WorldWideScience

Sample records for p-type gaas metal-oxide-semiconductor

  1. Charge storage properties of InP quantum dots in GaAs metal-oxide-semiconductor based nonvolatile flash memory devices

    Science.gov (United States)

    Kundu, Souvik; Halder, Nripendra N.; Biswas, Pranab; Biswas, D.; Banerji, P.; Mukherjee, Rabibrata; Chakraborty, S.

    2012-11-01

    Metal organic vapor phase epitaxially grown 5 nm InP quantum dots (QDs) were embedded as charge storage elements between high-k control and tunneling dielectric layers in GaAs metal-oxide-semiconductor based nonvolatile memory devices. The QDs trap more electrons resulting in a large memory window (6.3 V) along with low leakage due to Coulomb blockade effect. 16.5% charge loss was found even after 105 s indicating its good charge storing potential. The programming and erasing operations were discussed with proposed band diagram.

  2. Impact of mechanical stress on gate tunneling currents of germanium and silicon p-type metal-oxide-semiconductor field-effect transistors and metal gate work function

    Science.gov (United States)

    Choi, Youn Sung; Numata, Toshinori; Nishida, Toshikazu; Harris, Rusty; Thompson, Scott E.

    2008-03-01

    Uniaxial four-point wafer bending stress-altered gate tunneling currents are measured for germanium (Ge)/silicon (Si) channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with HfO2/SiO2 gate dielectrics and TiN/P+ poly Si electrodes. Carrier separation is used to measure electron and hole currents. The strain-altered hole tunneling current from the p-type inversion layer of Ge is measured to be ˜4 times larger than that for the Si channel MOSFET, since the larger strain-induced valence band-edge splitting in Ge results in more hole repopulation into a subband with a smaller out-of-plane effective mass and a lower tunneling barrier height. The strain-altered electron tunneling current from the metal gate is measured and shown to change due to strain altering the metal work function as quantified by flatband voltage shift measurements of Si MOS capacitors with TaN electrodes.

  3. Effects of Y incorporation in TaON gate dielectric on electrical performance of GaAs metal-oxide-semiconductor capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li Ning; Choi, Hoi Wai; Lai, Pui To [Department of Electrical and Electronic Engineering, The University of Hong Kong (China); Xu, Jing Ping [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China)

    2016-09-15

    In this study, GaAs metal-oxide-semiconductor (MOS) capacitors using Y-incorporated TaON as gate dielectric have been investigated. Experimental results show that the sample with a Y/(Y + Ta) atomic ratio of 27.6% exhibits the best device characteristics: high k value (22.9), low interfacestate density (9.0 x 10{sup 11} cm{sup -2} eV{sup -1}), small flatband voltage (1.05 V), small frequency dispersion and low gate leakage current (1.3 x 10{sup -5}A/cm{sup 2} at V{sub fb} + 1 V). These merits should be attributed to the complementary properties of Y{sub 2}O{sub 3} and Ta{sub 2}O{sub 5}:Y can effectively passivate the large amount of oxygen vacancies in Ta{sub 2}O{sub 5}, while the positively-charged oxygen vacancies in Ta{sub 2}O{sub 5} are capable of neutralizing the effects of the negative oxide charges in Y{sub 2}O{sub 3}. This work demonstrates that an appropriate doping of Y content in TaON gate dielectric can effectively improve the electrical performance for GaAs MOS devices. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. GaAs metal-oxide-semiconductor based non-volatile flash memory devices with InAs quantum dots as charge storage nodes

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Sk Masiul, E-mail: masiulelt@gmail.com; Chowdhury, Sisir; Sarkar, Krishnendu; Nagabhushan, B.; Banerji, P. [Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Chakraborty, S. [Applied Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Sector-I, Kolkata 700 064 (India); Mukherjee, Rabibrata [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-06-24

    Ultra-thin InP passivated GaAs metal-oxide-semiconductor based non-volatile flash memory devices were fabricated using InAs quantum dots (QDs) as charge storing elements by metal organic chemical vapor deposition technique to study the efficacy of the QDs as charge storage elements. The grown QDs were embedded between two high-k dielectric such as HfO{sub 2} and ZrO{sub 2}, which were used for tunneling and control oxide layers, respectively. The size and density of the QDs were found to be 5 nm and 1.8×10{sup 11} cm{sup −2}, respectively. The device with a structure Metal/ZrO{sub 2}/InAs QDs/HfO{sub 2}/GaAs/Metal shows maximum memory window equivalent to 6.87 V. The device also exhibits low leakage current density of the order of 10{sup −6} A/cm{sup 2} and reasonably good charge retention characteristics. The low value of leakage current in the fabricated memory device is attributed to the Coulomb blockade effect influenced by quantum confinement as well as reduction of interface trap states by ultra-thin InP passivation on GaAs prior to HfO{sub 2} deposition.

  5. Comparison of junctionless and inversion-mode p-type metal-oxide-semiconductor field-effect transistors in presence of hole-phonon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dib, E., E-mail: elias.dib@for.unipi.it [Dipartimento di Ingegneria dell' Informazione, Università di Pisa, 56122 Pisa (Italy); Carrillo-Nuñez, H. [Integrated Systems Laboratory ETH Zürich, Gloriastrasse 35, 8092 Zürich (Switzerland); Cavassilas, N.; Bescond, M. [IM2NP, UMR CNRS 6242, Bât. IRPHE, Technopôle de Château-Gombert, 13384 Marseille Cedex 13 (France)

    2016-01-28

    Junctionless transistors are being considered as one of the alternatives to conventional metal-oxide field-effect transistors. In this work, it is then presented a simulation study of silicon double-gated p-type junctionless transistors compared with its inversion-mode counterpart. The quantum transport problem is solved within the non-equilibrium Green's function formalism, whereas hole-phonon interactions are tackled by means of the self-consistent Born approximation. Our findings show that junctionless transistors should perform as good as a conventional transistor only for ultra-thin channels, with the disadvantage of requiring higher supply voltages in thicker channel configurations.

  6. Selective Conversion from p-Type to n-Type of Printed Bottom-Gate Carbon Nanotube Thin-Film Transistors and Application in Complementary Metal-Oxide-Semiconductor Inverters.

    Science.gov (United States)

    Xu, Qiqi; Zhao, Jianwen; Pecunia, Vincenzo; Xu, Wenya; Zhou, Chunshan; Dou, Junyan; Gu, Weibing; Lin, Jian; Mo, Lixin; Zhao, Yanfei; Cui, Zheng

    2017-03-30

    The fabrication of printed high-performance and environmentally stable n-type single-walled carbon nanotube (SWCNT) transistors and their integration into complementary (i.e., complementary metal-oxide-semiconductor, CMOS) circuits are widely recognized as key to achieving the full potential of carbon nanotube electronics. Here, we report a simple, efficient, and robust method to convert the polarity of SWCNT thin-film transistors (TFTs) using cheap and readily available ethanolamine as an electron doping agent. Printed p-type bottom-gate SWCNT TFTs can be selectively converted into n-type by deposition of ethanolamine inks on the transistor active region via aerosol jet printing. Resulted n-type TFTs show excellent electrical properties with an on/off ratio of 10(6), effective mobility up to 30 cm(2) V(-1) s(-1), small hysteresis, and small subthreshold swing (90-140 mV dec(-1)), which are superior compared to the original p-type SWCNT devices. The n-type SWCNT TFTs also show good stability in air, and any deterioration of performance due to shelf storage can be fully recovered by a short low-temperature annealing. The easy polarity conversion process allows construction of CMOS circuitry. As an example, CMOS inverters were fabricated using printed p-type and n-type TFTs and exhibited a large noise margin (50 and 103% of 1/2 Vdd = 1 V) and a voltage gain as high as 30 (at Vdd = 1 V). Additionally, the CMOS inverters show full rail-to-rail output voltage swing and low power dissipation (0.1 μW at Vdd = 1 V). The new method paves the way to construct fully functional complex CMOS circuitry by printed TFTs.

  7. Electrical properties of GaAs metal-oxide-semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal-organic vapor deposition/atomic layer deposition hybrid system

    Science.gov (United States)

    Aoki, Takeshi; Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2015-08-01

    This paper presents a compressive study on the fabrication and optimization of GaAs metal-oxide-semiconductor (MOS) structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal-organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance-voltage (C-V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm-2 eV-1. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  8. Metal oxide semiconductor thin-film transistors for flexible electronics

    Science.gov (United States)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  9. Comparison of Ohmic contact resistances of n- and p-type Ge source/drain and their impact on transport characteristics of Ge metal oxide semiconductor field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jungwoo, E-mail: jungwoo.oh@sematech.org [SEMATECH, 2706 Montopolis Drive, Austin, TX 78741 (United States); Huang, Jeff [SEMATECH, 2706 Montopolis Drive, Austin, TX 78741 (United States); Chen, Yen-Ting [Universityof Texas, Austin, TX (United States); Ok, Injo [SEMATECH, 2706 Montopolis Drive, Austin, TX 78741 (United States); Jeon, Kanghoon [Universityof California, Berkeley, CA (United States); Lee, Se-Hoon [Universityof Texas, Austin, TX (United States); Sassman, Barry; Loh, Wei-Yip [SEMATECH, 2706 Montopolis Drive, Austin, TX 78741 (United States); Lee, Hi-Deok [Chungnam National University (Korea, Republic of); Ko, Dea-Hong [Yonsei University (Korea, Republic of); Majhi, Prashant; Kirsch, Paul; Jammy, Raj [SEMATECH, 2706 Montopolis Drive, Austin, TX 78741 (United States)

    2011-10-31

    We report the results of a systematic study to understand low drive current of Ge-nMOSFET (metal-oxide-semiconductor field-effect transistor). The poor electron transport property is primarily attributed to the low dopant activation efficiency and high contact resistance. Results are supported by analyzing source/drain Ohmic metal contacts to n-type Ge using the transmission line method. Ni contacts to Ge nMOSFETs exhibit specific contact resistances of 10{sup -3}-10{sup -5} {Omega} cm{sup 2}, which is significantly higher than the 10{sup -7}-10{sup -8} {Omega} cm{sup 2} of Ni contacts to Ge pMOSFETs. The high resistance of Ni Ohmic contacts to n-type Ge is attributed mainly to insufficient dopant activation in Ge (or high sheet resistance) and a high tunneling barrier. Results obtained in this work identify one of the root causes of the lower than expected Ge nMOSFET transport issue, advancing high mobility Ge channel technology.

  10. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    Science.gov (United States)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  11. Temperature Dependent Electrical Transport in Al/Poly(4-vinyl phenol/p-GaAs Metal-Oxide-Semiconductor by Sol-Gel Spin Coating Method

    Directory of Open Access Journals (Sweden)

    Şadan Özden

    2016-01-01

    Full Text Available Deposition of poly(4-vinyl phenol insulator layer is carried out by applying the spin coating technique onto p-type GaAs substrate so as to create Al/poly(4-vinyl phenol/p-GaAs metal-oxide-semiconductor (MOS structure. Temperature was set to 80–320 K while the current-voltage (I-V characteristics of the structure were examined in the study. Ideality factor (n and barrier height (ϕb values found in the experiment ranged from 3.13 and 0.616 eV (320 K to 11.56 and 0.147 eV (80 K. Comparing the thermionic field emission theory and thermionic emission theory, the temperature dependent ideality factor behavior displayed that thermionic field emission theory is more valid than the latter. The calculated tunneling energy was 96 meV.

  12. CMOS array design automation techniques. [metal oxide semiconductors

    Science.gov (United States)

    Ramondetta, P.; Feller, A.; Noto, R.; Lombardi, T.

    1975-01-01

    A low cost, quick turnaround technique for generating custom metal oxide semiconductor arrays using the standard cell approach was developed, implemented, tested and validated. Basic cell design topology and guidelines are defined based on an extensive analysis that includes circuit, layout, process, array topology and required performance considerations particularly high circuit speed.

  13. Single-photon imaging in complementary metal oxide semiconductor processes

    NARCIS (Netherlands)

    Charbon, E.

    2014-01-01

    This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image senso

  14. Energy Harvesting Thermoelectric Generators Manufactured Using the Complementary Metal Oxide Semiconductor Process

    Directory of Open Access Journals (Sweden)

    Wen-Jung Tsai

    2013-02-01

    Full Text Available This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 mW at a temperature difference of 15 K.

  15. Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process.

    Science.gov (United States)

    Yang, Ming-Zhi; Wu, Chyan-Chyi; Dai, Ching-Liang; Tsai, Wen-Jung

    2013-02-08

    This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS) process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 mW at a temperature difference of 15 K.

  16. Effect of Oxide Layer in Metal-Oxide-Semiconductor Systems

    Directory of Open Access Journals (Sweden)

    Fan Jung-Chuan

    2016-01-01

    Full Text Available In this work, we investigate the electrical properties of oxide layer in the metal-oxide semiconductor field effect transistor (MOSFET. The thickness of oxide layer is proportional to square root of oxidation time. The feature of oxide layer thickness on the growth time is consistent with the Deal-Grove model effect. From the current-voltage measurement, it is found that the threshold voltages (Vt for MOSFETs with different oxide layer thicknesses are proportional to the square root of the gate-source voltages (Vgs. It is also noted that threshold voltage of MOSFET increases with the thickness of oxide layer. It indicates that the bulk effect of oxide dominates in this MOSFET structure.

  17. GaN Metal Oxide Semiconductor Field Effect Transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ren, F.; Pearton, S.J.; Abernathy, C.R.; Baca, A.; Cheng, P.; Shul, R.J.; Chu, S.N.G.; Hong, M.; Lothian, J.R.; Schurman, M.J.

    1999-03-02

    A GaN based depletion mode metal oxide semiconductor field effect transistor (MOSFET) was demonstrated using Ga{sub 2}O{sub 3}(Gd{sub 2}O{sub 3}) as the gate dielectric. The MOS gate reverse breakdown voltage was > 35V which was significantly improved from 17V of Pt Schottky gate on the same material. A maximum extrinsic transconductance of 15 mS/mm was obtained at V{sub ds} = 30 V and device performance was limited by the contact resistance. A unity current gain cut-off frequency, f{sub {tau}}, and maximum frequency of oscillation, f{sub max} of 3.1 and 10.3 GHz, respectively, were measured at V{sub ds} = 25 V and V{sub gs} = {minus}20 V.

  18. Surface potential determination in metal-oxide-semiconductor capacitors

    Science.gov (United States)

    Moragues, J. M.; Ciantar, E.; Jerisian, R.; Sagnes, B.; Oualid, J.

    1994-11-01

    Different methods using the relationship between surface potential Psi(sub S) and gate bias V(sub G) in metal-oxide-semiconductor (MOS) capacitors have been compared. These methods can be applied even if the doping profile is very abrupt and the interface state density very high. The shifts of midgap, flatband, and threshold voltages, observed after Fowler-Nordheim electron injection, and deduced from the various Psi(sub S(V (sub G)) relationships obtained by these different methods, are in good agreement. These shifts give the number of effective oxide trapped charges (N(sub ox)) per unit area and acceptor-like and donor-like interface states (N(sub SS)A and N(sub SS)D) which are created during the electron injection. We reveal that the number of positive charges created in the gate oxide, unlike the number of generated interface states, strongly depends on the position of the post-metallization annealing step in the process. After relaxation of the stressed MOS capacitors, most of the generated positive charges can be attributed, in the MOS capacitors studied, to hydrogen-related species. It seems that the interface states are essentially created by the recombination of holes generated by electron impact.

  19. Development of a Silicon Metal-Oxide-Semiconductor-Based Qubit Using Spin Exchange Interactions Alone

    Science.gov (United States)

    2016-03-31

    SECURITY CLASSIFICATION OF: The objective of this project is to implement an electron spin qubit system on a silicon metal-oxide- semiconductor ...Distribution Unlimited UU UU UU UU 31-03-2016 1-Nov-2010 30-Apr-2014 Final Report: Development of a Silicon Metal-Oxide- Semiconductor -Based Qubit Using Spin... Semiconductor -Based Qubit Using Spin Exchange Interactions Alone Report Title The objective of this project is to implement an electron spin qubit system on

  20. Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors

    Science.gov (United States)

    Kao, Wei-Chieh

    Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.

  1. Analysis of Interface Charge Densities for High-k Dielectric Materials based Metal Oxide Semiconductor Devices

    Science.gov (United States)

    Maity, N. P.; Thakur, R. R.; Maity, Reshmi; Thapa, R. K.; Baishya, S.

    2016-10-01

    In this paper, the interface charge densities (Dit) are studied and analyzed for ultra thin dielectric metal oxide semiconductor (MOS) devices using different high-k dielectric materials such as Al2O3, ZrO2 and HfO2. The Dit have been calculated by a new approach using conductance method and it indicates that by reducing the thickness of the oxide, the Dit increases and similar increase is also found by replacing SiO2 with high-k. For the same oxide thickness, SiO2 has the lowest Dit and found to be the order of 1011cm-2eV-1. Linear increase in Dit has been observed as the dielectric constant of the oxide increases. The Dit is found to be in good agreement with published fabrication results at p-type doping level of 1×1017cm-3. Numerical calculations and solutions are performed by MATLAB and device simulation is done by ATLAS.

  2. Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs

    Science.gov (United States)

    Bioud, Youcef A.; Boucherif, Abderraouf; Belarouci, Ali; Paradis, Etienne; Drouin, Dominique; Arès, Richard

    2016-10-01

    We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As2O3. Finally, a qualitative model is proposed to explain the porous As2O3 layer formation on p-GaAs substrate.

  3. Switching Characteristics of Phase Change Memory Cell Integrated with Metal-Oxide Semiconductor Field Effect Transistor

    Institute of Scientific and Technical Information of China (English)

    XU Cheng; CHEN Bomy; LIU Bo; CHEN Yi-Feng; LIANG Shuang; SONG Zhi-Tang; FENG Song-Lin; WAN Xu-Dong; YANG Zuo-Ya; XIE Joseph

    2008-01-01

    A Ge2Sb2Te5 based phase change memory device cell integrated with metal-oxide semiconductor field effect transistor (MOSFET) is fabricated using standard 0.18 μm complementary metal-oxide semiconductor process technology.It shows steady switching characteristics in the dc current-voltage measurement.The phase changing phenomenon from crystalline state to amorphous state with a voltage pulse altitude of 2.0 V and pulse width of 50 ns is also obtained.These results show the feasibility of integrating phase change memory cell with MOSFET.

  4. Above bandgap luminescence of p-type GaAs epitaxial layers

    Science.gov (United States)

    Sapriel, J.; Chavignon, J.; Alexandre, F.; Azoulay, R.; Sermage, B.; Rao, K.; Voos, M.

    1991-08-01

    New photoluminescence bands are observed in p-type GaAs epitaxial layers at 300 and 80 K, above the bandgap. These bands are independent of the nature of the dopant (Zn, Be, C) and of the growth technique (MBE or MOCVD). Their intensities increase as a function of the p doping (1 × 10 17 < p < 2 × 10 20cm-3) and peak at energies which correspond to transitions between the Γ 6, L 6 and X 6 minima of the conduction band and the Γ 8 and Γ 7 maxima of the valence band.

  5. III-V Metal-Oxide-Semiconductor Field-Effect Transistors with High κ Dielectrics

    Science.gov (United States)

    Hong, Minghwei; Kwo, J. Raynien; Tsai, Pei-chun; Chang, Yaochung; Huang, Mao-Lin; Chen, Chih-ping; Lin, Tsung-da

    2007-05-01

    Research efforts on achieving low interfacial density of states (Dit) as well as low electrical leakage currents on GaAs-based III-V compound semiconductors are reviewed. Emphasis is placed on ultra high vacuum (UHV) deposited Ga2O3(Gd2O3) and atomic layer deposition (ALD)-Al2O3 on GaAs and InGaAs. Ga2O3(Gd2O3), the novel oxide, which was electron-beam evaporated from a gallium-gadolinium-garnet target, has, for the first time, unpinned the Fermi level of the oxide/GaAs heterostructures. Interfacial chemical properties and band parameters of valence band offsets and conduction band offsets in the oxides/III-V heterostructures are studied and determined using X-ray photoelectron spectroscopy and electrical leakage transport measurements. The mechanism of III-V surface passivation is discussed. The mechanism of Fermi-level unpinning in ALD-Al2O3 ex-situ deposited on InGaAs were studied and unveiled. Systematic heat treatments under various gases and temperatures were studied to achieve low leakage currents of 10-8-10-9 A/cm2 and low Dit’s in the range of (4--9)× 1010 cm-2 eV-1 for Ga2O3(Gd2O3) on InGaAs. By removing moisture from the oxide, thermodynamic stability of the Ga2O3(Gd2O3)/GaAs heterostructures was achieved with high temperature annealing, which is needed for fabricating inversion-channel metal-oxide-semiconductor filed-effect transistors (MOSFET’s). The oxide remains amorphous and the interface remains intact with atomic smoothness and sharpness. Device performances of inversion-channel and depletion-mode III-V MOSFET’s are reviewed, again with emphasis on the devices using Ga2O3(Gd2O3) as the gate dielectric.

  6. Practical discrimination of good and bad cooked food using metal oxide semiconductor odour sensor

    OpenAIRE

    2013-01-01

    An increasing concentration of ammonia in cooked food is in direct proportion to the extent of decay. This fact is used to design an electronic nose (e-nose) based on metal oxide semiconductor odour sensor circuit capable of discriminating good and bad cooked food. On the basis of the data produced by the e-nose circuit, a feedforward multilayer neural network is designed and trained to recognize varying concentrations of ammonia in the food. Test results o...

  7. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-06-09

    We report the impact of mechanical anomaly on high-κ/metal-oxide-semiconductor capacitors built on flexible silicon (100) fabric. The mechanical tests include studying the effect of bending radius up to 5 mm minimum bending radius with respect to breakdown voltage and leakage current of the devices. We also report the effect of continuous mechanical stress on the breakdown voltage over extended periods of times.

  8. Floating substrate luminescence from silicon rich oxide metal-oxide-semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Sánchez, A., E-mail: alfredo.morales@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S. C., Unidad Monterrey-PIIT, 66600 Apodaca, Nuevo León (Mexico); Domínguez, C. [Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC). 08193 Barcelona (Spain); Barreto, J. [Nanoscale Physics Research Laboratory, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Aceves-Mijares, M. [INAOE, Electronics Department, Apartado 51, 72000 Puebla (Mexico); Licea-Jiménez, L. [Centro de Investigación en Materiales Avanzados S. C., Unidad Monterrey-PIIT, 66600 Apodaca, Nuevo León (Mexico); Luna-López, J.A.; Carrillo, J. [CIDS-ICUAP. Benemérita Universidad Autónoma de Puebla. 72570 Puebla (Mexico)

    2013-03-01

    The electro-optical properties of metal-oxide-semiconductor devices with embedded Si nanoparticles in silicon-rich (4 at.%) oxide films have been studied. Devices show intense visible continuous luminescence not only in the regular metal-oxide-semiconductor configuration, but when biased via surface electrodes (floating substrate) separated 10 μm. Electroluminescence manifests as extremely bright randomly scattered discrete spots on the gate area or the periphery of the devices depending on the bias direction. The mechanism responsible for the surface-electroluminescence has been related to the recombination of electron–hole pairs injected through enhanced current paths within the silicon-rich oxide film. - Highlights: ► Silicon rich oxide (SRO) based metal-oxide-semiconductor like luminescent devices. ► Electroluminescence (EL) in floating-substrate, horizontal electrodes configuration. ► EL is observed as multiple shining spots with surface electrodes. ► Preferential current paths established in the SRO between several electrodes.

  9. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.

    Science.gov (United States)

    Boland, Jessica L; Casadei, Alberto; Tütüncüoglu, Gözde; Matteini, Federico; Davies, Christopher L; Jabeen, Fauzia; Joyce, Hannah J; Herz, Laura M; Fontcuberta I Morral, Anna; Johnston, Michael B

    2016-04-26

    Controlled doping of GaAs nanowires is crucial for the development of nanowire-based electronic and optoelectronic devices. Here, we present a noncontact method based on time-resolved terahertz photoconductivity for assessing n- and p-type doping efficiency in nanowires. Using this technique, we measure extrinsic electron and hole concentrations in excess of 10(18) cm(-3) for GaAs nanowires with n-type and p-type doped shells. Furthermore, we show that controlled doping can significantly increase the photoconductivity lifetime of GaAs nanowires by over an order of magnitude: from 0.13 ns in undoped nanowires to 3.8 and 2.5 ns in n-doped and p-doped nanowires, respectively. Thus, controlled doping can be used to reduce the effects of parasitic surface recombination in optoelectronic nanowire devices, which is promising for nanowire devices, such as solar cells and nanowire lasers.

  10. Growth and characterization of Czochralski-grown n and p-type GaAs for space solar cell substrates

    Science.gov (United States)

    Chen, R. T.

    1983-01-01

    Progress in LEC (liquid encapsulated Czochralski) crystal growth techniques for producing high-quality, 3-inch-diameter, n- and p-type GaAs crystals suitable for solar cell applications is described. The LEC crystals with low dislocation densities and background impurities, high electrical mobilities, good dopant uniformity, and long diffusion lengths were reproducibly grown through control of the material synthesis, growth and doping conditions. The capability for producing these large-area, high-quality substrates should positively impact the manufacturability of highly efficiency, low cost, radiation-hard GaAs solar cells.

  11. Electron spin relaxation in p-type GaAs quantum wells

    Science.gov (United States)

    Zhou, Y.; Jiang, J. H.; Wu, M. W.

    2009-11-01

    We investigate electron spin relaxation in p-type GaAs quantum wells from a fully microscopic kinetic spin Bloch equation approach, with all the relevant scatterings, such as electron-impurity, electron-phonon, electron-electron Coulomb, electron-hole Coulomb and electron-hole exchange (the Bir-Aronov-Pikus (BAP) mechanism) scatterings, explicitly included. Via this approach, we examine the relative importance of the D'yakonov-Perel' (DP) and BAP mechanisms in wide ranges of temperature, hole density, excitation density and impurity density, and present a phase-diagram-like picture showing the parameter regime where the DP or BAP mechanism is more important. It is discovered that in the impurity-free case the temperature regime where the BAP mechanism is more efficient than the DP one is around the hole Fermi temperature for high hole density, regardless of excitation density. However, in the high impurity density case with the impurity density identical to the hole density, this regime is roughly from the electron Fermi temperature to the hole Fermi temperature. Moreover, we predict that for the impurity-free case, in the regime where the DP mechanism dominates the spin relaxation at all temperatures, the temperature dependence of the spin relaxation time (SRT) presents a peak around the hole Fermi temperature, which originates from the electron-hole Coulomb scattering. We also predict that at low temperature, the hole-density dependence of the electron SRT exhibits a double-peak structure in the impurity-free case, whereas it shows first a peak and then a valley in the case of identical impurity and hole densities. These intriguing behaviors are due to the contribution from holes in high subbands.

  12. Dual Metal/High-k Gate-Last Complementary Metal-Oxide-Semiconductor Field-Effect Transistor with SiBN Film and Characteristic Behavior In Sub-1-nm Equivalent Oxide Thickness

    Science.gov (United States)

    Kikuchi, Yoshiaki; Wakabayashi, Hitoshi; Tsukamoto, Masanori; Nagashima, Naoki

    2011-08-01

    For the first time, dual metal/high-k gate-last complementary metal-oxide-semiconductor field-effect transistors (CMOSFETs) with low-dielectric-constant-material offset spacers and several gate oxide thicknesses were fabricated to improve CMOSFETs characteristics. Improvements of 23 aF/µm in parasitic capacitances were confirmed with a low-dielectric-constant material, and drive current improvements were also achieved with a thin gate oxide. The drive currents at 100 nA/µm off leakages in n-type metal-oxide-semiconductor (NMOS) were improved from 830 to 950 µA/µm and that in p-type metal-oxide-semiconductor (PMOS) were from 405 to 450 µA/µm with a reduction in gate oxide thickness. The thin gate oxide in PMOS was thinner than that in NMOS and the gate leakage was increased. However the gate leakage did not affect the off leakage below a gate length of about 44 nm. On the basis of this result, in these gate-last CMOSFETs, it is concluded that the transistors have potential for further reduction of the equivalent oxide thickness without an increase in off leakages at short gate lengths for high off leakage CMOSFETs. For low off leakage CMOSFETs, the optimization of wet process condition is needed to prevent the reduction of the 2 nm HfO2 thickness in PMOS during a wet process.

  13. Memory effects in metal-oxide-semiconductor capacitors incorporating dispensed highly monodisperse 1 nm silicon nanoparticles

    Science.gov (United States)

    Nayfeh, Osama M.; Antoniadis, Dimitri A.; Mantey, Kevin; Nayfeh, Munir H.

    2007-04-01

    Metal-oxide-semiconductor capacitors containing various densities of ex situ produced, colloidal, highly monodisperse, spherical, 1nm silicon nanoparticles were fabricated and evaluated for potential use as charge storage elements in future nonvolatile memory devices. The capacitance-voltage characteristics are well behaved and agree with similarly fabricated zero-nanoparticle control samples and with an ideal simulation. Unlike larger particle systems, the demonstrated memory effect exhibits effectively pure hole storage. The nature of charging, hole type versus electron type may be understood in terms of the characteristics of ultrasmall silicon nanoparticles: large energy gap, large charging energy, and consequently a small electron affinity.

  14. Nanomechanoelectronic signal transduction scheme with metal-oxide-semiconductor field-effect transistor-embedded microcantilevers

    Science.gov (United States)

    Tark, Soo-Hyun; Srivastava, Arvind; Chou, Stanley; Shekhawat, Gajendra; Dravid, Vinayak P.

    2009-03-01

    We explore various metal-oxide-semiconductor field-effect transistor (MOSFET)-embedded microcantilever designs to assess their performance as an efficient nanomechanoelectronic signal transduction platform for monitoring deflection in microcantilever-based phenomena such as biochemical sensing and actuation. The current-voltage characteristics of embedded MOSFETs show current noise in the nanoampere range with a large signal-to-noise ratio sufficient to provide measureable output signal. The change in drain current with cantilever deflection is consistent with the effect of stress on carrier mobility and drain current reported in previous studies, validating that the MOSFET cantilevers can directly transduce deflection of a microcantilever into reproducible change in electrical signal.

  15. Dual-Material Surrounding-Gate Metal-Oxide-Semiconductor Field Effect Transistors with Asymmetric Halo

    Institute of Scientific and Technical Information of China (English)

    LI Zun-Chao

    2009-01-01

    Asymmetrical halo and dual-material gate structure are used in the sub-100 nm surrounding-gate metal-oxide-semiconductor field effect transistor (MOSFET) to improve the performance. Using three-region parabolic po-tential distribution and universal boundary condition, analytical surface potential and threshold voltage models of the novel MOSFET are developed based on the solution of Poisson's equation. The performance of the MOS-FET is examined by the analytical models and the 3D numerical device simulator Davinci. It is shown that the novel MOSFET can suppress short channel effect and improve carrier transport efficiency. The derived analytical models agree well with Davinci.

  16. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    Paul C. McIntyre

    2012-07-01

    Full Text Available The literature on polar Gallium Nitride (GaN surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  17. High-gain complementary metal-oxide-semiconductor inverter based on multi-layer WSe2 field effect transistors without doping

    Science.gov (United States)

    Kang, Won-Mook; Cho, In-Tak; Roh, Jeongkyun; Lee, Changhee; Lee, Jong-Ho

    2016-10-01

    A high-gain complementary metal-oxide-semiconductor (CMOS) logic inverter was implemented by fabricating p- and n-type field effect transistors (FETs) based on multi-layer WSe2 on the same wafer. Au as a high work-function metal is contacted to WSe2 for the source/drain of the p-type FET. The n-type FET has an Al electrode contacted to WSe2 for the source/drain. Both FETs were designed to have similar on-current densities (>10-7 A μm-1) and high on/off current ratios (>106). The inverter shows excellent switching characteristics including relatively high voltage gains (>25) and high noise margins (>0.9) in the range of supply voltage from 2 V to 8 V. This work has a great significance in the realization of a CMOS logic gate based on WSe2 without an additional doping scheme.

  18. Single carrier trapping and de-trapping in scaled silicon complementary metal-oxide-semiconductor field-effect transistors at low temperatures

    Science.gov (United States)

    Li, Zuo; Khaled Husain, Muhammad; Yoshimoto, Hiroyuki; Tani, Kazuki; Sasago, Yoshitaka; Hisamoto, Digh; Fletcher, Jonathan David; Kataoka, Masaya; Tsuchiya, Yoshishige; Saito, Shinichi

    2017-07-01

    The scaling of Silicon (Si) technology is approaching the physical limit, where various quantum effects such as direct tunnelling and quantum confinement are observed, even at room temperatures. We have measured standard complementary metal-oxide-semiconductor field-effect-transistors (CMOSFETs) with wide and short channels at low temperatures to observe single electron/hole characteristics due to local structural disturbances such as roughness and defects. In fact, we observed Coulomb blockades in sub-threshold regimes of both p-type and n-type Si CMOSFETs, showing the presence of quantum dots in the channels. The stability diagrams for the Coulomb blockade were explained by the potential minima due to poly-Si grains. We have also observed sharp current peaks at narrow bias windows at the edges of the Coulomb diamonds, showing resonant tunnelling of single carriers through charge traps.

  19. Thomas-Fermi approximation in two p-type delta-doped quantum wells in GaAs an Si

    Energy Technology Data Exchange (ETDEWEB)

    Gaggero-Sager, L. M. [Universidad Autonoma de Zacatecas, Zacatecas (Mexico); M' Peko, J. C.; Perez Alvarez, R. [Universidad de La Habana, Ciudad Habana (Cuba)

    2001-04-01

    Thomas-Fermi calculations of the hole subband structure in two coupled p-type d-doped GaAs and Si quantum wells are carried out as a function of the impurity concentration and the distance l between them. A simple formula is obtained for the potential as a function of these two magnitudes by both types of systems. The numerical results for a double Be-{delta}-doped GaAs (double B-{delta}-doped Si) quantum well show that the energy levels degenerate for l{>=}300 A(l{>=}200 A) for an impurity concentration of 1 x 10{sup 1}3 cm{sup -2}. [Spanish] Presentamos calculos de la estructura de subbandas de huecos, utilizando la aproximacion de Thomas-Fermi para dos pozos cuanticos d-dopados tipo p en GaAs y Si, como funcion de la concentracion de impurezas y de la distancia l entre ambos para los dos tipos de sistemas. Los resultados numericos muestran que para un pozo doble de B-{delta}-dopado GaAs (pozo doble de B-{delta}-dopado Si) con una concentracion de 1 x 10{sup 1}3 cm{sup -2} los niveles estan degenerados para l{>=}300 A(l{>=}200 A).

  20. Electrical properties of metal-oxide-semiconductor structures with low-energy Ge-implanted and annealed thin gate oxides

    Science.gov (United States)

    Kapetanakis, E.; Normand, P.; Holliger, P.

    2008-03-01

    The electrical characteristics of low-energy (3keV) Ge-implanted and, subsequently, thermal annealed SiO2 layers are investigated through capacitance-voltage (C-V ) and conductance-voltage (G-V) measurements of metal-oxide-semiconductor capacitors. Particular emphasis is placed on the properties of such gate oxides for memory applications. Capacitance measurements at flatband voltage before and after the application of constant voltage stress in the accumulation regime indicate that the charge trapping behavior of the devices undergoes a major change after annealing at temperatures higher than 910°C. The latter change is identified as a relocation of Ge atoms mainly toward the upper portion of the oxide with a significant fraction of them leaving the oxide; a finding in harmony with secondary ion mass spectroscopy analysis. The interface trap density (Dit) for the thin (9-12nm) implanted oxides decreases with increasing annealing temperature, approaching at 950°C the Dit levels in the mid-1010eV-1cm-2 range of the nonimplanted samples. At elevated annealing temperatures (>1000°C), the device C-V characteristics are substantially disturbed. In this case, the presence of electrically active Ge atoms at an extended depth in the substrate modifies the intrinsic electrical properties of the n-Si substrate, lending a p-type conductivity character to the device high-frequency C-V curves. Substrate electrical modification is interpreted through a model that takes into account the formation of a SiO2/Ge-rich-Si /n-Si system. The SiO2/Ge-rich-Si interface presents very low Dit levels as revealed by conductance loss characteristics. The present study suggests that a combination of Ge implantation into SiO2 films and thermal annealing may be exploited in damage-free SiGe epitaxial growth technology based on Ge implantation.

  1. Reduction of fast surface states on p-type GaAs

    Science.gov (United States)

    Ahrenkiel, R. K.; Wagner, R. S.; Pattillo, S.; Dunlavy, D.; Jervis, T.; Kazmerski, L. L.; Ireland, P. J.

    1982-04-01

    Native oxides and oxyfluorides were grown on GaAs by a glow discharge plasma process. Analysis of metal-insulator-semiconductor structures based on oxyfluoride dielectrics indicated vastly different interface properties compared to pure oxide dielectrics. Whereas oxide structures showed high densities of fast surface states, oxyfluorides showed no evidence of such effects.

  2. InAs-based metal-oxide-semiconductor structure formation in low-energy Townsend discharge

    Science.gov (United States)

    Aksenov, M. S.; Kokhanovskii, A. Yu.; Polovodov, P. A.; Devyatova, S. F.; Golyashov, V. A.; Kozhukhov, A. S.; Prosvirin, I. P.; Khandarkhaeva, S. E.; Gutakovskii, A. K.; Valisheva, N. A.; Tereshchenko, O. E.

    2015-10-01

    We developed and applied a method of InAs passivation in the low-energy plasma of Townsend discharge. The controlled interface oxidation in the Ar:O2:CF4 gas mixture under visualization of gas discharge plasma allowed growing thin homogeneous films in the range of 5-15 nm thickness. Oxidation with the addition of CF4 in gas-discharge plasma led to the formation of In and As oxyfluorides with a wide insulating gap and isostructural interface with unpinned Fermi level behavior. The metal-oxide-semiconductor structure showed excellent capacitance-voltage characteristics: small frequency dispersion (<15 mV), density of interface states (Dit) in the gap below 5 × 1010 eV-1cm-2, and fixed charge (Qfix) below 5 × 1011 cm-2.

  3. Design and Fabrication of Complementary Metal-Oxide-Semiconductor Sensor Chip for Electrochemical Measurement

    Science.gov (United States)

    Yamazaki, Tomoyuki; Ikeda, Takaaki; Kano, Yoshiko; Takao, Hidekuni; Ishida, Makoto; Sawada, Kazuaki

    2010-04-01

    An electrochemical sensor has been developed on a single chip in which potentiostat and sensor electrodes are integrated. Sensor chips were fabricated using 5.0 µm complementary metal-oxide-semiconductor (CMOS) technology. All processes including the CMOS process, postprocessing for fabricating sensor electrodes and passivation layers, and packaging were performed at Toyohashi University of Technology. The integration makes it possible to measure electrochemical signals without having to use a bulky external electrochemical system. The potential between the working electrode and the reference electrode was controlled using an on-chip potentiostat composed of CMOS transistors. The chip characteristics were verified by electrochemical measurement, namely, by cyclic voltammetry. Potassium ferricyanide solution was measured to obtain results that fit well to the theoretical formula. A clear proportional relationship between peak height and the concentration of the sample solution was obtained using the proposed sensor chip, and the dynamic range obtained was 0.10 to 8.0 mM.

  4. New Power Lateral Double Diffused Metal-Oxide-Semiconductor Transistor with a Folded Accumulation Layer

    Institute of Scientific and Technical Information of China (English)

    DUAN Bao-Xing; ZHANG Bo; LI Zhao-Ji

    2007-01-01

    A new lateral double diffused metal oxide semiconductor field effect transistor with a double-charge accumulation layer using a folded silicon substrate is proposed to improve the performance of the breakdown voltage and specific on-resistance. Three kinds of technologies, which are the additional electric field modulation effect, majority carrier accumulation and increasing the effective conduction area, are applied simultaneously by a semi-insulating polycrystalline silicon layer deposited over the top of thin oxide covering the drift region. It is indicated that by the simulator, the ideal silicon limits of the breakdown voltage and specific on-resistance have been broken due to the complete three-dimensional reduced surface field effect and the doubled majority carrier accumulation layer.

  5. Optimal design of an electret microphone metal-oxide-semiconductor field-effect transistor preamplifier.

    Science.gov (United States)

    van der Donk, A G; Bergveld, P

    1992-04-01

    A theoretical noise analysis of the combination of a capacitive microphone and a preamplifier containing a metal-oxide-semiconductor field-effect transistor (MOSFET) and a high-value resistive bias element is given. It is found that the output signal-to-noise ratio for a source follower and for a common-source circuit is almost the same. It is also shown that the output noise can be reduced by making the microphone capacitance as well as the bias resistor as large as possible, and furthermore by keeping the parasitic gate capacitances as low as possible and finally by using an optimum value for the gate area of the MOSFET. The main noise source is the thermal noise of the gate leakage resistance of the MOSFET. It is also shown that short-channel MOSFETs produce more thermal channel noise than longer channel devices.

  6. Effect of Temperature on GaGdO/GaN Metal Oxide Semiconductor Field Effect Transistors

    Energy Technology Data Exchange (ETDEWEB)

    Abernathy, C.R.; Baca, A.; Chu, S.N.G.; Hong, M.; Lothian, J.R.; Marcus, M.A.; Pearton, S.J.; Ren, F.; Schurman, M.J.

    1998-10-14

    GaGdO was deposited on GaN for use as a gate dielectric in order to fabricate a depletion metal oxide semiconductor field effect transistor (MOSFET). This is the fmt demonstration of such a device in the III-Nitride system. Analysis of the effect of temperature on the device shows that gate leakage is significantly reduced at elevated temperature relative to a conventional metal semiconductor field effeet transistor (MESFET) fabricated on the same GaN layer. MOSFET device operation in fact improved upon heating to 400 C. Modeling of the effeet of temperature on contact resistance suggests that the improvement is due to a reduction in the parasitic resistances present in the device.

  7. Multifunctional silicon-based light emitting device in standard complementary metal-oxide-semiconductor technology

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Huang Bei-Ju; Dong Zan; Chen Hong-Da

    2011-01-01

    A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.

  8. High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits.

    Science.gov (United States)

    Yu, Lili; Zubair, Ahmad; Santos, Elton J G; Zhang, Xu; Lin, Yuxuan; Zhang, Yuhao; Palacios, Tomás

    2015-08-12

    Because of their extraordinary structural and electrical properties, two-dimensional materials are currently being pursued for applications such as thin-film transistors and integrated circuit. One of the main challenges that still needs to be overcome for these applications is the fabrication of air-stable transistors with industry-compatible complementary metal oxide semiconductor (CMOS) technology. In this work, we experimentally demonstrate a novel high performance air-stable WSe2 CMOS technology with almost ideal voltage transfer characteristic, full logic swing and high noise margin with different supply voltages. More importantly, the inverter shows large voltage gain (∼38) and small static power (picowatts), paving the way for low power electronic system in 2D materials.

  9. The electrical characteristics of metal-oxide-semiconductor field effect transistors fabricated on cubic silicon carbide

    CERN Document Server

    Ohshima, T; Ishida, Y

    2003-01-01

    The n-channel metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated on cubic silicon carbide (3C-SiC) epitaxial layers grown on 3C-SiC substrates. The gate oxide of the MOSFETs was formed using pyrogenic oxidation at 1100 degC. The 3C-SiC MOSFETs showed enhancement type behaviors after annealing at 200degC for 30 min in argon atmosphere. The maximum value of the effective channel mobility of the 3C-SiC MOSFETs was 260cm sup 2 /V centre dot s. The leakage current of gate oxide was of a few tens of nA/cm sup 2 at an electric field range below 8.5 MV/cm, and breakdown began around 8.5MV/cm. (author)

  10. Strained silicon/silicon germanium heterojunction n-channel metal oxide semiconductor field effect transistors

    CERN Document Server

    Olsen, S H

    2002-01-01

    Investigations into the performance of strained silicon/silicon-germanium (Si/SiGe) n-channel metal-oxide-semiconductor field effect transistors (MOSFETs) have been carried out. Theoretical predictions suggest that use of a strained Si/SiGe material system with advanced material properties compared with conventional silicon allows enhanced MOSFET device performance. This study has therefore investigated the practical feasibility of obtaining superior electrical performance using a Si/SiGe material system. The MOSFET devices consisted of a strained Si surface channel and were fabricated on relaxed SiGe material using a reduced thermal budget process in order to preserve the strain. Two batches of strained Si/SiGe devices fabricated on material grown by differing methods have been analysed and both showed good transistor action. A correlation of electrical and physical device data established that the electrical device behaviour was closely related to the SiGe material quality, which differed depending on growt...

  11. Physical model for trap-assisted inelastic tunneling in metal-oxide-semiconductor structures

    Science.gov (United States)

    Jiménez-Molinos, F.; Palma, A.; Gámiz, F.; Banqueri, J.; López-Villanueva, J. A.

    2001-10-01

    A physical model for trap-assisted inelastic tunnel current through potential barriers in semiconductor structures has been developed. The model is based on the theory of multiphonon transitions between detrapped and trapped states and the only fitting parameters are those of the traps (energy level and concentration) and the Huang-Rhys factor. Therefore, dependences of the trapping and detrapping processes on the bias, position, and temperature can be obtained with this model. The results of the model are compared with experimental data of stress induced leakage current in metal-oxide-semiconductor devices. The average energy loss has been obtained and an interpretation is given of the curves of average energy loss versus oxide voltage. This allows us to identify the entrance of the assisted tunnel current in the Fowler-Nordheim regime. In addition, the dependence of the tunnel current and average energy loss on the model parameters has been studied.

  12. Impedance analysis of Al2O3/H-terminated diamond metal-oxide-semiconductor structures

    Science.gov (United States)

    Liao, Meiyong; Liu, Jiangwei; Sang, Liwen; Coathup, David; Li, Jiangling; Imura, Masataka; Koide, Yasuo; Ye, Haitao

    2015-02-01

    Impedance spectroscopy (IS) analysis is carried out to investigate the electrical properties of the metal-oxide-semiconductor (MOS) structure fabricated on hydrogen-terminated single crystal diamond. The low-temperature atomic layer deposition Al2O3 is employed as the insulator in the MOS structure. By numerically analysing the impedance of the MOS structure at various biases, the equivalent circuit of the diamond MOS structure is derived, which is composed of two parallel capacitive and resistance pairs, in series connection with both resistance and inductance. The two capacitive components are resulted from the insulator, the hydrogenated-diamond surface, and their interface. The physical parameters such as the insulator capacitance are obtained, circumventing the series resistance and inductance effect. By comparing the IS and capacitance-voltage measurements, the frequency dispersion of the capacitance-voltage characteristic is discussed.

  13. Charge sensed Pauli blockade in a metal-oxide-semiconductor lateral double quantum dot.

    Science.gov (United States)

    Nguyen, Khoi T; Lilly, Michael P; Nielsen, Erik; Bishop, Nathan; Rahman, Rajib; Young, Ralph; Wendt, Joel; Dominguez, Jason; Pluym, Tammy; Stevens, Jeffery; Lu, Tzu-Ming; Muller, Richard; Carroll, Malcolm S

    2013-01-01

    We report Pauli blockade in a multielectron silicon metal-oxide-semiconductor double quantum dot with an integrated charge sensor. The current is rectified up to a blockade energy of 0.18 ± 0.03 meV. The blockade energy is analogous to singlet-triplet splitting in a two electron double quantum dot. Built-in imbalances of tunnel rates in the MOS DQD obfuscate some edges of the bias triangles. A method to extract the bias triangles is described, and a numeric rate-equation simulation is used to understand the effect of tunneling imbalances and finite temperature on charge stability (honeycomb) diagram, in particular the identification of missing and shifting edges. A bound on relaxation time of the triplet-like state is also obtained from this measurement.

  14. Flexible complementary metal oxide semiconductor microelectrode arrays with applications in single cell characterization

    Science.gov (United States)

    Pajouhi, H.; Jou, A. Y.; Jain, R.; Ziabari, A.; Shakouri, A.; Savran, C. A.; Mohammadi, S.

    2015-11-01

    A highly flexible microelectrode array with an embedded complementary metal oxide semiconductor (CMOS) instrumentation amplifier suitable for sensing surfaces of biological entities is developed. The array is based on ultrathin CMOS islands that are thermally isolated from each other and are interconnected by meandered nano-scale wires that can adapt to cellular surfaces with micro-scale curvatures. CMOS temperature sensors are placed in the islands and are optimally biased to have high temperature sensitivity. While no live cell thermometry is conducted, a measured temperature sensitivity of 0.15 °C in the temperature range of 35 to 40 °C is achieved by utilizing a low noise CMOS lock-in amplifier implemented in the same technology. The monolithic nature of CMOS sensors and amplifier circuits and their versatile flexible interconnecting wires overcome the sensitivity and yield limitations of microelectrode arrays fabricated in competing technologies.

  15. Silicon-on-insulator-based complementary metal oxide semiconductor integrated optoelectronic platform for biomedical applications

    Science.gov (United States)

    Mujeeb-U-Rahman, Muhammad; Scherer, Axel

    2016-12-01

    Microscale optical devices enabled by wireless power harvesting and telemetry facilitate manipulation and testing of localized biological environments (e.g., neural recording and stimulation, targeted delivery to cancer cells). Design of integrated microsystems utilizing optical power harvesting and telemetry will enable complex in vivo applications like actuating a single nerve, without the difficult requirement of extreme optical focusing or use of nanoparticles. Silicon-on-insulator (SOI)-based platforms provide a very powerful architecture for such miniaturized platforms as these can be used to fabricate both optoelectronic and microelectronic devices on the same substrate. Near-infrared biomedical optics can be effectively utilized for optical power harvesting to generate optimal results compared with other methods (e.g., RF and acoustic) at submillimeter size scales intended for such designs. We present design and integration techniques of optical power harvesting structures with complementary metal oxide semiconductor platforms using SOI technologies along with monolithically integrated electronics. Such platforms can become the basis of optoelectronic biomedical systems including implants and lab-on-chip systems.

  16. Accurate geometry scalable complementary metal oxide semiconductor modelling of low-power 90 nm amplifier circuits

    Directory of Open Access Journals (Sweden)

    Apratim Roy

    2014-05-01

    Full Text Available This paper proposes a technique to accurately estimate radio frequency behaviour of low-power 90 nm amplifier circuits with geometry scalable discrete complementary metal oxide semiconductor (CMOS modelling. Rather than characterising individual elements, the scheme is able to predict gain, noise and reflection loss of low-noise amplifier (LNA architectures made with bias, active and passive components. It reduces number of model parameters by formulating dependent functions in symmetric distributed modelling and shows that simple fitting factors can account for extraneous (interconnect effects in LNA structure. Equivalent-circuit model equations based on physical structure and describing layout parasites are developed for major amplifier elements like metal–insulator–metal (MIM capacitor, spiral symmetric inductor, polysilicon (PS resistor and bulk RF transistor. The models are geometry scalable with respect to feature dimensions, i.e. MIM/PS width and length, outer-dimension/turns of planar inductor and channel-width/fingers of active device. Results obtained with the CMOS models are compared against measured literature data for two 1.2 V amplifier circuits where prediction accuracy for RF parameters (S(21, noise figure, S(11, S(22 lies within the range of 92–99%.

  17. Metal oxide semiconductors for dye- and quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Concina, Isabella; Vomiero, Alberto

    2015-04-17

    This Review provides a brief summary of the most recent research developments in the synthesis and application of nanostructured metal oxide semiconductors for dye sensitized and quantum dot sensitized solar cells. In these devices, the wide bandgap semiconducting oxide acts as the photoanode, which provides the scaffold for light harvesters (either dye molecules or quantum dots) and electron collection. For this reason, proper tailoring of the optical and electronic properties of the photoanode can significantly boost the functionalities of the operating device. Optimization of the functional properties relies with modulation of the shape and structure of the photoanode, as well as on application of different materials (TiO2, ZnO, SnO2) and/or composite systems, which allow fine tuning of electronic band structure. This aspect is critical because it determines exciton and charge dynamics in the photoelectrochemical system and is strictly connected to the photoconversion efficiency of the solar cell. The different strategies for increasing light harvesting and charge collection, inhibiting charge losses due to recombination phenomena, are reviewed thoroughly, highlighting the benefits of proper photoanode preparation, and its crucial role in the development of high efficiency dye sensitized and quantum dot sensitized solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Complementary metal oxide semiconductor-compatible silicon nanowire biofield-effect transistors as affinity biosensors.

    Science.gov (United States)

    Duan, Xuexin; Rajan, Nitin K; Izadi, Mohammad Hadi; Reed, Mark A

    2013-11-01

    Affinity biosensors use biorecognition elements and transducers to convert a biochemical event into a recordable signal. They provides the molecule binding information, which includes the dynamics of biomolecular association and dissociation, and the equilibrium association constant. Complementary metal oxide semiconductor-compatible silicon (Si) nanowires configured as a field-effect transistor (NW FET) have shown significant advantages for real-time, label-free and highly sensitive detection of a wide range of biomolecules. Most research has focused on reducing the detection limit of Si-NW FETs but has provided less information about the real binding parameters of the biomolecular interactions. Recently, Si-NW FETs have been demonstrated as affinity biosensors to quantify biomolecular binding affinities and kinetics. They open new applications for NW FETs in the nanomedicine field and will bring such sensor technology a step closer to commercial point-of-care applications. This article summarizes the recent advances in bioaffinity measurement using Si-NW FETs, with an emphasis on the different approaches used to address the issues of sensor calibration, regeneration, binding kinetic measurements, limit of detection, sensor surface modification, biomolecule charge screening, reference electrode integration and nonspecific molecular binding.

  19. Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing.

    Science.gov (United States)

    Gu, Quan; Hayes-Gill, Barrie R; Morgan, Stephen P

    2008-04-20

    A 4 x 4 pixel array with analog on-chip processing has been fabricated within a 0.35 mum complementary metal oxide semiconductor process as a prototype sensor for laser Doppler blood flow imaging. At each pixel the bandpass and frequency weighted filters necessary for processing laser Doppler blood flow signals have been designed and fabricated. Because of the space constraints of implementing an accurate omega(0.5) filter at the pixel level, this has been approximated using the "roll off" of a high-pass filter with a cutoff frequency set at 10 kHz. The sensor has been characterized using a modulated laser source. Fixed pattern noise is present that is demonstrated to be repeatable across the array and can be calibrated. Preliminary blood flow results on a finger before and after occlusion demonstrate that the sensor array provides the potential for a system that can be scaled to a larger number of pixels for blood flow imaging.

  20. Ultralow power, high fill factor smart complementary metal oxide semiconductor image sensor with motion detection capability

    Science.gov (United States)

    Mahbod, Abbas; Karimiyan, Hossein

    2016-11-01

    Bandwidth saving, power consumption, and fill factor improvement are known as vitally important challenges image sensor designers face in order to accomplish high-performance imaging systems. This paper presents an ultralow power, high fill factor smart complementary metal oxide semiconductor (CMOS) image sensor with motion detection capability. In this efficient methodology, the amount of redundant data processed in unimportant frames has been reduced significantly, and therefore, the proposed imaging system consumes less power compared with counterpart imagers. Furthermore, a pixel structure is introduced that outputs two consecutive frame voltages in series, with the result that the pixel size is minimized and a higher fill factor is achieved. In order to simulate the image capturing procedure, a state-of-the-art approach based on MATLAB and HSPICE software is devised, which is another important achievement of this paper. The performance of this technique is demonstrated using a 64×64 pixel sensor designed in a 0.18-μm standard CMOS technology. The sensor chip consumes 0.2 mW of power while operating at 100 fps with a fill factor of 45%.

  1. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-02-29

    Thinned silicon based complementary metal oxide semiconductor(CMOS)electronics can be physically flexible. To overcome challenges of limited thinning and damaging of devices originated from back grinding process, we show sequential reactive ion etching of silicon with the assistance from soft polymeric materials to efficiently achieve thinned (40 μm) and flexible (1.5 cm bending radius) silicon based functional CMOSinverters with high-κ/metal gate transistors. Notable advances through this study shows large area of silicon thinning with pre-fabricated high performance elements with ultra-large-scale-integration density (using 90 nm node technology) and then dicing of such large and thinned (seemingly fragile) pieces into smaller pieces using excimer laser. The impact of various mechanical bending and bending cycles show undeterred high performance of flexible siliconCMOSinverters. Future work will include transfer of diced silicon chips to destination site, interconnects, and packaging to obtain fully flexible electronic systems in CMOS compatible way.

  2. Integrated Active Magnetic Probe in Silicon-on-Insulator Complementary Metal-Oxide-Semiconductor Technology

    Science.gov (United States)

    Aoyama, Satoshi; Kawahito, Shoji; Yamaguchi, Masahiro

    2006-09-01

    A novel magnetic probe has been designed and fabricated by 0.15 μm five-metal (4M + thick metal) silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology to achieve both a high sensitivity and a high spatial resolution. A detecting coil having metal multilayers, a two-stage differential amplifier, a differential-to-single-ended converter, and an output buffer are integrated on a single chip. The probe is referred to as an active probe, and it has a feature to distinguish magnetic field from detected electromagnetic emissions by means of a two-turn differential coil structure and a circuit technique using a wideband differential-to-single-ended converter with a high common-mode rejection. Measurement results show the effectiveness of the active magnetic probe with the function of on-chip amplification and electric field suppression, as well as electrical switching with common-mode voltage (Vcom). Moreover, for the first time, a magnetic field distribution is visualized with an active probe.

  3. Effect of Edge Roughness on Electronic Transport in Graphene Nanoribbon Channel Metal Oxide Semiconductor Field-Effect Transistors

    OpenAIRE

    D Basu; Gilbert, M.J.; Register, L. F.; Macdonald, A. H.; Banerjee, S. K.

    2007-01-01

    Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal oxide semiconductor field-effect transistors (MOSFETs) are reported. The addition of edge disorder significantly reduces ON-state currents and increases OFF-state currents, and introduces wide variability across devices. These effects decrease as ribbon widths increase and as edges become smoother. However the bandgap decreases with increasing width, thereby increasing the ban...

  4. Matrix-dependent Strain Distributions of Au and Ag Nanoparticles in a Metal-oxide-semiconductor-based Nonvolatile Memory Device

    OpenAIRE

    Honghua Huang; Ying Zhang; Wenyan Wei; Ting Yu; Xingfang Luo; Cailei Yuan

    2015-01-01

    The matrix-dependent strain distributions of Au and Ag nanoparticles in a metal-oxide-semiconductor based nonvolatile memory device are investigated by finite element calculations. The simulation results clearly indicate that both Au and Ag nanoparticles incur compressive strain by high-k Al2O3 and conventional SiO2 dielectrics. The strain distribution of nanoparticles is closely related to the surrounding matrix. Nanoparticles embedded in different matrices experience different compressive s...

  5. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode

    Science.gov (United States)

    Davids, Paul S.; Jarecki, Robert L.; Starbuck, Andrew; Burckel, D. Bruce; Kadlec, Emil A.; Ribaudo, Troy; Shaner, Eric A.; Peters, David W.

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W-1 cm-2 at -0.1 V.

  6. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.

    Science.gov (United States)

    Davids, Paul S; Jarecki, Robert L; Starbuck, Andrew; Burckel, D Bruce; Kadlec, Emil A; Ribaudo, Troy; Shaner, Eric A; Peters, David W

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V.

  7. Investigation of Landau level spin reversal in (110) oriented p-type GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Nebile

    2009-09-01

    In this thesis, the Landau level crossing or anticrossing of hole levels has been investigated in p-type GaAs 400 Aa wide quantum wells. In magneto-transport measurements, this is evidenced with the presence of an anomalous peak in the longitudinal resistance measurements at {nu}=1. In the transversal resistance measurements, no signature of this anomalous peak is observed. By increasing the hole density in the quantum well by applying a top gate voltage, the position of the anomalous peak shifts to higher magnetic fields. At very high densities, anomalous peak disappears. By applying a back gate voltage, the electric field in the quantum well is tuned. A consequence is that the geometry of the quantum well is tuned from square to triangular. The anomalous peak position is shown to depend also on the back gate voltage applied. Temperature dependence of the peak height is consistent with thermal activation energy gap ({delta}/2= 135 {mu}eV). The activation energy gap as a function of the magnetic field has a parabolic like dependence, with the minimum of 135 {mu}eV at 4 T. The peak magnitude is observed to decrease with increasing temperature. An additional peak is observed at {nu}=2 minimum. This additional peak at {nu}=2 might be due to the higher Landau level crossing. The p-type quantum wells have been investigated by photoluminescence spectroscopy, as a function of the magnetic field. The polarization of the emitted light has been analyzed in order to distinguish between the transitions related to spin of electron {+-} 1/2 and spin of hole -+ 3/2. The transition energies of the lowest electron Landau levels with spin {+-} 1/2 and hole Landau levels with spin -+ 3/2 versus magnetic field show crossing at 4 T. The heavy hole Landau levels with spins {+-} 3/2 are obtained by the substraction of transition energies from the sum of lowest electron Landau level energy and the energy gap of GaAs. The heavy hole Landau levels show a crossing at 4 T. However, due to the

  8. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO{sub 2} by capacitance voltage measurement on inverted metal oxide semiconductor structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tian, E-mail: tianz@student.unsw.edu.au; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan [Australian Centre for Advanced Photovoltaics, UNSW Australia, Kensington, New South Wales 2052 (Australia)

    2015-10-21

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO{sub 2}. The ncSi thin films with high resistivity (200–400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO{sub 2}/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 10{sup 18}–10{sup 19 }cm{sup −3} despite their high resistivity. The saturation of doping at about 1.4 × 10{sup 19 }cm{sup −3} and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10{sup −3} cm{sup 2}/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  9. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure

    Science.gov (United States)

    Zhang, Tian; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-01

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO2. The ncSi thin films with high resistivity (200-400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO2/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 1018-1019 cm-3 despite their high resistivity. The saturation of doping at about 1.4 × 1019 cm-3 and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10-3 cm2/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  10. Transport properties of silicon complementary-metal-oxide semiconductor quantum well field-effect transistors

    Science.gov (United States)

    Naquin, Clint Alan

    Introducing explicit quantum transport into silicon (Si) transistors in a manner compatible with industrial fabrication has proven challenging, yet has the potential to transform the performance horizons of large scale integrated Si devices and circuits. Explicit quantum transport as evidenced by negative differential transconductances (NDTCs) has been observed in a set of quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors fabricated using industrial silicon complementary MOS processing. The QW potential was formed via lateral ion implantation doping on a commercial 45 nm technology node process line, and measurements of the transfer characteristics show NDTCs up to room temperature. Detailed gate length and temperature dependence characteristics of the NDTCs in these devices have been measured. Gate length dependence of NDTCs shows a correlation of the interface channel length with the number of NDTCs formed as well as with the gate voltage (VG) spacing between NDTCs. The VG spacing between multiple NDTCs suggests a quasi-parabolic QW potential profile. The temperature dependence is consistent with partial freeze-out of carrier concentration against a degenerately doped background. A folding amplifier frequency multiplier circuit using a single QW NMOS transistor to generate a folded current-voltage transfer function via a NDTC was demonstrated. Time domain data shows frequency doubling in the kHz range at room temperature, and Fourier analysis confirms that the output is dominated by the second harmonic of the input. De-embedding the circuit response characteristics from parasitic cable and contact impedances suggests that in the absence of parasitics the doubling bandwidth could be as high as 10 GHz in a monolithic integrated circuit, limited by the transresistance magnitude of the QW NMOS. This is the first example of a QW device fabricated by mainstream Si CMOS technology being used in a circuit application and establishes the feasibility

  11. Memory effects in a Al/Ti:HfO2/CuPc metal-oxide-semiconductor device

    Science.gov (United States)

    Tripathi, Udbhav; Kaur, Ramneek

    2016-05-01

    Metal oxide semiconductor structured organic memory device has been successfully fabricated. Ti doped hafnium oxide (Ti:HfO2) nanoparticles has been fabricated by precipitation method and further calcinated at 800 °C. Copper phthalocyanine, a hole transporting material has been utilized as an organic semiconductor. The electrical properties of the fabricated device have been studied by measuring the current-voltage and capacitance-voltage characteristics. The amount of charge stored in the nanoparticles has been calculated by using flat band condition. This simple approach for fabricating MOS memory device has opens up opportunities for the development of next generation memory devices.

  12. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector.

    Science.gov (United States)

    Smith, Richard J; Light, Roger A; Sharples, Steve D; Johnston, Nicholas S; Pitter, Mark C; Somekh, Mike G

    2010-02-01

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  13. Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors

    Science.gov (United States)

    Basu, D.; Gilbert, M. J.; Register, L. F.; Banerjee, S. K.; MacDonald, A. H.

    2008-01-01

    Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal-oxide-semiconductor field-effect transistors (MOSFETs) are reported. The addition of edge disorder significantly reduces ON-state currents and increases OFF-state currents, and introduces wide variability across devices. These effects decrease as ribbon widths increase and as edges become smoother. However, the band gap decreases with increasing width, thereby increasing the band-to-band tunneling mediated subthreshold leakage current even with perfect nanoribbons. These results suggest that without atomically precise edge control during fabrication, MOSFET performance gains through use of graphene will be difficult to achieve in complementary MOS applications.

  14. Models of second-order effects in metal-oxide-semiconductor field-effect transistors for computer applications

    Science.gov (United States)

    Benumof, Reuben; Zoutendyk, John; Coss, James

    1988-01-01

    Second-order effects in metal-oxide-semiconductor field-effect transistors (MOSFETs) are important for devices with dimensions of 2 microns or less. The short and narrow channel effects and drain-induced barrier lowering primarily affect threshold voltage, but formulas for drain current must also take these effects into account. In addition, the drain current is sensitive to channel length modulation due to pinch-off or velocity saturation and is diminished by electron mobility degradation due to normal and lateral electric fields in the channel. A model of a MOSFET including these considerations and emphasizing charge conservation is discussed.

  15. A complementary metal-oxide-semiconductor compatible monocantilever 12-point probe for conductivity measurements on the nanoscale

    OpenAIRE

    Gammelgaard, Lauge; Bøggild, Peter; Wells, J.W.; Handrup, K.; Hofmann, Ph.; Balslev, M.B.; Hansen, J.E.; Petersen, P.R.E

    2008-01-01

    We present a complementary metal-oxide-semiconductor compatible, nanoscale 12-point-probe based on TiW electrodes placed on a SiO2 monocantilever. Probes are mass fabricated on Si wafers by a combination of electron beam and UV lithography, realizing TiW electrode tips with a width down to 250 nm and a probe pitch of 500 nm. In-air four-point measurements have been performed on indium tin oxide, ruthenium, and titanium-tungsten, showing good agreement with values obtained by other four-point ...

  16. Memory effects in a Al/Ti:HfO{sub 2}/CuPc metal-oxide-semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Udbhav, E-mail: udbhav1781996@gmail.com; Kaur, Ramneek [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India)

    2016-05-23

    Metal oxide semiconductor structured organic memory device has been successfully fabricated. Ti doped hafnium oxide (Ti:HfO{sub 2}) nanoparticles has been fabricated by precipitation method and further calcinated at 800 °C. Copper phthalocyanine, a hole transporting material has been utilized as an organic semiconductor. The electrical properties of the fabricated device have been studied by measuring the current-voltage and capacitance-voltage characteristics. The amount of charge stored in the nanoparticles has been calculated by using flat band condition. This simple approach for fabricating MOS memory device has opens up opportunities for the development of next generation memory devices.

  17. Detection of Zearalenone Using a Metal-Oxide-Semiconductor Field-Effect-Transistor-Based Biosensor Employing a Pt Reference Electrode

    Science.gov (United States)

    Lim, Byounghyun; Cho, Byunghyun; Shin, Jang-Kyoo; Choi, Ho-Jin; Seo, Sang-Ho; Choi, Sung-Wook; Chun, Hyang Sook

    2009-06-01

    We have fabricated a metal-oxide-semiconductor field-effect-transistor (MOSFET)-based biosensor for the detection of zearalenone using a standard complementary metal-oxide-semiconductor (CMOS) process. Au was used as the gate metal to immobilize a self-assembled monolayer (SAM) made of mercaptohexadecanoic acid (MHDA). The SAM was used to immobilize anti-zearalenone antibody. The carboxyl group of the SAM was bound to the anti-zearalenone antibody. Anti-zearalenone antibody and zearalenone were bound by an antigen-antibody reaction. The measurements were performed in phosphate buffered saline (PBS; pH 7.4) solution. A Pt electrode was employed as a reference electrode. The gate voltage of the sensor was applied using the Pt reference electrode. The binding of the SAM, anti-zearalenone antibody, and zearalenone caused a variation in the drain current of the MOSFET-based biosensor. To verify the interaction among the SAM, anti-zearalenone antibody, and zearalenone, surface plasmon resonance (SPR) measurements were performed.

  18. A novel planar vertical double-diffused metal-oxide-semiconductor field-effect transistor with inhomogeneous floating islands

    Institute of Scientific and Technical Information of China (English)

    Ren Min; Li Ze-Hong; Liu Xiao-Long; Xie Jia-Xiong; Deng Guang-Min; Zhang Bo

    2011-01-01

    A novel planar vertical double-diffused metal-oxide-semiconductor (VDMOS) structure with an ultra-low specific on-resistance (Ron,sp),whose distinctive feature is the use of inhomogeneous floating p-islands in the n-drift region,is proposed.The theoretical limit of its Ron,sp is deduced,the influence of structure parameters on the breakdown voltage (BV) and Ron,sp are investigated,and the optimized results with BV of 83 V and Ron,sp of 54 mΩ.mm2 are obtained.Simulations show that the inhomogencous-floating-islands metal-oxide-semiconductor field-effect transistor (MOSFET)has a superior “Ron,sp/BV” trade-off to the conventional VDMOS (a 38% reduction of Ron,sp with the same BV) and the homogeneous-floating-islands MOSFET (a 10% reduction of Ron,sp with the same BV).The inhomogeneous-floatingislands MOSFET also has a much better body-diode characteristic than the superjunction MOSFET.Its reverse recovery peak current,reverse recovery time and reverse recovery charge are about 50,80 and 40% of those of the superjunction MOSFET,respectively.

  19. Inversion in the In0.53Ga0.47As metal-oxide-semiconductor system: Impact of the In0.53Ga0.47As doping concentration

    Science.gov (United States)

    O'Connor, É.; Cherkaoui, K.; Monaghan, S.; Sheehan, B.; Povey, I. M.; Hurley, P. K.

    2017-01-01

    In0.53Ga0.47As metal-oxide-semiconductor (MOS) capacitors with an Al2O3 gate oxide and a range of n and p-type In0.53Ga0.47As epitaxial concentrations were examined. Multi-frequency capacitance-voltage and conductance-voltage characterization exhibited minority carrier responses consistent with surface inversion. The measured minimum capacitance at high frequency (1 MHz) was in excellent agreement with the theoretical minimum capacitance calculated assuming an inverted surface. Minority carrier generation lifetimes, τg, extracted from experimentally measured transition frequencies, ωm, using physics based a.c. simulations, demonstrated a reduction in τg with increasing epitaxial doping concentration. The frequency scaled conductance, G/ω, in strong inversion allowed the estimation of accurate Cox values for these MOS devices.

  20. Characterization of metal oxide semiconductor field effect transistor dosimeters for application in clinical mammography.

    Science.gov (United States)

    Benevides, Luis A; Hintenlang, David E

    2006-02-01

    Five high-sensitivity metal oxide semiconductor field effect transistor dosimeters in the TN-502 and 1002 series (Thomson Nielsen Electronics Ltd., 25B, Northside Road, Ottawa, ON K2H8S1, Canada) were evaluated for use in the mammography x-ray energy range (22-50 kVp) as a tool to assist in the documentation of patient specific average glandular dose. The dosimeters were interfaced with the Patient Dose Verification System, model No. TN-RD 15, which consisted of a dosimeter reader and up to four dual bias power supplies. Two different dual bias power supplies were evaluated in this study, model No. TN-RD 22 in high-sensitivity mode and a very-high sensitivity prototype. Each bias supply accommodates up to five dosimeters for 20 dosimeters per system. Sensitivity of detectors, defined as the mV/C kg(-1), was measured free in air with the bubble side of the dosimeter facing the x-ray field with a constant exposure. All dosimeter models' angular response showed a marked decrease in response when oriented between 120 degrees and 150 degrees and between at 190 degrees and 220 degrees relative to the incident beam. Sensitivity was evaluated for Mo/Mo, Mo/Rh, and Rh/Rh target-filter combinations. The individual dosimeter model sensitiVity was 4.45 x 10(4) mV/C kg(-1) (11.47 mV R(-1)) for TN-502RDS(micro); 5.93 x 10(4) mV per C kg(-1) (15.31 mV R(-1)) for TN-1002RD; 6.06 x 10(4) mV/C kg(-1) (15.63 mV R(-1)) for TN-1002RDI; 9.49 x 10(4) mV per C kg(-1) (24.49 mV R(-1)) for TN-1002RDM (micro); and 11.20 x 10(4) mV/C kg(-1) (28.82 mV R(-1)) for TN-1002RDS (micro). The energy response is presented and is observed to vary with dosimeter model, generally increasing with tube potential through the mammography energy range. An intercomparison of the high-sensitivity mode of TN-RD-22 was made to the very-high sensitivity bias power supply using a Mo/Mo target-filter. The very-high sensitivity-bias power supply increased dosimeter response by 1.45 +/- 0.04 for dosimeter models TN

  1. n- and p-type transport in (110) GaAs substrates, single- and double-cleave structures

    Energy Technology Data Exchange (ETDEWEB)

    Roth, S.F.

    2007-06-06

    In this work low-dimensional systems based on GaAs/AlGaAs are investigated with either holes (p-type) in two-dimensional (2D) systems or electrons (n-type) in one-dimensional (1D) systems as charge carriers. Two-dimensional hole systems (2DHS) are grown with molecular beam epitaxy both on (110) wafers and (1 anti 10) facets with the cleaved-edge overgrowth (CEO) method. We use Si as an acceptor by modulating the growth conditions to fabricate the 2DHS in single-interface heterojunction quantum wells. The mobility of the structures reaches up to 7.0 x 10{sup 5} cm{sup 2}/Vs along the [1 anti 10]-direction and 4.1 x 10{sup 5} cm{sup 2}/Vs along the [001]-direction at a hole density of 1.2 x 10{sup 11} cm{sup -2}. Effective values for anisotropic effective hole masses and scattering times are obtained. Inversion asymmetry induced spin splitting results in different spin densities, which yield beatings of the Shubnikov-de Haas oscillations at low temperatures. In a perpendicular magnetic field the 2DHS is quantized into Landau levels, which depend nonlinearly on B due to a strong mixing of light- and heavy-holes. When the Landau levels anticross on the (110) facet, additional peaks appear within minima of the quantum Hall effect. Thermal activation measurements demonstrate a B-dependent energy gap consistent with such an anticrossing. In the second part of the thesis an electron quantum wire is fabricated with twofold cleaved-edge overgrowth. A variation of the conduction band energy in the substrate layers can directly transfer a potential modulation to the adjacent quantum wire. The concept of a transfer potential applied to a narrow two-dimensional system is demonstrated as a first step. Finally, in narrow quantum well samples a simple vertical quantum wire is successfully demonstrated and contacted at each end with n{sup +}-GaAs layers via two-dimensional (2D) leads. We characterize the 2D lead density and mobility for both cleave facets with four

  2. Semi-classical noise investigation for sub-40nm metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Spathis, C., E-mail: cspathis@ece.upatras.gr; Birbas, A.; Georgakopoulou, K. [Department of Electrical and Computer Engineering, University of Patras, Patras 26500 (Greece)

    2015-08-15

    Device white noise levels in short channel Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) dictate the performance and reliability of high-frequency circuits ranging from high-speed microprocessors to Low-Noise Amplifiers (LNAs) and microwave circuits. Recent experimental noise measurements with very short devices demonstrate the existence of suppressed shot noise, contrary to the predictions of classical channel thermal noise models. In this work we show that, as the dimensions continue to shrink, shot noise has to be considered when the channel resistance becomes comparable to the barrier resistance at the source-channel junction. By adopting a semi-classical approach and taking retrospectively into account transport, short-channel and quantum effects, we investigate the partitioning between shot and thermal noise, and formulate a predictive model that describes the noise characteristics of modern devices.

  3. Ratiometric, filter-free optical sensor based on a complementary metal oxide semiconductor buried double junction photodiode.

    Science.gov (United States)

    Yung, Ka Yi; Zhan, Zhiyong; Titus, Albert H; Baker, Gary A; Bright, Frank V

    2015-07-16

    We report a complementary metal oxide semiconductor integrated circuit (CMOS IC) with a buried double junction (BDJ) photodiode that (i) provides a real-time output signal that is related to the intensity ratio at two emission wavelengths and (ii) simultaneously eliminates the need for an optical filter to block Rayleigh scatter. We demonstrate the BDJ platform performance for gaseous NH3 and aqueous pH detection. We also compare the BDJ performance to parallel results obtained by using a slew scanned fluorimeter (SSF). The BDJ results are functionally equivalent to the SSF results without the need for any wavelength filtering or monochromators and the BDJ platform is not prone to errors associated with source intensity fluctuations or sensor signal drift.

  4. Performance of La2O3/InAlN/GaN metal-oxide-semiconductor high electron mobility transistors

    Institute of Scientific and Technical Information of China (English)

    Feng Qian; Li Qian; Xing Tao; Wang Qiang; Zhang Jin-Cheng; Hao Yue

    2012-01-01

    We report on the performance of La2O3/InAlN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) and InAlN/GaN high electron mobility transistors (HEMTs).The MOSHEMT presents a maximum drain current of 961 mA/mm at Vgs =4 V and a maximum transconductance of 130 mS/mm compared with 710 mA/mm at Vgs =1 V and 131 mS/mm for the HEMT device,while the gate leakage current in the reverse direction could be reduced by four orders of magnitude.Compared with the HEMT device of a similar geometry,MOSHEMT presents a large gate voltage swing and negligible current collapse.

  5. SOI metal-oxide-semiconductor field-effect transistor photon detector based on single-hole counting.

    Science.gov (United States)

    Du, Wei; Inokawa, Hiroshi; Satoh, Hiroaki; Ono, Atsushi

    2011-08-01

    In this Letter, a scaled-down silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) is characterized as a photon detector, where photogenerated individual holes are trapped below the negatively biased gate and modulate stepwise the electron current flowing in the bottom channel induced by the positive substrate bias. The output waveforms exhibit clear separation of current levels corresponding to different numbers of trapped holes. Considering this capability of single-hole counting, a small dark count of less than 0.02 s(-1) at room temperature, and low operation voltage of 1 V, SOI MOSFET could be a unique photon-number-resolving detector if the small quantum efficiency were improved.

  6. Quantum-correlated photon pairs generated in a commercial 45nm complementary metal-oxide semiconductor microelectronics chip

    CERN Document Server

    Gentry, Cale M; Wade, Mark W; Stevens, Martin J; Dyer, Shellee D; Zeng, Xiaoge; Pavanello, Fabio; Gerrits, Thomas; Nam, Sae Woo; Mirin, Richard P; Popović, Miloš A

    2015-01-01

    Correlated photon pairs are a fundamental building block of quantum photonic systems. While pair sources have previously been integrated on silicon chips built using customized photonics manufacturing processes, these often take advantage of only a small fraction of the established techniques for microelectronics fabrication and have yet to be integrated in a process which also supports electronics. Here we report the first demonstration of quantum-correlated photon pair generation in a device fabricated in an unmodified advanced (sub-100nm) complementary metal-oxide-semiconductor (CMOS) process, alongside millions of working transistors. The microring resonator photon pair source is formed in the transistor layer structure, with the resonator core formed by the silicon layer typically used for the transistor body. With ultra-low continuous-wave on-chip pump powers ranging from 5 $\\mu$W to 400 $\\mu$W, we demonstrate pair generation rates between 165 Hz and 332 kHz using >80% efficient WSi superconducting nano...

  7. Characterization of a complementary metal-oxide semiconductor operational amplifier from 300 to 4.2 K

    Science.gov (United States)

    Hastings, J. Todd; Ng, K.-W.

    1995-06-01

    We report the first operation of a commercially available complementary metal-oxide semiconductor operational amplifier, at liquid helium temperature. In addition, we have characterized several factors important to the practical application of such a circuit from room temperature down to 4.2 K. The temperature dependence and measurement techniques for open-loop gain, input offset voltage, input referred noise voltage, and quiescent current are presented. We will discuss our observations of low temperature behavior of the opamp with respect to others' previous results. This work represents an advancement over earlier studies which only reported opamp operation down to 77 or 30 K with measurements taken only at a limited number of temperatures instead of a broad range. Our data suggest that under special operating conditions the opamps can be effectively used with careful consideration of noise and gain performance. Input offset voltage levels and quiescent current (including power consumption) resemble normal room temperature operation.

  8. Extraction of Channel Length Independent Series Resistance for Deeply Scaled Metal-Oxide-Semiconductor Field-Effect Transistors

    Science.gov (United States)

    Ma, Li-Juan; Ji, Xiao-Li; Chen, Yuan-Cong; Xia, Hao-Guang; Zhu, Chen-Xin; Guo, Qiang; Yan, Feng

    2014-09-01

    The recently developed four Rsd extraction methods from a single device, involving the constant-mobility method, the direct Id—Vgs method, the conductance method and the Y-function method, are evaluated on 32 nm n-channel metal-oxide-semiconductor field-effect transistors (nMOSFETs). It is found that Rsd achieved from the constant-mobility method exhibits the channel length independent characteristics. The L-dependent Rsd extracted from the other three methods is proven to be associated with the gate-voltage-induced mobility degradation in the extraction procedures. Based on L-dependent behaviors of Rsd, a new method is proposed for accurate series resistance extraction on deeply scaled MOSFETs.

  9. Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels

    Science.gov (United States)

    Thiele, S. A.; Schaefer, J. A.; Schwierz, F.

    2010-05-01

    A quasianalytical modeling approach for graphene metal-oxide-semiconductor field-effect transistors (MOSFETs) with gapless large-area graphene channels is presented. The model allows the calculation of the I-V characteristics, the small-signal behavior, and the cutoff frequency of graphene MOSFETs. It applies a correct formulation of the density of states in large-area graphene to calculate the carrier-density-dependent quantum capacitance, a steady-state velocity-field characteristics with soft saturation to describe the carrier transport, and takes the source/drain series resistances into account. The modeled drain currents and transconductances show very good agreement with experimental data taken from the literature {Meric et al., [Nat. Nanotechnol. 3, 654 (2008)] and Kedzierski et al., [IEEE Electron Device Lett. 30, 745 (2009)]}. In particular, the model properly reproduces the peculiar saturation behavior of graphene MOSFETs with gapless channels.

  10. HfxAlyO ternary dielectrics for InGaAs based metal-oxide-semiconductor capacitors

    Science.gov (United States)

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2017-07-01

    The electrical properties of HfxAlyO compound dielectric films and the HfxAlyO/InGaAs interface are reported for various dielectric film compositions. Despite the same trimethylaluminum (TMA) pre-deposition treatment, dispersion in accumulation and capacitance-voltage (C-V) hysteresis increased with hafnium content. Different kinds of border traps were identified as being responsible for the phenomena. After anneal, the density of states in the HfxAlyO/InGaAs interface varied quite weakly with dielectric film composition. The optimal composition for obtaining high inversion charge density in metal oxide semiconductor gate stacks is determined by a tradeoff between leakage and dielectric constant, with the optimum atomic cation ratio ([Hf]/[Al]) of ˜1.

  11. Effective dose assessment in the maxillofacial region using thermoluminescent (TLD) and metal oxide semiconductor field-effect transistor (MOSFET) dosemeters: a comparative study

    NARCIS (Netherlands)

    Koivisto, J.; Schulze, D.; Wolff, J.; Rottke, D.

    2014-01-01

    Objectives: The objective of this study was to compare the performance of metal oxide semiconductor field-effect transistor (MOSFET) technology dosemeters with thermoluminescent dosemeters (TLDs) (TLD 100; Thermo Fisher Scientific, Waltham, MA) in the maxillofacial area. Methods: Organ and effective

  12. Interfacial band configuration and electrical properties of LaAlO3/Al2O3/hydrogenated-diamond metal-oxide-semiconductor field effect transistors

    Science.gov (United States)

    Liu, J. W.; Liao, M. Y.; Imura, M.; Oosato, H.; Watanabe, E.; Tanaka, A.; Iwai, H.; Koide, Y.

    2013-08-01

    In order to search a gate dielectric with high permittivity on hydrogenated-diamond (H-diamond), LaAlO3 films with thin Al2O3 buffer layers are fabricated on the H-diamond epilayers by sputtering-deposition (SD) and atomic layer deposition (ALD) techniques, respectively. Interfacial band configuration and electrical properties of the SD-LaAlO3/ALD-Al2O3/H-diamond metal-oxide-semiconductor field effect transistors (MOSFETs) with gate lengths of 10, 20, and 30 μm have been investigated. The valence and conduction band offsets of the SD-LaAlO3/ALD-Al2O3 structure are measured by X-ray photoelectron spectroscopy to be 1.1 ± 0.2 and 1.6 ± 0.2 eV, respectively. The valence band discontinuity between H-diamond and LaAlO3 is evaluated to be 4.0 ± 0.2 eV, showing that the MOS structure acts as the gate which controls a hole carrier density. The leakage current density of the SD-LaAlO3/ALD-Al2O3/H-diamond MOS diode is smaller than 10-8 A cm-2 at gate bias from -4 to 2 V. The capacitance-voltage curve in the depletion mode shows sharp dependence, small flat band voltage, and small hysteresis shift, which implies low positive and trapped charge densities. The MOSFETs show p-type channel and complete normally off characteristics with threshold voltages changing from -3.6 ± 0.1 to -5.0 ± 0.1 V dependent on the gate length. The drain current maximum and the extrinsic transconductance of the MOSFET with gate length of 10 μm are -7.5 mA mm-1 and 2.3 ± 0.1 mS mm-1, respectively. The enhancement mode SD-LaAlO3/ALD-Al2O3/H-diamond MOSFET is concluded to be suitable for the applications of high power and high frequency electrical devices.

  13. A Novel Fully Depleted Air AlN Silicon-on-Insulator Metal-Oxide-Semiconductor Field Effect Transistor

    Institute of Scientific and Technical Information of China (English)

    YANG Yuan; GAO Yong; GONG Peng-Liang

    2008-01-01

    @@ A novel fully depleted air AlN silicon-on-insulator (SOI) metal-oxide-semiconductor field effect transistor (MOS-FET) is presented, which can eliminate the self-heating effect and solve the problem that the off-state current of SOI MOSFETs increases and the threshold voltage characteristics become worse when employing a high thermal conductivity material as a buried layer. The simulation results reveal that the lattice temperature in normal SOI devices is 75K higher than the atmosphere temperature, while the lattice temperature is just 4K higher than the atmosphere temperature resulting in less severe self-heating effect in air AlN SOI MOSFETs and AlN SOI MOSFETs. The on-state current of air AlN SOI MOSFETs is similar to the AlN SOI structure, and improves 12.3% more than that of normal SOI MOSFETs. The off-state current of AlN SOI is 6.7 times of normal SOI MOSFETs, while the counterpart of air AlN SOI MOSFETs is lower than that of SOI MOSFETs by two orders of magnitude. The threshold voltage change of air AlN SOI MOSFETs with different drain voltage is much less than that of AlN SOI devices, when the drain voltage is biased at 0.8 V, this difference is 28mV, so the threshold voltage change induced by employing high thermal conductivity material is cured.

  14. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.

    2015-02-13

    Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.

  15. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Directory of Open Access Journals (Sweden)

    Tharun Konduru

    2015-01-01

    Full Text Available A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone, acetonitrile (nitrile, ethyl acetate (ester, and ethanol (alcohol. The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm of methlypropyl sulfide and two concentrations (145 and 1452 ppm of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  16. Exploiting sub-20-nm complementary metal-oxide semiconductor technology challenges to design affordable systems-on-chip

    Science.gov (United States)

    Vaidyanathan, Kaushik; Zhu, Qiuling; Liebmann, Lars; Lai, Kafai; Wu, Stephen; Liu, Renzhi; Liu, Yandong; Strojwas, Andzrej; Pileggi, Larry

    2015-01-01

    For the past four decades, cost and features have driven complementary metal-oxide semiconductor (CMOS) scaling. Severe lithography and material limitations seen below the 20-nm node, however, are challenging the fundamental premise of affordable CMOS scaling. Just continuing to co-optimize leaf cell circuit and layout designs with process technology does not enable us to exploit the challenges of sub-20-nm CMOS. For affordable scaling, it is imperative to work past sub-20-nm technology impediments while exploiting its features. To this end, we propose to broaden the scope of design technology co-optimization (DTCO) to be more holistic by including microarchitecture design and computer-aided design, along with circuits, layout, and process technology. Furthermore, we undertook such a holistic DTCO for all critical design elements such as embedded memory, standard cell logic, analog components, and physical synthesis in a 14-nm process. Measurements results from experimental designs in a representative 14-nm process from IBM demonstrate the efficacy of the proposed approach.

  17. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Gargi; Sarkar, C K [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata (India); Lu, X B; Dai, J Y [Department of Applied Physics and Materials Research Center, Hong Kong Polytechnic University, Hong Kong (China)], E-mail: gargichakraborty0@yahoo.co.in, E-mail: phyhod@yahoo.co.in

    2008-06-25

    The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter.

  18. Wide Spectral Characteristics of Si Photonic Crystal Mach-Zehnder Modulator Fabricated by Complementary Metal-Oxide-Semiconductor Process

    Directory of Open Access Journals (Sweden)

    Yosuke Hinakura

    2016-04-01

    Full Text Available Optical modulators for optical interconnects require a small size, small voltage, high speed and wide working spectrum. For this purpose, we developed Si slow-light Mach-Zehnder modulators via a 180 nm complementary metal-oxide-semiconductor process. We employed 200 μm lattice-shifted photonic crystal waveguides with interleaved p-n junctions as phase shifters. The group index spectrum of slow light was almost flat at ng ≈ 20 but exhibited ±10% fluctuation over a wavelength bandwidth of 20 nm. The cutoff frequency measured in this bandwidth ranged from 15 to 20 GHz; thus, clear open eyes were observed in the 25 Gbps modulation. However, the fluctuation in ng was reflected in the extinction ratio and bit-error rate. For a stable error-free operation, a 1 dB margin is necessary in the extinction ratio. In addition, we constructed a device with varied values of ng and confirmed that the extinction ratio at this speed was enhanced by larger ng up to 60. However, this larger ng reduced the cutoff frequency because of increased phase mismatch between slow light and radio frequency signals. Therefore, ng available for 25 Gbps modulation is limited to up to 40 for the current device design.

  19. Analytic Circuit Model of Ballistic Nanowire Metal-Oxide-Semiconductor Field-Effect Transistor for Transient Analysis

    Science.gov (United States)

    Numata, Tatsuhiro; Uno, Shigeyasu; Kamakura, Yoshinari; Mori, Nobuya; Nakazato, Kazuo

    2013-04-01

    A fully analytic and explicit model of device properties in the ballistic transport in gate-all-around metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed, which enables circuit simulations. The electrostatic potential distribution in the wire cross section is approximated by a parabolic function. Using the applied potential, the energy levels of electrons are analytically obtained in terms of a single unknown parameter by perturbation theory. Ballistic current is obtained in terms of an unknown parameter using the analytic expression of the electron energy level and the current equation for ballistic transport. We analytically derive the parameter with a one-of-a-kind approximate methodology. With the obtained parameter, the fully analytic and explicit model of device properties such as energy levels, ballistic current, and effective capacitance is derived with satisfactory accuracy compared with the numerical simulation results. Finally, we perform a transient simulation using a circuit simulator, introducing our model to it as a Verilog-A script.

  20. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Science.gov (United States)

    Konduru, Tharun; Rains, Glen C.; Li, Changying

    2015-01-01

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage. PMID:25587975

  1. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

    Directory of Open Access Journals (Sweden)

    Konrad Maier

    2015-09-01

    Full Text Available In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high.

  2. A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: system development and characterization.

    Science.gov (United States)

    Konduru, Tharun; Rains, Glen C; Li, Changying

    2015-01-12

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  3. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A. [Berkeley Sensor and Actuator Center, University of California, Davis, 1 Shields Avenue, Davis, California 95616 (United States); Tang, H.; Boser, B. E. [Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720 (United States); Tsai, J. M.; Daneman, M. [InvenSense, Inc., 1745 Technology Drive, San Jose, California 95110 (United States)

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  4. Functional integrity of flexible n-channel metal-oxide-semiconductor field-effect transistors on a reversibly bistable platform

    Science.gov (United States)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.

    2015-10-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  5. Theoretical Study of Triboelectric-Potential Gated/Driven Metal-Oxide-Semiconductor Field-Effect Transistor.

    Science.gov (United States)

    Peng, Wenbo; Yu, Ruomeng; He, Yongning; Wang, Zhong Lin

    2016-04-26

    Triboelectric nanogenerator has drawn considerable attentions as a potential candidate for harvesting mechanical energies in our daily life. By utilizing the triboelectric potential generated through the coupling of contact electrification and electrostatic induction, the "tribotronics" has been introduced to tune/control the charge carrier transport behavior of silicon-based metal-oxide-semiconductor field-effect transistor (MOSFET). Here, we perform a theoretical study of the performances of tribotronic MOSFET gated by triboelectric potential in two working modes through finite element analysis. The drain-source current dependence on contact-electrification generated triboelectric charges, gap separation distance, and externally applied bias are investigated. The in-depth physical mechanism of the tribotronic MOSFET operations is thoroughly illustrated by calculating and analyzing the charge transfer process, voltage relationship to gap separation distance, and electric potential distribution. Moreover, a tribotronic MOSFET working concept is proposed, simulated and studied for performing self-powered FET and logic operations. This work provides a deep understanding of working mechanisms and design guidance of tribotronic MOSFET for potential applications in micro/nanoelectromechanical systems (MEMS/NEMS), human-machine interface, flexible electronics, and self-powered active sensors.

  6. Magnetic state dependent transient lateral photovoltaic effect in patterned ferromagnetic metal-oxide-semiconductor films

    Directory of Open Access Journals (Sweden)

    Isidoro Martinez

    2015-11-01

    Full Text Available We investigate the influence of an external magnetic field on the magnitude and dephasing of the transient lateral photovoltaic effect (T-LPE in lithographically patterned Co lines of widths of a few microns grown over naturally passivated p-type Si(100. The T-LPE peak-to-peak magnitude and dephasing, measured by lock-in or through the characteristic time of laser OFF exponential relaxation, exhibit a notable influence of the magnetization direction of the ferromagnetic overlayer. We show experimentally and by numerical simulations that the T-LPE magnitude is determined by the Co anisotropic magnetoresistance. On the other hand, the magnetic field dependence of the dephasing could be described by the influence of the Lorentz force acting perpendiculary to both the Co magnetization and the photocarrier drift directions. Our findings could stimulate the development of fast position sensitive detectors with magnetically tuned magnitude and phase responses.

  7. Transient lateral photovoltaic effect in patterned metal-oxide-semiconductor films

    CERN Document Server

    Cascales, J P; Diaz, D; Rodrigo, J A; Aliev, F G

    2014-01-01

    The time dependent transient lateral photovoltaic e?ect has been studied with us time resolution and with chopping frequencies in the kHz range, in lithographically patterned 21 nm thick, 5, 10 and 20 um wide and 1500 um long Co lines grown over naturally passivated p-type Si (100). We have observed a nearly linear dependence of the transitorial response with the laser spot position. A transitorial response with a sign change in the laser-off stage has been corroborated by numerical simulations. A qualitative explanation suggests a modi?cation of the drift-diffusion model by including the in uence of a local inductance. Our ?ndings indicate that the microstructuring of position sensitive detectors could improve their space-time resolution.

  8. Solar water splitting with a composite silicon/metal oxide semiconductor electrode

    Science.gov (United States)

    Nakato, Yoshihiro; Kato, Naoaki; Imanishi, Akihito; Sugiura, Takashi; Ogawa, Shunsuke; Yoshida, Norimitsu; Nonomura, Shuichi

    2006-08-01

    We have studied solar water splitting with a composite semiconductor electrode, composed of an n-i-p junction amorphous silicon (a-Si, E g~ 1.7 eV) layer, an indium tin oxide (ITO) layer, and a tungsten trioxide (WO 3, E g 2.8 eV) particulate layer. The n-i-p a-Si layer, which had more accurately a structure of n-type microcrystalline ( c) 3C-SiC:H (25 nm)/i-type a-Si:H (400 nm)/p-type a-SiC x:H (25 nm), was prepared on a TiO II-covered F-doped SnO II (FTO)/glass plate by a Hot-Wire CVD method. The ITO layer (100 nm thick) was deposited on the p-type a-Si by the DC magnetron sputtering method, and the WO3 particulate layer was formed by a doctor-blade method, using a colloidal solution of commercial WO 3 powder of 10-30 nm in diameter. The composite electrode thus prepared was finally heat-treated at 300°C for 1 h. The anodic (water oxidation) photocurrent for the composite electrode in 0.1 M Na IISO 4 yielded an IPCE (incident photon to current efficiency) of about 6 % at 400 nm and was stable for more than 24 h. Besides, the onset potential lay a little (by about 0.05 V) more negative than the equilibrium hydrogen evolution potential, indicating a possibility of solar water splitting with no external bias. A preliminary result for the water photooxidation with an "n- GaP/p-Si/Pt dot" electrode is also reported briefly.

  9. 2007 IEEE Device Research Conference: Tour de Force Multigate and Nanowire Metal Oxide Semiconductor Field-Effect Transistors and Their Application.

    Science.gov (United States)

    Zhang, Pengpeng; Mayer, Theresa S; Jackson, Thomas N

    2007-08-01

    Scaling of the conventional planar complementary metal oxide semiconductor (CMOS) faces many challenges. Top-down fabricated gate-all-around Si nanowire FinFETs, which are compatible with the CMOS processes, offer an opportunity to circumvent these limitations to boost the device scalability and performance. Beyond applications in CMOS technology, the thus fabricated Si nanowire arrays can be explored as biosensors, providing a possible route to multiplexed label-free electronic chips for molecular diagnostics.

  10. Direct identification of interstitial Mn in heavily p-type doped GaAs and evidence of its high thermal stability

    CERN Document Server

    Pereira, LMC; Correia, JG; Decoster, S; da Silva, MR; Araújo, JP; Vantomme, A

    2011-01-01

    We report on the lattice location of Mn in heavily p-type doped GaAs by means of $\\beta^{-}$-emission channeling from the decay of $^{56}$Mn. The majority of the Mn atoms substitute for Ga and up to 31% occupy the tetrahedral interstitial site with As nearest neighbors. Contrary to the general belief, we find that interstitial Mn is immobile up to 400$^{\\circ}$C, with an activation energy for diffusion of 1.7–2.3 eV. Such high thermal stability of interstitial Mn has significant implications on the strategies and prospects for achieving room temperature ferromagnetism in Ga$_{1−x}$Mn$_{x}$As.

  11. Metal-oxide-semiconductor capacitors and Schottky diodes studied with scanning microwave microscopy at 18 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, M. [Christian Doppler Laboratory for Nanoscale Methods in Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz (Austria); Gramse, G. [Biophysics Institute, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz (Austria); Hoffmann, J. [METAS, National Metrology Institute of Switzerland, Lindenweg 50, 3003 Bern-Wabern (Switzerland); Gaquiere, C. [MC2 technologies, 5 rue du Colibri, 59650 Villeneuve D' ascq (France); Feger, R.; Stelzer, A. [Institute for Communications Engineering and RF-Systems, Johannes Kepler University, Altenberger Str. 69, 4040 Linz (Austria); Smoliner, J. [Vienna University of Technology, Institute for Solid State Electronics, Floragasse 7, 1040 Vienna (Austria); Kienberger, F., E-mail: ferry-kienberger@keysight.com [Keysight Technologies Austria, Measurement Research Lab, Gruberstrasse 40, 4020 Linz (Austria)

    2014-11-14

    We measured the DC and RF impedance characteristics of micrometric metal-oxide-semiconductor (MOS) capacitors and Schottky diodes using scanning microwave microscopy (SMM). The SMM consisting of an atomic force microscopy (AFM) interfaced with a vector network analyser (VNA) was used to measure the reflection S11 coefficient of the metallic MOS and Schottky contact pads at 18 GHz as a function of the tip bias voltage. By controlling the SMM biasing conditions, the AFM tip was used to bias the Schottky contacts between reverse and forward mode. In reverse bias direction, the Schottky contacts showed mostly a change in the imaginary part of the admittance while in forward bias direction the change was mostly in the real part of the admittance. Reference MOS capacitors which are next to the Schottky diodes on the same sample were used to calibrate the SMM S11 data and convert it into capacitance values. Calibrated capacitance between 1–10 fF and 1/C{sup 2} spectroscopy curves were acquired on the different Schottky diodes as a function of the DC bias voltage following a linear behavior. Additionally, measurements were done directly with the AFM-tip in contact with the silicon substrate forming a nanoscale Schottky contact. Similar capacitance-voltage curves were obtained but with smaller values (30–300 aF) due to the corresponding smaller AFM-tip diameter. Calibrated capacitance images of both the MOS and Schottky contacts were acquired with nanoscale resolution at different tip-bias voltages.

  12. Relevance of GaAs(001) surface electronic structure for high frequency dispersion on n-type accumulation capacitance

    Science.gov (United States)

    Pi, T. W.; Chen, W. S.; Lin, Y. H.; Cheng, Y. T.; Wei, G. J.; Lin, K. Y.; Cheng, C.-P.; Kwo, J.; Hong, M.

    2017-01-01

    This study investigates the origin of long-puzzled high frequency dispersion on the accumulation region of capacitance-voltage characteristics in an n-type GaAs-based metal-oxide-semiconductor. Probed adatoms with a high Pauling electronegativity, Ag and Au, unexpectedly donate charge to the contacted As/Ga atoms of as-grown α2 GaAs(001)-2 × 4 surfaces. The GaAs surface atoms behave as charge acceptors, and if not properly passivated, they would trap those electrons accumulated at the oxide and semiconductor interface under a positive bias. The exemplified core-level spectra of the Al2O3/n-GaAs(001)-2 × 4 and the Al2O3/n-GaAs(001)-4 × 6 interfaces exhibit remnant of pristine surface As emission, thereby causing high frequency dispersion in the accumulation region. For the p-type GaAs, electrons under a negatively biased condition are expelled from the interface, thereby avoiding becoming trapped.

  13. Determination of Fowler-Nordheim tunneling parameters in Metal-Oxide-Semiconductor structure including oxide field correction using a vertical optimization method

    Science.gov (United States)

    Toumi, S.; Ouennoughi, Z.; Strenger, K. C.; Frey, L.

    2016-08-01

    Current conduction mechanisms through a Metal-Oxide-Semiconductor structure are characterized via Fowler-Nordheim (FN) plots. The extraction of the FN parameters like the electron/hole effective mass in oxide mox and in semiconductor msc, the barrier height at the semiconductor-oxide interface ϕB, and the correction oxide voltage Vcorr for a MOS structure is made using a vertical optimization process on the current density without any assumption about ϕB or mox. An excellent agreement is obtained between the FN plots calculated with the FN parameters extracted using a vertical optimization process with the experimental one.

  14. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-06-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard bulk mono-crystalline silicon substrate. A lifetime projection is extracted using statistical analysis of the ramping voltage (Vramp) breakdown and time dependent dielectric breakdown data. The obtained flexible MOSCAPs operational voltages satisfying the 10 years lifetime benchmark are compared to those of the control MOSCAPs, which are not peeled off from the silicon wafer. © 2014 IEEE.

  15. Anomalous output characteristic shift for the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Siyang; Zhang, Chunwei; Sun, Weifeng, E-mail: swffrog@seu.edu.cn [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China); Su, Wei; Wang, Shaorong; Ma, Shulang; Huang, Yu [CSMC Technologies Corporation, Wuxi 214061 (China)

    2014-04-14

    Anomalous output characteristic shift of the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer is investigated. It shows that the linear drain current has obvious decrease when the output characteristic of fresh device is measured for two consecutive times. The charge pumping experiments demonstrate that the decrease is not from hot-carrier degradation. The reduction of cross section area for the current flowing, which results from the squeezing of the depletion region surrounding the P-top layer, is responsible for the shift. Consequently, the current capability of this special device should be evaluated by the second measured output characteristic.

  16. High resolution imaging in cross-section of a metal-oxide-semiconductor field-effect-transistor using super-higher-order nonlinear dielectric microscopy

    Science.gov (United States)

    Chinone, N.; Yamasue, K.; Honda, K.; Cho, Y.

    2013-11-01

    Scanning nonlinear dielectric microscopy (SNDM) can evaluate carrier or charge distribution in semiconductor devices. High sensitivity to capacitance variation enables SNDM to measure the super-high-order (higher than 3rd) derivative of local capacitance-voltage (C-V) characteristics directly under the tip (dnC/dVn,n = 3, 4, ...). We demonstrate improvement of carrier density resolution by measurement of dnC/dVn,n = 1, 2, 3, 4 (super-higher-order method) in the cross-sectional observation of metal-oxide-semiconductor field-effect-transistor.

  17. Stress Characterization of 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) using Raman Spectroscopy and the Finite Element Method.

    Science.gov (United States)

    Yoshikawa, Masanobu; Kosaka, Kenichi; Seki, Hirohumi; Kimoto, Tsunenobu

    2016-07-01

    We measured the depolarized and polarized Raman spectra of a 4H-SiC metal-oxide-semiconductor field-effect transistor (MOSFET) and found that compressive stress of approximately 20 MPa occurs under the source and gate electrodes and tensile stress of approximately 10 MPa occurs between the source and gate electrodes. The experimental result was in close agreement with the result obtained by calculation using the finite element method (FEM). A combination of Raman spectroscopy and FEM provides much data on the stresses in 4H-SiC MOSFET.

  18. Phosphorus and boron diffusion paths in polycrystalline silicon gate of a trench-type three-dimensional metal-oxide-semiconductor field effect transistor investigated by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bin, E-mail: hanbin@imr.tohoku.ac.jp; Takamizawa, Hisashi, E-mail: takamizawa.hisashi@jaea.go.jp; Shimizu, Yasuo; Inoue, Koji; Nagai, Yasuyoshi [The Oarai Center, Institute for Materials Research, Tohoku University, 2145-2 Narita, Oarai, Ibaraki 311-1313 (Japan); Yano, Fumiko [Department of Electrical Engineering, Faculty of Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557 (Japan); Kunimune, Yorinobu [Renesas Semiconductor Manufacturing Co., Ltd., 1120 Shimokuzawa, Sagamihara, Kanagawa 252-5298 (Japan); Inoue, Masao; Nishida, Akio [Renesas Electronics Corporation, 751 Horiguchi, Hitachinaka, Ibaraki 312-8504 (Japan)

    2015-07-13

    The dopant (P and B) diffusion path in n- and p-types polycrystalline-Si gates of trench-type three-dimensional (3D) metal-oxide-semiconductor field-effect transistors (MOSFETs) were investigated using atom probe tomography, based on the annealing time dependence of the dopant distribution at 900 °C. Remarkable differences were observed between P and B diffusion behavior. In the initial stage of diffusion, P atoms diffuse into deeper regions from the implanted region along grain boundaries in the n-type polycrystalline-Si gate. With longer annealing times, segregation of P on the grain boundaries was observed; however, few P atoms were observed within the large grains or on the gate/gate oxide interface distant from grain boundaries. These results indicate that P atoms diffuse along grain boundaries much faster than through the bulk or along the gate/gate oxide interface. On the other hand, in the p-type polycrystalline-Si gate, segregation of B was observed only at the initial stage of diffusion. After further annealing, the B atoms became uniformly distributed, and no clear segregation of B was observed. Therefore, B atoms diffuse not only along the grain boundary but also through the bulk. Furthermore, B atoms diffused deeper than P atoms along the grain boundaries under the same annealing conditions. This information on the diffusion behavior of P and B is essential for optimizing annealing conditions in order to control the P and B distributions in the polycrystalline-Si gates of trench-type 3D MOSFETs.

  19. Comparative Study of SiO2, Al2O3, and BeO Ultrathin Interfacial Barrier Layers in Si Metal-Oxide-Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    J. H. Yum

    2012-01-01

    Full Text Available In a previous study, we have demonstrated that beryllium oxide (BeO film grown by atomic layer deposition (ALD on Si and III-V MOS devices has excellent electrical and physical characteristics. In this paper, we compare the electrical characteristics of inserting an ultrathin interfacial barrier layer such as SiO2, Al2O3, or BeO between the HfO2 gate dielectric and Si substrate in metal oxide semiconductor capacitors (MOSCAPs and n-channel inversion type metal oxide semiconductor field effect transistors (MOSFETs. Si MOSCAPs and MOSFETs with a BeO/HfO2 gate stack exhibited high performance and reliability characteristics, including a 34% improvement in drive current, slightly better reduction in subthreshold swing, 42% increase in effective electron mobility at an electric field of 1 MV/cm, slightly low equivalent oxide thickness, less stress-induced flat-band voltage shift, less stress induced leakage current, and less interface charge.

  20. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    Energy Technology Data Exchange (ETDEWEB)

    Kanaki, Toshiki, E-mail: kanaki@cryst.t.u-tokyo.ac.jp; Asahara, Hirokatsu; Ohya, Shinobu, E-mail: ohya@cryst.t.u-tokyo.ac.jp; Tanaka, Masaaki, E-mail: masaaki@ee.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-14

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.

  1. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K., E-mail: paul.hurley@tyndall.ie [Tyndall National Institute, University College Cork, Dyke Parade, Cork (Ireland)

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.

  2. Explicit Compact Surface-Potential and Drain-Current Models for Generic Asymmetric Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistors

    Science.gov (United States)

    Zhu, Zhaomin; Zhou, Xing; Chandrasekaran, Karthik; Rustagi, Subhash C.; See, Guan Huei

    2007-04-01

    In this paper, explicit surface potentials for undoped asymmetric-double-gate (a-DG) metal-oxide-semiconductor field-effect transistors (MOSFETs) suitable for compact model development are presented for the first time. The model is physically derived from Poisson’s equation in each region of operation and adopted in a unified regional approach. The proposed model is physically scalable with oxide/channel thicknesses and has been verified with generic implicit solutions for independent gate biases as well as for different gate/oxide materials. The model is extendable to silicon-on-insulator (SOI) and symmetric-DG (s-DG) MOSFETs. Finally, a continuous, explicit drain-current equation has been derived on the basis of the developed explicit surface-potential solutions.

  3. Mechanical stress effects on Pb(Zr,Ti)O3 thin-film ferroelectric capacitors embedded in a standard complementary metal-oxide-semiconductor process

    Science.gov (United States)

    Acosta, Antonio G.; Rodriguez, John A.; Nishida, Toshikazu

    2014-06-01

    We report experimental investigations of externally applied mechanical stress on 70 nm Pb(Zr,Ti)O3 ferroelectric capacitors embedded within a 130 nm complementary metal-oxide-semiconductor manufacturing process. An average increase in the remnant polarization of 3.37% per 100 MPa compressive uniaxial stress was observed. The maximum polarization increased by 2.68% per 100 MPa, while the cycling endurance was not affected by stress. The significant difference between experiment and the lattice distortion model suggests that two mechanisms are responsible for the polarization change. These results indicate that stress engineering may be used to enhance the signal margin in ferroelectric random access memory and enable technology scaling.

  4. Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature

    Science.gov (United States)

    Liuan, Li; Jiaqi, Zhang; Yang, Liu; Jin-Ping, Ao

    2016-03-01

    In this paper, TiN/AlOx gated AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS-HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process, ohmic contact can be obtained by annealing at 600 °C with the contact resistance approximately 1.6 Ω·mm. The ohmic annealing process also acts as a post-deposition annealing on the oxide film, resulting in good device performance. Those results demonstrated that the TiN/AlOx gated MOS-HFETs with low temperature ohmic process can be applied for self-aligned gate AlGaN/GaN MOS-HFETs. Project supported by the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260).

  5. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-02-12

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry\\'s most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  6. Thick detection zone single-photon avalanche diode fabricated in 0.35 μm complementary metal-oxide semiconductors

    Science.gov (United States)

    Steindl, Bernhard; Enne, Reinhard; Zimmermann, Horst

    2015-05-01

    An avalanche photodiode (APD) fabricated in 0.35 μm high-voltage complementary metal-oxide semiconductor (CMOS) technology, which was originally optimized for linear mode applications, is characterized in Geiger mode operation. This work shows that the used design concept is also suitable for single-photon detection applications and achieves a photon detection efficiency of 22.1% at 785 nm due to a thick detection zone and 3.5 V excess bias. At this operation point, the single-photon APD achieves good results regarding afterpulsing probability (3.4%) and dark count rate (46 kHz) with respect to the large active diameter of 86 μm.

  7. Analysis, Design, and Optimization of Matched-Impedance Wide-Band Amplifiers With Multiple Feedback Loops Using 0.18 μm Complementary Metal Oxide Semiconductor Technology

    Science.gov (United States)

    Lin, Yo-Sheng; Lee, Tai-Hsing

    2004-10-01

    The realization of matched-impedance wide-band amplifier fabricated by 0.18 μm complementary metal oxide semiconductor (CMOS) process is reported. The technique of multiple feedback loops was used in the amplifier for terminal impedance matching and wide bandwidth simultaneously. The experimental results show that 3-dB bandwidth of 3 GHz and a gain of 10.7 dB with in-band input/output return loss more than 10 dB are obtained. These values agree well with those predicted from the analytic expressions derived for voltage gain, trans-impedance gain, bandwidth, and input/output return loss and impedance. In addition, the use of source capacitive peaking technique can improve the intrinsic over-damped characteristic of this amplifier.

  8. Device and Circuit Codesign Strategy for Application to Low-Noise Amplifier Based on Silicon Nanowire Metal-Oxide-Semiconductor Field Effect Transistors

    Science.gov (United States)

    Seongjae Cho,; Hee-Sauk Jhon,; Jung Hoon Lee,; Se Hwan Park,; Hyungcheol Shin,; Byung-Gook Park,

    2010-04-01

    In this study, a full-range approach from device level to circuit level design is performed for RF application of silicon nanowire (SNW) metal-oxide-semiconductor field effect transistors (MOSFETs). Both DC and AC analyses have been conducted to confirm the advantages of an SNW MOSFET over the conventional planar (CPL) MOSFET device having dimensional equivalence. Besides the intrinsic characteristic parameters, the extrinsic resistance and capacitance caused by wiring components are extracted from each device. On the basis of these intrinsic and extrinsic parameters, a multi-fingered 5.8 GHz low-noise amplifier (LNA) design adopting SNW MOSFETs has been achieved, which shows an improved gain of 17.5 dB and a noise figure of 3.1 dB over a CPL MOSFET LNA.

  9. Electrical hysteresis in p-GaN metal-oxide-semiconductor capacitor with atomic-layer-deposited Al2O3 as gate dielectric

    Science.gov (United States)

    Zhang, Kexiong; Liao, Meiyong; Imura, Masataka; Nabatame, Toshihide; Ohi, Akihiko; Sumiya, Masatomo; Koide, Yasuo; Sang, Liwen

    2016-12-01

    The electrical hysteresis in current-voltage (I-V) and capacitance-voltage characteristics was observed in an atomic-layer-deposited Al2O3/p-GaN metal-oxide-semiconductor capacitor (PMOSCAP). The absolute minimum leakage currents of the PMOSCAP for forward and backward I-V scans occurred not at 0 V but at -4.4 and +4.4 V, respectively. A negative flat-band voltage shift of 5.5 V was acquired with a capacitance step from +4.4 to +6.1 V during the forward scan. Mg surface accumulation on p-GaN was demonstrated to induce an Mg-Ga-Al-O oxidized layer with a trap density on the order of 1013 cm-2. The electrical hysteresis is attributed to the hole trapping and detrapping process in the traps of the Mg-Ga-Al-O layer via the Poole-Frenkel mechanism.

  10. Growth, strain relaxation properties and high-κ dielectric integration of mixed-anion GaAs1-ySby metamorphic materials

    Science.gov (United States)

    Zhu, Y.; Clavel, M.; Goley, P.; Hudait, M. K.

    2014-10-01

    Mixed-anion, GaAs1-ySby metamorphic materials with a wide range of antimony (Sb) compositions extending from 15% to 62%, were grown by solid source molecular beam epitaxy (MBE) on GaAs substrates. The impact of different growth parameters on the Sb composition in GaAs1-ySby materials was systemically investigated. The Sb composition was well-controlled by carefully optimizing the As/Ga ratio, the Sb/Ga ratio, and the substrate temperature during the MBE growth process. High-resolution x-ray diffraction demonstrated a quasi-complete strain relaxation within each composition of GaAs1-ySby. Atomic force microscopy exhibited smooth surface morphologies across the wide range of Sb compositions in the GaAs1-ySby structures. Selected high-κ dielectric materials, Al2O3, HfO2, and Ta2O5 were deposited using atomic layer deposition on the GaAs0.38Sb0.62 material, and their respective band alignment properties were investigated by x-ray photoelectron spectroscopy (XPS). Detailed XPS analysis revealed a valence band offset of >2 eV for all three dielectric materials on GaAs0.38Sb0.62, indicating the potential of utilizing these dielectrics on GaAs0.38Sb0.62 for p-type metal-oxide-semiconductor (MOS) applications. Moreover, both Al2O3 and HfO2 showed a conduction band offset of >2 eV on GaAs0.38Sb0.62, suggesting these two dielectrics can also be used for n-type MOS applications. The well-controlled Sb composition in several GaAs1-ySby material systems and the detailed band alignment analysis of multiple high-κ dielectric materials on a fixed Sb composition, GaAs0.38Sb0.62, provides a pathway to utilize GaAs1-ySby materials in future microelectronic and optoelectronic applications.

  11. Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer

    KAUST Repository

    Nayak, Pradipta K.

    2014-04-14

    We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n-and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling the concentration of hydroxyl groups (OH-groups) in the underlying gate dielectrics. The semiconducting tin oxide layer was deposited at room temperature, and the maximum device fabrication temperature was 350C. Both n and p-type TFTs showed fairly comparable performance. A functional CMOS inverter was fabricated using this novel scheme, indicating the potential use of our approach for various practical applications.

  12. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current.

    Science.gov (United States)

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-02-04

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters.

  13. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current

    Science.gov (United States)

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-02-01

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters.

  14. The Impact of HC1 Precleaning and Sulfur Passivation on the Al2O3/Ge Interface in Ge Metal-Oxide-Semiconductor Capacitors

    Institute of Scientific and Technical Information of China (English)

    XUE Bai-Qing; CHANG Hu-Dong; SUN Bing; WANG Sheng-Kai; LIU Hong-Gang

    2012-01-01

    Surface treatment for Ge substrates using hydrogen chlorine cleaning and chemical passivation are investigated on AuTi/Al2O3/Ge metal-oxide-semiconductor capacitors. After hydrogen chlorine cleaning, a smooth Ge surface almost free from native oxide is demonstrated by atomic force microscopy and x-ray photoelectron spectroscopy observations. Passivation using a hydrogen chlorine solution is found to form a chlorine-terminated surface, while aqueous ammonium sulfide pretreatment results in a surface terminated by Ge-S bonding. Compared with chlorine-passivated samples, the sulfur-passivated ones show less frequency dispersion and better thermal stability based on capacitance-voltage characterizations. The samples with HCl pre-cleaning and (NH4)2S passivation show less frequency dispersion than the HF pre-cleaning and (NH4)2S passivated ones. The surface treatment process using hydrogen chlorine cleaning followed by aqueous ammonium sulfide passivation demonstrates a promising way to improve gate dielectric/Ge interface quality.%Surface treatment for Ge substrates using hydrogen chlorine cleaning and chemical passivation are investigated on AuTi/Al2O3/Ge metal-oxide-semiconductor capacitors.After hydrogen chlorine cleaning,a smooth Ge surface almost free from native oxide is demonstrated by atomic force microscopy and x-ray photoelectron spectroscopy observations.Passivation using a hydrogen chlorine solution is found to form a chlorine-terminated surface,while aqueous ammonium sulfide pretreatment results in a surface terminated by Ge-S bonding.Compared with chlorine-passivated samples,the sulfur-passivated ones show less frequency dispersion and better thermal stability based on capacitance-voltage characterizations.The samples with HCl pre-cleaning and (NH4 )2S passivation show less frequency dispersion than the HF pre-cleaning and (NH4)2S passivated ones.The surface treatment process using hydrogen chlorine cleaning followed by aqueous ammonium sulfide

  15. Self-aligned inversion n-channel In 0.2Ga 0.8As/GaAs metal-oxide-semiconductor field-effect-transistors with TiN gate and Ga 2O 3(Gd 2O 3) dielectric

    Science.gov (United States)

    Chen, C. P.; Lin, T. D.; Lee, Y. J.; Chang, Y. C.; Hong, M.; Kwo, J.

    2008-10-01

    A self-aligned process for fabricating inversion n-channel metal-oxide-semiconductor field-effect-transistors (MOSFET's) of strained In 0.2Ga 0.8As on GaAs using TiN as gate metal and Ga 2O 3(Gd 2O 3) as high κ gate dielectric has been developed. A MOSFET with a 4 μm gate length and a 100 μm gate width exhibits a drain current of 1.5 mA/mm at Vg = 4 V and Vd = 2 V, a low gate leakage of extrinsic transconductance of 1.7 mS/mm at Vg = 3 V, Vd = 2 V, and an on/off ratio of ˜10 5 in drain current. For comparison, a TiN/Ga 2O 3(Gd 2O 3)/In 0.2Ga 0.8As MOS diode after rapid thermal annealing (RTA) to high temperatures of 750 °C exhibits excellent electrical and structural performances: a low leakage current density of 10 -8-10 -9 A/cm 2, well-behaved capacitance-voltage ( C- V) characteristics giving a high dielectric constant of ˜16 and a low interfacial density of state of ˜(2˜6) × 10 11 cm -2 eV -1, and an atomically sharp smooth Ga 2O 3(Gd 2O 3)/In 0.2Ga 0.8As interface.

  16. Interfacial band configuration and electrical properties of LaAlO{sub 3}/Al{sub 2}O{sub 3}/hydrogenated-diamond metal-oxide-semiconductor field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J. W.; Liao, M. Y.; Imura, M. [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Oosato, H.; Watanabe, E. [Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Tanaka, A.; Iwai, H. [Materials Analysis Station, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Koide, Y. [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Center of Materials Research for Low Carbon Emission, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2013-08-28

    In order to search a gate dielectric with high permittivity on hydrogenated-diamond (H-diamond), LaAlO{sub 3} films with thin Al{sub 2}O{sub 3} buffer layers are fabricated on the H-diamond epilayers by sputtering-deposition (SD) and atomic layer deposition (ALD) techniques, respectively. Interfacial band configuration and electrical properties of the SD-LaAlO{sub 3}/ALD-Al{sub 2}O{sub 3}/H-diamond metal-oxide-semiconductor field effect transistors (MOSFETs) with gate lengths of 10, 20, and 30 μm have been investigated. The valence and conduction band offsets of the SD-LaAlO{sub 3}/ALD-Al{sub 2}O{sub 3} structure are measured by X-ray photoelectron spectroscopy to be 1.1 ± 0.2 and 1.6 ± 0.2 eV, respectively. The valence band discontinuity between H-diamond and LaAlO{sub 3} is evaluated to be 4.0 ± 0.2 eV, showing that the MOS structure acts as the gate which controls a hole carrier density. The leakage current density of the SD-LaAlO{sub 3}/ALD-Al{sub 2}O{sub 3}/H-diamond MOS diode is smaller than 10{sup −8} A cm{sup −2} at gate bias from −4 to 2 V. The capacitance-voltage curve in the depletion mode shows sharp dependence, small flat band voltage, and small hysteresis shift, which implies low positive and trapped charge densities. The MOSFETs show p-type channel and complete normally off characteristics with threshold voltages changing from −3.6 ± 0.1 to −5.0 ± 0.1 V dependent on the gate length. The drain current maximum and the extrinsic transconductance of the MOSFET with gate length of 10 μm are −7.5 mA mm{sup −1} and 2.3 ± 0.1 mS mm{sup −1}, respectively. The enhancement mode SD-LaAlO{sub 3}/ALD-Al{sub 2}O{sub 3}/H-diamond MOSFET is concluded to be suitable for the applications of high power and high frequency electrical devices.

  17. High temperature behavior of multi-region direct current current-voltage spectroscopy and relationship with shallow-trench-isolation-based high-voltage laterally diffused metal-oxide-semiconductor field-effect-transistors reliability

    Science.gov (United States)

    He, Yandong; Zhang, Ganggang; Zhang, Xing

    2014-01-01

    With the process compatibility with the mainstream standard complementary metal-oxide-semiconductor (CMOS), shallow trench isolation (STI) based laterally diffused metal-oxide-semiconductor (LDMOS) devices have become popular for its better tradeoff between breakdown voltage and performance, especially for smart power applications. A multi-region direct current current-voltage (MR-DCIV) technique with spectroscopic features was demonstrated to map the interface state generation in the channel, accumulation and STI drift regions. High temperature behavior of MR-DCIV spectroscopy was analyzed and a physical model was verified. Degradation of STI-based LDMOS transistors under high temperature reverse bias (HTRB) stress is experimentally studied by MR-DCIV spectroscopy. The impact of interface state location on device electrical characteristics was investigated. Our results show that the major contribution to HTRB degradation, in term of the on-resistance degradation, was attributed to interface state generation under STI drift region.

  18. Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics.

    Science.gov (United States)

    Levine, Peter M; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L

    2009-03-15

    Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4 x 4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5 mm x 3 mm CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays.

  19. Design, Construction and Performance Evaluation of a Metal Oxide Semiconductor (MOS Based Machine Olfaction (Electronic Nose for Monitoring of Banana Ripeness

    Directory of Open Access Journals (Sweden)

    A Sanaeifar

    2016-04-01

    Full Text Available Aroma is one of the most important sensory properties of fruits and is particularly sensitive to the changes in fruit compounds. Gases involved in aroma of fruits are produced from the metabolic activities during ripening, harvest, post-harvest and storage stages. Therefore, the emitted aroma of fruits changes during the shelf-life period. The electronic nose (machine olfaction would simulate the human sense of smell to identify and realize the complex aromas by using an array of chemical sensors. In this research, a low cost electronic nose based on six metal oxide semiconductor (MOS sensors were designed, developed and implemented and its ability for monitoring changes in aroma fingerprint during ripening of banana was studied. The main components are used in the e-nose system include sampling system, an array of gas sensors, data acquisition system and an appropriate pattern recognition algorithm. Linear Discriminant Analysis (LDA technique was used for classification of the extracted features of e-nose signals. Based on the results, the classification accuracy of 97/3% was obtained. Results showed the high ability of e-nose for distinguishing between the stages of ripening. It is concluded that the system can be considered as a nondestructive tool for quality control during banana shelf-life.

  20. Effects of substrate voltage on noise characteristics and hole lifetime in SOI metal-oxide-semiconductor field-effect transistor photon detector.

    Science.gov (United States)

    Putranto, Dedy Septono Catur; Priambodo, Purnomo Sidi; Hartanto, Djoko; Du, Wei; Satoh, Hiroaki; Ono, Atsushi; Inokawa, Hiroshi

    2014-09-08

    Low-frequency noise and hole lifetime in silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) are analyzed, considering their use in photon detection based on single-hole counting. The noise becomes minimum at around the transition point between front- and back-channel operations when the substrate voltage is varied, and increases largely on both negative and positive sides of the substrate voltage showing peculiar Lorentzian (generation-recombination) noise spectra. Hole lifetime is evaluated by the analysis of drain current histogram at different substrate voltages. It is found that the peaks in the histogram corresponding to the larger number of stored holes become higher as the substrate bias becomes larger. This can be attributed to the prolonged lifetime caused by the higher electric field inside the body of SOI MOSFET. It can be concluded that, once the inversion channel is induced for detection of the photo-generated holes, the small absolute substrate bias is favorable for short lifetime and low noise, leading to high-speed operation.

  1. Thin film three-dimensional topological insulator metal-oxide-semiconductor field-effect-transistors: A candidate for sub-10 nm devices

    Energy Technology Data Exchange (ETDEWEB)

    Akhavan, N. D., E-mail: nima.dehdashti@uwa.edu.au; Jolley, G.; Umana-Membreno, G. A.; Antoszewski, J.; Faraone, L. [Department of Electrical, Electronic and Computer Engineering, University of Western Australia, Crawley, WA 6009 (Australia)

    2014-08-28

    Three-dimensional (3D) topological insulators (TI) are a new state of quantum matter in which surface states reside in the bulk insulating energy bandgap and are protected by time-reversal symmetry. It is possible to create an energy bandgap as a consequence of the interaction between the conduction band and valence band surface states from the opposite surfaces of a TI thin film, and the width of the bandgap can be controlled by the thin film thickness. The formation of an energy bandgap raises the possibility of thin-film TI-based metal-oxide-semiconductor field-effect-transistors (MOSFETs). In this paper, we explore the performance of MOSFETs based on thin film 3D-TI structures by employing quantum ballistic transport simulations using the effective continuous Hamiltonian with fitting parameters extracted from ab-initio calculations. We demonstrate that thin film transistors based on a 3D-TI structure provide similar electrical characteristics compared to a Si-MOSFET for gate lengths down to 10 nm. Thus, such a device can be a potential candidate to replace Si-based MOSFETs in the sub-10 nm regime.

  2. Mechanical Stress Evaluation of Si Metal-Oxide-Semiconductor Field-Effect Transistor Structure Using Polarized Ultraviolet Raman Spectroscopy Measurements and Calibrated Technology-Computer-Aided-Design Simulations

    Science.gov (United States)

    Satoh, Akira; Tada, Tetsuya; Poborchii, Vladimir; Kanayama, Toshihiko; Satoh, Shigeo; Arimoto, Hiroshi

    2012-01-01

    The mechanical stresses in Si metal-oxide-semiconductor field-effect transistors (MOSFETs) were evaluated by polarized UV Raman spectroscopy measurements and stress simulations. To calibrate stress parameters of the materials used in the Si MOSFETs, we compared measured and simulated Raman frequency shifts on the cleaved Si(110) surfaces of the MOSFETs. Consequently, we extracted intrinsic stress values of -400 MPa for a SiO2, -200 MPa for polycrystalline Si (poly-Si), 700 MPa for Ni silicide, 1250 MPa for a SiN tensile stress liner, and -3500 MPa for a SiN compressive stress liner by finding good agreement between the measured and simulated Raman shift distributions. To verify our stress simulation, we investigated the source/drain width dependences of Raman frequency shifts near the channel regions of Si MOSFETs by top-view Raman measurements. The calculated Raman frequency shifts agreed well with the results of polarized Raman measurements in terms of not only relative tendencies but also absolute Raman shift values.

  3. Strained Germanium-Tin (GeSn) P-Channel Metal-Oxide-Semiconductor Field-Effect Transistors Featuring High Effective Hole Mobility

    Science.gov (United States)

    Liu, Yan; Yan, Jing; Wang, Hongjuan; Cheng, Buwen; Han, Genquan

    2015-06-01

    Compressively strained and p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are fabricated with low-temperature surface passivation. High crystallinity GeSn films epitaxially grown on a Ge(001) substrate are used for the device fabrication. The impacts of the Sn composition on the subthreshold swing , threshold voltage , on-state current , and effective hole mobility of the devices are investigated. GeSn pMOSFETs with different Sn compositions show a similar , indicating almost the same midgap density of interface states . A positive shift of with an increase of the Sn composition is observed. A pMOSFET exhibits a significant improvement in as compared to a device with a lower Sn composition, which is due to the superior hole mobility in a device with a higher Sn composition. pMOSFETs achieve a peak effective hole mobility of , which is much higher than that of devices. The enhancement of the compressive strain and chemical effect in the channel region with increased Sn composition leads to an improvement of.

  4. An accurate simulation study on capacitance-voltage characteristics of metal-oxide-semiconductor field-effect transistors in novel structures

    Science.gov (United States)

    Yu, Eunseon; Cho, Seongjae; Park, Byung-Gook

    2017-09-01

    An essential and important method for physical and electrical characterization of a metal-oxide-semiconductor (MOS) structure is the capacitance-voltage (C-V) measurement. Judging from the C-V characteristics of a MOS structure, we are allowed to predict the DC and AC behaviors of the field-effect transistor and extract a set of primary parameters. The MOS field-effect transistor (MOSFET) technology has evolved to enhance the gate controllability over the channel in order for effectively suppressing the short-channel effects (SCEs) unwantedly taking place as device scaling progresses. For the goal, numerous novel structures have been suggested for the advanced MOSFET devices. However, the C-V characteristics of such novel MOS structures have not been seldom studied in depth. In this work, we report the C-V characteristics of ultra-thin-body (UTB) MOSFETs on the bulk Si and silicon-on-insulator (SOI) substrates by rigorous technology computer-aided design (TCAD) simulation. For higher credibility and accuracy, quantum-mechanical models are activated and empirical material parameters are employed from the existing literature. The MOSFET structure and the material configurations are schemed referring advanced logic technology suggested by the most recent technology roadmap. The C-V characteristics of UTB MOSFETs having a floating body with extremely small volume are closely investigated.

  5. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    Energy Technology Data Exchange (ETDEWEB)

    Hoidn, Oliver R.; Seidler, Gerald T., E-mail: seidler@uw.edu [Physics Department, University of Washington, Seattle, Washington 98195 (United States)

    2015-08-15

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.

  6. Achievement of low parasitic resistance in Ge n-channel metal-oxide-semiconductor field-effect transistor using an embedded TiN-source/drain structure

    Science.gov (United States)

    Nagatomi, Y.; Tateyama, T.; Tanaka, S.; Yamamoto, K.; Wang, D.; Nakashima, H.

    2017-03-01

    We investigated the source/drain (S/D) parasitic resistance (R P) of a Ge n-channel metal-oxide-semiconductor field-effect transistor (n-MOSFET) with TiN-S/D. The R P was as high as ∼1400 Ω, which is attributed to a very thin amorphous interlayer (a-IL) at a TiN/Ge interface. To solve this problem, n-MOSFETs with an embedded S/D structure were fabricated, of which the S/D was formed by the etching of a Ge layer using 0.03%-H2O2 solution followed by TiN sputter deposition. The electrical performances were investigated for devices with etching depths in the range of 2–22 nm. The devices with etching depths of 2–5 nm did not work. The devices with etching depths of 12–15 nm showed a quite normal transistor operation, and the R P was as low as ∼130 Ω, which is comparable to that of a p-MOSFET with PtGe-S/D. However, R Ps of the devices with etching depths of ∼22 nm was considerably high. The reason for these results is discussed on the basis of an a-IL formation at the sidewall of the engraved S/D region.

  7. Radiofrequency current source (RFCS) drive and decoupling technique for parallel transmit arrays using a high-power metal oxide semiconductor field-effect transistor (MOSFET).

    Science.gov (United States)

    Lee, Wonje; Boskamp, Eddy; Grist, Thomas; Kurpad, Krishna

    2009-07-01

    A radiofrequency current source (RFCS) design using a high-power metal oxide semiconductor field effect transistor (MOSFET) that enables independent current control for parallel transmit applications is presented. The design of an RFCS integrated with a series tuned transmitting loop and its associated control circuitry is described. The current source is operated in a gated class AB push-pull configuration for linear operation at high efficiency. The pulsed RF current amplitude driven into the low impedance transmitting loop was found to be relatively insensitive to the various loaded loop impedances ranging from 0.4 to 10.3 ohms, confirming current mode operation. The suppression of current induced by a neighboring loop was quantified as a function of center-to-center loop distance, and was measured to be 17 dB for nonoverlapping, adjacent loops. Deterministic manipulation of the B(1) field pattern was demonstrated by the independent control of RF phase and amplitude in a head-sized two-channel volume transmit array. It was found that a high-voltage rated RF power MOSFET with a minimum load resistance, exhibits current source behavior, which aids in transmit array design.

  8. Analytical modeling to design the vertically aligned Si-nanowire metal-oxide-semiconductor photosensors for direct color sensing with high spectral resolution

    Science.gov (United States)

    Sikdar, Subhrajit; Chowdhury, Basudev Nag; Ghosh, Ajay; Chattopadhyay, Sanatan

    2017-03-01

    In the current work, an analytical model for the design of vertically aligned silicon (Si) nanowire metal-oxide-semiconductor (MOS) capacitor based multi-color photodetectors has been developed for the detection of entire visible spectrum with high spectral resolution. The photogeneration phenomena within the nanostructures are analyzed in detail by developing a quantum field model associated with second quantization electron-photon field operators. The non-equilibrium Green's function (NEGF) formalism is employed to solve the relevant equations. The study shows that the proposed device with specified design of diameter-voltage combinations is capable of detecting 64 spectral bands of the entire visible spectrum (380 nm to700 nm) directly with a very high resolution of 5 nm wavelength. Such direct sensing of each wavelength is observed to be independent of the fluctuations of illumination intensity. The device is designed to obtain a full-width-at-half-maximum (FWHM) smaller than the spectral resolution (5 nm) for each wavelength of the visible range, which indicates a very high quality digital imaging/sensing method. Such devices may be a potential alternative for the future nanoelectronics based photodevices for superior sensing/imaging applications.

  9. Gate length and temperature dependence of negative differential transconductance in silicon quantum well metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Naquin, Clint; Lee, Mark [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Edwards, Hal; Mathur, Guru; Chatterjee, Tathagata; Maggio, Ken [Texas Instruments Inc., Richardson, Texas 75243 (United States)

    2015-09-28

    Introducing quantum transport into silicon transistors in a manner compatible with industrial fabrication has the potential to transform the performance horizons of large scale integrated silicon devices and circuits. Explicit quantum transport as evidenced by negative differential transconductances (NDTCs) has been observed in a set of quantum well (QW) transistors fabricated using industrial silicon complementary metal-oxide-semiconductor processing. Detailed gate length and temperature dependence characteristics of the NDTCs in these devices have been measured. The QW potential was formed via lateral ion implantation doping on a commercial 45 nm technology node process line, and measurements of the transfer characteristics show NDTCs up to room temperature. Gate length dependence of NDTCs shows a correlation of the interface channel length with the number of NDTCs formed as well as with the gate voltage (V{sub G}) spacing between NDTCs. The V{sub G} spacing between multiple NDTCs suggests a quasi-parabolic QW potential profile. The temperature dependence is consistent with partial freeze-out of carrier concentration against a degenerately doped background.

  10. Modeling of anisotropic two-dimensional materials monolayer HfS{sub 2} and phosphorene metal-oxide semiconductor field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jiwon [SEMATECH, 257 Fuller Rd #2200, Albany, New York 12203 (United States)

    2015-06-07

    Ballistic transport characteristics of metal-oxide semiconductor field effect transistors (MOSFETs) based on anisotropic two-dimensional materials monolayer HfS{sub 2} and phosphorene are explored through quantum transport simulations. We focus on the effects of the channel crystal orientation and the channel length scaling on device performances. Especially, the role of degenerate conduction band (CB) valleys in monolayer HfS{sub 2} is comprehensively analyzed. Benchmarking monolayer HfS{sub 2} with phosphorene MOSFETs, we predict that the effect of channel orientation on device performances is much weaker in monolayer HfS{sub 2} than in phosphorene due to the degenerate CB valleys of monolayer HfS{sub 2}. Our simulations also reveal that at 10 nm channel length scale, phosphorene MOSFETs outperform monolayer HfS{sub 2} MOSFETs in terms of the on-state current. However, it is observed that monolayer HfS{sub 2} MOSFETs may offer comparable, but a little bit degraded, device performances as compared with phosphorene MOSFETs at 5 nm channel length.

  11. The role of the substrate on the dispersion in accumulation in III-V compound semiconductor based metal-oxide-semiconductor gate stacks

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, Igor, E-mail: krylov@tx.technion.ac.il [The Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000 (Israel); Ritter, Dan [The Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000 (Israel); Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa 32000 (Israel); Eizenberg, Moshe [The Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000 (Israel); Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000 (Israel)

    2015-09-07

    Dispersion in accumulation is a widely observed phenomenon in metal-oxide-semiconductor gate stacks based on III-V compound semiconductors. The physical origin of this phenomenon is attributed to border traps located in the dielectric material adjacent to the semiconductor. Here, we study the role of the semiconductor substrate on the electrical quality of the first layers at atomic layer deposited (ALD) dielectrics. For this purpose, either Al{sub 2}O{sub 3} or HfO{sub 2} dielectrics with variable thicknesses were deposited simultaneously on two technology important semiconductors—InGaAs and InP. Significantly larger dispersion was observed in InP based gate stacks compared to those based on InGaAs. The observed difference is attributed to a higher border trap density in dielectrics deposited on InP compared to those deposited on InGaAs. We therefore conclude that the substrate plays an important role in the determination of the electrical quality of the first dielectric monolayers deposited by ALD. An additional observation is that larger dispersion was obtained in HfO{sub 2} based capacitors compared to Al{sub 2}O{sub 3} based capacitors, deposited on the same semiconductor. This phenomenon is attributed to the lower conduction band offset rather than to a higher border trap density.

  12. AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor with Polarized P(VDF-TrFE) Ferroelectric Polymer Gating

    Science.gov (United States)

    Liu, Xinke; Lu, Youming; Yu, Wenjie; Wu, Jing; He, Jiazhu; Tang, Dan; Liu, Zhihong; Somasuntharam, Pannirselvam; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun; Chen, Shaojun; Seow Tan, Leng

    2015-01-01

    Effect of a polarized P(VDF-TrFE) ferroelectric polymer gating on AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) was investigated. The P(VDF-TrFE) gating in the source/drain access regions of AlGaN/GaN MOS-HEMTs was positively polarized (i.e., partially positively charged hydrogen were aligned to the AlGaN surface) by an applied electric field, resulting in a shift-down of the conduction band at the AlGaN/GaN interface. This increases the 2-dimensional electron gas (2-DEG) density in the source/drain access region of the AlGaN/GaN heterostructure, and thereby reduces the source/drain series resistance. Detailed material characterization of the P(VDF-TrFE) ferroelectric film was also carried out using the atomic force microscopy (AFM), X-ray Diffraction (XRD), and ferroelectric hysteresis loop measurement. PMID:26364872

  13. Atomic Layer Deposition of Gallium Oxide Films as Gate Dielectrics in AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistors.

    Science.gov (United States)

    Shih, Huan-Yu; Chu, Fu-Chuan; Das, Atanu; Lee, Chia-Yu; Chen, Ming-Jang; Lin, Ray-Ming

    2016-12-01

    In this study, films of gallium oxide (Ga2O3) were prepared through remote plasma atomic layer deposition (RP-ALD) using triethylgallium and oxygen plasma. The chemical composition and optical properties of the Ga2O3 thin films were investigated; the saturation growth displayed a linear dependence with respect to the number of ALD cycles. These uniform ALD films exhibited excellent uniformity and smooth Ga2O3-GaN interfaces. An ALD Ga2O3 film was then used as the gate dielectric and surface passivation layer in a metal-oxide-semiconductor high-electron-mobility transistor (MOS-HEMT), which exhibited device performance superior to that of a corresponding conventional Schottky gate HEMT. Under similar bias conditions, the gate leakage currents of the MOS-HEMT were two orders of magnitude lower than those of the conventional HEMT, with the power-added efficiency enhanced by up to 9 %. The subthreshold swing and effective interfacial state density of the MOS-HEMT were 78 mV decade(-1) and 3.62 × 10(11) eV(-1) cm(-2), respectively. The direct-current and radio-frequency performances of the MOS-HEMT device were greater than those of the conventional HEMT. In addition, the flicker noise of the MOS-HEMT was lower than that of the conventional HEMT.

  14. Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications.

    Science.gov (United States)

    Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas

    2015-10-06

    We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I-V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs.

  15. Potentiometric Dye Imaging for Pheochromocytoma and Cortical Neurons with a Novel Measurement System Using an Integrated Complementary Metal-Oxide-Semiconductor Imaging Device

    Science.gov (United States)

    Kobayashi, Takuma; Tagawa, Ayato; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Hatanaka, Yumiko; Tamura, Hideki; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun

    2010-11-01

    The combination of optical imaging with voltage-sensitive dyes is a powerful tool for studying the spatiotemporal patterns of neural activity and understanding the neural networks of the brain. To visualize the potential status of multiple neurons simultaneously using a compact instrument with high density and a wide range, we present a novel measurement system using an implantable biomedical photonic LSI device with a red absorptive light filter for voltage-sensitive dye imaging (BpLSI-red). The BpLSI-red was developed for sensing fluorescence by the on-chip LSI, which was designed by using complementary metal-oxide-semiconductor (CMOS) technology. A micro-electro-mechanical system (MEMS) microfabrication technique was used to postprocess the CMOS sensor chip; light-emitting diodes (LEDs) were integrated for illumination and to enable long-term cell culture. Using the device, we succeeded in visualizing the membrane potential of 2000-3000 cells and the process of depolarization of pheochromocytoma cells (PC12 cells) and mouse cerebral cortical neurons in a primary culture with cellular resolution. Therefore, our measurement application enables the detection of multiple neural activities simultaneously.

  16. Temperature dependence of frequency dispersion in III–V metal-oxide-semiconductor C-V and the capture/emission process of border traps

    Energy Technology Data Exchange (ETDEWEB)

    Vais, Abhitosh, E-mail: Abhitosh.Vais@imec.be; Martens, Koen; DeMeyer, Kristin [Department of Electrical Engineering, KU Leuven, B-3000 Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Lin, Han-Chung; Ivanov, Tsvetan; Collaert, Nadine; Thean, Aaron [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Dou, Chunmeng [Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Xie, Qi; Maes, Jan [ASM International, B-3001 Leuven (Belgium); Tang, Fu; Givens, Michael [ASM International, Phoenix, Arizona 85034-7200 (United States); Raskin, Jean-Pierre [Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universiteé Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium)

    2015-08-03

    This paper presents a detailed investigation of the temperature dependence of frequency dispersion observed in capacitance-voltage (C-V) measurements of III-V metal-oxide-semiconductor (MOS) devices. The dispersion in the accumulation region of the capacitance data is found to change from 4%–9% (per decade frequency) to ∼0% when the temperature is reduced from 300 K to 4 K in a wide range of MOS capacitors with different gate dielectrics and III-V substrates. We show that such significant temperature dependence of C-V frequency dispersion cannot be due to the temperature dependence of channel electrostatics, i.e., carrier density and surface potential. We also show that the temperature dependence of frequency dispersion, and hence, the capture/emission process of border traps can be modeled by a combination of tunneling and a “temperature-activated” process described by a non-radiative multi-phonon model, instead of a widely believed single-step elastic tunneling process.

  17. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices.

    Science.gov (United States)

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines.

  18. Explanation of threshold voltage scaling in enhancement-mode InAlN/AlN-GaN metal oxide semiconductor high electron mobility transistors on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Alexewicz, A., E-mail: alexander.alexewicz@tuwien.ac.at [Vienna University of Technology, Floragasse 7, 1040 Vienna (Austria); Ostermaier, C.; Henkel, C.; Bethge, O. [Vienna University of Technology, Floragasse 7, 1040 Vienna (Austria); Carlin, J.-F.; Lugani, L.; Grandjean, N. [Ecole Polytechnique Federale de Lausanne, Station 3, 1015 Lausanne (Switzerland); Bertagnolli, E.; Pogany, D.; Strasser, G. [Vienna University of Technology, Floragasse 7, 1040 Vienna (Austria)

    2012-07-31

    We present enhancement-mode GaN high electron mobility transistors on Si substrates with ZrO{sub 2} gate dielectrics of thicknesses t{sub ox} between 10 and 24 nm. The oxide interlayers between the InAlN/AlN barrier and gate metal allow raising the device threshold voltage up to + 2.3 V and reduce gate leakage current to less than 100 nA/mm with a high drain current on/off ratio of 4 orders of magnitude. We use a model that explains the observed linear dependence of the threshold voltage on t{sub ox} and allows determining fixed charges at the oxide/barrier interface. - Highlights: Black-Right-Pointing-Pointer Enhancement-mode InAlN/AlN-GaN high electron mobility transistor (HEMT) Black-Right-Pointing-Pointer Metal oxide semiconductor HEMT with ZrO{sub 2} gate oxide Black-Right-Pointing-Pointer Linear decrease of threshold voltage with increasing gate oxide thickness Black-Right-Pointing-Pointer A model explaining that dependence is presented. Black-Right-Pointing-Pointer This model allows determining fixed charges at the InAlN/ZrO{sub 2} interface.

  19. Atomic Layer Deposition of Gallium Oxide Films as Gate Dielectrics in AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistors

    Science.gov (United States)

    Shih, Huan-Yu; Chu, Fu-Chuan; Das, Atanu; Lee, Chia-Yu; Chen, Ming-Jang; Lin, Ray-Ming

    2016-04-01

    In this study, films of gallium oxide (Ga2O3) were prepared through remote plasma atomic layer deposition (RP-ALD) using triethylgallium and oxygen plasma. The chemical composition and optical properties of the Ga2O3 thin films were investigated; the saturation growth displayed a linear dependence with respect to the number of ALD cycles. These uniform ALD films exhibited excellent uniformity and smooth Ga2O3-GaN interfaces. An ALD Ga2O3 film was then used as the gate dielectric and surface passivation layer in a metal-oxide-semiconductor high-electron-mobility transistor (MOS-HEMT), which exhibited device performance superior to that of a corresponding conventional Schottky gate HEMT. Under similar bias conditions, the gate leakage currents of the MOS-HEMT were two orders of magnitude lower than those of the conventional HEMT, with the power-added efficiency enhanced by up to 9 %. The subthreshold swing and effective interfacial state density of the MOS-HEMT were 78 mV decade-1 and 3.62 × 1011 eV-1 cm-2, respectively. The direct-current and radio-frequency performances of the MOS-HEMT device were greater than those of the conventional HEMT. In addition, the flicker noise of the MOS-HEMT was lower than that of the conventional HEMT.

  20. Investigation of Device Performance and Negative Bias Temperature Instability of Plasma Nitrided Oxide in Nanoscale p-Channel Metal-Oxide-Semiconductor Field-Effect Transistor's

    Science.gov (United States)

    Han, In-Shik; Ji, Hee-Hwan; Goo, Tae-Gyu; Yoo, Ook-Sang; Choi, Won-Ho; Na, Min-Ki; Kim, Yong-Goo; Park, Sung-Hyung; Lee, Heui-Seung; Kang, Young-Seok; Kim, Dae-Byung; Lee, Hi-Deok

    2008-04-01

    In this paper, we investigated the device performance and negative bias temperature instability (NBTI) degradation for thermally nitrided oxide (TNO) and plasma nitrided oxide (PNO) in nanoscale p-channel metal oxide semiconductor field effect transistor (PMOSFET). PNOs show the improvement of dielectric performance compared to TNO with no change of the device performance. PNOs also show the improvement of NBTI immunity than TNO at low temperature stress, whereas NBTI immunity of PNO with high N concentration can be worse than TNO at high temperature stress. Recovery effect of NBTI degradation of PNO is lower than that of TNO and it is increased as the N concentration is increased in PNO because the dissociated Si dangling bonds and generated positive oxide charges are repassivated and neutralized, respectively. Moreover, complete recovery of ΔVth is dominated by neutralization of positive oxide charges. Therefore, N contents at polycrystalline Si/SiO2 interface as well as N contents at Si/SiO2 interface can affect significantly on NBTI degradation and recovery effect.

  1. Real time in vivo imaging and measurement of serine protease activity in the mouse hippocampus using a dedicated complementary metal-oxide semiconductor imaging device.

    Science.gov (United States)

    Ng, David C; Tamura, Hideki; Tokuda, Takashi; Yamamoto, Akio; Matsuo, Masamichi; Nunoshita, Masahiro; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun

    2006-09-30

    The aim of the present study is to demonstrate the application of complementary metal-oxide semiconductor (CMOS) imaging technology for studying the mouse brain. By using a dedicated CMOS image sensor, we have successfully imaged and measured brain serine protease activity in vivo, in real-time, and for an extended period of time. We have developed a biofluorescence imaging device by packaging the CMOS image sensor which enabled on-chip imaging configuration. In this configuration, no optics are required whereby an excitation filter is applied onto the sensor to replace the filter cube block found in conventional fluorescence microscopes. The fully packaged device measures 350 microm thick x 2.7 mm wide, consists of an array of 176 x 144 pixels, and is small enough for measurement inside a single hemisphere of the mouse brain, while still providing sufficient imaging resolution. In the experiment, intraperitoneally injected kainic acid induced upregulation of serine protease activity in the brain. These events were captured in real time by imaging and measuring the fluorescence from a fluorogenic substrate that detected this activity. The entire device, which weighs less than 1% of the body weight of the mouse, holds promise for studying freely moving animals.

  2. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector.

    Science.gov (United States)

    Rojalin, Tatu; Kurki, Lauri; Laaksonen, Timo; Viitala, Tapani; Kostamovaara, Juha; Gordon, Keith C; Galvis, Leonardo; Wachsmann-Hogiu, Sebastian; Strachan, Clare J; Yliperttula, Marjo

    2016-01-01

    In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the

  3. Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: Impact of sulfur passivation on gate stack quality

    Science.gov (United States)

    Lei, Dian; Wang, Wei; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Liang, Gengchiau; Tok, Eng-Soon; Yeo, Yee-Chia

    2016-01-01

    The effect of room temperature sulfur passivation of the surface of Ge0.83Sn0.17 prior to high-k dielectric (HfO2) deposition is investigated. X-ray photoelectron spectroscopy (XPS) was used to examine the chemical bonding at the interface of HfO2 and Ge0.83Sn0.17. Sulfur passivation is found to be effective in suppressing the formation of both Ge oxides and Sn oxides. A comparison of XPS results for sulfur-passivated and non-passivated Ge0.83Sn0.17 samples shows that sulfur passivation of the GeSn surface could also suppress the surface segregation of Sn atoms. In addition, sulfur passivation reduces the interface trap density Dit at the high-k dielectric/Ge0.83Sn0.17 interface from the valence band edge to the midgap of Ge0.83Sn0.17, as compared with a non-passivated control. The impact of the improved Dit is demonstrated in Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs). Ge0.83Sn0.17 p-MOSFETs with sulfur passivation show improved subthreshold swing S, intrinsic transconductance Gm,int, and effective hole mobility μeff as compared with the non-passivated control. At a high inversion carrier density Ninv of 1 × 1013 cm-2, sulfur passivation increases μeff by 25% in Ge0.83Sn0.17 p-MOSFETs.

  4. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO)

    Science.gov (United States)

    Kumar, S. Girish; Rao, K. S. R. Koteswara

    2017-01-01

    Metal oxide semiconductors (TiO2, WO3 and ZnO) finds unparalleled opportunity in wastewater purification under UV/visible light, largely encouraged by their divergent admirable features like stability, non-toxicity, ease of preparation, suitable band edge positions and facile generation of active oxygen species in the aqueous medium. However, the perennial failings of these photocatalysts emanates from the stumbling blocks like rapid charge carrier recombination and meager visible light response. In this review, tailoring the surface-bulk electronic structure through the calibrated and veritable approaches such as impurity doping, deposition with noble metals, sensitizing with other compounds (dyes, polymers, inorganic complexes and simple chelating ligands), hydrogenation process (annealing under hydrogen atmosphere), electronic integration with other semiconductors, modifying with carbon nanostructures, designing with exposed facets and tailoring with hierarchical morphologies to overcome their critical drawbacks are summarized. Taking into account the materials intrinsic properties, the pros and cons together with similarities and striking differences for each strategy in specific to TiO2, WO3 & ZnO are highlighted. These subtlety enunciates the primacy for improving the structure-electronic properties of metal oxides and credence to its fore in the practical applications. Future research must focus on comparing the performances of ZnO, TiO2 and WO3 in parallel to get insight into their photocatalytic behaviors. Such comparisons not only reveal the changed surface-electronic structure upon various modifications, but also shed light on charge carrier dynamics, free radical generation, structural stability and compatibility for photocatalytic reactions. It is envisioned that these cardinal tactics have profound implications and can be replicated to other semiconductor photocatalysts like CeO2, In2O3, Bi2O3, Fe2O3, BiVO4, AgX, BiOX (X = Cl, Br & I), Bi2WO6, Bi2MoO6

  5. Sample size requirements for estimating effective dose from computed tomography using solid-state metal-oxide-semiconductor field-effect transistor dosimetry

    Science.gov (United States)

    Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.; Hoffmann, Udo; Douglas, Pamela S.; Einstein, Andrew J.

    2014-01-01

    Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample size required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same

  6. Integration of crystalline orientated γ-Al2O3 films and complementary metal-oxide-semiconductor circuits on Si(1 0 0) substrate

    Science.gov (United States)

    Oishi, Koji; Akai, Daisuke; Ishida, Makoto

    2015-01-01

    In this paper, integration of crystalline orientated γ-Al2O3 films and complementary metal-oxide-semiconductor (CMOS) circuits on Si(1 0 0) substrate was reported. In this integration processes, crystalline γ-Al2O3 films need to be preserved their crystallinity during high temperature annealing processes of CMOS fabrication in order to prevent surface condition changes. The γ-Al2O3 films grown on Si substrates are annealed in the CMOS fabrication process conditions, drive-in annealing at 1150 °C in O2 atmosphere and wet annealing 1000 °C in H2O vapor atmosphere. Reflection high energy electron diffraction (RHEED) and x-ray diffraction (XRD) were used to characterize the crystallinity of γ-Al2O3 films after the annealing processes. Surface conditions of the films are analyzed and observed with X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). As a result, RHEED patterns of the γ-Al2O3 films indicated that wet oxidation annealing was a critical process severally inferior surface condition of crystalline γ-Al2O3 films. XRD, XPS, and SEM investigation unveiled further details of the crystallinity changes on γ-Al2O3 films for each process. These results indicated passivation films were required to integrate γ-Al2O3 films with CMOS fabrication process. Therefore we proposed and introduced Si3N4/TEOS passivation films on γ-Al2O3 films in CMOS fabrication processes. At last, MOSFETs on γ-Al2O3 integrated Si(1 0 0) substrate were fabricated and characterized. The designed characteristics of MOSFETs were obtained on γ-Al2O3 integrated Si substrate.

  7. Anisotropic high-k deposition for gate-last processing of metal-oxide-semiconductor field-effect transistor utilizing electron-cyclotron-resonance plasma sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Yoshiaki, E-mail: kikuchi.y.ao@m.titech.ac.jp; Gao, Jun; Sano, Takahiro; Ohmi, Shun-ichiro, E-mail: ohmi@ep.titech.ac.jp

    2012-01-31

    A high-k/metal gate structure has been investigated for application to state-of-the-art metal-oxide-semiconductor field-effect transistors. In the high-k/metal gate structure, the 32-nm technology node was realized by using the high-k-last, metal-last integration process. We investigated anisotropic deposition for 3-dimensional gate structures on Si substrates utilizing electron-cyclotron-resonance plasma sputtering to reduce parasitic capacitance. Anisotropic HfN film deposition was realized and the deposition thickness on the side wall was reduced with decreasing sputtering gas pressure, from 0.15 to 0.06 Pa, corresponding to Ar/N{sub 2} flow ratios of 20/1 and 5/1 sccm. The HfSiON gate insulator formed from the anisotropically deposited HfN film showed an equivalent-oxide-thickness of 2.1 nm and a gate leakage of 3.1 Multiplication-Sign 10{sup -6}A/cm{sup 2} at V{sub FB}-1.0. - Highlights: Black-Right-Pointing-Pointer High-k film deposition was controlled by the deposition pressure. Black-Right-Pointing-Pointer The pressure decreases with a reduction of gas flow rate during the high-k film deposition. Black-Right-Pointing-Pointer A flat band voltage shows negative shifts with reduction of gas flow rates. Black-Right-Pointing-Pointer A reason of the flat band voltage shift is an increase in Si-N bonding.

  8. Research progress of high mobility germanium based metal oxide semiconductor devices%高迁移率 Ge沟道器件研究进展∗

    Institute of Scientific and Technical Information of China (English)

    安霞; 黄如; 李志强; 云全新; 林猛; 郭岳; 刘朋强; 黎明; 张兴

    2015-01-01

    Germanium based metal oxide semiconductor (MOS) device has been a research hotspot and considered as a po-tential candidate for future complementary MOS (CMOS) technology due to its high and symmetric carrier mobility. However, the poor quality of gate dielectric/channel interface significantly restricts the performance of germanium based MOS devices. Besides, the solid-solubility and activation concentration of dopants in Ge are both quite low, and the dopants diffuse fast in Ge, which makes it difficult to achieve ultra-shallow junction with high dopant concentration, especially for Ge NMOS devices. To solve these problems, different techniques are proposed and overviewed. The proposed nitrogen-plasma-passivation method can effectively suppress the regrowth of germanium sub-oxide and reduce the interface state density. Thus the performance of the fabricated Ge NMOS device is significantly improved. To enhance the n-type dopant ac-tivation in Ge, the multiple implantation technique and the multiple annealing technique are proposed. High electrical activation over 1 × 1020 cm−3 is achieved, and the corresponding contact resistivity is reduced to 3.8 × 10−7 Ω·cm2. Besides, the implantation after germanide (IAG) technique is first proposed to modulate the Schottky barrier height (SBH). The record-low electron SBH of 0.10 eV is obtained by IAG technique, and the optimized process window is given. In addition, the poor thermal stability of NiGe restricts the further improvement of performance of Ge MOS device. P and Sb co-implantation technique and novel ammonium fluoride pretreatment method are proposed to improve the thermal stability of NiGe. The electrical characteristic of NiGe/Ge diode is also improved simultaneously. The results provide the guidelines for further enhancing the performances of germanium-based MOS devices.

  9. Effect of NO annealing on charge traps in oxide insulator and transition layer for 4H-SiC metal-oxide-semiconductor devices

    Science.gov (United States)

    Jia, Yifan; Lv, Hongliang; Niu, Yingxi; Li, Ling; Song, Qingwen; Tang, Xiaoyan; Li, Chengzhan; Zhao, Yanli; Xiao, Li; Wang, Liangyong; Tang, Guangming; Zhang, Yimen; Zhang, Yuming

    2016-09-01

    The effect of nitric oxide (NO) annealing on charge traps in the oxide insulator and transition layer in n-type 4H-SiC metal-oxide-semiconductor (MOS) devices has been investigated using the time-dependent bias stress (TDBS), capacitance-voltage (C-V), and secondary ion mass spectroscopy (SIMS). It is revealed that two main categories of charge traps, near interface oxide traps (Nniot) and oxide traps (Not), have different responses to the TDBS and C-V characteristics in NO-annealed and Ar-annealed samples. The Nniot are mainly responsible for the hysteresis occurring in the bidirectional C-V characteristics, which are very close to the semiconductor interface and can readily exchange charges with the inner semiconductor. However, Not is mainly responsible for the TDBS induced C-V shifts. Electrons tunneling into the Not are hardly released quickly when suffering TDBS, resulting in the problem of the threshold voltage stability. Compared with the Ar-annealed sample, Nniot can be significantly suppressed by the NO annealing, but there is little improvement of Not. SIMS results demonstrate that the Nniot are distributed within the transition layer, which correlated with the existence of the excess silicon. During the NO annealing process, the excess Si atoms incorporate into nitrogen in the transition layer, allowing better relaxation of the interface strain and effectively reducing the width of the transition layer and the density of Nniot. Project supported by the National Natural Science Foundation of China (Grant Nos. 61404098 and 61274079), the Doctoral Fund of Ministry of Education of China (Grant No. 20130203120017), the National Key Basic Research Program of China (Grant No. 2015CB759600), the National Grid Science & Technology Project, China (Grant No. SGRI-WD-71-14-018), and the Key Specific Project in the National Science & Technology Program, China (Grant Nos. 2013ZX02305002-002 and 2015CB759600).

  10. Determination of bandgap states in p-type In0.49Ga0.51P grown on SiGe/Si and GaAs by deep level optical spectroscopy and deep level transient spectroscopy

    Science.gov (United States)

    González, M.; Carlin, A. M.; Dohrman, C. L.; Fitzgerald, E. A.; Ringel, S. A.

    2011-03-01

    The presence and properties of traps in p-type In0.49Ga0.51P grown on low dislocation density, metamorphic Ge/SiGe/Si substrates and GaAs substrates were determined using deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) leading to the quantification of trap behavior throughout the entire 1.9 eV bandgap of the In0.49Ga0.51P material as a function of substrate. Thermal emission-based DLTS revealed a single hole trap at Ev + 0.71 eV for growth on both lattice matched and mismatched substrates with similar concentrations. Complementary, optical emission-based DLOS measurements detected bandgap states at Ev + 1.18 eV, Ev + 1.36 eV, and Ev + 1.78 eV for p-type In0.49Ga0.51P grown on both substrate types. The total concentration of the DLOS-detected states was found to comprise approximately 80% of the entire trap concentration in p-type In0.49Ga0.51P bandgap. This relatively high concentration of above midgap levels may be of great significance for minority carrier devices that utilize p-type In0.49Ga0.51P (such as high efficiency III-V multijunction solar cells) since their position in the bandgap and high concentrations suggest that strong minority carrier electron trapping behavior can be expected. The primary effect of substituting the GaAs substrate by Ge/SiGe/Si is to increase the concentration of these states by a factor of 2-3, with no additional levels detected due to the replacement by the Si-based substrates, indicating that all detected traps are native to the epitaxial In0.49Ga0.51P material (regardless of the substrate), but whose concentrations appear to be influenced by dislocation density.

  11. Heterogeneous integration of GaAs pHEMT and Si CMOS on the same chip

    Science.gov (United States)

    Li-Shu, Wu; Yan, Zhao; Hong-Chang, Shen; You-Tao, Zhang; Tang-Sheng, Chen

    2016-06-01

    In this work, we demonstrate the technology of wafer-scale transistor-level heterogeneous integration of GaAs pseudomorphic high electron mobility transistors (pHEMTs) and Si complementary metal-oxide semiconductor (CMOS) on the same Silicon substrate. GaAs pHEMTs are vertical stacked at the top of the Si CMOS wafer using a wafer bonding technique, and the best alignment accuracy of 5 μm is obtained. As a circuit example, a wide band GaAs digital controlled switch is fabricated, which features the technologies of a digital control circuit in Si CMOS and a switch circuit in GaAs pHEMT, 15% smaller than the area of normal GaAs and Si CMOS circuits.

  12. Temperature-Independent Switching Rates for a Random Telegraph Signal in a Silicon Metal-Oxide-Semiconductor Field-Effect Transistor at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Nick; Fleetwood, D.M.; Scofield, John H.

    1999-07-19

    We have observed discrete random telegraph signals (RTS'S) in the drain voltages of three, observed above 30 K were thermally activated. The switching rate for the only RTS observed below 30 K was thermally activated above 30 K but temperature-independent below 10 K. To our knowledge, this cross-over from thermal activation to tunneling behavior has not been previously observed for RTS's Metal-oxide-semiconductor field-effect transistors (MCEWETS) often exhibit relatively large levels of low-frequency (1/fl noise) [1,2]. Much evidence suggests that this noise is related to the capture all cases, switching rates have been thermally activated, often with different activation energies for capture and/or emission is accompanied by lattice relaxation. Though thermally activated behavior has sufficiently low temperatures [7,9]. While not observed in MOSFETS, cross-over from thermal activation to configurational tunneling has been observed for RTS's in junctions [13]. drain voltage was observed to randomly switch between two discrete levels, designated as Vup and Vdn, similar to RTS's reported by others [2,7'- 11 ]. We have characterized six RTS `S for temperatures above 30 K where thermally activated switching rates are observed. The properties of five of these have been the trap, i.e., the mean time a captured charge carrier spends in the trap before it is emitted. Similarly, we identify the mean time in the low resistance state ( trup in state Vup) as the capture time rc. F@ure 1 shows a typical time trace of the drain-voltage fluctuation &d(t)= Vd(t)+Vd>. This indicate that both the mean capture and emission times become independent of Tat low temperatures and where a= capture or emission, is temperature independent. The solid curve in Figure 3(a) (mean capture time) was obtained using a weighted nonlinear charge carriers are not in thermal equilibrium with the lattice, i.e., that while the lattice is being cooled Instead, we believe that the

  13. Dedicated optoelectronic stochastic parallel processor for real-time image processing: motion-detection demonstration and design of a hybrid complementary-metal-oxide semiconductor- self-electro-optic-device-based prototype.

    Science.gov (United States)

    Cassinelli, A; Chavel, P; Desmulliez, M P

    2001-12-10

    We report experimental results and performance analysis of a dedicated optoelectronic processor that implements stochastic optimization-based image-processing tasks in real time. We first show experimental results using a proof-of-principle-prototype demonstrator based on standard silicon-complementary-metal-oxide-semiconductor (CMOS) technology and liquid-crystal spatial light modulators. We then elaborate on the advantages of using a hybrid CMOS-self-electro-optic-device-based smart-pixel array to monolithically integrate photodetectors and modulators on the same chip, providing compact, high-bandwidth intrachip optoelectronic interconnects. We have modeled the operation of the monolithic processor, clearly showing system-performance improvement.

  14. Understanding the role of buried interface charges in a metal-oxide-semiconductor stack of Ti/Al{sub 2}O{sub 3}/Si using hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Church, J. R.; Opila, R. L. [University of Delaware, Newark, Delaware 19711 (United States); Weiland, C. [Synchrotron Research, Inc., Upton, New York 11973 (United States)

    2015-04-27

    Hard X-ray photoelectron spectroscopy (HAXPES) analyses were carried out on metal-oxide-semiconductor (MOS) samples consisting of Si, thick and thin Al{sub 2}O{sub 3}, and a Ti metal cap. Using Si 1s and C 1s core levels for an energy reference, the Al 1s and Si 1s spectra were analyzed to reveal information about the location and roles of charges throughout the MOS layers. With different oxide thicknesses (2 nm and 23 nm), the depth sensitivity of HAXPES is exploited to probe different regions in the MOS structure. Post Ti deposition results indicated unexpected band alignment values between the thin and thick films, which are explained by the behavior of mobile charge within the Al{sub 2}O{sub 3} layer.

  15. Design and control of interface reaction between Al-based dielectrics and AlGaN layer in AlGaN/GaN metal-oxide-semiconductor structures

    Science.gov (United States)

    Watanabe, Kenta; Nozaki, Mikito; Yamada, Takahiro; Nakazawa, Satoshi; Anda, Yoshiharu; Ishida, Masahiro; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2017-07-01

    Important clues for achieving well-behaved AlGaN/GaN metal-oxide-semiconductor (MOS) devices with Al-based gate dielectrics were systematically investigated on the basis of electrical and physical characterizations. We found that low-temperature deposition of alumina insulators on AlGaN surfaces is crucial to improve the interface quality, thermal stability, and variability of MOS devices by suppressing Ga diffusion into the gate oxides. Moreover, aluminum oxynitride grown in a reactive nitric atmosphere was proven to expand the optimal process window that would improve the interface quality and to enhance immunity against charge injection into the gate dielectrics. The results constitute common guidelines for achieving high-performance and reliable AlGaN/GaN MOS devices.

  16. Effect of Reverse Substrate Bias on Degradation of Ultra-Thin Gate-Oxide n-Channel Metal-Oxide-Semiconductor Field-Effect Transistors under Different Stress Modes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yao; XU Ming-Zhen; TAN Chang-Hua

    2005-01-01

    @@ Degradation of ultra-thin gate-oxide n-channel metal-oxide-semiconductor field-effect transistors with the halo structure has been studied under different stress modes with a reverse substrate bias. The device degradation under the same stress mode with different reverse substrate voltages has been characterized by monitoring the substrate current in a stressing process, which follows a simple power law. When the gate voltage is less than the critical value, the device degradation will first decrease and then increase with the increasing reverse sub strate voltage, otherwise, the device degradation will increase continuously. The critical value can be obtained by measuring the substrate current variation with the increases of reverse substrate voltage and gate voltage. The experimental results indicate that the stress mode with enhanced injection efficiency and smaller device degradation can be obtained when the gate voltage is less than the critical value with a proper reverse substratevoltage chosen.

  17. A comparison between HfO2/Al2O3 nano-laminates and ternary HfxAlyO compound as the dielectric material in InGaAs based metal-oxide-semiconductor (MOS) capacitors

    Science.gov (United States)

    Krylov, Igor; Pokroy, Boaz; Eizenberg, Moshe; Ritter, Dan

    2016-09-01

    We compare the electrical properties of HfO2/Al2O3 nano-laminates with those of the ternary HfxAlyO compound in metal oxide semiconductor (MOS) capacitors. The dielectrics were deposited by atomic layer deposition on InGaAs. Water, ozone, and oxygen plasma were tested as oxygen precursors, and best results were obtained using water. The total dielectric thickness was kept constant in our experiments. It was found that the effective dielectric constant increased and the leakage current decreased with the number of periods. Best results were obtained for the ternary compound. The effect of the sublayer thicknesses on the electrical properties of the interface was carefully investigated, as well as the role of post-metallization annealing. Possible explanations for the observed trends are provided. We conclude that the ternary HfxAlyO compound is more favorable than the nano-laminates approach for InGaAs based MOS transistor applications.

  18. Tinv Scaling and Gate Leakage Reduction for n-Type Metal Oxide Semiconductor Field Effect Transistor with HfSix/HfO2 Gate Stack by Interfacial Layer Formation Using Ozone-Water-Last Treatment

    Science.gov (United States)

    Oshiyama, Itaru; Tai, Kaori; Hirano, Tomoyuki; Yamaguchi, Shinpei; Tanaka, Kazuaki; Hagimoto, Yoshiya; Uemura, Takayuki; Ando, Takashi; Watanabe, Koji; Yamamoto, Ryo; Kanda, Saori; Wang, Junli; Tateshita, Yasushi; Wakabayashi, Hitoshi; Tagawa, Yukio; Tsukamoto, Masanori; Iwamoto, Hayato; Saito, Masaki; Oshima, Masaharu; Toyoda, Satoshi; Nagashima, Naoki; Kadomura, Shingo

    2008-04-01

    In this paper, we demonstrate a wet treatment for the HfSix/HfO2 gate stack of n-type metal oxide semiconductor field effect transistor (nMOSFET) fabricated by a gate-last process in order to scale down the electrical thickness at inversion state Tinv value and reduce the gate leakage Jg. As a result, we succeeded in scaling down Tinv to 1.41 nm without mobility or Jg degradation by ozone-water-last treatment. We found that a high-density interfacial layer (IFL) is formed owing to the ozone-water-last treatment, and Hf diffusion to the IFL is suppressed, which was analyzed by high-resolution angle-resolved spectroscopy.

  19. Improved linearity and reliability in GaN metal-oxide-semiconductor high-electron-mobility transistors using nanolaminate La2O3/SiO2 gate dielectric

    Science.gov (United States)

    Hsu, Ching-Hsiang; Shih, Wang-Cheng; Lin, Yueh-Chin; Hsu, Heng-Tung; Hsu, Hisang-Hua; Huang, Yu-Xiang; Lin, Tai-Wei; Wu, Chia-Hsun; Wu, Wen-Hao; Maa, Jer-Shen; Iwai, Hiroshi; Kakushima, Kuniyuki; Chang, Edward Yi

    2016-04-01

    Improved device performance to enable high-linearity power applications has been discussed in this study. We have compared the La2O3/SiO2 AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) with other La2O3-based (La2O3/HfO2, La2O3/CeO2 and single La2O3) MOS-HEMTs. It was found that forming lanthanum silicate films can not only improve the dielectric quality but also can improve the device characteristics. The improved gate insulation, reliability, and linearity of the 8 nm La2O3/SiO2 MOS-HEMT were demonstrated.

  20. Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Anh Khoa Augustin [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Pourtois, Geoffrey [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Chemistry, Plasmant Research Group, University of Antwerp, B-2610 Wilrijk-Antwerp (Belgium); Agarwal, Tarun [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Electrical Engineering, University of Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Afzalian, Aryan [TSMC, Kapeldreef 75, B-3001 Leuven (Belgium); Radu, Iuliana P. [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Houssa, Michel [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium)

    2016-01-25

    The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs.

  1. Electronic transport in n- and p-type modulation doped Ga{sub x}In{sub 1-x}N{sub y}As{sub 1-y}/ GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y; Balkan, N [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Aslan, M; Arikan, M C [Faculty of Science, Department of Physics, Istanbul University, 34134 Istanbul (Turkey); Lisesivdin, S B [Department of Physics, Faculty of Science and Arts, Gazi University, Teknikokullar, 06500 Ankara (Turkey); Carrere, H; Marie, X [Department of Physics, INSA, 135 avenue de Rangeil, 31077 Toulouse cedex 4 (France)], E-mail: balkan@essex.ac.uk

    2009-04-29

    We present a comprehensive study of longitudinal transport of two-dimensional (2D) carriers in n- and p-type modulation doped Ga{sub x}In{sub 1-x}N{sub y}As{sub 1-y} /GaAs quantum well structures. The Hall mobility and carrier density of electrons in the n-modulation doped quantum wells (QWs) decreases with increasing nitrogen composition. However, the mobility of the 2D holes in p-modulation doped wells is not influenced by nitrogen and it is significantly higher than that of 2D electrons in n-modulation doped material. The observed behaviour is explained in terms of increasing electron effective mass as well as enhanced N-related alloying scattering with increasing nitrogen content. In order to determine the conduction band (CB) and valence band (VB) structures as well as electron and hole effective masses, the band anticrossing model with an eight-band k.p approximation in the Luettinger-Kohn approach is used. The effects of strain, quantum confinement and the strong coupling between the localized nitrogen states and the CB extended states of GaInAs are considered in the calculations. The results indicate that the nitrogen induces a strong perturbation to the CB of the matrix semiconductor whilst the VB remains unaffected. The temperature dependent mobility of 2D electron gas is discussed using an analytical model that accounts for the most important scattering mechanisms. The results indicate that the interface roughness and N-related alloy scattering are the dominant mechanisms at low temperatures, while polar optical phonon and N-related alloy scattering limit mobility at high temperatures.

  2. Physical and electrical characteristics of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with rare earth Er{sub 2}O{sub 3} as a gate dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ray-Ming, E-mail: rmlin@mail.cgu.edu.tw; Chu, Fu-Chuan; Das, Atanu; Liao, Sheng-Yu; Chou, Shu-Tsun; Chang, Liann-Be

    2013-10-01

    In this study, the rare earth erbium oxide (Er{sub 2}O{sub 3}) was deposited using an electron beam onto an AlGaN/GaN heterostructure to fabricate metal-oxide-semiconductor high-electron-mobility transistors (MOS–HEMTs) that exhibited device performance superior to that of a conventional HEMT. Under similar bias conditions, the gate leakage currents of these MOS–HEMT devices were four orders of magnitude lower than those of conventional Schottky gate HEMTs. The measured sub-threshold swing (SS) and the effective trap state density (N{sub t}) of the MOS–HEMT were 125 mV/decade and 4.3 × 10{sup 12} cm{sup −2}, respectively. The dielectric constant of the Er{sub 2}O{sub 3} layer in this study was 14, as determined through capacitance–voltage measurements. In addition, the gate–source reverse breakdown voltage increased from –166 V for the conventional HEMT to –196 V for the Er{sub 2}O{sub 3} MOS–HEMT. - Highlights: ► GaN/AlGaN/Er{sub 2}O{sub 3} metal-oxide semiconductor high electron mobility transistor ► Physical and electrical characteristics are presented. ► Electron beam evaporated Er{sub 2}O{sub 3} with excellent surface roughness ► Device exhibits reduced gate leakage current and improved I{sub ON}/I{sub OFF} ratio.

  3. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  4. Recent Developments in p-Type Oxide Semiconductor Materials and Devices.

    Science.gov (United States)

    Wang, Zhenwei; Nayak, Pradipta K; Caraveo-Frescas, Jesus A; Alshareef, Husam N

    2016-05-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  5. Negative bias-and-temperature stress-assisted activation of oxygen-vacancy hole traps in 4H-silicon carbide metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ettisserry, D. P., E-mail: deva@umd.edu, E-mail: neil@umd.edu; Goldsman, N., E-mail: deva@umd.edu, E-mail: neil@umd.edu; Akturk, A. [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Lelis, A. J. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States)

    2015-07-28

    We use hybrid-functional density functional theory-based Charge Transition Levels (CTLs) to study the electrical activity of near-interfacial oxygen vacancies located in the oxide side of 4H-Silicon Carbide (4H-SiC) power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs). Based on the “amorphousness” of their local atomic environment, oxygen vacancies are shown to introduce their CTLs either within (permanently electrically active) or outside of (electrically inactive) the 4H-SiC bandgap. The “permanently electrically active” centers are likely to cause threshold voltage (V{sub th}) instability at room temperature. On the other hand, we show that the “electrically inactive” defects could be transformed into various “electrically active” configurations under simultaneous application of negative bias and high temperature stresses. Based on this observation, we present a model for plausible oxygen vacancy defects that could be responsible for the recently observed excessive worsening of V{sub th} instability in 4H-SiC power MOSFETs under high temperature-and-gate bias stress. This model could also explain the recent electrically detected magnetic resonance observations in 4H-SiC MOSFETs.

  6. Low Threshold Voltage and High Mobility N-Channel Metal-Oxide-Semiconductor Field-Effect Transistor Using Hf-Si/HfO2 Gate Stack Fabricated by Gate-Last Process

    Science.gov (United States)

    Ando, Takashi; Hirano, Tomoyuki; Tai, Kaori; Yamaguchi, Shinpei; Yoshida, Shinichi; Iwamoto, Hayato; Kadomura, Shingo; Watanabe, Heiji

    2010-01-01

    Systematic characterization of Hf-Si/HfO2 gate stacks revealed two mobility degradation modes. One is carrier scattering by fixed charges and/or trapped charges induced by the crystallization in the thick HfO2 case (inversion oxide thickness, Tinv> 1.6 nm). The other is the Hf penetration into the interfacial layer with the Si substrate in the thin HfO2 case (Tinv< 1.6 nm) for the Hf-rich electrode. It was demonstrated that careful optimization of the HfO2 thickness and the Hf-Si composition can suppress both modes. As a result, a high electron mobility equivalent to that of n+polycrystalline silicon (poly-Si)/SiO2 (248 cm2 V-1 s-1 at Eeff=1 MV/cm) was obtained at Tinv of 1.47 nm. Moreover, the effective work function of the optimized Hf-Si/HfO2 gate stack is located within 50 mV from the Si band edge (Ec). An extremely high Ion of 1165 µA/µm (at Ioff = 81 nA/µm) at Vdd=1.0 V was demonstrated for a 45 nm gate n-channel metal-oxide-semiconductor field-effect transistor (n-MOSFET) without strain enhanced technology.

  7. Reliability tests of electroless barriers against copper diffusion under bias-temperature stress with n- and p-type substrates

    Science.gov (United States)

    Ueno, Kazuyoshi; Fujishima, Shota; Yamashita, Makoto; Mitsumori, Akiyoshi

    2016-05-01

    To investigate the similarity and difference of substrate conduction type in the time-dependent dielectric breakdown (TDDB) tests for the barrier integrity against Cu diffusion under bias-temperature stress (BTS), the TDDB reliability of electroless NiB and CoWP/NiB was determined by metal oxide semiconductor (MOS) structures on n-type Si (n-Si) substrates, and the test results were compared with those using p-type Si (p-Si) substrates. The TDDB results and mechanism were observed to be qualitatively the same as Cu diffusion for both conduction types. However, the TDDB lifetime using p-Si was found to be potentially shorter because of the reverse bias conditions than that using n-Si under the forward bias conditions.

  8. Design and analysis of nanowire p-type MOSFET coaxially having silicon core and germanium peripheral channel

    Science.gov (United States)

    Yu, Eunseon; Cho, Seongjae

    2016-11-01

    In this work, a nanowire p-type metal-oxide-semiconductor field-effect transistor (PMOSFET) coaxially having a Si core and a Ge peripheral channel is designed and characterized by device simulations. Owing to the high hole mobility of Ge, the device can be utilized for high-speed CMOS integrated circuits, with the effective confinement of mobile holes in Ge by the large valence band offset between Si and Ge. Source/drain doping concentrations and the ratio between the Si core and Ge channel thicknesses are determined. On the basis of the design results, the channel length is aggressively scaled down by evaluating the primary DC parameters in order to confirm device scalability and low-power applicability in sub-10-nm technology nodes.

  9. Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors: Impact of sulfur passivation on gate stack quality

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org; Liang, Gengchiau; Yeo, Yee-Chia, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Zhang, Zheng; Pan, Jisheng [Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Tok, Eng-Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2016-01-14

    The effect of room temperature sulfur passivation of the surface of Ge{sub 0.83}Sn{sub 0.17} prior to high-k dielectric (HfO{sub 2}) deposition is investigated. X-ray photoelectron spectroscopy (XPS) was used to examine the chemical bonding at the interface of HfO{sub 2} and Ge{sub 0.83}Sn{sub 0.17}. Sulfur passivation is found to be effective in suppressing the formation of both Ge oxides and Sn oxides. A comparison of XPS results for sulfur-passivated and non-passivated Ge{sub 0.83}Sn{sub 0.17} samples shows that sulfur passivation of the GeSn surface could also suppress the surface segregation of Sn atoms. In addition, sulfur passivation reduces the interface trap density D{sub it} at the high-k dielectric/Ge{sub 0.83}Sn{sub 0.17} interface from the valence band edge to the midgap of Ge{sub 0.83}Sn{sub 0.17}, as compared with a non-passivated control. The impact of the improved D{sub it} is demonstrated in Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs). Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs with sulfur passivation show improved subthreshold swing S, intrinsic transconductance G{sub m,int}, and effective hole mobility μ{sub eff} as compared with the non-passivated control. At a high inversion carrier density N{sub inv} of 1 × 10{sup 13 }cm{sup −2}, sulfur passivation increases μ{sub eff} by 25% in Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs.

  10. Evaluation of clinical use of OneDose™ metal oxide semiconductor field-effect transistor detectors compared to thermoluminescent dosimeters to measure skin dose for adult patients with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Huda Ibrahim Al-Mohammed

    2011-01-01

    Full Text Available Background: Total body irradiation is a protocol used to treat acute lymphoblastic leukemia in patients prior to their bone marrow transplant. It involves the treatment of the whole body using a large radiation field with extended source-skin distance. Therefore, it is important to measure and monitor the skin dose during the treatment. Thermoluminescent dosimeters (TLDs and the OneDose™ metal oxide semiconductor field effect transistor (MOSFET detectors are used during treatment delivery to measure the radiation dose and compare it with the target prescribed dose. Aims: The primary goal of this study was to measure the variation of skin dose using OneDose MOSFET detectors and TLD detectors, and compare the results with the target prescribed dose. The secondary aim was to evaluate the simplicity of use and determine if one system was superior to the other in clinical use. Material and Methods : The measurements involved twelve adult patients diagnosed with acute lymphoblastic leukemia. TLD and OneDose MOSFET dosimetry were performed at ten different anatomical sites of each patient. Results : The results showed that there was a variation between skin dose measured with OneDose MOSFET detectors and TLD in all patients. However, the variation was not significant. Furthermore, the results showed for every anatomical site there was no significant different between the prescribed dose and the dose measured by either TLD or OneDose MOSFET detectors. Conclusion: There were no significant differences between the OneDose MOSFET and TLDs in comparison to the target prescribed dose. However, OneDose MOSFET detectors give a direct read-out immediately after the treatment, and their simplicity of use to compare with TLD detectors may make them preferred for clinical use.

  11. Reduction in the interface-states density of metal-oxide-semiconductor field-effect transistors fabricated on high-index Si (114) surfaces by using an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J., E-mail: jmolina@inaoep.mx; De La Hidalga, J.; Gutierrez, E. [Electronics Department, National Institute of Astrophysics, Optics and Electronics, Tonantzintla, 72840 (Mexico)

    2014-08-14

    After fabrication of Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) devices on high-index silicon (114) surfaces, their threshold voltage (Vth) and interface-states density (Dit) characteristics were measured under the influence of an externally applied magnetic field of B = 6 μT at room temperature. The electron flow of the MOSFET's channel presents high anisotropy on Si (114), and this effect is enhanced by using an external magnetic field B, applied parallel to the Si (114) surface but perpendicular to the electron flow direction. This special configuration results in the channel electrons experiencing a Lorentzian force which pushes the electrons closer to the Si (114)-SiO{sub 2} interface and therefore to the special morphology of the Si (114) surface. Interestingly, Dit evaluation of n-type MOSFETs fabricated on Si (114) surfaces shows that the Si (114)-SiO{sub 2} interface is of high quality so that Dit as low as ∼10{sup 10 }cm{sup −2}·eV{sup −1} are obtained for MOSFETs with channels aligned at specific orientations. Additionally, using both a small positive Vds ≤ 100 mV and B = 6 μT, the former Dit is reduced by 35% in MOSFETs whose channels are aligned parallel to row-like nanostructures formed atop Si (114) surfaces (channels having a 90° rotation), whereas Dit is increased by 25% in MOSFETs whose channels are aligned perpendicular to these nanostructures (channels having a 0° rotation). From these results, the special morphology of a high-index Si (114) plane having nanochannels on its surface opens the possibility to reduce the electron-trapping characteristics of MOSFET devices having deep-submicron features and operating at very high frequencies.

  12. Blue/pink/purple electroluminescence from metal-oxide-semiconductor devices fabricated by spin-coating of [tantalum:(gadolinium/praseodymium)] and (praseodymium:cerium) organic compounds on silicon

    Science.gov (United States)

    Ohzone, Takashi; Matsuda, Toshihiro; Fukuoka, Ryouhei; Hattori, Fumihiro; Iwata, Hideyuki

    2016-08-01

    Blue/pink/purple electroluminescence (EL) from metal-oxide-semiconductor (MOS) devices with an indium tin oxide (ITO)/[Gd/(Ta + Gd/Pr)/(Pr + Ce)-Si-O] insulator layer/n+-Si substrate surface is reported. The insulator layers were fabricated from organic liquid sources of Gd or (Ta + Gd/Pr)/(Pr + Ce) mixtures, which were spin-coated on the n+-Si substrate and annealed at 950 °C for 30 min in air. The EL emission could be observed by the naked eye in the dark in the Fowler-Nordheim (FN) tunnel current regions. Peak wavelengths in the measured EL spectra were independent of the positive current. The EL intensity ratio of ultraviolet (UV) to the visible range varied with the composition ratio of the (Ta + Gd) liquids, and an optimum Ta to Gd ratio existed for the strongest blue emission, which could be attributed to the Ta-related oxide/silicate. The pink EL of the device fabricated with the (\\text{Ta}:\\text{Pr} = 6:4) mixture ratio can be explained by EL emission peaks related to the Pr3+ ions. The purple EL observed from the (\\text{Pr}:\\text{Ce} = 6:4) device corresponds to the strong and broad emission profile near the 357 nm peak, which cannot be assigned to Ce3+ ions. The results suggest that the EL can be attributed to the double-layer oxides with different compositions in the MOS devices. The upper layer consists of various Ta-, Gd-, Pr-, and Ce-related oxides and their silicates, while the lower SiO x -rich layer contributes to the FN current due to the high electric field, and thus the various EL colors.

  13. Enhanced two dimensional electron gas transport characteristics in Al{sub 2}O{sub 3}/AlInN/GaN metal-oxide-semiconductor high-electron-mobility transistors on Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Freedsman, J. J., E-mail: freedy54@gmail.com; Watanabe, A.; Urayama, Y. [Research Center for Nano-Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Egawa, T., E-mail: egawa.takashi@nitech.ac.jp [Research Center for Nano-Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan)

    2015-09-07

    The authors report on Al{sub 2}O{sub 3}/Al{sub 0.85}In{sub 0.15}N/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor (MOS-HEMT) on Si fabricated by using atomic layer deposited Al{sub 2}O{sub 3} as gate insulator and passivation layer. The MOS-HEMT with the gate length of 2 μm exhibits excellent direct-current (dc) characteristics with a drain current maximum of 1270 mA/mm at a gate bias of 3 V and an off-state breakdown voltage of 180 V for a gate-drain spacing of 4 μm. Also, the 1 μm-gate MOS-HEMT shows good radio-frequency (rf) response such as current gain and maximum oscillation cut-off frequencies of 10 and 34 GHz, respectively. The capacitance-voltage characteristics at 1 MHz revealed significant increase in two-dimensional electron gas (2DEG) density for the MOS-HEMT compared to conventional Schottky barrier HEMTs. Analyses using drain-source conductivity measurements showed improvements in 2DEG transport characteristics for the MOS-HEMT. The enhancements in dc and rf performances of the Al{sub 2}O{sub 3}/Al{sub 0.85}In{sub 0.15}N/GaN MOS-HEMT are attributed to the improvements in 2DEG characteristics.

  14. High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistors by in-situ atomic-layer-deposited HfO2

    Science.gov (United States)

    Lin, T. D.; Chang, W. H.; Chu, R. L.; Chang, Y. C.; Chang, Y. H.; Lee, M. Y.; Hong, P. F.; Chen, Min-Cheng; Kwo, J.; Hong, M.

    2013-12-01

    Self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistors (MOSFETs) have been fabricated using the gate dielectrics of in-situ directly atomic-layer-deposited (ALD) HfO2 followed by ALD-Al2O3. There were no surface pretreatments and no interfacial passivation/barrier layers prior to the ALD. TiN/Al2O3 (4 nm)/HfO2 (1 nm)/In0.53Ga0.47As/InP MOS capacitors exhibited well-behaved capacitance-voltage characteristics with true inversion behavior, low leakage current densities of ˜10-8 A/cm2 at ±1 MV/cm, and thermodynamic stability at high temperatures. Al2O3 (3 nm)/HfO2 (1 nm)/In0.53Ga0.47As MOSFETs of 1 μm gate length, with 700 °C-800 °C rapid thermal annealing in source/drain activation, have exhibited high extrinsic drain current (ID) of 1.5 mA/μm, transconductance (Gm) of 0.84 mS/μm, ION/IOFF of ˜104, low sub-threshold swing of 103 mV/decade, and field-effect electron mobility of 1100 cm2/V . s. The devices have also achieved very high intrinsic ID and Gm of 2 mA/μm and 1.2 mS/μm, respectively.

  15. 超深亚微米互补金属氧化物半导体器件的剂量率效应∗%Dose-rate sensitivity of deep sub-micro complementary metal oxide semiconductor pro cess

    Institute of Scientific and Technical Information of China (English)

    郑齐文; 崔江维; 王汉宁; 周航; 余徳昭; 魏莹; 苏丹丹

    2016-01-01

    对0.18µm互补金属氧化物半导体(CMOS)工艺的N型金属氧化物半导体场效应晶体管(NMOSFET)及静态随机存储器(SRAM)开展了不同剂量率下的电离总剂量辐照试验研究.结果表明:在相同累积剂量, SRAM的低剂量率辐照损伤要略大于高剂量率辐照的损伤,并且低剂量率辐照损伤要远大于高剂量率辐照加与低剂量率辐照时间相同的室温退火后的损伤.虽然NMOSFET 低剂量率辐照损伤略小于高剂量率辐照损伤,但室温退火后,高剂量率辐照损伤同样要远小于低剂量率辐照损伤.研究结果表明0.18µm CMOS工艺器件的辐射损伤不是时间相关效应.利用数值模拟的方法提出了解释CMOS器件剂量率效应的理论模型.%Enhancing low dose rate sensitivity (ELDRS) in bipolar device is a major problem of liner circuit radiation hardness prediction for space application. ELDRS is usually attributed to space-charge effect. A key element is the difference in transport rate between holes and protons in SiO2. Interface-trap formation at high dose rate is reduced due to positive charge buildup in the Si/SiO2 interfacial region (due to the trapping of holes and/or protons) which reduces the flow rates of subsequent holes and protons (relative to the low-dose-rate case) from the bulk of the oxide to the Si/SiO2 interface. Generally speaking, the dose rate of metal oxide semiconductor (MOS) device is time dependent when annealing of radiation-induced charge is taken into account. The degradation of MOS device induced by the low dose rate irradiation is the same as that by high dose rate when annealing of radiation-induced charge is taken into account. However, radiation response of new generation MOS device is dominated by charge buildup in shallow trench isolation (STI) rather than gate oxide as older generation device. Unlike gate oxides, which are routinely grown by thermal oxidation, field oxides are produced using a wide variety of

  16. Mesoporous metal oxide semiconductor-clad waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.W.; Tejedor, M.I.; Nelson, B.P.; Anderson, M.A.

    1999-10-07

    Optical waveguides were prepared by depositing a sol gel-derived titania film onto a silica substrate. The titania film is mesoporous, with pore sizes ranging from 3 to 8 nm. Deposition of the titania does not change the critical angle to total internal reflection. Thus, the titania-coated waveguides propagate light in an attenuated total reflection mode, despite the relatively high refractive index (n = 1.8 in air) of the titania film relative to the silica substrate (n = 1.5). The optical and structural properties of these films suggest the possibility of developing efficient photocatalytic reactors or improved optical chemical sensors.

  17. Metal oxide semiconductors for dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Sangeeta; Sarkar, Debasish, E-mail: dsarkar@nitrkl.ac.in

    2015-12-15

    Highlights: • Hydrothermal synthesis of monoclinic and hexagonal WO{sub 3} nanostructures. • Nanocuboid and nanofiber growth using different structure directing agents. • WO{sub 3}–ZnO nanocomposites for dye degradation under UV and visible light. • High photocatalytic efficiency is achieved by 10 wt% monoclinic WO{sub 3}. • WO{sub 3} assists to trap hole in UV and arrests electron in visible light irradiation. - Abstract: Organic contaminants are a growing threat to the environment that widely demands their degradation by high efficient photocatalysts. Thus, the proposed research work primely focuses on the efficient degradation of methyl orange using designed WO{sub 3}–ZnO photocatalysts under both UV and visible light irradiation. Two different sets of WO{sub 3} nanostructures namely, monoclinic WO{sub 3} (m-WO{sub 3}) and hexagonal WO{sub 3} (h-WO{sub 3}) synthesizes in presence of a different structure directing agents. A specific dispersion technique allows the intimate contact of as-synthesized WO{sub 3} and ultra-violet active commercial ZnO photocatalyst in different weight variations. ZnO nanocrystal in presence of an optimum 10 wt% m-WO{sub 3} shows a high degree of photocatalytic activity under both UV and visible light irradiation compared to counterpart h-WO{sub 3}. Symmetrical monoclinic WO{sub 3} assists to trap hole in UV, but electron arresting mechanism predominates in visible irradiation. Coupling of monoclinic nanocuboid WO{sub 3} with ZnO proves to be a promising photocatalyst in both wavelengths.

  18. Epitaxial GeSn film formed by solid phase epitaxy and its application to Yb{sub 2}O{sub 3}-gated GeSn metal-oxide-semiconductor capacitors with sub-nm equivalent oxide thickness

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ching-Wei; Wu, Yung-Hsien; Hsieh, Ching-Heng; Lin, Chia-Chun [Department of Engineering and System Science, National Tsing Hua University, 300 Hsinchu, Taiwan (China)

    2014-11-17

    Through the technique of solid phase epitaxy (SPE), an epitaxial Ge{sub 0.955}Sn{sub 0.045} film was formed on a Ge substrate by depositing an amorphous GeSn film followed by a rapid thermal annealing at 550 °C. A process that uses a SiO{sub 2} capping layer on the amorphous GeSn film during SPE was proposed and it prevents Sn precipitation from occurring while maintaining a smooth surface due to the reduced surface mobility of Sn atoms. The high-quality epitaxial GeSn film was observed to have single crystal structure, uniform thickness and composition, and tiny surface roughness with root mean square of 0.56 nm. With a SnO{sub x}-free surface, Yb{sub 2}O{sub 3}-gated GeSn metal-oxide-semiconductor (MOS) capacitors with equivalent oxide thickness (EOT) of 0.55 nm were developed. A small amount of traps inside the Yb{sub 2}O{sub 3} was verified by negligible hysteresis in capacitance measurement. Low leakage current of 0.4 A/cm{sup 2} at gate bias of flatband voltage (V{sub FB})-1 V suggests the high quality of the gate dielectric. In addition, the feasibility of using Yb{sub 2}O{sub 3} to well passivate GeSn surface was also evidenced by the small interface trap density (D{sub it}) of 4.02 × 10{sup 11} eV{sup −1} cm{sup −2}, which can be attributed to smooth GeSn surface and Yb{sub 2}O{sub 3} valency passivation. Both leakage current and D{sub it} performance outperform other passivation techniques at sub-nm EOT regime. The proposed epitaxial GeSn film along with Yb{sub 2}O{sub 3} dielectric paves an alternative way to enable high-performance GeSn MOS devices.

  19. Impact of GaN cap on charges in Al₂O₃/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ťapajna, M., E-mail: milan.tapajna@savba.sk; Jurkovič, M.; Válik, L.; Haščík, Š.; Gregušová, D.; Kuzmík, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Brunner, F.; Cho, E.-M. [Ferdinand-Braun-Institut, Leibniz Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Hashizume, T. [Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, 060-0814 Sapporo, Japan and JST-CREST, 102-0075 Tokyo (Japan)

    2014-09-14

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from EC-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement between experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about EC-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.

  20. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    Science.gov (United States)

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO.

  1. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays

    Science.gov (United States)

    Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2014-10-01

    Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly

  2. Improvement of Atomic-Layer-Deposited Al2O3/GaAs Interface Property by Sulfuration and NH3 Thermal Nitridation

    Institute of Scientific and Technical Information of China (English)

    SHI Yu; SUN Qing-Qing; DONG Lin; LIU Han; DING Shi-Jin; ZHANG Wei

    2008-01-01

    Fermi level pinning at the interface between high-k gate dielectric and GaAs induced by unstable native oxides is a major obstacle for high performance GaAs-based metal-oxide-semiconductor (MOS) devices. We demonstrate the improved AI2O3/GaAs interfacial characteristics by (NH4)2S immersion and NH3 thermal pretreatment prior toAl2O3 deposition. X-ray photoelectron spectroscopy (XPS) analysis confirms that sulfuration of GaAs surface by(NH4)2S solution can effectively reduce As-O bonds while Ga-O bonds and elemental As still exist at Al2O3/GaAsinterface. However, it is found that N incorporation during the further thermal nitridation on sulfurated GaAs can effectively suppress the native oxides and elemental As in the sequent deposition of Al2O3. Atomic force microscopy (AFM) shows that the further thermal nitridation on sulfurated GaAs surface can also improve the surface roughness.

  3. Observation of As-Grown Defects in Zn-Doped GaAs by Positron Lifetime Spectra

    Institute of Scientific and Technical Information of China (English)

    WANG Zhu; WANG Shao-Jie; CHEN Zhi-Quan

    2000-01-01

    Positron lifetime spectra were measured for the Zn-doped p-type GaAs. In comparing the horizontal-Bridgman-method-grown and the floating-zone-method grown p-type GaAs with the liquid-encapsulation-Czochvalski-grown p-type GaAs samples, positron trapping into vacancy type defects was observed in the former two grown p-type GaAs. Shallow positron traps were detected, and the dominant ones were attributed to acceptor the in p-type GaAs.

  4. Analytical model of threshold voltage degradation due to localized charges in gate material engineered Schottky barrier cylindrical GAA MOSFETs

    Science.gov (United States)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2016-10-01

    The threshold voltage degradation due to the hot carrier induced localized charges (LC) is a major reliability concern for nanoscale Schottky barrier (SB) cylindrical gate all around (GAA) metal-oxide-semiconductor field-effect transistors (MOSFETs). The degradation physics of gate material engineered (GME)-SB-GAA MOSFETs due to LC is still unexplored. An explicit threshold voltage degradation model for GME-SB-GAA-MOSFETs with the incorporation of localized charges (N it) is developed. To accurately model the threshold voltage the minimum channel carrier density has been taken into account. The model renders how +/- LC affects the device subthreshold performance. One-dimensional (1D) Poisson’s and 2D Laplace equations have been solved for two different regions (fresh and damaged) with two different gate metal work-functions. LCs are considered at the drain side with low gate metal work-function as N it is more vulnerable towards the drain. For the reduction of carrier mobility degradation, a lightly doped channel has been considered. The proposed model also includes the effect of barrier height lowering at the metal-semiconductor interface. The developed model results have been verified using numerical simulation data obtained by the ATLAS-3D device simulator and excellent agreement is observed between analytical and simulation results.

  5. Double ellipsoid mo del for conductivity effective mass along [110] orientation in (100) Si-based strained p-channel metal-oxide-semiconductor%(100)Si基应变p型金属氧化物半导体[110]晶向电导率有效质量双椭球模型∗

    Institute of Scientific and Technical Information of China (English)

    宋建军; 包文涛; 张静; 唐昭焕; 谭开洲; 崔伟; 胡辉勇; 张鹤鸣

    2016-01-01

    The performance of a Si metal-oxide-semiconductor field-effect transistor can be enhanced effectively by the strain technology and the orientation engineering. For example, the [110] direction is usually used as the channel direction in the Si p-channel metal-oxide-semiconductor (PMOS) on ⟨100⟩ oriented substrate. While SunEdison company rotates the channel direction 45 degrees to the [100] direction, its hole mobility is 1.15 times larger than the hole mobility of the former. The orientation engineering is based on the anisotropy of the hole effective mass along different directions. The enhancement of carrier mobility naturally occurs when we choose the direction with the smaller carrier effective mass as the channel direction. However, according to the reported results in the literature, the hole effective mass values along the [110] and [100] orientation are about 0.6m0 and 0.29m0, respectively. The former is twice larger than the latter, which cannot explain that the experimental result increases 1.15 times. We find that the effective mass values along both the long axis and the short axis should be taken into consideration, and the value of 0.6m0 can only represent the long axis term by observing the equivalent energy diagram of the first sub-band in Si PMOS. In view of this, the double ellipsoid model is given for the conductivity effective mass along the [110] direction in (100) Si PMOS, which explains the reason why the hole mobility along the [100] direction is 1.15 times larger than that along the [110] direction in Si PMOS. And then, based on the E-k relation of the inversion layer in Si-based strained PMOS, we study the conductivity effective mass along the [110] direction in (100) Si-based strained PMOS by the above method. The results show that 1) the [110] oriented hole conductivity effective mass of biaxially strained Si PMOS can be calculated directly by its spherical equivalent energy diagram; 2) in the case of biaxially strained Si1

  6. L{sub g} = 100 nm In{sub 0.7}Ga{sub 0.3}As quantum well metal-oxide semiconductor field-effect transistors with atomic layer deposited beryllium oxide as interfacial layer

    Energy Technology Data Exchange (ETDEWEB)

    Koh, D., E-mail: dh.koh@utexas.edu, E-mail: Taewoo.Kim@sematech.org [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); SEMATECH, Inc., Albany, New York 12203 (United States); Kwon, H. M. [Department of Electronics Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, T.-W., E-mail: dh.koh@utexas.edu, E-mail: Taewoo.Kim@sematech.org; Veksler, D.; Gilmer, D.; Kirsch, P. D. [SEMATECH, Inc., Albany, New York 12203 (United States); Kim, D.-H. [SEMATECH, Inc., Albany, New York 12203 (United States); GLOBALFOUNDRIES, Malta, New York 12020 (United States); Hudnall, Todd W. [Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, 78666 (United States); Bielawski, Christopher W. [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Maszara, W. [GLOBALFOUNDRIES, Santa Clara, California 95054 (United States); Banerjee, S. K. [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)

    2014-04-21

    In this study, we have fabricated nanometer-scale channel length quantum-well (QW) metal-oxide-semiconductor field effect transistors (MOSFETs) incorporating beryllium oxide (BeO) as an interfacial layer. BeO has high thermal stability, excellent electrical insulating characteristics, and a large band-gap, which make it an attractive candidate for use as a gate dielectric in making MOSFETs. BeO can also act as a good diffusion barrier to oxygen owing to its small atomic bonding length. In this work, we have fabricated In{sub 0.53}Ga{sub 0.47}As MOS capacitors with BeO and Al{sub 2}O{sub 3} and compared their electrical characteristics. As interface passivation layer, BeO/HfO{sub 2} bilayer gate stack presented effective oxide thickness less 1 nm. Furthermore, we have demonstrated In{sub 0.7}Ga{sub 0.3}As QW MOSFETs with a BeO/HfO{sub 2} dielectric, showing a sub-threshold slope of 100 mV/dec, and a transconductance (g{sub m,max}) of 1.1 mS/μm, while displaying low values of gate leakage current. These results highlight the potential of atomic layer deposited BeO for use as a gate dielectric or interface passivation layer for III–V MOSFETs at the 7 nm technology node and/or beyond.

  7. The principle and application of metal oxide semiconductor field effect transistor detector during radiotherapy%金属氧化物半导体场效应晶体管剂量探测器的工作原理及在放射治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    倪园园; 涂彧

    2008-01-01

    Metal oxide semiconductor field effect transistor (MOSFET) detector was used to measure radiation dose in space initially, and it was applied to medical domain in recent years. MOSFET detector had extent prospect in clinical field because it had the advantages that other nomal detectors couldn' t compare with. This article introduced the application of MOSFET detector in radiotherapy by summarizing its basic principle, the principle of measuring dose and the relative characteristics.%金属氧化物半导体场效应晶体管(MOSFET)探测器原用于空间系统的辐射测量,近几年才引入到医学领域.由于该探测器具有普通探测设备无法比拟的优点,因此在临床有广泛的应用前景.通过概述MOSFET 20探测器的基本工作原理、剂量探测原理及其相关特性,介绍了MOSFET探测器在放射治疗中的应用.

  8. Investigation of the interface characteristics of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions

    Science.gov (United States)

    Shi, Li-Bin; Liu, Xu-Yang; Dong, Hai-Kuan

    2016-09-01

    We investigate the interface behaviors of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions. This study is performed by first principles calculations based on density functional theory (DFT). First of all, the biaxial strain is realized by changing the lattice constants in ab plane. Averaged electrostatic potential (AEP) is aligned by establishing Y2O3 and GaAs (110) surfaces. The band offsets of Y2O3/GaAs interface under biaxial strain are investigated by generalized gradient approximation and Heyd-Scuseria-Ernzerhof (HSE) functionals. The interface under biaxial strain is suitable for the design of metal oxide semiconductor (MOS) devices because the valence band offsets (VBO) and conduction band offsets (CBO) are larger than 1 eV. Second, the triaxial strain is applied to Y2O3/GaAs interface by synchronously changing the lattice constants in a, b, and c axis. The band gaps of Y2O3 and GaAs under triaxial strain are investigated by HSE functional. We compare the VBO and CBO under triaxial strain with those under biaxial strain. Third, in the absence of lattice strain, the formation energies, charge state switching levels, and migration barriers of native defects in Y2O3 are assessed. We investigate how they will affect the MOS device performance. It is found that VO+2 and Oi-2 play a very dangerous role in MOS devices. Finally, a direct tunneling leakage current model is established. The model is used to analyze current and voltage characteristics of the metal/Y2O3/GaAs.

  9. High-performance self-aligned inversion-channel In{sub 0.53}Ga{sub 0.47}As metal-oxide-semiconductor field-effect-transistors by in-situ atomic-layer-deposited HfO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lin, T. D.; Chang, W. H.; Chang, Y. C.; Hong, M., E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chu, R. L.; Chang, Y. H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lee, M. Y.; Hong, P. F.; Chen, Min-Cheng [National Nano Device Laboratories, Hsinchu 30076, Taiwan (China); Kwo, J., E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2013-12-16

    Self-aligned inversion-channel In{sub 0.53}Ga{sub 0.47}As metal-oxide-semiconductor field-effect-transistors (MOSFETs) have been fabricated using the gate dielectrics of in-situ directly atomic-layer-deposited (ALD) HfO{sub 2} followed by ALD-Al{sub 2}O{sub 3}. There were no surface pretreatments and no interfacial passivation/barrier layers prior to the ALD. TiN/Al{sub 2}O{sub 3} (4 nm)/HfO{sub 2} (1 nm)/In{sub 0.53}Ga{sub 0.47}As/InP MOS capacitors exhibited well-behaved capacitance-voltage characteristics with true inversion behavior, low leakage current densities of ∼10{sup −8} A/cm{sup 2} at ±1 MV/cm, and thermodynamic stability at high temperatures. Al{sub 2}O{sub 3} (3 nm)/HfO{sub 2} (1 nm)/In{sub 0.53}Ga{sub 0.47}As MOSFETs of 1 μm gate length, with 700 °C–800 °C rapid thermal annealing in source/drain activation, have exhibited high extrinsic drain current (I{sub D}) of 1.5 mA/μm, transconductance (G{sub m}) of 0.84 mS/μm, I{sub ON}/I{sub OFF} of ∼10{sup 4}, low sub-threshold swing of 103 mV/decade, and field-effect electron mobility of 1100 cm{sup 2}/V · s. The devices have also achieved very high intrinsic I{sub D} and G{sub m} of 2 mA/μm and 1.2 mS/μm, respectively.

  10. Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors.

    Science.gov (United States)

    Rim, You Seung; Bae, Sang-Hoon; Chen, Huajun; Yang, Jonathan L; Kim, Jaemyung; Andrews, Anne M; Weiss, Paul S; Yang, Yang; Tseng, Hsian-Rong

    2015-12-22

    Conformal bioelectronics enable wearable, noninvasive, and health-monitoring platforms. We demonstrate a simple and straightforward method for producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing. One-step coating via aqueous In2O3 solution resulted in ultrathin (3.5 nm), high-density, uniform films over large areas. Conformal In2O3-based biosensors on ultrathin polyimide films displayed good device performance, low mechanical stress, and highly conformal contact determined using polydimethylsiloxane artificial skin having complex curvilinear surfaces or an artificial eye. Immobilized In2O3 field-effect transistors with self-assembled monolayers of NH2-terminated silanes functioned as pH sensors. Functionalization with glucose oxidase enabled d-glucose detection at physiologically relevant levels. The conformal ultrathin field-effect transistor biosensors developed here offer new opportunities for future wearable human technologies.

  11. Impact of La{sub 2}O{sub 3} interfacial layers on InGaAs metal-oxide-semiconductor interface properties in Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks deposited by atomic-layer-deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.-Y., E-mail: cychang@mosfet.t.u-tokyo.ac.jp; Takenaka, M.; Takagi, S. [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0032 (Japan); JST-CREST, K' s Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan); Ichikawa, O.; Osada, T.; Hata, M.; Yamada, H. [JST-CREST, K' s Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan); Sumitomo Chemical Co. Ltd., 6 Kitahara, Tsukuba, Ibaraki 300-3294 (Japan)

    2015-08-28

    We examine the electrical properties of atomic layer deposition (ALD) La{sub 2}O{sub 3}/InGaAs and Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs metal-oxide-semiconductor (MOS) capacitors. It is found that the thick ALD La{sub 2}O{sub 3}/InGaAs interface provides low interface state density (D{sub it}) with the minimum value of ∼3 × 10{sup 11} cm{sup −2} eV{sup −1}, which is attributable to the excellent La{sub 2}O{sub 3} passivation effect for InGaAs surfaces. It is observed, on the other hand, that there are a large amount of slow traps and border traps in La{sub 2}O{sub 3}. In order to simultaneously satisfy low D{sub it} and small hysteresis, the effectiveness of Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks with ultrathin La{sub 2}O{sub 3} interfacial layers is in addition evaluated. The reduction of the La{sub 2}O{sub 3} thickness to 0.4 nm in Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks leads to the decrease in hysteresis. On the other hand, D{sub it} of the Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs interfaces becomes higher than that of the La{sub 2}O{sub 3}/InGaAs ones, attributable to the diffusion of Al{sub 2}O{sub 3} through La{sub 2}O{sub 3} into InGaAs and resulting modification of the La{sub 2}O{sub 3}/InGaAs interface structure. As a result of the effective passivation effect of La{sub 2}O{sub 3} on InGaAs, however, the Al{sub 2}O{sub 3}/10 cycle (0.4 nm) La{sub 2}O{sub 3}/InGaAs gate stacks can realize still lower D{sub it} with maintaining small hysteresis and low leakage current than the conventional Al{sub 2}O{sub 3}/InGaAs MOS interfaces.

  12. New Gate Dielectric Oxides for GaAs and Other Semiconductors*

    Science.gov (United States)

    Hong, M.

    2000-03-01

    It is well known that electrons move much faster in GaAs than in Si, and this attribute makes the GaAs-based metal oxide semiconductor field effect transistors (MOSFETs) very attractive for high-frequency, high-speed circuits applications. However, identifying a proper insulating oxide for GaAs has been a problem puzzling researchers over 35 years. Recently we discovered that the use of a mixed oxide dielectric Ga_2O_3(Gd_2O_3)^1 formed inversion and accumulation channels on GaAs surfaces, with a low interfacial density of states (D_it) of mid-10^10 cm-2eV-1. Subsequently, we have demonstrated the p- and n- inversion channel MOSFETs^2 and CMOS circuits^3. All oxides in this work were prepared by ultrahigh vacuum deposition from e-beam sources. The initial growth ( 10 Åof Ga_2O_3(Gd_2O_3) film on GaAs takes place from nucleating a thin epitaxial layer of pure Gd_2O_3. In fact, mono-domain, single crystalline Gd_2O3 films (ɛ =12) can be grown on GaAs (100) surface in the (110) Mn_2O3 structure, and that show leakage currents as low as 10-4 A/cm^2 at 10 MV/cm for a film only 25 Åthick^4. We have extended our studies to other rare earth oxides and other semiconductors. For example, low-D_it GaN MOS diodes and GaN MOSFETs operated at 400^circC were obtained. The GaN MOSFET has potential applications in high power switching and high temperature device operation. More remarkably, we have found recently that another rare earth oxide, Y_2O3 (ɛ = 18) showed excellent electrical properties as a gate dielectric for Si, to replace the current SiO_2, where the thickness is now approaching the quantum limit^5. *In collaboration with J. Kwo, A. R. Kortan, J. N. Baillargeon, J. P. Mannaerts, F. Ren, Y. C. Wang, T. S. Lay, H. Ng, R. Opila, K. L. Queeney, Y. J. Chabal, T. Boone, J. J. Krajewski, A. M. Sergent, J. M. Rosamilia, M. Passlack, D. W. Murphy, and A. Y. Cho. 1. M. Hong, et al, J. Vac. Sci. Technol. B14, 2297, (1996). 2. F. Ren et al, IEDM Technical Digest, p.943, (1996

  13. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits.

    Science.gov (United States)

    Zhang, Jialu; Wang, Chuan; Fu, Yue; Che, Yuchi; Zhou, Chongwu

    2011-04-26

    Due to extraordinary electrical properties, preseparated, high purity semiconducting carbon nanotubes hold great potential for thin-film transistors (TFTs) and integrated circuit applications. One of the main challenges it still faces is the fabrication of air-stable n-type nanotube TFTs with industry-compatible techniques. Here in this paper, we report a novel and highly reliable method of converting the as-made p-type TFTs using preseparated semiconducting nanotubes into air-stable n-type transistors by adding a high-κ oxide passivation layer using atomic layer deposition (ALD). The n-type devices exhibit symmetric electrical performance compared with the p-type devices in terms of on-current, on/off ratio, and device mobility. Various factors affecting the conversion process, including ALD temperature, metal contact material, and channel length, have also been systematically studied by a series of designed experiments. A complementary metal-oxide-semiconductor (CMOS) inverter with rail-to-rail output, symmetric input/output behavior, and large noise margin has been further demonstrated. The excellent performance gives us the feasibility of cascading multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics.

  14. Top-down, in-plane GaAs nanowire MOSFETs on an Al2O3 buffer with a trigate oxide from focused ion-beam milling and chemical oxidation

    Science.gov (United States)

    Lee, S. C.; Neumann, A.; Jiang, Y.-B.; Artyushkova, K.; Brueck, S. R. J.

    2016-09-01

    The top-down fabrication of an in-plane nanowire (NW) GaAs metal-oxide-semiconductor field-effect transistor (MOSFET) with a trigate oxide implemented by liquid-phase chemical-enhanced oxidation (LPCEO) is reported. A 2 μm long channel having an effective cross section ˜70 × 220 nm2 is directly fabricated into an epitaxial n +-GaAs layer. This in-plane NW structure is achieved by focused ion beam (FIB) milling and hydrolyzation oxidation resulting in electronic isolation from the substrate through a semiconductor-on-insulator structure with an n +-GaAs/Al2O3 layer stack. The channel is epitaxially connected to the μm-scale source and drain within a single layer for a planar MOSFET to avoid any issues of ohmic contact and LPCEO to the NW. To fabricate a MOSFET, the top and the two sidewalls of the in-plane NW are oxidized by LPCEO to relieve the surface damage from FIB as well as to transform these surfaces to a ˜15 nm thick gate oxide. This trigate device has threshold voltage ˜0.14 V and peak transconductance ˜35 μS μm-1 with a subthreshold swing ˜150 mV/decade and on/off ratio of drain current ˜103, comparable to the performance of bottom-up NW devices.

  15. Piezoresistance in p-type silicon revisited

    DEFF Research Database (Denmark)

    Richter, Jacob; Pedersen, Jesper; Brandbyge, Mads;

    2008-01-01

    We calculate the shear piezocoefficient pi44 in p-type Si with a 6×6 k·p Hamiltonian model using the Boltzmann transport equation in the relaxation-time approximation. Furthermore, we fabricate and characterize p-type silicon piezoresistors embedded in a (001) silicon substrate. We find that the ...

  16. Impact of Gd{sub 2}O{sub 3} passivation layer on interfacial and electrical properties of atomic-layer-deposited ZrO{sub 2} gate dielectric on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Youpin; Zhai, Haifa; Liu, Xiaojie; Kong, Jizhou; Wu, Di; Li, Aidong, E-mail: adli@nju.edu.cn

    2014-02-01

    ZrO{sub 2} gate dielectric films were fabricated on n-GaAs substrates by atomic layer deposition (ALD), using metal organic chemical vapor deposition (MOCVD)-derived ultrathin Gd{sub 2}O{sub 3} film as interfacial control layer between ZrO{sub 2} and n-GaAs. The interfacial structure, capacitance–voltage and current–voltage properties of ZrO{sub 2}/n-GaAs and ZrO{sub 2}/Gd{sub 2}O{sub 3}/n-GaAs metal-oxide-semiconductor (MOS) capacitors have been investigated. The introduction of an ultrathin Gd{sub 2}O{sub 3} control layer can effectively suppress the formation of As oxides and high valence Ga oxide at the high k/GaAs interface which evidently improved the electrical properties of GaAs-based MOS capacitors, such as higher accumulation capacitance and lower leakage current density. It was found that the current conduction mechanism of MOS capacitors varied from Poole–Frenkel emission to Schottky–Richardson emission after introducing the thin Gd{sub 2}O{sub 3} layer. The band alignments of interfaces for ZrO{sub 2}/GaAs and ZrO{sub 2}/Gd{sub 2}O{sub 3}/GaAs were established, which indicates that the conduction band offset (CBO) for ZrO{sub 2}/GaAs and ZrO{sub 2}/Gd{sub 2}O{sub 3}/GaAs stacks are ∼1.45 and ∼1.62 eV, correspondingly.

  17. Carbon doping of GaAs NWs

    Science.gov (United States)

    Salehzadeh Einabad, Omid

    Nanowires (NWs) have been proposed and demonstrated as the building blocks for nanoscale electronic and photonic devices such as NW field effect transistors and NW solar cells which rely on doping and trap-free carrier transport. Controlled doping of NWs and a high degree of structure and morphology control are required for device applications. However, doping of III-V nanowires such as GaAs nanowires has not been reported extensively in the literature. Carbon is a well known p-type dopant in planar GaAs due to its low diffusivity and high solubility in bulk GaAs; however its use as an intentional dopant in NW growth has not yet been investigated. In this work we studied the carbon doping of GaAs nanowires using CBr4 as the dopant source. Gold nanoparticles (NP) at the tip ofthe NWs have been used to drive the NW growth. We show that carbon doping suppresses the migration ofthe gold NPs from the tip of the NWs. In addition, we show that the carbon doping of GaAs NWs is accompanied by an increase of the axial growth rate and decrease of the lateral growth rate ofthe NWs. Carbon-doped GaAs NWs, unlike the undoped ones which are highly tapered, are rod-like. The origin of the observed morphological changes is attributed to the carbon adsorbates on the sidewalls ofthe nanowires which suppress the lateral growth of the nanowires and increase the diffusion length of the gallium adatoms on the sidewalls. Stacking fault formation consisting of alternating regIOns of zincblende and wurtzite structures has been commonly observed in NWs grown along the (111) direction. In this work, based on transmission electron microscopy (TEM) analysis, we show that carbon doping ofGaAs NWs eliminates the stacking fault formation. Raman spectroscopy was used to investigate the effects of carbon doping on the vibrational properties of the carbon-doped GaAs nanowires. Carbon doping shows a strong impact on the intrinsic longitudinal and transverse optical (La and TO) modes of the GaAs

  18. (Ga,Fe)Sb: A p-type ferromagnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Nguyen Thanh; Anh, Le Duc; Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan)

    2014-09-29

    A p-type ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 3.9%–13.7%) has been grown by low-temperature molecular beam epitaxy (MBE) on GaAs(001) substrates. Reflection high energy electron diffraction patterns during the MBE growth and X-ray diffraction spectra indicate that (Ga,Fe)Sb layers have the zinc-blende crystal structure without any other crystallographic phase of precipitates. Magnetic circular dichroism (MCD) spectroscopy characterizations indicate that (Ga,Fe)Sb has the zinc-blende band structure with spin-splitting induced by s,p-d exchange interactions. The magnetic field dependence of the MCD intensity and anomalous Hall resistance of (Ga,Fe)Sb show clear hysteresis, demonstrating the presence of ferromagnetic order. The Curie temperature (T{sub C}) increases with increasing x and reaches 140 K at x = 13.7%. The crystal structure analyses, magneto-transport, and magneto-optical properties indicate that (Ga,Fe)Sb is an intrinsic ferromagnetic semiconductor.

  19. Evolution of plant P-type ATPases

    Directory of Open Access Journals (Sweden)

    Christian N.S. Pedersen

    2012-02-01

    Full Text Available Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauria and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a moss, Selaginella moellendorffii (a primitive vascular plant, and Arabidopsis thaliana (a model flowering plant. Each organism contained sequences for all five subfamilies of P-type ATPases. Our analysis demonstrates when specific subgroups of P-type ATPases disappeared in the evolution of Angiosperms. Na/K-pump related P2C ATPases were lost with the evolution of streptophytes whereas Na+ or K+ pumping P2D ATPases and secretory pathway Ca2+-ATPases remained until mosses. An N-terminally located calmodulin binding domain in P2B ATPases can only be detected in pumps from Streptophytae, whereas, like in animals, a C-terminally localized calmodulin binding domain might be present in chlorophyte P2B Ca2+-ATPases. Chlorophyte genomes encode P3A ATPases resembling protist plasma membrane H+-ATPases and a C-terminal regulatory domain is missing. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps.

  20. Design optimization of GaAs betavoltaic batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen Haiyanag; Jiang Lan [Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Chen Xuyuan, E-mail: jianglan@bit.edu.cn, E-mail: jianglan@missouri.edu [Institute for Microsystems and Nano Technology, Vestfold University College, N-3103 (Norway)

    2011-06-01

    GaAs junctions are designed and fabricated for betavoltaic batteries. The design is optimized according to the characteristics of GaAs interface states and the diffusion length in the depletion region of GaAs carriers. Under an illumination of 10 mCi cm{sup -2} {sup 63}Ni, the open circuit voltage of the optimized batteries is about {approx}0.3 V. It is found that the GaAs interface states induce depletion layers on P-type GaAs surfaces. The depletion layer along the P{sup +}PN{sup +} junction edge isolates the perimeter surface from the bulk junction, which tends to significantly reduce the battery dark current and leads to a high open circuit voltage. The short circuit current density of the optimized junction is about 28 nA cm{sup -2}, which indicates a carrier diffusion length of less than 1 {mu}m. The overall results show that multi-layer P{sup +}PN{sup +} junctions are the preferred structures for GaAs betavoltaic battery design.

  1. P-type transparent conducting oxides

    Science.gov (United States)

    Zhang, Kelvin H. L.; Xi, Kai; Blamire, Mark G.; Egdell, Russell G.

    2016-09-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d 10 orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu+-based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr3+-based oxides (3d 3) and post-transition metal oxides with lone pair state (ns 2). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

  2. Surface Chemistry and Interface Evolution during the Atomic Layer Deposition of High-k Metal Oxides on InAs(100) and GaAs(100) Surfaces

    Science.gov (United States)

    Henegar, Alex J.

    Device scaling has been key for creating faster and more powerful electronic devices. Integral circuit components like the metal-oxide semiconductor field-effect transistor (MOSFET) now rely on material deposition techniques, like atomic layer deposition (ALD), that possess atomic-scale thickness precision. At the heart of the archetypal MOSFET is a SiO2/Si interface which can be formed to near perfection. However when the thickness of the SiO 2 layer is shrunk down to a few nanometers several complications arise like unacceptably high leakage current and power consumption. Replacing Si with III-V semiconductors and SiO2 with high-k dielectric materials is appealing but comes with its own set of challenges. While SiO2 is practically defect-free, the native oxides of III-Vs are poor dielectrics. In this dissertation, the surface chemistry and interface evolution during the ALD of high-k metal oxides on Si(100), GaAs(100) and InAs(100) was studied. In particular, the surface chemistry and crystallization of TiO2 films grown on Si(100) was investigated using transmission Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Large, stable, and highly reactive anatase TiO2 grains were found to form during a post-deposition heat treatment after the ALD at 100 °C. The remainder of this work was focused on the evolution of the interfacial oxides during the deposition of TiO2 and Al2O3 on InAs(100) and GaAs(100) and during the deposition of Ta2O 5 on InAs(100). In summary the ALD precursor type, deposited film, and substrate had an influence in the evolution of the native oxides. Alkyl amine precursors fared better at removing the native oxides but the deposited films (TiO2 and Ta2O5) were susceptible to significant native oxide diffusion. The alkyl precursor used for the growth of Al 2O3 was relatively ineffective at removing the oxides but was

  3. Effect of the Si-doped In0.49Ga0.51P barrier layer on the device performance of In0.4Ga0.6As MOSFETs grown on semi-insulating GaAs substrates

    Institute of Scientific and Technical Information of China (English)

    Chang Hu-Dong; Sun Bing; Xue Bai-Qing; Liu Gui-Ming; Zhao Wei; Wang Sheng-Kai; Liu Hong-Gang

    2013-01-01

    In0.4Ga0.6As channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with and without an Si-doped In0.49Ga0.51P barrier layer grown on semi-insulating GaAs substrates have been investigated for the first time.Compared with the In0.4Ga0.6As MOSFETs without an In0.49Ga0.51P barrier layer,In0.4Ga0.6As MOSFETs with an In0.49Ga0.51P barrier layer show higher drive current,higher transconductance,lower gate leakage current,lower subthreshold swing,and higher effective channel mobility.These In0.4Ga0.6As MOSFETs (gate length 2 μm) with an In0.49Ga0.s1P barrier layer exhibit a high drive current of 117 mA/mm,a high transconductance of 71.9 mS/mm,and a maximum effective channel mobility of 1266 cm2/(V·s).

  4. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    Science.gov (United States)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  5. Formation of a pn junction on an anisotropically etched GaAs surface using metalorganic chemical vapor deposition

    Science.gov (United States)

    Leon, R. P.; Bailey, S. G.; Mazaris, G. A.; Williams, W. D.

    1986-01-01

    A continuous p-type GaAs epilayer has been deposited on an n-type sawtooth GaAs surface using MOCVD. A wet chemical etching process was used to expose the intersecting (111)Ga and (-1 -1 1)Ga planes with 6-micron periodicity. Charge-collection microscopy was used to verify the presence of the pn junction thus formed and to measure its depth. The ultimate goal of this work is to fabricate a V-groove GaAs cell with improved absorptivity, high short-circuit current, and tolerance to particle radiation.

  6. Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111B Substrate

    Directory of Open Access Journals (Sweden)

    Bouravleuv AD

    2009-01-01

    Full Text Available Abstract We report on the molecular beam epitaxy growth of Au-assisted GaAs p-type-doped NW arrays on the n-type GaAs(111B substrate and their photovoltaic properties. The samples are grown at different substrate temperature within the range from 520 to 580 °C. It is shown that the dependence of conversion efficiency on the substrate temperature has a maximum at the substrate temperature of 550 °C. For the best sample, the conversion efficiency of 1.65% and the fill factor of 25% are obtained.

  7. DLTS study of deep centers created by Ar-ion bombardment in n- and p-type MBE AlGaAs

    Science.gov (United States)

    Kaniewska, M.; Sadowski, J.; Guziewicz, M.

    2004-07-01

    The thermal emission rate of dominant traps in molecular beam epitaxial n- and p-type AlGaAs subjected to Ar-ion beam etching has been studied by deep level transient spectroscopy. Emission signatures were determined and compared with results obtained by other authors for irradiation induced and grown-in defects in GaAs and AlGaAs. The most significant result of this study is the observation that the process-induced defects in n- as well as p-type AlGaAs exhibit emission signatures, which are characteristic of native defects found in GaAs. The effect is discussed in terms of a compensation effect and related band bending.

  8. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate

    Science.gov (United States)

    Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin

    2016-07-01

    There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination.

  9. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    Science.gov (United States)

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-04-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  10. Numerical Simulation of Tunneling Current in an Anisotropic Metal-Oxide-Semiconductor Capacitor

    Directory of Open Access Journals (Sweden)

    Khairurrijal khairurrijal

    2012-07-01

    Full Text Available In this paper, we have developed a model of the tunneling currents through a high-k dielectric stack in MOS capacitors with anisotropic masses. The transmittance was numerically calculated by employing a transfer matrix method and including longitudinal-transverse kinetic energy coupling which is represented by an electron phase velocity in the gate. The transmittance was then applied to calculate tunneling currents in TiN/HfSiOxN/SiO2/p-Si MOS capacitors. The calculated results show that as the gate electron velocity increases, the transmittance decreases and therefore the tunneling current reduces. The tunneling current becomes lower as the effective oxide thickness (EOT of HfSiOxN layer increases. When the incident electron passed through the barriers in the normal incident to the interface, the electron tunneling process becomes easier. It was also shown that the tunneling current was independent of the substrate orientation. Moreover, the model could be used in designing high speed MOS devices with low tunneling currents.

  11. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    Directory of Open Access Journals (Sweden)

    Randy L. Vander Wal

    2009-09-01

    Full Text Available A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC, controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems.

  12. Speed-Up Techniques for Complementary Metal Oxide Semiconductor Very Large Scale Integration.

    Science.gov (United States)

    1984-12-14

    have been assigned to the ground node by SPICE. This node must be determined and chnaged to 0 everywhere it %k| occurs in the filename.spice file. For...Surveillance and Electronic Warefare Reliability Engineering branch of the Material Management Acquisition Division of Sacramento Air Logistics Center

  13. Micromachined vertical Hall magnetic field sensor in standard complementary metal oxide semiconductor technology

    Science.gov (United States)

    Paranjape, M.; Ristic, Lj.

    1992-06-01

    A novel 2D micromachined vertical Hall magnetic field sensor structure has been designed and fabricated using a commercially available 3 micron CMOS process. The device can detect two magnetic field components in the plane of the chip surface. The sensor exhibits a linear response and shows no cross-sensitivity between channels.

  14. Band structure engineering strategies of metal oxide semiconductor nanowires and related nanostructures: A review

    Science.gov (United States)

    Piyadasa, Adimali; Wang, Sibo; Gao, Pu-Xian

    2017-07-01

    The electronic band structure of a solid state semiconductor determines many of its physical and chemical characteristics such as electrical, optical, physicochemical, and catalytic activity. Alteration or modification of the band structure could lead to significant changes in these physical and chemical characteristics, therefore we introduce new mechanisms of creating novel solid state materials with interesting properties. Over the past three decades, research on band structure engineering has allowed development of various methods to modify the band structure of engineered materials. Compared to bulk counterparts, nanostructures generally exhibit higher band structure modulation capabilities due to the quantum confinement effect, prominent surface effect, and higher strain limit. In this review we will discuss various band structure engineering strategies in semiconductor nanowires and other related nanostructures, mostly focusing on metal oxide systems. Several important strategies of band structure modulation are discussed in detail, such as doping, alloying, straining, interface and core-shell nanostructuring.

  15. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  16. Ultrasensitive mass sensor fully integrated with complementary metal-oxide-semiconductor circuitry

    DEFF Research Database (Denmark)

    Forsén, Esko Sebastian; Abadal, G.; Ghatnekar-Nilsson, S.;

    2005-01-01

    and display ultrasensitive mass detection in air. A mass sensitivity of 4 ag/Hz has been determined in air by placing a single glycerine drop, having a measured weight of 57 fg, at the apex of a cantilever and subsequently measuring a frequency shift of 14.8 kHz. CMOS integration enables electrostatic...

  17. Note: Complementary metal-oxide-semiconductor high voltage pulse generation circuits.

    Science.gov (United States)

    Sun, Jiwei; Wang, Pingshan

    2013-10-01

    We present two types of on-chip pulse generation circuits. The first is based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 μm CMOS process. Pulses of ~1.8 V amplitude with ~135 ps duration on a 50 Ω load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The second is a high-voltage Marx generator which also uses stacked MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than the highest breakdown voltage (~10 V) of the CMOS process. These results significantly extend high-voltage pulse generation capabilities of CMOS technologies.

  18. Electrosprayed Metal Oxide Semiconductor Films for Sensitive and Selective Detection of Hydrogen Sulfide

    Science.gov (United States)

    Ghimbeu, Camelia Matei; Lumbreras, Martine; Schoonman, Joop; Siadat, Maryam

    2009-01-01

    Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO2), tungsten oxide (WO3) and indium oxide (In2O3) were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD). The morphology studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows porous homogeneous films comprising uniformly distributed aggregates of nano particles. The X-ray diffraction technique (XRD) proves the formation of crystalline phases with no impurities. Besides, the Raman cartographies provided information about the structural homogeneity. Some of the films are highly sensitive to low concentrations of H2S (10 ppm) at low operating temperatures (100 and 200 °C) and the best response in terms of Rair/Rgas is given by Cu-SnO2 films (2500) followed by WO3 (1200) and In2O3 (75). Moreover, all the films exhibit no cross-sensitivity to other reducing (SO2) or oxidizing (NO2) gases. PMID:22291557

  19. Effects of quantum coupling on the performance of metal-oxide-semiconductor field transistors

    Indian Academy of Sciences (India)

    Ling-Feng Mao

    2009-02-01

    Based on the analysis of the three-dimensional Schrödinger equation, the effects of quantum coupling between the transverse and the longitudinal components of channel electron motion on the performance of ballistic MOSFETs have been theoretically investigated by self-consistently solving the coupled Schrödinger–Poisson equations with the finite-difference method. The results show that the quantum coupling between the transverse and the longitudinal components of the electron motion can largely affect device performance. It suggests that the quantum coupling effect should be considered for the performance of a ballistic MOSFET due to the high injection velocity of the channel electron.

  20. Parameters affecting the accuracy of oxide thickness prediction in thin metal-oxide-semiconductor structures

    Science.gov (United States)

    Mohaidat, J. M.; Ahmad-Bitar, Riyad N.

    2004-01-01

    On the basis of the solution of the time dependent Schrödinger equation within the framework of the effective mass theory, a complete quantum mechanical electron tunneling through a biased square potential model with abrupt interfaces was deduced. Barriers of 3 eV height and widths up to 140 Å were investigated. Current density-voltage ( J- V) curves were computed for Al/SiO 2/ n+Si structure. The computed J- V curves exhibited oscillations at applied voltages above (Fowler-Nordheim tunneling) and below (direct tunneling) 3 V. For oxide thickness estimation, the position of the oscillation extrema from this quantum mechanical model were fitted to a wave interference formula and showed excellent agreement for oxide layer widths less than 50 Å. However, a systematic deviation appeared for layers larger than 50 Å. We show that the electron energy distribution at the injection layer and the electron effective mass on layers other than the oxide layer are important parameters for accurate oxide thickness estimation.

  1. Chemistry integrated circuit: chemical system on a complementary metal oxide semiconductor integrated circuit.

    Science.gov (United States)

    Nakazato, Kazuo

    2014-03-28

    By integrating chemical reactions on a large-scale integration (LSI) chip, new types of device can be created. For biomedical applications, monolithically integrated sensor arrays for potentiometric, amperometric and impedimetric sensing of biomolecules have been developed. The potentiometric sensor array detects pH and redox reaction as a statistical distribution of fluctuations in time and space. For the amperometric sensor array, a microelectrode structure for measuring multiple currents at high speed has been proposed. The impedimetric sensor array is designed to measure impedance up to 10 MHz. The multimodal sensor array will enable synthetic analysis and make it possible to standardize biosensor chips. Another approach is to create new functional devices by integrating molecular systems with LSI chips, for example image sensors that incorporate biological materials with a sensor array. The quantum yield of the photoelectric conversion of photosynthesis is 100%, which is extremely difficult to achieve by artificial means. In a recently developed process, a molecular wire is plugged directly into a biological photosynthetic system to efficiently conduct electrons to a gold electrode. A single photon can be detected at room temperature using such a system combined with a molecular single-electron transistor.

  2. Chemistry integrated circuit: chemical system on a complementary metal oxide semiconductor integrated circuit

    Science.gov (United States)

    Nakazato, Kazuo

    2014-01-01

    By integrating chemical reactions on a large-scale integration (LSI) chip, new types of device can be created. For biomedical applications, monolithically integrated sensor arrays for potentiometric, amperometric and impedimetric sensing of biomolecules have been developed. The potentiometric sensor array detects pH and redox reaction as a statistical distribution of fluctuations in time and space. For the amperometric sensor array, a microelectrode structure for measuring multiple currents at high speed has been proposed. The impedimetric sensor array is designed to measure impedance up to 10 MHz. The multimodal sensor array will enable synthetic analysis and make it possible to standardize biosensor chips. Another approach is to create new functional devices by integrating molecular systems with LSI chips, for example image sensors that incorporate biological materials with a sensor array. The quantum yield of the photoelectric conversion of photosynthesis is 100%, which is extremely difficult to achieve by artificial means. In a recently developed process, a molecular wire is plugged directly into a biological photosynthetic system to efficiently conduct electrons to a gold electrode. A single photon can be detected at room temperature using such a system combined with a molecular single-electron transistor. PMID:24567475

  3. Metal oxide-based monolithic complementary metal oxide semiconductor gas sensor microsystem.

    Science.gov (United States)

    Graf, Markus; Barrettino, Diego; Taschini, Stefano; Hagleitner, Christoph; Hierlemann, Andreas; Baltes, Henry

    2004-08-01

    A fully integrated gas sensor microsystem is presented, which comprises for the first time a micro hot plate as well as advanced analog and digital circuitry on a single chip. The micro hot plate is coated with a nanocrystalline SnO2 thick film. The sensor chip is produced in an industrial 0.8-microm CMOS process with subsequent micromachining steps. A novel circular micro hot plate, which is 500 x 500 microm(2) in size, features an excellent temperature homogeneity of +/-2% over the heated area (300-microm diameter) and a high thermal efficiency of 6.0 degrees C/mW. A robust prototype package was developed, which relies on standard microelectronic packaging methods. Apart from a microcontroller board for managing chip communication and providing power supply and reference signals, no additional measurement equipment is needed. The on-chip digital temperature controller can accurately adjust the membrane temperature between 170 and 300 degrees C with an error of +/-2 degrees C. The on-chip logarithmic converter covers a wide measurement range between 1 kOmega and 10 MOmega. CO concentrations in the sub-parts-per-million range are detectable, and a resolution of +/-0.1 ppm CO was achieved, which renders the sensor capable of measuring CO concentrations at threshold levels.

  4. A High-Speed Asynchronous Communication Technique for MOS (Metal-Oxide-Semiconductor) VLSI Systems.

    Science.gov (United States)

    1985-12-01

    by a well controlled amount; rather than use an active delay line the passive delay inherent in the pc board traces could be used. The transmission...in a synchronous system without a detailed analysis of the actual delays involved. The technique provides phase jitter inmunity of close to 1/4 of .~k

  5. Experimental characterization of the dominant multiple nodes charge collection mechanism in metal oxide-semiconductor transistors

    Science.gov (United States)

    Song, Ruiqiang; Chen, Shuming; Chi, Yaqing; Wu, Zhenyu; Liang, Bin; Chen, Jianjun; Xu, Jingyan; Hao, Peipei; Yu, Junting

    2017-06-01

    We propose an experimental method to investigate the dominant multiple node charge collection mechanism. A transistor array-based test structure is used to distinguish charge collection owing to the drift-diffusion and parasitic bipolar amplification effect. Heavy ion experimental results confirm that drift-diffusion dominates multiple node charge collection at low linear energy transfer (LET). However, the parasitic bipolar amplification effect dominates it at high LET. We also propose simple equations to determine the critical LET which may change the dominant multiple node charge collection mechanism. The calculated LET value is consistent with the heavy ion experimental results.

  6. Evaluation of radiation damage to Metal-Oxide-Semiconductor (MOS) devices

    Science.gov (United States)

    1982-12-01

    The purpose of these experiments was to provide qualitative and quantitative information on the effects of various hydrogen and nitrogen annealing treatments on the radiation hardness, or resistivity to damage, of MOS capacitors. Toward this end, the following tasks were performed: Construction of capacitor TO-5 packages for device evaluation; The experimental determination of the 1 MHz capacitance-voltage bias curves for both the pre- and post-irradiated capacitors; Evaluation of the change in Flat Band Voltage (Delta V sub fb) for the pre- and post-radiation stressed devices; Compilation of all 1 MHz data for cataloging purposes and the establishment of a benchmark for the new computer automated test system; and Reported data to the Contracting Officer's Technical Representative (COTR) on a case-by-case basis, as time was of the essence.

  7. Adsorption smoke detector made of thin-film metal-oxide semiconductor sensor

    CERN Document Server

    Adamian, A Z; Aroutiounian, V M

    2001-01-01

    Based on results of investigations of the thin-film smoke sensors made of Bi sub 2 O sub 3 , irresponsive to a change in relative humidity of the environment, an absorption smoke detector processing circuit, where investigated sensor is used as a sensitive element, is proposed. It is shown that such smoke detector is able to function reliably under conditions of high relative humidity of the environment (up to 100%) and it considerably exceeds the known smoke detectors by the sensitivity threshold.

  8. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    OpenAIRE

    Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W; Laura Evans; Xu, Jennifer C.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing ...

  9. Localized dielectric breakdown and antireflection coating in metal-oxide-semiconductor photoelectrodes

    Science.gov (United States)

    Ji, Li; Hsu, Hsien-Yi; Li, Xiaohan; Huang, Kai; Zhang, Ye; Lee, Jack C.; Bard, Allen J.; Yu, Edward T.

    2017-01-01

    Silicon-based photoelectrodes for solar fuel production have attracted great interest over the past decade, with the major challenge being silicon's vulnerability to corrosion. A metal-insulator-semiconductor architecture, in which an insulator film serves as a protection layer, can prevent corrosion but must also allow low-resistance carrier transport, generally leading to a trade-off between stability and efficiency. In this work, we propose and demonstrate a general method to decouple the two roles of the insulator by employing localized dielectric breakdown. This approach allows the insulator to be thick, which enhances stability, while enabling low-resistance carrier transport as required for efficiency. This method can be applied to various oxides, such as SiO2 and Al2O3. In addition, it is suitable for silicon, III-V compounds, and other optical absorbers for both photocathodes and photoanodes. Finally, the thick metal-oxide layer can serve as a thin-film antireflection coating, which increases light absorption efficiency.

  10. Optical and Surface Characteristics of Mg-Doped GaAs Nanocrystalline Thin Film Deposited by Thermionic Vacuum Arc Technique

    Science.gov (United States)

    Pat, Suat; Özen, Soner; Şenay, Volkan; Korkmaz, Şadan

    2017-01-01

    Magnesium (Mg) is the most promising p-type dopant for gallium arsenide (GaAs) semiconductor technology. Mg-doped GaAs nanocrystalline thin film has been deposited at room temperature by the thermionic vacuum arc technique, a rapid deposition method for production of doped GaAs material. The microstructure and surface and optical properties of the deposited sample were investigated by x-ray diffraction analysis, scanning electron microscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, ultraviolet-visible spectrophotometry, and interferometry. The crystalline direction of the deposited sample was determined to be (220) plane and (331) plane at 44.53° and 72.30°, respectively. The Mg-doped GaAs nanocrystalline sample showed high transmittance.

  11. Theoretical luminescence spectra in p-type quantum wells and superlattices based on InGaAsN

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago Freire de; Rodrigues, Sara Cristina Pinto [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Fisica; Silva Junior, Eronides Felisberto da [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Fisica; Sipahi, Guilherme Matos [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica; Scolfaro, Luisa Maria Ribeiro [Texas State University, San Marcos, TX (United States), Dept. of Physics

    2012-07-01

    Full text: In the past few years, the dilute nitride system, InGaAsN, is proposed as a good candidate for several device applications. InGaAsN is considered a promising material for laser devices working at 1:3 or 1:5{mu}m and high-efficiency multijunction solar cells. Incorporation of In and N into GaAs result in a strong redshift of the emission wavelength. Besides, the strain can be minimized since the opposite effect of In and N on the lattice constant enables lattice matching of InGaAsN on GaAs. However, despite their great potential for applications, the understanding of their physical properties is rather incomplete. In particular, the dominant mechanisms of light emission in these alloys and their dependence on the nitrogen composition are not well established. Such information is crucial not only for a better understanding of the optical properties of the nitrogen containing III-V alloys, but also for a better technological control of alloy formation and optimization light emission efficiency. Another point concerns to investigation in p-type doping in InGaAsN. This is of great importance since, for example, can improve the transport in HBT (Heterojunction Bipolar Transistors) devices. In this work we report on theoretical luminescence spectra calculations for p-doped GaAs/InGaAsN quantum wells and superlattices. The calculations are performed within the k-vector.p-vector method by solving the full 8 x 8 Kane Hamiltonian, generalized to treat different materials. Strain effects due the lattice mismatch between InGaAsN and GaAs are taken into account. By varying the acceptor concentration we analyze the effect of exchange-correlation, which plays an important role in profile potential and electronic transition. These results can explain several important aspects about optical properties in these systems. (author)

  12. Electronic structure of p type Delta doped systems; Estructura electronica de sistemas dopadas con Delta de tipo p

    Energy Technology Data Exchange (ETDEWEB)

    Gaggero S, L.M.; Perez A, R. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey s/n, 28040 Madrid (Spain)

    1998-12-31

    We summarize of the results obtained for the electronic structure of quantum wells that consist in an atomic layer doped with impurities of p type. The calculations are made within the frame worth of the wrapper function approach to independent bands and with potentials of Hartree. We study the cases reported experimentally (Be in GaAs and B in Si). We present the levels of energy, the wave functions and the rate of the electronic population between the different subbands, as well as the dependence of these magnitudes with the density of impurities in the layer. The participation of the bans of heavy holes is analysed, light and split-off band in the total electronic population. The effect of the temperature is discussed and we give a possible qualitative explanation of the experimental optical properties. (Author)

  13. Fabrication and Characterization of a Single Hole Transistor in p-type GaAs/AlGaAs Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Lisa A [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Reno, John L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hargett, Terry W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Most spin qubit research to date has focused on manipulating single electron spins in quantum dots. However, hole spins are predicted to have some advantages over electron spins, such as reduced coupling to host semiconductor nuclear spins and the ability to control hole spins electrically using the large spin-orbit interaction. Building on recent advances in fabricating high-mobility 2D hole systems in GaAs/AlGaAs heterostructures at Sandia, we fabricate and characterize single hole transistors in GaAs. We demonstrate p-type double quantum dot devices with few-hole occupation, which could be used to study the physics of individual hole spins and control over coupling between hole spins, looking towards eventual applications in quantum computing. Intentionally left blank

  14. Development in p-type Doping of ZnO

    Institute of Scientific and Technical Information of China (English)

    YU Liping; ZHU Qiqiang; FAN Dayong; LAN Zili

    2012-01-01

    Zinc oxide (ZnO) is a wide band-gap material of the Ⅱ-Ⅵ group with excellent optical properties for optoelectronics applications,such as the flat panel displays and solar cells used in sports tournament.Despite its advantages,the application of ZnO is hampered by the lack of stable p-type doping.In this paper,the recent progress in this field was briefly reviewed,and a comprehensive summary of the research was carried out on ZnO fabrication methods and its electrical,optical,and magnetic properties were presented.

  15. P-type conductivity in annealed strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D., E-mail: mattmcc@wsu.edu [Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2814 (United States)

    2015-12-15

    Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO{sub 3}, or STO) samples that were annealed at 1200°C. Room-temperature mobilities above 100 cm{sup 2}/V s were measured, an order of magnitude higher than those for electrons (5-10 cm{sup 2}/V s). Average hole densities were in the 10{sup 9}-10{sup 10} cm{sup −3} range, consistent with a deep acceptor.

  16. Bi-Se doped with Cu, p-type semiconductor

    Science.gov (United States)

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  17. Photoluminescence of pulsed ruby laser annealed crystalline and ion implanted GaAs

    Science.gov (United States)

    Lowndes, D. H.; Feldman, B. J.

    1981-11-01

    In an effort to understand the origin of effects earlier found to be present in p-n junctions formed by pulsed laser annealing (PLA) of ion implanted semiconducting GaAs, photoluminescence (PL) studies were carried out. PL spectra have been obtained at 4K, 77K and 300K, for both n- and p-type GaAs, for laser energy densities 0 equal to or less than E/sub 1/ equal to or less than 0.6 J/sq cm. It is found that PLA of c-GaAs alters the PL spectrum and decreases the PL intensity, corresponding to an increase in density of non-radiative recombination centers with increasing E/sub 1/. The variation of PL intensity with E/sub 1/ is found to be different for n- and p-type material. No PL is observed from high dose (1 or 5 x 10 to the 15th power ions/sq cm) Si- or Zn- implanted GaAs, either before or after laser annealing. The results suggest that the ion implantation step is primarily responsible for formation of defects associated with the loss of radiative recombination, with pulsed annealing contributing only secondarily.

  18. Towards low-dimensional hole systems in Be-doped GaAs nanowires

    DEFF Research Database (Denmark)

    Ullah, A. R.; Gluschke, J. G.; Jeppesen, Peter Krogstrup

    2017-01-01

    GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly confined 0D and 1D hole systems with strong spin–orbit effects, motivating...... our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top......}^{4}$, and sub-threshold slope 50 mV/dec at $T=4$ K. Lastly, we made a device featuring a moderately doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance...

  19. Divacancy complexes induced by Cu diffusion in Zn-doped GaAs

    Science.gov (United States)

    Elsayed, M.; Krause-Rehberg, R.; Korff, B.; Ratschinski, I.; Leipner, H. S.

    2013-08-01

    Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450-850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 - 1017 cm-3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is VGaVAs-2CuGa.

  20. Metal Fluoride Inhibition of a P-type H+ Pump

    Science.gov (United States)

    Pedersen, Jesper Torbøl; Falhof, Janus; Ekberg, Kira; Buch-Pedersen, Morten Jeppe; Palmgren, Michael

    2015-01-01

    The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state. PMID:26134563

  1. p-Type NiO Hybrid Visible Photodetector.

    Science.gov (United States)

    Mallows, John; Planells, Miquel; Thakare, Vishal; Bhosale, Reshma; Ogale, Satishchandra; Robertson, Neil

    2015-12-23

    A novel hybrid visible-light photodetector was created using a planar p-type inorganic NiO layer in a junction with an organic electron acceptor layer. The effect of different oxygen pressures on formation of the NiO layer by pulsed laser deposition shows that higher pressure increases the charge carrier density of the film and lowers the dark current in the device. The addition of a monolayer of small molecules containing conjugated π systems and carboxyl groups at the device interface was also investigated and with correct alignment of the energy levels improves the device performance with respect to the quantum efficiency, responsivity, and photogeneration. The thickness of the organic layer was also optimized for the device, giving a responsivity of 1.54 × 10(-2) A W(-1) in 460 nm light.

  2. Elucidating Functional Aspects of P-type ATPases

    DEFF Research Database (Denmark)

    Autzen, Henriette Elisabeth

    2015-01-01

    similar to that of the wild type (WT) protein. The discrepancy between the newly determined crystal structure of LpCopA and the functional manifestations of the missense mutation in human CopA, could indicate that LpCopA is insufficient in structurally elucidating the effect of disease-causing mutations...... cancer and pathogenic microbes. The goal of this Ph.D. dissertation was to functionally characterize SERCA1a and CopA from Legionella pneumophila (LpCopA) through a range of different methods within structural biology. Crystallographic studies of SERCA1a led to a newly determined crystal structure......P-type ATPases are proteins that act to maintain ion homeostasis and electrochemical gradients through the translocation of cations across cell membranes. Underscoring their significance in humans, dysfunction of the ATPases can lead to crucial diseases. Dysfunction of the sarco...

  3. Study on the p-type QWIP-LED device

    Institute of Scientific and Technical Information of China (English)

    ZHEN; Honglou; XIONG; Dayuan; ZHOU; Xuchang; LI; Ning; SHAO; Jun; LU; Wei

    2006-01-01

    A p-type quantum well infrared photodetector (QWIP) integrated with a light-emitting diode (LED) (named QWIP-LED) was fabricated and studied. The infrared photo-response spectrum was obtained from the device resistance variation and the near-infrared photo-emission intensity variation. A good agreement between these two spectra was observed, which demonstrates that the long-wavelength infrared radiation around 7.5 μm has been transferred to the near-infrared light at 0.8 μm by the photo-electronic process in the QWIP-LED structure. Moreover, the experimentally observed infrared response wavelength is in good agreement with the theoretical calculation value of 7.7 μm. The results on the upconversion of the infrared radiation will be very useful for the new infrared focal plane array technology.

  4. Multiple Applications of GaAs semiconductors

    Science.gov (United States)

    Martel, Jenrené; Wonka, Willy

    2003-03-01

    The object of this discussion will be to explore the many facets of Gallium Arsenide(GaAs) semiconductors. The session will begin with a brief overview of the basic properties of semiconductors in general(band gap, doping, charge mobility etc.). It will then follow with a closer look at the properties of GaAs and how these properties could potentially translate into some very exciting applications. Furthermore, current applications of GaAs semiconductors will be dicussed and analyzed. Finally, physical limits and advantages/disadvantages of GaAs will be considered.

  5. Towards low-dimensional hole systems in Be-doped GaAs nanowires

    Science.gov (United States)

    Ullah, A. R.; Gluschke, J. G.; Krogstrup, P.; Sørensen, C. B.; Nygård, J.; Micolich, A. P.

    2017-03-01

    GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly confined 0D and 1D hole systems with strong spin-orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good transistor performance for moderate doping, with conduction freezing out at low temperature for lowly doped nanowires and inability to reach a clear off-state under gating for the highly doped nanowires. Our best devices give on-state conductivity 95 nS, off-state conductivity 2 pS, on-off ratio ˜ {10}4, and sub-threshold slope 50 mV/dec at T=4 K. Lastly, we made a device featuring a moderately doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance quantisation highlighting the potential for future quantum device studies in this material system.

  6. Recycling of p-type mc-si Top Cuts into p-type mono c-Si Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bronsveld, P.C.P.; Manshanden, P.; Lenzmann, F.O. [ECN Solar Energy, Westerduinweg 3, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Gjerstad, O. [Si Pro Holding AS, Ornesveien 3, P.O. Box 37, 8161, Glomfjord (Norway); Oevrelid, E.J. [SINTEF, Alfred Getz Vei 2, 7465, Trondheim (Norway)

    2013-07-01

    Solar cell results and material analysis are presented of 2 p-type Czochralski (Cz) ingots pulled from a charge consisting of 100% and 50% recycled multicrystalline silicon top cuts. The top cuts were pre-cleaned with a dedicated low energy consuming technology. No structure loss was observed in the bodies of the ingots. The performance of solar cells made from the 100% recycled Si ingot decreases towards the seed end of the ingot, which could be related to a non-optimal pulling process. Solar cells from the tail end of this ingot and from the 50% recycled Si ingot demonstrated an average solar cell efficiency of 18.6%. This is only 0.1% absolute lower than the efficiency of higher resistivity reference solar cells from commercially available wafers that were co-processed.

  7. Infrared Transparent Spinel Films with p -Type Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Charles F.; Exarhos, Gregory J.; Ferris, Kim F.; Engelhard, Mark H.; Stewart, Donald C.

    2001-11-29

    Spinel oxide films containing at least two transition metal cations were found to exhibit p-type conductivity with high optical transparency from the visible to wavelengths near 15 micrometers. Resistivities as low as 0.003 ohm-cm were measured on 100 nm thick rf sputter deposited films that contained nickel and cobalt. Optical spectra, Raman scattering and XPS measurements indicated the valency of nickel localized on octahedral sites within the spinel lattice determines these properties. Electronic band structure calculations corroborated the experimental results. A resistivity minimum was found at the composition NiCo2O4 deposited from aqueous or alcoholic solutions followed by subsequent annealing at 400 degrees C in air. Solution deposited films richer in nickel than this stoichiometry always were found to phase separate into nickel oxide and a spinel phase with concomitant loss in conductivity. However, the phase stability region could be extended to higher nickel contents when rf-sputter deposition techniques were used. Sputter deposited spinel films having a nickel to cobalt ratio less than 2 were found to exhibit the highest conductivity. Results suggest that the phase stability region for these materials can be extended through appropriate choice of deposition conditions. A possible mechanism that promotes high conductivity in this system is thought to be charge transfer between the resident di- and trivalent cations that may be assisted by the magnetic nature of the oxide film.

  8. Electronic processes in uniaxially stressed p-type germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dubon, Jr., Oscar Danilo [Univ. of California, Berkeley, CA (United States)

    1996-02-01

    Effect of uniaxial stress on acceptor-related electronic processes in Ge single crystals doped with Ga, Be, and Cu were studied by Hall and photo-Hall effect measurements in conjunction with infrared spectroscopy. Stress dependence of hole lifetime in p-type Ge single crystals is used as a test for competing models of non-radiative capture of holes by acceptors. Photo-Hall effect shows that hole lifetime in Ga- and Be-doped Ge increases by over one order of magnitude with uniaxial stress at liq. He temps. Photo-Hall of Ge:Be shows a stress-induced change in the temperature dependence of hole lifetime. This is consistent with observed increase of responsivity of Ge:Ga detectors with uniaxial stress. Electronic properties of Ge:Cu are shown to change dramatically with uniaxial stress; the results provide a first explanation for the performance of uniaxially stressed, Cu-diffused Ge:Ga detectors which display a high conductivity in absence of photon signal and therefore have poor sensitivity.

  9. P type porous silicon resistivity and carrier transport

    Energy Technology Data Exchange (ETDEWEB)

    Ménard, S., E-mail: samuel.menard@st.com [STMicroelectronics, 10, rue Thalès de Milet, 37071 Tours Cedex 2 (France); Fèvre, A. [STMicroelectronics, 10, rue Thalès de Milet, 37071 Tours Cedex 2 (France); Université François Rabelais de Tours, CNRS, CEA, INSA CVL, GREMAN UMR 7347, Tours (France); Billoué, J.; Gautier, G. [Université François Rabelais de Tours, CNRS, CEA, INSA CVL, GREMAN UMR 7347, Tours (France)

    2015-09-14

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P{sub %}) was found to be the major contributor to the PS resistivity (ρ{sub PS}). ρ{sub PS} increases exponentially with P{sub %}. Values of ρ{sub PS} as high as 1 × 10{sup 9} Ω cm at room temperature were obtained once P{sub %} exceeds 60%. ρ{sub PS} was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ{sub PS}. Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P{sub %} lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P{sub %} overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices.

  10. Photoconduction spectroscopy of p-type GaSb films

    Energy Technology Data Exchange (ETDEWEB)

    Shura, M.W., E-mail: Megersa.Shura@live.nmmu.ac.za [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Wagener, V.; Botha, J.R.; Wagener, M.C. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    Excess carrier lifetimes (77 K) have been measured as function of the absorbed flux density in undoped p-type gallium antimonide films (GaSb/GaAs) using steady state photoconductivity measurements with the illumination wavelength of 1.1 {mu}m. Using the results from Hall effect measurements along with the relations describing the lifetimes of the excess minority carriers in the bulk of the films and at the surface, the theoretical values of the effective excess carrier lifetime in the materials were also calculated. Discrepancies between the experimental and theoretical results were described using a two-layer model, by considering the variation in the charge distribution within the layer due to the presence of surface states, as well as the band offset between the layer and the substrate. Theoretical modeling of the experimental result yields values of different parameters such as band bending at the surface, minimum value of Shockley-Read-Hall lifetime and maximum value of the surface recombination velocity.

  11. Enhanced emission from mid-infrared AlInSb light-emitting diodes with p-type contact grid geometry

    Energy Technology Data Exchange (ETDEWEB)

    Meriggi, Laura, E-mail: l.meriggi.1@research.gla.ac.uk; Ding, Ying; Thayne, Iain G.; Sorel, Marc [Electronic and Nanoscale Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT (United Kingdom); Steer, Matthew J. [Electronic and Nanoscale Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT (United Kingdom); Quantum Device Solutions, The West of Scotland Science Park, Block 7 Kelvin Campus, Glasgow G20 0TH (United Kingdom); MacGregor, Calum [Quantum Device Solutions, The West of Scotland Science Park, Block 7 Kelvin Campus, Glasgow G20 0TH (United Kingdom); Ironside, Charles N. [Department of Imaging and Applied Physics, Curtin University, Perth, Western Australia 6845 (Australia)

    2015-02-14

    We report on the impact of lateral current spreading on light emission from aluminium indium antimonide (AlInSb) mid-infrared p-i-n light-emitting diodes (LEDs) grown by molecular beam epitaxy on a GaAs substrate. Due to the high effective mass of holes in Al{sub x}In{sub 1−x}Sb, the resistivity of p-type material determines the 3-D distribution of current flow in the devices. This work shows that maximum light emission, as measured by electroluminescence, and 3-times wall-plug efficiency improvement were obtained at room temperature from devices with a p-type contact grid geometry with a spacing of twice the current spreading length in the p-type material, which was measured by spatially resolved photocurrent. The LED with the optimal contact geometry exhibits improved performance at high injection current levels thanks to the more uniform carrier distribution across the device area.

  12. Biological Agent Sensing Integrated Circuit (BASIC): A New Complementary Metal-oxide-semiconductor (CMOS) Magnetic Biosensor System

    OpenAIRE

    2014-01-01

    Fast and accurate diagnosis is always in demand by modern medical professionals and in the area of national defense. At present, limitations of testing speed, sample conditions, and levels of precision exist under current technologies, which are usually slow and involve testing the specimen under laboratory conditions. Typically, these methods also involve several biochemical processing steps and subsequent detection of low energy luminescence or electrical changes, all of which reduce the sp...

  13. Study of the Physics of Insulating Films as Related to the Reliability of Metal-Oxide-Semiconductor (MOS) Devices

    Science.gov (United States)

    1981-06-01

    which should rapidly develop in the 1980’s. The EAROMs described here may evolve into pure non-volatile random-access-memories ( NVRAMs ) if the cycling...substrate-Si interface. Future uses of DEIS stacks with or without faster switching times may be in the area of non-volatile random access memory ( NVRAM

  14. Study of the Physics of Insulating Films as Related to the Reliability of Metal-Oxide Semiconductor Devices

    Science.gov (United States)

    1981-07-01

    non-volatile Random-Access-Memory ( NVRAM ) structure might finally be obtained. The authors would like to acknowledge the critical reading of this... NVRAM operation, and with C.M. Osburn regarding processing. This Research was supported in part by the Defense Advanced Projects Agency, and was monitored

  15. Study of the Physics of Insulating Films as Related to the Reliability of Metal-Oxide Semiconductor Devices

    Science.gov (United States)

    1983-08-01

    W. Allen. AppI. Phys. Lett. 35. o I Nacional de Ciencia y Technologist (CONACyT) and Centro ( 19791. de Investigaciones y Estudios Avanzados del I.P.N...Sponsored in part by Consejo Nacional de Ciencia y Technologia (CONACyT) and Centro de Investigaciones y Estudios Avanzados del I.P.N. (CIEA). Mexico...Nacional de Ciencia y Technologia (CONACyT) and Centro de Investigaciones y Estudios Avanzados del I.P.N. (CIEA), Mexico. 1. C. Falcony, D.J. DiMaria

  16. Study of the Physics of Insulating Films as Related to the Reliability of Metal-Oxide-Semiconductor (MOS) Devices

    Science.gov (United States)

    1982-02-01

    Investigaciones Estudios Avanzados del I.P.N. (CIEA), Mexico. I. D.J. DiMaria. in The Physics of SiO, and Its Interfaces, ed. by S.T. Pantelides (Pergamon Press...10 - References ia) Sponsored in part by Consejo Nacional de Ciencia y Technologia (CONACyT) and Centro de Investigaciones y Estudios Avanzados del

  17. Equivalent oxide thickness scaling of Al2O3/Ge metal-oxide-semiconductor capacitors with ozone post oxidation

    Institute of Scientific and Technical Information of China (English)

    Sun Jia-Bao; Yang Zhou-Wei; Geng Yang; Lu Hong-Liang; Wu Wang-Ran; Ye Xiang-Dong; David Zhang Wei

    2013-01-01

    Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere.No additional interracial layer was detected by the high-resolution cross-sectional transmission electron microscopy and X-ray photoelectron spectroscopy measurements made after the ozone post oxidation (OPO) treatment.Decreases in the equivalent oxide thickness of the OPO-treated Al2O3/Ge MOS capacitors were confirmed.Furthermore,a continuous decrease in the gate leakage current was achieved with increasing OPO treatment time.The results can be attributed to the film quality having been improved by the OPO treatment.

  18. A Subthreshold Digital Library Using a Dynamic-Threshold Metal-Oxide Semiconductor (DTMOS) and Transmission Gate Logic

    Science.gov (United States)

    2014-09-01

    implementation of XOR/XNOR, making for a more modular nature to implement the common logic gates. The library is used to implement 1-bit full adders and a CIC...implementations. We validate such techniques through the design and simulation of inverters, full adders , and a five-stage cascaded integrator-comb (CIC...filter (inverter, XOR, NAND, flip flop, full adder , ripple carry adder , 26 bits). 2. Circuit Topology/Gate Design/Inverter and Gate Design Trade-Offs

  19. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications

    Science.gov (United States)

    VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.

  20. Image stacking approach to increase sensitivity of fluorescence detection using a low cost complementary metal-oxide-semiconductor (CMOS) webcam.

    Science.gov (United States)

    Balsam, Joshua; Bruck, Hugh Alan; Kostov, Yordan; Rasooly, Avraham

    2012-01-01

    Optical technologies are important for biological analysis. Current biomedical optical analyses rely on high-cost, high-sensitivity optical detectors such as photomultipliers, avalanched photodiodes or cooled CCD cameras. In contrast, Webcams, mobile phones and other popular consumer electronics use lower-sensitivity, lower-cost optical components such as photodiodes or CMOS sensors. In order for consumer electronics devices, such as webcams, to be useful for biomedical analysis, they must have increased sensitivity. We combined two strategies to increase the sensitivity of CMOS-based fluorescence detector. We captured hundreds of low sensitivity images using a Webcam in video mode, instead of a single image typically used in cooled CCD devices.We then used a computational approach consisting of an image stacking algorithm to remove the noise by combining all of the images into a single image. While video mode is widely used for dynamic scene imaging (e.g. movies or time-lapse photography), it is not used to capture a single static image, which removes noise and increases sensitivity by more than thirty fold. The portable, battery-operated Webcam-based fluorometer system developed here consists of five modules: (1) a low cost CMOS Webcam to monitor light emission, (2) a plate to perform assays, (3) filters and multi-wavelength LED illuminator for fluorophore excitation, (4) a portable computer to acquire and analyze images, and (5) image stacking software for image enhancement. The samples consisted of various concentrations of fluorescein, ranging from 30 μM to 1000 μM, in a 36-well miniature plate. In the single frame mode, the fluorometer's limit-of-detection (LOD) for fluorescein is ∼1000 μM, which is relatively insensitive. However, when used in video mode combined with image stacking enhancement, the LOD is dramatically reduced to 30 μM, sensitivity which is similar to that of state-of-the-art ELISA plate photomultiplier-based readers. Numerous medical diagnostics assays rely on optical and fluorescence readers. Our novel combination of detection technologies, which is new to biodetection may enable the development of new low cost optical detectors based on an inexpensive Webcam (<$10). It has the potential to form the basis for high sensitivity, low cost medical diagnostics in resource-poor settings.

  1. Influence of semiconductor barrier tunneling on the current-voltage characteristics of tunnel metal-oxide-semiconductor diodes

    DEFF Research Database (Denmark)

    Nielsen, Otto M.

    1983-01-01

    Current–voltage characteristics have been examined for Al–SiO2–pSi diodes with an interfacial oxide thickness of delta[approximately-equal-to]20 Å. The diodes were fabricated on and oriented substrates with an impurity concentration in the range of NA=1014–1016 cm−3. The results show that for low...... forward voltages, the diode current is increased with increased NA, but for higher forward voltages, the diode current is decreased as NA is increased. For the diodes examined in this work, the results presented lead to the conclusion that the diode current should be treated as a superposition...... of multistep tunneling recombination current and injected minority carrier diffusion current. This can explain the observed values of the diode quality factor n. The results also show that the voltage drop across the oxide Vox is increased with increased NA, with the result that the lowering of the minority...

  2. A new formulation for surface roughness limited mobility in bulk and ultra-thin-body metal-oxide-semiconductor transistors

    Science.gov (United States)

    Lizzit, Daniel; Esseni, David; Palestri, Pierpaolo; Selmi, Luca

    2014-12-01

    This paper presents a new model for the surface roughness (SR) limited mobility in MOS transistors. The model is suitable for bulk and thin body devices and explicitly takes into account the non linear relation between the displacement Δ of the interface position and the SR scattering matrix elements, which is found to significantly influence the r.m.s value (Δrms) of the interface roughness that is necessary to reproduce SR-limited mobility measurements. In particular, comparison with experimental mobility for bulk Si MOSFETs shows that with the new SR scattering model a good agreement with measured mobility can be obtained with Δrms values of about 0.2 nm, which is in good agreement with several AFM and TEM measurements. For thin body III-V MOSFETs, the proposed model predicts a weaker mobility degradation at small well thicknesses (Tw), compared to the Tw 6 behavior observed in Si extremely thin body devices.

  3. Performance analysis of boron nitride embedded armchair graphene nanoribbon metal-oxide-semiconductor field effect transistor with Stone Wales defects

    Science.gov (United States)

    Chanana, Anuja; Sengupta, Amretashis; Mahapatra, Santanu

    2014-01-01

    We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width ˜5 nm, the simulated ON current is found to be in the range of 265 μA-280 μA with an ON/OFF ratio 7.1 × 106-7.4 × 106 for a VDD = 0.68 V corresponding to 10 nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%.

  4. Recovery of single event upset in advanced complementary metal-oxide semiconductor static random access memory cells

    Institute of Scientific and Technical Information of China (English)

    Qin Jun-Rui; Chen Shu-Ming; Liang Bin; Liu Bi-Wei

    2012-01-01

    Using computer-aided design three-dimensional (3D) simulation technology,the recovery mechanism of single event upset and the effects of spacing and hit angle on the recovery are studied.It is found that the multi-node charge collection plays a key role in recovery and shielding the charge sharing by adding guard rings.It cannot exhibit the recovery effect.It is also indicated that the upset linear energy transfer (LET) threshold is kept constant while the recovery LET threshold increases as the spacing increases. Additionally,the effect of incident angle on recovery is analysed and it is shown that a larger angle can bring about a stronger charge sharing effect,thus strengthening the recovery ability.

  5. Negative differential transconductance in silicon quantum well metal-oxide-semiconductor field effect/bipolar hybrid transistors

    Energy Technology Data Exchange (ETDEWEB)

    Naquin, Clint; Lee, Mark [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Edwards, Hal; Mathur, Guru; Chatterjee, Tathagata; Maggio, Ken [Texas Instruments, Inc., Richardson, Texas 75243 (United States)

    2014-11-24

    Introducing explicit quantum transport into Si transistors in a manner amenable to industrial fabrication has proven challenging. Hybrid field-effect/bipolar Si transistors fabricated on an industrial 45 nm process line are shown to demonstrate explicit quantum transport signatures. These transistors incorporate a lateral ion implantation-defined quantum well (QW) whose potential depth is controlled by a gate voltage (V{sub G}). Quantum transport in the form of negative differential transconductance (NDTC) is observed to temperatures >200 K. The NDTC is tied to a non-monotonic dependence of bipolar current gain on V{sub G} that reduces drain-source current through the QW. These devices establish the feasibility of exploiting quantum transport to transform the performance horizons of Si devices fabricated in an industrially scalable manner.

  6. Charge noise analysis of metal oxide semiconductor dual-gate Si/SiGe quantum point contacts

    Energy Technology Data Exchange (ETDEWEB)

    Kamioka, J.; Oda, S. [Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1-S9-11, Ookayama, Meguro-ku, Tokyo, 152-8552 (Japan); Kodera, T., E-mail: kodera.t.ac@m.titech.ac.jp [Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1-S9-11, Ookayama, Meguro-ku, Tokyo, 152-8552 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-25, Ookayama, Meguro-ku, Tokyo, 152-8552 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Takeda, K.; Obata, T. [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Tarucha, S. [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); RIKEN, Center for Emergent Matter Science (CEMS), 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-05-28

    The frequency dependence of conductance noise through a gate-defined quantum point contact fabricated on a Si/SiGe modulation doped wafer is characterized. The 1/f{sup 2} noise, which is characteristic of random telegraph noise, is reduced by application of a negative bias on the global top gate to reduce the local gate voltage. Direct leakage from the large global gate voltage also causes random telegraph noise, and therefore, there is a suitable point to operate quantum dot measurement.

  7. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    Science.gov (United States)

    Jovanović, B.; Brum, R. M.; Torres, L.

    2014-04-01

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.

  8. A Programmable Difference-of-Gaussian Analog Complementary Metal Oxide Semiconductor Image Sensor Operating in the Subthreshold Regime

    Science.gov (United States)

    Wang, Zheye; Shibata, Tadashi

    2013-04-01

    A difference-of-Gaussian (DoG) analog CMOS image sensor architecture in which the kernel size and shape are made arbitrarily programmable has been developed based on the MOS subthreshold characteristics. The variability of MOS transistor threshold voltage causes a serious problem in the circuits operating in the subthreshold regime because the current varies exponentially depending on the threshold voltage. The problem has been alleviated by introducing a cancellation scheme employing a switched floating-gate MOS (neuMOS) circuitry. A proof-of-concept chip was designed in a 0.18-µm CMOS technology. The operation of the designed circuits was investigated by SPICE (simulation program with integrated circuit emphasis) simulation and their basic functions were demonstrated. A part of the core function, i.e., the generation of the Gaussian function profile, was confirmed by the measurement of a fabricated test circuit.

  9. Single Event Upset Rate Estimates for a 16-K CMOS (Complementary Metal Oxide Semiconductor) SRAM (Static Random Access Memory).

    Science.gov (United States)

    1986-09-30

    4 . ~**..ft.. ft . - - - ft SI TABLES 9 I. SA32~40 Single Event Upset Test, 1140-MeV Krypton, 9/l8/8~4. . .. .. .. .. .. .16 II. CRUP Simulation...cosmic ray interaction analysis described in the remainder of this report were calculated using the CRUP computer code 3 modified for funneling. The... CRUP code requires, as inputs, the size of a depletion region specified as a retangular parallel piped with dimensions a 9 b S c, the effective funnel

  10. Modeling the dark current histogram induced by gold contamination in complementary-metal-oxide-semiconductor image sensors

    Science.gov (United States)

    Domengie, F.; Morin, P.; Bauza, D.

    2015-07-01

    We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metal atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.

  11. Modeling the dark current histogram induced by gold contamination in complementary-metal-oxide-semiconductor image sensors

    Energy Technology Data Exchange (ETDEWEB)

    Domengie, F., E-mail: florian.domengie@st.com; Morin, P. [STMicroelectronics Crolles 2 (SAS), 850 Rue Jean Monnet, 38926 Crolles Cedex (France); Bauza, D. [CNRS, IMEP-LAHC - Grenoble INP, Minatec: 3, rue Parvis Louis Néel, CS 50257, 38016 Grenoble Cedex 1 (France)

    2015-07-14

    We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metal atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.

  12. A complementary metal-oxide-semiconductor compatible monocantilever 12-point probe for conductivity measurements on the nanoscale

    DEFF Research Database (Denmark)

    Gammelgaard, Lauge; Bøggild, Peter; Wells, J.W.

    2008-01-01

    and a probe pitch of 500 nm. In-air four-point measurements have been performed on indium tin oxide, ruthenium, and titanium-tungsten, showing good agreement with values obtained by other four-point probes. In-vacuum four-point resistance measurements have been performed on clean Bi(111) using different probe...

  13. Epitaxial lift-off GaAs solar cell from a reusable GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Geelen, A. van [Nijmegen Univ. (Netherlands). Res. Inst. for Mater.; Hageman, P.R. [Nijmegen Univ. (Netherlands). Res. Inst. for Mater.; Bauhuis, G.J. [Nijmegen Univ. (Netherlands). Res. Inst. for Mater.; Rijsingen, P.C. van [Nijmegen Univ. (Netherlands). Res. Inst. for Mater.; Schmidt, P. [Nijmegen Univ. (Netherlands). Res. Inst. for Mater.; Giling, L.J. [Nijmegen Univ. (Netherlands). Res. Inst. for Mater.

    1997-03-01

    Modifications to the existing epitaxial lift-off (ELO) method are described, which enable lift-off of large area devices (like solar cells). With the modified ELO method crack-free III-V films were obtained, up to 2 inch, in diameter and 1-6 {mu}m thick. For the first time epitaxial lift-off GaAs solar cells were made which contained an etch sensitive Al{sub 0.85}Ga{sub 0.15}As window layer. An energy conversion efficiency of 9.9% (AM1.5Gx1) was measured for the ELO GaAs cells. Compared to the thick GaAs reference cell, ELO cells still suffer from a low fill factor due to series and shunt resistances. Current GaAs ELO cells represent a power to weight ratio of 200 W kg{sup -1}. Because of the high selectivity of the ELO method, GaAs substrates remain unaffected after ELO. Reuse of a GaAs substrate after ELO was investigated in order to reduce the cost of III-V solar cell modules. With a simple cleaning procedure, GaAs substrates could be used at least four times without degradation of the minority carrier lifetime or carrier mobility of the grown epilayers. (orig.)

  14. Molecular beam epitaxial growth of Bi2Te3 and Sb2Te3 topological insulators on GaAs (111 substrates: a potential route to fabricate topological insulator p-n junction

    Directory of Open Access Journals (Sweden)

    Zhaoquan Zeng

    2013-07-01

    Full Text Available High quality Bi2Te3 and Sb2Te3 topological insulators films were epitaxially grown on GaAs (111 substrate using solid source molecular beam epitaxy. Their growth and behavior on both vicinal and non-vicinal GaAs (111 substrates were investigated by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. It is found that non-vicinal GaAs (111 substrate is better than a vicinal substrate to provide high quality Bi2Te3 and Sb2Te3 films. Hall and magnetoresistance measurements indicate that p type Sb2Te3 and n type Bi2Te3 topological insulator films can be directly grown on a GaAs (111 substrate, which may pave a way to fabricate topological insulator p-n junction on the same substrate, compatible with the fabrication process of present semiconductor optoelectronic devices.

  15. Effect of GaAs native oxide upon the surface morphology during GaAs MBE growth

    Science.gov (United States)

    Ageev, O. A.; Solodovnik, M. S.; Balakirev, S. V.; Mikhaylin, I. A.; Eremenko, M. M.

    2016-08-01

    The GaAs native oxide effect upon the surface morphology of the GaAs epitaxial layer was studied with taking into account the main growth parameters of MBE technology: substrate temperature, effective As4/Ga flux ratio and growth rate. The MBE modes of atomically smooth and rough surfaces and surfaces with Ga droplet array formation were determined. The possibility of the obtaining of GaAs nanowires via GaAs native oxide layer was shown.

  16. EXAFS characterization of amorphous GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, M.C.; Glover, C.J. [Australia National Univ., Canberra (Australia); Foran, G.J. [Australian Nuclear Science and Technology Organization, Menai (Australia); Yu, K.M. [Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1998-12-31

    The structural parameters of stoichiometric, amorphous GaAs have been determined with extended x-ray absorption fine structure (EXAFS) measurements performed in transmission mode at 10 K. Amorphous GaAs samples were fabricated with a combination of epitaxial growth, ion implantation and selective chemical etching. Relative to a crystalline sample, the nearest-neighbor bond length and Debye-Waller factor both increased for amorphous material. In contrast, the coordination numbers about both Ga and As atoms in the amorphous phase decreased to {approximately} 3.85 atoms from the crystalline value of four. All structural parameters were independent of implantation conditions and as a consequence, were considered representative of intrinsic, amorphous GaAs as opposed to an implantation-induced extrinsic structure.

  17. Ultraviolet light-emitting diodes with polarization-doped p-type layer

    Science.gov (United States)

    Hu, Wenxiao; Qin, Ping; Song, Weidong; Zhang, Chongzhen; Wang, Rupeng; Zhao, Liangliang; Xia, Chao; Yuan, Songyang; Yin, Yian; Li, Shuti

    2016-09-01

    We report ultraviolet light emitting diode (LEDs) with polarization doped p-type layer. Fabricated LEDs with polarization doped p-type layer exhibited reduced forward voltage and enhanced light output power, compared to those with traditional p-type AlGaN layer. The improvement is attributed to improved hole concentration and the smooth valence band by the polarization enhanced p-type doping. Our simulated results reveal that this p-type layer can further enhance the performance of ultraviolet LEDs by removing the electron blocking layer (EBL).

  18. GaAs nanowires: from manipulation of defect formation to controllable electronic transport properties.

    Science.gov (United States)

    Han, Ning; Hou, Jared J; Wang, Fengyun; Yip, SenPo; Yen, Yu-Ting; Yang, Zai-Xing; Dong, Guofa; Hung, TakFu; Chueh, Yu-Lun; Ho, Johnny C

    2013-10-22

    Reliable control in the crystal quality of synthesized III-V nanowires (NWs) is particularly important to manipulate their corresponding electronic transport properties for technological applications. In this report, a "two-step" growth process is adopted to achieve single-crystalline GaAs NWs, where an initial high-temperature nucleation process is employed to ensure the formation of high Ga supersaturated Au7Ga3 and Au2Ga alloy seeds, instead of the low Ga supersaturated Au7Ga2 seeds observed in the conventional "single-step" growth. These two-step NWs are long (>60 μm) and thick (>80 nm) with the minimal defect concentrations and uniform growth orientations. Importantly, these NWs exhibit p-type conductivity as compared to the single-step grown n-type NWs for the same diameter range. This NW conductivity difference (p- versus n-channel) is shown to originate from the donor-like crystal defects, such as As precipitates, induced by the low Ga supersaturated multicrystalline Au7Ga2 alloy seeds. Then the well-controlled crystal quality for desired electronic properties is further explored in the application of large-scale p-type GaAs NW parallel array FETs as well as the integration of both p- and n-type GaAs NWs into CMOS inverters. All these illustrate the successful control of NW crystal defects and corresponding electronic transport properties via the manipulation of Ga supersaturation in the catalytic alloy tips with different preparation methods. The understanding of this relationship between NW crystal quality and electronic transport properties is critical and preferential to the future development of nanoelectronic materials, circuit design, and fabrication.

  19. Growth and electronic properties of two-dimensional systems on (110) oriented GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F.

    2005-07-01

    As the only non-polar plane the (110) surface has a unique role in GaAs. Together with Silicon as a dopant it is an important substrate orientation for the growth of n-type or p-type heterostructures. As a consequence, this thesis will concentrate on growth and research on that surface. In the course of this work we were able to realize two-dimensional electron systems with the highest mobilities reported so far on this orientation. Therefore, we review the necessary growth conditions and the accompanying molecular process. The two-dimensional electron systems allowed the study of a new, intriguing transport anisotropy not explained by current theory. Moreover, we were the first growing a two-dimensional hole gas on (110) GaAs with Si as dopant. For this purpose we invented a new growth modulation technique necessary to retrieve high mobility systems. In addition, we discovered and studied the metal-insulator transition in thin bulk p-type layers on (110) GaAs. Besides we investigated the activation process related to the conduction in the valence band and a parallelly conducting hopping band. The new two-dimensional hole gases revealed interesting physics. We studied the zero B-field spin splitting in these systems and compared it with the known theory. Furthermore, we investigated the anisotropy of the mobility. As opposed to the expectations we observed a strong persistent photoconductivity in our samples. Landau levels for two dimensional hole systems are non-linear and can show anticrossings. For the first time we were able to resolve anticrossings in a transport experiment and study the corresponding activation process. Finally, we compared these striking results with theoretical calculations. (orig.)

  20. Migration processes of the As interstitial in GaAs

    Science.gov (United States)

    Wright, A. F.; Modine, N. A.

    2016-12-01

    Thermal migration processes of the As interstitial in GaAs were investigated using density-functional theory and the local-density approximation for exchange and correlation. The lowest-energy processes were found to involve the -1, 0, and +1 charge states, and to produce migration along ⟨110⟩-type directions. In the -1 and 0 charge states, migration proceeds via hops between split-interstitial stable configurations at bulk As sites through bridging saddle-point configurations in which the interstitial atom is equidistant from two adjacent bulk As sites. In the +1 charge state, the roles of these two configurations are approximately reversed and migration proceeds via hops between bridging stable configurations through higher-energy split-interstitial stable configurations bounded by a pair of distorted split-interstitial saddle-point configurations. The predicted activation energies for migration in the 0 and +1 charge states agree well with measurements in semi-insulating and p-type material, respectively. Also consistent with experiments, the approximate reversal of the stable and saddle-point configurations between the 0 and +1 charge states is predicted to enable carrier-induced migration with a residual activation energy of 0.05 eV.

  1. Effect of doped substrates on the growth of GaAs nanowires via metal organic chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2017-08-01

    Full Text Available Vertical GaAs nanowires were grown on different doped substrates via Metal Organic Chemical Vapor Deposition by catalyst assisted vapor-liquid-solid mechanism. It is found that both n and p type doped substrates affect catalyst distribution during the formation of alloy catalysts. The catalyst density decreases with an increase in the doping concentration of the substrates. In the growth of GaAs nanowires, the growth rate, which is mostly determined by the atoms diffusion from the pyrolysis of precursors on the surface of nanowires and substrates, is proportional to the catalyst densities. Moreover, the structures of as-grown nanowires are all pure zinc blende without any defects. These results will be valuable for the applications of nanowire-based optical and electrical devices.

  2. Si diffusion in GaAs

    Indian Academy of Sciences (India)

    P Murugan; R Pothiraj; S D D Roy; K Ramachandran

    2002-08-01

    Theoretical studies are carried out to ascertain the dominant mechanism of Si diffusion in GaAs. Lattice dynamical model calculations have shown that the most probable diffusion mechanism is through a single vacancy even though several experiments cannot fix the mechanism as substitutional, substitutional–interstitial pair or neutral defect pair.

  3. GaAs optoelectronic neuron arrays

    Science.gov (United States)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  4. Gigant Eesti Gaas razdajot seti / Artur Tooman

    Index Scriptorium Estoniae

    Tooman, Artur, 1971-

    2004-01-01

    Eesti Gaas sõlmis firmadega, mis on aastate jooksul ehitanud kümneid kilomeetreid gaasitrasse, tähtajatud lepingud. Nüüd on viieteistkümnel firmal gaasijagamise litsents. Majandus- ja kommunikatsiooniministeeriumi kavandatavatest muutustest gaasi müümisel ja transportimisel. Kaart

  5. Defect studies in low-temperature-grown GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, D.E.

    1992-11-01

    High content of excess As is incorporated in GaAs grown by low-temperature molecular-beam-epitaxy (LTMBE). The excess As exists primarily as As antisite defects AsGa and a lesser extent of gallium vacancies V[sub Ga]. The neutral AsGa-related defects were measured by infrared absorption at 1[mu]m. Gallium vacancies, V[sub Ga], was investigated by slow positron annihilation. Dependence of defect contents on doping was studied by Si and Be dopants. No free carriers are generated by n-type or p-type doping up to 10[sup 19] cm[sup [minus]3] Si or Be. Raman data indicate Be occupies Ga substitutional sites but Si atom is not substitutional. Si induces more As[sub Ga] in the layer. As As[sub Ga] increases, photoquenchable As[sub Ga] decreases. Fraction of photoquenchable defects correlates to defects within 3 nearest neighbor separations disrupting the metastability. Annealing reduces neutral As[sub Ga] content around 500C, similar to irradiation damaged and plastically deformed Ga[sub As], as opposed to bulk grown GaAs in which As[sub Ga]-related defects are stable up to 1100C. The lower temperature defect removal is due to V[sub Ga] enhanced diffusion of As[sub Ga] to As precipitates. The supersaturated V[sub GA] and also decreases during annealing. Annealing kinetics for As[sub Ga]-related defects gives 2.0 [plus minus] 0.3 eV and 1.5 [plus minus] 0.3 eV migration enthalpies for the As[sub Ga] and V[sub Ga]. This represents the difference between Ga and As atoms hopping into the vacancy. The non-photoquenchable As[sub Ga]-related defects anneal with an activation energy of 1.1 [plus minus] 0.3eV. Be acceptors can be activated by 800C annealing. Temperature difference between defect annealing and Be activation formation of As[sub Ga]-Be[sub Ga] pairs. Si donors can only be partially activated.

  6. Defect studies in low-temperature-grown GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, David Emory [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    High content of excess As is incorporated in GaAs grown by low-temperature molecular-beam-epitaxy (LTMBE). The excess As exists primarily as As antisite defects AsGa and a lesser extent of gallium vacancies VGa. The neutral AsGa-related defects were measured by infrared absorption at 1μm. Gallium vacancies, VGa, was investigated by slow positron annihilation. Dependence of defect contents on doping was studied by Si and Be dopants. No free carriers are generated by n-type or p-type doping up to 1019 cm-3 Si or Be. Raman data indicate Be occupies Ga substitutional sites but Si atom is not substitutional. Si induces more AsGa in the layer. As AsGa increases, photoquenchable AsGa decreases. Fraction of photoquenchable defects correlates to defects within 3 nearest neighbor separations disrupting the metastability. Annealing reduces neutral AsGa content around 500C, similar to irradiation damaged and plastically deformed GaAs, as opposed to bulk grown GaAs in which AsGa-related defects are stable up to 1100C. The lower temperature defect removal is due to VGa enhanced diffusion of AsGa to As precipitates. The supersaturated VGa and also decreases during annealing. Annealing kinetics for AsGa-related defects gives 2.0 ± 0.3 eV and 1.5 ± 0.3 eV migration enthalpies for the AsGa and VGa. This represents the difference between Ga and As atoms hopping into the vacancy. The non-photoquenchable AsGa-related defects anneal with an activation energy of 1.1 ± 0.3eV. Be acceptors can be activated by 800C annealing. Temperature difference between defect annealing and Be activation formation of AsGa-BeGa pairs. Si donors can only be partially activated.

  7. Reflectance-difference spectroscopy as an optical probe for in situ determination of doping levels in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Lastras-Martinez, A.; Lara-Velazquez, I.; Balderas-Navarro, R.E.; Ortega-Gallegos, J.; Guel-Sandoval, S.; Lastras-Martinez, L.F. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi, SLP 78000 (Mexico)

    2008-07-01

    We report on in situ Reflectance Difference Spectroscopy measurements carried out on GaAs(001). Measurements were performed at temperatures of 580 C and 430 C, in both n and p-type doped films and for both (2 x 4) and c(4 x 4) reconstructions. Samples employed were grown by Molecular Beam Epitaxy with doping levels in the range from 10{sup 16}-10{sup 19} cm{sup -3}. We demonstrate the potential of Reflectance Difference Spectroscopy for impurity level determinations under growth conditions. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein

    DEFF Research Database (Denmark)

    Ekberg, Kira; Palmgren, Michael; Veierskov, Bjarke;

    2010-01-01

    The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H+-ATPases has long been recognized to be part of a regulatory apparatus...

  9. Demethoxycurcumin is a potent inhibitor of P-type ATPases from diverse kingdoms of life

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Sehgal, Pankaj; Thanh Tung, Truong;

    2016-01-01

    P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used ...

  10. Luminance behavior of lithium-doped ZnO nanowires with p-type conduction characteristics.

    Science.gov (United States)

    Ko, Won Bae; Lee, Jun Seok; Lee, Sang Hyo; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Park, Young Jun; Kim, Hyun Jung; Hong, Jin Pyo

    2013-09-01

    The present study describes the room-temperature cathodeluminescence (CL) and temperature-dependent photoluminescence (PL) properties of p-type lithium (Li)-doped zinc oxide (ZnO) nanowires (NWs) grown by hydrothermal doping and post-annealing processes. A ZnO thin film was used as a seed layer in NW growth. The emission wavelengths and intensities of undoped ZnO NWs and p-type Li-doped ZnO NWs were analyzed for comparison. CL and PL observations of post-annealed p-type Li-doped ZnO NWs clearly exhibited a dominant sharp band-edge emission. Finally, a n-type ZnO thin film/p-type annealed Li-doped ZnO NW homojunction diode was prepared to confirm the p-type conduction of annealed Li-doped ZnO NWs as well as the structural properties measured by transmission electron microscopy.

  11. Application of neutron transmutation doping method to initially p-type silicon material.

    Science.gov (United States)

    Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun

    2009-01-01

    The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established.

  12. Piezoelectric field in strained GaAs.

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Weng Wah; Wieczorek, Sebastian Maciej

    2005-11-01

    This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.

  13. GaAs devices for new mobile communication systems application

    OpenAIRE

    Pettenpaul, E.; Schopf, K.J.

    1992-01-01

    A set of GaAs SMD devices has been developed for use in the new european mobile communication equipment, i.e. for DECT and PCN at 1900 and 1800 MHz, respectively. These devices cover the rf part of mobile communication terminals. The devices considered are a GaAs LNC chip for the receiver part, an upconversion mixer MMIC, a prescaler and GaAs power MESFETs as end-stages for the transmitter. The complete DECT, PCN block circuit including GaAs and Si devices will be described.

  14. Towards p-type ZnO using post-growth annealing

    Energy Technology Data Exchange (ETDEWEB)

    Dangbegnon, J.K.; Roro, K.T.; Botha, J.R. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2008-01-15

    The optical properties of zinc oxide (ZnO) films grown by metalorganic chemical vapor deposition on GaAs substrate are investigated. Samples were annealed in two different ambients, namely nitrogen and oxygen, and studied by photoluminescence (PL). Samples annealed in oxygen at 600 C show arsenic acceptor-related signatures. The near-band-edge emission is dominated by an excitonic feature at 3.355 eV and compensation broadens the spectra. No such changes are observed when similar samples are annealed in nitrogen. The diffusion of arsenic from the GaAs substrate appears to be a source of acceptors. This effect is enhanced in an oxygen atmosphere. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Polarization and charge limit studies of strained GaAs photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Saez, P.J.

    1997-03-01

    This thesis presents studies on the polarization and charge limit behavior of electron beams produced by strained GaAs photocathodes. These photocathodes are the source of high-intensity, high-polarization electron beams used for a variety of high-energy physics experiments at the Stanford Linear Accelerator Center. Recent developments on P-type, biaxially-strained GaAs photocathodes have produced longitudinal polarization in excess of 80% while yielding beam intensities of {approximately} 2.5 A/cm{sup 2} at an operating voltage of 120 kV. The SLAC Gun Test Laboratory, which has a replica of the SLAC injector, was upgraded with a Mott polarimeter to study the polarization properties of photocathodes operating in a high-voltage DC gun. Both the maximum beam polarization and the maximum charge obtainable from these photocathodes have shown a strong dependence on the wavelength of illumination, on the doping concentration, and on the negative electron affinity levels. The experiments performed for this thesis included studying the effects of temperature, cesiation, quantum efficiency, and laser intensity on the polarization of high-intensity beams. It was found that, although low temperatures have been shown to reduce the spin relaxation rate in bulk semiconductors, they don`t have a large impact on the polarization of thin photocathodes. It seems that the short active region in thin photocathodes does not allow spin relaxation mechanisms enough time to cause depolarization. Previous observations that lower QE areas on the photocathode yield higher polarization beams were confirmed. In addition, high-intensity, small-area laser pulses were shown to produce lower polarization beams. Based on these results, together with some findings in the existing literature, a new proposal for a high-intensity, high-polarization photocathode is given. It is hoped that the results of this thesis will promote further investigation on the properties of GaAs photocathodes.

  16. Zn-doping of GaAs nanowires grown by Aerotaxy

    Science.gov (United States)

    Yang, Fangfang; Messing, Maria E.; Mergenthaler, Kilian; Ghasemi, Masoomeh; Johansson, Jonas; Wallenberg, L. Reine; Pistol, Mats-Erik; Deppert, Knut; Samuelson, Lars; Magnusson, Martin H.

    2015-03-01

    Nanowires were grown by means of a novel aerosol-based method called Aerotaxy. Here an aerosol of Au catalyst nanoparticles in N2 is mixed with MOVPE precursors in a flow-through reactor at atmospheric pressure, whereby nanowires are produced continuously in high concentrations. We demonstrate the possibility of in situ doping of the NWs and the realization of well-controlled p-type GaAs nanowires using this Aerotaxy method. By controlling the cracking and concentration of the precursors, p-doped GaAs nanowires could be grown exhibiting a wide range of Zn doping levels. DEZn was used as the dopant source and the injected DEZn/TMGa ratio was varied from 0.1% to 3.4%. The morphology, the crystalline structure and the composition of the nanowires were studied using SEM, TEM and XEDS. The nanowires were grown straight without any significant tapering and this ideal morphology could be maintained up to an injected DEZn/TMGa ratio of 3.4%. The nanowires typically grew in the direction with a pure zincblende structure, but by increasing the DEZn flow the number of twinning defects increased which we ascribe to Zn incorporation. Elemental analysis shows a high Zn content in the catalyst particle and also a gradient in the Zn content along the nanowire. The samples were analyzed optically using photoluminescence (PL). From the result we estimated the free hole concentration induced by Zn acceptors to be 1×1020 cm-3 for DEZn/TMGa ratio of 3.4%. To our knowledge this is the first report on in situ doping of GaAs nanowires grown by Aerotaxy.

  17. Thermal effect mechanism of magnetoresistance in p-type diamond films

    Institute of Scientific and Technical Information of China (English)

    Qin Guo-Ping; Kong Chun-Yang; Ruan Hai-Bo; Huang Gui-Juan; Cui Yu-Ting; Fang Liang

    2010-01-01

    Based on the analysis and the discussion of the influence of thermal ionization energy and various scatterings on magnetoresistance(MR) of p-type diamond films, a revised model of valence band split-off over temperature is put forward, and a corresponding calculation formula is given for the MR of p-type diamond films (Corbino discs). It is shown that the theoretical calculation that the MR of diamond films changes with temperature is consistent with the experiment. The influence of Fermi energy level on MR of diamond films is discussed. Additionally, the thermal effect mechanism of MR in p-type diamond films is also explored.

  18. Characterization of plasma etching damage on p -type GaN using Schottky diodes

    OpenAIRE

    2008-01-01

    The plasma etching damage in p-type GaN has been characterized. From current-voltage and capacitance-voltage characteristics of Schottky diodes, it was revealed that inductively coupled plasma (ICP) etching causes an increase in series resistance of the Schottky diodes and compensation of acceptors in p-type GaN. We investigated deep levels near the valence band of p-type GaN using current deep level transient spectroscopy (DLTS), and no deep level originating from the ICP etching damage was ...

  19. Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method.

    Science.gov (United States)

    Wang, Ying; Yang, Zaixing; Wu, Xiaofeng; Han, Ning; Liu, Hanyu; Wang, Shuobo; Li, Jun; Tse, WaiMan; Yip, SenPo; Chen, Yunfa; Ho, Johnny C

    2016-12-01

    Growing high-quality and low-cost GaAs nanowires (NWs) as well as fabricating high-performance NW solar cells by facile means is an important development towards the cost-effective next-generation photovoltaics. In this work, highly crystalline, dense, and long GaAs NWs are successfully synthesized using a two-source method on non-crystalline SiO2 substrates by a simple solid-source chemical vapor deposition method. The high V/III ratio and precursor concentration enabled by this two-source configuration can significantly benefit the NW growth and suppress the crystal defect formation as compared with the conventional one-source system. Since less NW crystal defects would contribute fewer electrons being trapped by the surface oxides, the p-type conductivity is then greatly enhanced as revealed by the electrical characterization of fabricated NW devices. Furthermore, the individual single NW and high-density NW parallel arrays achieved by contact printing can be effectively fabricated into Schottky barrier solar cells simply by employing asymmetric Ni-Al contacts, along with an open circuit voltage of ~0.3 V. All these results indicate the technological promise of these high-quality two-source grown GaAs NWs, especially for the realization of facile Schottky solar cells utilizing the asymmetric Ni-Al contact.

  20. Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method

    Science.gov (United States)

    Wang, Ying; Yang, Zaixing; Wu, Xiaofeng; Han, Ning; Liu, Hanyu; Wang, Shuobo; Li, Jun; Tse, WaiMan; Yip, SenPo; Chen, Yunfa; Ho, Johnny C.

    2016-04-01

    Growing high-quality and low-cost GaAs nanowires (NWs) as well as fabricating high-performance NW solar cells by facile means is an important development towards the cost-effective next-generation photovoltaics. In this work, highly crystalline, dense, and long GaAs NWs are successfully synthesized using a two-source method on non-crystalline SiO2 substrates by a simple solid-source chemical vapor deposition method. The high V/III ratio and precursor concentration enabled by this two-source configuration can significantly benefit the NW growth and suppress the crystal defect formation as compared with the conventional one-source system. Since less NW crystal defects would contribute fewer electrons being trapped by the surface oxides, the p-type conductivity is then greatly enhanced as revealed by the electrical characterization of fabricated NW devices. Furthermore, the individual single NW and high-density NW parallel arrays achieved by contact printing can be effectively fabricated into Schottky barrier solar cells simply by employing asymmetric Ni-Al contacts, along with an open circuit voltage of ~0.3 V. All these results indicate the technological promise of these high-quality two-source grown GaAs NWs, especially for the realization of facile Schottky solar cells utilizing the asymmetric Ni-Al contact.

  1. Stoichiometry-controlled compensation in liquid encapsulated Czochralski GaAs

    Science.gov (United States)

    Holmes, D. E.; Chen, R. T.; Elliott, K. R.; Kirkpatrick, C. G.

    1982-01-01

    It is shown that the electrical compensation of undoped GaAs grown by the liquid encapsulated Czochralski technique is controlled by the melt stoichiometry. The concentration of the deep donor EL2 in the crystal depends on the As concentration in the melt, increasing from about 5 x 10 to the 15th per cu cm to 1.7 x 10 to the 16th per cu cm as the As atom fraction increases from 0.48 to 0.51. Furthermore, it is shown that the free-carrier concentration of semi-insulating GaAs is determined by the relative concentrations of EL2 and carbon acceptors. As a result, semi-insulating material can be obtained only above a critical As concentration (0.475-atom fraction in the material here) where the concentration of EL2 is sufficient to compensate residual acceptors. Below the critical As concentration the material is p type due to excess acceptors.

  2. Stability and diffusion of interstitital and substitutional Mn in GaAs of different doping types

    CERN Document Server

    Pereira, LMC; Decoster, S; Correia, JG; Amorim, LM; da Silva, MR; Araújo, JP; Vantomme, A

    2012-01-01

    We report on the lattice location of Mn impurities (< 0.05%) in undoped (semi-insulating) and heavily $n$-type doped GaAs, by means of $\\beta^{-}$-emission channeling from the decay of $^{56}$Mn produced at ISOLDE/CERN. In addition to the majority substituting for Ga, we locate up to 30% of the Mn impurites on tetrahedral interstitial sites with As nearest neighbors. In line with the recently reported high thermal stability of interstitial Mn in heavily $p$-type doped GaAs [L. M. C. Pereira et al., Appl. Phys. Lett. 98, 201905 (2011)], the interstitial fraction is found to be stable up to 400$^{\\circ}$C, with an activation energy for diffusion of 1.7–2.3 eV. By varying the concentration of potentially trapping defects, without a measurable effect on the migration energy of the interstitial impurities, we conclude that the observed high thermal stability is characteristic of isolated interstitial Mn. Being difficult to reconcile with the general belief that interstitial Mn is the donor defect that out-dif...

  3. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    Science.gov (United States)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  4. Origin of the p-type character of AuCl3 functionalized carbon nanotubes

    KAUST Repository

    Murat, Altynbek

    2014-02-13

    The microscopic origin of the p-type character of AuCl3 functionalized carbon nanotubes (CNTs) is investigated using first-principles self-interaction corrected density functional theory (DFT). Recent DFT calculations suggest that the p-type character of AuCl3 functionalized CNTs is due to the Cl atoms adsorbed on the CNTs. We test this hypothesis and show that adsorbed Cl atoms only lead to a p-type character for very specific concentrations and arrangements of the Cl atoms, which furthermore are not the lowest energy configurations. We therefore investigate alternative mechanisms and conclude that the p-type character is due to the adsorption of AuCl4 molecules. The unraveling of the exact nature of the p-doping adsorbates is a key step for further development of AuCl3 functionalized CNTs in water sensor applications. © 2014 American Chemical Society.

  5. Theoretical prediction of p-type transparent conductivity in Zn-doped TiO2.

    Science.gov (United States)

    Han, Xiaoping; Shao, Guosheng

    2013-06-28

    It is very difficult and yet extremely important to fill the wide technological gap in developing transparent conducting oxides (TCOs) that exhibit excellent p-type conducting characteristics. Here, on the basis of extensive first-principles calculations, we discover for the first time potentially promising p-type transparent conductivity in Zn-doped TiO2 under oxygen rich conditions. Efforts have been made to elaborate the effects of possible defects and their interaction with Zn doping on the p-type transparent conductivity. This work offers a fundamental road map for cost-effective development of p-type TCOs based on TiO2, which is a cheap and stable material system of large natural resources.

  6. Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida)

    OpenAIRE

    2014-01-01

    Metal ATPases are a subfamily of P-type ATPases involved in the transport of metal cations across biological membranes. They all share an architecture featuring eight transmembrane domains in pairs of two and are found in prokaryotes as well as in a variety of Eukaryotes. In Arabidopsis thaliana, eight metal P-type ATPases have been described, four being specific to copper transport and four displaying a broader metal specificity, including zinc, cadmium and possibly copper and calcium. So fa...

  7. Linearity of photoconductive GaAs detectors to pulsed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, L.H.

    1995-12-31

    The response of neutron damaged GaAs photoconductor detectors to intense, fast (50 psec fwhm) pulses of 16 MeV electrons has been measured. Detectors made from neutron damaged GaAs are known to have reduced gain, but significantly improved bandwidth. An empirical relationship between the observed signal and the incident electron fluence has been determined.

  8. GaAs IMPATT diodes for microstrip circuit applications.

    Science.gov (United States)

    Wisseman, W. R.; Tserng, H. Q.; Shaw, D. W.; Mcquiddy, D. N.

    1972-01-01

    GaAs IMPATT diodes with plated heat sinks are shown to be particularly well suited for microstrip circuit applications. Details of materials growth and device fabrication procedures are given, and experimental results are presented for a GaAs IMPATT microstrip oscillator operating at X band.

  9. Convergence of valence bands for high thermoelectric performance for p-type InN

    Science.gov (United States)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-12-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of ZeT is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  10. GaAs Medipix2 hybrid pixel detector

    CERN Document Server

    Kostamo, P; Vähänen, S; Tlustos, L; Fröjdh, C; Campbell, M; Zhilyaev, Y; Lipsanen, H

    2008-01-01

    A GaAs Medipix2 hybrid pixel detector based on high purity epitaxial GaAs material was successfully fabricated. The mesa type GaAs sensor with 256×256 pixels and total area of 1.4×1.4 cm2 was made of a 140-μm-thick epitaxial p–i–n structure utilizing reactive ion etching. A final thickness of approximately 110 μm for the all-epitaxial sensor element is achieved by back-thinning procedure. The sensor element is bump bonded to a Medipix2 read-out ASIC. The detector is capable of room temperature spectroscopic operation and it demonstrates the potential of GaAs for high resolution X-ray imaging systems operating at room temperature. This work describes the manufacturing process and electrical properties of the GaAs Medipix2 hybrid detector.

  11. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.

    Science.gov (United States)

    Gai, Boju; Sun, Yukun; Lim, Haneol; Chen, Huandong; Faucher, Joseph; Lee, Minjoo L; Yoon, Jongseung

    2017-01-24

    Large-scale deployment of GaAs solar cells in terrestrial photovoltaics demands significant cost reduction for preparing device-quality epitaxial materials. Although multilayer epitaxial growth in conjunction with printing-based materials assemblies has been proposed as a promising route to achieve this goal, their practical implementation remains challenging owing to the degradation of materials properties and resulting nonuniform device performance between solar cells grown in different sequences. Here we report an alternative approach to circumvent these limitations and enable multilayer-grown GaAs solar cells with uniform photovoltaic performance. Ultrathin single-junction GaAs solar cells having a 300-nm-thick absorber (i.e., emitter and base) are epitaxially grown in triple-stack releasable multilayer assemblies by molecular beam epitaxy using beryllium as a p-type impurity. Microscale (∼500 × 500 μm(2)) GaAs solar cells fabricated from respective device layers exhibit excellent uniformity (solar cells grown in triple-stack epitaxial assemblies.

  12. Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP

    Science.gov (United States)

    Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui

    2005-01-01

    In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.

  13. Formation of p-type ZnO thin film through co-implantation

    Science.gov (United States)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  14. Nanostructured p-Type Semiconductor Electrodes and Photoelectrochemistry of Their Reduction Processes

    Directory of Open Access Journals (Sweden)

    Matteo Bonomo

    2016-05-01

    Full Text Available This review reports the properties of p-type semiconductors with nanostructured features employed as photocathodes in photoelectrochemical cells (PECs. Light absorption is crucial for the activation of the reduction processes occurring at the p-type electrode either in the pristine or in a modified/sensitized state. Beside thermodynamics, the kinetics of the electron transfer (ET process from photocathode to a redox shuttle in the oxidized form are also crucial since the flow of electrons will take place correctly if the ET rate will overcome that one of recombination and trapping events which impede the charge separation produced by the absorption of light. Depending on the nature of the chromophore, i.e., if the semiconductor itself or the chemisorbed dye-sensitizer, different energy levels will be involved in the cathodic ET process. An analysis of the general properties and requirements of electrodic materials of p-type for being efficient photoelectrocatalysts of reduction processes in dye-sensitized solar cells (DSC will be given. The working principle of p-type DSCs will be described and extended to other p-type PECs conceived and developed for the conversion of the solar radiation into chemical products of energetic/chemical interest like non fossil fuels or derivatives of carbon dioxide.

  15. CuNb3O8: A p-Type Semiconducting Metal Oxide Photoelectrode.

    Science.gov (United States)

    Joshi, Upendra A; Maggard, Paul A

    2012-06-07

    A new p-type CuNb3O8 polycrystalline photoelectrode was investigated and was determined to have indirect and direct bandgap sizes of 1.26 and 1.47 eV, respectively. The p-type polycrystalline film could be prepared on fluorine-doped tin oxide glass and yielded a cathodic photocurrent under visible-light irradiation (λ > 420 nm) with incident photon-to-current efficiencies of up to ∼6-7% and concomitant hydrogen evolution. A Mott-Schottky analysis yielded a flat band potential of +0.35 V versus RHE (pH = 6.3) and a calculated p-type dopant concentration of ∼7.2 × 10(15) cm(-3). The conduction band energies are found to be negative enough for the reduction of water under visible light irradiation. A hole mobility of ∼145 cm(2)/V·s was obtained from J(I)-V(2) measurements using the Mott-Gurney relation, which is ∼50% higher than that typically found for p-type Cu2O. DFT-based electronic structure calculations were used to probe the atomic and structural origins of the band gap transitions and carrier mobility. Thus, a new p-type semiconductor is discovered for potential applications in solar energy conversion.

  16. Chemical-free n-type and p-type multilayer-graphene transistors

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com [Voxtel Inc, Lockey Laboratories, University of Oregon, Eugene Oregon 97402 (United States); Eisaman, M. D. [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794 (United States); Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-08-01

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping. When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.

  17. D10.7.2: Results for GaAs photocathodes

    CERN Document Server

    Xiang, R

    2013-01-01

    HZDR plans to apply bulk GaAs photocathode in SRF gun for high current electron source. Supported by this project, a preparation system for GaAs photocathode has been developed. The cathode plugs special for GaAs wafer have been modified and proofed in SRF gun real running conditions. Virgin GaAs wafer was tested in the SRF gun cavity, and the first GaAs activation was performed.

  18. Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors

    KAUST Repository

    Caraveo-Frescas, J. A.

    2013-11-25

    p-type tin monoxide (SnO) nanowire field-effect transistors with stable enhancement mode behavior and record performance are demonstrated at 160 °C. The nanowire transistors exhibit the highest field-effect hole mobility (10.83 cm2 V−1 s−1) of any p-type oxide semiconductor processed at similar temperature. Compared to thin film transistors, the SnO nanowire transistors exhibit five times higher mobility and one order of magnitude lower subthreshold swing. The SnO nanowire transistors show three times lower threshold voltages (−1 V) than the best reported SnO thin film transistors and fifteen times smaller than p-type Cu 2O nanowire transistors. Gate dielectric and process temperature are critical to achieving such performance.

  19. DyP-type peroxidases comprise a novel heme peroxidase family.

    Science.gov (United States)

    Sugano, Y

    2009-04-01

    Dye-decolorizing peroxidase (DyP) is produced by a basidiomycete (Thanatephorus cucumeris Dec 1) and is a member of a novel heme peroxidase family (DyP-type peroxidase family) that appears to be distinct from general peroxidases. Thus far, 80 putative members of this family have been registered in the PeroxiBase database (http://peroxibase.isbsib.ch/) and more than 400 homologous proteins have been detected via PSI-BLAST search. Although few studies have characterized the function and structure of these proteins, they appear to be bifunctional enzymes with hydrolase or oxygenase, as well as typical peroxidase activities. DyP-type peroxidase family suggests an ancient root compared with other general peroxidases because of their widespread distribution in the living world. In this review, firstly, an outline of the characteristics of DyP from T. cucumeris is presented and then interesting characteristics of the DyP-type peroxidase family are discussed.

  20. Demethoxycurcumin is a potent inhibitor of P-type ATPases from diverse kingdoms of life

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Sehgal, Pankaj; Thanh Tung, Truong;

    2016-01-01

    the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site......P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used...... as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among...

  1. Electrode pattern design for GaAs betavoltaic batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen Haiyang; Yin Jianhua; Li Darang, E-mail: haiyangchen@bit.edu.cn [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2011-08-15

    The sensitivities of betavoltaic batteries and photovoltaic batteries to series and parallel resistance are studied. Based on the study, an electrode pattern design principle of GaAs betavoltaic batteries is proposed. GaAs PIN junctions with and without the proposed electrode pattern are fabricated and measured under the illumination of {sup 63}Ni. Results show that the proposed electrode can reduce the backscattering and shadowing for the beta particles from {sup 63}Ni to increase the GaAs betavoltaic battery short circuit currents effectively but has little impact on the fill factors and ideal factors.

  2. A simple model to estimate the optimal doping of p - Type oxide superconductors

    Directory of Open Access Journals (Sweden)

    Adir Moysés Luiz

    2008-12-01

    Full Text Available Oxygen doping of superconductors is discussed. Doping high-Tc superconductors with oxygen seems to be more efficient than other doping procedures. Using the assumption of double valence fluctuations, we present a simple model to estimate the optimal doping of p-type oxide superconductors. The experimental values of oxygen content for optimal doping of the most important p-type oxide superconductors can be accounted for adequately using this simple model. We expect that our simple model will encourage further experimental and theoretical researches in superconducting materials.

  3. Dual ohmic contact to N- and P-type silicon carbide

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  4. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  5. Hall and thermoelectric evaluation of p-type InAs

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, M.C., E-mail: magnus.wagener@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Wagener, V.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2009-12-15

    This paper compares the galvanometric and thermoelectric evaluation of the electrical characteristics of narrow gap semiconductors. In particular, the influence of a surface inversion layer is incorporated into the analysis of the temperature-dependent Hall and thermoelectric measurements of p-type InAs. The temperature at which the Seebeck coefficient of p-type material changes sign is shown to be unaffected by the presence of degenerate conduction paths. This finding consequently facilitated the direct determination of the acceptor density of lightly doped thin film InAs.

  6. GaInP/GaAs tandem solar cells with highly Te-and Mg-doped GaAs tunnel junctions grown by MBE

    Institute of Scientific and Technical Information of China (English)

    郑新和; 刘三姐; 夏宇; 甘兴源; 王海啸; 王乃明; 杨辉

    2015-01-01

    We report a GaInP/GaAs tandem solar cell with a novel GaAs tunnel junction (TJ) with using tellurium (Te) and magnesium (Mg) as n- and p-type dopants via dual-filament low temperature effusion cells grown by molecular beam epitaxy (MBE) at low temperature. The test Te/Mg-doped GaAs TJ shows a peak current density of 21 A/cm2. The tandem solar cell by the Te/Mg TJ shows a short-circuit current density of 12 mA/cm2, but a low open-circuit voltage range of 1.4 V∼1.71 V under AM1.5 illumination. The secondary ion mass spectroscopy (SIMS) analysis reveals that the Te doping is unexpectedly high and its doping profile extends to the Mg doping region, thus possibly resulting in a less abrupt junction with no tunneling carriers effectively. Furthermore, the tunneling interface shifts from the intended GaAs n++/p++junction to the AlGaInP/GaAs junction with a higher bandgap AlGaInP tunneling layers, thereby reducing the tunneling peak. The Te concentration of∼2.5 × 1020 in GaAs could cause a lattice strain of 10−3 in magnitude and thus a surface roughening, which also negatively influences the subsequent growth of the top subcell and the GaAs contacting layers. The doping features of Te and Mg are discussed to understand the photovoltaic response of the studied tandem cell.

  7. Hydrogen molecules in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Lavrov, E.V.; Weber, J

    2003-12-31

    GaAs samples treated in a hydrogen plasma have been studied by Raman spectroscopy. In addition to the known Raman line at 3912 cm{sup -1} of H{sub 2} trapped at the interstitial T{sub Ga} site surrounded by Ga neighbors, two new Raman signals at 4043 and 4112 cm{sup -1} have been observed at room temperature. The 4043 cm{sup -1} line is assigned to H{sub 2} trapped at the interstitial T{sub As} site with As closest neighbors and the 4112 cm{sup -1} line is associated with H{sub 2} trapped in voids formed by the hydrogen plasma. Para-H{sub 2} trapped at the interstitial T{sub Ga} site is shown to be unstable against irradiation with the band-gap light at room temperature and can be observed only at temperatures below 120 K.

  8. Realization of Ag-S codoped p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tian Ning, E-mail: xtn9886@zju.edu.cn [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Xiang; Lu, Zhong [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Chen, Yong Yue [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Sui, Cheng Hua [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Wu, Hui Zhen [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2014-10-15

    Highlights: • Ag-S codoped p-type ZnO thin films have been fabricated. • The films exhibit low resistivity and high Hall mobility and hole concentration. • A ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction has been fabricated and shows rectifying behaviors. - Abstract: Ag-S codoped ZnO films have been grown on quartz substrates by e-beam evaporation at low temperature (100 °C). The effects of Ag{sub 2}S content on the structural and electrical properties of the films were investigated. The results showed that 2 wt% Ag{sub 2}S doped films exhibited p-type conduction, with a resistivity of 0.0347 Ω cm, a Hall mobility of 9.53 cm{sup 2} V{sup −1} s{sup −1}, and a hole concentration of 1.89 × 10{sup 19} cm{sup −3} at room temperature. The X-ray photoelectron spectroscopy measurements showed that Ag and S have been incorporated into the films. To further confirm the p-type conduction of Ag-S codoped ZnO films, a ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction was fabricated and rectifying behaviors of which was measured. High electrical performance and low growth temperature indicate that Ag{sub 2}S is a promising dopant to fabricate p-type Ag-S codoped ZnO films.

  9. Relative Frequencies of G and P Types among Rotaviruses from Indian Diarrheic Cow and Buffalo Calves

    Science.gov (United States)

    Gulati, Baldev R.; Nakagomi, Osamu; Koshimura, Yumi; Nakagomi, Toyoko; Pandey, Ramayan

    1999-01-01

    While an increasing number of studies suggest that there is a high prevalence of rotaviruses with P8[11], a typical P type of bovine rotavirus (BRV), among human neonates or infants in India, no data are available on the distribution of G and P types of Indian BRVs. Thus, fecal specimens were collected from cow and buffalo calves under 1 month of age on organized dairy farms in India during the period between 1994 and 1997, and 36 rotavirus-positive specimens were used to determine the relative frequencies of the G and P types of Indian BRVs. As to the G type, G10 was predominant (83%), followed by G6 (6%). The majority (94%) of BRVs had P8[11], and only one isolate possessed P6[1]. The most common combination of G and P types was G10P8[11] (81%), followed by G6P6[1] (3%) and G6P8[11] (3%). The high prevalence of BRVs possessing P8[11] VP4s strongly supports the hypothesis that BRVs may cross the host species barrier and circulate among neonates in India. PMID:10325385

  10. Characterization of 3D-DDTC detectors on p-type substrates

    CERN Document Server

    Betta, G -F Dalla; Bosisio, Luciano; Darbo, Giovanni; Gabos, Paolo; Gemme, Claudia; Koehler, Michael; La Rosa, Alessandro; Parzefall, Ulrich; Pernegger, Heinz; Piemonte, Claudio; Povoli, Marco; Rachevskaia, Irina; Ronchin, Sabina; Wiik, Liv; Zoboli, Aanrea; Zorzi, Nicola

    2009-01-01

    We report on the electrical and functional characterization of 3D Double-side, Double-Type-Column (3D- DDTC) detectors fabricated on p-type substrates. Results relevant to detectors in the diode, strip and pixel configurations are presented, and demonstrate a clear improvement in the charge collection performance compared to the first prototypes of these detectors.

  11. Origin and evolution of metal p-Type ATPases in Plantae (Archaeplastida

    Directory of Open Access Journals (Sweden)

    Marc eHanikenne

    2014-01-01

    Full Text Available Metal ATPases are a subfamily of P-type ATPases involved in the transport of metal cations across biological membranes. They all share an architecture featuring eight transmembrane domains in pairs of two and are found in prokaryotes as well as in a variety of Eukaryotes. In Arabidopsis thaliana, eight metal P-type ATPases have been described, four being specific to copper transport and four displaying a broader metal specificity, including zinc, cadmium and possibly copper and calcium. So far, few efforts have been devoted to elucidating the origin and evolution of these proteins in Eukaryotes. In this work, we use large-scale phylogenetics to show that metal P-type ATPases form a homogenous group among P-type ATPases and that their specialisation into either monovalent (Cu or divalent (Zn, Cd… metal transport stems from a gene duplication that took place early in the evolution of Life. Then, we demonstrate that the four subgroups of plant metal ATPases all have a different evolutionary origin and a specific taxonomic distribution, only one tracing back to the cyanobacterial progenitor of the chloroplast. Finally, we examine the subsequent evolution of these proteins in green plants and conclude that the genes thoroughly characterised in model organisms are often the result of lineage-specific gene duplications, which calls for caution when attempting to infer function from sequence similarity alone in non-model organisms.

  12. Synthesis of p-type and n-type nickel ferrites and associated electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Šutka, Andris, E-mail: andris.sutka@rtu.lv [Faculty of Material Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, Riga, LV-1048 (Latvia); Institute of Physics, University of Tartu, Ravila 14c, 50411, 51014 Tartu (Estonia); Pärna, Rainer [Institute of Physics, University of Tartu, Ravila 14c, 50411, 51014 Tartu (Estonia); Estonian Nanotechnology Competence Centre, Ravila 14c, 50411, 51014 Tartu (Estonia); Käämbre, Tanel [Institute of Physics, University of Tartu, Ravila 14c, 50411, 51014 Tartu (Estonia); Kisand, Vambola [Institute of Physics, University of Tartu, Ravila 14c, 50411, 51014 Tartu (Estonia); Estonian Nanotechnology Competence Centre, Ravila 14c, 50411, 51014 Tartu (Estonia)

    2015-01-01

    We used sol–gel auto combustion to synthesize nickel ferrites of p-type and n-type conductivity by controlling the relative amounts of nickel and iron during synthesis. The obtained samples have been characterized by XRD, FE-SEM, electrical measurements and XPS. We observe huge differences in the effect of grain size on the electrical resistivity between the p-type and the n-type material when the grain size increases from nano to micro scale during annealing at temperatures from 900 {sup o}C to 1300 {sup o}C. The observed resistivity decrease (due to grain size) is four orders of magnitude in the n-type nickel ferrite, whereas the p-type material remains virtually unaffected. We rationalize this drastic difference to stem from a reverse contrast of the surface (grain shell) versus bulk (grain core) conductivity between p- and n-type ferrite. With the grain shells in p-type the easier charge carrier path the effect of scatter at grain boundaries is accordingly diminished, whereas in the n-type charge transport properties are controlled by (the number of) grain boundaries in a conduction path.

  13. A structural and functional perspective of DyP-type peroxidase family.

    Science.gov (United States)

    Yoshida, Toru; Sugano, Yasushi

    2015-05-15

    Dye-decolorizing peroxidase from the basidiomycete Bjerkandera adusta Dec 1 (DyP) is a heme peroxidase. This name reflects its ability to degrade several anthraquinone dyes. The substrate specificity, the amino acid sequence, and the tertiary structure of DyP are different from those of the other heme peroxidase (super)families. Therefore, many proteins showing the similar amino acid sequences to that of DyP are called DyP-type peroxidase which is a new family of heme peroxidase identified in 2007. In fact, all structures of this family show a similar structure fold. However, this family includes many proteins whose amino acid sequence identity to DyP is lower than 15% and/or whose catalytic efficiency (kcat/Km) is a few orders of magnitude less than that of DyP. A protein showing an activity different from peroxidase activity (dechelatase activity) has been also reported. In addition, the precise physiological roles of DyP-type peroxidases are unknown. These facts raise a question of whether calling this family DyP-type peroxidase is suitable. Here, we review the differences and similarities of structure and function among this family and propose the reasonable new classification of DyP-type peroxidase family, that is, class P, I and V. In this contribution, we discuss the adequacy of this family name.

  14. Diffusion of $^{52}$Mn in GaAs

    CERN Multimedia

    2002-01-01

    Following our previous diffusion studies performed with the modified radiotracer technique, we propose to determine the diffusion of Mn in GaAs under intrinsic conditions in a previously un-investigated temperature region. The aim of the presently proposed experiments is twofold. \\begin{itemize} \\item A quantitative study of Mn diffusion in GaAs at low Mn concentrations would be decisive in providing new information on the diffusion mechanism involved. \\item As Ga vacancies are expected to be involved in the Mn diffusion process it can be predicted that also the GaAs material growth technique most likely plays a role. To clarify this assumption diffusion experiments will be conducted for GaAs material grown by two different techniques. \\end{itemize} For such experiments we ask for two runs of 3 shifts (total of 6 shifts) with $^{52}$Mn$^{+}$ ion beam.

  15. Electrodeposition of Metal on GaAs Nanowires

    Science.gov (United States)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  16. GaAs Films Prepared by RF-Magnetron Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    L.H. Ouyang; D.L. Rode; T. Zulkifli; B. Abraham-Shrauner; N. Lewis; M.R. Freeman

    2001-08-01

    The authors reported on the optical absorption, adhesion, and microstructure of RF-magnetron sputtered films of hydrogenated amorphous and microcrystalline GaAs films for the 1 to 25 {micro}m infrared wavelength rate. Sputtering parameters which were varied include sputtering power, temperature and pressure, and hydrogen sputtering-gas concentration. TEM results show a sharp transition from purely amorphous GaAs to a mixture of microcrystalline GaAs in an amorphous matrix at 34 {+-} 2 C. By optimizing the sputtering parameters, the optical absorption coefficient can be decreased below 100 cm{sup -1} for wavelengths greater than about 1.25 {micro}m. These results represent the lowest reported values of optical absorption for sputtered films of GaAs directly measured by spectrophotometry for the near-infrared wavelength region.

  17. Simulation of silicon diffusion in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Saad, A.M., E-mail: daas005@yahoo.co.u [Al-Balga Applied University, P.O.Box 4545 - Amman - 11953 - Tela El Ali (Jordan); Velichko, O.I. [Department of Physics, Belarusian State University of Informatics and Radioelectronics, 6, P. Brovki Street, Minsk 220013 (Belarus)

    2011-03-01

    The simulation of coupled diffusion of silicon atoms and point defects in GaAs has been carried out for diffusion at the temperatures of 1000 and 850 {sup o}C. The amphoteric behavior of silicon atoms in GaAs has been taken into account in the investigation of high concentration diffusion from silicon layer deposited on GaAs substrate. The calculated dopant profiles agree well with the experimental ones and they confirm the adequacy of the model of silicon diffusion used for simulation. A comparison with the experimental data has enabled this work to obtain the parameters of silicon effective diffusivity and other values describing high concentration silicon diffusion in GaAs.

  18. Gaas tõstaks maakonna konkurentsivõimet / Marje Laugen

    Index Scriptorium Estoniae

    Laugen, Marje

    2005-01-01

    Tõrvas peeti Valgamaa gaasiprojekti arutelu, kus osalesid AS-i Eesti Gaas, AS-i Fortum Termest ning Tõrva linna-, Helme valla- ja Valga maavalitsuse esindajad. Kommenteerib Valga maavanem Georg Trashanov

  19. State of the art on epitaxial GaAs detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, G.C. [Laboratoire des Milieux Desordonnes et Heterogenes, Universite Pierre et Marie Curie (Paris 6), 140 rue de Lourmel, 75015 Paris (France)]. E-mail: guocsun@ccr.jussieu.fr; Manez, N. [Laboratoire des Milieux Desordonnes et Heterogenes, Universite Pierre et Marie Curie (Paris 6), 140 rue de Lourmel, 75015 Paris (France); Zazoui, M. [Laboratoire des Milieux Desordonnes et Heterogenes, Universite Pierre et Marie Curie (Paris 6), 140 rue de Lourmel, 75015 Paris (France); Al-Ajili, A. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Davidson, D.W. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); O' Shea, V. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Quarati, F. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Smith, K.M. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Chambellan, D. [LIST/DIMRI, CEA Saclay, 91191 Gif sur Yvette (France); Gal, O. [LIST/DIMRI, CEA Saclay, 91191 Gif sur Yvette (France); Pillot, Ph. [LIST/DIMRI, CEA Saclay, 91191 Gif sur Yvette (France); Lenoir, M. [Hospital Armand Trousseau, 26 Avenue du Docteur Arnold Netter, 75571 Paris (France); Montagne, J.P. [Hospital Armand Trousseau, 26 Avenue du Docteur Arnold Netter, 75571 Paris (France); Bchetnia, A. [Laboratoire de Physique des Materiaux, Faculte des Sciences de Monastir, 5019 Monastir, Tunisie (Tunisia); Bourgoin, J.C. [GESEC R and D, 68 Avenue de la Foret, 77210 Avon (France)

    2005-07-01

    We first briefly review the performances for X-ray detection which are obtained using thin epitaxial GaAs layers. We then show that good detectors can be realized on thick and large area epitaxial GaAs layers which are now available, making them suitable for X-ray imaging. We finally discuss the main limitation imposed by the epitaxial nature of this new material and ways to overcome it.

  20. Novel GAA mutations in patients with Pompe disease.

    Science.gov (United States)

    Turaça, Lauro Thiago; de Faria, Douglas Oliveira Soares; Kyosen, Sandra Obikawa; Teixeira, Valber Dias; Motta, Fabiana Louise; Pessoa, Juliana Gilbert; Rodrigues E Silva, Marina; de Almeida, Sandro Soares; D'Almeida, Vânia; Munoz Rojas, Maria Verônica; Martins, Ana Maria; Pesquero, João Bosco

    2015-04-25

    Pompe disease is an autosomal recessive disorder linked to GAA gene that leads to a multi-system intralysosomal accumulation of glycogen. Mutation identification in the GAA gene can be very important for early diagnosis, correlation between genotype-phenotype and therapeutic intervention. For this purpose, peripheral blood from 57 individuals susceptible to Pompe disease was collected and all exons of GAA gene were amplified; the sequences and the mutations were analyzed in silico to predict possible impact on the structure and function of the human protein. In this study, 46 individuals presented 33 alterations in the GAA gene sequence, among which five (c.547-67C>G, c.547-39T>G, p.R437H, p.L641V and p.L705P) have not been previously described in the literature. The alterations in the coding region included 15 missense mutations, three nonsense mutations and one deletion. One insertion and other 13 single base changes were found in the non-coding region. The mutation p.G611D was found in homozygosis in a one-year-old child, who presented low levels of GAA activity, hypotonia and hypertrophic cardiomyopathy. Two patients presented the new mutation p.L705P in association with c.-32-13T>G. They had low levels of GAA activity and developed late onset Pompe disease. In our study, we observed alterations in the GAA gene originating from Asians, African-Americans and Caucasians, highlighting the high heterogeneity of the Brazilian population. Considering that Pompe disease studies are not very common in Brazil, this study will help to better understand the potential pathogenic role of each change in the GAA gene. Furthermore, a precise and early molecular analysis improves genetic counseling besides allowing for a more efficient treatment in potential candidates.

  1. Infrared absorption and visible transparency in heavily doped p-type BaSnO3

    Science.gov (United States)

    Li, Yuwei; Sun, Jifeng; Singh, David J.

    2017-01-01

    The recent experimental work shows that perovskite BaSnO3 can be heavily doped by K to become a stable p-type semiconductor. Here, we find that p-type perovskite BaSnO3 retains transparency for visible light while absorbing strongly in the infrared below 1.5 eV. The origin of the remarkable optical transparency even with heavy doping is that the interband transitions that are enabled by empty states at the top of the valence band are concentrated mainly in the energy range from 0.5 to 1.5 eV, i.e., not extending past the near IR. In contrast to n-type, the Burstein-Moss shift is slightly negative, but very small reflecting the heavier valence bands relative to the conduction bands.

  2. CCE measurements and annealing studies on proton-irradiated p-type MCz silicon diodes

    CERN Document Server

    Hoedlmoser, H; Köhler, M; Nordlund, H

    2007-01-01

    Magnetic Czochralski (MCz) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of p-type MCz Silicon diodes irradiated with protons up to a fluence of has been performed by means of Charge Collection Efficiency (CCE) measurements as well as standard CV/IV characterizations. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. A subsequent annealing study of the irradiated detectors shows an increase in effective doping concentration and a decrease in the leakage current, whereas the CCE remains basically unchanged. Two different series of detectors have been compared differing in the implantation dose of p-spray isolation as well as effective doping concentration (Neff) of the p-type bulk presumably due to a difference in thermal donor (TD) activation during processing. The series with the higher concentration of TDs shows a delayed reverse annealing of Neff after irradia...

  3. Fabrication of p-type lithium niobate crystals by molybdenum doping and polarization

    Science.gov (United States)

    Tian, Tian; Kong, Yongfa; Liu, Hongde; Liu, Shiguo; Li, Wei; Chen, Shaolin; Xu, Jiayue

    2017-06-01

    The lack of p-type lithium niobate limits it serving as an active material. A series of Mo-doped and pure congruent lithium niobate crystals were grown by Czochralski method under different polarization conditions. Their dominant carrier species were characterized by holographic experiment. The results showed dominant charge carrier species may be changed from electrons to holes when lithium niobate crystal was doped with Mo ions and polarized under the current of 70mA for 30 minutes. It indicated that p-type lithium niobate crystal could be fabricated by Mo-doping and suitably controlling the polarization condition. Mo-doped lithium niobate crystals can be a promising candidate for active components.

  4. Enhancement of p-type mobility in tin monoxide by native defects

    KAUST Repository

    Granato, D. B.

    2013-05-31

    Transparent p-type materials with good mobility are needed to build completely transparent p-n junctions. Tin monoxide (SnO) is a promising candidate. A recent study indicates great enhancement of the hole mobility of SnO grown in Sn-rich environment [E. Fortunato et al., Appl. Phys. Lett. 97, 052105 (2010)]. Because such an environment makes the formation of defects very likely, we study defect effects on the electronic structure to explain the increased mobility. We find that Sn interstitials and O vacancies modify the valence band, inducing higher contributions of the delocalized Sn 5p orbitals as compared to the localized O 2p orbitals, thus increasing the mobility. This mechanism of valence band modification paves the way to a systematic improvement of transparent p-type semiconductors.

  5. A Density Functional Theory Study of Doped Tin Monoxide as a Transparent p-type Semiconductor

    KAUST Repository

    Bianchi Granato, Danilo

    2012-05-01

    In the pursuit of enhancing the electronic properties of transparent p-type semiconductors, this work uses density functional theory to study the effects of doping tin monoxide with nitrogen, antimony, yttrium and lanthanum. An overview of the theoretical concepts and a detailed description of the methods employed are given, including a discussion about the correction scheme for charged defects proposed by Freysoldt and others [Freysoldt 2009]. Analysis of the formation energies of the defects points out that nitrogen substitutes an oxygen atom and does not provide charge carriers. On the other hand, antimony, yttrium, and lanthanum substitute a tin atom and donate n-type carriers. Study of the band structure and density of states indicates that yttrium and lanthanum improves the hole mobility. Present results are in good agreement with available experimental works and help to improve the understanding on how to engineer transparent p-type materials with higher hole mobilities.

  6. Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers

    Directory of Open Access Journals (Sweden)

    Chun-You Wei

    2013-11-01

    Full Text Available Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency of cells based on p-type single-crystalline Si wafers could provide broader options for the development of HIT solar cells. In this study, we varied the thickness of intrinsic hydrogenated amorphous Si layer to improve the efficiency of HIT solar cells on p-type Si wafers.

  7. Comment on 'Electronic Properties of Red P-Type T12S5 Single Crystals'

    Institute of Scientific and Technical Information of China (English)

    M. Cankurtaran; H. (C)elik

    2007-01-01

    Recently, Gamal et al. [Chin. Phys. Lett. 22 (2005) 1530] reported the results of electrical conductivity, Hall effect and thermoelectric measurements on p-type Th2S5 single crystals. From the experimental data for the temperature dependence of differential thermoelectric power, Gamal et al. determined the values of 2.66 × 10-41 kg and 2.50 × 10-41 kg, respectively, for the effective masses of electrons and holes in p-type Tl2S5, which are about ten orders of magnitude smaller than the free electron mass (9.11 × 10-31 kg). We argue that the anomalously small values obtained for the effective mass of charge carriers in Tl2S5 have no physical significance.

  8. An integrated driving circuit implemented with p-type LTPS TFTs for AMOLED

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li-qing; WU Chun-ya; HAO Da-shou; YAO Ying; MENG Zhi-guo; XIONG Shao-zhen

    2009-01-01

    Based on the technology of low temperature poly silicon thin film transistors (poly-Si-TFTs), a novel p-type TFT AMOLED panel with self-scanned driving circuit is introduced in this paper. A shift register formed with novel p-type TFTs is pro-posed to realize the gate driver. A flip-latch cooperated with the shift register is designed to conduct the data writing. In order to verify the validity of the proposed design, the circuits are simulated with SILVACO TCAD tools, using the MODEL in which the parameters of LTPS TFTs were extracted from the LTPS TFTs made in our lab. The simulation results indicate that the circuit can fulfill the driving function.

  9. Measurement of the dead layer thickness in a p-type point contact germanium detector

    Science.gov (United States)

    Jiang, Hao; Yue, Qian; Li, Yu-Lan; Kang, Ke-Jun; Li, Yuan-Jing; Li, Jin; Lin, Shin-Ted; Liu, Shu-Kui; Ma, Hao; Ma, Jing-Lu; Su, Jian; Tsz-King Wong, Henry; Yang, Li-Tao; Zhao, Wei; Zeng, Zhi

    2016-09-01

    A 994 g mass p-type PCGe detector has been deployed during the first phase of the China Dark matter EXperiment, aiming at direct searches for light weakly interacting massive particles. Measuring the thickness of the dead layer of a p-type germanium detector is an issue of major importance since it determines the fiducial mass of the detector. This work reports a method using an uncollimated 133Ba source to determine the dead layer thickness. The experimental design, data analysis and Monte Carlo simulation processes, as well as the statistical and systematic uncertainties are described. A dead layer thickness of 1.02 mm was obtained based on a comparison between the experimental data and the simulated results. Supported by National Natural Science Foundation of China (10935005, 10945002, 11275107, 11175099)

  10. Preparation and Photovoltaic Properties of p-Type Nano-ZnFe2O4

    Institute of Scientific and Technical Information of China (English)

    LI Zi-heng; ZOU Xu; LI Gen; ZOU Guang-tian

    2012-01-01

    p-Type nano-ZnFe2O4 semiconductors were gained by high-prssure treatment.Surface photovoltaic spectrum(SPS) and transient photovoltaic technology(TPV) were used for studying the photogenerated charge of nano-ZnFe2O4.Results show that the photovoltaic behavior of nano-ZnFe2O4 changed as the processing pressure increased.When the processing pressure was higher than 2 GPa,both SPS response interval and peak changed significantly.XPS results show that the non-lattice oxygen entered into the lattice and the content of lattice oxygen increased with the increase of processing pressure.The material changed from oxygen vacancy type to oxygen excess type and the photoelectric properties changed from n-type to p-type when the processing pressure is higher than 2GPa.

  11. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei

    2009-03-11

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive atomic force microscope (AFM) in contact mode. The output voltage pulse is generated when the tip contacts the stretched side (positive piezoelectric potential side) of the NW. In contrast, the n-type ZnO NW produces negative output voltage when scanned by the AFM tip, and the output voltage pulse is generated when the tip contacts the compressed side (negative potential side) of the NW. In reference to theoretical simulation, these experimentally observed phenomena have been systematically explained based on the mechanism proposed for a nanogenerator. © 2009 American Chemical Society.

  12. In and out of the cation pumps: P-type ATPase structure revisited

    DEFF Research Database (Denmark)

    Bublitz, Maike; Poulsen, Hanne; Morth, Jens Preben

    2010-01-01

    Active transport across membranes is a crucial requirement for life. P-type ATPases build up electrochemical gradients at the expense of ATP by forming and splitting a covalent phosphoenzyme intermediate, coupled to conformational changes in the transmembrane section where the ions are translocated....... The marked increment during the last three years in the number of crystal structures of P-type ATPases has greatly improved our understanding of the similarities and differences of pumps with different ion specificities, since the structures of the Ca2+-ATPase, the Na+,K+-ATPase and the H+-ATPase can now...... be compared directly. Mechanisms for ion gating, charge neutralization and backflow prevention are starting to emerge from comparative structural analysis; and in combination with functional studies of mutated pumps this provides a framework for speculating on how the ions are bound and released as well...

  13. Perspectives of High-Temperature Thermoelectric Applications and p-type and n-type Aluminoborides

    Science.gov (United States)

    Mori, T.

    2016-10-01

    A need exists to develop high-temperature thermoelectric materials which can utilize high-temperature unutilized/waste heat in thermal power plants, steelworks, factories, incinerators, etc., and also focused solar power. The thermal power plant topping application is of potential high impact since it can sizably increase the efficiency of power plants which are the major supply of electrical power for many countries. Higher borides are possible candidates for their particular high-temperature stability, generally large Seebeck coefficients, α, and intrinsic low thermal conductivity. Excellent (|α| > 200 μV/K) p-type or n-type behavior was recently achieved in the aluminoboride YAl x B14 by varying the occupancy of Al sites, x. Finding p-type and n-type counterparts has long been a difficulty of thermoelectric research not limited to borides. This paper reviews possible high-temperature thermoelectric applications, and recent developments and perspectives of thermoelectric aluminoborides.

  14. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  15. Sensitization of p-type NiO using n-type conducting polymers

    NARCIS (Netherlands)

    Chavhan, S.D.; Abellon, R.D.; Breemen, A.J.J.M. van; Koetse, M.M.; Sweelssen, J.; Savenije, T.J.

    2010-01-01

    We report on the sensitization of a p-type inorganic semiconductor, NiO, by n-type conjugated polymers. NiO thin films were deposited using RF sputtering in pure Ar (NiO A) or in Ar + O2 (90% + 10%) (NiO B). XPS and Kelvin probe measurements indicate the incorporation of oxygen in NiO B

  16. Sensitization of p-type NiO using n-type conducting polymers

    NARCIS (Netherlands)

    Chavhan, S.D.; Abellon, R.D.; Breemen, A.J.J.M. van; Koetse, M.M.; Sweelssen, J.; Savenije, T.J.

    2010-01-01

    We report on the sensitization of a p-type inorganic semiconductor, NiO, by n-type conjugated polymers. NiO thin films were deposited using RF sputtering in pure Ar (NiO A) or in Ar + O2 (90% + 10%) (NiO B). XPS and Kelvin probe measurements indicate the incorporation of oxygen in NiO B l

  17. Investigation of negative photoconductivity in p-type Pb1-xSnxTe film

    Science.gov (United States)

    Tavares, M. A. B.; da Silva, M. J.; Peres, M. L.; de Castro, S.; Soares, D. A. W.; Okazaki, A. K.; Fornari, C. I.; Rappl, P. H. O.; Abramof, E.

    2017-01-01

    We investigated the negative photoconductivity (NPC) effect that was observed in a p-type Pb1-xSnxTe film for temperatures varying from 300 K down to 85 K. We found that this effect is a consequence of defect states located in the bandgap which act as trapping levels, changing the relation between generation and recombination rates. Theoretical calculations predict contributions to the NPC from both conduction and valence bands, which are in accordance with the experimental observations.

  18. Sensitization of p-type NiO using n-type conducting polymers

    NARCIS (Netherlands)

    Chavhan, S.D.; Abellon, R.D.; Breemen, A.J.J.M. van; Koetse, M.M.; Sweelssen, J.; Savenije, T.J.

    2010-01-01

    We report on the sensitization of a p-type inorganic semiconductor, NiO, by n-type conjugated polymers. NiO thin films were deposited using RF sputtering in pure Ar (NiO A) or in Ar + O2 (90% + 10%) (NiO B). XPS and Kelvin probe measurements indicate the incorporation of oxygen in NiO B l

  19. Radiation damage studies of multi-guard ring p-type bulk diodes

    CERN Document Server

    Bortoletto, D; Günther, M; Grim, G P; Lander, R L; Willard, S; Li, Z

    1999-01-01

    Several diodes with different multi-guard ring structures were fabricated from 10 k OMEGA cm p-type bulk material. Studies on the performance of such devices are presented here. They include the measurement of the leakage current, breakdown voltage and charge collection efficiency before and after 2x10 sup 1 sup 4 p/cm sup 2 irradiation with 63.3 MeV kinetic protons. (author)

  20. Kinetics of self-interstitials reactions in p-type silicon irradiated with alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Makarenko, L.F., E-mail: makarenko@bsu.by [Department of Applied Mathematics and Computer Science, Belarusian State University, Independence Ave. 4, 220030 Minsk (Belarus); Moll, M. [CERN, Geneva (Switzerland); Evans-Freeman, J.H. [University of Canterbury, Christchurch (New Zealand); Lastovski, S.B.; Murin, L.I.; Korshunov, F.P. [Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk (Belarus)

    2012-08-01

    New findings on the self-interstitial migration in p-type silicon are presented. They are based on experimental studies of the formation kinetics of defects related to interstitial carbon after irradiation with alpha particles. The main parameters characterizing the interaction rate of silicon self-interstitials with substitutional carbon atoms have been determined. A preliminary interpretation of the experimental data is given. The interpretation takes into account different diffusivities of self-interstitials in their singly and doubly ionized states.

  1. Method for producing high carrier concentration p-Type transparent conducting oxides

    Science.gov (United States)

    Li, Xiaonan; Yan, Yanfa; Coutts, Timothy J.; Gessert, Timothy A.; Dehart, Clay M.

    2009-04-14

    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  2. Record mobility in transparent p-type tin monoxide films and devices by phase engineering

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso

    2013-06-25

    Here, we report the fabrication of nanoscale (15 nm) fully transparent p-type SnO thin film transistors (TFT) at temperatures as low as 180 C with record device performance. Specifically, by carefully controlling the process conditions, we have developed SnO thin films with a Hall mobility of 18.71 cm2 V-1 s-1 and fabricated TFT devices with a linear field-effect mobility of 6.75 cm2 V-1 s -1 and 5.87 cm2 V-1 s-1 on transparent rigid and translucent flexible substrates, respectively. These values of mobility are the highest reported to date for any p-type oxide processed at this low temperature. We further demonstrate that this high mobility is realized by careful phase engineering. Specifically, we show that phase-pure SnO is not necessarily the highest mobility phase; instead, well-controlled amounts of residual metallic tin are shown to substantially increase the hole mobility. A detailed phase stability map for physical vapor deposition of nanoscale SnO is constructed for the first time for this p-type oxide. © 2013 American Chemical Society.

  3. Electronic inhomogeneity in n- and p-type PbTe detected by 125Te NMR

    Science.gov (United States)

    Levin, E. M.; Heremans, J. P.; Kanatzidis, M. G.; Schmidt-Rohr, K.

    2013-09-01

    125Te nuclear magnetic resonance spectra and spin-lattice relaxation of n- and p-type PbTe, self-doping narrow band-gap semiconductors, have been studied and compared to those of p-type GeTe. Spin-lattice relaxation in GeTe can be fit by one component, while that in both PbTe samples must be fit by at least two components, showing electronically homogeneous and inhomogeneous materials, respectively. For PbTe-based materials, the spin-lattice relaxation rate 1/T1 increases linearly with carrier concentration. The data for GeTe fall on the same line and allow us to extend this plot to higher concentrations. Long and short T1 components in both PbTe samples reflect “low,” ˜1017 cm-3, and “high,” ˜1018 cm-3, carrier concentration components. Carrier concentrations in both n- and p-type PbTe samples obtained from the Hall and Seebeck effects generally match the “high” carrier concentration component, and to some extent, ignore the “low” one. This demonstrates that the Hall and Seebeck effects may have a limited ability for the determination of carrier concentration in complex thermoelectric PbTe-based and other multicomponent materials.

  4. Comparing n- and p-type polycrystalline silicon absorbers in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Deckers, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium); Bourgeois, E. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Jivanescu, M. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Abass, A. [Photonics Research Group (INTEC), Ghent University-imec, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Van Gestel, D.; Van Nieuwenhuysen, K.; Douhard, B. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); D' Haen, J.; Nesladek, M.; Manca, J. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Gordon, I.; Bender, H. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); Stesmans, A. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Mertens, R.; Poortmans, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium)

    2015-03-31

    We have investigated fine grained polycrystalline silicon thin films grown by direct chemical vapor deposition on oxidized silicon substrates. More specifically, we analyze the influence of the doping type on the properties of this model polycrystalline silicon material. This includes an investigation of defect passivation and benchmarking of minority carrier properties. In our investigation, we use a variety of characterization techniques to probe the properties of the investigated polycrystalline silicon thin films, including Fourier Transform Photoelectron Spectroscopy, Electron Spin Resonance, Conductivity Activation, and Suns-Voc measurements. Amphoteric silicon dangling bond defects are identified as the most prominent defect type present in these layers. They are the primary recombination center in the relatively lowly doped polysilicon thin films at the heart of the current investigation. In contrast with the case of solar cells based on Czochralski silicon or multicrystalline silicon wafers, we conclude that no benefit is found to be associated with the use of n-type dopants over p-type dopants in the active absorber of the investigated polycrystalline silicon thin-film solar cells. - Highlights: • Comparison of n- and p-type absorbers for thin-film poly-Si solar cells • Extensive characterization of the investigated layers' characteristics • Literature review pertaining the use of n-type and p-type dopants in silicon.

  5. P-type electronic and thermal transport properties of Mg2Sn1-xSix

    Science.gov (United States)

    Kim, Sunphil; Wiendlocha, Bartlomiej; Heremans, Joseph P.

    2013-03-01

    P-type Mg2Sn doped with various acceptors(1)(2) has been studied as a potential thermoelectric material. Because of its narrow band gap and high lattice thermal conductivity, the zT values of the binary compound are limited: zTmax reported is 0.3(3). In this work, we synthesize and characterize p-type-doped Mg2Sn1-xSix with various acceptors. Silicon is added in order to widen the band gap and scatter the phonons. The conduction band degeneracy that yields excellent zT in n-type material in the Mg2Sn1-xSix alloy system unfortunately does not apply to p-type material. Thermomagnetic and galvanomagnetic properties (electrical resistivity, Seebeck, Hall, and Nernst coefficients) are measured, along with thermal conductivity and band gap measurements. Finally, zT values are reported. (1) H. Y. Chen et al. Journal of Electronic Materials, Vol. 38, No. 7, 2009 (2) S. Choi et al. Journal of Electronic Materials, Vol. 41, No. 6, 2012 (3) H. Y. Chen et al. Phys. Status Solidi A 207, No. 11, 2523-2531 (2010) The work is supported by the joint NSF/DOE program on thermoelectrics, NSF-CBET-1048622

  6. Effective p-type N-doped WS{sub 2} monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xu, E-mail: zhaoxu@htu.cn; Xia, Congxin; Wang, Tianxing; Peng, Yuting; Dai, Xianqi

    2015-11-15

    Based on density functional theory, the characteristics of n- and p-type dopants are investigated by means of group V and VII atoms substituting sulfur in the WS{sub 2} monolayer. Numerical results show that for each doping case, the formation energy is lower under W-rich condition, which indicates that it is energy favorable to incorporate group V and VII atoms into WS{sub 2} under W-rich experimental conditions. Moreover, compared with other dopant cases, N-doped WS{sub 2} monolayer owns the lowest formation energy. In particular, the transition level of (−1/0) is only 75 meV in the N-doped case, which indicates that N impurities can offer effective p-type carriers in the WS{sub 2} monolayer. - Highlights: • The formation energy is lower under W-rich conditions. • N-doped system owns the lowest formation energy compared with other atoms. • The transition level of N-doping in WS{sub 2} is 75 meV. • N impurities can offer effective p-type carriers in the WS{sub 2}.

  7. Demethoxycurcumin Is A Potent Inhibitor of P-Type ATPases from Diverse Kingdoms of Life.

    Science.gov (United States)

    Dao, Trong Tuan; Sehgal, Pankaj; Tung, Truong Thanh; Møller, Jesper Vuust; Nielsen, John; Palmgren, Michael; Christensen, Søren Brøgger; Fuglsang, Anja Thoe

    2016-01-01

    P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site of these pumps. Future research on biological effects of commercial preparations of curcumin should consider the heterogeneity of the material.

  8. p-Type Quasi-Mono Silicon Solar Cell Fabricated by Ion Implantation

    Directory of Open Access Journals (Sweden)

    Chien-Ming Lee

    2013-01-01

    Full Text Available The p-type quasi-mono wafer is a novel type of silicon material that is processed using a seed directional solidification technique. This material is a promising alternative to traditional high-cost Czochralski (CZ and float-zone (FZ material. Here, we evaluate the application of an advanced solar cell process featuring a novel method of ion implantation on p-type quasi-mono silicon wafer. The ion implantation process has simplified the normal industrial process flow by eliminating two process steps: the removal of phosphosilicate glass (PSG and the junction isolation process that is required after the conventional thermal POCl3 diffusion process. Moreover, the good passivation performance of the ion implantation process improves Voc. Our results show that, after metallization and cofiring, an average cell efficiency of 18.55% can be achieved using 156 × 156 mm p-type quasi-mono silicon wafer. Furthermore, the absolute cell efficiency obtained using this method is 0.47% higher than that for the traditional POCl3 diffusion process.

  9. Enhanced thermopower and low thermal conductivity in p-type polycrystalline ZrTe5

    Science.gov (United States)

    Hooda, M. K.; Yadav, C. S.

    2017-07-01

    Thermoelectric properties of polycrystalline p-type ZrTe5 are reported in the temperature (T) range of 2-340 K. Thermoelectric power (S) is positive and reaches up to 458 μV/K at 340 K on increasing T. The value of Fermi energy 16 meV suggests a low carrier density of ≈9.5 × 1018 cm-3. A sharp anomaly in S data is observed at 38 K, which seems intrinsic to p-type ZrTe5. The thermal conductivity (κ) value is low (2 W/m K at T = 300 K) with major contribution from the lattice part. Electrical resistivity data show the metal to semiconductor transition at T ˜ 150 K and non-Arrhenius behavior in the semiconducting region. The figure of merit zT (0.026 at T = 300 K) is ˜63% higher than that of HfTe5 (0.016) and better than those of the conventional SnTe, p-type PbTe, and bipolar pristine ZrTe5 compounds.

  10. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    Science.gov (United States)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-05-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4‧-(2,2-dicyanovinyl)-[1,1‧-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up.

  11. 30.1 8b thin-film microprocessor using a hybrid oxide-organic complementary technology with inkjet-printed P2ROM memory

    NARCIS (Netherlands)

    Myny, K.; Smout, S.; Rockelé, M.; Bhoolokam, A.; Ke, T.H.; Steudel, S.; Obata, K.; Marinkovic, M.; Pham, D.V.; Hoppe, A.; Gulati, A.; Rodriguez, F.G.; Cobb, B.; Gelinck, G.H.; Genoe, J.; Dehaene, W.; Heremans, P.

    2014-01-01

    We present an 8b general-purpose microprocessor realized in a hybrid oxide-organic complementary thin-film technology. The n-type transistors are based on a solution-processed n-type metal-oxide semiconductor, and the p-type transistors use an organic semiconductor. As compared to previous work util

  12. 30.1 8b thin-film microprocessor using a hybrid oxide-organic complementary technology with inkjet-printed P2ROM memory

    NARCIS (Netherlands)

    Myny, K.; Smout, S.; Rockelé, M.; Bhoolokam, A.; Ke, T.H.; Steudel, S.; Obata, K.; Marinkovic, M.; Pham, D.V.; Hoppe, A.; Gulati, A.; Rodriguez, F.G.; Cobb, B.; Gelinck, G.H.; Genoe, J.; Dehaene, W.; Heremans, P.

    2014-01-01

    We present an 8b general-purpose microprocessor realized in a hybrid oxide-organic complementary thin-film technology. The n-type transistors are based on a solution-processed n-type metal-oxide semiconductor, and the p-type transistors use an organic semiconductor. As compared to previous work

  13. 3-D GaAs radiation detectors

    CERN Document Server

    Meikle, A R; Ledingham, Kenneth W D; Marsh, J H; Mathieson, K; O'Shea, V; Smith, K M

    2002-01-01

    A novel type of GaAs radiation detector featuring a 3-D array of electrodes that penetrate through the detector bulk is described. The development of the technology to fabricate such a detector is presented along with electrical and radiation source tests. Simulations of the electrical characteristics are given for detectors of various dimensions. Laser drilling, wet chemical etching and metal evaporation were used to create a cell array of nine electrodes, each with a diameter of 60 mu m and a pitch of 210 mu m. Electrical measurements showed I-V characteristics with low leakage currents and high breakdown voltages. The forward and reverse I-V measurements showed asymmetrical characteristics, which are not seen in planar diodes. Spectra were obtained using alpha particle illumination. A charge collection efficiency of 50% and a S/N ratio of 3 : 1 were obtained. Simulations using the MEDICI software package were performed on cells with various dimensions and were comparable with experimental results. Simulati...

  14. Spectroscopy of GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    West, L.C.

    1985-07-01

    A new type of optical dipole transition in GaAs quantum wells has been observed. The dipole occurs between two envelope states of the conduction band electron wavefunction, and is called a quantum well envelope state transition (QWEST). The QWEST is observed by infrared absorption in three different samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, and 108 MeV, respectively. The oscillator strength is found to have values of over 12, in good agreement with prediction. The linewidths are seen as narrow as 10 MeV at room temperature and 7 MeV at low temperature, thus proving a narrow line resonance can indeed occur between transitions of free electrons. Techniques for the proper growth of these quantum well samples to enable observation of the QWEST have also been found using (AlGa)As compounds. This QWEST is considered to be an ideal material for an all optical digital computer. The QWEST can be made frequency matched to the inexpensive Carbon Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and fast relaxation time of the QWEST indicate a logic element with a subpicosecond switch time can be built in the near future, with a power level which will eventually be limited only by the noise from a lack of quanta to above approximately 10 microwatts. 64 refs., 35 figs., 6 tabs.

  15. Nondestructive tribochemistry-assisted nanofabrication on GaAs surface

    Science.gov (United States)

    Song, Chenfei; Li, Xiaoying; Dong, Hanshan; Yu, Bingjun; Wang, Zhiming; Qian, Linmao

    2015-03-01

    A tribochemistry-assisted method has been developed for nondestructive surface nanofabrication on GaAs. Without any applied electric field and post etching, hollow nanostructures can be directly fabricated on GaAs surfaces by sliding a SiO2 microsphere under an ultralow contact pressure in humid air. TEM observation on the cross-section of the fabricated area shows that there is no appreciable plastic deformation under a 4 nm groove, confirming that GaAs can be removed without destruction. Further analysis suggests that the fabrication relies on the tribochemistry with the participation of vapor in humid air. It is proposed that the formation and breakage of GaAs-O-Si bonding bridges are responsible for the removal of GaAs material during the sliding process. As a nondestructive and conductivity-independent method, it will open up new opportunities to fabricate defect-free and well-ordered nucleation positions for quantum dots on GaAs surfaces.

  16. Terahertz pulse detection by the GaAs Schottky diodes

    Science.gov (United States)

    Laperashvili, Tina; Kvitsiani, Orest; Imerlishvili, Ilia; Laperashvili, David

    2010-06-01

    We present the results of experimental studies of physical properties of the detection process of GaAs Schottky diodes for terahertz frequency radiation. The development of technology in the THz frequency band has a rapid progress recently. Considered as an extension of the microwave and millimeter wave bands, the THz frequency offers greater communication bandwidth than is available at microwave frequencies. The Schottky barrier contact has an important role in the operation of many GaAs devices. GaAs Schottky diodes have been the primary nonlinear device used in millimeter and sub millimeter wave detectors and receivers. GaAs Schottky diodes are especially interesting due to their high mobility transport characteristics, which allows for a large reduction of the resistance-capacitance (RC) time constant and thermal noise. In This work are investigated the electrical and photoelectric properties of GaAs Schottky diodes. Samples were obtained by deposition of different metals (Au, Ni, Pt, Pd, Fe, In, Ga, Al) on semiconductor. For fabrication metal-semiconductor (MS) structures is used original method of metal electrodepositing. In this method electrochemical etching of semiconductor surface occurs just before deposition of metal from the solution, which contains etching material and metal ions together. For that, semiconductor surface cleaning processes and metal deposition carries out in the same technological process. In the experiments as the electrolyte was used aqueous solution of chlorides. Metal deposition was carried out at room temperature.

  17. Ivermectin is a nonselective inhibitor of mammalian P-type ATPases.

    Science.gov (United States)

    Pimenta, Paulo Henrique Cotrim; Silva, Claudia Lucia Martins; Noël, François

    2010-02-01

    Ivermectin is a large spectrum antiparasitic drug that is very safe at the doses actually used. However, as it is being studied for new applications that would require higher doses, we should pay attention to its effects at high concentrations. As micromolar concentrations of ivermectin have been reported to inhibit the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), we decided to investigate its putative inhibitory effect on other two important P-type ATPases, namely the Na(+) , K(+)-ATPase and H(+)/K(+)-ATPase. We first extended the data on SERCA, using preparations from rat enriched in SERCA1a (extensor digitorum longus) and 1b (heart) isoforms. Secondly, we tested the effect of ivermectin in two preparations of rat Na(+), K(+)-ATPase in order to appreciate its putative selectivity towards the alpha(1) isoform (kidney) and the alpha(2)/alpha(3) isoforms (brain), and in an H(+)/K(+)-ATPase preparation from rat stomach. Ivermectin inhibited all these ATPases with similar IC(50) values (6-17 microM). With respect to the inhibition of the Na(+), K(+)-ATPase, ivermectin acts by a mechanism different from the classical cardiac glycosides, based on selectivity towards the isoforms, sensibility to the antagonistic effect of K(+) and to ionic conditions favoring different conformations of the enzyme. We conclude that ivermectin is a nonselective inhibitor of three important mammalian P-type ATPases, which is indicative of putative important adverse effects if this drug were used at high doses. As a consequence, we propose that novel analogs of ivermectin should be developed and tested both for their parasitic activity and in vitro effects on P-type ATPases.

  18. Enhanced photovoltaic effect of ruthenium complex-modified graphene oxide with P-type conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: jj_zw_js@sina.com.cn; Bai, Huicong; Zhang, Yu; Sun, Ying; Lin, Shen; Liu, Jian; Yang, Qi; Song, Xi-Ming, E-mail: songlab@lnu.edu.cn

    2014-10-15

    A graphene oxide nanocomposite with bis(1,10-phenanthroline)(N-(2-aminoethyl)-4-(4-methyl-2,2-bipyridine-4-yl) formamide) ruthenium (Ru(phen){sub 2}(bpy-NH{sub 2})(PF{sub 6}){sub 2}), a ruthenium complex, was synthesized by amidation reaction between amino group of the ruthenium complex and carboxyl group of GO. The as-prepared Ru(II)–GO composite was characterized by infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet–visible (UV–Vis) absorption spectra, fluorescence spectra, surface photovoltage (SPV) spectrum and transient photovoltage (TPV) technology. This nanocomposite showed a typical p-type character and an enhanced photovoltaic effect at long timescale of about 3 × 10{sup −3} s compared to GO alone. A reversible rise/decay of the photocurrent in response to the on/off illumination step was also observed in a photoelectrochemical cell of the Ru(II)–GO composite. The photocurrent response of the Ru(II)–GO film was remarkably higher than that of GO film. Therefore, this Ru(II)–GO composite is believed to be a promising p-type photoelectric conversion material for further photovoltaic applications. - Highlights: • A new dye-sensitized graphene oxide nanocomposite was reported. • A photo-induced charge transfer process in this nanocomposite was confirmed. • This composite showed a typical p-type conductivity. • This composite showed an enhanced photovoltaic effect at a long timescale.

  19. Quasi-perpetual discharge behaviour in p-type Ge-air batteries.

    Science.gov (United States)

    Ocon, Joey D; Kim, Jin Won; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2014-11-07

    Metal-air batteries continue to become attractive energy storage and conversion systems due to their high energy and power densities, safer chemistries, and economic viability. Semiconductor-air batteries - a term we first define here as metal-air batteries that use semiconductor anodes such as silicon (Si) and germanium (Ge) - have been introduced in recent years as new high-energy battery chemistries. In this paper, we describe the excellent doping-dependent discharge kinetics of p-type Ge anodes in a semiconductor-air cell employing a gelled KOH electrolyte. Owing to its Fermi level, n-type Ge is expected to have lower redox potential and better electronic conductivity, which could potentially lead to a higher operating voltage and better discharge kinetics. Nonetheless, discharge measurements demonstrated that this prediction is only valid at the low current regime and breaks down at the high current density region. The p-type Ge behaves extremely better at elevated currents, evident from the higher voltage, more power available, and larger practical energy density from a very long discharge time, possibly arising from the high overpotential for surface passivation. A primary semiconductor-air battery, powered by a flat p-type Ge as a multi-electron anode, exhibited an unprecedented full discharge capacity of 1302.5 mA h gGe(-1) (88% anode utilization efficiency), the highest among semiconductor-air cells, notably better than new metal-air cells with three-dimensional and nanostructured anodes, and at least two folds higher than commercial Zn-air and Al-air cells. We therefore suggest that this study be extended to doped-Si anodes, in order to pave the way for a deeper understanding on the discharge phenomena in alkaline metal-air conversion cells with semiconductor anodes for specific niche applications in the future.

  20. Electroforming-free resistive switching memory effect in transparent p-type tin monoxide

    KAUST Repository

    Hota, M. K.

    2014-04-14

    We report reproducible low bias bipolar resistive switching behavior in p-type SnO thin film devices without extra electroforming steps. The experimental results show a stable resistance ratio of more than 100 times, switching cycling performance up to 180 cycles, and data retention of more than 103 s. The conduction mechanism varied depending on the applied voltage range and resistance state of the device. The memristive switching is shown to originate from a redox phenomenon at the Al/SnO interface, and subsequent formation/rupture of conducting filaments in the bulk of the SnO layer, likely involving oxygen vacancies and Sn interstitials.

  1. Does p-type ohmic contact exist in WSe2-metal interfaces?

    Science.gov (United States)

    Wang, Yangyang; Yang, Ruo Xi; Quhe, Ruge; Zhong, Hongxia; Cong, Linxiao; Ye, Meng; Ni, Zeyuan; Song, Zhigang; Yang, Jinbo; Shi, Junjie; Li, Ju; Lu, Jing

    2015-12-01

    Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for the selection of favorable metal electrodes in ML/BL WSe2 devices.Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for

  2. Initial results from 3D-DDTC detectors on p-type substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zoboli, A., E-mail: zoboli@disi.unitn.i [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38100 Povo di Trento (Italy); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38100 Povo di Trento (Italy); Bosisio, L. [Dipartimento di Fisica, Universita di Trieste, and INFN, Sezione di Trieste, Via A. Valerio, 2, I-34127 Trieste (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38100 Povo di Trento (Italy); Piemonte, C.; Ronchin, S.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38100 Povo di Trento (Italy)

    2010-01-11

    Owing to their superior radiation hardness compared to planar detectors, 3D detectors are one of the most promising technologies for the LHC upgrade foreseen in 2017. Fondazione Bruno Kessler has developed 3D Double-side Double-Type Column (3D-DDTC) detectors providing a technological simplifications with respect to a standard 3D process while aiming at comparable detector performance. We present selected results from the electrical characterization of 3D-DDTC structures from the second batch made on p-type substrates, supported also by TCAD simulations.

  3. Structure and mechanism of Zn2+-transporting P-type ATPases

    DEFF Research Database (Denmark)

    Wang, Kaituo; Sitsel, Oleg; Meloni, Gabriele

    2014-01-01

    Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis1. In prokaryotes and photosynthetic eukaryotes, Zn2+-transporting P-type ATPases of class IB (Znt....... The structures reveal a similar fold to Cu+-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn2+ ions by the transporter. The E2P structure...

  4. P-Type Silicon Strip Sensors for the new CMS Tracker at HL-LHC

    Science.gov (United States)

    Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; Delannoy, H.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, Th.; Léonard, A.; Luetic, J.; Postiau, N.; Seva, T.; Vanlaer, P.; Vannerom, D.; Wang, Q.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Tuuva, T.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Lapsien, T.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Caselle, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmayer, A.; Kudella, S.; Muller, Th.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Silvestris, L.; Maggi, G.; Martiradonna, S.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Patterson, A.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K. A.

    2017-06-01

    The upgrade of the LHC to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at the CMS experiment. Based on these results, the collaboration has chosen to use n-in-p type silicon sensors and focus further investigations on the optimization of that sensor type. This paper describes the main measurement results and conclusions that motivated this decision.

  5. About the Nature of Electroluminescence Centers in Plastically Deformed Crystals of p-type Silicon

    Directory of Open Access Journals (Sweden)

    B.V. Pavlyk

    2015-10-01

    Full Text Available The paper describes research of dislocation electroluminescence of single crystal p-type silicon with a high concentration of dislocations on the surface (111. It is shown the reaction of the luminescence spectra and capacitive-modulation spectra of samples after high-temperature annealing in an atmosphere of flowing oxygen. The analysis of the results lets us to establish the nature of recombination centers and their reorganization under high-temperature annealing. It is shown that deposition of Al film on the substrate p-Si leads to the formation of strain capacity and the localization of defects in the surface layer that corresponds to luminescence centers.

  6. Elastic constants determined by nanoindentation for p-type thermoelectric half-Heusler

    Energy Technology Data Exchange (ETDEWEB)

    Gahlawat, S.; Wheeler, L.; White, K. W., E-mail: zren@uh.edu, E-mail: kwwhite@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); He, R.; Chen, S.; Ren, Z. F., E-mail: zren@uh.edu, E-mail: kwwhite@uh.edu [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States)

    2014-08-28

    This paper presents a study of the elastic properties of the p-type thermoelectric half-Heusler material, Hf{sub 0.44}Zr{sub 0.44}Ti{sub 0.12}CoSb{sub 0.8}Sn{sub 0.2}, using nanoindentation. Large grain-sized polycrystalline specimens were fabricated for these measurements, providing sufficient indentation targets within single grains. Electron Backscatter Diffraction methods indexed the target grains for the correlation needed for our elastic analysis of individual single crystals for this cubic thermoelectric material. Elastic properties, including the Zener ratio and the Poisson ratio, obtained from the elasticity tensor are also reported.

  7. Ferromagnetic-resonance induced electromotive forces in Ni81Fe19 | p-type diamond

    Science.gov (United States)

    Fukui, Naoki; Morishita, Hiroki; Kobayashi, Satoshi; Miwa, Shinji; Mizuochi, Norikazu; Suzuki, Yoshishige

    2016-10-01

    We report on direct-current (DC) electromotive forces (emfs) in a nickel-iron alloy (Ni81 Fe19) | p-type diamond under the ferromagnetic resonance of the Ni81Fe19 layer at room temperature. The observed DC emfs take its maximum around the ferromagnetic resonant frequency of the Ni81Fe19, and their signs are reversed by reversing the direction of an externally-applied magnetic field; it shows that the observed DC emfs are spin-related emfs.

  8. Single-structure heater and temperature sensor using a p-type polycrystalline diamond resistor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.S.; Aslam, D.M. [Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical Engineering

    1996-05-01

    Heat generation and temperature sensing are required for heating applications and for liquid level sensors, mass flow meters, and vacuum and pressure gauges which are based on variations of heat dissipation. Heat generation and temperature sensing are reported in a single p-type diamond resistor fabricated on an oxidized Si substrate using diamond film technology compatible with integrated circuit (IC) processing. Power densities in excess of 600 W/in.{sup 2} are observed for the heaters. The temperature response of the sensor is characterized in the temperature range of 300--725 K. Such a diamond heater/sensor device is reported for the first time.

  9. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    Directory of Open Access Journals (Sweden)

    Rafal Pietruszka

    2014-02-01

    Full Text Available Selected properties of photovoltaic (PV structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100 are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

  10. Methods for enhancing P-type doping in III-V semiconductor films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Feng; Stringfellow, Gerald; Zhu, Junyi

    2017-08-01

    Methods of doping a semiconductor film are provided. The methods comprise epitaxially growing the III-V semiconductor film in the presence of a dopant, a surfactant capable of acting as an electron reservoir, and hydrogen, under conditions that promote the formation of a III-V semiconductor film doped with the p-type dopant. In some embodiments of the methods, the epitaxial growth of the doped III-V semiconductor film is initiated at a first hydrogen partial pressure which is increased to a second hydrogen partial pressure during the epitaxial growth process.

  11. P-Type Doping of GaN by Mg+ Implantation

    Institute of Scientific and Technical Information of China (English)

    YAO Shu-De; ZHAO Qiang; ZHOU Sheng-Qiang; YANG Zi-Jian; LU Yi-Hong; SUN Chang-Chun; SUN Chang; ZHANG Guo-Yi; VANTOMME Andre; PIPELEERS Bert

    2003-01-01

    Mg+ and Mg++P+ were introduced into GaN by ion implantation. The structure and crystalline quality of the GaN samples were analysed by Rutherford backscattering and channelling spectrometry before (xmin = 1.6%) and after implantation (Xmin = 4.1%). X-ray diffraction reveals the existence of implantation-induced damage in the case of post-implantation followed by rapid thermal annealing. The resistivity, average factor, carrier concentration and carrier mobility were measured by the Hall effect. The transformation from n-type to p-type for GaN was observed.

  12. Transient expression of P-type ATPases in tobacco epidermal cells

    DEFF Research Database (Denmark)

    Pedas, Lisbeth Rosager; Palmgren, Michael Broberg; Lopez Marques, Rosa Laura

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellular...... for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits....

  13. Flow transitions in model Czochralski GaAs melt

    Institute of Scientific and Technical Information of China (English)

    CHEN Shu-xian; LI Ming-wei

    2006-01-01

    The flow and heat transfer of molten GaAs during Czochralski growth are studied with a time-dependent and three-dimensional turbulent flow model. A transition from axisymmetric flow to non-axisymmetric flow and then back to axisymmetric flow again with increasing the crucible rotation rate is predicted. In the non-axisymmetric regime, the thermal wave induced by the combination of coriolis force, buoyancy and viscous force in the GaAs melt is predicted for the first time. The thermal wave is confirmed to be baroclinic thermal wave. The origin of the transition to non-axisymmetric flow is baroclinic instability. The critical parameters for the transitions are presented, which are quantitatively in agreement with Fein and Preffer's experimental results. The calculated results can be taken as a reference for the growth of GaAs single-crystal of high quality.

  14. Electrical characterisation of deep level defects in Be-doped AlGaAs grown on (100) and (311)A GaAs substrates by MBE.

    Science.gov (United States)

    Mari, Riaz H; Shafi, Muhammad; Aziz, Mohsin; Khatab, Almontaser; Taylor, David; Henini, Mohamed

    2011-02-28

    The growth of high mobility two-dimensional hole gases (2DHGs) using GaAs-GaAlAs heterostructures has been the subject of many investigations. However, despite many efforts hole mobilities in Be-doped structures grown on (100) GaAs substrate remained considerably lower than those obtained by growing on (311)A oriented surface using silicon as p-type dopant. In this study we will report on the properties of hole traps in a set of p-type Be-doped Al0.29Ga0.71As samples grown by molecular beam epitaxy on (100) and (311)A GaAs substrates using deep level transient spectroscopy (DLTS) technique. In addition, the effect of the level of Be-doping concentration on the hole deep traps is investigated. It was observed that with increasing the Be-doping concentration from 1 × 1016 to 1 × 1017 cm-3 the number of detected electrically active defects decreases for samples grown on (311)A substrate, whereas, it increases for (100) orientated samples. The DLTS measurements also reveal that the activation energies of traps detected in (311)A are lower than those in (100). From these findings it is expected that mobilities of 2DHGs in Be-doped GaAs-GaAlAs devices grown on (311)A should be higher than those on (100).

  15. A P-type ATPase importer that discriminates between essential and toxic transition metals.

    Science.gov (United States)

    Lewinson, Oded; Lee, Allen T; Rees, Douglas C

    2009-03-24

    Transition metals, although being essential cofactors in many physiological processes, are toxic at elevated concentrations. Among the membrane-embedded transport proteins that maintain appropriate intracellular levels of transition metals are ATP-driven pumps belonging to the P-type ATPase superfamily. These metal transporters may be differentiated according to their substrate specificities, where the majority of pumps can extrude either silver and copper or zinc, cadmium, and lead. In the present report, we have established the substrate specificities of nine previously uncharacterized prokaryotic transition-metal P-type ATPases. We find that all of the newly identified exporters indeed fall into one of the two above-mentioned categories. In addition to these exporters, one importer, Pseudomonas aeruginosa Q9I147, was also identified. This protein, designated HmtA (heavy metal transporter A), exhibited a different substrate recognition profile from the exporters. In vivo metal susceptibility assays, intracellular metal measurements, and transport experiments all suggest that HmtA mediates the uptake of copper and zinc but not of silver, mercury, or cadmium. The substrate selectivity of this importer ensures the high-affinity uptake of essential metals, while avoiding intracellular contamination by their toxic counterparts.

  16. Thermal oxidation of Ni films for p-type thin-film transistors

    KAUST Repository

    Jiang, Jie

    2013-01-01

    p-Type nanocrystal NiO-based thin-film transistors (TFTs) are fabricated by simply oxidizing thin Ni films at temperatures as low as 400 °C. The highest field-effect mobility in a linear region and the current on-off ratio are found to be 5.2 cm2 V-1 s-1 and 2.2 × 103, respectively. X-ray diffraction, transmission electron microscopy and electrical performances of the TFTs with "top contact" and "bottom contact" channels suggest that the upper parts of the Ni films are clearly oxidized. In contrast, the lower parts in contact with the gate dielectric are partially oxidized to form a quasi-discontinuous Ni layer, which does not fully shield the gate electric field, but still conduct the source and drain current. This simple method for producing p-type TFTs may be promising for the next-generation oxide-based electronic applications. © 2013 the Owner Societies.

  17. Analysis of carrier concentration, lifetime, and electron mobility on p-type HgCdTe

    Science.gov (United States)

    Yoo, Sang Dong; Kwack, Kae Dal

    1998-03-01

    Minority carrier transport characteristics of vacancy-doped p-type HgCdTe such as carrier concentration, lifetime, and mobility are investigated. In the calculation of the carrier concentration two acceptor levels—a donor level and a trap level—were taken into account. The acceptor levels have been described by two models—two independent singly ionized levels and a divalent level with two ionization energies. When each model was examined by calculating electron mobility as a function of temperature, the latter was found to be more accurate. Electron mobility as a function of majority carrier concentration was also presented for both n-type and p-type HgCdTe with 0.225 Cd mole fraction. Steady state electron lifetime was computed assuming the acceptor levels and the trap level would act as Schokley-Read-Hall type recombination centers. The calculated results using the divalent acceptor model were in good agreement with the experimental data.

  18. The development of p-type silicon detectors for the high radiation regions of the LHC

    CERN Document Server

    Hanlon, M D L

    1998-01-01

    This thesis describes the production and characterisation of silicon microstrip detectors and test structures on p-type substrates. An account is given of the production and full parameterisation of a p-type microstrip detector, incorporating the ATLAS-A geometry in a beam test. This detector is an AC coupled device incorporating a continuous p-stop isolation frame and polysilicon biasing and is typical of n-strip devices proposed for operation at the LHC. It was successfully read out using the FELix-128 analogue pipeline chip and a signal to noise (s/n) of 17+-1 is reported, along with a spatial resolution of 14.6+-0.2 mu m. Diode test structures were fabricated on both high resistivity float zone material and on epitaxial material and subsequently irradiated with 24 GeV protons at the CERN PS up to a dose of (8.22+-0.23) x 10 sup 1 sup 4 per cm sup 2. An account of the measurement program is presented along with results on the changes in the effective doping concentration (N sub e sub f sub f) with irradiat...

  19. Synthesis and characterization of p-type boron-doped IIb diamond large single crystals

    Institute of Scientific and Technical Information of China (English)

    Li Shang-Sheng; Ma Hong-An; Li Xiao-Lei; Su Tai-Chao; Huang Guo-Feng; Li Yong; Jia Xiao-Peng

    2011-01-01

    High-quality p-type boron-doped II0b diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively. The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique. The electrical properties including resistivities, Hall coefficients, Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method. The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized. With the increase of quantity of additive boron, some high-index crystal faces such as {113} gradually disappear, and some stripes and triangle pits occur on the crystal surface. This work is helpful for the further research and application of boron-doped semiconductor diamond.

  20. EEG/MEG forward simulation through h- and p-type finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Pursiainen, S [Institute of Mathematics, Box 1100, FI-02015 Helsinki University of Technology (Finland)], E-mail: sampsa.pursiainen@tkk.fi

    2008-07-15

    Electro/Magnetoencephalography (EEG/MEG) is a non-invasive imaging modality, in which a primary current density generated by the neural activity in the brain is to be reconstructed from external electric potential/magnetic field measurements. This work focuses on effective and accurate simulation of the EEG/MEG forward model through the h- and p-versions of the finite element method (h- and p-FEM). The goal is to compare the effectiveness of these two versions in forward simulation. Both h- and p-type forward simulations are described and implemented, and the technical solutions found are discussed. These include, for example, suitable ways to generate a finite element mesh for a real head geometry through the use of different element types. Performances of the two implemented forward simulation types are compared by measuring directly the forward modeling error, as well as by computing reconstructions through a regularized FOCUSS (FOCal Underdetermined System Solver) algorithm. The results obtained suggest that the p-type performs better in terms of the forward modeling error. However, both types perform well in regularized FOCUSS reconstruction.

  1. Wide band gap p-type windows by CBD and SILAR methods

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Goncalves, E.; Ennaoui, A.; Lux-Steiner, M.Ch

    2004-03-22

    Chemical deposition methods, namely, chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) have been used to deposit wide band gap p-type CuI and CuSCN thin films at room temperature (25 deg. C) in aqueous medium. Growth of these films requires the use of Cu (I) cations as a copper ions source. This is achieved by complexing Cu (II) ions using Na{sub 2}S{sub 2}O{sub 3}. The anion sources are either KI as iodine or KSCN as thiocyanide ions for CuI and CuSCN films, respectively. The preparative parameters are optimized with the aim to use these p-type materials as windows for solar cells. Different substrates are used, namely: glass, fluorine doped tin oxide coated glass and CuInS{sub 2} (CIS). X-ray diffraction, scanning electron microscopy, atomic force microscopy and optical absorption spectroscopy are used for structural, surface morphological and optical studies, and the results are discussed.

  2. Carrier induced local moment magnetization in p-type Sn1-xMnxTe

    Science.gov (United States)

    Behera, Sashi S.; Tripathi, Pratibha; Nayak, Sanjeev K.; Tripathi, Gouri S.

    2017-08-01

    We derive a theory of carrier induced local moment magnetization of p-type Sn1-xMnxTe based on the Hubbard model, k → · π → electronic structure method (k → is the electronic wave vector and π → is the relativistic momentum operator) and the statistical paramagnetic approach for the localized moments. The Hubbard model is used to derive an internal exchange magnetic field. The difference in exchange self-energy is expressed in terms of an internal exchange field that is proportional to the parameter U, the onsite Coulomb repulsion, and the spin-density of carriers. In the present theory, the k → · π → + U model is integrated with the statistical paramagnetic theory for localized spins, which is then solved in a self-consistent manner by adding the exchange field to the applied field. The technique is applied to study the magnetic properties of p-type Sn1-xMnxTe, an important material for spintronics devices. The local moment magnetization calculated using the total magnetic field self-consistently agrees with the experimental observations. Magnetization and the exchange field studied as functions of the applied field, temperature and carrier concentration yield results on expected lines. Ours is a mechanism that is different from the RKKY interaction, normally invoked for carrier induced ferromagnetism and is thus a novelty.

  3. Anabaena sp. DyP-type peroxidase is a tetramer consisting of two asymmetric dimers.

    Science.gov (United States)

    Yoshida, Toru; Ogola, Henry Joseph Oduor; Amano, Yoshimi; Hisabori, Toru; Ashida, Hiroyuki; Sawa, Yoshihiro; Tsuge, Hideaki; Sugano, Yasushi

    2016-01-01

    DyP-type peroxidases are a newly discovered family of heme peroxidases distributed from prokaryotes to eukaryotes. Recently, using a structure-based sequence alignment, we proposed the new classes, P, I and V, as substitutes for classes A, B, C, and D [Arch Biochem Biophys 2015;574:49-55]. Although many class V enzymes from eukaryotes have been characterized, only two from prokaryotes have been reported. Here, we show the crystal structure of one of these two enzymes, Anabaena sp. DyP-type peroxidase (AnaPX). AnaPX is tetramer formed from Cys224-Cys224 disulfide-linked dimers. The tetramer of wild-type AnaPX was stable at all salt concentrations tested. In contrast, the C224A mutant showed salt concentration-dependent oligomeric states: in 600 mM NaCl, it maintained a tetrameric structure, whereas in the absence of salt, it dissociated into monomers, leading to a reduction in thermostability. Although the tetramer exhibits non-crystallographic, 2-fold symmetry in the asymmetric unit, two subunits forming the Cys224-Cys224 disulfide-linked dimer are related by 165° rotation. This asymmetry creates an opening to cavities facing the inside of the tetramer, providing a pathway for hydrogen peroxide access. Finally, a phylogenetic analysis using structure-based sequence alignments showed that class V enzymes from prokaryotes, including AnaPX, are phylogenetically closely related to class V enzymes from eukaryotes.

  4. Valence band states in Si-based p-type delta-doped field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Orozco, J C; Vlaev, Stoyan J, E-mail: jcmover@correo.unam.m [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico)

    2009-05-01

    We present tight-binding calculations of the hole level structure of delta-doped Field Effect Transistor in a Si matrix within the first neighbors sp{sup 3}s* semi-empirical tight-binding model including spin. We employ analytical expressions for Schottky barrier potential and the p-type delta-doped well based on a Thomas-Fermi approximation, we consider these potentials as external ones, so in the computations they are added to the diagonal terms of the tight-binding Hamiltonian, by this way we have the possibility to study the energy levels behavior as we vary the backbone parameters in the system: the two-dimensional impurity density (p{sub 2d}) of the p-type delta-doped well and the contact voltage (V{sub c}). The aim of this calculation is to demonstrate that the tight-binding approximation is suitable for device characterization that permits us to propose optimal values for the input parameters involved in the device design.

  5. Use of hexamethyldisiloxane for p-type microcrystalline silicon oxycarbide layers

    Directory of Open Access Journals (Sweden)

    Goyal Prabal

    2016-01-01

    Full Text Available The use of hexamethyldisiloxane (HMDSO as an oxygen source for the growth of p-type silicon-based layers deposited by Plasma Enhanced Chemical Vapor Deposition is evaluated. The use of this source led to the incorporation of almost equivalent amounts of oxygen and carbon, resulting in microcrystalline silicon oxycarbide thin films. The layers were examined with characterisation techniques including Spectroscopic Ellipsometry, Dark Conductivity, Fourier Transform Infrared Spectroscopy, Secondary Ion Mass Spectrometry and Transmission Electron Microscopy to check material composition and structure. Materials studies show that the refractive indices of the layers can be tuned over the range from 2.5 to 3.85 (measured at 600 nm and in-plane dark conductivities over the range from 10-8 S/cm to 1 S/cm, suggesting that these doped layers are suitable for solar cell applications. The p-type layers were tested in single junction amorphous silicon p-i-n type solar cells.

  6. Lateral photovoltaic effect in p-type silicon induced by surface states

    Science.gov (United States)

    Huang, Xu; Mei, Chunlian; Gan, Zhikai; Zhou, Peiqi; Wang, Hui

    2017-03-01

    A colossal lateral photovoltaic effect (LPE) was observed at the surface of p-type silicon, which differs from the conventional thought that a large LPE is only observed in Schottky junctions and PN junctions consisting of several layers with different conductivities. It shows a high sensitivity of 499.24 mV/mm and an ultra-broadband spectral responsivity (from 405 nm to 980 nm) at room temperature, which makes it an attractive candidate for near-infrared detection. We propose that this phenomenon can be understood by considering the surface band bending near the surface of p-Si induced by charged surface states. The energy band diagrams of the samples are shown based on X-ray photoelectron spectroscopy suggesting the correlation between the LPE and surface band bending. The conjectures are validated by changing the surface states of p-type silicon using Ni nano-films. These findings reveal a generation mechanism of the LPE and may lead to p-Si based, broadband-responsivity, low-cost, and high-precision optical and optoelectronic applications.

  7. Atomic layer deposition of undoped TiO2 exhibiting p-type conductivity.

    Science.gov (United States)

    Iancu, Andrei T; Logar, Manca; Park, Joonsuk; Prinz, Fritz B

    2015-03-11

    With prominent photocatalytic applications and widespread use in semiconductor devices, TiO2 is one of the most popular metal oxides. However, despite its popularity, it has yet to achieve its full potential due to a lack of effective methods for achieving p-type conductivity. Here, we show that undoped p-type TiO2 films can be fabricated by atomic layer deposition (ALD) and that their electrical properties can be controlled across a wide range using proper postprocessing anneals in various ambient environments. Hole mobilities larger than 400 cm(2)/(V·s) are accessible superseding the use of extrinsic doping, which generally produces orders of magnitude smaller values. Through a combination of analyses and experiments, we provide evidence that this behavior is primarily due to an excess of oxygen in the films. This discovery enables entirely new categories of TiO2 devices and applications, and unlocks the potential to improve existing ones. TiO2 homojunction diodes fabricated completely by ALD are developed as a demonstration of the utility of these techniques and shown to exhibit useful rectifying characteristics even with minimal processing refinement.

  8. Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films.

    Science.gov (United States)

    Hu, Youfan; Zhang, Yan; Lin, Long; Ding, Yong; Zhu, Guang; Wang, Zhong Lin

    2012-07-11

    We present that the electroluminescence (EL) properties of Mg-doped p-type GaN thin films can be tuned by the piezo-phototronic effect via adjusting the minority carrier injection efficiency at the metal-semiconductor (M-S) interface by strain induced polarization charges. The device is a metal-semiconductor-metal structure of indium tin oxide (ITO)-GaN-ITO. Under different straining conditions, the changing trend of the transport properties of GaN films can be divided into two types, corresponding to the different c-axis orientations of the films. An extreme value was observed for the integral EL intensity under certain applied strain due to the adjusted minority carrier injection efficiency by piezoelectric charges introduced at the M-S interface. The external quantum efficiency of the blue EL at 430 nm was changed by 5.84% under different straining conditions, which is 1 order of magnitude larger than the change of the green peak at 540 nm. The results indicate that the piezo-phototronic effect has a larger impact on the shallow acceptor states related EL process than on the one related to the deep acceptor states in p-type GaN films. This study has great significance on the practical applications of GaN in optoelectronic devices under a working environment where mechanical deformation is unavoidable such as for flexible/printable light emitting diodes.

  9. Electronic contribution to friction on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Applied Science and Technology Graduate Group, UC Berkeley; Dept. of Materials Sciences and Engineering, UC Berkeley; Salmeron, Miquel; Qi, Yabing; Park, J.Y.; Hendriksen, B.L.M.; Ogletree, D.F.; Salmeron, Miquel

    2008-04-15

    The electronic contribution to friction at semiconductor surfaces was investigated by using a Pt-coated tip with 50nm radius in an atomic force microscope sliding against an n-type GaAs(100) substrate. The GaAs surface was covered by an approximately 1 nm thick oxide layer. Charge accumulation or depletion was induced by the application of forward or reverse bias voltages. We observed a substantial increase in friction force in accumulation (forward bias) with respect to depletion (reverse bias). We propose a model based on the force exerted by the trapped charges that quantitatively explains the experimental observations of excess friction.

  10. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities.

    Science.gov (United States)

    Odobel, Fabrice; Le Pleux, Loïc; Pellegrin, Yann; Blart, Errol

    2010-08-17

    Because solar energy is the most abundant renewable energy resource, the clear connection between human activity and global warming has strengthened the interest in photovoltaic science. Dye-sensitized solar cells (DSSCs) provide a promising low-cost technology for harnessing this energy source. Until recently, much of the research surrounding DSSCs had been focused on the sensitization of n-type semiconductors, such as titanium dioxide (Gratzel cells). In an n-type dye-sensitized solar cell (n-DSSC), an electron is injected into the conduction band of an n-type semiconductor (n-SC) from the excited state of the sensitizer. Comparatively few studies have examined the sensitization of wide bandgap p-type semiconductors. In a p-type DSSC (p-DSSC), the photoexcited sensitizer is reductively quenched by hole injection into the valence band of a p-type semiconductor (p-SC). The study of p-DSSCs is important both to understand the factors that control the rate of hole photoinjection and to aid the rational design of efficient p-DSSCs. In theory, p-DSSCs should be able to work as efficiently as n-DSSCs. In addition, this research provides a method for preparing tandem DSSCs consisting of a TiO(2)-photosensitized anode and a photosensitized p-type SC as a cathode. Tandem DSSCs are particularly important because they represent low-cost photovoltaic devices whose photoconversion efficiencies could exceed 15%. This Account describes recent research results on p-DSSCs. Because these photoelectrochemical devices are the mirror images of conventional n-DSSCs, they share some structural similarities, but they use different materials and have different charge transfer kinetics. In this technology, nickel oxide is the predominant p-SC material used, but much higher photoconversion efficiencies could be achieved with new p-SCs materials with deeper valence band potential. Currently, iodide/triiodide is the main redox mediator of electron transport within these devices, but we expect

  11. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    Science.gov (United States)

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  12. Electrical properties of Ge metal-oxide-semiconductor capacitors with high-k La2O3 gate dielectric incorporated by N or/and Ti

    Science.gov (United States)

    Huoxi, Xu; Jingping, Xu

    2016-06-01

    LaON, LaTiO and LaTiON films are deposited as gate dielectrics by incorporating N or/and Ti into La2O3 using the sputtering method to fabricate Ge MOS capacitors, and the electrical properties of the devices are carefully examined. LaON/Ge capacitors exhibit the best interface quality, gate leakage property and device reliability, but a smaller k value (14.9). LaTiO/Ge capacitors exhibit a higher k value (22.7), but a deteriorated interface quality, gate leakage property and device reliability. LaTiON/Ge capacitors exhibit the highest k value (24.6), and a relatively better interface quality (3.1 × 1011 eV-1 cm-2), gate leakage property (3.6 × 10-3 A/cm2 at V g = 1 V + V fb) and device reliability. Therefore, LaTiON is more suitable for high performance Ge MOS devices as a gate dielectric than LaON and LaTiO materials. Project supported by the National Natural Science Foundation of China (No. 61274112), the Natural Science Foundation of Hubei Province (No. 2011CDB165), and the Scientific Research Program of Huanggang Normal University (No. 2012028803).

  13. A New Structure of Silicon-on-Insulator Metal-Oxide-Semiconductor Field Effect Transistor to Suppress the Floating Body Effect

    Institute of Scientific and Technical Information of China (English)

    朱鸣; 林青; 张正选; 林成鲁

    2003-01-01

    Considering that the silicon-on-insulator (SOI) devices have an inherent floating body effect, which may cause substantial influences in the performance of SOI device and circuit, we propose a novel device structure to suppress the floating body effect. In the new structure there is a buried p+ region under the n+ source and that region is extended to outside of the source, and this additional p+ region provides a path for accumulated holes to flow out of the body. Numerical simulations were carried out with Medici, and the output characteristics and gate characteristics were compared with those of conventional SOI counterparts. The simulated results show the suppression of floating body effect in the novel SOI device as expected.

  14. Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics

    OpenAIRE

    2008-01-01

    Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well usin...

  15. A hybrid magnetic/complementary metal oxide semiconductor process design kit for the design of low-power non-volatile logic circuits

    Science.gov (United States)

    Di Pendina, G.; Prenat, G.; Dieny, B.; Torki, K.

    2012-04-01

    Since the advent of the MOS transistor, the performance of microelectronic circuits has followed Moore's law, stating that their speed and density would double every 18 months. Today, this trend tends to get out of breath: the continuously decreasing size of devices and increasing operation frequency result in power consumption and heating issues. Among the solutions investigated to circumvent these limitations, the use of non-volatile devices appears particularly promising. It allows easing, for example, the power gating technique, which consists in cutting-off the power supply of inactive blocks without losing information, drastically reducing the standby power consumption. In this approach, the advantages of magnetic tunnel junctions (MTJs) compared with other non-volatile devices allow one to design hybrid CMOS/magnetic circuits with high performance and new functionalities. Designing such circuits requires integrating MTJs in standard microelectronics design suites. This is performed by means of a process design kit (PDK) for the hybrid CMOS/magnetic technology. We present here a full magnetic PDK, which contains a compact model of the MTJ for electrical simulation, technology files for layout and physical verifications, and standard cells for the design of complex logic circuits and which is compatible with standard design suites. This PDK allows designers to accurately and comfortably design high-performance hybrid CMOS/magnetic logic circuits in the same way as standard CMOS circuits.

  16. WE-G-204-04: Focal Spot Deblurring For High Resolution Amorphous Selenium (aSe) Complementary Metal Oxide Semiconductor (CMOS) X-Ray Detector

    Energy Technology Data Exchange (ETDEWEB)

    Nagesh, S Setlur; Rana, R; Russ, M; Ionita, C; Bednarek, D; Rudin, S [Toshiba Stroke and Vascular Research Center, University at Buffalo, SUNY (United States)

    2015-06-15

    Purpose: CMOS-based aSe detectors compared to CsI-TFT-based flat panels have the advantages of higher spatial sampling due to smaller pixel size and decreased blurring characteristic of direct rather than indirect detection. For systems with such detectors, the limiting factor degrading image resolution then becomes the focal-spot geometric unsharpness. This effect can seriously limit the use of such detectors in areas such as cone beam computed tomography, clinical fluoroscopy and angiography. In this work a technique to remove the effect of focal-spot blur is presented for a simulated aSe detector. Method: To simulate images from an aSe detector affected with focal-spot blur, first a set of high-resolution images of a stent (FRED from Microvention, Inc.) were acquired using a 75µm pixel size Dexela-Perkin-Elmer detector and averaged to reduce quantum noise. Then the averaged image was blurred with a known Gaussian blur at two different magnifications to simulate an idealized focal spot. The blurred images were then deconvolved with a set of different Gaussian blurs to remove the effect of focal-spot blurring using a threshold-based, inverse-filtering method. Results: The blur was removed by deconvolving the images using a set of Gaussian functions for both magnifications. Selecting the correct function resulted in an image close to the original; however, selection of too wide a function would cause severe artifacts. Conclusion: Experimentally, focal-spot blur at different magnifications can be measured using a pin hole with a high resolution detector. This spread function can be used to deblur the input images that are acquired at corresponding magnifications to correct for the focal spot blur. For CBCT applications, the magnification of specific objects can be obtained using initial reconstructions then corrected for focal-spot blurring to improve resolution. Similarly, if object magnification can be determined such correction may be applied in fluoroscopy and angiography.

  17. A 94GHz Temperature Compensated Low Noise Amplifier in 45nm Silicon-on-Insulator Complementary Metal-Oxide Semiconductor (SOI CMOS)

    Science.gov (United States)

    2014-01-01

    discovering techniques to build wide temperature range electronics for millimeter wave imaging applications. Realization of this plan has resulted in a...State Circuits. 41.12 (December 2006): 2992-2997. 8. De Vida , G., and G. Iannaccone. “An Ultra-Low Power, Temperature Compensated Voltage

  18. Effect of substrate bias on negative bias temperature instability of ultra-deep sub-micro p-channel metal-oxide-semiconductor field-effect transistors

    Institute of Scientific and Technical Information of China (English)

    Cao Yan-Rong; Hao Yue; Ma Xiao-Hua; Hu Shi-Gang

    2009-01-01

    The effect of substrate bias on the degradation during applying a negative bias temperature (NBT) stress is studied in this paper. With a smaller gate voltage stress applied, the degradation of negative bias temperature instability (NBTI) is enhanced, and there comes forth an inflexion point. The degradation pace turns larger when the substrate bias is higher than the inflexion point. The substrate hot holes can be injected into oxide and generate additional oxide traps, inducing an inflexion phenomenon. When a constant substrate bias stress is applied, as the gate voltage stress increases, an inflexion comes into being also. The higher gate voltage causes the electrons to tunnel into the substrate from the poly, thereby generating the electron-hole pairs by impact ionization. The holes generated by impact ionization and the holes from the substrate all can be accelerated to high energies by the substrate bias. More additional oxide traps can be produced, and correspondingly, the degradation is strengthened by the substrate bias. The results of the alternate stress experiment show that the interface traps generated by the hot holes cannot be annealed, which is different from those generated by common holes.

  19. Controlling the interface charge density in GaN-based metal-oxide-semiconductor heterostructures by plasma oxidation of metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Herwig, E-mail: herwig.hahn@rwth-aachen.de; Kalisch, Holger; Vescan, Andrei [GaN Device Technology, RWTH Aachen University, 52074 Aachen (Germany); JARA-Fundamentals of Future Information Technologies, 52425 Jülich (Germany); Pécz, Béla [MTA EK MFA, Konkoly Thege Street 29-33, 1121 Budapest (Hungary); Kovács, András [JARA-Fundamentals of Future Information Technologies, 52425 Jülich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Forschungszentrum Jülich, Peter Grünberg Institut (PGI-5), 52425 Jülich (Germany); Heuken, Michael [GaN Device Technology, RWTH Aachen University, 52074 Aachen (Germany); AIXTRON SE, 52134 Herzogenrath (Germany)

    2015-06-07

    In recent years, investigating and engineering the oxide-semiconductor interface in GaN-based devices has come into focus. This has been driven by a large effort to increase the gate robustness and to obtain enhancement mode transistors. Since it has been shown that deep interface states act as fixed interface charge in the typical transistor operating regime, it appears desirable to intentionally incorporate negative interface charge, and thus, to allow for a positive shift in threshold voltage of transistors to realise enhancement mode behaviour. A rather new approach to obtain such negative charge is the plasma-oxidation of thin metal layers. In this study, we present transmission electron microscopy and energy dispersive X-ray spectroscopy analysis as well as electrical data for Al-, Ti-, and Zr-based thin oxide films on a GaN-based heterostructure. It is shown that the plasma-oxidised layers have a polycrystalline morphology. An interfacial amorphous oxide layer is only detectable in the case of Zr. In addition, all films exhibit net negative charge with varying densities. The Zr layer is providing a negative interface charge density of more than 1 × 10{sup 13 }cm{sup –2} allowing to considerably shift the threshold voltage to more positive values.

  20. On the origin of the mobility reduction in n- and p-metal-oxide-semiconductor field effect transistors with hafnium-based/metal gate stacks

    Science.gov (United States)

    Toniutti, P.; Palestri, P.; Esseni, D.; Driussi, F.; De Michielis, M.; Selmi, L.

    2012-08-01

    We examine the mobility reduction measured in hafnium-based dielectrics in n- and p-MOSFETs by means of extensive comparison between accurate multi-subband Monte Carlo simulations and experimental data for reasonably mature process technologies. We have considered scattering with remote (soft-optical) phonons and remote Coulomb interaction with single layers and dipole charges. A careful examination of model assumptions and limitations leads us to the conclusion that soft optical phonon scattering cannot quantitatively explain by itself the experimental mobility reduction reported by several groups for neither the electron nor the hole inversion layers. Experimental data can be reproduced only assuming consistently large concentrations of Coulomb scattering centers in the gate stack. However, the corresponding charge or dipole density would result in a large threshold voltage shift not observed in the experiments. We thus conclude that the main mechanisms responsible for the mobility reduction in MOSFETs featuring Hafnium-based high-κ dielectric have not been completely identified yet. Additional physical mechanisms that could reconcile simulations with experimental results are suggested and critically discussed.

  1. A third-order complementary metal-oxide-semiconductor sigma-delta modulator operating between 4.2 K and 300 K

    Science.gov (United States)

    Okcan, Burak; Gielen, Georges; Van Hoof, Chris

    2012-02-01

    This paper presents a third-order switched-capacitor sigma-delta modulator implemented in a standard 0.35-μm CMOS process. It operates from 300 K down to 4.2 K, achieving 70.8 dB signal-to-noise-plus-distortion ratio (SNDR) in a signal bandwidth of 5 kHz with a sampling frequency of 500 kHz at 300 K. The modulator utilizes an operational transconductance amplifier in its loop filter, whose architecture has been optimized in order to eliminate the cryogenic anomalies below the freeze-out temperature. At 4.2 K, the modulator achieves 67.7 dB SNDR consuming 21.17 μA current from a 3.3 V supply.

  2. Si{sub 1-x}Ge{sub x} metal-oxide-semiconductor capacitors with HfTaO{sub x} gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S., E-mail: sandi.iitkgp@gmail.com [Dept. of Electronics and ECE, Indian Institute of Technology, Kharagpur 721302 (India); Mahata, C.; Hota, M.K. [Dept. of Electronics and ECE, Indian Institute of Technology, Kharagpur 721302 (India); Sarkar, C.K. [Dept. of Electronics and Telecommunication Engineering, Jadavpur University, Jadavpur, Kolkata 700032 (India); Maiti, C.K. [Dept. of Electronics and ECE, Indian Institute of Technology, Kharagpur 721302 (India)

    2011-10-31

    Interfacial reactions and electrical properties of RF sputter deposited HfTaO{sub x} high-k gate dielectric films on Si{sub 1-x}Ge{sub x} (x = 19%) are investigated. X-ray photoelectron spectroscopic analyses indicate an interfacial layer containing GeO{sub x}, Hf silicate, SiO{sub x} (layer of Hf-Si-Ge-O) formation during deposition of HfTaO{sub x}. No evidence of Ta-silicate or Ta incorporation was found at the interface. The crystallization temperature of HfTaO{sub x} film is found to increase significantly after annealing beyond 500 deg. C (for 5 min) along with the incorporation of Ta. HfTaO{sub x} films (with 18% Ta) remain amorphous up to about 500 deg. C anneal. Electrical characterization of post deposition annealed (in oxygen at 600 deg. C) samples showed; capacitance equivalent thickness of {approx} 4.3-5.7 nm, hysteresis of 0.5-0.8 V, and interface state density = 1.2-3.8 x 10{sup 12} cm{sup -2} eV{sup -1}. The valence and conduction band offsets were determined from X-ray photoelectron spectroscopy spectra after careful analyses of the experimental data and removal of binding energy shift induced by differential charging phenomena occurring during X-ray photoelectron spectroscopic measurements. The valence and conduction band offsets were found to be 2.45 {+-} 0.05 and 2.31 {+-} 0.05 eV, respectively, and a band gap of 5.8 {+-} 05 eV was found for annealed samples.

  3. Estimation of mean-glandular dose from monitoring breast entrance skin air kerma using a high sensitivity metal oxide semiconductor field effect transistor (MOSFET) dosimeter system in mammography.

    Science.gov (United States)

    Dong, S L; Chu, T C; Lee, J S; Lan, G Y; Wu, T H; Yeh, Y H; Hwang, J J

    2002-12-01

    Estimation of mean-glandular dose (MGD) has been investigated in recent years due to the potential risks of radiation-induced carcinogenesis associated with the mammographic examination for diagnostic radiology. In this study, a new technique for immediate readout of breast entrance skin air kerma (BESAK) using high sensitivity MOSFET dosimeter after mammographic projection was introduced and a formula for the prediction of tube output with exposure records was developed. A series of appropriate conversion factors was applied to the MGD determination from the BESAK. The study results showed that signal response of the high sensitivity MOSFET exhibited excellent linearity within mammographic dose ranges, and that the energy dependence was less than 3% for each anode/filter combination at the tube potentials 25-30 kV. Good agreement was observed between the BESAK and the tube exposure output measurement for breasts thicker than 30 mm. In addition, the air kerma estimated from our prediction formula provided sufficient accuracy for thinner breasts. The average MGD from 120 Asian females was 1.5 mGy, comparable to other studies. Our results suggest that the high sensitivity MOSFET dosimeter system is a good candidate for immediately readout of BESAK after mammographic procedures.

  4. Mismatch of dielectric constants at the interface of nanometer metal-oxide-semiconductor devices with high- gate dielectric impacts on the inversion charge density

    Indian Academy of Sciences (India)

    Ling-Feng Mao

    2011-04-01

    The comparison of the inversion electron density between a nanometer metal-oxidesemiconductor (MOS) device with high- gate dielectric and a SiO2 MOS device with the same equivalent oxide thickness has been discussed. A fully self-consistent solution of the coupled Schrödinger–Poisson equations demonstrates that a larger dielectric-constant mismatch between the gate dielectric and silicon substrate can reduce electron density in the channel of a MOS device under inversion bias. Such a reduction in inversion electron density of the channel will increase with increase in gate voltage. A reduction in the charge density implies a reduction in the inversion electron density in the channel of a MOS device. It also implies that a larger dielectric constant of the gate dielectric might result in a reduction in the source–drain current and the gate leakage current.

  5. Work function tuning of plasma-enhanced atomic layer deposited WC{sub x}N{sub y} electrodes for metal/oxide/semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Zonensain, Oren; Fadida, Sivan; Eizenberg, Moshe [Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Fisher, Ilanit; Gao, Juwen; Chattopadhyay, Kaushik; Harm, Greg; Mountsier, Tom; Danek, Michal [Lam Research Corporation, 4000 N. First Street, San Jose, California 95134 (United States)

    2015-02-23

    One of the main challenges facing the integration of metals as gate electrodes in advanced MOS devices is control over the Fermi level position at the metal/dielectric interface. In this study, we demonstrate the ability to tune the effective work function (EWF) of W-based electrodes by process modifications of the atomic layer deposited (ALD) films. Tungsten carbo-nitrides (WC{sub x}N{sub y}) films were deposited via plasma-enhanced and/or thermal ALD processes using organometallic precursors. The process modifications enabled us to control the stoichiometry of the WC{sub x}N{sub y} films. Deposition in hydrogen plasma (without nitrogen based reactant) resulted in a stoichiometry of WC{sub 0.4} with primarily W-C chemical bonding, as determined by x-ray photoelectron spectroscopy. These films yielded a relatively low EWF of 4.2 ± 0.1 eV. The introduction of nitrogen based reactant to the plasma or the thermal ALD deposition resulted in a stoichiometry of WC{sub 0.1}N{sub 0.6–0.8} with predominantly W-N chemical bonding. These films produced a high EWF of 4.7 ± 0.1 eV.

  6. InxGa1-xSb Channel p-Metal-Oxide-Semiconductor Field Effect Transistors: Effect of Strain and Heterostructure Design

    Science.gov (United States)

    2011-07-06

    from 300 K to 80 K, ION increased up to 4 times due to the increase in the hole mobility, while IOFF decreased by a factor of 10 3, indi- cating a diode...N. A. Papanicolaou , and J. B. Boos, J. Cryst. Growth 312(1), 37 (2009). TABLE I. Surface roughness comparison with known values in silicon and...Bennett, N. A. Papanicolaou , M. G. Ancona, J. G. Cham- plain, R. Bass, and B. V. Shanabrook, Electron. Lett. 43, 834 (2007). 15A. Nainani, T. Irisawa, Z

  7. A method for the assessment of oxide charge density and centroid in metal-oxide-semiconductor structures after uniform gate stress

    Science.gov (United States)

    Kies, R.; Egilsson, T.; Ghibaudo, G.; Pananakakis, G.

    1996-06-01

    A method for the extraction of the oxide charge density and distribution centroid based on the exploitation of the Fowler plot derivative characteristics is proposed. To this end, the modification of the tunnel transparency due to the presence of charge within the tunneling region is accounted for. Simple analytical formulas which enable the oxide charge density and centroid to be extracted from the maximum Fowler derivative and its electric field position are derived. The comparison with the DiMaria method confirms the overall consistency of the new approach. The impact of negative charge within the oxide on the apparent Fowler barrier height, which can be deduced from the slope of the Fowler plots after uniform gate stress is also analyzed. Finally, it is pointed out that this method permits the oxide trapping properties to be studied even though only one bias polarization can be utilized for the test structure.

  8. Effects of series and parallel resistances on the C-V characteristics of silicon-based metal oxide semiconductor (MOS) devices

    Science.gov (United States)

    Omar, Rejaiba; Mohamed, Ben Amar; Adel, Matoussi

    2015-04-01

    This paper investigates the electrical behavior of the Al/SiO2/Si MOS structure. We have used the complex admittance method to develop an analytical model of total capacitance applied to our proposed equivalent circuit. The charge density, surface potential, semiconductor capacitance, flatband and threshold voltages have been determined by resolving the Poisson transport equations. This modeling is used to predict in particular the effects of frequency, parallel and series resistance on the capacitance-voltage characteristic. Results show that the variation of both frequency and parallel resistance causes strong dispersion of the C-V curves in the inversion regime. It also reveals that the series resistance influences the shape of C-V curves essentially in accumulation and inversion modes. A significant decrease of the accumulation capacitance is observed when R s increases in the range 200-50000 Ω. The degradation of the C-V magnitude is found to be more pronounced when the series resistance depends on the substrate doping density. When R s varies in the range 100 Ω-50 kΩ, it shows a decrease in the flatband voltage from -1.40 to -1.26 V and an increase in the threshold voltage negatively from -0.28 to -0.74 V, respectively. Good agreement has been observed between simulated and measured C-V curves obtained at high frequency. This study is necessary to control the adverse effects that disrupt the operation of the MOS structure in different regimes and optimizes the efficiency of such electronic device before manufacturing.

  9. Channel length scaling and the impact of metal gate work function on the performance of double gate-metal oxide semiconductor field-effect transistors

    Indian Academy of Sciences (India)

    D Rechem; S Latreche; C Gontrand

    2009-03-01

    In this paper, we study the effects of short channel on double gate MOSFETs. We evaluate the variation of the threshold voltage, the subthreshold slope, the leakage current and the drain-induced barrier lowering when channel length CH decreases. Further- more, quantum effects on the performance of DG-MOSFETs are addressed and discussed. We also study the influence of metal gate work function on the performance of nanoscale MOSFETs. We use a self-consistent Poisson–Schrödinger solver in two dimensions over the entire device. A good agreement with numerical simulation results is obtained.

  10. Effect of atomic layer deposition growth temperature on the interfacial characteristics of HfO{sub 2}/p-GaAs metal-oxide-semiconductor capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Zhang, Y. M.; Zhang, Y. M.; Lv, H. L., E-mail: hllv@mail.xidian.edu.cn [School of Microelectronics, Xidian University and Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi' an 710071 (China)

    2014-12-14

    The effect of atomic layer deposition (ALD) growth temperature on the interfacial characteristics of p-GaAs MOS capacitors with ALD HfO{sub 2} high-k dielectric using tetrakis(ethylmethyl)amino halfnium precursor is investigated in this study. Using the combination of capacitance-voltage (C-V) and X-ray photoelectron spectroscopy (XPS) measurements, ALD growth temperature is found to play a large role in controlling the reaction between interfacial oxides and precursor and ultimately determining the interface properties. The reduction of surface oxides is observed to be insignificant for ALD at 200 °C, while markedly pronounced for growth at 300 °C. The corresponding C-V characteristics are also shown to be ALD temperature dependent and match well with the XPS results. Thus, proper ALD process is crucial in optimizing the interface quality.

  11. Negative differential resistance and effect of defects and deformations in MoS{sub 2} armchair nanoribbon metal-oxide-semiconductor field effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Amretashis, E-mail: amretashis@dese.iisc.ernet.in; Mahapatra, Santanu [Nano-Scale Device Research Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560 012 (India)

    2013-11-21

    In this work, we present a study on the negative differential resistance (NDR) behavior and the impact of various deformations (like ripple, twist, wrap) and defects like vacancies and edge roughness on the electronic properties of short-channel MoS{sub 2} armchair nanoribbon MOSFETs. The effect of deformation (3°–7° twist or wrap and 0.3–0.7 Å ripple amplitude) and defects on a 10 nm MoS2 ANR FET is evaluated by the density functional tight binding theory and the non-equilibrium Green's function approach. We study the channel density of states, transmission spectra, and the I{sub D}–V{sub D} characteristics of such devices under the varying conditions, with focus on the NDR behavior. Our results show significant change in the NDR peak to valley ratio and the NDR window with such minor intrinsic deformations, especially with the ripple.

  12. Ultra-low power high temperature and radiation hard complementary metal-oxide-semiconductor (CMOS) silicon-on-insulator (SOI) voltage reference.

    Science.gov (United States)

    Boufouss, El Hafed; Francis, Laurent A; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis

    2013-12-13

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40-200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage V(REF) depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of V(REF) and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.

  13. Ultra-Low Power High Temperature and Radiation Hard Complementary Metal-Oxide-Semiconductor (CMOS) Silicon-on-Insulator (SOI) Voltage Reference

    OpenAIRE

    El Hafed Boufouss; Francis, Laurent A.; Valeriya Kilchytska; Pierre Gérard; Pascal Simon; Denis Flandre

    2013-01-01

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40–200 °C and for differ...

  14. Ultra-Low Power High Temperature and Radiation Hard Complementary Metal-Oxide-Semiconductor (CMOS Silicon-on-Insulator (SOI Voltage Reference

    Directory of Open Access Journals (Sweden)

    El Hafed Boufouss

    2013-12-01

    Full Text Available This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40–200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si performed at three different temperatures (room temperature, 100 °C and 200 °C. The maximum drift of the reference voltage VREF depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μ W at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of VREF and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.

  15. X-ray photoelectron spectroscopy and diffraction investigation of a metal-oxide-semiconductor heterostructure: Pt/Gd2O3/Si(111)

    Science.gov (United States)

    Ferrah, D.; El Kazzi, M.; Niu, G.; Botella, C.; Penuelas, J.; Robach, Y.; Louahadj, L.; Bachelet, R.; Largeau, L.; Saint-Girons, G.; Liu, Q.; Vilquin, B.; Grenet, G.

    2015-04-01

    Platinum thin films deposited by physical vapor deposition (PVD) on Gd2O3/Si(111) templates are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray photoelectron diffraction (XPD). Both XRD and XPD give clear evidence that Gd2O3 grows (111)-oriented and single-domain on Si(111) with mirror epitaxial relationship viz., [1bar10] Gd2O3(111)//[11bar0] Si(111). On Gd2O3/Si(111), Pt is partially crystallized with (111) orientation. There are two epitaxial domains and a slightly visible (111) fiber texture. The in-plane relationships of these Pt(111) domains with Gd2O3(111) are a direct one: [11bar0] Pt(111)//[11bar0] Gd2O3(111) and a mirror one: [1bar10] Pt(111)//[11bar0] Gd2O3(111). XPS reveals that Pt4f exhibits a metallic behavior even for small amounts of Pt but very small chemical shifts suggest that Pt environment is different at the interface with Gd2O3. These XPS chemical shifts have been correlated with features in XPD azimuth curves, which could be related with the existence of hexagonal α-PtO2(0001)layer.

  16. Investigation of trap states in Al2O3 InAlN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    Science.gov (United States)

    Zhang, Peng; Zhao, Sheng-Lei; Xue, Jun-Shuai; Zhu, Jie-Jie; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue

    2015-12-01

    In this paper the trapping effects in Al2O3/In0.17Al0.83N/GaN MOS-HEMT (here, HEMT stands for high electron mobility transistor) are investigated by frequency-dependent capacitance and conductance analysis. The trap states are found at both the Al2O3/InAlN and InAlN/GaN interface. Trap states in InAlN/GaN heterostructure are determined to have mixed de-trapping mechanisms, emission, and tunneling. Part of the electrons captured in the trap states are likely to tunnel into the two-dimensional electron gas (2DEG) channel under serious band bending and stronger electric field peak caused by high Al content in the InAlN barrier, which explains the opposite voltage dependence of time constant and relation between the time constant and energy of the trap states. Project supported by the Program for National Natural Science Foundation of China (Grant Nos. 61404100 and 61306017).

  17. Self-Aligned, Extremely High Frequency III-V Metal-Oxide-Semiconductor Field-Effect Transistors on Rigid and Flexible Substrates

    Science.gov (United States)

    2012-06-29

    Goffman , M. F.; Bourgoin, J.-P. Appl. Phys. Lett. 2007, 90, 233108. (5) Nougaret, L.; Happy, H.; Dambrine, G.; Derycke, V.; Bourgoin, J.-P.; Green, A. A...Krishna, S.; Chueh, Y.-L.; Guo, J.; Javey, A. Nano Lett. 2012, 12, 2060−2066. (27) Chimot, N.; Derycke, V.; Goffman , M. F.; Bourgoin, J. P.; Happy, H

  18. Investigation of temperature dependent threshold voltage variation of Gd2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure

    Directory of Open Access Journals (Sweden)

    Atanu Das

    2012-09-01

    Full Text Available Temperature dependent threshold voltage (Vth variation of GaN/AlGaN/Gd2O3/Ni-Au structure is investigated by capacitance-voltage measurement with temperature varying from 25°C to 150°C. The Vth of the Schottky device without oxide layer is slightly changed with respect to temperature. However, variation of Vth is observed for both as-deposited and annealed device owing to electron capture by the interface traps or bulk traps. The Vth shifts of 0.4V and 3.2V are obtained for as-deposited and annealed device respectively. For annealed device, electron capture process is not only restricted in the interface region but also extended into the crystalline Gd2O3 layer through Frenkel-Poole emission and hooping conduction, resulting in a larger Vth shift. The calculated trap density for as-deposited and annealed device is 3.28×1011∼1.12×1011 eV−1cm−2 and 1.74×1012∼7.33×1011 eV−1cm−2 respectively in measured temperature range. These results indicate that elevated temperature measurement is necessary to characterize GaN/AlGaN heterostructure based devices with oxide as gate dielectric.

  19. A Novel Super-Junction Lateral Double-Diffused Metal-Oxide-Semiconductor Field Effect Transistor with n-Type Step Doping Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    CHENG Jian-Bing; ZHANG Do; DUAN Bao-Xing; LI Zhao-Ji

    2008-01-01

    A novel super-junction lateral double-diffused metal-nxide-semiconductor field effect transistor(SJ-LDMOSFET)with n-type step doping buffer layer is proposed.The step doping buffer layer almost completely eliminates the substrate-assisted depletion effect.modulates lateral electric field and achieves nearly uniform surface field.On the other hand,the buffer layer also provides another conductive path and reduces on-state resistance.In short,the proposed LDMOSFET improves trade-off performance between breakdown voltage (BV)and specific on-state resistance Ron,sp.Compared with the conventional SJ-LDMOSFET,the simulation results indicate that the BV of the SSJ-LDMOSFET is increased from saturation voltage 121.7 V to 644.9 V;at the same time,the specific when the drift region length and the step number are taken as 48μm and 3,respectively.

  20. High resistivity and ultrafast carrier lifetime in argon implanted GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Walukiewicz, W.; Liliental-Weber, Z.; Jasinski, J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Almonte, M.; Prasad, A.; Haller, E.E.; Weber, E.R. [Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720 (United States); Grenier, P.; Whitaker, J.F. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    1996-10-01

    We have investigated the optoelectronic and structural properties of GaAs that has been implanted with Ar ions and subsequently annealed. The material exhibits all the basic optical and electronic characteristics typically observed in nonstoichiometric, As implanted or low-temperature-grown GaAs. Annealing of Ar implanted GaAs at 600{degree}C produces a highly resistive material with a subpicosecond trapping lifetime for photoexcited carriers. Transmission electron microscopy shows that, instead of As precipitates, characteristic for the nonstoichiometeric GaAs, voids ranging in size from 3 to 5 nm are observed in Ar implanted and annealed GaAs. {copyright} {ital 1996 American Institute of Physics.}

  1. NbFeSb based p-type half-Heusler for power generation applications

    Science.gov (United States)

    Joshi, Giri; He, Ran; Engber, Michael; Samsonidze, Georgy; Pantha, Tej; Dahal, Ekraj; Dahal, Keshab; Yang, Jian; Lan, Yucheng; Kozinsky, Boris; Ren, Zhifeng

    2015-03-01

    We report a peak dimensionless figure-of-merit (ZT) of ~1 at 700 oC in nanostructured p-type Nb0.6Ti0.4FeSb0.95Sn0.05composition. Even though the power factor of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition is improved by 25% in comparison to the previously reported p-type Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2, the ZT value is not increased due to a higher thermal conductivity. However, the higher power factor of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition led to a 15% increase in power output of a thermoelectric device in comparison to a device made from the previous best material Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. The n-type material used to make the unicouple device is the best reported nanostructured Hf0.25Zr0.75NiSn0.99Sb0.01 composition with the lowest hafnium (Hf) content. Both the p- and n-type nanostructured samples are prepared by ball milling the arc melted ingot and hot pressing the finely ground powders. Moreover, the raw material cost of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition is more than six times lower compared to the cost of the previous best p-type Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. This cost reduction is crucial for these materials to be used in large-scale quantities for vehicle and industrial waste heat recovery applications. DOE:DE-EE0004840.

  2. 14. 5% conversion efficiency GaAs solar cell fabricated on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Y.; Nishioka, T.; Yamamoto, A.; Yamaguchi, M.

    1986-12-08

    AlGaAs-GaAs heteroface p/sup +/-p-n solar cells have been fabricated directly on Si substrates using metalorganic chemical vapor deposition. GaAs on Si solar cell efficiency as high as exceeding 14.5% at AM1.5 was obtained by cleaning the substrate surface and repeating GaAs film growth interruption. This value is the highest ever reported for GaAs solar cells on Si substrates. Defects, which could not be observed in homoepitaxially grown GaAs film, were observed in the heteroepitaxial GaAs films through electron beam induced current image. Relatively low conversion efficiency of the GaAs cell on Si compared to the GaAs can be attributed to these defects.

  3. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    Science.gov (United States)

    Du, Juan; Xia, Congxin; Liu, Yaming; Li, Xueping; Peng, Yuting; Wei, Shuyi

    2017-04-01

    More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm2 V-1 s-1, which is much higher than that of MoS2 monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  4. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells

    Science.gov (United States)

    Ambade, Swapnil B.; Mane, R. S.; Kale, S. S.; Sonawane, S. H.; Shaikh, Arif V.; Han, Sung-Hwan

    2006-12-01

    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 °C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu 2- xSe phase was confirmed by XRD pattern and spherical grains of 30 ± 4 - 40 ± 4 nm in size aggregated over about 130 ± 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm 2 light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells.

  5. How thermoelectric properties of p-type Tl-filled skutterudites are improved

    Directory of Open Access Journals (Sweden)

    Donghun Kim

    2013-09-01

    Full Text Available The high-temperature thermoelectric properties of p-type Tl-filled skutterudites TlxFe1Co3Sb12 (x = 0, 0.2, 0.4, 0.6, and 0.8 were examined. While samples with x ≤ 0.4 were single-phase Tl-filled skutterudite, samples with x = 0.6 and 0.8 were composed of two phases: TlxFe1Co3Sb12 (x ≈ 0.4 as the matrix phase and a Tl-Fe-Sb ternary alloy. The thermal conductivity (κ was reduced effectively by Tl addition, but the secondary phase increased κ slightly. The maximum value of the dimensionless figure of merit ZT (=S2T/ρ/κ, where T is the absolute temperature was 0.36 at 723 K for Tl0.2Fe1Co3Sb12.

  6. P-type calcium channels are blocked by the alkaloid daurisoline.

    Science.gov (United States)

    Lu, Y M; Fröstl, W; Dreessen, J; Knöpfel, T

    1994-07-21

    IN looking for a structurally defined non-peptide P-channel blocker we have tested the alkaloid daurisoline which has been isolated from traditional Chinese medicinal herb (Menispermum dauricum) used for the treatment of epilepsy, hypertension and asthma. We have found that daurisoline is an inhibitor of omega-Aga-IVA sensitive barium currents in cerebellar Purkinje cells and of excitatory postsynaptic potentials evoked in Purkinje cells by stimulating parallel fibres in acutely prepared cerebellar slices. Daurisoline did not significantly affect omega-Aga-IVA-insensitive barium currents recorded from granule cells freshly isolated from rat cerebellum. Daurisoline passes the blood-brain barrier and will, therefore, facilitate the functional characterization of brain calcium channels as well as the exploration of P-type calcium channels as possible drug targets.

  7. A re-examination of cobalt-related defects in n- and p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, Leopold; Kolkovsky, Vladimir; Weber, Joerg [Technische Universitaet Dresden, 01069 Dresden (Germany)

    2012-10-15

    In the present work cobalt-doped n- and p-type silicon samples were studied by means of deep level transient spectroscopy (DLTS) and Laplace-DLTS (LDLTS). We demonstrate that two dominant DLTS peaks previously assigned to a substitutional Co defect have different annealing behaviour and therefore belong to different defects. After wet chemical etching three other peaks (E90, E140 and H160) were observed in the samples. The intensity of the peaks becomes larger in the H-plasma treated samples. This together with depth profiling demonstrates that the peaks are hydrogen-related defects. The origin of the peaks will be discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Nanoscale Cross-Point Resistive Switching Memory Comprising p-Type SnO Bilayers

    KAUST Repository

    Hota, Mrinal Kanti

    2015-02-23

    Reproducible low-voltage bipolar resistive switching is reported in bilayer structures of p-type SnO films. Specifically, a bilayer homojunction comprising SnOx (oxygen-rich) and SnOy (oxygen-deficient) in nanoscale cross-point (300 × 300 nm2) architecture with self-compliance effect is demonstrated. By using two layers of SnO film, a good memory performance is obtained as compared to the individual oxide films. The memory devices show resistance ratio of 103 between the high resistance and low resistance states, and this difference can be maintained for up to 180 cycles. The devices also show good retention characteristics, where no significant degradation is observed for more than 103 s. Different charge transport mechanisms are found in both resistance states, depending on the applied voltage range and its polarity. The resistive switching is shown to originate from the oxygen ion migration and subsequent formation/rupture of conducting filaments.

  9. Improved thermoelectric efficiency in p-type ZnSb through Zn deficiency

    Science.gov (United States)

    Guo, Qilong; Luo, Sijun

    2015-12-01

    We herein report a feasible approach to improve the thermoelectric performance of p-type ZnSb compound by Zn content regulation. It is found that Zn vacancies formed by Zn deficiency not only efficiently enhance the electrical conductivity due to the improved hole concentration but also markedly lower the lattice thermal conductivity on account of the reinforced point defect scattering of phonons. The ZnSb compound with a nominal 3 mol.% Zn deficiency shows a maximum thermoelectric figure of merit ZT of 0.8 at 700 K which is a 60% improvement over the pristine sample. The strategies of further enhancing the performance of ZnSb-based material have been discussed.

  10. Low-temperature TCT characterization of heavily proton irradiated p-type magnetic Czochralski silicon detectors

    CERN Document Server

    Härkönen, J; Luukka, P; Kassamakov, I; Autioniemi, M; Tuominen, E; Sane, P; Pusa, P; Räisänen, J; Eremin, V; Verbitskaya, E; Li, Z

    2007-01-01

    n+/p−/p+ pad detectors processed at the Microelectronics Center of Helsinki University of Technology on boron-doped p-type high-resistivity magnetic Czochralski (MCz-Si) silicon substrates have been investigated by the transient current technique (TCT) measurements between 100 and 240 K. The detectors were irradiated by 9 MeV protons at the Accelerator Laboratory of University of Helsinki up to 1 MeV neutron equivalent fluence of 2×1015 n/cm2. In some of the detectors the thermal donors (TD) were introduced by intentional heat treatment at 430 °C. Hole trapping time constants and full depletion voltage values were extracted from the TCT data. We observed that hole trapping times in the order of 10 ns were found in heavily (above 1×1015 neq/cm2) irradiated samples. These detectors could be fully depleted below 500 V in the temperature range of 140–180 K.

  11. Origin of resistivity anomaly in p-type leads chalcogenide multiphase compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aminorroaya Yamini, Sima, E-mail: sima@uow.edu.au, E-mail: jsnyder@caltech.edu; Dou, Shi Xue [Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, NSW 2500 (Australia); Mitchell, David R. G. [Electron Microscopy Centre (EMC), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, NSW 2500 (Australia); Wang, Heng [Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Gibbs, Zachary M. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (United States); Pei, Yanzhong [School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804 (China); Snyder, G. Jeffrey, E-mail: sima@uow.edu.au, E-mail: jsnyder@caltech.edu [Electron Microscopy Centre (EMC), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, NSW 2500 (Australia); ITMO University, Saint Petersburg (Russian Federation)

    2015-05-15

    The electrical resistivity curves for binary phase compounds of p-type lead chalcogenide (PbTe){sub (0.9−x)}(PbSe){sub 0.1}(PbS){sub x,} (x = 0.15, 0.2, 0.25), which contain PbS-rich secondary phases, show different behaviour on heating and cooling between 500-700 K. This is contrast to single phase compounds which exhibit similar behaviour on heating and cooling. We correlate these anomalies in the electrical resistivities of multiphase compounds to the variation in phase composition at high temperatures. The inhomogeneous distribution of dopants between the matrix and secondary phase is found to be crucial in the electronic transport properties of the multiphase compounds. These results can lead to further advances in designing composite Pb-chalcogenides with high thermoelectric performance.

  12. Microhardness of carbon-doped (111) p-type Czochralski silicon

    Science.gov (United States)

    Danyluk, S.; Lim, D. S.; Kalejs, J.

    1985-01-01

    The effect of carbon on (111) p-type Czochralski silicon is examined. The preparation of the silicon and microhardness test procedures are described, and the equation used to determine microhardness from indentations in the silicon wafers is presented. The results indicate that as the carbon concentration in the silicon increases the microhardness increases. The linear increase in microhardness is the result of carbon hindering dislocation motion, and the effect of temperature on silicon deformation and dislocation mobility is explained. The measured microhardness was compared with an analysis which is based on dislocation pinning by carbon; a good correlation was observed. The Labusch model for the effect of pinning sites on dislocation motion is given.

  13. Photostable p-type dye-sensitized photoelectrochemical cells for water reduction.

    Science.gov (United States)

    Ji, Zhiqiang; He, Mingfu; Huang, Zhongjie; Ozkan, Umit; Wu, Yiying

    2013-08-14

    A photostable p-type NiO photocathode based on a bifunctional cyclometalated ruthenium sensitizer and a cobaloxime catalyst has been created for visible-light-driven water reduction to produce H2. The sensitizer is anchored firmly on the surface of NiO, and the binding is resistant to the hydrolytic cleavage. The bifunctional sensitizer can also immobilize the water reduction catalyst. The resultant photoelectrode exhibits superior stability in aqueous solutions. Stable photocurrents have been observed over a period of hours. This finding is useful for addressing the degradation issue in dye-sensitized photoelectrochemical cells caused by desorption of dyes and catalysts. The high stability of our photocathodes should be important for the practical application of these devices for solar fuel production.

  14. Phonon bottleneck in p-type Ge/Si quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yakimov, A. I., E-mail: yakimov@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk (Russian Federation); Tomsk State University, 634050 Tomsk (Russian Federation); Kirienko, V. V.; Armbrister, V. A. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk (Russian Federation); Bloshkin, A. A.; Dvurechenskii, A. V. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2015-11-23

    We study the effect of quantum dot size on the mid-infrared photo- and dark current, photoconductive gain, and hole capture probability in ten-period p-type Ge/Si quantum dot heterostructures. The dot dimensions are varied by changing the Ge coverage and the growth temperature during molecular beam epitaxy of Ge/Si(001) system in the Stranski-Krastanov growth mode. In all samples, we observed the general tendency: with decreasing the size of the dots, the dark current and hole capture probability are reduced, while the photoconductive gain and photoresponse are enhanced. Suppression of the hole capture probability in small-sized quantum dots is attributed to a quenched electron-phonon scattering due to phonon bottleneck.

  15. Improved performance of P-type DSCs with a compact blocking layer coated by different thicknesses

    Science.gov (United States)

    Ho, Phuong; Bao, Le Quoc; Cheruku, Rajesh; Kim, Jae Hong

    2016-09-01

    The introduction of different thicknesses of a compact NiO blocking layer coating with different spin speeds on FTO and followed by a coating of photoactive NiO electrode for p-type dye-sensitized solar cells ( p-DSCs). This study examined the fabrication of a compact NiO blocking layer by decomposing an ethanolic precursor solution of nickel acetate tetrahydrate. The DCBZ dye used as the photosensitizer for the NiO electrode in the p-DSCs device and their performances have been analyzed. The enhancement of photovoltaic performance and resulted from an increase in the power conversion efficiency ( η). The electrochemical impedance spectroscopy (EIS) measurement demonstrated that charge recombination was suppressed when a compact NiO blocking layer was applied. The results showed that the best p-DSC was achieved by employing 3000 rpm spin-coated process for different times of blocking layer.

  16. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-09-01

    Recently huge interest has been focussed on Ge-intercalated graphene. In order to address the effect of Ge on the electronic structure, we study Ge-intercalated free-standing C 6 and C 8 bilayer graphene, bulk C 6Ge and C 8Ge, as well as Ge-intercalated graphene on a SiC(0001) substrate, by density functional theory. In the presence of SiC(0001), there are three ways to obtain n-type graphene: i) intercalation between C layers; ii) intercalation at the interface to the substrate in combination with Ge deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition occurs. © Copyright EPLA, 2012.

  17. Nanopore formation on low-doped p-type silicon under illumination

    Energy Technology Data Exchange (ETDEWEB)

    Chiboub, N. [UDTS, 02 Bd. Frantz Fanon, B.P. 140, Alger-7 Merveilles, 16200 Algiers (Algeria); Gabouze, N., E-mail: ngabouze@yahoo.fr [UDTS, 02 Bd. Frantz Fanon, B.P. 140, Alger-7 Merveilles, 16200 Algiers (Algeria); Chazalviel, J.-N.; Ozanam, F. [Physique de la Matiere Condensee, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Moulay, S. [Universite Saad Dahleby, B.P. 270, Route de Soumaa, Blida (Algeria); Manseri, A. [UDTS, 02 Bd. Frantz Fanon, B.P. 140, Alger-7 Merveilles, 16200 Algiers (Algeria)

    2010-04-01

    Porous silicon layers were elaborated by anodization of highly resistive p-type silicon in HF/ethylene glycol solution under front side illumination, as a function of etching time, HF concentration and illumination intensity. The porous layer morphology was investigated by scanning electron microscopy (SEM). The illumination during anodization was provided by a tungsten lamp or lasers of different wavelengths. Under anodization, a microporous layer is formed up to a critical thickness above which macropores appear. Under illumination, the instability limiting the growth of the microporous layer occurs at a critical thickness much larger than in the dark. This critical thickness depends on HF concentration, illumination wavelength and intensity. These non-trivial dependencies are rationalized in a model in which photochemical etching in the electrochemically formed porous layer plays the central role.

  18. Empirical model predicting the layer thickness and porosity of p-type mesoporous silicon

    Science.gov (United States)

    Wolter, Sascha J.; Geisler, Dennis; Hensen, Jan; Köntges, Marc; Kajari-Schröder, Sarah; Bahnemann, Detlef W.; Brendel, Rolf

    2017-04-01

    Porous silicon is a promising material for a wide range of applications because of its versatile layer properties and the convenient preparation by electrochemical etching. Nevertheless, the quantitative dependency of the layer thickness and porosity on the etching process parameters is yet unknown. We have developed an empirical model to predict the porosity and layer thickness of p-type mesoporous silicon prepared by electrochemical etching. The impact of the process parameters such as current density, etching time and concentration of hydrogen fluoride is evaluated by ellipsometry. The main influences on the porosity of the porous silicon are the current density, the etching time and their product while the etch rate is dominated by the current density, the concentration of hydrogen fluoride and their product. The developed model predicts the resulting layer properties of a certain porosification process and can, for example be used to enhance the utilization of the employed chemicals.

  19. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport

    DEFF Research Database (Denmark)

    Grønberg, Christina; Sitsel, Oleg; Lindahl, Erik

    2016-01-01

    Cu(+)-specific P-type ATPase membrane protein transporters regulate cellular copper levels. The lack of crystal structures in Cu(+)-binding states has limited our understanding of how ion entry and binding are achieved. Here, we characterize the molecular basis of Cu(+) entry using molecular......-dynamics simulations, structural modeling, and in vitro and in vivo functional assays. Protein structural rearrangements resulting in the exposure of positive charges to bulk solvent rather than to lipid phosphates indicate a direct molecular role of the putative docking platform in Cu(+) delivery. Mutational analyses...... and simulations in the presence and absence of Cu(+) predict that the ion-entry path involves two ion-binding sites: one transient Met148-Cys382 site and one intramembranous site formed by trigonal coordination to Cys384, Asn689, and Met717. The results reconcile earlier biochemical and x-ray absorption data...

  20. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    Science.gov (United States)

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-02-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  1. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ambade, Swapnil B. [Department of Chemical Engineering, Vishwakarma Institute of Technology, Pune 411037 (India); Mane, R.S. [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea, Republic of); Kale, S.S. [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea, Republic of); Sonawane, S.H. [Department of Chemical Engineering, Vishwakarma Institute of Technology, Pune 411037 (India); Shaikh, Arif V. [Department of Electronic Science, AKI' s Poona College of Arts, Science and Commerce, Camp, Pune 411 001 (India); Han, Sung-Hwan [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea, Republic of)]. E-mail: shhan@hanyang.ac.kr

    2006-12-15

    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 deg. C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu{sub 2-x}Se phase was confirmed by XRD pattern and spherical grains of 30 {+-} 4 - 40 {+-} 4 nm in size aggregated over about 130 {+-} 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm{sup 2} light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells.

  2. Bulk and Surface Event Identification in p-type Germanium Detectors

    CERN Document Server

    Yang, L T; Jia, L P; Jiang, H; Li, J; Lin, F K; Lin, S T; Liu, S K; Ma, J L; Sharma, V; Singh, L; Singh, M K; Soma, A K; Yang, S W; Wang, L; Wang, Q; Wong, H T; Yue, Q; Zhao, W

    2016-01-01

    The p-type point-contact germanium detectors, due to its sub-keV sensitivities and low internal radioactivity background, are demonstrated to be competitive tools for light dark matter WIMPs searches and may have potential applications in neutrino physics. These detectors exhibit anomalous surface behavior, which has been characterized and dealt with in previous analysis. However, the analysis method rely on spectral shape assumptions and must use external calibration sources. In this report, we purpose an improved method, where in situ data could be used as calibration sources. Data from CDEX-1 and TEXONO experiments will be re-examined and the results are shown to be consistent with both analysis.

  3. Wide bandgap n-type and p-type semiconductor porous junction devices as photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuan-Pai; Horng, Sheng-Fu [Institute of Electronics Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chao, Yu-Chiang; Meng, Hsin-Fei [Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan (China); Zan, Hsiao-Wen, E-mail: yuchiangchao@gmail.com, E-mail: meng@mail.nctu.edu.tw [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2011-10-12

    In junction absorber photovoltaics doped wide bandgap n-type and p-type semiconductors form a porous interpenetrating junction structure with a layer of low bandgap absorber at the interface. The doping concentration is high enough such that the junction depletion width is smaller than the pore size. The highly conductive neutral region then has a dentrite shape with fingers reaching the absorber to effectively collect the photo-carriers swept out by the junction electric field. With doping of 10{sup 19} cm{sup -3} corresponding to a depletion width of 25 nm, pore size of 32 nm, absorber thickness close to exciton diffusion length of 17 nm, absorber bandgap of 1.4 eV and carrier mobility over 10{sup -5} cm{sup 2} V{sup -1} s{sup -1}, numerical calculation shows the power conversion efficiency is as high as 19.4%. It rises to 23% for a triplet exciton absorber.

  4. InP nanowire p-type doping via Zinc indiffusion

    Science.gov (United States)

    Haggren, Tuomas; Otnes, Gaute; Mourão, Renato; Dagyte, Vilgaile; Hultin, Olof; Lindelöw, Fredrik; Borgström, Magnus; Samuelson, Lars

    2016-10-01

    We report an alternative pathway for p-type InP nanowire (NW) doping by diffusion of Zn species from the gas phase. The diffusion of Zn was performed in a MOVPE reactor at 350-500 °C for 5-20 min with either H2 environment or additional phosphorus in the atmosphere. In addition, Zn3P2 shells were studied as protective caps during post-diffusion annealing. This post-diffusion annealing was performed to outdiffuse and activate Zn in interstitial locations. The characterization methods included photoluminescence and single NW conductivity and carrier concentration measurements. The acquired carrier concentrations were in the order of >1017 cm-3 for NWs without post-annealing, and up to 1018 cm-3 for NWs annealed with the Zn3P2 shells. The diffused Zn caused redshift to the photoluminescence signal, and the degree of redshift depended on the diffusion process.

  5. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    Science.gov (United States)

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-01-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design. PMID:28145438

  6. Luminescence properties of p-type thin CdS films prepared by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, B. [Tokyo Univ. (Japan). Dept. of Physics; Ezumi, H. [Department of Electrical Engineering, Hiroshima-Denki Institute of Technology, Hiroshima 739-03 (Japan); Keitoku, S. [Hiroshima Women`s University, Hiroshima 734 (Japan); Kobayashi, T. [Tokyo Univ. (Japan). Dept. of Physics

    1995-12-01

    Investigations of the luminescence of p-type CdS:Cu thin (less than or equal to 2 {mu}m) films on glass substrate prepared by laser ablation were performed for the first time. The dependences of the luminescence on the Cu content in the thin films were studied at 300 K with argon laser lines at 457.9 nm, 488.0 nm and 514.5 nm. It is demonstrated that the luminescence excited with the 514.5 nm line corresponds to the donor-acceptor transition. Furthermore, it is shown that the intensity of the red emission of CdS:Cu films can be efficiently bleached by Cu doping. (orig.)

  7. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors.

    Science.gov (United States)

    Kim, Bongjun; Geier, Michael L; Hersam, Mark C; Dodabalapur, Ananth

    2017-02-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  8. Asymptotics of the trap-dominated Gunn effect in p-type Ge

    Science.gov (United States)

    Bonilla, L. L.; Hernando, P. J.; Herrero, M. A.; Kindelan, M.; Velázquez, J. J. L.

    1997-09-01

    We present an asymptotic analysis of the Gunn effect in a drift-diffusion model - including electric-field-dependent generation-recombination processes - for long samples of strongly compensated p-type Ge at low temperature and under d.c. voltage bias. During each Gunn oscillation, there are different stages corresponding to the generation, motion and annihilation of solitary waves. Each stage may be described by one evolution equation for only one degree of freedom (the current density), except for the generation of each new wave. The wave generation is a faster process that may be described by solving a semiinfinite canonical problem. As a result of our study we have found that (depending on the boundary condition) one or several solitary waves may be shed during each period of the oscillation. Examples of numerical simulations validating our analysis are included.

  9. DLTS of p-type Czochralski Si wafers containing processing-induced macropores

    Science.gov (United States)

    Simoen, E.; Depauw, V.; Gordon, I.; Poortmans, J.

    2012-01-01

    The deep levels present in p-type Czochralski silicon with processing-induced macropores in the depletion region have been studied by the deep-level transient (DLT) spectroscopy technique. It is shown that a broad band is present for a bias pulse close to the interface with the Al Schottky contact, which exhibits anomalously slow hole capture and is ascribed to the internal interface states of the macropores. For depths beyond the pore region, other deep levels, associated with point defects—possibly metal contamination during the high-temperature annealing step under H2 ambient--have been observed. The impact of the observed defects on the lifetime of thin-film solar cells, fabricated using macropore-based layer transfer is discussed. Finally, it is shown that the presence of pores in the depletion region, which also affects the DLT-spectrum, alters the capacitance-voltage characteristics.

  10. Large area growth and electrical properties of p-type WSe2 atomic layers.

    Science.gov (United States)

    Zhou, Hailong; Wang, Chen; Shaw, Jonathan C; Cheng, Rui; Chen, Yu; Huang, Xiaoqing; Liu, Yuan; Weiss, Nathan O; Lin, Zhaoyang; Huang, Yu; Duan, Xiangfeng

    2015-01-14

    Transition metal dichacogenides represent a unique class of two-dimensional layered materials that can be exfoliated into single or few atomic layers. Tungsten diselenide (WSe(2)) is one typical example with p-type semiconductor characteristics. Bulk WSe(2) has an indirect band gap (∼ 1.2 eV), which transits into a direct band gap (∼ 1.65 eV) in monolayers. Monolayer WSe(2), therefore, is of considerable interest as a new electronic material for functional electronics and optoelectronics. However, the controllable synthesis of large-area WSe(2) atomic layers remains a challenge. The studies on WSe(2) are largely limited by relatively small lateral size of exfoliated flakes and poor yield, which has significantly restricted the large-scale applications of the WSe(2) atomic layers. Here, we report a systematic study of chemical vapor deposition approach for large area growth of atomically thin WSe(2) film with the lateral dimensions up to ∼ 1 cm(2). Microphotoluminescence mapping indicates distinct layer dependent efficiency. The monolayer area exhibits much stronger light emission than bilayer or multilayers, consistent with the expected transition to direct band gap in the monolayer limit. The transmission electron microscopy studies demonstrate excellent crystalline quality of the atomically thin WSe(2). Electrical transport studies further show that the p-type WSe(2) field-effect transistors exhibit excellent electronic characteristics with effective hole carrier mobility up to 100 cm(2) V(-1) s(-1) for monolayer and up to 350 cm(2) V(-1) s(-1) for few-layer materials at room temperature, comparable or well above that of previously reported mobility values for the synthetic WSe(2) and comparable to the best exfoliated materials.

  11. Terahertz radiation from delta-doped GaAs

    DEFF Research Database (Denmark)

    Birkedal, Dan; Hansen, Ole; Sørensen, Claus Birger;

    1994-01-01

    Terahertz pulse emission from four different delta-doped molecular beam epitaxially grown GaAs samples is studied. We observe a decrease of the emitted THz pulse amplitude as the distance of the delta-doped layer from the surface is increased, and a change in polarity of the THz pulses as compared...

  12. GaAs microwave SSPA`s: design and characteristics

    NARCIS (Netherlands)

    Hek, A.P. de; Vliet, F.E. van

    2002-01-01

    The performance of GaAs SSPA's is crucial to a rapidly increasing number of systems. This tutorial aims at clarifying the design choices and trade-offs, and at warning the new designer for pitfalls and unexpected problems. The tutorial starts, after a brief introduction, with a survey of the

  13. GaAs Photovoltaics on Polycrystalline Ge Substrates

    Science.gov (United States)

    Wilt, David M.; Pal, AnnaMaria T.; McNatt, Jeremiah S.; Wolford, David S.; Landis, Geoffrey A.; Smith, Mark A.; Scheiman, David; Jenkins, Phillip P.; McElroy Bruce

    2007-01-01

    High efficiency III-V multijunction solar cells deposited on metal foil or even polymer substrates can provide tremendous advantages in mass and stowage, particularly for planetary missions. As a first step towards that goal, poly-crystalline p/i/n GaAs solar cells are under development on polycrystalline Ge substrates. Organo Metallic Vapor Phase Epitaxy (OMVPE) parameters for pre-growth bake, nucleation and deposition have been examined. Single junction p/i/n GaAs photovoltaic devices, incorporating InGaP front and back window layers, have been grown and processed. Device performance has shown a dependence upon the thickness of a GaAs buffer layer deposited between the Ge substrate and the active device structure. A thick (2 m) GaAs buffer provides for both increased average device performance as well as reduced sensitivity to variations in grain size and orientation. Illumination under IR light (lambda > 1 micron), the cells showed a Voc, demonstrating the presence of an unintended photoactive junction at the GaAs/Ge interface. The presence of this junction limited the efficiency to approx.13% (estimated with an anti-refection coating) due to the current mismatch and lack of tunnel junction interconnect.

  14. Pilot experiment for muonium photo ionization in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, K; Nishiyama, K; Nagamine, K [Muon Science Laboratory, IMSS, KEK, Tsukuba, Ibaraki, 305-0801 (Japan); Bakule, P; Pratt, F L [ISIS, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Ohishi, K; Ishida, K; Watanabe, I [Advanced Meson Science Laboratory, RIKEN, Wako, Saitama 351-0191 (Japan); Matsuda, Y [Graduate School of Arts and Science, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902 (Japan); Torikai, E, E-mail: koichiro.shimomura@kek.j [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, 400-8511 (Japan)

    2010-04-01

    Direct observation of muonium photo ionization in GaAs was tried for the first time, with wide range wave length from 1325nm to 800nm lasers in n-type GaAs at 15 K. Recently, Lichti et al. determined the energy levels in the band gap of T center muonium (as an acceptor) and BC muonium (as a donor) by reanalysis of the existing data obtained by various {mu}SR techniques for several semiconductors like Si, Ge, GaAs, GaP etc. In these semiconductors, GaAs is the best sample to apply the muonium photo ionization method for the first time, because the energy level of T center muonium is above 0.54 eV from the valence band, therefore the ionization energy for Mu{sub T}{sup -} {yields} Mu{sub T}{sup 0}+e{sup -} is 0.98eV (corresponding laser wave length is 1260nm), which is within the region of present OPO laser system produced, which was installed RIKEN-RAL

  15. Spin dynamics in GaAs and (110)-GaAs heterostructures; Spindynamik in GaAs und (110)-GaAs-Heterostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, Stefan

    2012-07-01

    This thesis investigates the spin dynamics in both bulk GaAs and (llO)GaAs heterostructures using time- and polarization-resolved photoluminescence spectroscopy. In bulk GaAs the spin relaxation t ime is measured for the first time in the high temperature regime from 280 K to 400 K and is compared to numerical calculations. The numerical calculations are based on the spin relaxation theory of the Dyakonov-Perel mechanism effected by momentum scattering with polar optical phonons and electron-electron scattering and are in good agreement with the experimental results. Measurements of the dependence on the electron density serve to determine the energy dependent proportional factor between the electron density and the effective electron-electron scattering time. Also in bulk GaAs the interaction between the electron spin system and the nuclear spin system is investigated. The measured electron Lande g-factor under the influence of the nuclear magnetic field is used as an indicator to monitor the temporal evolution of the nuclear magnetic field under sustained dynamic nuclear polarization. Measurements with polarization modulated excitation enable the determination of the relevant time scale at which dynamic nuclear polarization takes place. Furthermore, the temporal evolution of the measured electron Lande g-factor shows the complex interplay of the dynamic nuclear polarization, the nuclear spin diffusion and the nuclear spin relaxation. In symmetric (110)-GaAs quantum wells the dependence of the inplane anisotropy of the electron Lande g-factor on the quantum well thickness is determined experimentally. The measurements are in very good agreement with calculations based upon k . p-theory and reveal a maximum of the anisotropy at maximum carrier localization in the quantum well. The origin of the anisotropy that is not present in symmetric (001) quantum wells is qualitatively described by means of a simplified model based on fourth-order perturbation theory. A

  16. Sputtering deposition of P-type SnO films with SnO₂ target in hydrogen-containing atmosphere.

    Science.gov (United States)

    Hsu, Po-Ching; Hsu, Chao-Jui; Chang, Ching-Hsiang; Tsai, Shiao-Po; Chen, Wei-Chung; Hsieh, Hsing-Hung; Wu, Chung-Chih

    2014-08-27

    In this work, we had investigated sputtering deposition of p-type SnO using the widely used and robust SnO2 target in a hydrogen-containing reducing atmosphere. The effects of the hydrogen-containing sputtering gas on structures, compositions, optical, and electrical properties of deposited SnOx films were studied. Results show that polycrystalline and SnO-dominant films could be readily obtained by carefully controlling the hydrogen gas ratio in the sputtering gas and the extent of reduction reaction. P-type conductivity was unambiguously observed for SnO-dominant films with traceable Sn components, exhibiting a p-type Hall mobility of up to ∼3 cm(2) V(-1) s(-1). P-type SnO thin-film transistors using such SnO-dominant films were also demonstrated.

  17. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho

    2016-11-18

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  18. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Vidya, E-mail: vj1510@yahoo.com

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0〉 orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 10{sup 17} cm{sup −3} were irradiated at 100 MeV Fe{sup 7+} ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 10{sup 10}–1 × 10{sup 14} ions cm{sup −2}. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet–visible–NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 10{sup 13}, 5 × 10{sup 13} and 1 × 10{sup 14} ions cm{sup −2}, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 10{sup 13} ion cm{sup −2} was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E{sub 1}, E{sub 1} + Δ and E{sub 2} band gaps in all irradiated samples.

  19. Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs1-x Bi x films

    Science.gov (United States)

    Wood, Adam W.; Collar, Kristen; Li, Jincheng; Brown, April S.; Babcock, Susan E.

    2016-03-01

    We have examined the morphology and composition of embedded nanowires that can be formed during molecular beam epitaxy of GaAs1-x Bi x using high angle annular dark field (‘Z-contrast’) imaging in an aberration-corrected scanning transmission electron microscope. Samples were grown in Ga-rich growth conditions on a stationary GaAs substrate. Ga-rich droplets are observed on the surface with lateral trails extending from the droplet in the [110] direction. Cross-sectional scanning transmission electron microscopy of the film reveals epitaxial nanowire structures of composition ˜GaAs embedded in the GaAs1-x Bi x epitaxial layers. These nanowires extend from a surface droplet to the substrate at a shallow angle of inclination (˜4°). They typically are 4 μm long and have a lens-shaped cross section with major and minor axes dimensions of 800 and 120 nm. The top surface of the nanowires exhibits a linear trace in longitudinal cross-section, across which the composition change from ˜GaAs to GaAs1-x Bi x appears abrupt. The bottom surfaces of the nanowires appear wavy and the composition change appears to be graded over ˜25 nm. The droplets have phase separated into Ga- and Bi-rich components. A qualitative model is proposed in which Bi is gettered into Ga droplets, leaving Bi depleted nanowires in the wakes of the droplets as they migrate in one direction across the surface during GaAs1-x Bi x film growth.

  20. Few-Layer MoS₂ p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation.

    Science.gov (United States)

    Nipane, Ankur; Karmakar, Debjani; Kaushik, Naveen; Karande, Shruti; Lodha, Saurabh

    2016-02-23

    P-type doping of MoS2 has proved to be a significant bottleneck in the realization of fundamental devices such as p-n junction diodes and p-type transistors due to its intrinsic n-type behavior. We report a CMOS compatible, controllable and area selective phosphorus plasma immersion ion implantation (PIII) process for p-type doping of MoS2. Physical characterization using SIMS, AFM, XRD and Raman techniques was used to identify process conditions with reduced lattice defects as well as low surface damage and etching, 4X lower than previous plasma based doping reports for MoS2. A wide range of nondegenerate to degenerate p-type doping is demonstrated in MoS2 field effect transistors exhibiting dominant hole transport. Nearly ideal and air stable, lateral homogeneous p-n junction diodes with a gate-tunable rectification ratio as high as 2 × 10(4) are demonstrated using area selective doping. Comparison of XPS data from unimplanted and implanted MoS2 layers shows a shift of 0.67 eV toward lower binding energies for Mo and S peaks indicating p-type doping. First-principles calculations using density functional theory techniques confirm p-type doping due to charge transfer originating from substitutional as well as physisorbed phosphorus in top few layers of MoS2. Pre-existing sulfur vacancies are shown to enhance the doping level significantly.