Vacuum Variable Temperature Scanning Tunnelling Microscope was used to study the growth mechanism of Antimony on vicinal Cu polycrystalline samples. The STM data after deposition of 0.3 ML Sb at 300°C showed localization of Sb atoms...

  16. Mechanical properties of monocrystalline and polycrystalline monolayer black phosphorus

    Science.gov (United States)

    Cao, Pinqiang; Wu, Jianyang; Zhang, Zhisen; Ning, Fulong

    2017-01-01

    The mechanical properties of monocrystalline and polycrystalline monolayer black phosphorus (MBP) are systematically investigated using classic molecular dynamic simulations. For monocrystalline MBP, it is found that the shear strain rate, sample dimensions, temperature, atomic vacancies and applied statistical ensemble affect the shear behaviour. The wrinkled morphology is closely connected with the direction of the in-plane shear, dimensions of the samples, and applied ensembles. Particularly, small samples subjected to loading/unloading of the shear deformation along the armchair direction demonstrate a clear mechanical hysteresis loop. For polycrystalline MBP, the maximum shear stress as a function of the average grain size follows an inverse pseudo Hall-Petch type relationship under an isothermal-isobaric (NPT) ensemble, whereas under a canonical (NVT) ensemble, the maximum shear stress of polycrystalline MBP exhibits a ‘flipped’ behaviour. Furthermore, polycrystalline MBP subjected to uniaxial tension also exhibits a strongly grain size-dependent mechanical response, and it can fail by brittle intergranular and transgranular fractures because of its weaker grain boundary structures and the direction-dependent edge energy, respectively. These findings provide useful insight into the mechanical design of BP for nanoelectronic devices.

  17. System of polarization correlometry of biological liquids layers polycrystalline structure

    Science.gov (United States)

    Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Angelsky, P. O.; Bodnar, N. B.; Oleinichenko, B. P.; Bizer, L. I.

    2013-09-01

    A model of generalized optical anisotropy of human bile is suggested and a method of polarimetric of the module and phase Fourier of the image of the field of laser radiation is analytically substantiated, that is generated by the mechanisms of linear and circular birefringence of polycrystalline networks with a diagnosis and differentiation of cholelithiasis against a background of chronic cholecystitis.

  18. Radiation-hard polycrystalline mercuric iodide semiconductor particle counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ., Jerusalem (Israel)]|[Sandia National Laboratories, Livermore Ca 94556 (United States); Zuck, A.; Melekhov, L.; Nissenbaum, J. [Hebrew Univ., Jerusalem (Israel); Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L. [LEPSI (ULP/IN2P3), Strasbourg (France)

    1998-06-01

    Mercuric iodide polycrystalline radiation detectors, which can act as nuclear particle counters and for large area imaging devices, have been fabricated using three different methods. Response to X- and gamma rays, beta particles and to 100GeV muons, as well as radiation hardness results are briefly described. (orig.) 8 refs.

  19. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    Science.gov (United States)

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  20. Gate tunable graphene-silicon Ohmic/Schottky contacts

    Science.gov (United States)

    Chen, Chun-Chung; Chang, Chia-Chi; Li, Zhen; Levi, A. F. J.; Cronin, Stephen B.

    2012-11-01

    We show that the I-V characteristics of graphene-silicon junctions can be actively tuned from rectifying to Ohmic behavior by electrostatically doping the graphene with a polymer electrolyte gate. Under zero applied gate voltage, we observe rectifying I-V characteristics, demonstrating the formation of a Schottky junction at the graphene-silicon interface. Through appropriate gating, the Fermi energy of the graphene can be varied to match the conduction or valence band of silicon, thus forming Ohmic contacts with both n- and p-type silicon. Over the applied gate voltage range, the low bias conductance can be varied by more than three orders of magnitude. By varying the top gate voltage from -4 to +4 V, the Fermi energy of the graphene is shifted between -3.78 and -5.47 eV; a shift of ±0.85 eV from the charge neutrality point. Since the conduction and valence bands of the underlying silicon substrate lie within this range, at -4.01 and -5.13 eV, the Schottky barrier height and depletion width can be decreased to zero for both n- and p-type silicon under the appropriate top gating conditions. I-V characteristics taken under illumination show that the photo-induced current can be increased or decreased based on the graphene-silicon work function difference.