WorldWideScience

Sample records for p-type conductors

  1. Optical and electrical properties of CuMO2 transparent p-type conductors

    Science.gov (United States)

    Draeseke, A. D.; Jayaraj, M. K.; Ulbrich, T.; Kroupp, M.; Tate, J.; Nagarajan, R.; Oblezov, A.; Sleight, A. W.

    2001-03-01

    Wide band gap oxides of the type CuMO2 with the delafossite structure are p-type conductors and many of them are transparent. Films of these p-type oxides have been grown by sputtering and thermal evaporation, and characterized electrically and optically. We present transport and optical transmission measurements for CuY_1-xCa_xO_2, CuScO_2+x and other similar materials. Conductivities are in the range 1 200 S/cm and depend on details of film preparation. The carriers are p-type as determined by thermopower measurements, and typical Seebeck coefficients are several hundred µV/K. Optical transparency varies considerably, but is about 40% at 550 nm for the highest conductivity films. Excellent transparency can be achieved at the expense of conductivity, and optimization is being studied. Band gaps derived from optical transmission are larger than 3.1 eV. Prototype all-oxide pn diodes have been fabricated. This work was partially supported by the NSF under DMR-0071727 and by the Research Corporation under RA0291.

  2. P-type zinc oxide spinels: application to transparent conductors and spintronics

    International Nuclear Information System (INIS)

    Stoica, Maria; S Lo, Cynthia

    2014-01-01

    We report on the electronic and optical properties of two theoretically predicted stable spinel compounds of the form ZnB 2 O 4 , where B = Ni or Cu; neither compound has been previously synthesized, so we compare them to the previously studied p-type ZnCo 2 O 4 spinel. These new materials exhibit spin polarization, which is useful for spintronics applications, and broad conductivity maxima near the valence band edge that indicate good p-type dopability. We show that 3d electrons on the octahedrally coordinated Zn atom fall deep within the valence band and do not contribute significantly to the electronic structure near the band edge of the material, while the O 2p and tetrahedrally coordinated B 3d electrons hybridize broadly in the shallow valence states, resulting in increasing curvature (i.e., decreased electron effective mass) of valence bands near the band edge. In particular, ZnCu 2 O 4 exhibits high electrical conductivities in the p-doping region near the valence band edge that, at σ=2×10 4  S cm −1 , are twice the maximum found for ZnCo 2 O 4 , a previously synthesized compound in this class of materials. This material also exhibits ferromagnetism in all of its most stable structures, which makes it a good candidate for further study as a dilute magnetic semiconductor. (paper)

  3. P -type transparent conducting oxides

    International Nuclear Information System (INIS)

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-01-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n -type, such as Sn doped In 2 O 3 , Al doped ZnO, and F doped SnO 2 . However, the development of efficient p -type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2 p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2 p orbitals with close-shell Cu 3 d 10 orbitals. This work has sparked tremendous interest in designing p -TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p -TCOs, including Cu + -based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr 3+ -based oxides (3 d 3 ) and post-transition metal oxides with lone pair state (ns 2 ). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p -type conductivity and optical properties. Device applications based on p -TCOs for transparent p – n junctions will also be briefly discussed. (topical review)

  4. Conductores recubiertos

    Directory of Open Access Journals (Sweden)

    P. Garcés

    2008-07-01

    Full Text Available Since the 1960s, Nb–Ti, exhibiting a superconducting transition temperature Tc of 9K, and Nb3Sn, with a Tc of 18K have been the materials of choice for superconducting applications. The prospects for the future changed dramatically with the discovery of ceramic high temperature superconductors exhibiting Tc values well above the boiling temperature of liquid nitrogen (77K. These materials are now widely considered for large power applications, electronics and magnets as in microelectronics. The first case corresponding power transmission wires, motors, generators, fault current limiters, transformers, etc. and technology related small scale manufacturing SQUID superconductors. Nevertheless, the fabrication of useful conductors out of these layered cuprates encountered some problems such as chemical and structural purity, stability, oxygen stoichiometric and weak links limiting current carrying capacity. However, despite these difficulties a first generation of silver sheathed composites based on (Bi,PbSrCaCuO (solving the problem of inherent fragility of these materials has already been commercialized. It is now a widespread view that superconducting wires with high performance under strong magnetic fields and at elevated temperatures above liquid nitrogen, will need to be realized using the (REBaCuO (RE = rare earth materials. Chemical deposition techniques (CVD of thick films, appear as the most suitable for this purpose, so the study of various chemical deposition techniques that allow to grow superconducting films and buffer layers with the right texture to produce a coated conductor Proper alignment and high current carrying capacity (∼ 1 MA/cm2 are now booming.

  5. Method of installing well conductors

    International Nuclear Information System (INIS)

    Houser, D.M.

    1991-01-01

    This patent describes a method of installing a well conductor in a marine environment. It comprises sealing a well conductor with a watertight plug; submerging the conductor from an elevated platform; adding additional conductor lengths to the conductor as needed thereby forming a conductor string; adjusting the buoyancy of the string to control the lowering of the string to the sea floor; and drilling through the plug after the conductor string has achieved the desired penetration depth

  6. Piezoresistance in p-type silicon revisited

    DEFF Research Database (Denmark)

    Richter, Jacob; Pedersen, Jesper; Brandbyge, Mads

    2008-01-01

    We calculate the shear piezocoefficient pi44 in p-type Si with a 6×6 k·p Hamiltonian model using the Boltzmann transport equation in the relaxation-time approximation. Furthermore, we fabricate and characterize p-type silicon piezoresistors embedded in a (001) silicon substrate. We find...... to experiments. Finally, we present a fitting function of temperature and acceptor density to the 6×6 model that can be used to predict the piezoresistance effect in p-type silicon. ©2008 American Institute of Physics...... that the relaxation-time model needs to include all scattering mechanisms in order to obtain correct temperature and acceptor density dependencies. The k·p results are compared to results obtained using a recent tight-binding (TB) model. The magnitude of the pi44 piezocoefficient obtained from the TB model...

  7. Evolution of plant P-type ATPases

    Directory of Open Access Journals (Sweden)

    Christian N.S. Pedersen

    2012-02-01

    Full Text Available Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauria and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a moss, Selaginella moellendorffii (a primitive vascular plant, and Arabidopsis thaliana (a model flowering plant. Each organism contained sequences for all five subfamilies of P-type ATPases. Our analysis demonstrates when specific subgroups of P-type ATPases disappeared in the evolution of Angiosperms. Na/K-pump related P2C ATPases were lost with the evolution of streptophytes whereas Na+ or K+ pumping P2D ATPases and secretory pathway Ca2+-ATPases remained until mosses. An N-terminally located calmodulin binding domain in P2B ATPases can only be detected in pumps from Streptophytae, whereas, like in animals, a C-terminally localized calmodulin binding domain might be present in chlorophyte P2B Ca2+-ATPases. Chlorophyte genomes encode P3A ATPases resembling protist plasma membrane H+-ATPases and a C-terminal regulatory domain is missing. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps.

  8. P-type silicon drift detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Krieger, B.; Krofcheck, D.; O'Donnell, R.; Odyniec, G.; Partlan, M.D.; Wang, N.W.

    1995-06-01

    Preliminary results on 16 CM 2 , position-sensitive silicon drift detectors, fabricated for the first time on p-type silicon substrates, are presented. The detectors were designed, fabricated, and tested recently at LBL and show interesting properties which make them attractive for use in future physics experiments. A pulse count rate of approximately 8 x l0 6 s -1 is demonstrated by the p-type silicon drift detectors. This count rate estimate is derived by measuring simultaneous tracks produced by a laser and photolithographic mask collimator that generates double tracks separated by 50 μm to 1200 μm. A new method of using ion-implanted polysilicon to produce precise valued bias resistors on the silicon drift detectors is also discussed

  9. Storm on lightning conductors

    International Nuclear Information System (INIS)

    Broomhead, Laurent.

    1980-01-01

    Radioactive lightning conductors using radium or americium 241 sources are compared to Faraday cage and lightning rod. Americium source preparation is shortly described. Efficiency of the different systems is still controversed [fr

  10. Plasma Generator Using Spiral Conductors

    Science.gov (United States)

    Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)

    2016-01-01

    A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.

  11. Focus on Organic Conductors

    Directory of Open Access Journals (Sweden)

    Shinya Uji, Takehiko Mori and Toshihiro Takahashi

    2009-01-01

    Full Text Available Organic materials are usually thought of as electrical insulators. Progress in chemical synthesis, however, has brought us a rich variety of conducting organic materials, which can be classified into conducting polymers and molecular crystals. Researchers can realize highly conducting molecular crystals in charge-transfer complexes, where suitable combinations of organic electron donor or acceptor molecules with counter ions or other organic molecules provide charge carriers. By means of a kind of chemical doping, the charge-transfer complexes exhibit high electrical conductivity and, thanks to their highly crystalline nature, even superconductivity has been observed. This focus issue of Science and Technology of Advanced Materials is devoted to the research into such 'organic conductors'The first organic metal was (TTF(TCNQ, which was found in 1973 to have high conductivity at room temperature and a metal–insulator transition at low temperatures. The first organic superconductor was (TMTSF2PF6, whose superconductivity under high pressures was reported by J´erome in 1980. After these findings, the research on organic conductors exploded. Hundreds of organic conductors have been reported, among which more than one hundred exhibit superconductivity. Recently, a single-component organic conductor has been found with metallic conductivity down to low temperatures.In these organic conductors, in spite of their simple electronic structures, much new physics has arisen from the low dimensionality. Examples are charge and spin density waves, characteristic metal–insulator transitions, charge order, unconventional superconductivity, superconductor–insulator transitions, and zero-gap conductors with Dirac cones. The discovery of this new physics is undoubtedly derived from the development of many intriguing novel organic conductors. High quality single crystals are indispensable to the precise measurement of electronic states.This focus issue

  12. Plasmonic transparent conductors

    Science.gov (United States)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-09-01

    Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.

  13. Physics of superionic conductors

    CERN Document Server

    1979-01-01

    Superionic conductors are solids whose ionic conductivities approach, and in some cases exceed, those of molten salts and electrolyte solutions. This implies an un­ usual state of matter in which some atoms have nearly liquidlike mobility while others retain their regular crystalline arrangement. This liquid-solid duality has much appeal to condensed matter physicists, and the coincident development of powerful new methods for studying disordered solids and interest in superionic conductors for technical applications has resulted in a new surge of activity in this venerable field. It is the purpose of this book to summarize the current re­ search in the physics of superionic conduction. with special emphasis on those aspects which set these materials apart from other solids. The volume is aimed to­ wards the materials community and will, we expect, stimulate further research on these potentially useful substances. The usual characterization of the superionic phase lists high ionic conductivity; low activat...

  14. The CMS conductor

    CERN Document Server

    Horváth, I L; Marti, H P; Neuenschwander, J; Smith, R P; Fabbricatore, P; Musenich, R; Calvo, A; Campi, D; Curé, B; Desirelli, Alberto; Favre, G; Riboni, P L; Sgobba, Stefano; Tardy, T; Sequeira-Lopes-Tavares, S

    2000-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments, which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN, the design field of the CMS magnet is 4 T, the magnetic length is 13 m and the aperture is 6 m. This high magnetic field is achieved by means of a 4 layer, 5 modules superconducting coil. The coil is wound from an Al-stabilized Rutherford type conductor. The nominal current of the magnet is 20 kA at 4.5 K. In the CMS coil the structural function is ensured, unlike in other existing Al-stabilized thin solenoids, both by the Al-alloy reinforced conductor and the external former. In this paper the retained manufacturing process of the 50-km long reinforced conductor is described. In general the Rutherford type cable is surrounded by high purity aluminium in a continuous co-extrusion process to produce the Insert. Thereafter the reinforcement is joined by Electron Beam Welding to the pure Al of the insert, before being machined to the final dimensions. During the...

  15. P-type Oxide Semiconductors for Transparent & Energy Efficient Electronics

    KAUST Repository

    Wang, Zhenwei

    2018-01-01

    , the performance of p-type counterparts is lag behind. However, after years of discovery, several p-type TSOs are confirmed with promising performance, for example, tin monoxide (SnO). By using p-type SnO, excellent transistor field-effect mobility of 6.7 cm2 V-1 s

  16. Interacting with a Virtual Conductor

    NARCIS (Netherlands)

    Bos, Pieter; Reidsma, Dennis; Ruttkay, Zsófia; Nijholt, Anton; Harper, Richard; Rauterberg, Matthias; Combetto, Marco

    This paper presents a virtual embodied agent that can conduct musicians in a live performance. The virtual conductor conducts music specified by a MIDI file and uses input from a microphone to react to the tempo of the musicians. The current implementation of the virtual conductor can interact with

  17. Understanding core conductor fabrics

    International Nuclear Information System (INIS)

    Swenson, D E

    2011-01-01

    ESD Association standard test method ANSI/ESD STM2.1 - Garments (STM2.1), provides electrical resistance test procedures that are applicable for materials and garments that have surface conductive or surface dissipative properties. As has been reported in other papers over the past several years 1 fabrics are now used in many industries for electrostatic control purposes that do not have surface conductive properties and therefore cannot be evaluated using the procedures in STM2.1 2 . A study was conducted to compare surface conductive fabrics with samples of core conductor fibre based fabrics in order to determine differences and similarities with regards to various electrostatic properties. This work will be used to establish a new work item proposal within WG-2, Garments, in the ESD Association Standards Committee in the USA.

  18. On Allosteric Modulation of P-Type Cu+-ATPases

    DEFF Research Database (Denmark)

    Mattle, Daniel; Sitsel, Oleg; Autzen, Henriette Elisabeth

    2013-01-01

    P-type ATPases perform active transport of various compounds across biological membranes and are crucial for ion homeostasis and the asymmetric composition of lipid bilayers. Although their functional cycle share principles of phosphoenzyme intermediates, P-type ATPases also show subclass...... of intramembranous Cu+ binding, and we suggest an alternative role for the proposed second site in copper translocation and proton exchange. The class-specific features demonstrate that topological diversity in P-type ATPases may tune a general energy coupling scheme to the translocation of compounds with remarkably...

  19. Conductor for a fluid-cooled winding

    Science.gov (United States)

    Kenney, Walter J.

    1983-01-01

    A conductor and method of making the conductor are provided for use in winding electrical coils which are cooled by a fluid communicating with the conductor. The conductor is cold worked through twisting and reshaping steps to form a generally rectangular cross section conductor having a plurality of helical cooling grooves extending axially of the conductor. The conductor configuration makes it suitable for a wide variety of winding applications and permits the use of simple strip insulation between turns and perforated sheet insulation between layers of the winding.

  20. Ohmic Contacts to P-Type SiC

    National Research Council Canada - National Science Library

    Crofton, John

    2000-01-01

    Alloys of aluminum (Al) have previously been used as ohmic contacts to p-type SiC, however the characteristics and performance of these contacts is drastically affected by the type and composition of the Al alloy...

  1. Synthesis of p-type GaN nanowires.

    Science.gov (United States)

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  2. Activities towards p-type doping of ZnO

    International Nuclear Information System (INIS)

    Brauer, G; Kuriplach, J; Ling, C C; Djurisic, A B

    2011-01-01

    Zinc oxide (ZnO) is an interesting and promising semiconductor material for many potential applications, e.g. in opto-electronics and for sensor devices. However, its p-type doping represents a challenging problem, and the physical reasons of its mostly n-type conductivity are not perfectly clear at present. Efforts to achieve p-type conductivity by ion implantation are reviewed, and ways to achieve p-type ZnO nanorods and thin films through various growth conditions are summarized. Then, issues associated with the preparation of Schottky contacts is discussed in some detail as this is a requirement of the device formation process. Finally, the possible incorporation of hydrogen and nitrogen into structural defects, which can act as trapping sites for positrons, is discussed in the context of experimental and theoretical positron results and the estimated H and N content in a variety of ZnO materials.

  3. Activities towards p-type doping of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, G [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Kuriplach, J [Department of Low Temperature Physics, Charles University, V Holetovickach 2, CZ-18000 Prague (Czech Republic); Ling, C C; Djurisic, A B, E-mail: g.brauer@fzd.de [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong)

    2011-01-10

    Zinc oxide (ZnO) is an interesting and promising semiconductor material for many potential applications, e.g. in opto-electronics and for sensor devices. However, its p-type doping represents a challenging problem, and the physical reasons of its mostly n-type conductivity are not perfectly clear at present. Efforts to achieve p-type conductivity by ion implantation are reviewed, and ways to achieve p-type ZnO nanorods and thin films through various growth conditions are summarized. Then, issues associated with the preparation of Schottky contacts is discussed in some detail as this is a requirement of the device formation process. Finally, the possible incorporation of hydrogen and nitrogen into structural defects, which can act as trapping sites for positrons, is discussed in the context of experimental and theoretical positron results and the estimated H and N content in a variety of ZnO materials.

  4. P-type Oxide Semiconductors for Transparent & Energy Efficient Electronics

    KAUST Repository

    Wang, Zhenwei

    2018-03-11

    Emerging transparent semiconducting oxide (TSO) materials have achieved their initial commercial success in the display industry. Due to the advanced electrical performance, TSOs have been adopted either to improve the performance of traditional displays or to demonstrate the novel transparent and flexible displays. However, due to the lack of feasible p-type TSOs, the applications of TSOs is limited to unipolar (n-type TSOs) based devices. Compared with the prosperous n-type TSOs, the performance of p-type counterparts is lag behind. However, after years of discovery, several p-type TSOs are confirmed with promising performance, for example, tin monoxide (SnO). By using p-type SnO, excellent transistor field-effect mobility of 6.7 cm2 V-1 s-1 has been achieved. Motivated by this encouraging performance, this dissertation is devoted to further evaluate the feasibility of integrating p-type SnO in p-n junctions and complementary metal oxide semiconductor (CMOS) devices. CMOS inverters are fabricated using p-type SnO and in-situ formed n-type tin dioxide (SnO2). The semiconductors are simultaneously sputtered, which simplifies the process of CMOS inverters. The in-situ formation of SnO2 phase is achieved by selectively sputtering additional capping layer, which serves as oxygen source and helps to balance the process temperature for both types of semiconductors. Oxides based p-n junctions are demonstrated between p-type SnO and n-type SnO2 by magnetron sputtering method. Diode operating ideality factor of 3.4 and rectification ratio of 103 are achieved. A large temperature induced knee voltage shift of 20 mV oC-1 is observed, and explained by the large band gap and shallow states in SnO, which allows minor adjustment of band structure in response to the temperature change. Finally, p-type SnO is used to demonstrating the hybrid van der Waals heterojunctions (vdWHs) with two-dimensional molybdenum disulfide (2D MoS2) by mechanical exfoliation. The hybrid vdWHs show

  5. Development and Processing of p-type Oxide Thermoelectric Materials

    DEFF Research Database (Denmark)

    Wu, NingYu; Van Nong, Ngo

    The main aim of this research is to investigate and develop well-performing p-type thermoelectric oxide materials that are sufficiently stable at high temperatures for power generating applications involving industrial processes. Presently, the challenges facing the widespread implementation...

  6. High Critical Current Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M. P.; Selvamanickam, V. (SuperPower, Inc.)

    2011-12-27

    One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors.

  7. High performance p-type half-Heusler thermoelectric materials

    Science.gov (United States)

    Yu, Junjie; Xia, Kaiyang; Zhao, Xinbing; Zhu, Tiejun

    2018-03-01

    Half-Heusler compounds, which possess robust mechanical strength, good high temperature thermal stability and multifaceted physical properties, have been verified as a class of promising thermoelectric materials. During the last two decades, great progress has been made in half-Heusler thermoelectrics. In this review, we summarize some representative work of p-type half-Heusler materials, the thermoelectric performance of which has been remarkably enhanced in recent years. We introduce the features of the crystal and electronic structures of half-Heusler compounds, and successful strategies for optimizing electrical and thermal transport in the p-type RFeSb (R  =  V, Nb, Ta) and MCoSb (M  =  Ti, Zr, Hf) based systems, including band engineering, the formation of solid solutions and hierarchical phonon scattering. The outlook for future research directions of half-Heusler thermoelectrics is also presented.

  8. Superconductivity in Ti3P-type compounds

    International Nuclear Information System (INIS)

    Wills, J.O.; Hein, R.A.; Waterstrat, R.M.

    1978-01-01

    A study of 12 intermetallic A 3 B compounds which crsytallize in the tetragonal Ti 3 P-type structure has revealed five new superconductors with transition temperatures below 1 K: Zr 3 Si, Zr 3 Ge, Zr 3 P, V 3 P, and Nb 3 Ge (extrapolated from the alloy series Nb-Ge-As). In addition, two compounds, Zr 3 Sb and Ta 3 Ge, having the Ni 3 P structure type are found to be superconducting below 1 K. Within the Ti 3 P-type compounds, those with the lighter ''B'' elements in a given column of the Periodic Table have the higher transition temperatures. Critical-magnetic-field and electrical-resistivity data are reported for the superconducting Ti 2 P-type compound Nb 3 P, which permit one to estimate the Ginzburg-Landau kappa parameter and the electronic-specific-heat coefficient γ. The kappa value of 8.4 indicates that this material is type II, and the γ value of 1.3 mJ/mole K 2 for Nb 3 P is probably related to its low transition temperature relative to many A15 compounds

  9. Power distribution: conductors in aluminium

    International Nuclear Information System (INIS)

    Schmid, R.

    2007-01-01

    This article takes a look at the use of aluminium conductors in medium and low-voltage cables. The author discusses how the increasing price of copper has led to the increasing use of aluminium as a material for the production of the conductors used in medium and low-voltage power cables. Aid is provided that is to help purchasers make the correct decisions when buying medium and low-voltage cables. The current market situation is examined and the appropriate norms are looked at. Technical data and economic aspects are discussed, both for medium and low-voltage applications. The electrical characteristics of the type of cable to be used are examined and discussed

  10. Pulse Propagation on close conductors

    CERN Document Server

    Dieckmann, A

    2001-01-01

    The propagation and reflection of arbitrarily shaped pulses on non-dispersive parallel conductors of finite length with user defined cross section is simulated employing the discretized telegraph equation. The geometry of the system of conductors and the presence of dielectric material determine the capacities and inductances that enter the calculation. The values of these parameters are found using an iterative Laplace equation solving procedure and confirmed for certain calculable geometries including the line charge inside a box. The evolving pulses and the resulting crosstalk can be plotted at any instant and - in the Mathematica notebook version of this report - be looked at in an animation. As an example a differential pair of microstrips as used in the ATLAS vertex detector is analysed.

  11. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  12. Coated Conductors under Tensile Stress

    International Nuclear Information System (INIS)

    Antonevici, Anca; Villaume, Alain; Villard, Catherine; Sulpice, Andre; Maron, Pierre Brosse; Bourgault, Daniel; Porcar, Laureline

    2006-01-01

    Critical current dependence versus strain is obtained for in-situ axial stress experiments on ISD YBCO and DyBCO coated conductors. The drop of critical current due to the apparition of first cracks in the superconducting ceramics is related to the passage in the plastic region of the substrate for a strain of about 0.3% and a stress higher then 500MPa. The superconductivity is preserved between the cracks

  13. Tetrathiapentalene-based organic conductors

    International Nuclear Information System (INIS)

    Misaki, Yohji

    2009-01-01

    The synthesis, structure and properties of tetrathiapentalene-based (TTP) organic conductors are reviewed. Among various TTP-type donors, bis-fused tetrathiafulvalene, 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) and its derivatives afford many metallic radical cation salts stable down to low temperatures, regardless of the size and shape of the counter anions. Most BDT-TTP conductors have a β-type donor arrangement with almost uniform stacks. Introduction of appropriate substituents results in molecular packing that differs from the β-type. A vinylogous TTP, 2-(1,3-dithiol-2-ylidene)-5-(2-ethanediylidene-1,3-dithiole) -1,3,4,6-tetrathiapentalene (DTEDT) has yielded an organic superconductor (DTEDT) 3 Au(CN) 2 as well as metallic radical cation salts, regardless of the counter anions. (Thio)pyran analogs of TTP, namely (T)PDT-TTP and its derivatives produce molecular conductors with novel molecular arrangements. A TTP analog with reduced π-electron system 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP) has afforded several organic superconductors. Highly conducting molecular metals with unusual oxidation states (+1, +5/3 and neutral) have been developed on the basis of 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) derivatives and analogous metal derivatives M(dt) 2 (M = Ni, Au). (topical review)

  14. Temperature limited heater utilizing non-ferromagnetic conductor

    Science.gov (United States)

    Vinegar,; Harold J. , Harris; Kelvin, Christopher [Houston, TX

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  15. Transparent conductor based on aluminum nanomesh

    International Nuclear Information System (INIS)

    Kazarkin, B; Mohammed, A S; Stsiapanau, A; Zhuk, S; Satskevich, Y; Smirnov, A

    2014-01-01

    We report a transparent conductor based on Al nanomesh, which was fabricated through Al anodization and etching processes. The Al anodization was performed at low temperature condition to slow down the anodization rate to achieve the well-controlled thickness of an Al nanomesh. By careful controlling of the anodization process, we can fabricate Al nanomesh transparent conductors with different sheet resistance and optical transparency in the visible spectrum range. We shall show that Al nanomesh transparent conductor is a strong contender for a transparent conductor dominated by ITO

  16. Electronic structure of p type Delta doped systems

    International Nuclear Information System (INIS)

    Gaggero S, L.M.; Perez A, R.

    1998-01-01

    We summarize of the results obtained for the electronic structure of quantum wells that consist in an atomic layer doped with impurities of p type. The calculations are made within the frame worth of the wrapper function approach to independent bands and with potentials of Hartree. We study the cases reported experimentally (Be in GaAs and B in Si). We present the levels of energy, the wave functions and the rate of the electronic population between the different subbands, as well as the dependence of these magnitudes with the density of impurities in the layer. The participation of the bans of heavy holes is analysed, light and split-off band in the total electronic population. The effect of the temperature is discussed and we give a possible qualitative explanation of the experimental optical properties. (Author)

  17. Hydrogen interaction with radiation defects in p-type silicon

    CERN Document Server

    Feklisova, O V; Yakimov, E B; Weber, J

    2001-01-01

    Hydrogen interaction with radiation defects in p-type silicon has been investigated by deep-level non-stationary spectroscopy. Hydrogen is introduced into the high-energy electron-irradiated crystals under chemical etching in acid solutions at room temperature followed by the reverse-bias annealing at 380 K. It is observed that passivation of the irradiation-induced defects is accompanied by formation of novel electrically active defects with hydrogen-related profiles. Effect of hydrogen on the electrical activity of the C sub s C sub i complexes is shown for the first time. Based on the spatial distribution and passivation kinetics, possible nature of the novel complexes is analyzed. The radii for hydrogen capture by vacancies, K-centers, C sub s C sub i centers and the novel complexes are determined

  18. Effect of neutron irradiation on p-type silicon

    International Nuclear Information System (INIS)

    Sopko, B.

    1973-01-01

    The possibilities are discussed of silicon isotope reactions with neutrons of all energies. In the reactions, 30 Si is converted to a stable phosphorus isotope forming n-type impurities in silicon. The above reactions proceed as a result of thermal neutron irradiation. An experiment is reported involving irradiation of two p-type silicon single crystals having a specific resistance of 2000 ohm.cm and 5000 to 20 000 ohm.cm, respectively, which changed as a result of irradiation into n-type silicon with a given specific resistance. The specific resistance may be pre-calculated from the concentration of impurities and the time of irradiation. The effects of irradiation on other silicon parameters and thus on the suitability of silicon for the manufacture of semiconductor elements are discussed. (J.K.)

  19. Elucidating Functional Aspects of P-type ATPases

    DEFF Research Database (Denmark)

    Autzen, Henriette Elisabeth

    2015-01-01

    and helped enlighten how thapsigargin, a potent inhibitor of SERCA1a, depends on a water mediated hydrogen bond network when bound to SERCA1a. Furthermore, molecular dynamics (MD) simulations of the same P-type ATPase were used to assess a long-standing question whether cholesterol affects SERCA1a through...... similar to that of the wild type (WT) protein. The discrepancy between the newly determined crystal structure of LpCopA and the functional manifestations of the missense mutation in human CopA, could indicate that LpCopA is insufficient in structurally elucidating the effect of disease-causing mutations...... in the human CopA proteins. MD simulations, which combine coarse-grained (CG) and atomistic procedures, were set up in order to elucidate mechanistic implications exerted by the lipid bilayer on LpCopA. The MD simulations of LpCopA corroborated previous and new in vivo activity data and showed...

  20. Tetrathiapentalene-based organic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Misaki, Yohji, E-mail: misaki@eng.ehime-u.ac.j [Department of Applied Chemistry, Graduate School of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan)

    2009-04-15

    The synthesis, structure and properties of tetrathiapentalene-based (TTP) organic conductors are reviewed. Among various TTP-type donors, bis-fused tetrathiafulvalene, 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) and its derivatives afford many metallic radical cation salts stable down to low temperatures, regardless of the size and shape of the counter anions. Most BDT-TTP conductors have a {beta}-type donor arrangement with almost uniform stacks. Introduction of appropriate substituents results in molecular packing that differs from the {beta}-type. A vinylogous TTP, 2-(1,3-dithiol-2-ylidene)-5-(2-ethanediylidene-1,3-dithiole) -1,3,4,6-tetrathiapentalene (DTEDT) has yielded an organic superconductor (DTEDT){sub 3}Au(CN){sub 2} as well as metallic radical cation salts, regardless of the counter anions. (Thio)pyran analogs of TTP, namely (T)PDT-TTP and its derivatives produce molecular conductors with novel molecular arrangements. A TTP analog with reduced {pi}-electron system 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP) has afforded several organic superconductors. Highly conducting molecular metals with unusual oxidation states (+1, +5/3 and neutral) have been developed on the basis of 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) derivatives and analogous metal derivatives M(dt){sub 2} (M = Ni, Au). (topical review)

  1. Fabrication process of a superconducting multifilament conductor of a cable and resulting electric conductor

    International Nuclear Information System (INIS)

    Fevrier, A.; Verhaege, T.; Bonnet, P.

    1990-01-01

    Elementary conductors constituted of a plurality of superconducting filaments in a metallic matrix are prepared and then twisted. Elementary conductors with a diameter between 0.05 and 0.25 mm without electric insulation are twisted after heating with a pitch of four time the diameter, finally the conductor is insulated [fr

  2. Transport studies in p-type double quantum well samples

    International Nuclear Information System (INIS)

    Hyndman, R.J.

    2000-01-01

    The motivation for the study of double quantum well samples is that the extra spatial degree of freedom can modify the ground state energies of the system, leading to new and interesting many body effects. Electron bi-layers have been widely studied but the work presented here is the first systematic study of transport properties of a p-type, double quantum well system. The samples, grown on the 311 plane, consisted of two 100A GaAs wells separated by a 30A AlAs barrier. The thin barrier in our structures, gives rise to very strong inter-layer Coulombic interactions but in contrast to electron double quantum well samples, tunnelling between the two wells is very weak. This is due to the large effective mass of holes compared with electrons. It is possible to accurately control the total density of a sample and the relative occupancy of each well using front and back gates. A systematic study of the magnetoresistance properties of the p-type bi-layers, was carried out at low temperatures and in high magnetic fields, for samples covering a range of densities. Considerable care was required to obtain reliable results as the samples were extremely susceptible to electrical shock and were prone to drift in density slowly over time. With balanced wells, the very low tunnelling in the p-type bi-layer leads to a complete absence of all odd integers in both resistance and thermopower except for the v=1 state, ( v 1/2 in each layer) where v is the total Landau level filling factor. Unlike other FQHE features the v=1 state strengthens with increased density as inter-layer interactions increase in strength over intra-layer interactions. The state is also destroyed at a critical temperature, which is much lower than the measured activation temperature. This is taken as evidence for a finite temperature phase transition predicted for the bi-layer v=1. From the experimental observations, we construct a phase diagram for the state, which agree closely with theoretical predictions

  3. Assessment of sodium conductor distribution cable

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The study assesses the barriers and incentives for using sodium conductor distribution cable. The assessment considers environmental, safety, energy conservation, electrical performance and economic factors. Along with all of these factors considered in the assessment, the sodium distribution cable system is compared to the present day alternative - an aluminum conductor system. (TFD)

  4. Doped LZO buffer layers for laminated conductors

    Science.gov (United States)

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  5. P-type diamond stripper foils for tandem ion accelerators

    International Nuclear Information System (INIS)

    Phelps, A.W.; Koba, R.

    1989-01-01

    The authors are developing a stripper foil composed of a p-type diamond membrane. This diamond stripper foil should have a significantly longer lifetime than any conventional stripper foil material. To be useful for stripper foils, the boron-doped blue diamond films must be thinner than 0.8 μm and pore-free. Two methods are compared for their ability to achieve a high nucleation areal density on a W substrate. Some W substrates were first coated with think layer of boron (≤20 nm) in order to enhance nucleation. Other W substrates were scratched with submicron diamond particles. A schematic diagram of the stripper foil is shown. Stripper foils were created by etching away the central area of W substrates. The diamond membrane was then supported by an annulus of W. Tungsten was selected as a ring-support material because of its high electrical and thermal conductivity, relatively low thermal expansion, and proven suitability as a substrate for diamond CVD. Warping or fracture of the diamond film after substrate etch-back was investigated

  6. Photoconduction spectroscopy of p-type GaSb films

    Energy Technology Data Exchange (ETDEWEB)

    Shura, M.W., E-mail: Megersa.Shura@live.nmmu.ac.za [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Wagener, V.; Botha, J.R.; Wagener, M.C. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    Excess carrier lifetimes (77 K) have been measured as function of the absorbed flux density in undoped p-type gallium antimonide films (GaSb/GaAs) using steady state photoconductivity measurements with the illumination wavelength of 1.1 {mu}m. Using the results from Hall effect measurements along with the relations describing the lifetimes of the excess minority carriers in the bulk of the films and at the surface, the theoretical values of the effective excess carrier lifetime in the materials were also calculated. Discrepancies between the experimental and theoretical results were described using a two-layer model, by considering the variation in the charge distribution within the layer due to the presence of surface states, as well as the band offset between the layer and the substrate. Theoretical modeling of the experimental result yields values of different parameters such as band bending at the surface, minimum value of Shockley-Read-Hall lifetime and maximum value of the surface recombination velocity.

  7. P type porous silicon resistivity and carrier transport

    International Nuclear Information System (INIS)

    Ménard, S.; Fèvre, A.; Billoué, J.; Gautier, G.

    2015-01-01

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P % ) was found to be the major contributor to the PS resistivity (ρ PS ). ρ PS increases exponentially with P % . Values of ρ PS as high as 1 × 10 9 Ω cm at room temperature were obtained once P % exceeds 60%. ρ PS was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ PS . Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P % lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P % overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices

  8. Electronic processes in uniaxially stressed p-type germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dubon, Jr., Oscar Danilo [Univ. of California, Berkeley, CA (United States)

    1996-02-01

    Effect of uniaxial stress on acceptor-related electronic processes in Ge single crystals doped with Ga, Be, and Cu were studied by Hall and photo-Hall effect measurements in conjunction with infrared spectroscopy. Stress dependence of hole lifetime in p-type Ge single crystals is used as a test for competing models of non-radiative capture of holes by acceptors. Photo-Hall effect shows that hole lifetime in Ga- and Be-doped Ge increases by over one order of magnitude with uniaxial stress at liq. He temps. Photo-Hall of Ge:Be shows a stress-induced change in the temperature dependence of hole lifetime. This is consistent with observed increase of responsivity of Ge:Ga detectors with uniaxial stress. Electronic properties of Ge:Cu are shown to change dramatically with uniaxial stress; the results provide a first explanation for the performance of uniaxially stressed, Cu-diffused Ge:Ga detectors which display a high conductivity in absence of photon signal and therefore have poor sensitivity.

  9. (Ga,Fe)Sb: A p-type ferromagnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Nguyen Thanh; Anh, Le Duc; Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan)

    2014-09-29

    A p-type ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 3.9%–13.7%) has been grown by low-temperature molecular beam epitaxy (MBE) on GaAs(001) substrates. Reflection high energy electron diffraction patterns during the MBE growth and X-ray diffraction spectra indicate that (Ga,Fe)Sb layers have the zinc-blende crystal structure without any other crystallographic phase of precipitates. Magnetic circular dichroism (MCD) spectroscopy characterizations indicate that (Ga,Fe)Sb has the zinc-blende band structure with spin-splitting induced by s,p-d exchange interactions. The magnetic field dependence of the MCD intensity and anomalous Hall resistance of (Ga,Fe)Sb show clear hysteresis, demonstrating the presence of ferromagnetic order. The Curie temperature (T{sub C}) increases with increasing x and reaches 140 K at x = 13.7%. The crystal structure analyses, magneto-transport, and magneto-optical properties indicate that (Ga,Fe)Sb is an intrinsic ferromagnetic semiconductor.

  10. Photoconduction spectroscopy of p-type GaSb films

    International Nuclear Information System (INIS)

    Shura, M.W.; Wagener, V.; Botha, J.R.; Wagener, M.C.

    2012-01-01

    Excess carrier lifetimes (77 K) have been measured as function of the absorbed flux density in undoped p-type gallium antimonide films (GaSb/GaAs) using steady state photoconductivity measurements with the illumination wavelength of 1.1 μm. Using the results from Hall effect measurements along with the relations describing the lifetimes of the excess minority carriers in the bulk of the films and at the surface, the theoretical values of the effective excess carrier lifetime in the materials were also calculated. Discrepancies between the experimental and theoretical results were described using a two-layer model, by considering the variation in the charge distribution within the layer due to the presence of surface states, as well as the band offset between the layer and the substrate. Theoretical modeling of the experimental result yields values of different parameters such as band bending at the surface, minimum value of Shockley–Read–Hall lifetime and maximum value of the surface recombination velocity.

  11. Response function of a p type - HPGe detector

    International Nuclear Information System (INIS)

    Lopez-Pino, Neivy; Cabral, Fatima Padilla; D'Alessandro, Katia; Maidana, Nora Lia; Vanin, Vito Roberto

    2011-01-01

    The response function of a HPGe detector depends on Ge crystal dimensions and dead layers thicknesses; most of them are not given by the manufacturers or change with detector damage from neutrons or contact with the atmosphere and therefore must be experimentally determined. The response function is obtained by a Monte-Carlo simulation procedure based on the Ge crystal characteristics. In this work, a p-type coaxial HPGe detector with 30% efficiency, manufactured in 1989, was investigated. The crystal radius and length and the inner hole dimensions were obtained scanning the capsule both in the radial and axial directions using 4 mm collimated beams from 137 Cs, 207 Bi point sources placed on a x-y table in steps of 2,00 mm. These dimensions were estimated comparing the experimental peak areas with those obtained by simulation using several hole configurations. In a similar procedure, the frontal dead layer thickness was determined using 2 mm collimated beams of the 59 keV gamma-rays from 241 Am and 81 keV from 133 Ba sources hitting the detector at 90 deg and 45 deg with respect to the capsule surface. The Monte Carlo detector model included, besides the crystal, hole and capsules sizes, the Ge dead-layers. The obtained spectra were folded with a gaussian resolution function to account for electronic noise. The comparison of simulated and experimental response functions for 4 mm collimated beams of 60 Co, 137 Cs, and 207 Bi points sources placed at distances of 7, 11 and 17 cm from the detector end cap showed relative deviations of about 10% in general and below 10% in the peak. The frontal dead layer thickness determined by our procedure was different from that specified by the detector manufacturer. (author)

  12. Irradiation and annealing of p-type silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor' eva, Maria V.; Lebedev, Sergey P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg, 194021 (Russian Federation); Kozlovski, Vitaly V. [St. Petersburg State Polytechnic University, St. Petersburg, 195251 (Russian Federation)

    2014-02-21

    The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ≈ 1.5 × 10{sup 18} cm{sup −3} occurs at an irradiation dose of ∼1.1 × 10{sup 16} cm{sup −2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ≤1000°C. The conductivity is almost completely restored at T ≥ 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

  13. Membrane Targeting of P-type ATPases in Plant Cells

    International Nuclear Information System (INIS)

    Harper, Jeffrey F.

    2004-01-01

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems

  14. Radiation damages on superionic conductors

    International Nuclear Information System (INIS)

    Awano, T.; Ikezawa, M.; Matsuyama, T.

    1995-01-01

    Irradiation coloration on superionic conductors of MA 4 X 5 (M=K, Rb, NH 4 ; A=Ag, Cu; X=Cl, I) was observed. Five absorption bands were observed at 1.4, 1.8, 2.1, 2.3 and 2.9 eV in RbAg 4 I 5 . In these crystals, stable coloration was observed at lower temperature than in alkali halides. The absorption bands due to electronic centers and hole one were classified from the results of optical breaching and electron or hole doping. Growth rate and induced spectra by irradiation changed drastically at the temperatures just above the superionic phase transition. The growth rate increased drastically also at 40 K. ESR signal of γ-irradiated RbCu 4 Cl 3 I 2 showed that one of the induced defects is a hole trapped by a monovalent copper ion (Cu 2+ ). (author)

  15. Picosecond intersubband hole relaxation in p-type quantum wells

    International Nuclear Information System (INIS)

    Xu, Z.; Fauchet, P.M.; Rella, C.W.; Schwettman, H.A.

    1995-01-01

    We report the first direct measurement of the relaxation time of holes in p-type quantum wells using tunable, subpicosecond mid-infrared laser pulses in a pump-probe arrangement. The QW layers consisted of 50 In 0.5 Ga 0.5 As/Al 0.5 Ga 0.5 As periods. The In 0.5 Ga 0.5 As well was 4 nm wide and the Al 0.5 Ga 0.5 As barrier was 8 nm wide. The dopant concentration was 10 19 CM -3 which corresponds to a sheet density of 1.2 x 10 13 CM -2 . The room temperature IR spectrum showed a 50 meV wide absorption peak at 5.25 μm (220 meV). This energy agrees with the calculated n=1 heavy hole to n=1 light hole transition energy of 240 meV (150 meV for strain and 90 meV for confinement). The large absorption width results from hole-hole scattering and the difference in dispersion relations between the two subbands. The equal-wavelength pump-probe transmission measurements were performed using the Stanford free electron laser (FEL). The FEL pulses were tuned between 4 and 6 μ m and their duration was less than 1 ps. The measurements were performed as a function of temperature, pump wavelength and intensity (from 0.3 to 10 GW/cm 2 ). In all our experiments, we find an increase of transmission (decrease of absorption or bleaching) following photopumping, which recovers as a single exponential with a time constant (relaxation time) of the order of 1 picosecond. The maximum change in transmission is linear with pump 2 intensity below 1 GW/cm 2 and saturates to ∼3% with a saturation intensity I sat of 3 GW/cm 2 . As the saturation regime is entered, the relaxation time increases from 0.8 ps to 1.8 ps. This relaxation time depends on the temperature T: it increases from 0.8 ps to 1.3 ps as T decreases from 300 K to 77 K. Finally, when we tune the laser through the absorption band, the magnitude of the signal changes but its temporal behavior does not change, within the accuracy of the measurements

  16. Surface chemistry of a hydrogenated mesoporous p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Media, El-Mahdi, E-mail: belhadidz@tahoo.fr; Outemzabet, Ratiba, E-mail: oratiba@hotmail.com

    2017-02-15

    Highlights: • Due to its large specific surface porous silicon is used as substrate for drug therapy and biosensors. • We highlight the evidency of the contribution of the hydrides (SiHx) in the formation of the porous silicon. • The responsible species in the porous silicon formation are identified and quantified at different conditions. • By some chemical treatments we show that silicon surface can be turn from hydrophobic to hydrophilic. - Abstract: The finality of this work is devoted to the grafting of organic molecules on hydrogen passivated mesoporous silicon surfaces. The study would aid in the development for the formation of organic monolayers on silicon surface to be exploited for different applications such as the realisation of biosensors and medical devices. The basic material is silicon which has been first investigated by FTIR at atomistic plane during the anodic forward and backward polarization (i.e. “go” and “return”). For this study, we applied a numerical program based on least squares method to infrared absorbance spectra obtained by an in situ attenuated total reflection on p-type silicon in diluted HF electrolyte. Our numerical treatment is based on the fitting of the different bands of IR absorbance into Gaussians corresponding to the different modes of vibration of molecular groups such as siloxanes and hydrides. An adjustment of these absorbance bands is done systematically. The areas under the fitted bands permit one to follow the intensity of the different modes of vibration that exist during the anodic forward and backward polarization in order to compare the reversibility of the phenomenon of the anodic dissolution of silicon. It permits also to follow the evolution between the hydrogen silicon termination at forward and backward scanning applied potential. Finally a comparison between the states of the initial and final surface was carried out. We confirm the presence of clearly four and three distinct vibration modes

  17. Frequency Dependent Losses in Transmission Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdóttir, Unnur Stella

    2011-01-01

    , such as thermal conditions in and around the cable, as well as the heat generated in conductors, screens, armours etc., taking into account proximity and skin effects. The work performed and presented in this paper is concerned with an improved determination of the losses generated in the conductor, by means...... of better calculation of the AC resistance of transmission cable conductors, in particular regarding higher frequencies. In this way, also losses under harmonics can be covered. Furthermore, the model is suitable for modelling of transient attenuation in high voltage cables. The AC resistance is calculated...... based on the current density distribution in different conductor designs by means of the Finite Element Method (FEM). The obtained results and methods are compared to available standards (IEC publication 60287-1-1)....

  18. Rail industry job analysis : passenger conductor.

    Science.gov (United States)

    2013-02-01

    This document describes the results of a job analysis that was conducted for the position of railroad Passenger Conductor. Key aspects of the position were identified, including main tasks and knowledge, skills, abilities, and other characteristics (...

  19. Rail industry job analysis : freight conductor.

    Science.gov (United States)

    2013-03-01

    This document describes the results from a job analysis that was conducted for the position of Freight Conductor. Key aspects of the position were identified, including main tasks and knowledge, skills, abilities, and other characteristics (KSAOs) ne...

  20. Properties and applications of perovskite proton conductors

    Directory of Open Access Journals (Sweden)

    Eduardo Caetano Camilo de Souza

    2010-09-01

    Full Text Available A brief overview is given of the main types and principles of solid-state proton conductors with perovskite structure. Their properties are summarized in terms of the defect chemistry, proton transport and chemical stability. A good understanding of these subjects allows the manufacturing of compounds with the desired electrical properties, for application in renewable and sustainable energy devices. A few trends and highlights of the scientific advances are given for some classes of protonic conductors. Recent results and future prospect about these compounds are also evaluated. The high proton conductivity of barium cerate and zirconate based electrolytes lately reported in the literature has taken these compounds to a highlight position among the most studied conductor ceramic materials.

  1. Molecular dynamics studies of superionic conductors

    International Nuclear Information System (INIS)

    Rahman, A.; Vashishta, P.

    1983-01-01

    Structural and dynamical properties of superionic conductors AgI and CuI are studied using molecular dynamics (MD) techniques. The model of these superionic conductors is based on the use of effective pair potentials. To determine the constants in these potentials, cohesive energy and bulk modulus are used as input: in addition one uses notions of ionic size based on the known crystal structure. Salient features of the MD technique are outlined. Methods of treating long range Coulomb forces are discussed in detail. This includes the manner of doing Ewald sum for MD cells of arbitrary shape. Features that can be incorporated to expedite the MD calculations are also discussed. A novel MD technique which allows for a dynamically controlled variation of the shape and size of the MD cell is described briefly. The development of this novel technique has made it possible to study structural phase transitions in superionic conductors. 68 references, 17 figures, 2 tables

  2. Challenges and status of ITER conductor production

    Science.gov (United States)

    Devred, A.; Backbier, I.; Bessette, D.; Bevillard, G.; Gardner, M.; Jong, C.; Lillaz, F.; Mitchell, N.; Romano, G.; Vostner, A.

    2014-04-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb3Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb-Ti strands. The required amount of Nb3Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb3Sn coil has ever experienced. Following a comprehensive R&D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been encountered and

  3. Velocity measurement of conductor using electromagnetic induction

    International Nuclear Information System (INIS)

    Kim, Gu Hwa; Kim, Ho Young; Park, Joon Po; Jeong, Hee Tae; Lee, Eui Wan

    2002-01-01

    A basic technology was investigated to measure the speed of conductor by non-contact electromagnetic method. The principle of the velocity sensor was electromagnetic induction. To design electromagnet for velocity sensor, 2D electromagnetic analysis was performed using FEM software. The sensor output was analyzed according to the parameters of velocity sensor, such as the type of magnetizing currents and the lift-off. Output of magnetic sensor was linearly depended on the conductor speed and magnetizing current. To compensate the lift-off changes during measurement of velocity, the other magnetic sensor was put at the pole of electromagnet.

  4. Challenges and status of ITER conductor production

    International Nuclear Information System (INIS)

    Devred, A; Backbier, I; Bessette, D; Bevillard, G; Gardner, M; Jong, C; Lillaz, F; Mitchell, N; Romano, G; Vostner, A

    2014-01-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb 3 Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb–Ti strands. The required amount of Nb 3 Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb 3 Sn coil has ever experienced. Following a comprehensive R and D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been

  5. Resistive coating for current conductors in cryogenic applications

    International Nuclear Information System (INIS)

    Hirayama, C.; Wagner, G.R.

    1982-01-01

    This invention relates to a resistive or semiconducting coating for use on current conductors in cryogenic applications. This includes copper-clad superconductor wire, copper wire used for stabilizing superconductor magnets, and for hyperconductors. The coating is a film of cuprous sulfide (Cu2S) that has been found not to degrade the properties of the conductors. It is very adherent to the respective conductors and satisfies the mechanical, thermal and electrical requirements of coatings for the conductors

  6. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei; Song, Jinhui; Lu, Ming-Yen; Chen, Min-Teng; Gao, Yifan; Chen, Lih-Juann; Wang, Zhong Lin

    2009-01-01

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive

  7. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  8. 33 CFR 183.425 - Conductors: General.

    Science.gov (United States)

    2010-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Electrical Systems Manufacturer Requirements § 183.425... than 30 inches. (g) This section does not apply to communications systems; electronic navigation... conductors and terminations that are in ignition systems; pigtails of less than seven inches of exposed...

  9. High Temperature Protonic Conductors by Melt Growth

    Science.gov (United States)

    2006-11-21

    A.R. de Arellano-López, A. Sayir. “Microestructura y Comportamiento Plástico de Perovsquitas Conductoras Protónicas de Alta Temperatura ”. Bol. Soc...Conductores Protónicos de Alta Temperatura Crecidos por Fusión de Zona Flotante”. VII Reunión Nacional y VI Conferencia Iberoamericana (Electrocerámica

  10. Reshaping the perfect electrical conductor cylinder arbitrarily

    International Nuclear Information System (INIS)

    Chen Huanyang; Zhang Xiaohe; Luo Xudong; Ma Hongru; Chan Cheting

    2008-01-01

    A general method is proposed to design a cylindrical cloak, concentrator and superscatterer with an arbitrary cross section. The method is demonstrated by the design of a perfect electrical conductor (PEC) reshaper which is able to reshape a PEC cylinder arbitrarily by combining the concept of cloak, concentrator and superscatterer together. Numerical simulations are performed to demonstrate its properties.

  11. Control of Radioactive Lightning-Conductor

    International Nuclear Information System (INIS)

    Esposito, E.

    2004-01-01

    The radioactive lightning-conductor production in Brazil was started in 1970 and after a period of 19 years of commercialization of these devices, the National Nuclear Energy Commission (CNEN), based in studies done in Brazil and abroad, proved that the radioactive lightning-conductor performance wasn't superior to the conventional one, so the use of radioactive source is not justified. Thence, the authorization for its production was suspended and the installation of this type of lightning-conductor was forbidden. The radioactive material that results from the dismount of these devices must be immediately sent to CNEN, for treatment and temporary storage. After this prohibition and its publication in several specialized magazines, CNEN was searched for several institutions, factories, churches, etc, interested in obtaining information about the handling and shipment procedures of radioactive lightning-conductors that are inoperative and that must be sent to CNEN's Institutes, in a correct and secure form. From this moment CNEN technicians realize that the owners of radioactive lightning-conductors didn't have any knowledge and training in radiation protection, neither in equipment to monitoring the radiation. The radioactive material from these sources is, in almost all cases, the radioisotope 241Am which has a maximum activity of an order of 5 mCi (1,85 x 10-2 TBq); as the radiation emitted by 241Am is of alpha type, whose range in the air, is just few centimeters and the gamma rays are of low energy, an irradiation offer small risk. However, there is a contamination risk on someone hands, by the contact with the source. Aiming to attend, in an objective way, the users' interests in obtaining some pertinent technical information about the shipping of radioactive lightning-conductor that is inoperative or is being replaced and also to optimize its receipt in CNEN's Institutes, because there still has a great number of these lightning-conductors installed and still

  12. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    Science.gov (United States)

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  13. Application of neutron transmutation doping method to initially p-type silicon material.

    Science.gov (United States)

    Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun

    2009-01-01

    The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established.

  14. Specifications for conductors and proposed conductor configurations: Milestone M5.3

    CERN Document Server

    Bordini, Bernardo; Dhallé, Marc

    2018-01-01

    This document summarises the specifications of a superconductor suitable to be used in a particle accelerator dipole magnet that can reach a field of 16 Tesla during regular operation. The document reports also on the conductor configuration. These specifications set the performance targets for industrial production requirements at large scale. The document motivates the specifications on one hand by taking a particular magnet baseline design as starting point and by considering the results of various conductor test campaigns carried out at partner institutes.

  15. Low ac loss geometries in YBCO coated conductors and impact on conductor stability

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; List III, Frederick Alyious [ORNL; Paranthaman, Mariappan Parans [ORNL; Rupich, M. W. [American Superconductor Corporation, Westborough, MA; Zhang, W. [American Superconductor Corporation, Westborough, MA; Xie, Y. Y. [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2007-01-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. While ac loss reduction was achieved with YBCO filaments created through laser scribing and inkjet deposition, the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders. To better determine the practicality of these methods from a stability point of view, a numerical analysis was carried out to determine the influence of bridging and splicing on stability of a YBCO coated conductor for both liquid nitrogen-cooled and conduction cooled geometries.

  16. Reassessment of the recombination parameters of chromium in n- and p-type crystalline silicon and chromium-boron pairs in p-type crystalline silicon

    International Nuclear Information System (INIS)

    Sun, Chang; Rougieux, Fiacre E.; Macdonald, Daniel

    2014-01-01

    Injection-dependent lifetime spectroscopy of both n- and p-type, Cr-doped silicon wafers with different doping levels is used to determine the defect parameters of Cr i and CrB pairs, by simultaneously fitting the measured lifetimes with the Shockley-Read-Hall model. A combined analysis of the two defects with the lifetime data measured on both n- and p-type samples enables a significant tightening of the uncertainty ranges of the parameters. The capture cross section ratios k = σ n /σ p of Cr i and CrB are determined as 3.2 (−0.6, +0) and 5.8 (−3.4, +0.6), respectively. Courtesy of a direct experimental comparison of the recombination activity of chromium in n- and p-type silicon, and as also suggested by modelling results, we conclude that chromium has a greater negative impact on carrier lifetimes in p-type silicon than n-type silicon with similar doping levels.

  17. High current density aluminum stabilized conductor concepts for space applications

    International Nuclear Information System (INIS)

    Huang, X.; Eyssa, Y.M.; Hilal, M.A.

    1989-01-01

    Lightweight conductors are needed for space magnets to achieve values of E/M (energy stored per unit mass) comparable to the or higher than advanced batteries. High purity aluminum stabilized NbTi composite conductors cooled by 1.8 K helium can provide a winding current density up to 15 kA/cm/sup 2/ at fields up to 10 tesla. The conductors are edge cooled with enough surface area to provide recovery following a normalizing disturbance. The conductors are designed so that current diffusion time in the high purity aluminum is smaller than thermal diffusion time in helium. Conductor design, stability and current diffusion are considered in detail

  18. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein

    DEFF Research Database (Denmark)

    Ekberg, Kira; Palmgren, Michael; Veierskov, Bjarke

    2010-01-01

    The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H+-ATPases has long been recognized to be part of a regulatory apparatus....... This identifies the first group of P-type ATPases for which both ends of the polypeptide chain constitute regulatory domains, which together contribute to the autoinhibitory apparatus. This suggests an intricate mechanism of cis-regulation with both termini of the protein communicating to obtain the necessary...

  19. Fabrication of p-type porous GaN on silicon and epitaxial GaN

    OpenAIRE

    Bilousov, Oleksandr V.; Geaney, Hugh; Carvajal, Joan J.; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Giguere, A.; Drouin, D.; Diaz, Francesc; Aguilo, Magdalena; O'Dwyer, Colm

    2013-01-01

    Porous GaN layers are grown on silicon from gold or platinum catalyst seed layers, and self-catalyzed on epitaxial GaN films on sapphire. Using a Mg-based precursor, we demonstrate p-type doping of the porous GaN. Electrical measurements for p-type GaN on Si show Ohmic and Schottky behavior from gold and platinum seeded GaN, respectively. Ohmicity is attributed to the formation of a Ga2Au intermetallic. Porous p-type GaN was also achieved on epitaxial n-GaN on sapphire, and transport measurem...

  20. Benchmarking organic mixed conductors for transistors

    KAUST Repository

    Inal, Sahika; Malliaras, George G.; Rivnay, Jonathan

    2017-01-01

    Organic mixed conductors have garnered significant attention in applications from bioelectronics to energy storage/generation. Their implementation in organic transistors has led to enhanced biosensing, neuromorphic function, and specialized circuits. While a narrow class of conducting polymers continues to excel in these new applications, materials design efforts have accelerated as researchers target new functionality, processability, and improved performance/stability. Materials for organic electrochemical transistors (OECTs) require both efficient electronic transport and facile ion injection in order to sustain high capacity. In this work, we show that the product of the electronic mobility and volumetric charge storage capacity (µC*) is the materials/system figure of merit; we use this framework to benchmark and compare the steady-state OECT performance of ten previously reported materials. This product can be independently verified and decoupled to guide materials design and processing. OECTs can therefore be used as a tool for understanding and designing new organic mixed conductors.

  1. Benchmarking organic mixed conductors for transistors

    KAUST Repository

    Inal, Sahika

    2017-11-20

    Organic mixed conductors have garnered significant attention in applications from bioelectronics to energy storage/generation. Their implementation in organic transistors has led to enhanced biosensing, neuromorphic function, and specialized circuits. While a narrow class of conducting polymers continues to excel in these new applications, materials design efforts have accelerated as researchers target new functionality, processability, and improved performance/stability. Materials for organic electrochemical transistors (OECTs) require both efficient electronic transport and facile ion injection in order to sustain high capacity. In this work, we show that the product of the electronic mobility and volumetric charge storage capacity (µC*) is the materials/system figure of merit; we use this framework to benchmark and compare the steady-state OECT performance of ten previously reported materials. This product can be independently verified and decoupled to guide materials design and processing. OECTs can therefore be used as a tool for understanding and designing new organic mixed conductors.

  2. Superconducting homopolar motor and conductor development

    Science.gov (United States)

    Gubser, Donald U.

    1996-10-01

    The U.S. Navy has been developing superconducting homopolar motors for ship applications since 1969; a successful at-sea demonstration of the first motor, using NbTi wire for the magnet, was achieved in the early 1980s. Recently, this same motor was used as a test bed to demonstrate progress in high-critical-temperature superconducting magnet technology using bismuth-strontium- calcium-copper-oxide (BSCCO) compounds. In the fall of 1995, this motor achieved a performance of 124 kW operating at a temperature of 4.2 K and 91 kW while operating at 28 K. Future tests are scheduled using new magnets with conductors of both the 2223 and the 2212 BSCCO phases. This article describes the advantages of superconducting propulsion and recent progress in the development of BSCCO conductors for use in Navy power systems.

  3. Films of Carbon Nanomaterials for Transparent Conductors

    Directory of Open Access Journals (Sweden)

    Jun Wei

    2013-05-01

    Full Text Available The demand for transparent conductors is expected to grow rapidly as electronic devices, such as touch screens, displays, solid state lighting and photovoltaics become ubiquitous in our lives. Doped metal oxides, especially indium tin oxide, are the commonly used materials for transparent conductors. As there are some drawbacks to this class of materials, exploration of alternative materials has been conducted. There is an interest in films of carbon nanomaterials such as, carbon nanotubes and graphene as they exhibit outstanding properties. This article reviews the synthesis and assembly of these films and their post-treatment. These processes determine the film performance and understanding of this platform will be useful for future work to improve the film performance.

  4. Local noise in a diffusive conductor

    Science.gov (United States)

    Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S.

    2016-07-01

    The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes.

  5. Electroforming-free resistive switching memory effect in transparent p-type tin monoxide

    KAUST Repository

    Hota, M. K.; Caraveo-Frescas, J. A.; McLachlan, M. A.; Alshareef, Husam N.

    2014-01-01

    We report reproducible low bias bipolar resistive switching behavior in p-type SnO thin film devices without extra electroforming steps. The experimental results show a stable resistance ratio of more than 100 times, switching cycling performance up

  6. Recent Advances on p-Type III-Nitride Nanowires by Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Songrui Zhao

    2017-09-01

    Full Text Available p-Type doping represents a key step towards III-nitride (InN, GaN, AlN optoelectronic devices. In the past, tremendous efforts have been devoted to obtaining high quality p-type III-nitrides, and extraordinary progress has been made in both materials and device aspects. In this article, we intend to discuss a small portion of these processes, focusing on the molecular beam epitaxy (MBE-grown p-type InN and AlN—two bottleneck material systems that limit the development of III-nitride near-infrared and deep ultraviolet (UV optoelectronic devices. We will show that by using MBE-grown nanowire structures, the long-lasting p-type doping challenges of InN and AlN can be largely addressed. New aspects of MBE growth of III-nitride nanostructures are also discussed.

  7. Origin of the p-type character of AuCl3 functionalized carbon nanotubes

    KAUST Repository

    Murat, Altynbek

    2014-02-13

    The microscopic origin of the p-type character of AuCl3 functionalized carbon nanotubes (CNTs) is investigated using first-principles self-interaction corrected density functional theory (DFT). Recent DFT calculations suggest that the p-type character of AuCl3 functionalized CNTs is due to the Cl atoms adsorbed on the CNTs. We test this hypothesis and show that adsorbed Cl atoms only lead to a p-type character for very specific concentrations and arrangements of the Cl atoms, which furthermore are not the lowest energy configurations. We therefore investigate alternative mechanisms and conclude that the p-type character is due to the adsorption of AuCl4 molecules. The unraveling of the exact nature of the p-doping adsorbates is a key step for further development of AuCl3 functionalized CNTs in water sensor applications. © 2014 American Chemical Society.

  8. Origin of the p-type character of AuCl3 functionalized carbon nanotubes

    KAUST Repository

    Murat, Altynbek; Rungger, Ivan; Jin, Chengjun; Sanvito, Stefano; Schwingenschlö gl, Udo

    2014-01-01

    The microscopic origin of the p-type character of AuCl3 functionalized carbon nanotubes (CNTs) is investigated using first-principles self-interaction corrected density functional theory (DFT). Recent DFT calculations suggest that the p

  9. A Density Functional Theory Study of Doped Tin Monoxide as a Transparent p-type Semiconductor

    KAUST Repository

    Bianchi Granato, Danilo

    2012-01-01

    that yttrium and lanthanum improves the hole mobility. Present results are in good agreement with available experimental works and help to improve the understanding on how to engineer transparent p-type materials with higher hole mobilities.

  10. AA, inner conductor of a magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    At the start-up of the AA and during its initial operation, magnetic horns focused the antiprotons emanating from the production target. These "current-sheet lenses" had a thin inner conductor (for minimum absorption of antiprotons), machined from aluminium to wall thicknesses of 0.7 or 1 mm. The half-sine pulses rose to 150 kA in 8 microsec. The angular acceptance was 50 mrad.

  11. Hall effect in organic layered conductors

    Directory of Open Access Journals (Sweden)

    R.A.Hasan

    2006-01-01

    Full Text Available The Hall effect in organic layered conductors with a multisheeted Fermi surfaces was considered. It is shown that the experimental study of Hall effect and magnetoresistance anisotropy at different orientations of current and a quantizing magnetic field relative to the layers makes it possible to determine the contribution of various charge carriers groups to the conductivity, and to find out the character of Fermi surface anisotropy in the plane of layers.

  12. High surface hole concentration p-type GaN using Mg implantation

    International Nuclear Information System (INIS)

    Long Tao; Yang Zhijian; Zhang Guoyi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 17 cm -3 ) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  13. STUDY OF ELECTRICAL CHARACTERISTIC OF NEW P-TYPE TRENCHED UMOSFET

    OpenAIRE

    Akansha Ephraim*, Neelesh Agrawal, Anil Kumar, A.K. Jaiswal

    2017-01-01

    In this paper p-type trenched UMOSFET was designed without super junction and constructed like any other conventional MOSFET. Characteristic curve was studied between drain current verses drain voltage and drain current verses gate voltage. The trench was designed under TCAD simulation tool Silvaco software using etching process. The specific channel length of the p-type UMOSFET has been concentrated as 0.9 microns. The device structures are designed using Silvaco Athena and characteristics w...

  14. Method for the preparation of n-i-p type radiation detector from silicon

    International Nuclear Information System (INIS)

    Keleti, J.; Toeroek, T.; Lukacs, J.; Molnar, I.

    1978-01-01

    The patent describes a procedure for the preparation of n-i-p type silicon radiation detectors. The aim was to provide an adaquate procedure for the production of α, β, γ-detectors from silicon available on the market, either p-type single crystal silicon characterised by its boron level. The procedure and the 9 claims are illustrated by two examples. (Sz.J.)

  15. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Yop Rhee, Kyong; Nahm, Seung-Hoon; Park, Soo-Jin

    2014-01-01

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted

  16. Convergence of valence bands for high thermoelectric performance for p-type InN

    International Nuclear Information System (INIS)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-01-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of Z e T is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  17. Testing of the 3M Company Composite Conductor

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, John P [ORNL; Rizy, D Tom [ORNL; Kisner, Roger A [ORNL

    2010-10-01

    The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum-Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors. The objective of this work is to accelerate the commercial acceptance by electric utilities of this new conductor design by testing four representative conductor classes in controlled conditions. A unique facility called the Powerline Conductor Accelerated Testing (PCAT) Facility was built at ORNL for testing overhead conductors. The PCAT has been uniquely designed for testing overhead bare transmission line conductors at high currents and temperatures after they have been installed and tensioned to the manufacturer's specifications. The ability to operate a transmission line conductor in this manner does not exist elsewhere in the United States. Four classes of ACCR cable designed by the 3M Company have been successfully test at ORNL small, medium, large and small/compact. Based on these and other manufacturer tests, the 3M Company has successfully introduced the ACCR into the commercial market and has completed over twenty installations for utility companies.

  18. Temperature dependence of absorption spectra of P-type GaP

    International Nuclear Information System (INIS)

    Mounir, M.; Balloomal, L.S.

    1985-10-01

    The theoretical analysis of the optical absorption due to band-impurity (impurity-band) electron transitions involving deep impurity levels in semi-conductors is considered. Also the data of the experimental absorption spectra of GaP were performed at room temperature and the results were found to be in agreement with the theoretical results if the electron-phonon interaction is taken into consideration. (author)

  19. Mechanical test of the model coil wound with large conductor

    International Nuclear Information System (INIS)

    Hiue, Hisaaki; Sugimoto, Makoto; Nakajima, Hideo; Yasukawa, Yukio; Yoshida, Kiyoshi; Hasegawa, Mitsuru; Ito, Ikuo; Konno, Masayuki.

    1992-09-01

    The high rigidity and strength of the winding pack are required to realize the large superconducting magnet for the fusion reactor. This paper describes mechanical tests concerning the rigidity of the winding pack. Samples were prepared to evaluate the adhesive strength between conductors and insulators. Epoxy and Bismaleimide-Triazine resin (BT resin) were used as the conductor insulator. The stainless steel (SS) 304 bars, whose surface was treated mechanically and chemically, was applied to the modeled conductor. The model coil was would with the model conductors covered with the insulator by grand insulator. A winding model combining 3 x 3 conductors was produced for measuring shearing rigidity. The sample was loaded with pure shearing force at the LN 2 temperature. The bar winding sample, by 8 x 6 conductors, was measured the bending rigidity. These three point bending tests were carried out at room temperature. The pancake winding sample was loaded with compressive forces to measure compressive rigidity of winding. (author)

  20. Apparatus to examine pulsed parallel field losses in large conductors

    International Nuclear Information System (INIS)

    Miller, J.R.; Shen, S.S.

    1977-01-01

    Conductors in tokamak toroidal field coils will be exposed to pulsed fields both parallel and perpendicular to the current direction. These conductors will likely be quite high capacity (10 to 20 kA) and therefore probably will be built up out of smaller units. We have previously published measurements of losses in conductors exposed to a pulsed parallel field, but those experiments necessarily used monolithic conductors of relatively small cross section because the pulse coil, a torus that surrounded the test conductor, was itself small. Here we describe an apparatus that is conceptually similar but has been scaled up to accept conductors of much larger cross section and current capacity. The apparatus consists basically of a superconducting torus that contains a movable spool to allow test samples to be wound inside without unwinding the torus. Details of apparatus design and capabilities are described and preliminary results from tests of the apparatus and from loss measurements using it are reported

  1. Test of ITER conductors in SULTAN: An update

    International Nuclear Information System (INIS)

    Bruzzone, Pierluigi; Stepanov, Boris; Wesche, Rainer; Herzog, Robert; Calzolaio, Ciro; Vogel, Martin

    2011-01-01

    The ITER Toroidal Field (TF) conductor qualification phase has been carried out by testing short sample prototype conductors in the SULTAN test facility. This phase, started in 2007, has been substantially completed after minor adjustment of the conductor specification and test procedures. All the parties involved in the TF conductor procurement passed the qualification phase. Starting 2010, the samples for TF process qualification phase are tested in SULTAN. A summary of the results for all the ITER Qualification samples and an updated statistics are presented for the V-I and V-T characteristics of the cable-in-conduit conductors (CICC), including Nb 3 Sn and NbTi samples assembled with either a 'bottom joint' or a 'U-bend'. The technical improvements of the test facility are reported, including the enhanced cyclic loading rate and the calibration of the current meter. An outlook of the ITER conductor tests in the coming years is also presented.

  2. Mixed protonic-electronic conductors for hydrogen separation membranes

    Science.gov (United States)

    Song, Sun-Ju

    2003-10-01

    The chemical functionality of mixed protonic-electronic conductors arises out of the nature of the defect structure controlled by thermodynamic defect equilibria of the materials, and results in the ability to transport charged species. This dissertation is to develop a fundamental understanding of defect chemistry and transport properties of mixed protonic-electronic conducting perovskites for hydrogen separation membranes. Furthermore, it was aimed to develop the algorithm to predict how these properties affect the permeability in chemical potential gradients. From this objective, first of all, the appropriate equations governing proton incorporation into perovskite oxides were suggested and the computer simulation of defect concentrations across a membrane oxide under various conditions were performed. Electrical properties of p-type electronic defects at oxidizing conditions and n-type electrical properties of SrCe 0.95Eu0.05O3-delta at reducing atmospheres were studied. Defect equilibrium diagrams as a function of PO2 , PH2O ) produced from the Brouwer method were verified by computational simulation and electrical conductivity measurements. The chemical diffusion of hydrogen through oxide membranes was described within the framework of Wagner's chemical diffusion theory and it was solved without any simplifying assumptions on functional dependence of partial conductivity due to the successful numerical modeling of partial conductivities as a function of both hydrogen and oxygen partial pressures. Finally the hydrogen permeability of Eu and Sm doped SrCeO3-delta was studied as a function of temperature, hydrogen partial pressure gradient, and water vapor pressure gradient. The dopant dependence of hydrogen permeability was explained in terms of the difference in ionization energy and ionic radius of dopant.

  3. Hearing status among Norwegian train drivers and train conductors

    OpenAIRE

    Lie, A.; Skogstad, M.; Johnsen, T. S.; Engdahl, B.; Tambs, K.

    2013-01-01

    Background There is a general perception that train drivers and conductors may be at increased risk of developing noise-induced hearing loss. Aims To study job-related hearing loss among train drivers and train conductors. Methods Audiograms from train drivers and train conductors were obtained from the medical records of the occupational health service of the major Norwegian railway company. The results were compared with audiograms from an internal control group of railway workers and an ex...

  4. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.

    2006-09-21

    Germanium detector arrays are needed for low-level counting facilities. The practical applications of such user facilities include characterization of low-level radioactive samples. In addition, the same detector arrays can also perform important fundamental physics measurements including the search for rare events like neutrino-less double-beta decay. Coaxial germanium detectors having segmented outer contacts will provide the next level of sensitivity improvement in low background measurements. The segmented outer detector contact allows performance of advanced pulse shape analysis measurements that provide additional background reduction. Currently, n-type (reverse electrode) germanium coaxial detectors are used whenever a segmented coaxial detector is needed because the outer boron (electron barrier) contact is thin and can be segmented. Coaxial detectors fabricated from p-type germanium cost less, have better resolution, and are larger than n-type coaxial detectors. However, it is difficult to reliably segment p-type coaxial detectors because thick (~1 mm) lithium-diffused (hole barrier) contacts are the standard outside contact for p-type coaxial detectors. During this Phase 1 Small Business Innovation Research (SBIR) we have researched the possibility of using amorphous germanium contacts as a thin outer contact of p-type coaxial detectors that can be segmented. We have developed amorphous germanium contacts that provide a very high hole barrier on small planar detectors. These easily segmented amorphous germanium contacts have been demonstrated to withstand several thousand volts/cm electric fields with no measurable leakage current (<1 pA) from charge injection over the hole barrier. We have also demonstrated that the contact can be sputter deposited around and over the curved outside surface of a small p-type coaxial detector. The amorphous contact has shown good rectification properties on the outside of a small p-type coaxial detector. These encouraging

  5. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  6. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei; Nayak, Pradipta K.; Caraveo-Frescas, Jesus Alfonso; Alshareef, Husam N.

    2016-01-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  7. Chemical-free n-type and p-type multilayer-graphene transistors

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com [Voxtel Inc, Lockey Laboratories, University of Oregon, Eugene Oregon 97402 (United States); Eisaman, M. D. [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794 (United States); Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-08-01

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping. When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.

  8. Nanostructured p-Type Semiconductor Electrodes and Photoelectrochemistry of Their Reduction Processes

    Directory of Open Access Journals (Sweden)

    Matteo Bonomo

    2016-05-01

    Full Text Available This review reports the properties of p-type semiconductors with nanostructured features employed as photocathodes in photoelectrochemical cells (PECs. Light absorption is crucial for the activation of the reduction processes occurring at the p-type electrode either in the pristine or in a modified/sensitized state. Beside thermodynamics, the kinetics of the electron transfer (ET process from photocathode to a redox shuttle in the oxidized form are also crucial since the flow of electrons will take place correctly if the ET rate will overcome that one of recombination and trapping events which impede the charge separation produced by the absorption of light. Depending on the nature of the chromophore, i.e., if the semiconductor itself or the chemisorbed dye-sensitizer, different energy levels will be involved in the cathodic ET process. An analysis of the general properties and requirements of electrodic materials of p-type for being efficient photoelectrocatalysts of reduction processes in dye-sensitized solar cells (DSC will be given. The working principle of p-type DSCs will be described and extended to other p-type PECs conceived and developed for the conversion of the solar radiation into chemical products of energetic/chemical interest like non fossil fuels or derivatives of carbon dioxide.

  9. Formation of p-type ZnO thin film through co-implantation

    Science.gov (United States)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  10. Characterization of plasma etching damage on p-type GaN using Schottky diodes

    International Nuclear Information System (INIS)

    Kato, M.; Mikamo, K.; Ichimura, M.; Kanechika, M.; Ishiguro, O.; Kachi, T.

    2008-01-01

    The plasma etching damage in p-type GaN has been characterized. From current-voltage and capacitance-voltage characteristics of Schottky diodes, it was revealed that inductively coupled plasma (ICP) etching causes an increase in series resistance of the Schottky diodes and compensation of acceptors in p-type GaN. We investigated deep levels near the valence band of p-type GaN using current deep level transient spectroscopy (DLTS), and no deep level originating from the ICP etching damage was observed. On the other hand, by capacitance DLTS measurements for n-type GaN, we observed an increase in concentration of a donor-type defect with an activation energy of 0.25 eV after the ICP etching. The origin of this defect would be due to nitrogen vacancies. We also observed this defect by photocapacitance measurements for ICP-etched p-type GaN. For both n- and p-type GaN, we found that the low bias power ICP etching is effective to reduce the concentration of this defect introduced by the high bias power ICP etching

  11. Optoelectronic properties of transparent p-type semiconductor Cu{sub x}S thin films

    Energy Technology Data Exchange (ETDEWEB)

    Parreira, P.; Valente, J. [ICEMS, IST-UTL, Lisboa (Portugal); Lavareda, G. [Departamento de Fisica, IST-UTL, Lisboa (Portugal); Nunes, F.T. [Departamento de Ciencia dos Materiais, FCT-UNL, Caparica (Portugal); Amaral, A. [Departamento de Fisica, IST-UTL, Lisboa (Portugal); ICEMS, IST-UTL, Lisboa (Portugal); Carvalho, C.N. de [Departamento de Ciencia dos Materiais, FCT-UNL, Caparica (Portugal); ICEMS, IST-UTL, Lisboa (Portugal)

    2010-07-15

    Nowadays, among the available transparent semiconductors for device use, the great majority (if not all) have n-type conductivity. The fabrication of a transparent p-type semiconductor with good optoelectronic properties (comparable to those of n-type: InO{sub x}, ITO, ZnO{sub x} or FTO) would significantly broaden the application field of thin films. However, until now no material has yet presented all the required properties. Cu{sub 2}S is a p-type narrow-band-gap material with an average optical transmittance of about 60% in the visible range for 50 nm thick films. However, due to its high conductivity at room temperature, 10 nm in thickness seems to be appropriate for device use. Cu{sub 2}S thin films with 10 nm in thickness have an optical visible transmittance of about 85% rendering them as very good candidates for transparent p-type semiconductors. In this work Cu{sub x}S thin films were deposited on alkali-free (AF) glass by thermal evaporation. The objective was not only the determination of its optoelectronic properties but also the feasibility of an active layer in a p-type thin film transistor. In our Cu{sub x}S thin films, p-type high conductivity with a total visible transmittance of about 50% have been achieved. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Fabrication of built-up conductors for large pulsed coils

    International Nuclear Information System (INIS)

    Henke, M.D.; Schermer, R.I.

    1979-01-01

    The development work was performed to provide a low-loss, cryostable conductor capable of carrying 5 kA at 3 T for a 30-MJ coil cycled at 0.35 Hz. Much of the work is relevant to conductor development for other pulsed coils, such as a tokamak induction heating coil. As part of the development process, various conductor configurations were subjected to ac loss measurements, stability tests, electrical resistance measurements, and mechanical load-bearing and mechanical fatigue tests. The result is a conductor that appears to satisfy the design criteria with a considerable safety margin

  13. Development of YBCO tape conductor fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G W; Kim, C J; Lee, H G. and others

    2001-08-01

    Superconductor when fabricated into wire shape is applied for developing electric power transmission cable, transformer, generator and SMES. Such superconducting power devices are capable of maximizing the efficiency of electricity and are anticipated to contribute for solving the energy problem of humankind. Furthermore the high temperature oxide superconductor developed in late 1980s is superconducting above boiling temperature of liquid nitrogen temperature has strong potential to realize superconducting power device and a lot of researches are being done in this field. Superconducting wire is the most important core material for developing superconducting power device and thermo-mechanical powder in tube process was developed to fabricated Ag/Bi-2223 conductor in long length having high critical current carrying capacity. Several companies fabricate and sell Ag/Bi-2223 superconducting wire longer than km length and used for developed electrical power device. But because of its inherent property of sharp decrease in current carrying capacity when applying high magnetic field, the application of Bi-2223 sire is limited as low as 20 K when the power device is in operating under high magnetic field. The YBCO tape conductor has the advantages of maintaining high critical current applying high magnetic field and can be used to most of the power device without special limitation. The metal substrate having good crystallographic texture and deposition technique which can deposit the good quality superconducting thin film continuously in large area are need to fabricate coated conductor, and this technique can be applied to develop the superconducting current limiter or magnetic field shielding device. A superconducting wire for using in high magnetic field is play a critical role in developing maglev, MRI, SMES, transformer, generator and motor and the continuous film deposition technique can be applied in other industry very much.

  14. Undoped p-type GaN1-xSbx alloys: Effects of annealing

    Science.gov (United States)

    Segercrantz, N.; Baumgartner, Y.; Ting, M.; Yu, K. M.; Mao, S. S.; Sarney, W. L.; Svensson, S. P.; Walukiewicz, W.

    2016-12-01

    We report p-type behavior for undoped GaN1-xSbx alloys with x ≥ 0.06 grown by molecular beam epitaxy at low temperatures (≤400 °C). Rapid thermal annealing of the GaN1-xSbx films at temperatures >400 °C is shown to generate hole concentrations greater than 1019 cm-3, an order of magnitude higher than typical p-type GaN achieved by Mg doping. The p-type conductivity is attributed to a large upward shift of the valence band edge resulting from the band anticrossing interaction between localized Sb levels and extended states of the host matrix.

  15. Secondary ion mass spectrometry analysis of In-doped p-type GaN films

    International Nuclear Information System (INIS)

    Chiou, C.Y.; Wang, C.C.; Ling, Y.C.; Chiang, C.I.

    2003-01-01

    SIMS was used to investigate the isoelectronic In-doped p-type GaN films. The growth rate of the p-type GaN film decreased with increasing Mg and In doping. The Mg saturation in GaN was 3.55x10 19 atoms/cm 3 . The role of In as surfactant was evaluated by varying In concentrations and it was observed that the surface appeared smooth with increasing In incorporation. The Mg solubility in p-type GaN improved to 0.0025% molar ratio of the GaN with In incorporation. The In concentration results observed in neutron activation analysis (NAA) were found to be higher by a factor of 2.88 than that observed in SIMS and can be attributed to the difference in sensitivity of the two techniques. Good linearity in the results was observed from both techniques

  16. Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors

    KAUST Repository

    Caraveo-Frescas, J. A.

    2013-11-25

    p-type tin monoxide (SnO) nanowire field-effect transistors with stable enhancement mode behavior and record performance are demonstrated at 160 °C. The nanowire transistors exhibit the highest field-effect hole mobility (10.83 cm2 V−1 s−1) of any p-type oxide semiconductor processed at similar temperature. Compared to thin film transistors, the SnO nanowire transistors exhibit five times higher mobility and one order of magnitude lower subthreshold swing. The SnO nanowire transistors show three times lower threshold voltages (−1 V) than the best reported SnO thin film transistors and fifteen times smaller than p-type Cu 2O nanowire transistors. Gate dielectric and process temperature are critical to achieving such performance.

  17. AA, Inner Conductor of Magnetic Horn

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Antiprotons emerging at large angles from the production target (hit by an intense 26 GeV proton beam from the PS), were focused into the acceptance of the injection line of the AA by means of a "magnetic horn" (current-sheet lens). Here we see an early protype of the horn's inner conductor, machined from solid aluminium to a thickness of less than 1 mm. The 1st version had to withstand pulses of 150 kA, 15 us long, every 2.4 s. See 8801040 for a later version.

  18. Flux pinning characteristics of YBCO coated conductor

    International Nuclear Information System (INIS)

    Matsushita, T.; Watanabe, T.; Fukumoto, Y.; Yamauchi, K.; Kiuchi, M.; Otabe, E.S.; Kiss, T.; Watanabe, T.; Miyata, S.; Ibi, A.; Muroga, T.; Yamada, Y.; Shiohara, Y.

    2005-01-01

    Flux pinning properties of PLD-processed YBCO coated conductors deposited on IBAD substrate are investigated. The thickness of YBCO layer is changed in the range of 0.27-1.0 μm. The thickness dependence of critical current density, n-value and irreversibility field are measured in a wide range of magnetic field. The results are compared with the theoretical flux creep-flow model. It is found that these pinning properties are strongly influenced by the thickness as well as the pinning strength. Optimum condition for high field application of this superconductor is discussed

  19. Relative stiffness of flat conductor cables

    Science.gov (United States)

    Hankins, J. D.

    1976-01-01

    The measurement of the bending moment required to obtain a given deflection in short lengths of flat conductor cable (FCC) is presented in this report. Experimental data were taken on 10 different samples of FCC and normalized to express all bending moments (relative stiffness factor) in terms of a cable 5.1 cm (2.0 in.) in width. Data are presented in tabular and graphical form for the covenience of designers who may be interested in finding torques exerted on critical components by short lengths of FCC.

  20. Assessment of conductor degradation in the ITER CS insert coil and implications for the ITER conductors

    Science.gov (United States)

    Mitchell, N.

    2007-01-01

    Nb3Sn cable in conduit-type conductors were expected to provide an efficient way of achieving large conductor currents at high field (up to 13 T) combined with good stability to electromagnetic disturbances due to the extensive helium contact area with the strands. Although ITER model coils successfully reached their design performance (Kato et al 2001 Fusion Eng. Des. 56/57 59-70), initial indications (Mitchell 2003 Fusion Eng. Des. 66-68 971-94) that there were unexplained performance shortfalls have been confirmed. Recent conductor tests (Pasztor et al 2004 IEEE Trans. Appl. Supercond. 14 1527-30) and modelling work (Mitchell 2005 Supercond. Sci. Technol. 18 396-404) suggest that the shortfalls are due to a combination of strand bending and filament fracture under the transverse magnetic loads. Using the new model, the extensive database from the ITER CS insert coil has been reassessed. A parametric fit based on a loss of filament area and n (the exponent of the power-law fit to the electric field) combined with a more rigorous consideration of the conductor field gradient has enabled the coil behaviour to be explained much more consistently than in earlier assessments, now fitting the Nb3Sn strain scaling laws when used with measurements of the conductor operating strain, including conditions when the insert coil current (and hence operating strain) were reversed. The coil superconducting performance also shows a fatigue-type behaviour consistent with recent measurements on conductor samples (Martovetsky et al 2005 IEEE Trans. Appl. Supercond. 15 1367-70). The ITER conductor design has already been modified compared to the CS insert, to increase the margin and provide increased resistance to the degradation, by using a steel jacket to provide thermal pre-compression to reduce tensile strain levels, reducing the void fraction from 36% to 33% and increasing the non-copper material by 25%. Test results are not yet available for the new design and performance

  1. A simple model to estimate the optimal doping of p - Type oxide superconductors

    Directory of Open Access Journals (Sweden)

    Adir Moysés Luiz

    2008-12-01

    Full Text Available Oxygen doping of superconductors is discussed. Doping high-Tc superconductors with oxygen seems to be more efficient than other doping procedures. Using the assumption of double valence fluctuations, we present a simple model to estimate the optimal doping of p-type oxide superconductors. The experimental values of oxygen content for optimal doping of the most important p-type oxide superconductors can be accounted for adequately using this simple model. We expect that our simple model will encourage further experimental and theoretical researches in superconducting materials.

  2. Hall and thermoelectric evaluation of p-type InAs

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, M.C., E-mail: magnus.wagener@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Wagener, V.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2009-12-15

    This paper compares the galvanometric and thermoelectric evaluation of the electrical characteristics of narrow gap semiconductors. In particular, the influence of a surface inversion layer is incorporated into the analysis of the temperature-dependent Hall and thermoelectric measurements of p-type InAs. The temperature at which the Seebeck coefficient of p-type material changes sign is shown to be unaffected by the presence of degenerate conduction paths. This finding consequently facilitated the direct determination of the acceptor density of lightly doped thin film InAs.

  3. In and out of the cation pumps: P-type ATPase structure revisited

    DEFF Research Database (Denmark)

    Bublitz, Maike; Poulsen, Hanne; Morth, Jens Preben

    2010-01-01

    Active transport across membranes is a crucial requirement for life. P-type ATPases build up electrochemical gradients at the expense of ATP by forming and splitting a covalent phosphoenzyme intermediate, coupled to conformational changes in the transmembrane section where the ions are translocated....... The marked increment during the last three years in the number of crystal structures of P-type ATPases has greatly improved our understanding of the similarities and differences of pumps with different ion specificities, since the structures of the Ca2+-ATPase, the Na+,K+-ATPase and the H+-ATPase can now...

  4. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  5. Optical properties of Mg doped p-type GaN nanowires

    Science.gov (United States)

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, S.; Tyagi, A. K.

    2015-06-01

    Mg doped p-type GaN nanowires are grown using chemical vapor deposition technique in vapor-liquid-solid (VLS) process. Morphological and structural studies confirm the VLS growth process of nanowires and wurtzite phase of GaN. We report the optical properties of Mg doped p-type GaN nanowires. Low temperature photoluminescence studies on as-grown and post-growth annealed samples reveal the successful incorporation of Mg dopants. The as-grwon and annealed samples show passivation and activation of Mg dopants, respectively, in GaN nanowires.

  6. Dual ohmic contact to N- and P-type silicon carbide

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  7. Carrier removal and defect behavior in p-type InP

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Drevinsky, P. J.

    1992-01-01

    A simple expression, obtained from the rate equation for defect production, was used to relate carrier removal to defect production and hole trapping rates in p-type InP after irradiation by 1-MeV electrons. Specific contributions to carrier removal from defect levels H3, H4, and H5 were determined from combined deep-level transient spectroscopy (DLTS) and measured carrier concentrations. An additional contribution was attributed to one or more defects not observed by the present DLTS measurements. The high trapping rate observed for H5 suggests that this defect, if present in relatively high concentration, could be dominant in p-type InP.

  8. On the feasibility of p-type Ga2O3

    Science.gov (United States)

    Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico

    2018-01-01

    We investigate the various cation substitutional dopants in Ga2O3 for the possibility of p-type conductivity using density functional theory. Our calculations include both standard density functional theory and hybrid functional calculations. We demonstrate that all the investigated dopants result in deep acceptor levels, not able to contribute to the p-type conductivity of Ga2O3. In light of these results, we compare our findings with other wide bandgap oxides and reexamine previous experiments on zinc doping in Ga2O3.

  9. Subband structure comparison between n- and p- type double delta-doped Ga As quantum wells

    International Nuclear Information System (INIS)

    Rodriguez V, I.; Gaggero S, L.M.

    2004-01-01

    We compute the electron level structure (n-type) and the hole subband structure (p-type) of double -doped GaAs (DDD) quantum wells, considering exchange effects. The Thomas-Fermi (TF), and Thomas-Fermi-Dirac (TFD) approximations have been applied in order to describe the bending of the conduction and valence band, respectively. The electron and the hole subband structure study indicates that exchange effects are more important in p-type DDD quantum wells than in n-type DDD Also our results agree with the experimental data available. (Author) 33 refs., 2 tabs., 5 figs

  10. Hall and thermoelectric evaluation of p-type InAs

    International Nuclear Information System (INIS)

    Wagener, M.C.; Wagener, V.; Botha, J.R.

    2009-01-01

    This paper compares the galvanometric and thermoelectric evaluation of the electrical characteristics of narrow gap semiconductors. In particular, the influence of a surface inversion layer is incorporated into the analysis of the temperature-dependent Hall and thermoelectric measurements of p-type InAs. The temperature at which the Seebeck coefficient of p-type material changes sign is shown to be unaffected by the presence of degenerate conduction paths. This finding consequently facilitated the direct determination of the acceptor density of lightly doped thin film InAs.

  11. PREFACE: International Symposium on Molecular Conductors: Novel Functions of Molecular Conductors under Extreme Conditions (ISMC 2008)

    Science.gov (United States)

    Takahashi, Toshihiro; Suzumura, Yoshikazu

    2008-02-01

    The International Symposium on Molecular Conductors 2008 (ISMC2008) was held as the second international symposium of the project entitled `Novel Functions of Molecular Conductors under Extreme Conditions', which was supported by the Grant-in-aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology in Japan. The project lasted from September 2003 to March 2008, and was completed by this symposium held at Okazaki Conference Center, Institute for Molecular Science, Okazaki, Japan (23-25 July 2008), which about 100 scientists attended. During the symposium, five project teams gave summary talks and exciting talks were given on the topics developed recently not only by the members of the project but also by other scientists including invited speakers from abroad, who are doing active research on molecular conductors. It is expected that papers presented in the symposium will give valuable hints for the next step in the research of this field. Therefore the organizers of this symposium decided to publish this proceedings in order to demonstrate these activities, not only for the local community of the project, but also for the broad society of international scientists who are interested in molecular conductors. The editors, who are also the organizers of this symposium, believe that this proceedings provides a significant and relevant contribution to the field of molecular conductors since it is the first time we have published such a proceedings as an electronic journal. We note that all papers published in this volume of Journal of Physics: Conference Series have been peer reviewed by expert referees. Editors made every effort to satisfy the criterion of a proceedings journal published by IOP Publishing. Toshihiro Takahashi and Yoshikazu Suzumura Editors: Toshihiro Takahashi (Gakushuin University) (Chairman) Kazushi Kanoda (University of Tokyo) Seiichi Kagoshima (University of Tokyo) Takehiko Mori (Tokyo

  12. VAMAS Nb3Sn test conductor

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A bronze-process Nb 3 Sn conductor was measured as part of the second VAMAS (Versailles Project on Advanced Materials and Standards) international critical-current round robin. The conductor specifications are given in Table 15. The critical current was measured as a function of magnetic field and axial tensile strain. The measured data are presented in Table 16 and in Figs. 23 and 24. The I c and J c values are based on an electric field criterion (E c ) of 1 μV/cm. In the first VAMAS round robin tests, differences in the test specimens' axial strain, caused by variations in the thermal contraction of different test fixtures, was a major source of interlaboratory variation in the critical-current data. Consequently, electromechanical characterization of the test specimen is important for data interpretation and error analysis. In the second round robin, the test apparatus and procedure were more rigidly specified. This increased experimental control reduced the critical-current variation by a factor of 3.5. The results of our measurements will be published in the final VAMAS report

  13. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  14. Conductor gestures influence evaluations of ensemble performance.

    Science.gov (United States)

    Morrison, Steven J; Price, Harry E; Smedley, Eric M; Meals, Cory D

    2014-01-01

    Previous research has found that listener evaluations of ensemble performances vary depending on the expressivity of the conductor's gestures, even when performances are otherwise identical. It was the purpose of the present study to test whether this effect of visual information was evident in the evaluation of specific aspects of ensemble performance: articulation and dynamics. We constructed a set of 32 music performances that combined auditory and visual information and were designed to feature a high degree of contrast along one of two target characteristics: articulation and dynamics. We paired each of four music excerpts recorded by a chamber ensemble in both a high- and low-contrast condition with video of four conductors demonstrating high- and low-contrast gesture specifically appropriate to either articulation or dynamics. Using one of two equivalent test forms, college music majors and non-majors (N = 285) viewed sixteen 30 s performances and evaluated the quality of the ensemble's articulation, dynamics, technique, and tempo along with overall expressivity. Results showed significantly higher evaluations for performances featuring high rather than low conducting expressivity regardless of the ensemble's performance quality. Evaluations for both articulation and dynamics were strongly and positively correlated with evaluations of overall ensemble expressivity.

  15. Testing of the 3M Company ACCR Conductor

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, J.P.; RIzy, D.T.; Kisner, R.A.; Deve, H.E. (3M Comp.)

    2010-09-15

    The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum- Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors so the core has a lower density and higher conductivity. The objective of this work is to accelerate the commercial acceptance by electric utilities of these new conductor designs by testing four representative conductor classes in controlled conditions. Overhead transmission lines use bare aluminum conductor strands wrapped around a steel core strands to transmit electricity. The typical cable is referred to as aluminum-conductor steel-reinforced (ACSR). The outer strands are aluminum, chosen for its conductivity, low weight, and low cost. The center strand is of steel for the strength required to support the weight without stretching the aluminum due to its ductility. The power density of a transmission corridor has been directly increased by increasing the voltage level. Transmission voltages have increased from 115-kV to 765- kV over the past 80 years. In the United States, further increasing the voltage level is not feasible at this point in time, so in order to further increase the power density of a transmission corridor, conductor designs that increase the current carrying capability have been examined. One of the key limiting factors in the design of a transmission line is the conductor sag which determines the clearance of the conductor above ground or underlying structures needed for electrical safety. Increasing the current carrying capability of a conductor increases the joule heating in the conductor which increases the conductor sag. A conductor designed for high-temperature and lowsag operation requires an engineered modification of the conductor materials. To make an advanced cable, the 3M Company solution has been the development of a composite conductor consisting of Nextel ceramic fibers to replace the steel core and

  16. Demethoxycurcumin is a potent inhibitor of P-type ATPases from diverse kingdoms of life

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Sehgal, Pankaj; Thanh Tung, Truong

    2016-01-01

    the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site...

  17. Room temperature deposition of amorphous p-type CuFeO2 and ...

    Indian Academy of Sciences (India)

    fabrication of CuFeO2/n-Si heterojunction by RF sputtering method. TAO ZHU1 ... Transparent conducting amorphous p-type CuFeO2 (CFO) thin film was prepared by radio-frequency ... Delafossite oxides CuMO2 (M is trivalent cation, such as.

  18. Room temperature deposition of amorphous p-type CuFeO2 and ...

    Indian Academy of Sciences (India)

    2Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences, Hefei 230031, China. 3University of Science and Technology of China, Hefei 230026, China. MS received 14 October 2015; accepted 28 December 2015. Abstract. Transparent conducting amorphous p-type CuFeO2 (CFO) thin film was prepared by ...

  19. Theory of Persistent, P-Type, Metallic Conduction in C-GeTe

    National Research Council Canada - National Science Library

    Edwards, Arthur H; Pineda, Andrew C; Schultz, Peter A; Martin, Marcus G; Thompson, Aidan P; Hjalmarson, Harold P

    2005-01-01

    .... However, it always displays p-type metallic conduction. This behavior is also observed in other chalcogenide materials, including Ge2Sb2Te5, commonly used for optically and electrically switched, non-volatile memory, and so is or great interest...

  20. Tetrahydrocarbazoles are a novel class of potent P-type ATPase inhibitors with antifungal activity

    DEFF Research Database (Denmark)

    Bublitz, Maike; Kjellerup, Lasse; Cohrt, Karen O.Hanlon

    2018-01-01

    We have identified a series of tetrahydrocarbazoles as novel P-type ATPase inhibitors. Using a set of rationally designed analogues, we have analyzed their structure-activity relationship using functional assays, crystallographic data and computational modeling. We found that tetrahydrocarbazoles...

  1. Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors

    KAUST Repository

    Caraveo-Frescas, J. A.; Alshareef, Husam N.

    2013-01-01

    p-type tin monoxide (SnO) nanowire field-effect transistors with stable enhancement mode behavior and record performance are demonstrated at 160 °C. The nanowire transistors exhibit the highest field-effect hole mobility (10.83 cm2 V−1 s−1) of any p

  2. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.; Kahaly, M. Upadhyay; Cheng, Yingchun; Schwingenschlö gl, Udo

    2012-01-01

    deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition

  3. Nanoscale Cross-Point Resistive Switching Memory Comprising p-Type SnO Bilayers

    KAUST Repository

    Hota, Mrinal Kanti; Hedhili, Mohamed N.; Wang, Qingxiao; Melnikov, Vasily; Mohammed, Omar F.; Alshareef, Husam N.

    2015-01-01

    Reproducible low-voltage bipolar resistive switching is reported in bilayer structures of p-type SnO films. Specifically, a bilayer homojunction comprising SnOx (oxygen-rich) and SnOy (oxygen-deficient) in nanoscale cross-point (300 × 300 nm2

  4. Characterization of 3D-DDTC detectors on p-type substrates

    CERN Document Server

    Betta, G -F Dalla; Bosisio, Luciano; Darbo, Giovanni; Gabos, Paolo; Gemme, Claudia; Koehler, Michael; La Rosa, Alessandro; Parzefall, Ulrich; Pernegger, Heinz; Piemonte, Claudio; Povoli, Marco; Rachevskaia, Irina; Ronchin, Sabina; Wiik, Liv; Zoboli, Aanrea; Zorzi, Nicola

    2009-01-01

    We report on the electrical and functional characterization of 3D Double-side, Double-Type-Column (3D- DDTC) detectors fabricated on p-type substrates. Results relevant to detectors in the diode, strip and pixel configurations are presented, and demonstrate a clear improvement in the charge collection performance compared to the first prototypes of these detectors.

  5. P-type silicon surface barrier detector used for x-ray dosimetry

    International Nuclear Information System (INIS)

    Yamamoto, Hisao; Hatakeyama, Satoru; Norimura, Toshiyuki; Tsuchiya, Takehiko

    1983-01-01

    Responses to X-rays of a P-type surface barrier detector fabricated in our laboratory were studied, taking into consideration the dependence on the temperature in order to examine its applicability to dosimetry of short-range radiation. The study was also made in the case of N-type surface barrier detector. At room temperature, the short-circuit current increased linearly with exposure dose rate (15 - 50 R/min) for N- and P-type detectors. The open-circuit voltage showed a nonlinear dependence. With increasing temperature, the short-circuit current for the N-type detector was approximately constant up to 30 0 C and then decreased, though the open-circuit voltage decreased linearly. For the P- type detector, both open-circuit voltage and short-circuit current decreased almost linearly with increasing temperature. While a P-type detector is still open to some improvements, these results indicate that it can be used as a dosimeter. (author)

  6. Structure and mechanism of Zn2+-transporting P-type ATPases

    DEFF Research Database (Denmark)

    Wang, Kaituo; Sitsel, Oleg; Meloni, Gabriele

    2014-01-01

    Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis1. In prokaryotes and photosynthetic eukaryotes, Zn2+-transporting P-type ATPases of class IB (Znt...

  7. Electrical Properties Of Amorphous Selenium (aSe)/p-Type Silicon ...

    African Journals Online (AJOL)

    aSe) on four chemically etched p-type silicon crystals (pSi) each of 5Ω-cm resistivity and carrier concentration of 2.8x1015cm-3. Two of the pSi crystals have surface orientation of (111) while the other two crystals have (100) surface orientation.

  8. Beyond the Beat: Modelling Intentions in a Virtual Conductor

    NARCIS (Netherlands)

    ter Maat, Mark; Ebbers, Rob M.; Reidsma, Dennis; Nijholt, Antinus

    We describe our research on designing and implementing a Virtual Conductor. That is, a virtual human (embodied agent) that acts like a human conductor in its interaction with a real, human orchestra. We reported previously on a first version that used a digital musical score to lead an orchestra.

  9. Elastically stretchable thin film conductors on an elastomeric substrate

    Science.gov (United States)

    Jones Harris, Joyelle Elizabeth

    Imagine a large, flat screen television that can be rolled into a small cylinder after purchase in the store and then unrolled and mounted onto the wall of a home. The electronic devices within the television must be able to withstand large deformation and tensile strain. Consider a robot that is covered with an electronic skin that simulates human skin. The skin would enable the machine to lift an elderly person with care and sensitivity. The skin will endure repeated deformation with the highest tensile strains being experienced at the robot's joints. These applications and many others will benefit from stretchable electronic circuitry. While several different methods have been employed to create stretchable electronics, all methods use a common tool -- stretchable conductors. Therefore, the goal of this thesis work was to fabricate elastically stretchable conductors that can be used in stretchable electronics. We deposited Au thin films on an elastomeric substrate, and the resulting conductors remained electrically continuous when stretched by 30% and more. We developed photolithographic processes that can be used to pattern elastically stretchable conductors with a 10 mum resolution. We fabricated bi-level stretchable conductors that are separated by an elastomeric insulator and are electrically connected through via holes in the insulator. We applied our bi-level conductors to create a stretchable resistor-inductor-capacitor (RLC) circuit with a tunable resonant frequency. We also used stretchable conductors to measure action potentials in biological samples. This thesis describes the fabrication and application of our elastically stretchable conductors.

  10. 21 CFR 868.1920 - Esophageal stethoscope with electrical conductors.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Esophageal stethoscope with electrical conductors. 868.1920 Section 868.1920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... stethoscope with electrical conductors. (a) Identification. An esophageal stethoscope with electrical...

  11. The Identification of Conductor-Distinguished Functions of Conducting

    Science.gov (United States)

    Gumm, Alan J.; Battersby, Sharyn L.; Simon, Kathryn L.; Shankles, Andrew E.

    2011-01-01

    The purpose of the present study was to identify whether conductors distinguish functions of conducting similarly to functions implied in previous research. A sample of 84 conductors with a full range of experience levels (M = 9.8) and of a full range of large ensemble types and ensemble age levels rated how much they pay attention to 82…

  12. Overcurrent experiments on HTS tape and cable conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Jensen, Kim Høj; Træholt, Chresten

    2001-01-01

    their critical current. In this light, it is important to investigate the response of HTS tapes and cable conductors to overcurrents several times the critical current. A number of experiments have been performed on HTS tapes and cable conductors, with currents up to 20 times the critical current. During...... overcurrent experiments, the voltage, and the temperature were measured as functions of time in order to investigate the dynamic behavior of the HTS tape and cable conductor. After each experiment, damage to the superconductors was assessed by measuring the critical current. Preliminary results show...... that within seconds an HTS tape (critical current=17 A) heats above room temperature with an overcurrent larger than 140 A. Similar overcurrent experiments showed that a HTS cable conductor could sustain damage with overcurrents exceeding 10 times the critical current of the cable conductor....

  13. LTS and HTS high current conductor development for DEMO

    International Nuclear Information System (INIS)

    Bruzzone, Pierluigi; Sedlak, Kamil; Uglietti, Davide; Bykovsky, Nikolay; Muzzi, Luigi; De Marzi, Gainluca; Celentano, Giuseppe; Della Corte, Antonio; Turtù, Simonetta; Seri, Massimo

    2015-01-01

    Highlights: • Design and R&D for DEMO TF conductors. • Wind&react vs. react&wind options for Nb_3Sn high grade TF conductors. • Progress in the manufacture of short length Nb_3Sn proptotypes. • Design and prototype manufacture for high current HTS cabled conductors. - Abstract: The large size of the magnets for DEMO calls for very large operating current in the forced flow conductor. A plain extrapolation from the superconductors in use for ITER is not adequate to fulfill the technical and cost requirements. The proposed DEMO TF magnets is a graded winding using both Nb_3Sn and NbTi conductors, with operating current of 82 kA @ 13.6 T peak field. Two Nb_3Sn prototypes are being built in 2014 reflecting the two approaches suggested by CRPP (react&wind method) and ENEA (wind&react method). The Nb_3Sn strand (overall 200 kg) has been procured at technical specification similar to ITER. Both the Nb_3Sn strand and the high RRR, Cr plated copper wire (400 kg) have been delivered. The cabling trials are carried out at TRATOS Cavi using equipment relevant for long length production. The completion of the manufacture of the two 20 m long prototypes is expected in the end of 2014 and their test is planned in 2015 at CRPP. In the scope of a long term technology development, high current HTS conductors are built at CRPP and ENEA. A DEMO-class prototype conductor is developed and assembled at CRPP: it is a flat cable composed of 20 twisted stacks of coated conductor tape soldered into copper shells. The 10 kA conductor developed at ENEA consists of stacks of coated conductor tape inserted into a slotted and twisted Al core, with a central cooling channel. Samples have been manufactured in industrial environment and the scalability of the process to long production lengths has been proven.

  14. Irreversible properties of YBCO coated conductors

    International Nuclear Information System (INIS)

    Vostner, A.

    2001-02-01

    Over the past few years substantial efforts were made to optimize the fabrication techniques of various high temperature superconductors for commercial applications. In addition to Bi-2223 tapes, Y-123 coated conductors have the potential for large-scale production and are considered as the second generation of superconducting 'wires' for high current applications. This work reports on magnetic and transport current investigations of Y-123 thick films deposited on either single crystalline substrates by liquid phase epitaxy (LPE) or on metallic substrates by pulsed laser deposition (PLD). At the beginning, a short introduction of the general idea of a coated conductor and of the different production techniques is presented, followed by a description of the different experimental set-ups and the evaluation methods. The main part starts with the results obtained from SQUID magnetometry and ac-susceptibility measurements including the transition temperatures T c , the field dependence of the magnetic critical current densities and the irreversibility lines. In addition, some issues concerning the granular structure and the inter- and intragranular current distribution of the superconducting films are discussed. The investigations by transport currents are focused on the behavior of the application relevant irreversible parameters. These are the angular and the field dependence of the critical transport current densities at 77 and 60 K, as well as the temperature dependence of the irreversibility fields up to 6 T. To gain more insight into the defect structure of the films, neutron irradiation studies were performed on some samples. The introduction of these artificial pinning centers causes large enhancements of the magnetic J c in LPE specimens for the field parallel to the c-axis (H//c) at higher temperatures and magnetic fields. The granular structure of the samples does not change up to the highest neutron fluences. However, the enhancements of the transport J c

  15. Local structure of gallate proton conductors

    Energy Technology Data Exchange (ETDEWEB)

    Giannici, F; Messana, D; Martorana, A [Universita degli Studi di Palermo, Dipartimento di Chimica Inorganica ed Analitica, Viale delle Scienze, I-90128 Palermo (Italy); Longo, A [CNR, Istituto per lo studio dei materiali nanostrutturati, Via Ugo La Malfa 153, I-90146 Palermo (Italy); Sciortino, L, E-mail: sciortino@pa.ismn.cnr.i

    2009-11-15

    Lanthanum barium gallate proton conductors are based on disconnected GaO{sub 4} groups. The insertion of hydroxyls in the LaBaGaO{sub 4} network proceeds through self-doping with Ba{sup 2+}, consequent O{sup 2-} vacancy formation to fulfill charge neutrality. With a structural investigation on self-doped LaBaGaO{sub 4} oxides using synchrotron XRD and EXAFS on the Ga K-edge, we find that: (a) the GaO{sub 4} tetrahedra retain their size throughout the whole series; (b) the GaO{sub 4} tetrahedra rotate as rigid bodies on hydration, leading to the formation of a network of shorter O-O configurations that are stabilized by hydrogen bonds; (c) contraction of the lattice occurs along the a unit cell axis, as a consequence of an overall structural rearrangement of the hydrated solid.

  16. Local structure of gallate proton conductors

    International Nuclear Information System (INIS)

    Giannici, F; Messana, D; Martorana, A; Longo, A; Sciortino, L

    2009-01-01

    Lanthanum barium gallate proton conductors are based on disconnected GaO 4 groups. The insertion of hydroxyls in the LaBaGaO 4 network proceeds through self-doping with Ba 2+ , consequent O 2- vacancy formation to fulfill charge neutrality. With a structural investigation on self-doped LaBaGaO 4 oxides using synchrotron XRD and EXAFS on the Ga K-edge, we find that: (a) the GaO 4 tetrahedra retain their size throughout the whole series; (b) the GaO 4 tetrahedra rotate as rigid bodies on hydration, leading to the formation of a network of shorter O-O configurations that are stabilized by hydrogen bonds; (c) contraction of the lattice occurs along the a unit cell axis, as a consequence of an overall structural rearrangement of the hydrated solid.

  17. Local structure of gallate proton conductors

    Science.gov (United States)

    Giannici, F.; Messana, D.; Longo, A.; Sciortino, L.; Martorana, A.

    2009-11-01

    Lanthanum barium gallate proton conductors are based on disconnected GaO4 groups. The insertion of hydroxyls in the LaBaGaO4 network proceeds through self-doping with Ba2+, consequent O2- vacancy formation to fulfill charge neutrality. With a structural investigation on self-doped LaBaGaO4 oxides using synchrotron XRD and EXAFS on the Ga K-edge, we find that: (a) the GaO4 tetrahedra retain their size throughout the whole series; (b) the GaO4 tetrahedra rotate as rigid bodies on hydration, leading to the formation of a network of shorter O-O configurations that are stabilized by hydrogen bonds; (c) contraction of the lattice occurs along the a unit cell axis, as a consequence of an overall structural rearrangement of the hydrated solid.

  18. [Trophoblast: conductor of the maternal immune tolerance].

    Science.gov (United States)

    Mesdag, V; Salzet, M; Vinatier, D

    2014-11-01

    Pregnancy is a temporary semi-allograft that survives for nine months. The importance of this event for the survival of the species justifies several tolerance mechanisms that are put into place at the beginning of pregnancy, some of which occur even at the time of implantation. The description of these mechanisms underlines the leadership of the trophoblast. The trophoblast is the conductor of the events, protects himself by expressing specific antigens and regulates the environment of the decidua according to the calendar of the events of the pregnancy The trophoblast and the decidual environment attract the effectors of immunity, almost all present in the decidua. The immunological atmosphere of the decidua evolves during the pregnancy modulating the level of activation of the immunological cells and adapting the level of activation to the stage of the pregnancy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. ELECTRODYNAMIC STABILITY COMPUTATIONS FOR FLEXIBLE CONDUCTORS OF THE AERIAL LINES

    Directory of Open Access Journals (Sweden)

    I. I. Sergey

    2015-01-01

    Full Text Available In aerial transmission lines aluminium multiwire conductors are in use. Owing to their flexible design the electrodynamic effect of short circuit currents may lead to intolerable mutual rendezvous and even cross-whipping of the phase conductors. The increasing motion of the conductors caused by effect of the short-circuit electrodynamic force impulse is accompanied by the dynamic load impact affecting the conductors, insulating and supporting constructions of the aerial lines. Intensity of the short-circuit currents electrodynamic impact on the flexible conductors depends on the short circuit current magnitude. For research into electrodynamic endurance of the conductors of the aerial lines located at the vertices of arbitrary triangle with spans of a large length, the authors assume the conductor analytical model in the form of a flexible tensile thread whose mass is distributed evenly lengthwise the conductor. With this analytical model, by the action of the imposed forces the conductor assumes the form conditioned by the diagram of applied external forces, and resists neither bending nor torsion. The initial conditions calculation task reduces to solving the flexible thread statics equations. The law of motion of the conductor marginal points comes out of the conjoint solution of dynamic equations of the conductor and structural components of the areal electric power lines. Based on the proposed algorithm, the researchers of the Chair of the Electric Power Stations of BNTU developed a software program LINEDYS+, which in its characteristics yields to no foreign analogs, e. g. SAMSEF. To calculate the initial conditions they modified a software program computing the flexible conductor mechanics named MR 21. The conductor short-circuit electrodynamic interaction estimation considers structural elements of the areal lines, ice and wind loads, objective parameters of the short circuit. The software programs are accommodated with the simple and

  20. p-type ZnS:N nanowires: Low-temperature solvothermal doping and optoelectronic properties

    International Nuclear Information System (INIS)

    Wang, Ming-Zheng; Xie, Wei-Jie; Hu, Han; Yu, Yong-Qiang; Wu, Chun-Yan; Wang, Li; Luo, Lin-Bao

    2013-01-01

    Nitrogen doped p-type ZnS nanowires (NWs) were realized using thermal decomposition of triethylamine at a mild temperature. Field-effect transistors made from individual ZnS:N NWs revealed typical p-type conductivity behavior, with a hole mobility of 3.41 cm 2 V −1 s −1 and a hole concentration of 1.67 × 10 17  cm −3 , respectively. Further analysis found that the ZnS:N NW is sensitive to UV light irradiation with high responsivity, photoconductive gain, and good spectral selectivity. The totality of this study suggests that the solvothermal doping method is highly feasible to dope one dimensional semiconductor nanostructures for optoelectronic devices application

  1. Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers.

    Science.gov (United States)

    Wei, Chun-You; Lin, Chu-Hsuan; Hsiao, Hao-Tse; Yang, Po-Chuan; Wang, Chih-Ming; Pan, Yen-Chih

    2013-11-22

    Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT) structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency of cells based on p-type single-crystalline Si wafers could provide broader options for the development of HIT solar cells. In this study, we varied the thickness of intrinsic hydrogenated amorphous Si layer to improve the efficiency of HIT solar cells on p-type Si wafers.

  2. P-type Al-doped Cr-deficient CrN thin films for thermoelectrics

    Science.gov (United States)

    le Febvrier, Arnaud; Van Nong, Ngo; Abadias, Gregory; Eklund, Per

    2018-05-01

    Thermoelectric properties of chromium nitride (CrN)-based films grown on c-plane sapphire by dc reactive magnetron sputtering were investigated. In this work, aluminum doping was introduced in CrN (degenerate n-type semiconductor) by co-deposition. Under the present deposition conditions, over-stoichiometry in nitrogen (CrN1+δ) rock-salt structure is obtained. A p-type conduction is observed with nitrogen-rich CrN combined with aluminum doping. The Cr0.96Al0.04N1.17 film exhibited a high Seebeck coefficient and a sufficient power factor at 300 °C. These results are a starting point for designing p-type/n-type thermoelectric materials based on chromium nitride films, which are cheap and routinely grown on the industrial scale.

  3. In and out of the cation pumps: P-type ATPase structure revisited

    DEFF Research Database (Denmark)

    Bublitz, Maike; Poulsen, Hanne; Morth, Jens Preben

    2010-01-01

    . The marked increment during the last three years in the number of crystal structures of P-type ATPases has greatly improved our understanding of the similarities and differences of pumps with different ion specificities, since the structures of the Ca2+-ATPase, the Na+,K+-ATPase and the H+-ATPase can now......Active transport across membranes is a crucial requirement for life. P-type ATPases build up electrochemical gradients at the expense of ATP by forming and splitting a covalent phosphoenzyme intermediate, coupled to conformational changes in the transmembrane section where the ions are translocated...... be compared directly. Mechanisms for ion gating, charge neutralization and backflow prevention are starting to emerge from comparative structural analysis; and in combination with functional studies of mutated pumps this provides a framework for speculating on how the ions are bound and released as well...

  4. Enhancement of p-type mobility in tin monoxide by native defects

    KAUST Repository

    Granato, D. B.

    2013-05-31

    Transparent p-type materials with good mobility are needed to build completely transparent p-n junctions. Tin monoxide (SnO) is a promising candidate. A recent study indicates great enhancement of the hole mobility of SnO grown in Sn-rich environment [E. Fortunato et al., Appl. Phys. Lett. 97, 052105 (2010)]. Because such an environment makes the formation of defects very likely, we study defect effects on the electronic structure to explain the increased mobility. We find that Sn interstitials and O vacancies modify the valence band, inducing higher contributions of the delocalized Sn 5p orbitals as compared to the localized O 2p orbitals, thus increasing the mobility. This mechanism of valence band modification paves the way to a systematic improvement of transparent p-type semiconductors.

  5. Growth and characteristics of p-type doped GaAs nanowire

    Science.gov (United States)

    Li, Bang; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-05-01

    The growth of p-type GaAs nanowires (NWs) on GaAs (111) B substrates by metal-organic chemical vapor deposition (MOCVD) has been systematically investigated as a function of diethyl zinc (DEZn) flow. The growth rate of GaAs NWs was slightly improved by Zn-doping and kink is observed under high DEZn flow. In addition, the I–V curves of GaAs NWs has been measured and the p-type dope concentration under the II/III ratio of 0.013 and 0.038 approximated to 1019–1020 cm‑3. Project supported by the National Natural Science Foundation of China (Nos. 61376019, 61504010, 61774021) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Nos. IPOC2017ZT02, IPOC2017ZZ01).

  6. A Density Functional Theory Study of Doped Tin Monoxide as a Transparent p-type Semiconductor

    KAUST Repository

    Bianchi Granato, Danilo

    2012-05-01

    In the pursuit of enhancing the electronic properties of transparent p-type semiconductors, this work uses density functional theory to study the effects of doping tin monoxide with nitrogen, antimony, yttrium and lanthanum. An overview of the theoretical concepts and a detailed description of the methods employed are given, including a discussion about the correction scheme for charged defects proposed by Freysoldt and others [Freysoldt 2009]. Analysis of the formation energies of the defects points out that nitrogen substitutes an oxygen atom and does not provide charge carriers. On the other hand, antimony, yttrium, and lanthanum substitute a tin atom and donate n-type carriers. Study of the band structure and density of states indicates that yttrium and lanthanum improves the hole mobility. Present results are in good agreement with available experimental works and help to improve the understanding on how to engineer transparent p-type materials with higher hole mobilities.

  7. Effect of compressive stress on stability of N-doped p-type ZnO

    International Nuclear Information System (INIS)

    Chen Xingyou; Zhang Zhenzhong; Jiang Mingming; Wang Shuangpeng; Li Binghui; Shan Chongxin; Liu Lei; Zhao Dongxu; Shen Dezhen; Yao Bin

    2011-01-01

    Nitrogen-doped p-type zinc oxide (p-ZnO:N) thin films were fabricated on a-/c-plane sapphire (a-/c-Al 2 O 3 ) by plasma-assisted molecular beam epitaxy. Hall-effect measurements show that the p-type ZnO:N on c-Al 2 O 3 degenerated into n-type after a preservation time; however, the one grown on a-Al 2 O 3 showed good stability. The conversion of conductivity in the one grown on c-Al 2 O 3 ascribed to the faster disappearance of N O and the growing N 2(O) , which is demonstrated by x-ray photoelectron spectroscopy (XPS). Compressive stress, caused by lattice misfit, was revealed by Raman spectra and optical absorption spectra, and it was regarded as the root of the instability in ZnO:N.

  8. Highly conducting p-type nanocrystalline silicon thin films preparation without additional hydrogen dilution

    Science.gov (United States)

    Patra, Chandralina; Das, Debajyoti

    2018-04-01

    Boron doped nanocrystalline silicon thin film has been successfully prepared at a low substrate temperature (250 °C) in planar inductively coupled RF (13.56 MHz) plasma CVD, without any additional hydrogen dilution. The effect of B2H6 flow rate on structural and electrical properties of the films has been studied. The p-type nc-Si:H films prepared at 5 ≤ B2H6 (sccm) ≤ 20 retains considerable amount of nanocrystallites (˜80 %) with high conductivity ˜101 S cm-1 and dominant crystallographic orientation which has been correlated with the associated increased ultra- nanocrystalline component in the network. Such properties together make the material significantly effective for utilization as p-type emitter layer in heterojunction nc-Si solar cells.

  9. Variation of minority charge carrier lifetime in high-resistance p-type silicon under irradiation

    International Nuclear Information System (INIS)

    Basheleishvili, Z.V.; Garnyk, V.S.; Gorin, S.N.; Pagava, T.A.

    1984-01-01

    The minority carrier lifetime (tau) variation was studied in the process of p-type silicon bombardment with fast 8 MeV electrons. The irradiation and all measurements were carried out at room temperature. The tau quantity was measured by the photoconductivity attenuation method at a low injection level 20% measurement error; the resistivity was measured by the four-probe method (10% error). The resistivity and minority charge carrier lifetime tau are shown to increase with the exposure dose. It is supposed that as radiation dose increases, the rearrangement of the centres responsible for reducing the lifetime occurs and results in a tau increase in the material being irradiated, however the tau value observed in the original samples is not attained. The restoration of the minority carrier lifetime in p-type high-resistance silicon with a growing exposure dose might proceed due to reduction in the free carrier concentration

  10. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei

    2009-03-11

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive atomic force microscope (AFM) in contact mode. The output voltage pulse is generated when the tip contacts the stretched side (positive piezoelectric potential side) of the NW. In contrast, the n-type ZnO NW produces negative output voltage when scanned by the AFM tip, and the output voltage pulse is generated when the tip contacts the compressed side (negative potential side) of the NW. In reference to theoretical simulation, these experimentally observed phenomena have been systematically explained based on the mechanism proposed for a nanogenerator. © 2009 American Chemical Society.

  11. CCE measurements and annealing studies on proton-irradiated p-type MCz silicon diodes

    CERN Document Server

    Hoedlmoser, H; Köhler, M; Nordlund, H

    2007-01-01

    Magnetic Czochralski (MCz) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of p-type MCz Silicon diodes irradiated with protons up to a fluence of has been performed by means of Charge Collection Efficiency (CCE) measurements as well as standard CV/IV characterizations. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. A subsequent annealing study of the irradiated detectors shows an increase in effective doping concentration and a decrease in the leakage current, whereas the CCE remains basically unchanged. Two different series of detectors have been compared differing in the implantation dose of p-spray isolation as well as effective doping concentration (Neff) of the p-type bulk presumably due to a difference in thermal donor (TD) activation during processing. The series with the higher concentration of TDs shows a delayed reverse annealing of Neff after irradia...

  12. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-01-01

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  13. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  14. Charge collection measurements with p-type Magnetic Czochralski silicon single pad detectors

    International Nuclear Information System (INIS)

    Tosi, C.; Bruzzi, M.; Macchiolo, A.; Scaringella, M.; Petterson, M.K.; Sadrozinski, H.F.-W.; Betancourt, C.; Manna, N.; Creanza, D.; Boscardin, M.; Piemonte, C.; Zorzi, N.; Borrello, L.; Messineo, A.

    2007-01-01

    The charge collected from beta source particles in single pad detectors produced on p-type Magnetic Czochralski (MCz) silicon wafers has been measured before and after irradiation with 26 MeV protons. After a 1 MeV neutron equivalent fluence of 1x10 15 cm -2 the collected charge is reduced to 77% at bias voltages below 900 V. This result is compared with previous results from charge collection measurements

  15. Guided Growth of Horizontal p-Type ZnTe Nanowires

    Science.gov (United States)

    2016-01-01

    A major challenge toward large-scale integration of nanowires is the control over their alignment and position. A possible solution to this challenge is the guided growth process, which enables the synthesis of well-aligned horizontal nanowires that grow according to specific epitaxial or graphoepitaxial relations with the substrate. However, the guided growth of horizontal nanowires was demonstrated for a limited number of materials, most of which exhibit unintentional n-type behavior. Here we demonstrate the vapor–liquid–solid growth of guided horizontal ZnTe nanowires and nanowalls displaying p-type behavior on four different planes of sapphire. The growth directions of the nanowires are determined by epitaxial relations between the nanowires and the substrate or by a graphoepitaxial effect that guides their growth along nanogrooves or nanosteps along the surface. We characterized the crystallographic orientations and elemental composition of the nanowires using transmission electron microscopy and photoluminescence. The optoelectronic and electronic properties of the nanowires were studied by fabricating photodetectors and top-gate thin film transistors. These measurements showed that the guided ZnTe nanowires are p-type semiconductors and are photoconductive in the visible range. The guided growth of horizontal p-type nanowires opens up the possibility of parallel nanowire integration into functional systems with a variety of potential applications not available by other means. PMID:27885331

  16. Doping process of p-type GaN nanowires: A first principle study

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Diao, Yu; Feng, Shu

    2017-10-01

    The process of p-type doping for GaN nanowires is investigated using calculations starting from first principles. The influence of different doping elements, sites, types, and concentrations is discussed. Results suggest that Mg is an optimal dopant when compared to Be and Zn due to its stronger stability, whereas Be atoms are more inclined to exist in the interspace of a nanowire. Interstitially-doped GaN nanowires show notable n-type conductivity, and thus, Be is not a suitable dopant, which is to be expected since systems with inner substitutional dopants are more favorable than those with surface substitutions. Both interstitial and substitutional doping affect the atomic structure near dopants and induce charge transfer between the dopants and adjacent atoms. By altering doping sites and concentrations, nanowire atomic structures remain nearly constant. Substitutional doping models show p-type conductivity, and Mg-doped nanowires with doping concentrations of 4% showing the strongest p-type conductivity. All doping configurations are direct bandgap semiconductors. This study is expected to direct the preparation of high-quality GaN nanowires.

  17. Prospects and limitations for p-type doping in boron nitride polymorphs

    Science.gov (United States)

    Weston, Leigh; van de Walle, Chris G.

    Using first-principles calculations, we examine the potential for p-type doping of BN polymorphs via substitutional impurities. Based on density functional theory with a hybrid functional, our calculations reveal that group-IV elements (C, Si) substituting at the N site result in acceptor levels that are more than 1 eV above the valence-band maximum in all of the BN polymorphs, and hence far too deep to allow for p-type doping. On the other hand, group-II elements (Be, Mg) substituting at the B site lead to shallower acceptor levels. However, for the ground-state hexagonal phase (h-BN), we show that p-type doping at the B site is inhibited by the formation of hole polarons. Our calculations reveal that hole localization is intrinsic to sp2 bonded h-BN, and this places fundamental limits on hole conduction in this material. In contrast, the sp3 bonded wurtzite (w-BN) and cubic (c-BN) polymorphs are capable of forming shallow acceptor levels. For Be dopants, the acceptor ionization energies are 0.31 eV and 0.24 eV for w-BN and c-BN, respectively; these values are only slightly larger than the ionization energy of the Mg acceptor in GaN. This work was supported by NSF.

  18. Record mobility in transparent p-type tin monoxide films and devices by phase engineering

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso

    2013-06-25

    Here, we report the fabrication of nanoscale (15 nm) fully transparent p-type SnO thin film transistors (TFT) at temperatures as low as 180 C with record device performance. Specifically, by carefully controlling the process conditions, we have developed SnO thin films with a Hall mobility of 18.71 cm2 V-1 s-1 and fabricated TFT devices with a linear field-effect mobility of 6.75 cm2 V-1 s -1 and 5.87 cm2 V-1 s-1 on transparent rigid and translucent flexible substrates, respectively. These values of mobility are the highest reported to date for any p-type oxide processed at this low temperature. We further demonstrate that this high mobility is realized by careful phase engineering. Specifically, we show that phase-pure SnO is not necessarily the highest mobility phase; instead, well-controlled amounts of residual metallic tin are shown to substantially increase the hole mobility. A detailed phase stability map for physical vapor deposition of nanoscale SnO is constructed for the first time for this p-type oxide. © 2013 American Chemical Society.

  19. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  20. Conductor development for the Superconducting Super Collider (SSC)

    International Nuclear Information System (INIS)

    Gregory, E.

    1988-01-01

    This review investigates the developments in fine filamentary materials over the last three years and traces how the relations between the magnet requirements and property improvements have fashioned SSC conductor specifications. The review emphasizes factors that affect filament nonuniformity and the overall quality of the product. The elimination of proximity effect-induced coupling in SCC type conductors, by introducing small percentages of manganese into the copper between the filaments, is discussed. Modification of a Fermi kit has produced materials with improved critical current densities. The possibility of using this approach to make conductors for accelerator magnets is assessed

  1. Electrical circuit modeling of conductors with skin effect

    International Nuclear Information System (INIS)

    Kerst, D.W.; Sprott, J.C.

    1986-01-01

    The electrical impedance of a lossy conductor is a complicated function of time (or frequency) because of the skin effect. By solving the diffusion equation for magnetic fields in conductors of several prototypical shapes, the impedance can be calculated as a function of time for a step function of current. The solution suggests an electrical circuit representation that allows calculation of time-dependent voltages and currents of arbitrary waveforms. A technique using an operational amplifier to determine the current in such a conductor by measuring some external voltage is described. Useful analytical approximations to the results are derived

  2. General relativistic galvano-gravitomagnetic effect in current carrying conductors

    International Nuclear Information System (INIS)

    Ahmedov, B.J.

    1998-11-01

    The analogy between general relativity and electromagnetism suggests that there is a galvano-gravitomagnetic effect, which is the gravitational analogue of the Hall effect. This new effect takes place when a current carrying conductor is placed in a gravitomagnetic field and the conduction electrons moving inside the conductor are deflected transversally with respect to the current flow. In connection with this galvano-gravitomagnetic effect, we explore the possibility of using current carrying conductors for detecting the gravitomagnetic field of the Earth. (author)

  3. The first DC performance test and analysis of CC conductor short sample at ASIPP conductor test facility

    International Nuclear Information System (INIS)

    Shi Yi; Wu Yu; Liu Huajun; Long Feng; Qian Li; Ren Zhibin; Li Shaolei; Liu Bo; Chen Jinglin

    2012-01-01

    Highlights: ► In this study the first DC performance experiments of ITER correction coil conductor short sample have been carried out in ASIPP test facility. ► A CC conductor short sample was fabricated and tested to confirm the capability of this test facility for qualification tests of CC conductors. ► There is no obvious impact of cycling on DC performance measurement. ► Those measured results of current sharing temperature are in agreement with the expected results from strand scaling - Abstract: The first DC performance experiments of ITER correction coil (CC) conductor short sample have been carried out in the conductor test facility of Institute of Plasma Physics, CAS (ASIPP) in January this year. Those experiments aim to investigate the DC performance of ITER CC conductor. The tested conductor short sample is bended as a half circle with the diameter of 270 mm to meet the background magnetic field shape. The half circle part of sample is longer than the final twist pitch. The current sharing temperature (T cs ) in the 3.86 T external magnetic field (B ex ), ≤12 kA could be measured including the critical current (I c ) run. There is no obvious impact of 1000 cycles on DC performance. Those measured T cs results are in agreement with the expected results from strand scaling.

  4. Loss and Inductance Investigation in Superconducting Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Søren Krüger; Tønnesen, Ole; Træholt, Chresten

    1999-01-01

    An important parameter in the design and optimization of a superconducting cable conductor is the control of the current distribution among single tapes and layers. This distribution is to a large degree determined by inductances, since the resistances are low. The self and mutual inductances...... of transport current and current distribution.This presentation is based on a number of experiments performed on prototype superconducting cable conductors. The critical current (1uV/cm) of the conductor at 77K was 1590 A (cable #1) and 3240 A (cable #2) respectively.At an rms current of 2 kA (50 Hz) the AC......-loss was measured on cable #2 to 0.6W/mxphase. This is, to our knowledge, the lowest AC-loss (at 2kA and 77K) of a high temperature superconducting cable conductor reported so far....

  5. Materials Science of High-Temperature Superconducting Coated Conductor Materials

    National Research Council Canada - National Science Library

    Beasley, M. R

    2007-01-01

    This program was broadly focused on the materials science of high temperature superconducting coated conductors, which are of potential interest for application in electric power systems of interest to the Air Force...

  6. Gravitomagnetic effects in conductor in applied magnetic field

    International Nuclear Information System (INIS)

    Ahmedov, B.J.; Karim, M.

    1999-11-01

    The electromagnetic measurements of general relativistic gravitomagnetic effects which can be performed within a conductor embedded in the space-time of slow rotating gravitational object in the presence of magnetic field are proposed. (author)

  7. High voltage switches having one or more floating conductor layers

    Science.gov (United States)

    Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson

    2015-11-24

    This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.

  8. Experimental and computational approaches to electrical conductor loading characteristics

    International Nuclear Information System (INIS)

    Vary, M.; Goga, V.; Paulech, J.

    2012-01-01

    This article describes cooling analyses of horizontally arranged bare electric conductor using analytical and numerical methods. Results of these analyses will be compared to the results obtained from experimental measurement. (Authors)

  9. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    International Nuclear Information System (INIS)

    Du, Juan; Xia, Congxin; Liu, Yaming; Li, Xueping; Peng, Yuting; Wei, Shuyi

    2017-01-01

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm 2 V −1 s −1 ), which is much higher than that of MoS 2 monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm 2 V −1 s −1 ), which is higher than that of MoS 2 monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm 2 V −1 s −1 , which is much higher than that of MoS 2 monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  10. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    Energy Technology Data Exchange (ETDEWEB)

    Du, Juan [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Xia, Congxin, E-mail: xiacongxin@htu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Liu, Yaming [Henan Institute of Science and Technology, Xinxiang 453003 (China); Li, Xueping [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Peng, Yuting [Department of Physics, University of Texas at Arlington, TX 76019 (United States); Wei, Shuyi [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2017-04-15

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is much higher than that of MoS{sub 2} monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is higher than that of MoS{sub 2} monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm{sup 2} V{sup −1} s{sup −1}, which is much higher than that of MoS{sub 2} monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  11. Semiconducting p-type MgNiO:Li epitaxial films fabricated by cosputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Hun; Chun, Sung Hyun; Cho, Hyung Koun [School of Advanced Materials Science and Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2013-07-15

    Li-doped ternary Mg{sub x}Ni{sub 1-x}O thin films were deposited on (0001) Al{sub 2}O{sub 3} substrates by a radio frequency (RF) magnetron cosputtering method with MgO and NiO:Li targets. The Mg mole fraction and Li content were relatively controlled by changing RF power for the MgO target over a range of 0-300 W, while the NiO:Li target was kept at 150 W. As a result, all films were epitaxially grown on (0001) Al{sub 2}O{sub 3} substrates with the relationship of [110]{sub NiO}||[1110]{sub Al2O3}, [112]{sub NiO}||[2110]{sub Al2O3} (in-plane), and [111]{sub NiO}||[0001]{sub Al2O3} (out-of-plane), and showed p-type semiconducting properties. Furthermore, from x-ray diffraction patterns, the authors found that MgO was effectively mixed with NiO:Li without structural deformation due to low lattice mismatch (0.8%) between NiO and MgO. However, the excess Li contents degraded the crystallinity of the MgNiO films. The band-gap of films was continuously shifted from 3.66 eV (339 nm) to 4.15 eV (299 nm) by the RF power of the MgO target. A visible transmittance of more than 80% was exhibited at RF powers higher than 200 W. Ultimately, the electrical resistivity of p-type MgNiO films was improved from 7.5 to 673.5 {Omega}cm, indicating that the Li-doped MgNiO films are good candidates for transparent p-type semiconductors.

  12. Thermoelectric performance of tellurium-reduced quaternary p-type lead–chalcogenide composites

    International Nuclear Information System (INIS)

    Aminorroaya Yamini, Sima; Wang, Heng; Gibbs, Zachary M.; Pei, Yanzhong; Mitchell, David R.G.; Dou, Shi Xue; Snyder, G. Jeffrey

    2014-01-01

    Graphical abstract: - Abstract: A long-standing technological challenge to the widespread application of thermoelectric generators is obtaining high-performance thermoelectric materials from abundant elements. Intensive study on PbTe alloys has resulted in a high figure of merit for the single-phase ternary PbTe–PbSe system through band structure engineering, and the low thermal conductivity achieved due to nanostructuring leads to high thermoelectric performance for ternary PbTe–PbS compounds. Recently, the single-phase p-type quaternary PbTe–PbSe–PbS alloys have been shown to provide thermoelectric performance superior to the binary and ternary lead chalcogenides. This occurs via tuning of the band structure and from an extraordinary low thermal conductivity resulting from high-contrast atomic mass solute atoms. Here, we present the thermoelectric efficiency of nanostructured p-type quaternary PbTe–PbSe–PbS composites and compare the results with corresponding single-phase quaternary lead chalcogenide alloys. We demonstrate that the very low lattice thermal conductivity achieved is attributed to phonon scattering at high-contrast atomic mass solute atoms rather than from the contribution of secondary phases. This results in a thermoelectric efficiency of ∼1.4 over a wide temperature range (650–850 K) in a p-type quaternary (PbTe) 0.65 (PbSe) 0.1 (PbS) 0.25 composite that is lower than that of single-phase (PbTe) 0.85 (PbSe) 0.1 (PbS) 0.05 alloy without secondary phases

  13. Guanidinium nonaflate as a solid-state proton conductor

    DEFF Research Database (Denmark)

    Chen, Xiaoli; Tang, Haolin; Putzeys, Tristan

    2016-01-01

    Protic organic ionic plastic crystals (POIPCs) are a type of novel solid-state proton conductors. In this work, guanidinium nonaflate ([Gdm-H][NfO]) is reported to be a model POIPC. Its structure-property relationship has been investigated comprehensively. Infrared analysis of [Gdm-H][NfO] and its....... In addition, POIPC-based solid-state proton conductors are also expected to find applications in sensors and other electrochemical devices....

  14. Organic Conductors: Evidence for Correlation Effects in Infrared Properties

    DEFF Research Database (Denmark)

    Jacobsen, Claus Schelde; Johannsen, Ib; Bechgaard, Klaus

    1984-01-01

    The infrared conductivities of four organic conductors with partially filled one-electron bands are compared. The behavior ranges from near Drude type in the best metal to semiconductorlike in the moderate conductor. Electron-molecular-vibration coupling effects of varying degree are seen in all...... materials. It is suggested that the combined effect of electron-electron interaction and electron-phonon interaction in producing 4kF charge-density waves is essential for interpreting the results....

  15. Chaotic Music Generation System Using Music Conductor Gesture

    OpenAIRE

    Chen, Shuai; Maeda, Yoichiro; Takahashi, Yasutake

    2013-01-01

    In the research of interactive music generation, we propose a music generation method, that the computer generates the music, under the recognition of human music conductor's gestures.In this research, the generated music is tuned by the recognized gestures for the parameters of the network of chaotic elements in real time. The music conductor's hand motions are detected by Microsoft Kinect in this system. Music theories are embedded in the algorithm, as a result, the generated music will be ...

  16. Music Conductor Gesture Recognized Interactive Music Generation System

    OpenAIRE

    CHEN, Shuai; MAEDA, Yoichiro; TAKAHASHI, Yasutake

    2012-01-01

    In the research of interactive music generation, we propose a music generation method, that the computer generates the music automatically, and then the music will be arranged under the human music conductor's gestures, before it outputs to us. In this research, the generated music is processed from chaotic sound, which is generated from the network of chaotic elements in realtime. The music conductor's hand motions are detected by Microsoft Kinect in this system. Music theories are embedded ...

  17. Spatial Analysis of Thermal Aging of Overhead Transmission Conductors

    Czech Academy of Sciences Publication Activity Database

    Musílek, P.; Heckenbergerová, Jana; Bhuiyan, M.M.I.

    2012-01-01

    Roč. 27, č. 3 (2012), s. 1196-1204 ISSN 0885-8977 Grant - others:GA AV ČR(CZ) M100300904 Source of funding: V - iné verejné zdroje Keywords : aluminium conductor steel reinforced (ACSR) conductor * hot spot * loss of tensile strength * numerical weather prediction * power transmission lines * thermal aging Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 1.519, year: 2012

  18. Tilt stability of rotating current rings with passive conductors

    International Nuclear Information System (INIS)

    Zweibel, E.G.; Pomphrey, N.

    1984-12-01

    We study the combined effects of rotation and resistive passive conductors on the stability of a rigid current in an external magnetic field. We present numerical and approximate analytical solutions to the equations of motion, which show that the ring is always tilt unstable on the resistive decay timescale of the conductors, although rotation and eddy currents may stabilize it over short times. Possible applications of our model include spheromaks which rotate or which are encircled by energetic particle rings

  19. Test and evaluation of conductors for superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schermer, R.I.; Hassenzahl, W.V.

    1976-01-01

    Pancake coils of a monolithic conductor and several different types of braid and cable, using a variety of insulating tapes and bonding resins were constructed. The coils were tested to quench in self-field at currents up to 2700 A. Results are presented for the training behavior of the various coils as compared to short-sample tests. A conductor composed of several braids or cables in parallel, which will be suitable for the in situ fabrication of large magnets is described

  20. Characteristics of accumulation of recombination centers due to irradiation of p-type Si

    International Nuclear Information System (INIS)

    Kazakevich, L.A.; Lugakov, P.F.; Filippov, I.M.

    1989-01-01

    Irradiation of Czochralski-grown p-type Si single crystals results primarily in creation of recombination-active radiation defects which give rise to a donor energy level at E v + 0.30-0.38 eV in the band gap. The ideas on the structure and mechanisms of formation of these radiation defects are continuously evolving and at present the most widely held view is that which assumes that the K centers can be carbon-oxygen-divacancy complexes or interstitial carbon-interstitial oxygen pairs. The authors investigated the recombination properties of such centers

  1. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    Directory of Open Access Journals (Sweden)

    Rafal Pietruszka

    2014-02-01

    Full Text Available Selected properties of photovoltaic (PV structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100 are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

  2. P-Type Silicon Strip Sensors for the Future CMS Tracker

    CERN Document Server

    The Tracker Group of the CMS Collaboration

    2016-01-01

    The upgrade to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at CMS. Based on these results, the collaboration has chosen to use n-in-p type strip and macro-pixel sensors and focus further investigations on the optimization of that sensor type. This paper describes the main measurement results and conclusions that motivated this decision.

  3. Electroforming-free resistive switching memory effect in transparent p-type tin monoxide

    KAUST Repository

    Hota, M. K.

    2014-04-14

    We report reproducible low bias bipolar resistive switching behavior in p-type SnO thin film devices without extra electroforming steps. The experimental results show a stable resistance ratio of more than 100 times, switching cycling performance up to 180 cycles, and data retention of more than 103 s. The conduction mechanism varied depending on the applied voltage range and resistance state of the device. The memristive switching is shown to originate from a redox phenomenon at the Al/SnO interface, and subsequent formation/rupture of conducting filaments in the bulk of the SnO layer, likely involving oxygen vacancies and Sn interstitials.

  4. Transient expression of P-type ATPases in tobacco epidermal cells

    DEFF Research Database (Denmark)

    Pedas, Lisbeth Rosager; Palmgren, Michael Broberg; Lopez Marques, Rosa Laura

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellula...... for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits....

  5. The feasibility of tunable p-type Mg doping in a GaN monolayer nanosheet

    International Nuclear Information System (INIS)

    Xia, Congxin; Peng, Yuting; Wei, Shuyi; Jia, Yu

    2013-01-01

    Based on density functional theory, the electronic structures, formation energy and transition energy level of a p-type Mg-doped GaN nanosheet are investigated. Numerical results show that the transition energy level decreases monotonously with increasing Mg doping concentration in Mg-doped GaN nanosheet systems, which is lower than that of the Mg-doped bulk GaN case. Moreover, the formation energy calculations indicate that Mg-doped GaN nanosheet structures can be realized under N-rich experimental growth conditions

  6. The development of p-type silicon detectors for the high radiation regions of the LHC

    International Nuclear Information System (INIS)

    Hanlon, M.D.L.

    1998-04-01

    This thesis describes the production and characterisation of silicon microstrip detectors and test structures on p-type substrates. An account is given of the production and full parameterisation of a p-type microstrip detector, incorporating the ATLAS-A geometry in a beam test. This detector is an AC coupled device incorporating a continuous p-stop isolation frame and polysilicon biasing and is typical of n-strip devices proposed for operation at the LHC. It was successfully read out using the FELix-128 analogue pipeline chip and a signal to noise (s/n) of 17±1 is reported, along with a spatial resolution of 14.6±0.2 μm. Diode test structures were fabricated on both high resistivity float zone material and on epitaxial material and subsequently irradiated with 24 GeV protons at the CERN PS up to a dose of (8.22±0.23) x 10 14 per cm 2 . An account of the measurement program is presented along with results on the changes in the effective doping concentration (N eff ) with irradiation and the changes in bulk current. Changes in the effective doping concentration and leakage current for high resistivity p-type material under irradiation were found to be similar to to that of n-type material. Values of α=(3.30±0.08) x 10 -17 A cm -1 for the leakage current parameter and g c =(1.20±0.05)x10 -2 cm -1 for the effective dopant introduction rate were found for this material. The epitaxial material did not perform better than the float zone material for the range of doses studied. Surprising results were obtained for highly irradiated p-type diodes illuminated on the ohmic side with an α-source, in that signals were observed well below the full depletion voltage. The processing that had been used to fabricate the test structures and the initial prototype that was studied in the test beam was based on the process used to fabricate devices on n-type material. Presented in this thesis are the modifications that were made to the process, which centred on the oxidation

  7. Initial results from 3D-DDTC detectors on p-type substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zoboli, A., E-mail: zoboli@disi.unitn.i [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38100 Povo di Trento (Italy); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38100 Povo di Trento (Italy); Bosisio, L. [Dipartimento di Fisica, Universita di Trieste, and INFN, Sezione di Trieste, Via A. Valerio, 2, I-34127 Trieste (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38100 Povo di Trento (Italy); Piemonte, C.; Ronchin, S.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38100 Povo di Trento (Italy)

    2010-01-11

    Owing to their superior radiation hardness compared to planar detectors, 3D detectors are one of the most promising technologies for the LHC upgrade foreseen in 2017. Fondazione Bruno Kessler has developed 3D Double-side Double-Type Column (3D-DDTC) detectors providing a technological simplifications with respect to a standard 3D process while aiming at comparable detector performance. We present selected results from the electrical characterization of 3D-DDTC structures from the second batch made on p-type substrates, supported also by TCAD simulations.

  8. Methods for enhancing P-type doping in III-V semiconductor films

    Science.gov (United States)

    Liu, Feng; Stringfellow, Gerald; Zhu, Junyi

    2017-08-01

    Methods of doping a semiconductor film are provided. The methods comprise epitaxially growing the III-V semiconductor film in the presence of a dopant, a surfactant capable of acting as an electron reservoir, and hydrogen, under conditions that promote the formation of a III-V semiconductor film doped with the p-type dopant. In some embodiments of the methods, the epitaxial growth of the doped III-V semiconductor film is initiated at a first hydrogen partial pressure which is increased to a second hydrogen partial pressure during the epitaxial growth process.

  9. Bulk and surface event identification in p-type germanium detectors

    Science.gov (United States)

    Yang, L. T.; Li, H. B.; Wong, H. T.; Agartioglu, M.; Chen, J. H.; Jia, L. P.; Jiang, H.; Li, J.; Lin, F. K.; Lin, S. T.; Liu, S. K.; Ma, J. L.; Sevda, B.; Sharma, V.; Singh, L.; Singh, M. K.; Singh, M. K.; Soma, A. K.; Sonay, A.; Yang, S. W.; Wang, L.; Wang, Q.; Yue, Q.; Zhao, W.

    2018-04-01

    The p-type point-contact germanium detectors have been adopted for light dark matter WIMP searches and the studies of low energy neutrino physics. These detectors exhibit anomalous behavior to events located at the surface layer. The previous spectral shape method to identify these surface events from the bulk signals relies on spectral shape assumptions and the use of external calibration sources. We report an improved method in separating them by taking the ratios among different categories of in situ event samples as calibration sources. Data from CDEX-1 and TEXONO experiments are re-examined using the ratio method. Results are shown to be consistent with the spectral shape method.

  10. Effect of Current Density on Thermal and Optical Properties of p-Type Porous Silicon

    International Nuclear Information System (INIS)

    Kasra Behzad; Wan Mahmood Mat Yunus; Zainal Abidin Talib; Azmi Zakaria; Afarin Bahrami

    2011-01-01

    The different parameters of the porous silicon (PSi) can be tuned by changing some parameters in preparation process. We have chosen the anodization as formation method, so the related parameters should be changed. In this study the porous silicon (PSi) layers were formed on p-type Si wafer. The samples were anodized electrically in a fixed etching time under some different current densities. The structural and optical properties of porous silicon (PSi) on silicon (Si) substrates were investigated using photoluminescence (PL) and Photoacoustic Spectroscopy (PAS). (author)

  11. Double-layered NiO photocathodes for p-type DSSCs with record IPCE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin; Qin, Peng; Gorlov, Mikhail [Center of Molecular Devices School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Stockholm (Sweden); Gibson, Elizabeth A.; Boschloo, Gerrit [Department of Physical and Analytical Chemistry, Uppsala University (Sweden); Hagfeldt, Anders [Center of Molecular Devices School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Stockholm (Sweden); Department of Physical and Analytical Chemistry, Uppsala University (Sweden); DUT-KTH Joint Education and Research Center of Molecular Devices, State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian (China); Sun, Licheng [Center of Molecular Devices School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Stockholm (Sweden); DUT-KTH Joint Education and Research Center of Molecular Devices, State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian (China)

    2010-04-18

    A way to achieve a high-efficiency dye-sensitized solar cell is to combine an n-type TiO{sub 2}-based photoanode with a p-type photocathode in a tandem configuration. The development of an efficient photocathode is, at present, the key target. We have optimized the NiO, I{sub 3}{sup -}/I{sup -} p-DSSC system to obtain record photocurrent, giving 64% incident photon-to-current conversion efficiency (IPCE) and 5.48 mAcm{sup -2} J{sub SC}. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Transport AC losses in YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Majoros, M [Ohio State University, Columbus, OH 43210 (United States); Ye, L [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Velichko, A V [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Coombs, T A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Sumption, M D [Ohio State University, Columbus, OH 43210 (United States); Collings, E W [Ohio State University, Columbus, OH 43210 (United States)

    2007-09-15

    Transport AC loss measurements have been made on YBCO-coated conductors prepared on two different substrate templates-RABiTS (rolling-assisted biaxially textured substrate) and IBAD (ion-beam-assisted deposition). RABiTS samples show higher losses compared with the theoretical values obtained from the critical state model, with constant critical current density, at currents lower than the critical current. An origin of this extra AC loss was demonstrated experimentally by comparison of the AC loss of two samples with different I-V curves. Despite a difference in I-V curves and in the critical currents, their measured losses, as well as the normalized losses, were practically the same. However, the functional dependence of the losses was affected by the ferromagnetic substrate. An influence of the presence of a ferromagnetic substrate on transport AC losses in YBCO film was calculated numerically by the finite element method. The presence of a ferromagnetic substrate increases transport AC losses in YBCO films depending on its relative magnetic permeability. The two loss contributions-transport AC loss in YBCO films and ferromagnetic loss in the substrate-cannot be considered as mutually independent.

  13. Electron quantum optics in ballistic chiral conductors

    Energy Technology Data Exchange (ETDEWEB)

    Bocquillon, Erwann; Freulon, Vincent; Parmentier, Francois D.; Berroir, Jean-Marc; Placais, Bernard; Feve, Gwendal [Laboratoire Pierre Aigrain, Ecole Normale Superieure, CNRS (UMR 8551), Universite Pierre et Marie Curie, Universite Paris Diderot, Paris (France); Wahl, Claire; Rech, Jerome; Jonckheere, Thibaut; Martin, Thierry [Aix Marseille Universite, CNRS, CPT, UMR 7332, Marseille (France); Universite de Toulon, CNRS, CPT, UMR 7332, La Garde (France); Grenier, Charles; Ferraro, Dario; Degiovanni, Pascal [Universite de Lyon, Federation de Physique Andre Marie Ampere, CNRS - Laboratoire de Physique de l' Ecole Normale Superieure de Lyon, Lyon (France)

    2014-01-15

    The edge channels of the quantum Hall effect provide one dimensional chiral and ballistic wires along which electrons can be guided in an optics-like setup. Electronic propagation can then be analyzed using concepts and tools derived from optics. After a brief review of electron optics experiments performed using stationary current sources which continuously emit electrons in the conductor, this paper focuses on triggered sources, which can generate on-demand a single particle state. It first outlines the electron optics formalism and its analogies and differences with photon optics and then turns to the presentation of single electron emitters and their characterization through the measurements of the average electrical current and its correlations. This is followed by a discussion of electron quantum optics experiments in the Hanbury-Brown and Twiss geometry where two-particle interferences occur. Finally, Coulomb interactions effects and their influence on single electron states are considered. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Electron quantum optics in ballistic chiral conductors

    International Nuclear Information System (INIS)

    Bocquillon, Erwann; Freulon, Vincent; Parmentier, Francois D.; Berroir, Jean-Marc; Placais, Bernard; Feve, Gwendal; Wahl, Claire; Rech, Jerome; Jonckheere, Thibaut; Martin, Thierry; Grenier, Charles; Ferraro, Dario; Degiovanni, Pascal

    2014-01-01

    The edge channels of the quantum Hall effect provide one dimensional chiral and ballistic wires along which electrons can be guided in an optics-like setup. Electronic propagation can then be analyzed using concepts and tools derived from optics. After a brief review of electron optics experiments performed using stationary current sources which continuously emit electrons in the conductor, this paper focuses on triggered sources, which can generate on-demand a single particle state. It first outlines the electron optics formalism and its analogies and differences with photon optics and then turns to the presentation of single electron emitters and their characterization through the measurements of the average electrical current and its correlations. This is followed by a discussion of electron quantum optics experiments in the Hanbury-Brown and Twiss geometry where two-particle interferences occur. Finally, Coulomb interactions effects and their influence on single electron states are considered. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Applications of inorganic Ion-conductor

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, Yoshinori [Science and Technology Agency, Tokyo (Japan)

    1989-03-01

    Physical properties and application of solid electrolyte, particularly of inorganic solid electrolyte, are described. Ion conductors have been widely used not only for electric power application but also for sensors, gas separators, display elements, Coulomb meters, storage elements, etc. The most extensively used pacemakers now employ Li/I{sub 2}(PVP) primary batteries. Thin film lithium secondary battery has a feature of providing comparatively large electric current, with 2.5 V charging, 1.8 V discharging, and 3 mA.cm{sup {minus}2} short circuit current. The capacity of about 4 mAh per 1 cm{sup 2} electrode has been achieved. The most widely used solid electrolyte for the oxygen sensor is the stabilized ZrO{sub 2}. The relation of air/fuel mix proportion with the change in electromotive force is shown. Although solid electrolyte fuel cell is not yet put to practical use, a result of an experiment is introduced. Brief explanations are made on the oxygen pump, electrochromic display elements, Coulomb meter and voltage storage element. 18 refs., 11 figs., 6 tabs.

  16. Conductor gestures influence evaluations of ensemble performance

    Directory of Open Access Journals (Sweden)

    Steven eMorrison

    2014-07-01

    Full Text Available Previous research has found that listener evaluations of ensemble performances vary depending on the expressivity of the conductor’s gestures, even when performances are otherwise identical. It was the purpose of the present study to test whether this effect of visual information was evident in the evaluation of specific aspects of ensemble performance, articulation and dynamics. We constructed a set of 32 music performances that combined auditory and visual information and were designed to feature a high degree of contrast along one of two target characteristics: articulation and dynamics. We paired each of four music excerpts recorded by a chamber ensemble in both a high- and low-contrast condition with video of four conductors demonstrating high- and low-contrast gesture specifically appropriate to either articulation or dynamics. Using one of two equivalent test forms, college music majors and nonmajors (N = 285 viewed sixteen 30-second performances and evaluated the quality of the ensemble’s articulation, dynamics, technique and tempo along with overall expressivity. Results showed significantly higher evaluations for performances featuring high rather than low conducting expressivity regardless of the ensemble’s performance quality. Evaluations for both articulation and dynamics were strongly and positively correlated with evaluations of overall ensemble expressivity.

  17. Low ac loss geometries in YBCO coated conductors

    International Nuclear Information System (INIS)

    Duckworth, R.C.; List, F.A.; Paranthaman, M.P.; Rupich, M.W.; Zhang, W.; Xie, Y.Y.; Selvamanickam, V.

    2007-01-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or by an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. Despite physical isolation of the filaments, coupling losses were still present in the samples when compared to the expected hysteretic loss. In addition to filamentary conductors the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders

  18. Low ac loss geometries in YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, R.C. [Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6305, Oak Ridge, TN 37831-6305 (United States)], E-mail: duckworthrc@ornl.gov; List, F.A.; Paranthaman, M.P. [Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6305, Oak Ridge, TN 37831-6305 (United States); Rupich, M.W.; Zhang, W. [American Superconductor, Two Technology Drive, Westborough, MA 01581 (United States); Xie, Y.Y.; Selvamanickam, V. [SuperPower, 450 Duane Ave, Schenectady, NY 12304 (United States)

    2007-10-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or by an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. Despite physical isolation of the filaments, coupling losses were still present in the samples when compared to the expected hysteretic loss. In addition to filamentary conductors the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders.

  19. Thin film conductors for self-equalizing cables

    Science.gov (United States)

    Owen, G.; Trutna, W. R.; Orsley, T. J.; Lucia, F.; Daly, C. B.

    2017-10-01

    Self-equalizing cables using hollow conductors with wall thickness less than the skin depth were proposed in 1929. However, they do not appear ever to have been widely used, although the idea has resurfaced and been refined from time to time. In the early 2000's, self-equalizing conductors consisting of solid magnetic steel cores coated with silver were developed by W.L. Gore, and used in their 2.5 Gb/s "Eye-Opener" cables, although higher speed versions never appeared. We have revived the original 1929 idea, proposing to use glass as a solid insulating core. This technology can potentially work at frequencies of many 10's of GHz. Possible uses include short range GHz links such as USB and Thunderbolt, and intra-rack interconnections in data centers. Our feasibility experiments have validated the principle. Copper coated glass fibers can, in principle, be manufactured, but in these tests, the conductors were capillaries internally coated with silver as these are easily obtainable, relatively inexpensive and serve to test the concept. The performance of these experimental twin lead cables corresponds to calculations, confirming the general principle. By calculation, we have compared the performance of cables made from copper-on-insulator conductors to that of similar cables made with solid copper conductors, and verified that copper-on-insulator cables have significantly less frequency dependent loss. We have also made and tested cables with copper on PEEK conductors as surrogates for copper on glass fiber.

  20. Design of force-cooled conductors for large fusion magnets

    International Nuclear Information System (INIS)

    Dresner, L.; Lue, J.W.

    1977-01-01

    One type of conductor under consideration for tokamak toroidal field (TF) magnets is a cable-in-conduit cooled by supercritical helium in forced convection. The main problem is designing such force-cooled conductors (fcc) is to maintain adequate stability while keeping the pumping power tolerably low. The transit time of the helium through a coil is many minutes. Since recovery of the conductor from a thermomechanical perturbation takes on the order of tens of milliseconds, for purposes of calculation, the inventory of helium available to promote recovery is finite. This means that a large enough perturbation will quench the conductor. We can then judge the stability of a fcc by the maximum perturbation of some specified type against which the conductor is stable, i.e., can still return to the superconducting state. The simplest type of perturbation is a sudden, uniform heat input over the entire length of the conductor. The maximum, sudden, uniform heat input per unit volume of metal ΔH is called the ''stability margin.''

  1. Tris(2-(1 H -pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Burschka, Julian

    2011-11-16

    Chemical doping is an important strategy to alter the charge-transport properties of both molecular and polymeric organic semiconductors that find widespread application in organic electronic devices. We report on the use of a new class of Co(III) complexes as p-type dopants for triarylamine-based hole conductors such as spiro-MeOTAD and their application in solid-state dye-sensitized solar cells (ssDSCs). We show that the proposed compounds fulfill the requirements for this application and that the discussed strategy is promising for tuning the conductivity of spiro-MeOTAD in ssDSCs, without having to rely on the commonly employed photo-doping. By using a recently developed high molar extinction coefficient organic D-π-A sensitizer and p-doped spiro-MeOTAD as hole conductor, we achieved a record power conversion efficiency of 7.2%, measured under standard solar conditions (AM1.5G, 100 mW cm -2). We expect these promising new dopants to find widespread applications in organic electronics in general and photovoltaics in particular. © 2011 American Chemical Society.

  2. Thermal oxidation of Ni films for p-type thin-film transistors

    KAUST Repository

    Jiang, Jie; Wang, Xinghui; Zhang, Qing; Li, Jingqi; Zhang, Xixiang

    2013-01-01

    p-Type nanocrystal NiO-based thin-film transistors (TFTs) are fabricated by simply oxidizing thin Ni films at temperatures as low as 400 °C. The highest field-effect mobility in a linear region and the current on-off ratio are found to be 5.2 cm2 V-1 s-1 and 2.2 × 103, respectively. X-ray diffraction, transmission electron microscopy and electrical performances of the TFTs with "top contact" and "bottom contact" channels suggest that the upper parts of the Ni films are clearly oxidized. In contrast, the lower parts in contact with the gate dielectric are partially oxidized to form a quasi-discontinuous Ni layer, which does not fully shield the gate electric field, but still conduct the source and drain current. This simple method for producing p-type TFTs may be promising for the next-generation oxide-based electronic applications. © 2013 the Owner Societies.

  3. Fullerene C70 as a p-type donor in organic photovoltaic cells

    International Nuclear Information System (INIS)

    Zhuang, Taojun; Wang, Xiao-Feng; Sano, Takeshi; Kido, Junji; Hong, Ziruo; Li, Gang; Yang, Yang

    2014-01-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C 70 , known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C 70 layer even up to 100 nm thick in PHJ cells, suggesting the superior potential of fullerene C 70 as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm 2 , an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  4. Electronic structure and p-type doping of ZnSnN2

    Science.gov (United States)

    Wang, Tianshi; Janotti, Anderson; Ni, Chaoying

    ZnSnN2 is a promising solar-cell absorber material composed of earth abundant elements. Little is known about doping, defects, and how the valence and conduction bands in this material align with the bands in other semiconductors. Using density functional theory with the the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), we investigate the electronic structure of ZnSnN2, its band alignment to other semiconductors, such as GaN and ZnO, the possibility of p-type doping, and the possible causes of the observed unintentional n-type conductivity. We find that the position of the valence-band maximum of ZnSnN2 is 0.55 eV higher than that of GaN, yet the conduction-band minimum is close to that in ZnO. As possible p-type dopants, we explore Li, Na, and K substituting on the Zn site. Finally, we discuss the cause of unintentional n-type conductivity by analyzing the position of the conduction-band minimum with respect to that of GaN and ZnO.

  5. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides

    Science.gov (United States)

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa1-xN/GaN superlattice structure, by modulation doping of Mg in the AlxGa1-xN barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 1018 cm-3 has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports.

  6. Valence band states in Si-based p-type delta-doped field effect transistors

    International Nuclear Information System (INIS)

    Martinez-Orozco, J C; Vlaev, Stoyan J

    2009-01-01

    We present tight-binding calculations of the hole level structure of δ-doped Field Effect Transistor in a Si matrix within the first neighbors sp 3 s* semi-empirical tight-binding model including spin. We employ analytical expressions for Schottky barrier potential and the p-type δ-doped well based on a Thomas-Fermi approximation, we consider these potentials as external ones, so in the computations they are added to the diagonal terms of the tight-binding Hamiltonian, by this way we have the possibility to study the energy levels behavior as we vary the backbone parameters in the system: the two-dimensional impurity density (p 2d ) of the p-type δ-doped well and the contact voltage (V c ). The aim of this calculation is to demonstrate that the tight-binding approximation is suitable for device characterization that permits us to propose optimal values for the input parameters involved in the device design.

  7. Wide band gap p-type windows by CBD and SILAR methods

    International Nuclear Information System (INIS)

    Sankapal, B.R.; Goncalves, E.; Ennaoui, A.; Lux-Steiner, M.Ch.

    2004-01-01

    Chemical deposition methods, namely, chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) have been used to deposit wide band gap p-type CuI and CuSCN thin films at room temperature (25 deg. C) in aqueous medium. Growth of these films requires the use of Cu (I) cations as a copper ions source. This is achieved by complexing Cu (II) ions using Na 2 S 2 O 3 . The anion sources are either KI as iodine or KSCN as thiocyanide ions for CuI and CuSCN films, respectively. The preparative parameters are optimized with the aim to use these p-type materials as windows for solar cells. Different substrates are used, namely: glass, fluorine doped tin oxide coated glass and CuInS 2 (CIS). X-ray diffraction, scanning electron microscopy, atomic force microscopy and optical absorption spectroscopy are used for structural, surface morphological and optical studies, and the results are discussed

  8. Effect of compressive stress on stability of N-doped p-type ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xingyou [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dongnanhu Road, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang Zhenzhong; Jiang Mingming; Wang Shuangpeng; Li Binghui; Shan Chongxin; Liu Lei; Zhao Dongxu; Shen Dezhen [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dongnanhu Road, Changchun 130033 (China); Yao Bin [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China)

    2011-08-29

    Nitrogen-doped p-type zinc oxide (p-ZnO:N) thin films were fabricated on a-/c-plane sapphire (a-/c-Al{sub 2}O{sub 3}) by plasma-assisted molecular beam epitaxy. Hall-effect measurements show that the p-type ZnO:N on c-Al{sub 2}O{sub 3} degenerated into n-type after a preservation time; however, the one grown on a-Al{sub 2}O{sub 3} showed good stability. The conversion of conductivity in the one grown on c-Al{sub 2}O{sub 3} ascribed to the faster disappearance of N{sub O} and the growing N{sub 2(O)}, which is demonstrated by x-ray photoelectron spectroscopy (XPS). Compressive stress, caused by lattice misfit, was revealed by Raman spectra and optical absorption spectra, and it was regarded as the root of the instability in ZnO:N.

  9. Wide band gap p-type windows by CBD and SILAR methods

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Goncalves, E.; Ennaoui, A.; Lux-Steiner, M.Ch

    2004-03-22

    Chemical deposition methods, namely, chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) have been used to deposit wide band gap p-type CuI and CuSCN thin films at room temperature (25 deg. C) in aqueous medium. Growth of these films requires the use of Cu (I) cations as a copper ions source. This is achieved by complexing Cu (II) ions using Na{sub 2}S{sub 2}O{sub 3}. The anion sources are either KI as iodine or KSCN as thiocyanide ions for CuI and CuSCN films, respectively. The preparative parameters are optimized with the aim to use these p-type materials as windows for solar cells. Different substrates are used, namely: glass, fluorine doped tin oxide coated glass and CuInS{sub 2} (CIS). X-ray diffraction, scanning electron microscopy, atomic force microscopy and optical absorption spectroscopy are used for structural, surface morphological and optical studies, and the results are discussed.

  10. Homogeneous Gaussian Profile P+-Type Emitters: Updated Parameters and Metal-Grid Optimization

    Directory of Open Access Journals (Sweden)

    M. Cid

    2002-10-01

    Full Text Available P+-type emitters were optimized keeping the base parameters constant. Updated internal parameters were considered. The surface recombination velocity was considered variable with the surface doping level. Passivated homogeneous emitters were found to have low emitter recombination density and high collection efficiency. A complete structure p+nn+ was analyzed, taking into account optimized shadowing and metal-contacted factors for laboratory cells as function of the surface doping level and the emitter thickness. The base parameters were kept constant to make the emitter characteristics evident. The most efficient P+-type passivated homogeneous emitters, provide efficiencies around 21% for a wide range of emitter sheet resistivity (50 -- 500 omega/ with the surface doping levels Ns=1×10(19 cm-3 and 5×10(19 cm-3. The output electrical parameters were evaluated considering the recently proposed value n i=9.65×10(9 (cm-3. A non-significant increase of 0.1% in the efficiency was obtained, validating all the conclusions obtained in this work, considering n i=1×10(10 cm-3.

  11. Synthesis and characterization of p-type boron-doped IIb diamond large single crystals

    International Nuclear Information System (INIS)

    Li Shang-Sheng; Li Xiao-Lei; Su Tai-Chao; Jia Xiao-Peng; Ma Hong-An; Huang Guo-Feng; Li Yong

    2011-01-01

    High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively. The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique. The electrical properties including resistivities, Hall coefficients, Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method. The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized. With the increase of quantity of additive boron, some high-index crystal faces such as {113} gradually disappear, and some stripes and triangle pits occur on the crystal surface. This work is helpful for the further research and application of boron-doped semiconductor diamond. (cross-disciplinary physics and related areas of science and technology)

  12. Easily doped p-type, low hole effective mass, transparent oxides

    Science.gov (United States)

    Sarmadian, Nasrin; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk

    2016-02-01

    Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications - i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe.

  13. The development of p-type silicon detectors for the high radiation regions of the LHC

    CERN Document Server

    Hanlon, M D L

    1998-01-01

    This thesis describes the production and characterisation of silicon microstrip detectors and test structures on p-type substrates. An account is given of the production and full parameterisation of a p-type microstrip detector, incorporating the ATLAS-A geometry in a beam test. This detector is an AC coupled device incorporating a continuous p-stop isolation frame and polysilicon biasing and is typical of n-strip devices proposed for operation at the LHC. It was successfully read out using the FELix-128 analogue pipeline chip and a signal to noise (s/n) of 17+-1 is reported, along with a spatial resolution of 14.6+-0.2 mu m. Diode test structures were fabricated on both high resistivity float zone material and on epitaxial material and subsequently irradiated with 24 GeV protons at the CERN PS up to a dose of (8.22+-0.23) x 10 sup 1 sup 4 per cm sup 2. An account of the measurement program is presented along with results on the changes in the effective doping concentration (N sub e sub f sub f) with irradiat...

  14. Use of hexamethyldisiloxane for p-type microcrystalline silicon oxycarbide layers

    Directory of Open Access Journals (Sweden)

    Goyal Prabal

    2016-01-01

    Full Text Available The use of hexamethyldisiloxane (HMDSO as an oxygen source for the growth of p-type silicon-based layers deposited by Plasma Enhanced Chemical Vapor Deposition is evaluated. The use of this source led to the incorporation of almost equivalent amounts of oxygen and carbon, resulting in microcrystalline silicon oxycarbide thin films. The layers were examined with characterisation techniques including Spectroscopic Ellipsometry, Dark Conductivity, Fourier Transform Infrared Spectroscopy, Secondary Ion Mass Spectrometry and Transmission Electron Microscopy to check material composition and structure. Materials studies show that the refractive indices of the layers can be tuned over the range from 2.5 to 3.85 (measured at 600 nm and in-plane dark conductivities over the range from 10-8 S/cm to 1 S/cm, suggesting that these doped layers are suitable for solar cell applications. The p-type layers were tested in single junction amorphous silicon p-i-n type solar cells.

  15. Valence band states in Si-based p-type delta-doped field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Orozco, J C; Vlaev, Stoyan J, E-mail: jcmover@correo.unam.m [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico)

    2009-05-01

    We present tight-binding calculations of the hole level structure of delta-doped Field Effect Transistor in a Si matrix within the first neighbors sp{sup 3}s* semi-empirical tight-binding model including spin. We employ analytical expressions for Schottky barrier potential and the p-type delta-doped well based on a Thomas-Fermi approximation, we consider these potentials as external ones, so in the computations they are added to the diagonal terms of the tight-binding Hamiltonian, by this way we have the possibility to study the energy levels behavior as we vary the backbone parameters in the system: the two-dimensional impurity density (p{sub 2d}) of the p-type delta-doped well and the contact voltage (V{sub c}). The aim of this calculation is to demonstrate that the tight-binding approximation is suitable for device characterization that permits us to propose optimal values for the input parameters involved in the device design.

  16. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    Science.gov (United States)

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  17. DFT plus U studies of Cu doping and p-type compensation in crystalline and amorphous ZnS

    NARCIS (Netherlands)

    Pham, Hieu H.; Barkema, Gerard T.|info:eu-repo/dai/nl/101275080; Wang, Lin-Wang

    2015-01-01

    Zinc sulfide is an excellent candidate for the development of a p-type transparent conducting material that has great demands in solar energy and optoelectronic applications. Doping with Cu is one potential way to make ZnS p-type while preserving its optical transparency for the solar spectrum;

  18. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Fan, J. C.; Zhu, C. Y.; Fung, S.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Skorupa, W.; Anwand, W.

    2009-01-01

    As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above ∼400 deg. C, the films changed from n type to p type. Hole concentration and mobility of ∼6x10 17 cm -3 and ∼6 cm 2 V -1 s -1 were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the As Zn -2V Zn shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.

  19. Highly conductive p-type amorphous oxides from low-temperature solution processing

    International Nuclear Information System (INIS)

    Li Jinwang; Tokumitsu, Eisuke; Koyano, Mikio; Mitani, Tadaoki; Shimoda, Tatsuya

    2012-01-01

    We report solution-processed, highly conductive (resistivity 1.3-3.8 mΩ cm), p-type amorphous A-B-O (A = Bi, Pb; B = Ru, Ir), processable at temperatures (down to 240 °C) that are compatible with plastic substrates. The film surfaces are smooth on the atomic scale. Bi-Ru-O was analyzed in detail. A small optical bandgap (0.2 eV) with a valence band maximum (VBM) below but very close to the Fermi level (binding energy E VBM = 0.04 eV) explains the high conductivity and suggests that they are degenerated semiconductors. The conductivity changes from three-dimensional to two-dimensional with decreasing temperature across 25 K.

  20. Hydrogen diffusion at moderate temperatures in p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Huang, Y.L.; Ma, Y.; Job, R.; Ulyashin, A.G.

    2004-01-01

    In plasma-hydrogenated p-type Czochralski silicon, rapid thermal donor (TD) formation is achieved, resulting from the catalytic support of hydrogen. The n-type counter doping by TD leads to a p-n junction formation. A simple method for the indirect determination of the diffusivity of hydrogen via applying the spreading resistance probe measurements is presented. Hydrogen diffusion in silicon during both plasma hydrogenation and post-hydrogenation annealing is investigated. The impact of the hydrogenation duration, annealing temperature, and resistivity of the silicon wafers on the hydrogen diffusion is discussed. Diffusivities of hydrogen are determined in the temperature range 270-450 deg. C. The activation energy for the hydrogen diffusion is deduced to be 1.23 eV. The diffusion of hydrogen is interpreted within the framework of a trap-limited diffusion mechanism. Oxygen and hydrogen are found to be the main traps

  1. Nanoscale Cross-Point Resistive Switching Memory Comprising p-Type SnO Bilayers

    KAUST Repository

    Hota, Mrinal Kanti

    2015-02-23

    Reproducible low-voltage bipolar resistive switching is reported in bilayer structures of p-type SnO films. Specifically, a bilayer homojunction comprising SnOx (oxygen-rich) and SnOy (oxygen-deficient) in nanoscale cross-point (300 × 300 nm2) architecture with self-compliance effect is demonstrated. By using two layers of SnO film, a good memory performance is obtained as compared to the individual oxide films. The memory devices show resistance ratio of 103 between the high resistance and low resistance states, and this difference can be maintained for up to 180 cycles. The devices also show good retention characteristics, where no significant degradation is observed for more than 103 s. Different charge transport mechanisms are found in both resistance states, depending on the applied voltage range and its polarity. The resistive switching is shown to originate from the oxygen ion migration and subsequent formation/rupture of conducting filaments.

  2. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-09-01

    Recently huge interest has been focussed on Ge-intercalated graphene. In order to address the effect of Ge on the electronic structure, we study Ge-intercalated free-standing C 6 and C 8 bilayer graphene, bulk C 6Ge and C 8Ge, as well as Ge-intercalated graphene on a SiC(0001) substrate, by density functional theory. In the presence of SiC(0001), there are three ways to obtain n-type graphene: i) intercalation between C layers; ii) intercalation at the interface to the substrate in combination with Ge deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition occurs. © Copyright EPLA, 2012.

  3. n/p-Type changeable semiconductor TiO{sub 2} prepared from NTA

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiuye; Wang Xiaodong; Jin Zhensheng, E-mail: zhenshengjin@henu.edu.cn; Yang Dagang; Zhang Shunli; Guo Xinyong; Yang Jianjun; Zhang Zhijun [Henan University, Key Laboratory of Special Functional Materials (China)

    2007-10-15

    A novel kind of nano-sized TiO{sub 2} (anatase) was obtained by high-temperature (400-700 deg. C) dehydration of nanotube titanic acid (H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2}, NTA). The high-temperature (400-700 deg. C) dehydrated nanotube titanic acids (HD-NTAs) with a unique defect structure exhibited a p-type semiconductor behavior under visible-light irradiation ({lambda}{>=} 420nm, E{sub photon}=2.95 eV), whereas exhibited an n-type semiconductor behavior irradiated with UV light ({lambda}{>=} 365nm, E{sub photon}=3.40 eV)

  4. Ultrafast carrier dynamics in a p-type GaN wafer under different carrier distributions

    Science.gov (United States)

    Fang, Yu; Yang, Junyi; Yang, Yong; Wu, Xingzhi; Xiao, Zhengguo; Zhou, Feng; Song, Yinglin

    2016-02-01

    The dependence of the carrier distribution on photoexcited carrier dynamics in a p-type Mg-doped GaN (GaN:Mg) wafer were systematically measured by femtosecond transient absorption (TA) spectroscopy. The homogeneity of the carrier distribution was modified by tuning the wavelength of the UV pulse excitation around the band gap of GaN:Mg. The TA kinetics appeared to be biexponential for all carrier distributions, and only the slower component decayed faster as the inhomogeneity of the carrier distribution increased. It was concluded that the faster component (50-70 ps) corresponded to the trap process of holes by the Mg acceptors, and the slower component (150-600 ps) corresponded to the combination of non-radiative surface recombination and intrinsic carrier recombination via dislocations. Moreover, the slower component increased gradually with the incident fluence due to the saturation of surface states.

  5. Thermodynamic analysis of Mg-doped p-type GaN semiconductor

    International Nuclear Information System (INIS)

    Li Jingbo; Liang Jingkui; Rao Guanghui; Zhang Yi; Liu Guangyao; Chen Jingran; Liu Quanlin; Zhang Weijing

    2006-01-01

    A thermodynamic modeling of Mg-doped p-type GaN was carried out to describe the thermodynamic behaviors of native defects, dopants (Mg and H) and carriers in GaN. The formation energies of charged component compounds in a four-sublattice model were defined as functions of the Fermi-level based on the results of the first-principles calculations and adjusted to fit experimental data. The effect of the solubility of Mg on the low doping efficiency of Mg in GaN and the role of H in the Mg-doping MOCVD process were discussed. The modeling provides a thermodynamic approach to understand the doping process of GaN semiconductors

  6. Investigation on the structural characterization of pulsed p-type porous silicon

    Science.gov (United States)

    Wahab, N. H. Abd; Rahim, A. F. Abd; Mahmood, A.; Yusof, Y.

    2017-08-01

    P-type Porous silicon (PS) was sucessfully formed by using an electrochemical pulse etching (PC) and conventional direct current (DC) etching techniques. The PS was etched in the Hydrofluoric (HF) based solution at a current density of J = 10 mA/cm2 for 30 minutes from a crystalline silicon wafer with (100) orientation. For the PC process, the current was supplied through a pulse generator with 14 ms cycle time (T) with 10 ms on time (Ton) and pause time (Toff) of 4 ms respectively. FESEM, EDX, AFM, and XRD have been used to characterize the morphological properties of the PS. FESEM images showed that pulse PS (PPC) sample produces more uniform circular structures with estimated average pore sizes of 42.14 nm compared to DC porous (PDC) sample with estimated average size of 16.37nm respectively. The EDX spectrum for both samples showed higher Si content with minimal presence of oxide.

  7. Computation On dP Type power System Stabilizer Using Fuzzy Logic

    International Nuclear Information System (INIS)

    Iskandar, M.A.; Irwan, R.; Husdi; Riza; Mardhana, E.; Triputranto, A.

    1997-01-01

    Power system stabilizers (PSS) are widely applied in power generators to damp power oscillation caused by certain disturbances in order to increase the power supply capacity. PSS design is often suffered from the difficulty on setting periodically its parameters, which are gain and compensators, in order to have an optimal damping characteristic. This paper proposes a methode to determine parameters of dP type PSS by implementing fuzzy logic rules in a computer program,to obtain the appropriate characteristics of synchronous torque and damping torque. PSS with the calculated parameters is investigated on a simulation using a non-linear electric power system of a thermal generator connected to infinite bus system model. Simulation results show that great improvement in damping characteristic and enhancement of stability margin of electric power system are obtained by using the proposed PSS

  8. A low-energy ion source for p-type doping in MBE

    International Nuclear Information System (INIS)

    Park, R.M.; Stanley, C.R.; Clampitt, R.

    1980-01-01

    A compact low-energy ion cell has been developed for use as a source of acceptor impurities for the growth of p-type semiconductor material in ultra-high vacuum by molecular beam epitaxy. A flux of either zinc or cadmium atoms is emitted under molecular effusion conditions and partially ionised in the orifice of the cell by electron bombardment. The design provides for control of both the ion energy and current at constant cell temperature. (100)InP has been grown by MBE in a flux of 1 keV Zn ions. The surface morphology and crystal structure show no degradation when compared with (100)InP grown without the Zn ions present. (author)

  9. Producing p-type conductivity in self-compensating semiconductor material

    International Nuclear Information System (INIS)

    Vechten, J.A. van; Woodall, J.M.

    1981-01-01

    This relates to compound type semiconductor materials that exhibit self-compensated n-type conductivity. The process described imparts p-type conductivity to a body of normally n-conductivity self-compensated compound semiconductor material by bombarding it with charged particles, either electrons, protons or ions. Other possible steps include introducing an acceptor impurity and applying a coating onto the crystal body. This technique will allow new semiconductor structures to be made. For example, there are some compound semiconductor materials that exhibit n-conductivity only that have energy gap widths that would permit electrical to light conversion at frequency and colours not readily achieved in semiconductor devices. (U.K.)

  10. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering

    Science.gov (United States)

    Fan, J. C.; Zhu, C. Y.; Fung, S.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Anwand, W.; Skorupa, W.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.

    2009-10-01

    As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above ˜400 °C, the films changed from n type to p type. Hole concentration and mobility of ˜6×1017 cm-3 and ˜6 cm2 V-1 s-1 were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the AsZn-2VZn shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.

  11. Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.

    Science.gov (United States)

    Cao, Xuan; Cao, Yu; Zhou, Chongwu

    2016-01-26

    Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors with the smallest bending radius down to 1 mm. In this paper, we have realized the full potential of carbon nanotubes by making ultraflexible and imperceptible p-type transistors and circuits with a bending radius down to 40 μm. In addition, the resulted transistors show mobility up to 12.04 cm(2) V(-1) S(-1), high on-off ratio (∼10(6)), ultralight weight (transistors and circuits have great potential to work as indispensable components for ultraflexible complementary electronics.

  12. Determination of the refractive index of n+- and p-type porous Si samples

    International Nuclear Information System (INIS)

    Setzu, S.; Romestain, R.; Chamard, V.

    2004-01-01

    Photochemical etching of porous Si layers has been shown to be able to create micrometer or submicrometer-scale lateral gratings very promising for photonic applications. However, the reduced size of this lateral periodicity hinders standard measurements of refractive index variations. Therefore accurate characterizations of such gratings are usually difficult. In this paper we address this problem by reproducing on a larger scale (millimeter) the micrometer scale light-induced refractive index variations associated to the lateral periodicity. Using this procedure we perform standard X-ray and optical reflectivity measurements on our samples. One can then proceed to the determination of light-induced variations of porosity and refractive index. We present results for p-type samples, where the photo-dissolution can only be realized after the formation of the porous layer, as well as for n + -type samples, where light action can only be effective during the formation of the porous layer

  13. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport

    DEFF Research Database (Denmark)

    Grønberg, Christina; Sitsel, Oleg; Lindahl, Erik

    2016-01-01

    Cu(+)-specific P-type ATPase membrane protein transporters regulate cellular copper levels. The lack of crystal structures in Cu(+)-binding states has limited our understanding of how ion entry and binding are achieved. Here, we characterize the molecular basis of Cu(+) entry using molecular-dynamics...... simulations, structural modeling, and in vitro and in vivo functional assays. Protein structural rearrangements resulting in the exposure of positive charges to bulk solvent rather than to lipid phosphates indicate a direct molecular role of the putative docking platform in Cu(+) delivery. Mutational analyses...... and simulations in the presence and absence of Cu(+) predict that the ion-entry path involves two ion-binding sites: one transient Met148-Cys382 site and one intramembranous site formed by trigonal coordination to Cys384, Asn689, and Met717. The results reconcile earlier biochemical and x-ray absorption data...

  14. Novel method of separating macroporous arrays from p-type silicon substrate

    International Nuclear Information System (INIS)

    Peng Bobo; Wang Fei; Liu Tao; Yang Zhenya; Wang Lianwei; Fu, Ricky K. Y.; Chu, Paul K.

    2012-01-01

    This paper presents a novel method to fabricate separated macroporous silicon using a single step of photo-assisted electrochemical etching. The method is applied to fabricate silicon microchannel plates in 100 mm p-type silicon wafers, which can be used as electron multipliers and three-dimensional Li-ion microbatteries. Increasing the backside illumination intensity and decreasing the bias simultaneously can generate additional holes during the electrochemical etching which will create lateral etching at the pore tips. In this way the silicon microchannel can be separated from the substrate when the desired depth is reached, then it can be cut into the desired shape by using a laser cutting machine. Also, the mechanism of lateral etching is proposed. (semiconductor materials)

  15. Reduced thermal conductivity due to scattering centers in p-type SiGe alloys

    International Nuclear Information System (INIS)

    Beaty, J.S.; Rolfe, J.L.; Vandersande, J.; Fleurial. J.P.

    1992-01-01

    This paper reports that a theoretical model has been developed that predicts that the addition of ultra-fine, inert, phonon-scattering centers to SiGe thermoelectric material will reduce its thermal conductivity and improve its figure-of-merit. To investigate this prediction, ultra-fine particulates (20 Angstrom to 200 Angstrom) of boron nitride have been added to boron doped, p-type, 80/20 SiGe. All previous SiGe samples produced from ultra-fine SiGe powder without additions had lower thermal conductivities than standard SiGe, but high temperature (1525 K) heat treatment increased their thermal conductivity back to the value for standard SiGe. Transmission Electron Microscopy has been used to confirm the presence of occluded particulates and X-ray diffraction has been used to determine the composition to be BN

  16. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  17. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    Science.gov (United States)

    Jadhav, Vidya

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0> orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 1017 cm-3 were irradiated at 100 MeV Fe7+ ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 1010-1 × 1014 ions cm-2. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet-visible-NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 1013, 5 × 1013 and 1 × 1014 ions cm-2, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 1013 ion cm-2 was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E1, E1 + Δ and E2 band gaps in all irradiated samples.

  18. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    International Nuclear Information System (INIS)

    Jadhav, Vidya

    2015-01-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0〉 orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 10 17 cm −3 were irradiated at 100 MeV Fe 7+ ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 10 10 –1 × 10 14 ions cm −2 . The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet–visible–NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 10 13 , 5 × 10 13 and 1 × 10 14 ions cm −2 , we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 10 13 ion cm −2 was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E 1 , E 1 + Δ and E 2 band gaps in all irradiated samples

  19. Texture development of HTS powder-in-tube conductors

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom)

    1998-10-01

    An overview of the fabrication and electromagnetic properties of high-temperature conductors processed by the powder-in-tube (PIT) technique with reference to texture development and critical anisotropy data is presented. Special emphasis is given to the optimization of the physicochemical and electromagnetic parameters of the multifilamentary and single-filament conductors with superconducting cores of Bi-2223, Tl-1223 and Y-123 superconducting phases. The influence of the multifilamentary and single-filament structures on texture development is discussed. Also, the importance of the local disturbances of the grain alignment and microdefects for the current distribution across and in the plane of the whole conductor is analysed. A comparative study of the critical current anisotropy with field direction in low magnetic fields of Tl-1223 and Bi-2223 conductors manufactured by the PIT technique is presented. For Tl-1223 PIT conductors the anisotropy coefficient shows a very pronounced minimum, followed by a monotonic reduction of anisotropy with the increase of the magnetic field. This is explained in terms of poor grain alignment with weak intergranular superconducting coupling which cause 3D current percolation and also by the demagnetizing effect of the grains and the ceramic core in the PIT Tl-1223 tapes. (author)

  20. Fabrication and tests of EF conductors for JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname, E-mail: kizu.kaname@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Kashiwa, Yoshitoshi; Murakami, Haruyuki [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Obana, Tetsuhiro; Takahata, Kazuya [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Tsuchiya, Katsuhiko; Yoshida, Kiyoshi [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Hamaguchi, Shinji [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Matsui, Kunihiro [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Nakamura, Kazuya; Takao, Tomoaki [Sophia University, Tokyo 102-8554 (Japan); Yanagi, Nagato; Imagawa, Shinsaku; Mito, Toshiyuki [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2011-10-15

    The conductors for plasma equilibrium field (EF) coils of JT-60SA are NbTi cable-in-conduit (CIC) conductor with stainless steel 316L jacket. The production of superconductors for actual EF coils started from February 2010. Nine superconductors with 444 m in length were produced up to July 2010. More than 300 welding of jackets were performed. Six nonconformities were found by inspections as go gauge, visual inspection and X-ray test. In order to shorten the manufacturing time schedule, helium leak test was conducted at once after connecting the long length jacket not just after the welding. The maximum force to pull the cable into jacket was about 7.6 kN on average. The mass flow rates of 9 conductors showed almost same values indicating that there are no blockages in the conductors. The measured current sharing temperature agreed with the expectation values from strand performance indicating that no degradation was caused by production process. The coupling time constants of conductors ranged from 80 to 90 ms which are much smaller than the design value of 200 ms.

  1. Use of ion conductors in the pyrochemical reduction of oxides

    International Nuclear Information System (INIS)

    Miller, W.E.; Tomczuk, Z.

    1994-01-01

    An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO 2 oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a β-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca o used for reducing UO 2 and PuO 2 to U and Pu. 2 figures

  2. Hearing status among Norwegian train drivers and train conductors.

    Science.gov (United States)

    Lie, A; Skogstad, M; Johnsen, T S; Engdahl, B; Tambs, K

    2013-12-01

    There is a general perception that train drivers and conductors may be at increased risk of developing noise-induced hearing loss. To study job-related hearing loss among train drivers and train conductors. Audiograms from train drivers and train conductors were obtained from the medical records of the occupational health service of the major Norwegian railway company. The results were compared with audiograms from an internal control group of railway workers and an external reference group of people not occupationally exposed to noise. The monaural hearing threshold level at 4kHz, the mean binaural value at 3, 4 and 6kHz and the prevalence of audiometric notches (≥25 dB at 4kHz) were used for comparison. Audiograms were available for 1567 drivers, 1565 conductors, 4029 railway worker controls and 15 012 people not occupationally exposed to noise. No difference in hearing level or prevalence of audiometric notches was found between study groups after adjusting for age and gender. Norwegian train drivers and conductors have normal hearing threshold levels comparable with those in non-exposed groups.

  3. Design of force-cooled conductors for large fusion magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems.

  4. Qualification tests for ITER TF conductors in SULTAN

    International Nuclear Information System (INIS)

    Bruzzone, P.; Stepanov, B.; Wesche, R.

    2009-01-01

    From February 2007 to May 2008, 18 short length conductor sections have been tested in SULTAN for design verification and manufacturer qualification of the ITER Toroidal Field (TF) conductor. The test program is focussed on the current sharing temperature, T cs , at the nominal operating conditions, 68 kA current and 11.15 T effective field, which can be fully reproduced in the SULTAN test facility. A broad range of results was observed, with over 2 K difference among the T cs of the conductors. In average, the results are poorer compared to the potential performance estimated from the strand scaling law. The key parameters to mitigate the degradation are not yet clearly identified. The experimental challenges to test conductors with performance degradation are highlighted, including enhanced instrumentation sets, the application of gas flow calorimetry to sense the current sharing power and the post-processing of voltage data to cancel the transverse potential across the cable. The updated schedule of the tests in SULTAN is presented with the short-term action plan for conductor test.

  5. Design of force-cooled conductors for large fusion magnets

    International Nuclear Information System (INIS)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems

  6. Wiring assembly and method of forming a channel in a wiring assembly for receiving conductor and providing separate regions of conductor contact with the channel

    Energy Technology Data Exchange (ETDEWEB)

    Stelzer, Gerald; Meinke, Rainer; Senti, Mark

    2018-03-06

    A conductor assembly and method for constructing an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one embodiment the method provides a first insulative layer tubular in shape and including a surface along which a conductor segment may be positioned. A channel formed in the surface of the insulative layer defines a first conductor path and includes a surface of first contour in cross section along a first plane transverse to the conductor path. A segment of conductor having a surface of second contour in cross section is positioned at least partly in the channel and extends along the conductor path. Along the first plane, contact between the conductor surface of second contour and the channel surface of first contour includes at least two separate regions of contact.

  7. Thermodynamic behaviour of a coated conductor for currents above Ic

    International Nuclear Information System (INIS)

    Schwarz, M; Schacherer, Chr; Weiss, K-P; Jung, A

    2008-01-01

    Coated conductors are becoming more and more applicable. The temperature range below the critical value (T c ) or below the critical current (I c ) is well characterized. But for applications such as fault current limiters, which take advantage of the superconducting-to-normal transition, characterization beyond the superconducting regime is mandatory. Therefore, this work studies the thermodynamic behaviour of a coated conductor immersed in boiling liquid nitrogen which is driven by a sinusoidal over-current of up to more than five times I c . The temperature of the coated conductor exceeds 720 K without any significant degradation. To validate this current-induced high-temperature region, the resistance of the composite tape is measured from T c to 600 K. A thermodynamic and electrical model is conceptualized for calculating the temperature, developing as a function of time during over-currents. The calculated temperature fits well with the measured temperature

  8. Benefits of current percolation in superconducting coated conductors

    International Nuclear Information System (INIS)

    Rutter, N.A.; Durrell, J.H.; Blamire, M.G.; MacManus-Driscoll, J.L.; Wang, H.; Foltyn, S.R.

    2005-01-01

    The critical currents of coated conductors fabricated by metal-organic deposition (MOD) on rolling-assisted biaxially textured substrates (RABiTS) and by pulsed laser deposition (PLD) on ion-beam assisted deposition (IBAD) templates have been measured as a function of magnetic field orientation and compared to films grown on single crystal substrates. By varying the orientation of magnetic field applied in the plane of the film, we are able to determine the extent to which current flow in each type of conductor is percolative. Standard MOD/RABiTS conductors have also been compared to samples whose grain boundaries have been doped by diffusing Ca from an overlayer. We find that undoped MOD/RABiTS tapes have a less anisotropic in-plane field dependence than PLD/IBAD tapes and that the uniformity of critical current as a function of in-plane field angle is greater for MOD/RABiTS samples doped with Ca

  9. Characterization of textile electrodes and conductors using standardized measurement setups

    International Nuclear Information System (INIS)

    Beckmann, L; Neuhaus, C; Medrano, G; Walter, M; Leonhardt, S; Jungbecker, N; Gries, T

    2010-01-01

    Textile electrodes and conductors are being developed and used in different monitoring scenarios, such as ECG or bioimpedance spectroscopy measurements. Compared to standard materials, conductive textile materials offer improved wearing comfort and enable long-term measurements. Unfortunately, the development and investigation of such materials often suffers from the non-reproducibility of the test scenarios. For example, the materials are generally tested on human skin which is difficult since the properties of human skin differ for each person and can change within hours. This study presents two test setups which offer reproducible measurement procedures for the systematic analysis of textile electrodes and conductors. The electrode test setup was designed with a special skin dummy which allows investigation of not only the electrical properties of textile electrodes but also the contact behavior between electrode and skin. Using both test setups, eight textile electrodes and five textile conductors were analyzed and compared

  10. Nb3Sn conductor development for the ITER magnets

    International Nuclear Information System (INIS)

    Mitchell, N.

    1997-01-01

    The ITER magnet system consists of Toroidal Field (TF) coils, Poloidal Field (PF) coils, the Central Solenoid (CS) and error field correction coils (CC). The conductors for the coils are Nb 3 Sn or NbTi cable in conduit type, forced flow cooled with supercritical helium having a maximum operating current in the range 40-60 kA. To qualify the Nb 3 Sn conductor, two large model coils (energy up to 640 MJ) are being wound by the Home Teams of the Parties to the ITER EDA Agreement. A total of 24 t of strand has been completed for the CS model coil and 4 t for the TF model coil, and fabricated into 7 km of conductor in unit lengths up to 210 m, by an international collaboration involving 12 companies in Europe, Japan, Russia and the USA

  11. Tension layer winding of cable-in-conduit conductor

    International Nuclear Information System (INIS)

    Devernoe, A.; Ciancetta, G.; King, M.; Parizh, M.; Painter, T.; Miller, J.

    1996-01-01

    A 710 mm i.d. by 440 mm long, 6 layer Cable-in-Conduit (CIC) coil was precision tension layer wound with Incoloy 908 jacketed conductor to model winding technology that will be used for the Nb 3 Sn outsert coils of the 45 Tesla Hybrid Magnet Project at the US National High Magnetic Field Laboratory. This paper reports on the set up of a new winding facility with unique capabilities for insulating and winding long length CIC conductor and on special procedures which were developed to wind and support layer to layer transitions and to safely form conductor into and out of the winding. Analytical methods used to predict conduit keystoning, springback and back tensioning requirements before winding are reported in comparison to results obtained during winding and actual winding build-up dimensions on a layer by layer basis in comparison to design requirements

  12. Band Engineering Small Bandgap p-Type Semiconductors: Investigations of their Optical and Photoelectrochemical Properties

    Science.gov (United States)

    Zoellner, Brandon

    Mixed-metal oxides containing Mn(II), Cu(I), Ta(V), Nb(V), and V(V) were investigated for their structures and properties as new p-type semiconductors and in the potential applications involving the photocatalytic conversion of water into hydrogen and oxygen. Engineering of the bandgaps was achieved by combining metal cations that have halffilled (Mn 3d5) or filled (Cu 3d10) d-orbitals together with metal cations that have empty (V/Nb/Ta 3/4/5 d0) d-orbitals. The research described herein focuses on the synthesis, optical, electronic, and photocatalytic properties of the metal-oxide semiconductors MnV2O6, Cu3VO 4, CuNb1-xTaxO3, and Cu5(Ta1-xNbx)11O30. Powder X-ray diffraction was used to probe their phase purity as well as atomic-level crystallographic details, i.e. shifts of lattice parameters, chemical compositions, and changes in local bonding environments. Optical measurements revealed visible-light bandgap sizes of ˜1.17 eV (Cu3VO4), ˜1.45 eV (MnV2O6), ˜1.89-1.97 eV (CuNb1-xTa xO3), and ˜1.97-2.50 eV (Cu5(Ta1-xNb x)11O30). The latter two were found to systematically vary as a function of composition. Electrochemical impedance spectroscopy measurements of MnV2O6 and Cu3VO 4 provided the first experimental characterization of the energetic positions of the valence and conduction bands with respect to the water oxidation and reduction potentials, as well as confirmed the p-type nature of each semiconductor. The valence and conduction band energies were found to be suitable for driving either one or both of the water-splitting half reaction (i.e. 2H+ → H2 and 2H2O → O2 + 4H+). Photoelectrochemical measurements on polycrystalline films of the Cu(I)-based semiconductors under visible-light irradiation produced cathodic currents indicative of p-type semiconductor character and chemical reduction at their surfaces in the electrolyte solution. The stability of the photocurrents was increased by the addition of CuO oxide particles either externally deposited or

  13. Defect studies in copper-based p-type transparent conducting oxides

    Science.gov (United States)

    Ameena, Fnu

    Among other intrinsic open-volume defects, copper vacancy (VCu) has been theoretically identified as the major acceptor in p-type Cu-based semiconducting transparent oxides, which has potential as low-cost photovoltaic absorbers in semi-transparent solar cells. A series of positron annihilation experiments with pure Cu, Cu2O, and CuO presented strong presence of VCu and its complexes in the copper oxides. The lifetime data also showed that the density of VCu was becoming higher as the oxidation state of Cu increased which was consistent with the decrease in the formation energy of VCu. Doppler broadening measurements further indicated that electrons with low momentum made more contribution to the contributed as pure Cu oxidizes to copper oxides. The metastable defects are known to be generated in Cu2O upon illumination and it has been known to affect the performance of Cu2O-based hetero-junctions used in solar cells. The metastable effect was studied using positron annihilation lifetime spectroscopy and its data showed the change in the defect population upon light exposure and the minimal effect of light-induced electron density increase in the bulk of materials to the average lifetime of the positrons. The change in the defect population is concluded to be related to the dissociation and association of VCu -- V Cu complexes. For example, the shorter lifetime under light was ascribed to the annihilation with smaller size vacancies, which explains the dissociation of the complexes with light illumination. Doppler broadening of the annihilation was independent of light illumination, which suggested that the chemical nature of the defects remained without change upon their dissociation and association -- only the size distribution of copper vacancies varied. The delafossite metal oxides, CuMIIIO2 are emerging wide-bandgap p-type semiconductors. In this research, the formation energies of structural vacancies are calculated using Van Vechten cavity model as an attempt

  14. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Vidya, E-mail: vj1510@yahoo.com

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0〉 orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 10{sup 17} cm{sup −3} were irradiated at 100 MeV Fe{sup 7+} ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 10{sup 10}–1 × 10{sup 14} ions cm{sup −2}. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet–visible–NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 10{sup 13}, 5 × 10{sup 13} and 1 × 10{sup 14} ions cm{sup −2}, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 10{sup 13} ion cm{sup −2} was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E{sub 1}, E{sub 1} + Δ and E{sub 2} band gaps in all irradiated samples.

  15. Thin film conductors for self-equalizing cables

    Directory of Open Access Journals (Sweden)

    G. Owen

    2017-10-01

    Full Text Available Self-equalizing cables using hollow conductors with wall thickness less than the skin depth were proposed in 1929. However, they do not appear ever to have been widely used, although the idea has resurfaced and been refined from time to time. In the early 2000’s, self-equalizing conductors consisting of solid magnetic steel cores coated with silver were developed by W.L. Gore, and used in their 2.5 Gb/s “Eye-Opener” cables, although higher speed versions never appeared. We have revived the original 1929 idea, proposing to use glass as a solid insulating core. This technology can potentially work at frequencies of many 10’s of GHz. Possible uses include short range GHz links such as USB and Thunderbolt, and intra-rack interconnections in data centers. Our feasibility experiments have validated the principle. Copper coated glass fibers can, in principle, be manufactured, but in these tests, the conductors were capillaries internally coated with silver as these are easily obtainable, relatively inexpensive and serve to test the concept. The performance of these experimental twin lead cables corresponds to calculations, confirming the general principle. By calculation, we have compared the performance of cables made from copper-on-insulator conductors to that of similar cables made with solid copper conductors, and verified that copper-on-insulator cables have significantly less frequency dependent loss. We have also made and tested cables with copper on PEEK conductors as surrogates for copper on glass fiber.

  16. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho; Han, Hyemi; Seo, Jooyeok; Song, Myeonghun; Kim, Hwajeong; Anthopoulos, Thomas D.; McCulloch, Iain; Bradley, Donal D C; Kim, Youngkyoo

    2016-01-01

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  17. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho

    2016-11-18

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  18. Improvement of SOFC electrodes using mixed ionic-electronic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Y.; Hishinuma, M. [Tokyo Gas Co., Ltd. (Japan)

    1996-12-31

    Since the electrode reaction of SOFC is limited to the proximity of a triple phase boundary (TPB), the local current density at the electrode and electrolyte interface is larger than mean current density, which causes large ohmic and electrode polarization. This paper describes an application of mixed ionic-electronic conductors to reduce such polarization by means of (1) enhancing ionic conductivity of the electrolyte surface layer by coating a high ionic conductors, and (2) reducing the local current density by increasing the electrochemically active sites.

  19. Thin film conductors for self-equalizing cables

    OpenAIRE

    G. Owen; W. R. Trutna; T. J. Orsley; F. Lucia; C. B. Daly

    2017-01-01

    Self-equalizing cables using hollow conductors with wall thickness less than the skin depth were proposed in 1929. However, they do not appear ever to have been widely used, although the idea has resurfaced and been refined from time to time. In the early 2000’s, self-equalizing conductors consisting of solid magnetic steel cores coated with silver were developed by W.L. Gore, and used in their 2.5 Gb/s “Eye-Opener” cables, although higher speed versions never appeared. We have revived the or...

  20. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    Science.gov (United States)

    Roques, Magali; Wall, Richard J; Douglass, Alexander P; Ramaprasad, Abhinay; Ferguson, David J P; Kaindama, Mbinda L; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S; Wheatley, Sally P; Yamano, Hiroyuki; Holder, Anthony A; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-11-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  1. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali; Wall, Richard J.; Douglass, Alexander P.; Ramaprasad, Abhinay; Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, ‍ Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  2. Growth of antimony doped P-type zinc oxide nanowires for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong Lin; Pradel, Ken

    2016-09-27

    In a method of growing p-type nanowires, a nanowire growth solution of zinc nitrate (Zn(NO.sub.3).sub.2), hexamethylenetetramine (HMTA) and polyethylenemine (800 M.sub.w PEI) is prepared. A dopant solution to the growth solution, the dopant solution including an equal molar ration of sodium hydroxide (NaOH), glycolic acid (C.sub.2H.sub.4O.sub.3) and antimony acetate (Sb(CH.sub.3COO).sub.3) in water is prepared. The dopant solution and the growth solution combine to generate a resulting solution that includes antimony to zinc in a ratio of between 0.2% molar to 2.0% molar, the resulting solution having a top surface. An ammonia solution is added to the resulting solution. A ZnO seed layer is applied to a substrate and the substrate is placed into the top surface of the resulting solution with the ZnO seed layer facing downwardly for a predetermined time until Sb-doped ZnO nanowires having a length of at least 5 .mu.m have grown from the ZnO seed layer.

  3. Determination of Hot-Carrier Distribution Functions in Uniaxially Stressed p-Type Germanium

    DEFF Research Database (Denmark)

    Christensen, Ove

    1973-01-01

    This paper gives a description of an experimental determination of distribution functions in k→ space of hot holes in uniaxially compressed germanium. The hot-carrier studies were made at 85°K at fields up to 1000 V/cm and uniaxial stresses up to 11 800 kg/cm2. The field and stress were always in...... probabilities with stress. A model based on the nonparabolicity of the upper p3 / 2 level is proposed for the negative differential conductivity in stressed p-type Ge....... function has been assumed. The parameters of the distribution function are then fitted to the experimental modulation. The calculation of absorption was performed numerically, using a four-band k→·p→ model. This model was checked for consistency by comparing with piezoabsorption measurements performed...... in thermal equilibrium. The average carrier energy calculated from the distribution function shows a fast increase with stress and almost saturates when the strain splitting of the two p3 / 2 levels reaches the optical-phonon energy. This saturation is interpreted in terms of the change in scattering...

  4. p-type doping by platinum diffusion in low phosphorus doped silicon

    Science.gov (United States)

    Ventura, L.; Pichaud, B.; Vervisch, W.; Lanois, F.

    2003-07-01

    In this work we show that the cooling rate following a platinum diffusion strongly influences the electrical conductivity in weakly phosphorus doped silicon. Diffusions were performed at the temperature of 910 °C in the range of 8 32 hours in 0.6, 30, and 60 Ωrm cm phosphorus doped silicon samples. Spreading resistance profile analyses clearly show an n-type to p-type conversion under the surface when samples are cooled slowly. On the other hand, a compensation of the phosphorus donors can only be observed when samples are quenched. One Pt related acceptor deep level at 0.43 eV from the valence band is assumed to be at the origin of the type conversion mechanism. Its concentration increases by lowering the applied cooling rate. A complex formation with fast species such as interstitial Pt atoms or intrinsic point defects is expected. In 0.6 Ωrm cm phosphorus doped silicon, no acceptor deep level in the lower band gap is detected by DLTS measurement. This removes the opportunity of a pairing between phosphorus and platinum and suggests the possibility of a Fermi level controlled complex formation.

  5. Beryllium doped p-type GaN grown by metal-organic chemical vapor depostion

    International Nuclear Information System (INIS)

    Al-Tahtamouni, T.M.; Sedhain, A.; Lin, J.Y.; Jiang, H.X.

    2010-01-01

    The authors report on the growth of Be-doped p-type GaN epilayers by metal-organic chmical vapor deposition (MOCVD). The electrical and optical properties of the Be-doped GaN epilayers were studied by Hall-effect measurements and photoluminescence (PL) spectroscopy. The PL spectra of Be-doped GaN epilayers ethibited two emission lines at 3.36 and 2.71 eV, which were obsent in undoped epilayers. The transition at 3.36 eV was at 3.36 and 2.71eV, which were absent in undoped epilayers. The transition at 3.36 eV was assigned to the transition of free electrons to the neutral Be acceptor Be d eg.. The transition at 2.71 eV was assigned to the transition of electrons bound to deep level donors to the Be d eg. acceptors. Three independent measurements: (a) resistivity vs. temperature, (b) PL peak positions between Be doped and undoped GaN and (c) activation energy of 2.71 eV transition all indicate that the Be energy level is between 120 and 140 meV above the valence band. This is about 20-40 meV shallower than the Mg energy level (160 meV) in GaN. It is thus concluded that Be could be an excellent acceptor dopant in nitride materials. (authors).

  6. Site preference of Mg acceptors and improvement of p-type doping efficiency in nitride alloys.

    Science.gov (United States)

    Park, Ji-Sang; Chang, K J

    2013-06-19

    We perform first-principles density functional calculations to investigate the effect of Al and In on the formation energy and acceptor level of Mg in group-III nitride alloys. Our calculations reveal a tendency for the Mg dopants to prefer to occupy the lattice sites surrounded with Al atoms, whereas hole carriers are generated in In- or Ga-rich sites. The separation of the Mg dopants and hole carriers is energetically more favourable than a random distribution of dopants, being attributed to the local bonding effect of weak In and strong Al potentials in alloys. As a consequence, the Mg acceptor level, which represents the activation energy of Mg, tends to decrease with increasing numbers of Al next-nearest neighbours, whereas it increases as the number of In next-nearest neighbours increases. Based on the results, we suggest that the incorporation of higher Al and lower In compositions will improve the p-type doping efficiency in quaternary alloys, in comparison with GaN or AlGaN ternary alloys with similar band gaps.

  7. Porous silicon damage enhanced phosphorus and aluminium gettering of p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Hassen, M.; Ben Jaballah, A.; Hajji, M.; Rahmouni, H.; Selmi, A.; Ezzaouia, H.

    2005-01-01

    In this work, porous silicon damage (PSD) is presented as a simple sequence for efficient external purification techniques. The method consists of using thin nanoporous p-type silicon on both sides of the silicon substrates with randomly hemispherical voids. Then, two main sample types are processed. In the first type, thin aluminium layers (≥1 μm) are thermally evaporated followed by photo-thermal annealing treatments in N 2 atmosphere at one of several temperatures ranging between 600 and 800 deg. C. In the second type, phosphorus is continually diffused in N 2 /O 2 ambient in a solid phase from POCl 3 solution during heating at one of several temperatures ranging between 750 and 1000 deg. C for 1 h. Hall Effect and Van Der Pauw methods prove the existence of an optimum temperature in the case of phosphorus gettering at 900 deg. C yielding a Hall mobility of about 982 cm 2 V -1 s -1 . However, in the case of aluminium gettering, there is no gettering limit in the as mentioned temperature range. Metal/Si Schottky diodes are elaborated to clarify these improvements. In this study, we demonstrate that enhanced metal solubility model cannot explain the gettering effect. The solid solubility of aluminium is higher than that of P atoms in silicon; however, the device yield confirms the effectiveness of phosphorus as compared to aluminium

  8. A Proposed Method for Improving the Performance of P-Type GaAs IMPATTs

    Directory of Open Access Journals (Sweden)

    H. A. El-Motaafy

    2012-07-01

    Full Text Available A special waveform is proposed and assumed to be the optimum waveform for p-type GaAs IMPATTs. This waveform is deduced after careful and extensive study of the performance of these devices. The results presented here indicate the superiority of the performance of the IMPATTs driven by the proposed waveform over that obtained when the same IMPATTs are driven by the conventional sinusoidal waveform. These results are obtained using a full-scale computer simulation program that takes fully into account all the physical effects pertinent to IMPATT operation.  In this paper, it is indicated that the superiority of the proposed waveform is attributed to its ability to reduce the bad effects that usually degrade the IMPATT performance such as the space-charge effect and the drift-velocity dropping below saturation effect. The superiority is also attributed to the ability of the proposed waveform to improve the phase relationship between the terminal voltage and the induced current.Key Words: Computer-Aided Design, GaAs IMPATT, Microwave Engineering

  9. Visible luminescence in photo-electrochemically etched p-type porous silicon: Effect of illumination wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M.; Hamadeh, H., E-mail: scientific@aec.org.sy [Department of Physics, Atomic Energy Commission of Syria (AECS), P.O. Box 6091 Damascus (Syrian Arab Republic)

    2009-08-31

    The effect of low power density of {approx} 5 {mu}W/cm{sup 2} monochromatic light of different wavelengths on the visible photoluminescence (PL) properties of photo-electrochemically formed p-type porous silicon (PS) has been investigated. Two-peak PL 'red' and 'green' is resolved in PS samples etched under blue-green wavelength illumination; 480, 533 and 580 nm. It is found that the weight of 'green' PL has maxima for the sample illuminated with 533 nm wavelength. Whereas, PL spectra of PS prepared under the influence of red illumination or in dark does not exhibit 'green' PL band, but shows considerable enhancement in the 'red' PL peak intensity. Fourier transform infrared (FTIR) spectroscopic analysis reveals the relationship between the structures of chemical bonding in PS and the observed PL behavior. In particular, the PL efficiency is highly affected by the alteration of the relative content of hydride, oxide and hydroxyl species. Moreover, relative content of hydroxyl group with respect to oxide bonding is seen to have strong relationship to the blue PL. Although, the estimated energy gap value of PS samples shows a considerable enlargement with respect to that of bulk c-Si, the FTIR, low temperature PL and Raman measurements and analysis have inconsistency with quantum confinement of PS.

  10. Visible luminescence in photo-electrochemically etched p-type porous silicon: Effect of illumination wavelength

    International Nuclear Information System (INIS)

    Naddaf, M.; Hamadeh, H.

    2010-01-01

    The effect of low power density of ∼5 μWcm - 2 monochromatic light of different wavelengths on the visible photoluminescence (PL) properties of photo-electrochemically formed p-type porous silicon (PS) has been investigated. Tow peak PL red and green is resolved in PS samples etched under blue-green wavelength illumination; 480,533 and 580 nm. It is found that the weight of green PL has maxima for the sample illuminated with 533 nm wavelength whereas, PL spectra of PS prepared under the influence of red illumination or in dark does not exhibit green PL band, but shows considerable enhancement in the red PL peak intensity. Fourier transform infrared (FTIR) spectroscopic analysis reveals the relationship between the structures of chemical bonding in PS and the observed PL behavior. In particular, the PL efficiency is highly affected by the alteration of the relative content of hydride, oxide and hydroxyl species. Moreover, relative content of hydroxyl group with respect to oxide bonding is seen to have strong relationship to the blue PL. Although, the estimated energy gap value of PS samples shows a considerable enlargement with respect to that of bulk c-Si, the FTIR, low temperature PL and Raman measurements and analysis have inconsistency with quantum confinement of PS. (author)

  11. Visible luminescence in photo-electrochemically etched p-type porous silicon: Effect of illumination wavelength

    International Nuclear Information System (INIS)

    Naddaf, M.; Hamadeh, H.

    2009-01-01

    The effect of low power density of ∼ 5 μW/cm 2 monochromatic light of different wavelengths on the visible photoluminescence (PL) properties of photo-electrochemically formed p-type porous silicon (PS) has been investigated. Two-peak PL 'red' and 'green' is resolved in PS samples etched under blue-green wavelength illumination; 480, 533 and 580 nm. It is found that the weight of 'green' PL has maxima for the sample illuminated with 533 nm wavelength. Whereas, PL spectra of PS prepared under the influence of red illumination or in dark does not exhibit 'green' PL band, but shows considerable enhancement in the 'red' PL peak intensity. Fourier transform infrared (FTIR) spectroscopic analysis reveals the relationship between the structures of chemical bonding in PS and the observed PL behavior. In particular, the PL efficiency is highly affected by the alteration of the relative content of hydride, oxide and hydroxyl species. Moreover, relative content of hydroxyl group with respect to oxide bonding is seen to have strong relationship to the blue PL. Although, the estimated energy gap value of PS samples shows a considerable enlargement with respect to that of bulk c-Si, the FTIR, low temperature PL and Raman measurements and analysis have inconsistency with quantum confinement of PS.

  12. Temperature dependence of magnetoresistance in neutron-irradiated and unirradiated high resistivity p-type silicon

    International Nuclear Information System (INIS)

    Yildirim, M.; Efeoglu, H.; Abay, B.; Yogurtcu, Y.K.

    1996-01-01

    The temperature dependence of the transverse magnetoresistance in irradiated and unirradiated p-type Si is studied in the range from 120 to 290 K. The magnetoresistance coefficients for the unirradiated left angle 001 right angle and left angle 1 anti 10 right angle samples increases with decreasing sample temperature in the range from 160 to 290 K, however, this behavior is reversed below 160 K. It is proposed that this reversal is due to the double injection effect. The magnetoresistance coefficient for the irradiated left angle 001 right angle sample increases with decreasing sample temperature in the range of 120 to 290 K and is greater than that for the unirradiated left angle 001 right angle sample. This result can be explained by increased scattering due to the increased number of defects produced by irradiation. On the other hand, the magnetoresistance coefficient for the unirradiated left angle 1 anti 10 right angle sample is found to be greater than that of the unirradiated left angle 001 right angle sample. (orig.)

  13. P-TYPE PLANET–PLANET SCATTERING: KEPLER CLOSE BINARY CONFIGURATIONS

    International Nuclear Information System (INIS)

    Gong, Yan-Xiang

    2017-01-01

    A hydrodynamical simulation shows that a circumbinary planet will migrate inward to the edge of the disk cavity. If multiple planets form in a circumbinary disk, successive migration will lead to planet–planet scattering (PPS). PPS of Kepler -like circumbinary planets is discussed in this paper. The aim of this paper is to answer how PPS affects the formation of these planets. We find that a close binary has a significant influence on the scattering process. If PPS occurs near the unstable boundary of a binary, about 10% of the systems can be completely destroyed after PPS. In more than 90% of the systems, there is only one planet left. Unlike the eccentricity distribution produced by PPS in a single star system, the surviving planets generally have low eccentricities if PPS take place near the location of the currently found circumbinary planets. In addition, the ejected planets are generally the innermost of two initial planets. The above results depend on the initial positions of the two planets. If the initial positions of the planets are moved away from the binary, the evolution tends toward statistics similar to those around single stars. In this process, the competition between the planet–planet force and the planet-binary force makes the eccentricity distribution of surviving planets diverse. These new features of P-type PPS will deepen our understanding of the formation of these circumbinary planets.

  14. Experimental verification of temperature coefficients of resistance for uniformly doped P-type resistors in SOI

    Science.gov (United States)

    Olszacki, M.; Maj, C.; Bahri, M. Al; Marrot, J.-C.; Boukabache, A.; Pons, P.; Napieralski, A.

    2010-06-01

    Many today's microsystems like strain-gauge-based piezoresistive pressure sensors contain doped resistors. If one wants to predict correctly the temperature impact on the performance of such devices, the accurate data about the temperature coefficients of resistance (TCR) are essential. Although such data may be calculated using one of the existing mobility models, our experiments showed that we can observe the huge mismatch between the calculated and measured values. Thus, in order to investigate the TCR values, a set of the test structures that contained doped P-type resistors was fabricated. As the TCR value also depends on the doping profile shape, we decided to use the very thin, 340 nm thick SOI wafers in order to fabricate the quasi-uniformly doped silicon layers ranging from 2 × 1017 at cm-3 to 1.6 × 1019 at cm-3. The results showed that the experimental data for the first-order TCR are quite far from the calculated ones especially over the doping range of 1018-1019 at cm-3 and quite close to the experimental ones obtained by Bullis about 50 years ago for bulk silicon. Moreover, for the first time, second-order coefficients that were not very consistent with the calculations were obtained.

  15. TSC measurements on proton-irradiated p-type Si-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Donegani, Elena; Fretwurst, Eckhart; Garutti, Erika; Junkes, Alexandra [University of Hamburg (Germany)

    2016-07-01

    Thin n{sup +}p Si sensors are potential candidates for coping with neutron equivalent fluences up to 2.10{sup 16} n{sub eq}/cm{sup 2} and an ionizing dose in the order of a few MGy, which are expected e.g. for the HL-LHC upgrade. The aim of the present work is to provide experimental data on radiation-induced defects in order to: firstly, get a deeper understanding of the properties of hadron induced defects, and secondly develop a radiation damage model based on microscopic measurements. Therefore, the outcomes of Thermally Stimulated Current measurements on 200 μm thick Float-Zone (FZ) and Magnetic Czochralski (MCz) diodes will be shown, as a results of irradiation with 23 MeV protons and isothermal annealing. The samples were irradiated in the fluence range (0.3-1).10{sup 14} n{sub eq}/cm{sup 2}, so that the maximal temperature at which the TSC signal is still sharply distinguishable from the dark current is 200 K. In particular, special focus will be given to the defect introduction rate and to the issue of boron removal in p-type silicon. Annealing studies allow to distinguish which defects mainly contribute to the leakage current and which to the space charge, and thus correlate microscopic defects properties with macroscopic sensor properties.

  16. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2009-04-01

    Full Text Available In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors.

  17. Properties of p-type amorphous silicon carbide window layers prepared using boron trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Gutierrez, M T [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Carabe, J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain)

    1993-03-01

    One set (A) of undoped and three sets (B, C and D) of doped hydrogenated amorphous silicon carbide samples have been made in the framework of a research plan for obtaining high quality p-type window layers by radiofrequency glow discharge of silane-based gas mixtures. The samples of sets A and B were made using different RF-power-density to mass-flow ratios for various methane percentages in the gas mixture. The best carbon incorporation in the amorphous silicon lattice was obtained at the highest RF-power density. The properties of sets C and D, prepared using different RF-power densities and silane and methane proportions have been analysed as functions of the concentration of boron trifluoride with respect to silane. In both cases, the optical gap E[sub G], after a slight initial decrease, remains at a value of approximately 2.1 eV without quenching in the doping ranges covered. The best conductivity obtained is 2x10[sup -7] ([Omega] cm)[sup -1]. IR spectra allow to associate these features with the structural quality of the films. (orig.)

  18. Technology development of p-type microstrip detectors with radiation hard p-spray isolation

    International Nuclear Information System (INIS)

    Pellegrini, G.; Fleta, C.; Campabadal, F.; Diez, S.; Lozano, M.; Rafi, J.M.; Ullan, M.

    2006-01-01

    A technology for the fabrication of p-type microstrip silicon radiation detectors using p-spray implant isolation has been developed at CNM-IMB. The p-spray isolation has been optimized in order to withstand a gamma irradiation dose up to 50 Mrad (Si), which represents the ionization radiation dose expected in the middle region of the SCT-Atlas detector of the future Super-LHC during 10 years of operation. The best technological options for the p-spray implant were found by using a simulation software package and dedicated calibration runs. Using the optimized technology, detectors have been fabricated in the Clean Room facility of CNM-IMB, and characterized by reverse current and capacitance measurements before and after irradiation. The average full depletion voltage measured on the non-irradiated detectors was V FD =41±3 V, while the leakage current density for the microstrip devices at V FD +20 V was 400 nA/cm 2

  19. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali

    2015-11-13

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  20. Reinventing a p-type doping process for stable ZnO light emitting devices

    Science.gov (United States)

    Xie, Xiuhua; Li, Binghui; Zhang, Zhenzhong; Shen, Dezhen

    2018-06-01

    A tough challenge for zinc oxide (ZnO) as the ultraviolet optoelectronics materials is realizing the stable and reliable p-type conductivity. Self-compensation, coming from native donor-type point defects, is a big obstacle. In this work, we introduce a dynamic N doping process with molecular beam epitaxy, which is accomplished by a Zn, N-shutter periodic switch (a certain time shift between them for independent optimization of surface conditions). During the epitaxy, N adatoms are incorporated under the condition of (2  ×  2)  +  Zn vacancies reconstruction on a Zn-polar surface, at which oxygen vacancies (V O), the dominating compensating donors, are suppressed. With the p-ZnO with sufficient holes surviving, N concentration ~1  ×  1019 cm‑3, is employed in a p-i-n light emitting devices. Significant ultraviolet emission of electroluminescence spectra without broad green band (related to V O) at room-temperature are demonstrated. The devices work incessantly without intentional cooling for over 300 h at a luminous intensity reduction of one order of magnitude under the driving of a 10 mA continuous current, which are the demonstration for p-ZnO stability and reliability.

  1. Experimental verification of temperature coefficients of resistance for uniformly doped P-type resistors in SOI

    International Nuclear Information System (INIS)

    Olszacki, M; Maj, C; Al Bahri, M; Marrot, J-C; Boukabache, A; Pons, P; Napieralski, A

    2010-01-01

    Many today's microsystems like strain-gauge-based piezoresistive pressure sensors contain doped resistors. If one wants to predict correctly the temperature impact on the performance of such devices, the accurate data about the temperature coefficients of resistance (TCR) are essential. Although such data may be calculated using one of the existing mobility models, our experiments showed that we can observe the huge mismatch between the calculated and measured values. Thus, in order to investigate the TCR values, a set of the test structures that contained doped P-type resistors was fabricated. As the TCR value also depends on the doping profile shape, we decided to use the very thin, 340 nm thick SOI wafers in order to fabricate the quasi-uniformly doped silicon layers ranging from 2 × 10 17 at cm −3 to 1.6 × 10 19 at cm −3 . The results showed that the experimental data for the first-order TCR are quite far from the calculated ones especially over the doping range of 10 18 –10 19 at cm −3 and quite close to the experimental ones obtained by Bullis about 50 years ago for bulk silicon. Moreover, for the first time, second-order coefficients that were not very consistent with the calculations were obtained.

  2. Defect study of Zn-doped p-type gallium antimonide using positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Ling, C. C.; Fung, S.; Beling, C. D.; Huimin, Weng

    2001-01-01

    Defects in p-type Zn-doped liquid-encapsulated Czochralski--grown GaSb were studied by the positron lifetime technique. The lifetime measurements were performed on the as-grown sample at temperature varying from 15 K to 297 K. A positron trapping center having a characteristic lifetime of 317 ps was identified as the neutral V Ga -related defect. Its concentration in the as-grown sample was found to be in the range of 10 17 --10 18 cm -3 . At an annealing temperature of 300 o C, the V Ga -related defect began annealing out and a new defect capable of trapping positrons was formed. This newly formed defect, having a lifetime value of 379 ps, is attributed to a vacancy--Zn-defect complex. This defect started annealing out at a temperature of 580 o C. A positron shallow trap having binding energy and concentration of 75 meV and 10 18 cm -3 , respectively, was also observed in the as-grown sample. This shallow trap is attributed to positrons forming hydrogenlike Rydberg states with the ionized dopant acceptor Zn

  3. Inkjet-printed p-type nickel oxide thin-film transistor

    Science.gov (United States)

    Hu, Hailong; Zhu, Jingguang; Chen, Maosheng; Guo, Tailiang; Li, Fushan

    2018-05-01

    High-performance inkjet-printed nickel oxide thin-film transistors (TFTs) with Al2O3 high-k dielectric have been fabricated using a sol-gel precursor ink. The "coffee ring" effect during the printing process was facilely restrained by modifying the viscosity of the ink to control the outward capillary flow. The impacts on the device performance was studied in detail in consideration of annealing temperature of the nickel oxide film and the properties of dielectric layer. The optimized switching ability of the device were achieved at an annealing temperature of 280 °C on a 50-nm-thick Al2O3 dielectric layer, with a hole mobility of 0.78 cm2/V·s, threshold voltage of -0.6 V and on/off current ratio of 5.3 × 104. The as-printed p-type oxide TFTs show potential application in low-cost, large-area complementary electronic devices.

  4. Experimental study of the organic light emitting diode with a p-type silicon anode

    International Nuclear Information System (INIS)

    Ma, G.L.; Xu, A.G.; Ran, G.Z.; Qiao, Y.P.; Zhang, B.R.; Chen, W.X.; Dai, L.; Qin, G.G.

    2006-01-01

    We have fabricated and studied an organic light emitting diode (OLED) with a p-type silicon anode and a SiO 2 buffer layer between the anode and the organic layers which emits light from a semitransparent top Yb/Au cathode. The luminance of the OLED is up to 5600 cd/m 2 at 17 V and 1800 mA/cm 2 , the current efficiency is 0.31 cd/A. Both its luminance and current efficiency are much higher than those of the OLEDs with silicon as the anodes reported previously. The enhancement of the luminance and efficiency can be attributed to an improved balance between the hole- and electron-injection through two efficient ways: 1) restraining the hole-injection by inserting an ultra-thin SiO 2 buffer layer between the Si anode and the organic layers; and 2) enhancing the electron-injection by using a low work function, low optical reflectance and absorption semitransparent Yb/Au cathode

  5. 33 CFR 183.435 - Conductors in circuits of 50 volts or more.

    Science.gov (United States)

    2010-07-01

    ... HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Electrical Systems Manufacturer... more. (c) This section does not apply to communication systems; electronic navigation equipment; resistance conductors that control circuit amperage; conductors in secondary circuits of ignition systems...

  6. Cognitive and collaborative demands of freight conductor activities: results and implications of a cognitive task analysis

    Science.gov (United States)

    2012-07-31

    This report presents the results of a cognitive task analysis (CTA) that examined the cognitive and collaborative demands placed on conductors, as well as the knowledge and skills that experienced conductors have developed that enable them to operate...

  7. Design of a Wireless Sensor Module for Monitoring Conductor Galloping of Transmission Lines.

    Science.gov (United States)

    Huang, Xinbo; Zhao, Long; Chen, Guimin

    2016-10-09

    Conductor galloping may cause flashovers and even tower collapses. The available conductor galloping monitoring methods often employ acceleration sensors to measure the conductor translations without considering the conductor twist. In this paper, a new sensor for monitoring conductor galloping of transmission lines based on an inertial measurement unit and wireless communication is proposed. An inertial measurement unit is used for collecting the accelerations and angular rates of a conductor, which are further transformed into the corresponding geographic coordinate frame using a quaternion transformation to reconstruct the galloping of the conductor. Both the hardware design and the software design are described in details. The corresponding test platforms are established, and the experiments show the feasibility and accuracy of the proposed monitoring sensor. The field operation of the proposed sensor in a conductor spanning 734 m also shows its effectiveness.

  8. Conductor Temperature Estimation and Prediction at Thermal Transient State in Dynamic Line Rating Application

    DEFF Research Database (Denmark)

    Alvarez, David L.; Silva, Filipe Miguel Faria da; Mombello, Enrique Esteban

    2018-01-01

    . This paper presents an algorithm to estimate and predict the temperature in overhead line conductors using an Extended Kalman Filter. The proposed algorithm assumes both actual weather and current intensity flowing along the conductor as control variables. The temperature of the conductor, mechanical tension...

  9. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    Science.gov (United States)

    Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797

  10. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology

    International Nuclear Information System (INIS)

    Dehzangi, Arash; Larki, Farhad; Naseri, Mahmud G.; Navasery, Manizheh; Majlis, Burhanuddin Y.; Razip Wee, Mohd F.; Halimah, M.K.; Islam, Md. Shabiul; Md Ali, Sawal H.; Saion, Elias

    2015-01-01

    Highlights: • Single crystal silicon nanowire is fabricated on Si on insulator substrate, using atomic force microscope (AFM) nanolithography and KOH + IPA chemical wet etching. • Some of major parameters in fabrication process, such as writing speed and applied voltage along with KOH etching depth are investigated, and then the I–V characteristic of Si nanowires is measured. • For better understanding of the charge transmission through the nanowire, 3D-TCAD simulation is performed to simulate the Si nanowires with the same size of the fabricated ones, and variation of majority and minority carriers, hole quasi-Fermi level and generation/recombination rate are investigated. - Abstract: Si nanowires (SiNWs) as building blocks for nanostructured materials and nanoelectronics have attracted much attention due to their major role in device fabrication. In the present work a top-down fabrication approach as atomic force microscope (AFM) nanolithography was performed on Si on insulator (SOI) substrate to fabricate a single crystal p-type SiNW. To draw oxide patterns on top of the SOI substrate local anodic oxidation was carried out by AFM in contact mode. After the oxidation procedure, an optimized solution of 30 wt.% KOH with 10 vol.% IPA for wet etching at 63 °C was applied to extract the nanostructure. The fabricated SiNW had 70–85 nm full width at half maximum width, 90 nm thickness and 4 μm length. The SiNW was simulated using Sentaurus 3D software with the exact same size of the fabricated device. I–V characterization of the SiNW was measured and compared with simulation results. Using simulation results variation of carrier's concentrations, valence band edge energy and recombination generation rate for different applied voltage were investigated

  11. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology

    Energy Technology Data Exchange (ETDEWEB)

    Dehzangi, Arash, E-mail: arashd53@hotmail.com [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Larki, Farhad [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Naseri, Mahmud G. [Department of Physics, Faculty of Science, Malayer University, Malayer, Hamedan (Iran, Islamic Republic of); Navasery, Manizheh [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Majlis, Burhanuddin Y.; Razip Wee, Mohd F. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Halimah, M.K. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Islam, Md. Shabiul; Md Ali, Sawal H. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Saion, Elias [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2015-04-15

    Highlights: • Single crystal silicon nanowire is fabricated on Si on insulator substrate, using atomic force microscope (AFM) nanolithography and KOH + IPA chemical wet etching. • Some of major parameters in fabrication process, such as writing speed and applied voltage along with KOH etching depth are investigated, and then the I–V characteristic of Si nanowires is measured. • For better understanding of the charge transmission through the nanowire, 3D-TCAD simulation is performed to simulate the Si nanowires with the same size of the fabricated ones, and variation of majority and minority carriers, hole quasi-Fermi level and generation/recombination rate are investigated. - Abstract: Si nanowires (SiNWs) as building blocks for nanostructured materials and nanoelectronics have attracted much attention due to their major role in device fabrication. In the present work a top-down fabrication approach as atomic force microscope (AFM) nanolithography was performed on Si on insulator (SOI) substrate to fabricate a single crystal p-type SiNW. To draw oxide patterns on top of the SOI substrate local anodic oxidation was carried out by AFM in contact mode. After the oxidation procedure, an optimized solution of 30 wt.% KOH with 10 vol.% IPA for wet etching at 63 °C was applied to extract the nanostructure. The fabricated SiNW had 70–85 nm full width at half maximum width, 90 nm thickness and 4 μm length. The SiNW was simulated using Sentaurus 3D software with the exact same size of the fabricated device. I–V characterization of the SiNW was measured and compared with simulation results. Using simulation results variation of carrier's concentrations, valence band edge energy and recombination generation rate for different applied voltage were investigated.

  12. Field-induced surface passivation of p-type silicon by using AlON films

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.N.; Parm, I.O.; Dhungel, S.K.; Jang, K.S.; Jeong, S.W.; Yoo, J.; Hwang, S.H.; Yi, J. [School of Information and Communication Engineering, Sungkyunkwan University, 300 Chunchun dong, Jangan-gu, Suwon-440746 (Korea)

    2008-02-15

    In the present work, we report on the evidence for a high negative charge density in aluminum oxynitride (AlON) coating on silicon. A comparative study was carried out on the composition and electrical properties of AlON and aluminum nitride (AlN). AlON films were deposited on p-type Si (1 0 0) substrate by RF magnetron sputtering using a mixture of argon and oxygen gases at substrate temperature of 300 C. The electrical properties of the AlON, AlN films were studied through capacitance-voltage (C-V) characteristics of metal-insulator-semiconductor (MIS) using the films as insulating layers. The flatband voltage shift V{sub FB} observed for AlON is around 4.5 V, which is high as compared to the AlN thin film. Heat treatment caused the V{sub FB} reduction to 3 V, but still the negative charge density was observed to be very high. In the AlN film, no fixed negative charge was observed at all. The XRD spectrum of AlON shows the major peaks of AlON (2 2 0) and AlN (0 0 2), located at 2{theta} value of 32.96 and 37.8 , respectively. The atomic percentage of Al, N in AlN film was found to be 42.5% and 57.5%, respectively. Atomic percentages of Al, N and O in EDS of AlON film are 20.21%, 27.31% and 52.48%, respectively. (author)

  13. Host and Pathogen Copper-Transporting P-Type ATPases Function Antagonistically during Salmonella Infection.

    Science.gov (United States)

    Ladomersky, Erik; Khan, Aslam; Shanbhag, Vinit; Cavet, Jennifer S; Chan, Jefferson; Weisman, Gary A; Petris, Michael J

    2017-09-01

    Copper is an essential yet potentially toxic trace element that is required by all aerobic organisms. A key regulator of copper homeostasis in mammalian cells is the copper-transporting P-type ATPase ATP7A, which mediates copper transport from the cytoplasm into the secretory pathway, as well as copper export across the plasma membrane. Previous studies have shown that ATP7A-dependent copper transport is required for killing phagocytosed Escherichia coli in a cultured macrophage cell line. In this investigation, we expanded on these studies by generating Atp7a LysMcre mice, in which the Atp7a gene was specifically deleted in cells of the myeloid lineage, including macrophages. Primary macrophages isolated from Atp7a LysMcre mice exhibit decreased copper transport into phagosomal compartments and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that of macrophages isolated from wild-type mice. The Atp7a LysMcre mice were also more susceptible to systemic infection by S Typhimurium than wild-type mice. Deletion of the S Typhimurium copper exporters, CopA and GolT, was found to decrease infection in wild-type mice but not in the Atp7a LysMcre mice. These studies suggest that ATP7A-dependent copper transport into the phagosome mediates host defense against S Typhimurium, which is counteracted by copper export from the bacteria via CopA and GolT. These findings reveal unique and opposing functions for copper transporters of the host and pathogen during infection. Copyright © 2017 American Society for Microbiology.

  14. Inkjet Printing NiO-Based p-Type Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Brisse, R; Faddoul, R; Bourgeteau, T; Tondelier, D; Leroy, J; Campidelli, S; Berthelot, T; Geffroy, B; Jousselme, B

    2017-01-25

    Fabrication at low cost of transparent p-type semiconductors with suitable electronic properties is essential toward the scalability of many electronic devices, especially for photovoltaic and photocatalytic applications. In this context, the synthesis of mesoporous NiO films through inkjet printing of a sol-gel ink was investigated for the first time. Nickel chloride and Pluronic F-127, used as nickel oxide precursor and pore-forming agent, respectively, were formulated in a water/ethanol mixture to prepare a jettable ink for Dimatix printer. Multilayer NiO films were formed, and different morphologies could be obtained by playing on the interlayer thermal treatment. At low temperature (30 °C), a porous nanoparticulate-nanofiber dual-pore structure was observed. On the other hand, with a high temperature treatment (450 °C), nanoparticulate denser films without any dual structure were obtained. The mechanism for NiO formation during the final sintering step, investigated by means of X-ray photolectron spectroscopy, shows that a Ni(OH) 2 species is an intermediate between NiCl 2 and NiO. The different morphologies and thicknesses of the NiO films were correlated to their performance in a p-DSSC configuration, using a new push-pull dye (so-called "RBG-174") and an iodine-based electrolyte. Moreover, the positive impact of a nanometric NiO x layer deposited by spin-coating and introduced between FTO and the NiO mesoporous network is highlighted in the present work. The best results were obtained with NiO x /four layer-NiO mesoporous photocathodes of 860 nm, with a current density at the short circuit of 3.42 mA cm -2 (irradiance of 100 mW cm -2 spectroscopically distributed following AM 1.5).

  15. P-type thin films transistors with solution-deposited lead sulfide films as semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Castillo, A.; Salas-Villasenor, A.; Mejia, I. [Department of Materials Science and Engineering, The University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Aguirre-Tostado, S. [Centro de Investigacion en Materiales Avanzados, S. C. Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica, Apodaca, Nuevo Leon, C.P. 666000 (Mexico); Gnade, B.E. [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Quevedo-Lopez, M.A., E-mail: mxq071000@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States)

    2012-01-31

    In this paper we demonstrate p-type thin film transistors fabricated with lead sulfide (PbS) as semiconductor deposited by chemical bath deposition methods. Crystallinity and morphology of the resulting PbS films were characterized using X-ray diffraction, atomic force microscopy and scanning electron microscopy. Devices were fabricated using photolithographic processes in a bottom gate configuration with Au as source and drain top contacts. Field effect mobility for as-fabricated devices was {approx} 0.09 cm{sup 2} V{sup -1} s{sup -1} whereas the mobility for devices annealed at 150 Degree-Sign C/h in forming gas increased up to {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Besides the thermal annealing, the entire fabrications process was maintained below 100 Degree-Sign C. The electrical performance of the PbS-thin film transistors was studied before and after the 150 Degree-Sign C anneal as well as a function of the PbS active layer thicknesses. - Highlights: Black-Right-Pointing-Pointer Thin film transistors with PbS as semiconductor deposited by chemical bath deposition. Black-Right-Pointing-Pointer Photolithography-based thin film transistors with PbS films at low temperatures. Black-Right-Pointing-Pointer Electron mobility for anneal-PbS devices of {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Black-Right-Pointing-Pointer Highest mobility reported in thin film transistors with PbS as the semiconductor.

  16. Violence Against Drivers and Conductors in the Road Passenger ...

    African Journals Online (AJOL)

    This cross-sectional study examined the extent, nature and risk factors of workplace violence in the road passenger transport sector in Maputo, the capital city of Mozambique. A random sample of 504 participants was selected from a population of 2 618 registered bus, minibus, and taxi drivers/conductors. The results ...

  17. Intermediate Temperature Proton Conductors – Why and How

    DEFF Research Database (Denmark)

    Li, Qingfeng; Aili, David; Jensen, Jens Oluf

    represented by early fundamental material research for ionic electrolytes. Such materials, most likely based on proton conductors, are expected to bring a new generation of the technologies: fuel cells by direct oxidation or internal splitting of biofuels such as methanol and ethanol, as well as efficient...

  18. Comparative characterization of Cu–Ni substrates for coated conductors

    DEFF Research Database (Denmark)

    Tian, H.; Suo, H.L.; Wulff, Anders Christian

    2014-01-01

    Three Cu100xNix alloys, with x = 23, 33 and 45 at.%Ni, have been evaluated for use as substrates for coated conductors on the basis of measurements of their microstructure, crystallographic texture and hardness. It is found that high-temperature annealing after heavy rolling generates strong cube...

  19. Temporal interaction between an artificial orchestra conductor and human musicians

    NARCIS (Netherlands)

    Reidsma, Dennis; Nijholt, Antinus; Bos, Pieter

    2008-01-01

    The Virtual Conductor project concerns the development of the first properly interactive virtual orchestra conductor—a Virtual Human that can conduct a piece of music through interaction with musicians, leading and following them while they are playing. This article describes our motivation for

  20. Conductor and Ensemble Performance Expressivity and State Festival Ratings

    Science.gov (United States)

    Price, Harry E.; Chang, E. Christina

    2005-01-01

    This study is the second in a series examining the relationship between conducting and ensemble performance. The purpose was to further examine the associations among conductor, ensemble performance expressivity, and festival ratings. Participants were asked to rate the expressivity of video-only conducting and parallel audio-only excerpts from a…

  1. An Organic Mixed Ion-Electron Conductor for Power Electronics

    DEFF Research Database (Denmark)

    Malti, Abdellah; Edberg, Jesper; Granberg, Hjalmar

    2016-01-01

    A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio­phene):­poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting...

  2. An Organic Mixed Ion–Electron Conductor for Power Electronics

    DEFF Research Database (Denmark)

    Malti, Abdellah; Edberg, Jesper; Granberg, Hjalmar

    2016-01-01

    A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio­phene):­poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting...

  3. Structural analysis of the NET toroidal field coils and conductor

    International Nuclear Information System (INIS)

    Mitchell, N.; Collier, D.; Gori, R.

    1989-01-01

    The NET toroidal field coils will utilise A15-type superconductor at 4.2 K to generate fields up to 11.5 T. The superconductor strands themselves are sensitive to strain, which causes degradation of their current carrying capacity, and thus the detailed behaviour of the coil conductor must be analysied so that the strian can be minimised. This analysis must include the manufacturing processes of the conductor as well as the normal and abnormal loperational loads. The conductor will be insulated and bonded by glass fibre reinforced epoxy resin, with limited bonding shear strength, and the overall support of the complete coil system must be designed to reduce these shear stresses. The coils will be subjected to pulse loads form the poloidal field coils, and analysis of the slip between the various coil components, such as conductors and the coil case, giving rise to frictional heating and possible loss of superconducting properties is another important factor, which has been investigated by a number of stress analyses. The manufacturing, thermal and normal magnetic loads on the coils and the analysis leading to the proposed structural design are described. In addition to the normal operating conditions, there is a range of abnormal load conditions which could result from electrical or mechanical faults on the coils. The effect of these potential faults has been analysed and the coil design modified to prevent catastrophic structural failure. (author). 13 refs.; 8 figs.; 1 tab

  4. H/D isotope effects in high temperature proton conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Huijser, A.; Poulsen, Finn Willy

    2015-01-01

    The atomic mass ratio of ca. 2 between deuterium and hydrogen is the highest for any pair of stable isotopes and results in significant and measurable H/D isotope effects in high temperature proton conductors containing these species. This paper discusses H/D isotope effects manifested in O-H/O-D...

  5. Non-equilibrium and band tailing in organic conductors

    Indian Academy of Sciences (India)

    . Non-equilibrium ... Introduction. Study of organic conductors and semiconductors continues to generate interest with the ... Band tailing reduces band gap or the acti- ..... (9), we can identify Eg(0) with the focal point and is proportional to P2. 1 .

  6. The electric field of a current-carrying conductor

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1991-01-01

    A subject concerning the relativistic invariance of the Gauss theorem has been discussed. The appearance of the electric field around the neutral conductor after excitation of current in it doesn't signify the change of its charge. 8 refs.; 1 fig

  7. Attentional flexibility and memory capacity in conductors and pianists.

    Science.gov (United States)

    Wöllner, Clemens; Halpern, Andrea R

    2016-01-01

    Individuals with high working memory (WM) capacity also tend to have better selective and divided attention. Although both capacities are essential for skilled performance in many areas, evidence for potential training and expertise effects is scarce. We investigated the attentional flexibility of musical conductors by comparing them to equivalently trained pianists. Conductors must focus their attention both on individual instruments and on larger sections of different instruments. We studied students and professionals in both domains to assess the contributions of age and training to these skills. Participants completed WM span tests for auditory and visual (notated) pitches and timing durations, as well as long-term memory tests. In three dichotic attention tasks, they were asked to detect small pitch and timing deviations from two melodic streams presented in baseline (separate streams), selective-attention (concentrating on only one stream), and divided-attention (concentrating on targets in both streams simultaneously) conditions. Conductors were better than pianists in detecting timing deviations in divided attention, and experts detected more targets than students. We found no group differences for WM capacity or for pitch deviations in the attention tasks, even after controlling for the older age of the experts. Musicians' WM spans across multimodal conditions were positively related to selective and divided attention. High-WM participants also had shorter reaction times in selective attention. Taken together, conductors showed higher attentional flexibility in successfully switching between different foci of attention.

  8. Effect of annular secondary conductor in a linear electromagnetic ...

    Indian Academy of Sciences (India)

    This paper presents the variation of average axial force density in the annular secondary conductor of a linear electromagnetic stirrer. Different geometries of secondaries are considered for numerical and experimental validation namely, 1. hollow annular ring, 2. annular ring with a solid cylinder and 3. solid cylinder.

  9. 30 CFR 57.12080 - Bare conductor guards.

    Science.gov (United States)

    2010-07-01

    ....12080 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity... conductors are less than 7 feet above the rail, they shall be guarded at all points where persons work or...

  10. Exploring a Metamorphosis: Identity Formation for an Emerging Conductor

    Science.gov (United States)

    Ponchione, Cayenna

    2013-01-01

    Exploring the manner in which professional identity formation in emerging conductors is entangled with the cultural context of orchestras, I focus on the amorphous evolution from a student identity to that of a professional, illuminating some underlying social conditions of the ever-elusive profession of conducting. Prevailing assumptions about…

  11. Charge densities and charge noise in mesoscopic conductors

    Indian Academy of Sciences (India)

    This generalization leads to a local Wigner–Smith life-time matrix. Keywords. Density ... Of interest is the charge distribution in such a conductor and ..... is the transmission probability of the scattering problem without absorption if .... as a voltage probe which has its potential adjusted in such a way that there is no net current.

  12. Influence of the magnetic field profile on ITER conductor testing

    International Nuclear Information System (INIS)

    Nijhuis, A; Ilyin, Y; Kate, H H J ten

    2006-01-01

    We performed simulations with the numerical CUDI-CICC code on a typical short ITER (International Thermonuclear Experimental Reactor) conductor test sample of dual leg configuration, as usually tested in the SULTAN test facility, and made a comparison with the new EFDA-Dipole test facility offering a larger applied DC field region. The new EFDA-Dipole test facility, designed for short sample testing of conductors for ITER, has a homogeneous high field region of 1.2 m, while in the SULTAN facility this region is three times shorter. The inevitable non-uniformity of the current distribution in the cable, introduced by the joints at both ends, has a degrading effect on voltage-current (VI) and voltage-temperature (VT) characteristics, particularly for these short samples. This can easily result in an underestimation or overestimation of the actual conductor performance. A longer applied DC high field region along a conductor suppresses the current non-uniformity by increasing the overall longitudinal cable electric field when reaching the current sharing mode. The numerical interpretation study presented here gives a quantitative analysis for a relevant practical case of a test of a short sample poloidal field coil insert (PFCI) conductor in SULTAN. The simulation includes the results of current distribution analysis from self-field measurements with Hall sensor arrays, current sharing measurements and inter-petal resistance measurements. The outcome of the simulations confirms that the current uniformity improves with a longer high field region but the 'measured' VI transition is barely affected, though the local peak voltages become somewhat suppressed. It appears that the location of the high field region and voltage taps has practically no influence on the VI curve as long as the transverse voltage components are adequately cancelled. In particular, for a thin conduit wall, the voltage taps should be connected to the conduit in the form of an (open) azimuthally

  13. Characterization of n and p-type ZnO thin films grown by pulsed filtered cathodic vacuum arc system

    International Nuclear Information System (INIS)

    Kavak, H.; Erdogan, E.N.; Ozsahin, I.; Esen, R.

    2010-01-01

    Full text : Semiconductor ZnO thin films with wide band gap attract much interest due to their properties such as chemical stability in hydrogen plasma, high optical transparency in the visible and nearinfrared region. Due to these properties ZnO oxide is a promising materials for electronic or optoelectronic applications such as solar cell (as an antireflecting coating and a transparent conducting material), gas sensors, surface acoustic wave devices. The purpose of this research is to improve the properties of n and p-type ZnO thin films for device applications. Polycrystalline ZnO is naturally n-type and very difficult to dope to make p-type. Therefore nowadays hardly produced p-type ZnO attracts a lot of attention. Nitrogen considered as the best dopant for p-type ZnO thin films.The transparent, conductive and very precise thickness controlled n and p-type semiconducting nanocrystalline ZnO thin films were prepared by pulsed filtered cathodic vacuum arc deposition (PFCVAD) method. Structural, optical and electrical properties of these films were investigated. And also photoluminescence properties of these films were investigated. Transparent p-type ZnO thin films were produced by oxidation of PFCVAD deposited zinc nitride. Zinc nitride thin films were deposited with various thicknesses and under different oxygen pressures on glass substrates. Zinc nitride thin films, which were deposited at room temperatures, were amorphous and the optical transmission was below 70%. For oxidation zinc nitride, the sample was annealed in air starting from 350 degrees Celsium up to 550 degrees Celsium for one hour duration. These XRD patterns imply that zinc nitride thin films converted to zinc oxide thin films with the same hexagonal crystalline structures of ZnO. The optical measurements were made for each annealing temperature and the optical transmissions of ZnO thin films were found better than 90 percent in visible range after annealing over 350 degrees Celsium. By

  14. The role of the VZn-NO-H complex in the p-type conductivity in ZnO.

    Science.gov (United States)

    Amini, M N; Saniz, R; Lamoen, D; Partoens, B

    2015-02-21

    Past research efforts aiming at obtaining stable p-type ZnO have been based on complexes involving nitrogen doping. A recent experiment by (J. G. Reynolds et al., Appl. Phys. Lett., 2013, 102, 152114) demonstrated a significant (∼10(18) cm(-3)) p-type behavior in N-doped ZnO films after appropriate annealing. The p-type conductivity was attributed to a VZn-NO-H shallow acceptor complex, formed by a Zn vacancy (VZn), N substituting O (NO), and H interstitial (Hi). We present here a first-principles hybrid functional study of this complex compared to the one without hydrogen. Our results confirm that the VZn-NO-H complex acts as an acceptor in ZnO. We find that H plays an important role, because it lowers the formation energy of the complex with respect to VZn-NO, a complex known to exhibit (unstable) p-type behavior. However, this additional H atom also occupies the hole level at the origin of the shallow behavior of VZn-NO, leaving only two states empty higher in the band gap and making the VZn-NO-H complex a deep acceptor. Therefore, we conclude that the cause of the observed p-type conductivity in experiment is not the presence of the VZn-NO-H complex, but probably the formation of the VZn-NO complex during the annealing process.

  15. Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Ming-Hsien Li

    2016-04-01

    Full Text Available Considering the increasing global demand for energy and the harmful ecological impact of conventional energy sources, it is obvious that development of clean and renewable energy is a necessity. Since the Sun is our only external energy source, harnessing its energy, which is clean, non-hazardous and infinite, satisfies the main objectives of all alternative energy strategies. With attractive features, i.e., good performance, low-cost potential, simple processibility, a wide range of applications from portable power generation to power-windows, photoelectrochemical solar cells like dye-sensitized solar cells (DSCs represent one of the promising methods for future large-scale power production directly from sunlight. While the sensitization of n-type semiconductors (n-SC has been intensively studied, the use of p-type semiconductor (p-SC, e.g., the sensitization of wide bandgap p-SC and hole transport materials with p-SC have also been attracting great attention. Recently, it has been proved that the p-type inorganic semiconductor as a charge selective material or a charge transport material in organometallic lead halide perovskite solar cells (PSCs shows a significant impact on solar cell performance. Therefore the study of p-type semiconductors is important to rationally design efficient DSCs and PSCs. In this review, recent published works on p-type DSCs and PSCs incorporated with an inorganic p-type semiconductor and our perspectives on this topic are discussed.

  16. Verification of a Novel Method of Detecting Faults in Medium-Voltage Systems with Covered Conductors

    Directory of Open Access Journals (Sweden)

    Mišák Stanislav

    2017-06-01

    Full Text Available This paper describes the use of new methods of detecting faults in medium-voltage overhead lines built of covered conductors. The methods mainly address such faults as falling of a conductor, contacting a conductor with a tree branch, or falling a tree branch across three phases of a medium-voltage conductor. These faults cannot be detected by current digital relay protection systems. Therefore, a new system that can detect the above mentioned faults was developed. After having tested its operation, the system has already been implemented to protect mediumvoltage overhead lines built of covered conductors.

  17. New tests on the 40 kA Nb3Sn CEA conductor for ITER applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Bessette, D.; Katheder, H.

    1994-01-01

    New tests have been performed on the 40 kA CEA Nb 3 Sn conductor in the Sultan III facility. The aim of these tests is to obtain key experimental data on the behaviour of Nb 3 Sn conductors for fusion applications under high field and large transport current. The 40 kA Nb 3 Sn CEA conductor has a shape and an internal arrangement of the superconducting wires which is very similar to the ITER conductors. The level of the ac losses experienced by these conductors under varying fields influences deeply their design. The basic experiment consists of producing field pulses on the conductor by means of a coil installed in the bore of the Sultan magnet and recording the integrated voltage obtained on pick-up coils placed on the conductor as a function of time. (author) 4 refs.; 5 figs.; 2 tabs

  18. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.

    Science.gov (United States)

    Xue, Mianqiang; Yan, Guoqing; Li, Jia; Xu, Zhenming

    2012-10-02

    Electrostatic separation has been widely used to separate conductors and nonconductors for recycling e-waste. However, the components of e-waste are complex, which can be classified as conductors, semiconductors, and nonconductors according to their conducting properties. In this work, we made a novel attempt to recover the mixtures containing conductors (copper), semiconductors (extrinsic silicon), and nonconductors (woven glass reinforced resin) by electrostatic separation. The results of binary mixtures separation show that the separation of conductor and nonconductor, semiconductor and nonconductor need a higher voltage level while the separation of conductor and semiconductor needs a higher roll speed. Furthermore, the semiconductor separation efficiency is more sensitive to the high voltage level and the roll speed than the conductor separation efficiency. An integrated process was proposed for the multiple mixtures separation. The separation efficiency of conductors and semiconductors can reach 82.5% and 88%, respectively. This study contributes to the efficient recycling of valuable resources from e-waste.

  19. Electronic passivation of n- and p-type GaAs using chemical vapor deposited GaS

    Science.gov (United States)

    Tabib-Azar, Massood; Kang, Soon; Macinnes, Andrew N.; Power, Michael B.; Barron, Andrew R.; Jenkins, Phillip P.; Hepp, Aloysius F.

    1993-01-01

    We report on the electronic passivation of n- and p-type GaAs using CVD cubic GaS. Au/GaS/GaAs-fabricated metal-insulator-semiconductor (MIS) structures exhibit classical high-frequency capacitor vs voltage (C-V) behavior with well-defined accumulation and inversion regions. Using high- and low-frequency C-V, the interface trap densities of about 10 exp 11/eV per sq cm on both n- and p-type GaAs are determined. The electronic condition of GaS/GaAs interface did not show any deterioration after a six week time period.

  20. Proton Pumping and Slippage Dynamics of a Eukaryotic P-Type ATPase Studied at the Single-Molecule Level

    DEFF Research Database (Denmark)

    Veshaguri, Salome

    In all eukaryotes the plasma membrane potential and secondary transport systems are energized by P-type ATPases whose regulation however remains poorly understood. Here we monitored at the single-molecule level the activity of the prototypic proton pumping P-type ATPase Arabidopsis thaliana isoform....... We propose that variable ATP/H+ stoichiometry emerges as a novel mechanism for adaptation when challenged with depletion of ATP that is likely relevant for other ATPases. Such measurements will provide indispensable insights into the mechanisms of function and regulation of many other ion...

  1. Controlled oxygen vacancy induced p-type conductivity in HfO{sub 2-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Mueller, Mathis M.; Kleebe, Hans-Joachim; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany); Schroeder, Thomas [IHP, 15236 Frankfurt/Oder (Germany)

    2011-09-12

    We have synthesized highly oxygen deficient HfO{sub 2-x} thin films by controlled oxygen engineering using reactive molecular beam epitaxy. Above a threshold value of oxygen vacancies, p-type conductivity sets in with up to 6 times 10{sup 21} charge carriers per cm{sup 3}. At the same time, the band-gap is reduced continuously by more than 1 eV. We suggest an oxygen vacancy induced p-type defect band as origin of the observed behavior.

  2. Bending Test of Conductor for ALICE and LHCb Dipole Magnets

    CERN Document Server

    Giudici, P A; CERN. Geneva; Flegel, W

    2000-01-01

    Abstract It is foreseen that the coils for the two magnets will be manufactured by winding flat pancakes, which are subsequently shaped to a semi-cylindrical form (ALICE) or bent by 45 degrees (LHCb). We propose here several methods and describe tests that were performed to estimate tolerances and forces which will have to be expected during the manufacturing process. To this end, short Aluminium conductor lengths of adequate cross-section were bent around a shaper piece to an angle of 90 degrees. The tests were repeated for conductors both wrapped with prepreg insulation tape and without this tape. The different test set-ups and the obtained results are described in this note.

  3. The electrostatics of charged insulating sheets peeled from grounded conductors

    International Nuclear Information System (INIS)

    Datta, M J; Horenstein, M N

    2008-01-01

    The physics of a charged, insulating sheet peeled from a ground-plane conductor is examined. Contact charging is ensured by charging a sheet to 10-12 kV with corona to establish intimate electrostatic contact with the underlying conductor. The surface potential is next forced to zero by sweeping the sheet with a stainless-steel brush, and the surface recharged to a new potential between 0 and 11 kV. The sheet is then peeled from the ground plane and its residual charge density is measured. Results show that the residual charge equals the breakdown-limiting value, but its polarity depends on the surface potential acquired just prior to peeling. The results have relevance to studies of industrial webs and insulating sheets.

  4. The ATLAS semi-conductor tracker operation and performance

    International Nuclear Information System (INIS)

    Robinson, D.

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The SCT was installed and commissioned within ATLAS in 2007, and has been used to exploit fully the physics potential of the LHC since the first proton–proton collisions at 7 TeV were delivered in 2009. In this paper, its operational status throughout data taking up to the end of 2011 is presented, and its tracking performance is reviewed. -- Highlights: ► The operation and performance of the ATLAS Semi-Conductor Tracker (SCT) is reviewed. ► More than 99% of the SCT strips have remained operational in all data taking periods so far. ► Tracking performance indicators have met or exceeded design specifications. ► Radiation damage effects match closely expectations from delivered fluence.

  5. Chemical solution deposition: a path towards low cost coated conductors

    International Nuclear Information System (INIS)

    Obradors, X; Puig, T; Pomar, A; Sandiumenge, F; Pinol, S; Mestres, N; Castano, O; Coll, M; Cavallaro, A; Palau, A; Gazquez, J; Gonzalez, J C; Gutierrez, J; Roma, N; Ricart, S; Moreto, J M; Rossell, M D; Tendeloo, G van

    2004-01-01

    The achievement of low cost deposition techniques for high critical current YBa 2 Cu 3 O 7 coated conductors is one of the major objectives to achieve a widespread use of superconductivity in power applications. Chemical solution deposition techniques are appearing as a very promising methodology to achieve epitaxial oxide thin films at a low cost, so an intense effort is being carried out to develop routes for all chemical coated conductor tapes. In this work recent achievements will be presented towards the goal of combining the deposition of different type of buffer layers on metallic substrates based on metal-organic decomposition with the growth of YBa 2 Cu 3 O 7 layers using the trifluoroacetate route. The influence of processing parameters on the microstructure and superconducting properties will be stressed. High critical currents are demonstrated in 'all chemical' multilayers

  6. Current transfer between superconductor and normal layer in coated conductors

    International Nuclear Information System (INIS)

    Takacs, S

    2007-01-01

    The current transfer between superconducting stripes coated with normal layer is examined in detail. It is shown that, in present YBCO coated conductors with striations, a considerable amount of the current flowing in the normal layer is not transferred into the superconducting stripes. This effect also influences the eddy currents and the coupling currents between the stripes. The effective resistance for the coupling currents is calculated. The maximum allowable twist length of such a striated structure is given, which ensures lower losses than in the corresponding normal conductor of the same volume as the total YBCO cable (including substrate, buffer layer, superconductor and normal coating). In addition, a new simple method for determining the transfer resistance between superconducting and normal parts is proposed

  7. Crystallization of P-type ATPases by the High Lipid-Detergent (HiLiDe) Method

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Wang, Kaituo; Liu, Xiangyu

    2016-01-01

    Determining structures of membrane proteins remains a significant challenge. A technique utilizing high lipid-detergent concentrations ("HiLiDe") circumvents the major bottlenecks of current membrane protein crystallization methods. During HiLiDe, the protein-lipid-detergent ratio is varied in a ...... crystallization techniques. The method has been applied with particular success to P-type ATPases....

  8. Micro Raman and photoluminescence spectroscopy of nano-porous n and p type GaN/sapphire(0001).

    Science.gov (United States)

    Ingale, Alka; Pal, Suparna; Dixit, V K; Tiwari, Pragya

    2007-06-01

    Variation of depth within a single etching spot (3 mm circular diameter) was observed in nanoporous GaN epilayer obtained on photo-assisted electrochemical etching of n and p-type GaN. The different etching depth regions were studied using microRaman and PL(yellow region) for both n-type and p-type GaN. From Raman spectroscopy, we observed that increase in disorder is accompanied by stress relaxation, as depth of etching increases for n-type GaN epilayer. This is well corroborated with scanning electron microscopy results. Contrarily, for p-type GaN epilayer we found that for minimum etching depth, stress in epilayer increases with increase in disorder. This is understood with the fact that as grown p-type GaN is more disordered compared to n-type GaN due to heavy Mg doping and further disorder leads to lattice distortion leading to increase in stress.

  9. Study of araldite in edge protection of n-type and p-type surface barrier detectors

    International Nuclear Information System (INIS)

    Alencar, M.A.V.; Jesus, E.F.O.; Lopes, R.T.

    1995-01-01

    The aim of this work is the realization of a comparative study between the surface barrier detectors performance n and type using the epoxy resin Araldite as edge protection material with the purpose of determining which type of detector (n or p) the use of Araldite is more indicated. The surface barrier detectors were constructed using n and p type silicon wafer with resistivity of 3350Ω.cm and 5850 Ω.cm respectively. In the n type detectors, the metals used as ohmic and rectifier contacts were the Al and Au respectively, while in the p type detectors, the ohmic and rectifier contacts were Au and Al. All metallic contacts were done by evaporation in high vacuum (∼10 -4 Torr) and with deposit of 40 μm/cm 2 . The obtained results for the detectors (reverse current of -350nA and resolution from 21 to 26 keV for p type detectors and reserve current of 1μA and resolution from 44 to 49 keV for n type detectors) tend to demonstrate that use of epoxy resin Araldite in the edge protection is more indicated to p type surface barrier detectors. (author). 3 refs., 4 figs., 1 tab

  10. Nanomechanical properties of thick porous silicon layers grown on p- and p+-type bulk crystalline Si

    International Nuclear Information System (INIS)

    Charitidis, C.A.; Skarmoutsou, A.; Nassiopoulou, A.G.; Dragoneas, A.

    2011-01-01

    Highlights: → The nanomechanical properties of bulk crystalline Si. → The nanomechanical properties of porous Si. → The elastic-plastic deformation of porous Si compared to bulk crystalline quantified by nanoindentation data analysis. - Abstract: The nanomechanical properties and the nanoscale deformation of thick porous Si (PSi) layers of two different morphologies, grown electrochemically on p-type and p+-type Si wafers were investigated by the depth-sensing nanoindentation technique over a small range of loads using a Berkovich indenter and were compared with those of bulk crystalline Si. The microstructure of the thick PSi layers was characterized by field emission scanning electron microscopy. PSi layers on p+-type Si show an anisotropic mesoporous structure with straight vertical pores of diameter in the range of 30-50 nm, while those on p-type Si show a sponge like mesoporous structure. The effect of the microstructure on the mechanical properties of the layers is discussed. It is shown that the hardness and Young's modulus of the PSi layers exhibit a strong dependence on their microstructure. In particular, PSi layers with the anisotropic straight vertical pores show higher hardness and elastic modulus values than sponge-like layers. However, sponge-like PSi layers reveal less plastic deformation and higher wear resistance compared with layers with straight vertical pores.

  11. In silico approaches and chemical space of anti-P-type ATPase compounds for discovering new antituberculous drugs.

    Science.gov (United States)

    Santos, Paola; López-Vallejo, Fabian; Soto, Carlos-Y

    2017-08-01

    Tuberculosis (TB) is one of the most important public health problems around the world. The emergence of multi-drug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis strains has driven the finding of alternative anti-TB targets. In this context, P-type ATPases are interesting therapeutic targets due to their key role in ion homeostasis across the plasma membrane and the mycobacterial survival inside macrophages. In this review, in silico and experimental strategies used for the rational design of new anti-TB drugs are presented; in addition, the chemical space distribution based on the structure and molecular properties of compounds with anti-TB and anti-P-type ATPase activity is discussed. The chemical space distribution compared to public compound libraries demonstrates that natural product libraries are a source of novel chemical scaffolds with potential anti-P-type ATPase activity. Furthermore, compounds that experimentally display anti-P-type ATPase activity belong to a chemical space of molecular properties comparable to that occupied by those approved for oral use, suggesting that these kinds of molecules have a good pharmacokinetic profile (drug-like) for evaluation as potential anti-TB drugs. © 2017 John Wiley & Sons A/S.

  12. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  13. Preparation of p-type transparent conducting tin-antimony oxide thin films by DC reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhenguo [College of Electronic Information, Hangzhou Dianzi University, Hangzhou (China); State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou (China); Xi, Junhua; Huo, Lijuan; Zhao, Yi [State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou (China)

    2008-07-01

    P-type transparent conducting tin-antimony oxide (TAO) films were successfully prepared by DC reactive magnetron sputtering followed by post annealing in the air. Structural, optical and electrical properties of the TAO films were investigated. X-ray diffraction studies showed that the films are polycrystalline with orthorhombic structure of Sb{sub 2}O{sub 4}. UV-Visible absorption and transmittance spectra showed that the optical band-gap of the TAO films is about 3.90 eV, and the overall transmittance is higher than 85% in the visible region. Hall effect measurement indicated that the Sn/Sb ratio is a critical parameter to get p-type conducting TAO films. It was found that 0.19p-type TAO films could be obtained. Hole concentration as high as 4.03 x 10{sup 19} cm{sup -3} and electrical resistivity as low as 0.155 {omega}cm were achieved, showing potential applications of TAO films as p-type transparent conducting films. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Hydrogen electrolysis using a NASICON solid protonic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Gulens, J.; Longhurst, T.H.; Kuriakose, A.K.; Canaday, J.D.

    1988-09-01

    A protonic conductor based on a bonded NASICON disc has been used for hydrogen electrolysis at 300 K. Currents up to 200 mA can be passed through the disc, and the electrolysis proceeds with 100% current efficiency. The resistance of the ceramic is affected by its extent of hydration. Degradation and failure of the ceramic occurs at the cathode as a result of electrolysis.

  15. Intermediate Temperature Proton Conductors – Why and How

    OpenAIRE

    Li, Qingfeng; Aili, David; Jensen, Jens Oluf; Cleemann, Lars Nilausen

    2016-01-01

    The current technologies of fuel cells and electrolzers are based on ionic conducting electrolyte materials exclusively operational either in the low (20 - 200ºC) or high (600 - 1000ºC) temperature ranges. The intermediate temperature window, especially between 200 and 400 ºC, is still only represented by early fundamental material research for ionic electrolytes. Such materials, most likely based on proton conductors, are expected to bring a new generation of the technologies: fuel cells by ...

  16. What is a good conductor for metamaterials or plasmonics

    Directory of Open Access Journals (Sweden)

    Soukoulis Costas M.

    2015-04-01

    Full Text Available We review conducting materials like metals, conducting oxides and graphene for nanophotonic applications. We emphasize that metamaterials and plasmonic systems benefit from different conducting materials. Resonant metamaterials need conductors with small resistivity, since dissipative loss in resonant metamaterials is proportional to the real part of the resistivity of the conducting medium it contains. For plasmonic systems, one must determine the propagation length at a desired level of confinement to estimate the dissipative loss.

  17. Modelling the V-I characteristic of coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Rutter, N A [Department of Materials Science, University of Cambridge, Cambridge (United Kingdom); IRC in Superconductivity, Cavendish Laboratory, Cambridge (United Kingdom)]. E-mail: ruttern@ornl.gov; Glowacki, B A [Department of Materials Science, University of Cambridge, Cambridge (United Kingdom); IRC in Superconductivity, Cavendish Laboratory, Cambridge (United Kingdom)

    2001-09-01

    The critical current densities of coated conductor samples are limited by the presence of low-angle grain boundaries. These boundaries provide an obstacle to current flow, which is determined by their misorientation angle. The superconducting layer of a coated conductor tape may be considered as a network of grains linked together by grain boundaries through which the supercurrent must pass. Such a network has been investigated using a two-dimensional grain model. The three-dimensional orientations of grains in the superconducting network can be assigned randomly based on information obtained from EBSD and x-ray texture measurements. By assigning critical current values to boundaries based on their calculated misorientation, the overall J{sub c} of macroscopic modelled samples can then be calculated. This paper demonstrates how such a technique is applied using a small-scale, idealized sample grain structure in an applied magnetic field. The onset of dissipation at the critical current may be viewed in terms of the flow of the magnetic flux across the sample along high-angle grain boundaries when the critical current is first exceeded. Through such a consideration, the model may be further used to predict the current-voltage characteristic of the coated conductor sample around the superconducting transition. (author)

  18. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    ROSENTHAL, STEPHEN E.; DESJARLAIS, MICHAEL P.; SPIELMAN, RICK B.; STYGAR, WILLIAM A.; ASAY, JAMES R.; DOUGLAS, M.R.; HALL, C.A.; FRESE, M.H.; MORSE, R.L.; REISMAN, D.B.

    2000-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model

  19. High-field thermal transports properties of REBCO coated conductors

    CERN Document Server

    Bonura, M

    2015-01-01

    The use of REBCO coated conductors is envisaged for many applications, extending from power cables to high-field magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the first study on the longitudinal thermal conductivity (k) of REBCO coated conductors in magnetic fields up to 19 T applied both parallelly and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-field k of coated conductors can be calculated with an accuracy of ‡ 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high fields have allowed us to evaluate the consistency of the procedures generally used for estimating in-field k in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-field data are intended to provide primary ingredients for the ...

  20. Quantum oscillations in quasi-two-dimensional conductors

    CERN Document Server

    Galbova, O

    2002-01-01

    The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...

  1. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    Rosenthal, S.E.; Asay, J.R.; Desjarlais, M.P.; Douglas, M.R.; Frese, M.H.; Hall, C.A.; Morse, R.L.; Reisman, D.; Spielman, R.B.; Stygar, W.A.

    1999-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator we have revisited a problem first described in detail by Heinz Knoepfel. MITLs of previous pulsed power accelerators have been in the 1-Tesla regime. Z's disc transmission line (downstream of the current addition) is in a 100-1200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 we have been investigating conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are ( 1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into our MHD computations. Certain features are strongly dependent on the details of the conductivity model. Comparison with measurements on Z will be discussed

  2. Design principles for solid-state lithium superionic conductors.

    Science.gov (United States)

    Wang, Yan; Richards, William Davidson; Ong, Shyue Ping; Miara, Lincoln J; Kim, Jae Chul; Mo, Yifei; Ceder, Gerbrand

    2015-10-01

    Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today's lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li(+) conductivity in the solid state comparable to existing liquid electrolytes (>1 mS cm(-1)) is particularly challenging. In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the desirable structural attributes of good Li-ion conductors. We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors. These findings provide important insight towards the understanding of ionic transport in Li-ion conductors and serve as design principles for future discovery and design of improved electrolytes for Li-ion batteries.

  3. S-type and P-type habitability in stellar binary systems: A comprehensive approach. I. Method and applications

    Energy Technology Data Exchange (ETDEWEB)

    Cuntz, M., E-mail: cuntz@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019-0059 (United States)

    2014-01-01

    A comprehensive approach is provided for the study of both S-type and P-type habitability in stellar binary systems, which in principle can also be expanded to systems of higher order. P-type orbits occur when the planet orbits both binary components, whereas in the case of S-type orbits, the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach encapsulates a variety of different aspects, which include: (1) the consideration of a joint constraint, including orbital stability and a habitable region for a putative system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ), needs to be met; (2) the treatment of conservative, general, and extended zones of habitability for the various systems as defined for the solar system and beyond; (3) the provision of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are presented for the kind of system in which S-type and P-type habitability is realized; (4) applications of the attained theoretical approach to standard (theoretical) main-sequence stars. In principle, five different cases of habitability are identified, which are S-type and P-type habitability provided by the full extent of the RHZs; habitability, where the RHZs are truncated by the additional constraint of planetary orbital stability (referred to as ST- and PT-type, respectively); and cases of no habitability at all. Regarding the treatment of planetary orbital stability, we utilize the formulae of Holman and Wiegert as also used in previous studies. In this work, we focus on binary systems in circular orbits. Future applications will also consider binary systems in elliptical orbits and provide thorough comparisons to other methods and results given in the literature.

  4. Selection of a cryostabilized Nb3Sn conductor cooling system for the large coil program

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Murphy, J.H.; Jones, C.K.

    1977-01-01

    The Large Coil Project (LCP) is a program to design, fabricate and test relatively large superconducting toroidal field coils for tokamak fusion reactor applications. Some basic requirements that affect the conductor design are cryostabilization, 8 tesla peak magnetic field, and a specified maximum refrigeration load. The engineering considerations that led to the selection of a forced flow supercritical helium-cooled cable conductor are described. Comparisons of forced flow supercritical helium cooled cable conductors with pool boiling cooled monolithic conductors were made with regard to a number of factors such as the thermal capacity of the coolant, the thermal design margins, propensity for conductor normalization, predictability of the thermal-flow performance, controllability of the cooling conditions, etc. It was concluded that, although there exists a number of design uncertainties and engineering problems, forced flow supercritical helium cooled conductors can provide a far more reliable coil design than the pool boiling monolithic concept. The design of a cryostabilized Nb 3 Sn hollow cabled conductor involved detailed considerations of the need for fully transposed conductor strands, the nonuniform void and helium flow distributions, heat transfer from the twisted conductor strands, and helium flow rate and pump work requirements. The uncertainties in the design are discussed and the specifications of a reference Nb 3 Sn conductor concept that meets the design requirements and constraints are presented

  5. Conductors for commercial MRI magnets beyond NbTi: requirements and challenges

    Science.gov (United States)

    Parizh, Michael; Lvovsky, Yuri; Sumption, Michael

    2017-01-01

    Magnetic resonance imaging (MRI), a powerful medical diagnostic tool, is the largest commercial application of superconductivity. The superconducting magnet is the largest and most expensive component of an MRI system. The magnet configuration is determined by competing requirements including optimized functional performance, patient comfort, ease of siting in a hospital environment, minimum acquisition and lifecycle cost including service. In this paper, we analyze conductor requirements for commercial MRI magnets beyond traditional NbTi conductors, while avoiding links to a particular magnet configuration or design decisions. Potential conductor candidates include MgB2, ReBCO and BSCCO options. The analysis shows that no MRI-ready non-NbTi conductor is commercially available at the moment. For some conductors, MRI specifications will be difficult to achieve in principle. For others, cost is a key barrier. In some cases, the prospects for developing an MRI-ready conductor are more favorable, but significant developments are still needed. The key needs include the development of, or significant improvements in: (a) conductors specifically designed for MRI applications, with form-fit-and-function readily integratable into the present MRI magnet technology with minimum modifications. Preferably, similar conductors should be available from multiple vendors; (b) conductors with improved quench characteristics, i.e. the ability to carry significant current without damage while in the resistive state; (c) insulation which is compatible with manufacturing and refrigeration technologies; (d) dramatic increases in production and long-length quality control, including large-volume conductor manufacturing technology. In-situ MgB2 is, perhaps, the closest to meeting commercial and technical requirements to become suitable for commercial MRI. Conductor technology is an important, but not the only, issue in introduction of HTS/MgB2 conductor into commercial MRI magnets. These

  6. Exploring the limits of a very large Nb3Sn conductor: the 80 kA conductor of the ITER toroidal field model coil

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Ciazynski, D.; Guerber, O.; Park, S.H.; Zani, L.

    2003-01-01

    In Phase II experiment of the International Thermonuclear Experimental Reactor (ITER) Toroidal Field Model Coil (TFMC) the operation limits of its 80 kA Nb 3 Sn conductor were explored. To increase the magnetic field on the conductor, the TFMC was tested in presence of another large coil: the EURATOM-LCT coil. Under these conditions the maximum field reached on the conductor, was around 10 tesla. This exploration has been performed at constant current, by progressively increasing the coil temperature and monitoring the coil voltage drop in the current sharing regime. Such an operation was made possible thanks to the very high stability of the conductor. The aim of these tests was to compare the critical properties of the conductor with expectations and assess the ITER TF conductor design. These expectations are based on the documented critical field and temperature dependent properties of the 720 superconducting strands which compose the conductor. In addition the conductor properties are highly dependent on the strain, due to the compression appearing on Nb 3 Sn during the heat treatment of the pancakes and related to the differential thermal compression between Nb 3 Sn and the stainless steel jacket. No precise model exists to predict this strain, which is therefore the main information, which is expected from these tests. The method to deduce this strain from the different tests is presented, including a thermalhydraulic analysis to identify the temperature of the critical point and a careful estimation of the field map across the conductor. The measured strain has been estimated in the range -0.75% to -0.79 %. This information will be taken into account for ITER design and some adjustment of the ITER conductor design is under examination. (authors)

  7. Transport ac losses in Bi-2223 multifilamentary tapes - conductor materials aspect

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge BC2 3QZ (United Kingdom); Majoros, M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Institute of Electrical Engineering, SAS, Bratislava (Slovakia)

    2000-05-01

    Transport ac losses in technical superconductors based on Bi-2223 tape material are influenced by many parameters. The major factors that define the ac performance of such conductors are the following: the size and number of filaments, their geometrical arrangement in the cross-section of the conductor, the twist pitch length, the resistivity of the matrix, the presence of oxide barriers around the filaments and deformation procedures such as sequential pressing or rolling followed by appropriate thermal treatment. In the present paper the above aspects are addressed from the viewpoint of the materials science of technical conductor design. Transport ac losses at power frequencies in different types of Bi-2223 conductor are presented and analysed. The results of conductor design analysis with respect to the coexistence of the superconductor with other materials in the conductor structure are presented. New concepts for minimization of the transport ac losses are discussed in detail. (author)

  8. A Boundary Element Solution to the Problem of Interacting AC Fields in Parallel Conductors

    Directory of Open Access Journals (Sweden)

    Einar M. Rønquist

    1984-04-01

    Full Text Available The ac fields in electrically insulated conductors will interact through the surrounding electromagnetic fields. The pertinent field equations reduce to the Helmholtz equation inside each conductor (interior problem, and to the Laplace equation outside the conductors (exterior problem. These equations are transformed to integral equations, with the magnetic vector potential and its normal derivative on the boundaries as unknowns. The integral equations are then approximated by sets of algebraic equations. The interior problem involves only unknowns on the boundary of each conductor, while the exterior problem couples unknowns from several conductors. The interior and the exterior problem are coupled through the field continuity conditions. The full set of equations is solved by standard Gaussian elimination. We also show how the total current and the dissipated power within each conductor can be expressed as boundary integrals. Finally, computational results for a sample problem are compared with a finite difference solution.

  9. Fitting Formulae and Constraints for the Existence of S-type and P-type Habitable Zones in Binary Systems

    International Nuclear Information System (INIS)

    Wang Zhaopeng; Cuntz, Manfred

    2017-01-01

    We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us to gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.

  10. Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels

    Science.gov (United States)

    Huang, B.

    2016-07-01

    We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.

  11. Structural models of the human copper P-type ATPases ATP7A and ATP7B

    DEFF Research Database (Denmark)

    Gourdon, P.; Sitsel, Oleg; Karlsen, J.L.

    2012-01-01

    The human copper exporters ATP7A and ATP7B contain domains common to all P-type ATPases as well as class-specific features such as six sequential heavy-metal binding domains (HMBD1-HMBD6) and a type-specific constellation of transmembrane helices. Despite the medical significance of ATP7A and ATP7B......, allowing protein-specific properties to be addressed. Furthermore, the mapping of known disease-causing missense mutations indicates that among the heavy-metal binding domains, HMBD5 and HMBD6 are the most crucial for function, thus mimicking the single or dual HMBDs found in most copper-specific P-type...

  12. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films

    International Nuclear Information System (INIS)

    Yang, Jing; Zhao, Degang; Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing; Zhang, Y. T.; Du, G. T.

    2015-01-01

    The effects of hydrogen impurities on p-type resistivity in Mg-doped GaN films were investigated. It was found that hydrogen impurities may have the dual role of passivating Mg Ga acceptors and passivating donor defects. A decrease in p-type resistivity when O 2 is introduced during the postannealing process is attributed to the fact that annealing in an O 2 -containing environment can enhance the dissociation of Mg Ga -H complexes as well as the outdiffusion of H atoms from p-GaN films. However, low H concentrations are not necessarily beneficial in Mg-doped GaN films, as H atoms may also be bound at donor species and passivate them, leading to the positive effect of reduced compensation

  13. Analysis of Photoluminescence Thermal Quenching: Guidance for the Design of Highly Effective p-type Doping of Nitrides

    Science.gov (United States)

    Liu, Zhiqiang; Huang, Yang; Yi, Xiaoyan; Fu, Binglei; Yuan, Guodong; Wang, Junxi; Li, Jinmin; Zhang, Yong

    2016-08-01

    A contact-free diagnostic technique for examining position of the impurity energy level of p-type dopants in nitride semiconductors was proposed based on photoluminescence thermal quenching. The Mg ionization energy was extracted by the phenomenological rate-equation model we developed. The diagnostic technique and analysis model reported here are priorities for the design of highly effective p-doping of nitrides and could also be used to explain the abnormal and seldom analyzed low characteristic temperature T0 (about 100 K) of thermal quenching in p-type nitrides systems. An In-Mg co-doped GaN system is given as an example to prove the validity of our methods. Furthermore, a hole concentration as high as 1.94 × 1018 cm-3 was achieved through In-Mg co-doping, which is nearly one order of magnitude higher than typically obtained in our lab.

  14. P-type Cu2O/SnO bilayer thin film transistors processed at low temperatures

    KAUST Repository

    Al-Jawhari, Hala A.

    2013-10-09

    P-type Cu2O/SnO bilayer thin film transistors (TFTs) with tunable performance were fabricated using room temperature sputtered copper and tin oxides. Using Cu2O film as capping layer on top of a SnO film to control its stoichiometry, we have optimized the performance of the resulting bilayer transistor. A transistor with 10 nm/15 nm Cu2O to SnO thickness ratio (25 nm total thickness) showed the best performance using a maximum process temperature of 170 C. The bilayer transistor exhibited p-type behavior with field-effect mobility, on-to-off current ratio, and threshold voltage of 0.66 cm2 V-1 s-1, 1.5×10 2, and -5.2 V, respectively. The advantages of the bilayer structure relative to single layer transistor are discussed. © 2013 American Chemical Society.

  15. Fitting Formulae and Constraints for the Existence of S-type and P-type Habitable Zones in Binary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhaopeng; Cuntz, Manfred, E-mail: zhaopeng.wang@mavs.uta.edu, E-mail: cuntz@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2017-10-01

    We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us to gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.

  16. S-TYPE AND P-TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. II. ELLIPTICAL ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Cuntz, M., E-mail: cuntz@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019-0059 (United States)

    2015-01-10

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs are truncated by the additional constraint of orbital stability, the notation of ST-type and PT-type habitability applies. In comparison to the circular case, it is found that in systems of higher eccentricity, the range of the RHZs is significantly reduced. Moreover, for a considerable number of models, the orbital stability constraint also reduces the range of S-type and P-type habitability. Nonetheless, S-, P-, ST-, and PT-type habitability is identified for a considerable set of system parameters. The method as presented is utilized for BinHab, an online code available at The University of Texas at Arlington.

  17. Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN

    Science.gov (United States)

    Saha, Bivas; Garbrecht, Magnus; Perez-Taborda, Jaime A.; Fawey, Mohammed H.; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Hultman, Lars; Sands, Timothy D.

    2017-06-01

    Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ScN thin-films are highly degenerate n-type semiconductors with carrier concentrations in the (1-6) × 1020 cm-3 range. In this letter, we show that magnesium nitride (MgxNy) acts as an efficient hole dopant in ScN and reduces the n-type carrier concentration, turning ScN into a p-type semiconductor at high doping levels. Employing a combination of high-resolution X-ray diffraction, transmission electron microscopy, and room temperature optical and temperature dependent electrical measurements, we demonstrate that p-type Sc1-xMgxN thin-film alloys (a) are substitutional solid solutions without MgxNy precipitation, phase segregation, or secondary phase formation within the studied compositional region, (b) exhibit a maximum hole-concentration of 2.2 × 1020 cm-3 and a hole mobility of 21 cm2/Vs, (c) do not show any defect states inside the direct gap of ScN, thus retaining their basic electronic structure, and (d) exhibit alloy scattering dominating hole conduction at high temperatures. These results demonstrate MgxNy doped p-type ScN and compare well with our previous reports on p-type ScN with manganese nitride (MnxNy) doping.

  18. Direct Evidence of Mg Incorporation Pathway in Vapor-Liquid-Solid Grown p-type Nonpolar GaN Nanowires

    OpenAIRE

    Patsha, Avinash; Amirthapandian, S.; Pandian, Ramanathaswamy; Bera, S.; Bhattacharya, Anirban; Dhara, Sandip

    2015-01-01

    Doping of III-nitride based compound semiconductor nanowires is still a challenging issue to have a control over the dopant distribution in precise locations of the nanowire optoelectronic devices. Knowledge of the dopant incorporation and its pathways in nanowires for such devices is limited by the growth methods. We report the direct evidence of incorporation pathway for Mg dopants in p-type nonpolar GaN nanowires grown via vapour-liquid-solid (VLS) method in a chemical vapour deposition te...

  19. S-TYPE AND P-TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. II. ELLIPTICAL ORBITS

    International Nuclear Information System (INIS)

    Cuntz, M.

    2015-01-01

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes ( r adiative habitable zone ; RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs are truncated by the additional constraint of orbital stability, the notation of ST-type and PT-type habitability applies. In comparison to the circular case, it is found that in systems of higher eccentricity, the range of the RHZs is significantly reduced. Moreover, for a considerable number of models, the orbital stability constraint also reduces the range of S-type and P-type habitability. Nonetheless, S-, P-, ST-, and PT-type habitability is identified for a considerable set of system parameters. The method as presented is utilized for BinHab, an online code available at The University of Texas at Arlington

  20. Change in the electrical conductivity of SnO2 crystal from n-type to p-type conductivity

    International Nuclear Information System (INIS)

    Villamagua, Luis; Stashans, Arvids; Lee, Po-Ming; Liu, Yen-Shuo; Liu, Cheng-Yi; Carini, Manuela

    2015-01-01

    Highlights: • Switch from n-type to p-type conductivity in SnO 2 has been studied. • Computational DFT + U method where used. • X-ray diffraction and X-ray photoelectron spectroscopy where used. • Al- and N-codoped SnO 2 compound shows stable p-type conductivity. • Low resistivity (3.657 × 10 −1 Ω cm) has been obtained. • High carrier concentration (4.858 × 10 19 cm −3 ) has been obtained. - Abstract: The long-sought fully transparent technology will not come true if the n region of the p–n junction does not get as well developed as its p counterpart. Both experimental and theoretical efforts have to be used to study and discover phenomena occurring at the microscopic level in SnO 2 systems. In the present paper, using the DFT + U approach as a main tool and the Vienna ab initio Simulation Package (VASP) we reproduce both intrinsic n-type as well as p-type conductivity in concordance to results observed in real samples of SnO 2 material. Initially, an oxygen vacancy (1.56 mol% concentration) combined with a tin-interstitial (1.56 mol% concentration) scheme was used to achieve the n-type electrical conductivity. Later, to attain the p-type conductivity, crystal already possessing n-type conductivity, was codoped with nitrogen (1.56 mol% concentration) and aluminium (12.48 mol% concentration) impurities. Detailed explanation of structural changes endured by the geometry of the crystal as well as the changes in its electrical properties has been obtained. Our experimental data to a very good extent matches with the results found in the DFT + U modelling

  1. Loss and Inductance Investigations in a 4-layer Superconducting Prototype Cable Conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Olsen, Søren Krüger; Kühle (fratrådt), Anders Van Der Aa

    1999-01-01

    One important issue in the design and optimization of a superconducting cable conductor is the control of the current distribution between single tapes and layers. This presentation is based on a number of experiments performed on a 4-layer three meter long prototype superconducting cable conductor......-losses are measured as a function of transport current and a given current distribution and compared with the monoblock model. Recommendations for design of future cable conductor prototypes are given....

  2. Estimation of Equivalent Thermal Conductivity for Impregnated Electrical Windings Formed from Profiled Rectangular Conductors

    OpenAIRE

    Ayat, Sabrina S; Wrobel, Rafal; Goss, James; Drury, David

    2016-01-01

    In order to improve accuracy and reduce model setting-up, and solving time in thermal analysis of electrical machines, transformers and wound passive components, the multi-material winding region is frequently homogenised. The existing winding homogenization techniques are predo-minantly focused on winding constructions with round conductors, where thermal conductivity across conductors is usually assumed to be isotropic. However, for the profiled rectangular conductors that assumption is no ...

  3. Properties and local environment of p-type and photoluminescent rare earths implanted into ZnO single crystals

    CERN Document Server

    Rita, EMC; Wahl, U; Soares, JC

    This thesis presents an experimental study of the local environment of p-type and Rare- Earth dopants implanted in ZnO single-crystals (SCs). Various nuclear and bulk property techniques were combined in the following evaluations: Implantation damage annealing was evaluated in ZnO SCs implanted with Fe, Sr and Ca. P-type dopants Cu and Ag implanted ZnO SCs were studied revealing that the solubility of Cu in substituting Zn is considerably higher than that of Ag. These results are discussed within the scope of the ZnO p-type doping problematic with these elements. Experimental proofs of the As “anti-site” behavior in ZnO were for the first time attained, i.e., the majority of As atoms are substitutional at the Zn site (SZn), possibly surrounded by two Zn vacancies (VZn). This reinforces the theoretical prediction that As acts as an acceptor in ZnO via the AsZn-2VZn complex formation. The co-doping of ZnO SC with In (donor) and As (acceptor) was addressed. The most striking result is the possible In-As “p...

  4. Field effect transistors and phototransistors based upon p-type solution-processed PbS nanowires

    Science.gov (United States)

    Giraud, Paul; Hou, Bo; Pak, Sangyeon; Inn Sohn, Jung; Morris, Stephen; Cha, SeungNam; Kim, Jong Min

    2018-02-01

    We demonstrate the fabrication of solution processed highly crystalline p-type PbS nanowires via the oriented attachment of nanoparticles. The analysis of single nanowire field effect transistor (FET) devices revealed a hole conduction behaviour with average mobilities greater than 30 cm2 V-1 s-1, which is an order of magnitude higher than that reported to date for p-type PbS colloidal nanowires. We have investigated the response of the FETs to near-infrared light excitation and show herein that the nanowires exhibited gate-dependent photo-conductivities, enabling us to tune the device performances. The responsivity was found to be greater than 104 A W-1 together with a detectivity of 1013 Jones, which benefits from a photogating effect occurring at negative gate voltages. These encouraging detection parameters are accompanied by relatively short switching times of 15 ms at positive gate voltages, resulting from a combination of the standard photoconduction and the high crystallinity of the nanowires. Collectively, these results indicate that solution-processed PbS nanowires are promising nanomaterials for infrared photodetectors as well as p-type nanowire FETs.

  5. Thermal Stability of P-Type BiSbTe Alloys Prepared by Melt Spinning and Rapid Sintering

    Directory of Open Access Journals (Sweden)

    Yun Zheng

    2017-06-01

    Full Text Available P-type BiSbTe alloys have been widely implemented in waste heat recovery from low-grade heat sources below 600 K, which may involve assorted environments and conditions, such as long-term service, high-temperature exposure (generally 473–573 K and mechanical forces. It is important to evaluate the service performance of these materials in order to prevent possible failures in advance and extend the life cycle. In this study, p-type Bi0.5Sb1.5Te3 commercial zone-melting (ZM ingots were processed by melt spinning and subsequent plasma-activated sintering (MS-PAS, and were then subjected to vacuum-annealing at 473 and 573 K, respectively, for one week. The results show that MS-PAS samples exhibit excellent thermal stability when annealed at 473 K. However, thermal annealing at 573 K for MS-PAS specimens leads to the distinct sublimation of the element Te, which degrades the hole concentration remarkably and results in inferior thermoelectric performance. Furthermore, MS-PAS samples annealed at 473 K demonstrate a slight enhancement in flexural and compressive strengths, probably due to the reduction of residual stress induced during the sintering process. The current work guides the reliable application of p-type Bi0.5Sb1.5Te3 compounds prepared by the MS-PAS technique.

  6. Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films

    International Nuclear Information System (INIS)

    Hai-Qing, Xiao; Chun-Lan, Zhou; Xiao-Ning, Cao; Wen-Jing, Wang; Lei, Zhao; Hai-Ling, Li; Hong-Wei, Diao

    2009-01-01

    Al 2 O 3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 10 12 cm −2 is detected in the Al 2 O 3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO 2 and plasma enhanced chemical vapor deposition SiN x :H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al 2 O 3 . (cross-disciplinary physics and related areas of science and technology)

  7. First results on the charge collection properties of segmented detectors made with p-type bulk silicon

    International Nuclear Information System (INIS)

    Casse, G.; Allport, P.P.; Bowcock, T.J.V.; Greenall, A.; Hanlon, M.; Jackson, J.N.

    2002-01-01

    Radiation damage of n-type bulk detectors introduces stable defects acting as effective p-type doping and leads to the change of the conductivity type of the silicon substrate (type inversion) after a fluence of a few times 10 13 protons cm -2 . The diode junction after inversion migrates from the original side to the back plane of the detector. The migration of the junction can be prevented using silicon detectors with p-type substrates. Furthermore, the use of n-side readout gives higher charge collection efficiency for segmented devices operated below the full depletion voltage. Large area (∼6.4x6.4 cm 2 ) capacitively coupled 80 μm pitch detectors using polysilicon bias resistors have been fabricated on p-type substrates (n-in-p diode structure). These detectors have been irradiated with 24 GeV/c protons to an integrated fluence of 3x10 14 cm -2 and kept for 7 days at 25 deg. C to reach the broad minimum of the annealing curve. Results are presented on the comparison of their charge collection properties with detectors using p-strip read-out after corresponding dose and annealing

  8. Studies on advanced superconductors for fusion device. Pt. 1. Present status of Nb3Sn conductors

    International Nuclear Information System (INIS)

    Tachikawa, Kyoji; Yamamoto, Junya

    1996-03-01

    Nb 3 Sn conductors have been developed with great expectation as an advanced high-field superconductor to be used in fusion devices of next generation. Furthermore, Nb 3 Sn conductors are being developed for NMR magnet and superconducting generator as well as for cryogen-free superconducting magnet. A variety of fabrication procedures, such as bronze process, internal tin process and Nb tube method, have been developed based on the diffusion reaction. Recently, Nb 3 Sn conductors with ultra-thin filaments have been fabricated for AC use. Both high-field and AC performances of Nb 3 Sn conductors have been significantly improved by alloying addition. The Ti-doped Nb 3 Sn conductor has generated 21.5T at 1.8K operation. This report summarizes manufacturing procedures, superconducting performances and applications of Nb 3 Sn conductors fabricated through different processes in different countries. More detailed subjects included in this report are high-field properties, AC properties, conductors for fusion with large current capacities, stress-strain effect and irradiation effect as well as standardization of critical current measurement method regarding to Nb 3 Sn conductors. Comprehensive grasp on the present status of Nb 3 Sn conductors provided by this report will act as a useful data base for the future planning of fusion devices. (author). 172 refs

  9. Investigation of the influence of heat transfer on screen printed textile conductor

    Science.gov (United States)

    Kazani, I.; De Mey, G.; Hertleer, C.; Guxho, G.; Van Langenhove, L.

    2017-10-01

    Two different textile substrates were screen printed with silver-based inks in order to be electrically conductive. In every textile four conductors were printed with different widths in order to investigate the influence of heat transfer on each conductor. This was done, by using the thermo graphic camera and through the evaluation of each conductor’s profile. It was found that the conductors printed on the white textile had higher values of heat transfer compared to the other conductors printed on the dark textiles.

  10. Fabrication of p-type conductivity in SnO{sub 2} thin films through Ga doping

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, Chien-Yie, E-mail: cytsay@fcu.edu.tw; Liang, Shan-Chien

    2015-02-15

    Highlights: • P-type Ga-doped SnO{sub 2} semiconductor films were prepared by sol-gel spin coating. • Optical bandgaps of the SnO{sub 2}:Ga films are narrower than that of the SnO{sub 2} film. • SnO{sub 2}:Ga films exhibited p-type conductivity as Ga doping content higher than 10%. • A p-n heterojunction composed of p-type SnO{sub 2}:Ga and n-type ZnO:Al was fabricated. - Abstract: P-type transparent tin oxide (SnO{sub 2}) based semiconductor thin films were deposited onto alkali-free glass substrates by a sol-gel spin-coating method using gallium (Ga) as acceptor dopant. In this study, we investigated the influence of Ga doping concentration ([Ga]/[Sn] + [Ga] = 0%, 5%, 10%, 15%, and 20%) on the structural, optical and electrical properties of SnO{sub 2} thin films. XRD analysis results showed that dried Ga-doped SnO{sub 2} (SnO{sub 2}:Ga) sol-gel films annealed in oxygen ambient at 520 °C for 1 h exhibited only the tetragonal rutile phase. The average optical transmittance of as-prepared thin film samples was higher than 87.0% in the visible light region; the optical band gap energy slightly decreased from 3.92 eV to 3.83 eV with increases in Ga doping content. Hall effect measurement showed that the nature of conductivity of SnO{sub 2}:Ga thin films changed from n-type to p-type when the Ga doping level was 10%, and when it was at 15%, Ga-doped SnO{sub 2} thin films exhibited the highest mean hole concentration of 1.70 × 10{sup 18} cm{sup -3}. Furthermore, a transparent p-SnO{sub 2}:Ga (Ga doping level of 15%)/n-ZnO:Al (Al doping level of 2%) heterojunction was fabricated on alkali-free glass. The I-V curve measurement for the p-n heterojunction diode showed a typical rectifying characteristic with a forward turn-on voltage of 0.65 V.

  11. Solderability study of RABiTS-based YBCO coated conductors

    International Nuclear Information System (INIS)

    Zhang Yifei; Duckworth, Robert C.; Ha, Tam T.; Gouge, Michael J.

    2011-01-01

    Study examines the implication of solder and flux selection in YBCO splice joints. Focus is on commercially available RABiTS-based YBCO coated conductors. Solderability varied with solder and flux for three different stabilizations tested. Resistivity of stabilizer was dominant factor in splice joint resistance. Solder materials affected splice joint resistance when solderability was poor. The solderability of commercially available YBa 2 Cu 3 O 7-x (YBCO) coated conductors that were made from Rolling Assisted Biaxially Textured Substrates (RABiTS)-based templates was studied. The coated conductors, also known as second-generation (2G) high temperature superconductor (HTS) wires (in the geometry of flat tapes about 4 mm wide), were laminated with copper, brass, or stainless steel strips as stabilizers. To understand the factors that influence their solderability, surface profilometry and scanning electron microscopy were used to characterize the wire surfaces. The solderability of three solders, 52In48Sn, 67Bi33In, and 100In (wt.%), was evaluated using a standard test (IPC/ECA J-STD-002) and with two different commercial fluxes. It was found that the solderability varied with the solder and flux but the three different wires showed similar solderability for a fixed combination of solder and flux. Solder joints of the 2G wires were fabricated using the tools and the procedures recommended by the HTS wire manufacturer. The solder joints were made in a lap-joint geometry and with the superconducting sides of the two wires face-to-face. The electrical resistances of the solder joints were measured at 77 K, and the results were analyzed to qualify the soldering materials and evaluate the soldering process. It was concluded that although the selection of soldering materials affected the resistance of a solder joint, the resistivity of the stabilizer was the dominant factor.

  12. Preparation of the ITER Poloidal Field Conductor Insert (PFCI) test

    International Nuclear Information System (INIS)

    Zanino, R.; Egorov, S.; Kim, K.; Martovetsky, N.; Nunoya, Y.; Okuno, K.; Salpietro, E.; Sborchia, C.; Takahashi, Y.; Weng, P.; Bangasco, M.; Savoldi Richard, L.; Polak, M.; Formisano, A.; Zapretilina, E.; Shikov, A.; Vedernikov, G.; Ciazynski, D.; Zani, L.; Muzzi, L.; Ricci, M.; Deela Corte, A.; Sugimoto, M.; Hamada, K.; Portone, A.; Hurd, F.; Mitchell, N.; Nijhuis, A.; Ilyin, Y.

    2004-01-01

    The Poloidal Field Conductor Insert (PFCI) of the International Thermonuclear Experimental Reactor (ITER) has been designed in Europe and is being manufactured at Tesla Engineering, UK, in the frame of a Task Agreement with the ITER International Team. Completion of the PFCI is expected at the beginning of 2005. Then, the coil shall be shipped to JAERI Naka, Japan, and inserted into the bore of the ITER Central Solenoid Model Coil, where it should be tested in 2005 to 2006. The PFCI consists of a NbTi dual-channel conductor, almost identical to the ITER PF1 and PF6 design, about 45 m long, with a 50 mm thick square stainless steel jacket, wound in a single-layer solenoid. It should carry up to 50 kA in a field of about 6 T, and it will be cooled by supercritical He at around 4.5 K and 0.6 MPa. An intermediate joint, representative of the ITER PF joints and located at relatively high field, will be an important new item in the test configuration with respect to the previous ITER Insert Coils. The PFCI will be fully instrumented with inductive and resistive heaters, as well as with voltage taps, Hall probes, pick-up coils, temperature sensors, pressure taps, strain and displacement sensors. The test program shall be aimed at DC and pulsed performance assessment of conductor and intermediate joint, AC loss measurement, stability and quench propagation, thermalhydraulic characterization. Here we give an overview of the preparatory work towards the test, including a review of the coil manufacturing and of the available instrumentation, a discussion of the most likely test program items, and a presentation of the supporting modeling and characterization work performed so far. (authors)

  13. Laser direct fabrication of silver conductors on glass boards

    International Nuclear Information System (INIS)

    Li Xiangyou; Zeng Xiaoyan; Li Huiling; Qi Xiaojing

    2005-01-01

    Laser micro-cladding has been used to fabricate metal conductors, according to a designed electronic circuit, directly onto glass boards which had been coated with a silver-containing electronic paste. The electronic pastes, composed of silver powders, inorganic binders and organic medium, thus formed the conductive metal pattern (i.e. electric circuit) along the path of the laser allowing the rest of the layer to be removed subsequently by an organic solvent. Firing in a furnace at 600 deg. C resulted in conductive lines with resistivity of about 10 -5 Ω cm and with adhesive strength of the order of magnitude of megapascals

  14. Specific features of the thermodynamics of superionic conductors

    International Nuclear Information System (INIS)

    Gurevich, Yu.Ya.; Kharkats, Yu.I.

    1982-01-01

    A review of theoretical and experimental investigations devoted to a study of thermodynamic aspects of the superionic conductivity phenomena for the recent decade is presented. A relation between a superionic conductivity and the disordering of one of the crystal sublattices, the phase transitions of the disordering caused by the point defects interaction, the mechanism of polymorphic transitions conjugated with a partial disordering are considered. The effect of an abrupt change of the ionic conductivity induced by electric field, the thermodynamics of the domain states in superionic conductors and the influence of pressure on phase transitions and ionic conductivity are analyzed

  15. The ATLAS Semi-Conductor Tracker Operation and Performance

    CERN Document Server

    Robinson, D; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT), is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The SCT was installed and commissioned within ATLAS in 2007, and has been has been used to fully exploit the physics potential of the LHC since the first proton-proton collisions at 7 TeV were delivered in 2009. In this paper, its operational status throughout data taking up to the end of 2011 is presented, and its tracking performance is reviewed.

  16. Method for deposition of a conductor in integrated circuits

    Science.gov (United States)

    Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.

    1997-01-01

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

  17. The quantum flux in quasis one-dimensional conductors

    International Nuclear Information System (INIS)

    Ventura, J.

    1989-01-01

    A method is presented which quantizes electromagnetic fluxes directly in flux space. It is based on the commutation law [φ B , φ E ] = i, where φ B is the magnetic flux, and φ E the longitudinal electric flux of a quasi one-dimensional conductor. The relevance of such a method for the description of the quantized Hall plateaus is discussed. In a second step, the polarization electric flux is introduced, together with a method for quantization of hybrid variables formed with pure electromagnetic fluxes plus electronic variables. (author) [pt

  18. Flux line lattice in type II super conductors

    International Nuclear Information System (INIS)

    Manindra Kumar; Singh, Arun Kumar; Surendra Kumar

    2003-01-01

    The shear modules C 66 of the flux line lattice in type II super conductors can be obtained from a two body interaction between the flux lines even at large inductions B ∼ HC 2 . The potential is composed of a repulsive and an attractive part and has a range diverging at HC 2 . An explicit expression for the Ginzberg-Landau C 66 is given for arbitrary B and k' (G-L parameter). The graph for C 66 exhibits the expected maximum at a certain value of b. (author)

  19. Magnet and conductor developments for the Mirror Fusion Program

    International Nuclear Information System (INIS)

    Cornish, D.N.

    1981-01-01

    The conductor development and the magnet design and construction for the MFTF are described. Future plans for the Mirror Program and their influence on the associated superconductor development program are discussed. Included is a summary of the progress being made to develop large, high-field, multifilamentary Nb 3 Sn superconductors and the feasibility of building a 12-T yin-yang set of coils for the machine to follow MFTF. In a further look into the future, possible magnetic configurations and requirements for mirror reactors are surveyed

  20. Application of the Lifshitz Theory to Poor Conductors

    International Nuclear Information System (INIS)

    Svetovoy, Vitaly B.

    2008-01-01

    The Lifshitz formula for dispersive forces is generalized to the materials, which cannot be described with the local dielectric response. The principal nonlocality of poor conductors is related to the finite screening length of the penetrating field and collisional relaxation; at low temperatures the role of collisions plays the Landau damping. Spatial dispersion makes the theory self-consistent. Our predictions are compared with the recent experiment. It is demonstrated that at low temperatures Casimir-Lifshitz entropy disappears as T in the case of degenerate plasma and as T 2 for the nondegenerate one

  1. Quench propagation in coated conductors for fault current limiters

    International Nuclear Information System (INIS)

    Roy, F.; Perez, S.; Therasse, M.; Dutoit, B.; Sirois, F.; Decroux, M.; Antognazza, L.

    2009-01-01

    A fundamental understanding of the quench phenomenon is crucial in the future design and operation of high temperature superconductors based fault current limiters. The key parameter that quantifies the quenching process in superconductors is the normal zone propagation (NZP) velocity, which is defined as the speed at which the normal zone expands into the superconducting volume. In the present paper, we used numerical models developed in our group recently to investigate the quench propagation in coated conductors. With our models, we have shown that the NZP in these tapes depends strongly on the substrate properties.

  2. Computer simulation of multiple stability regions in an internally cooled superconducting conductor and of helium replenishment in a bath-cooled conductor

    International Nuclear Information System (INIS)

    Turner, L.R.; Shindler, J.

    1984-09-01

    For upcoming fusion experiments and future fusion reactors, superconducting magnetic have been chosen or considered which employ cooling by pool-boiling HeI, by HeII, and by internally flowing HeI. The choice of conductor and cooling method should be determined in part by the response of the magnet to sudden localized heat pulses of various magnitudes. The paper describes the successful computer simulation of multiple stability in internally cooled conductors, as observed experimentally, using the computer code SSICC. It also describes the modeling of helium replenishment in the cooling channels of a bath-cooled conductor, using the computer code TASS

  3. Fabrication and characterization of GaN-based light-emitting diodes without pre-activation of p-type GaN.

    Science.gov (United States)

    Hu, Xiao-Long; Wang, Hong; Zhang, Xi-Chun

    2015-01-01

    We fabricated GaN-based light-emitting diodes (LEDs) without pre-activation of p-type GaN. During the fabrication process, a 100-nm-thick indium tin oxide film was served as the p-type contact layer and annealed at 500°C in N2 ambient for 20 min to increase its transparency as well as to activate the p-type GaN. The electrical measurements showed that the LEDs were featured by a lower forward voltage and higher wall-plug efficiency in comparison with LEDs using pre-activation of p-type GaN. We discussed the mechanism of activation of p-type GaN at 500°C in N2 ambient. Furthermore, x-ray photoemission spectroscopy examinations were carried out to study the improved electrical performances of the LEDs without pre-activation of p-type GaN.

  4. AC loss, interstrand resistance and mechanical properties of prototype EU DEMO TF conductors up to 30 000 load cycles

    Science.gov (United States)

    Yagotintsev, K.; Nijhuis, A.

    2018-07-01

    Two prototype Nb3Sn cable-in-conduit conductors conductors were designed and manufactured for the toroidal field (TF) magnet system of the envisaged European DEMO fusion reactor. The AC loss, contact resistance and mechanical properties of two sample conductors were tested in the Twente Cryogenic Cable Press under cyclic load up to 30 000 cycles. Though both conductors were designed to operate at 82 kA in a background magnetic field of 13.6 T, they reflect different approaches with respect to the magnet winding pack assembly. The first approach is based on react and wind technology while the second is the more common wind and react technology. Each conductor was tested first for AC loss in virgin condition without handling. The impact of Lorentz load during magnet operation was simulated using the cable press. In the press each conductor specimen was subjected to transverse cyclic load up to 30 000 cycles in liquid helium bath at 4.2 K. Here a summary of results for AC loss, contact resistance, conductor deformation, mechanical heat production and conductor stiffness evolution during cycling of the load is presented. Both conductors showed similar mechanical behaviour but quite different AC loss. In comparison with previously tested ITER TF conductors, both DEMO TF conductors possess very low contact resistance resulting in high coupling loss. At the same time, load cycling has limited impact on properties of DEMO TF conductors in comparison with ITER TF conductors.

  5. Fully filamentized HTS coated conductor via striation and selective electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Majkic, Goran [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Selvamanickam, Venkat, E-mail: selva@uh.edu [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2013-03-15

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer.

  6. Mutual capacitance of liquid conductors in deformable tactile sensing arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Electrical and Computer Engineering Department, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Fontecchio, Adam K. [Electrical and Computer Engineering and Materials Science and Engineering Departments, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Visell, Yon [Electrical and Computer Engineering Department, Media Arts and Technology, California NanoSystems Institute, University of California, Santa Barbara, California 93106 (United States)

    2016-01-04

    Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.

  7. Thermoelectric power in ionic and electronic mixed conductors

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Masahiro; Jin-nouchi, Kenji; Esaka, Takao [Tottori Univ. (Japan). Faculty of Engineering

    1996-08-01

    In order to study the thermoelectric property of the oxide ionic and electronic mixed conductor of 10 mol% CaO-doped CeO{sub 2} (CDC), a new type of thermocell was prepared, in which platinum electrodes were embedded in the tube-type sample to diminish the large temperature gradient over the electrodes due to the local heat radiation from heating furnace. Using this thermocell, reproducible data were obtained. The thermoelectric power measured in CDC under various oxygen atmospheres (Po{sub 2}) from 1.0 to about 10{sup -15} atm showed that the sign of Seebeck coefficients changed from minus to plus. This variation of Seebeck coefficients vs. Po{sub 2} was well interpreted by considering that (1) the thermoelectric power could be a driving force to make actual and electrochemical oxygen transfer in the mixed conductor and (2) the electrode processes had limiting rates due to slow oxygen diffusion (or oxygen gas exhaustion at the cathode and evolution at the anode). (author)

  8. Fully filamentized HTS coated conductor via striation and selective electroplating

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Majkic, Goran; Selvamanickam, Venkat

    2013-01-01

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer

  9. A dendrite-suppressing composite ion conductor from aramid nanofibres.

    Science.gov (United States)

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A

    2015-01-27

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  10. ATLAS SemiConductor Tracker Operation and Performance

    CERN Document Server

    Tojo, J; The ATLAS collaboration

    2011-01-01

    The SemiConductor Tracker (SCT), comprising of silicon micro-strip detectors is one of the key precision tracking devices in the ATLAS Inner Detector. ATLAS is one of the experiments at CERN LHC. The completed SCT is in very good shapes with 99.3% of the SCT’s 4088 modules (a total of 6.3 million strips) are operational. The noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector, its performance and observed problems, with stress on the sensor and electronics performance. In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The Semi- Conductor Tracker (SCT) is the key precision tracking device in ATLAS, made from silicon micro-strip detectors processed in the planar p-in-n technology. The signals from the stri...

  11. Mechanical characterization and assessment of the CMS conductor

    CERN Document Server

    Sequeira-Lopes-Tavares, S; Desirelli, Alberto; Sgobba, Stefano; Horváth, I L

    2000-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN. The design field of the CMS magnet is 4 T, the magnetic length is 12.5m and the free aperture is 6 m in diameter. This is achieved with a 4 layer and 5 module superconducting Al stabilized coil, resulting into 20 lengths of conductor of 2.5 km each, energized at a nominal current of 20 kA at 4.5 K. One of the unique features of this thin solenoid is an Al-stabilized conductor reinforced by an Al-alloy. An extensive characterization of mechanical properties at room temperature and 4.2 K has been carried out in order to define the most appropriate alloy and temper for the reinforcement. The effect of the coil curing cycle on the alloy properties has been taken into account. This paper summarizes the main results of these tests. (7 refs).

  12. Duality and reciprocity of fluctuation-dissipation relations in conductors.

    Science.gov (United States)

    Reggiani, Lino; Alfinito, Eleonora; Kuhn, Tilmann

    2016-09-01

    By analogy with linear response, we formulate the duality and reciprocity properties of current and voltage fluctuations expressed by Nyquist relations, including the intrinsic bandwidths of the respective fluctuations. For this purpose, we individuate total-number and drift-velocity fluctuations of carriers inside a conductor as the microscopic sources of noise. The spectral densities at low frequency of the current and voltage fluctuations and the respective conductance and resistance are related in a mutually exclusive way to the corresponding noise source. The macroscopic variances of current and voltage fluctuations are found to display a dual property via a plasma conductance that admits a reciprocal plasma resistance. Analogously, the microscopic noise sources are found to obey a dual property and a reciprocity relation. The formulation is carried out in the frame of the grand canonical (for current noise) and canonical (for voltage noise) ensembles, and results are derived that are valid for classical as well as degenerate statistics, including fractional exclusion statistics. The unifying theory so developed sheds new light on the microscopic interpretation of dissipation and fluctuation phenomena in conductors. In particular, it is proven that for fermions, as a consequence of the Pauli principle, nonvanishing single-carrier velocity fluctuations at zero temperature are responsible for diffusion but not for current noise, which vanishes in this limit.

  13. Internal pressure effects in the AIRCO-LCT conductor sheath

    International Nuclear Information System (INIS)

    Luton, J.N.; Clinard, J.A.; Lue, J.W.; Gray, W.H.; Summers, L.T.; Kershaw, R.

    1985-01-01

    The large Nb 3 Sn superconducting test coil produced by Westinghouse Electric Corporation for the international Large Coil Task (LCT) utilizes a conductor composed of cabled multifilamentary strands immersed in flowing supercritical helium contained by a square structural sheath made of the high-strength stainless alloy JBX-75. Peak pressures of a few hundred atmospheres are predicted to occur during quench, and measurement of these pressures seems feasible only through penetrations of the sheath wall. Fully processed short lengths of conductor were taken from production ends, fitted with pressure taps and strain gauges, and pressurized with helium gas. Failure, at 1000 atm at liquid nitrogen temperature, was by a catastrophic splitting of the sheath at a corner. Strain measurements and burst pressure agreed with elastic-plastic finite element stress calculations made for the sheath alone. Neither the production seam weld nor the pressure tap penetrations or their fillet welds contributed to the failure, although the finite element calculations show that these areas were also highly stressed, and examination of the failed sample showed that the finite welds were of poor quality. Failure was by tensile overload, with no evidence of fatigue

  14. Internal photoemission for photovoltaic using p-type Schottky barrier: Band structure dependence and theoretical efficiency limits

    Science.gov (United States)

    Shih, Ko-Han; Chang, Yin-Jung

    2018-01-01

    Solar energy conversion via internal photoemission (IPE) across a planar p-type Schottky junction is quantified for aluminum (Al) and copper (Cu) in the framework of direct transitions with non-constant matrix elements. Transition probabilities and k-resolved group velocities are obtained based on pseudo-wavefunction expansions and realistic band structures using the pseudopotential method. The k-resolved number of direct transitions, hole photocurrent density, quantum yield (QY), and the power conversion efficiency (PCE) under AM1.5G solar irradiance are subsequently calculated and analyzed. For Al, the parabolic and "parallel-band" effect along the U-W-K path significantly enhances the transition rate with final energies of holes mainly within 1.41 eV below the Fermi energy. For Cu, d-state hot holes mostly generated near the upper edge of 3d bands dominate the hole photocurrent and are weekly (strongly) dependent on the barrier height (metal film thickness). Hot holes produced in the 4s band behave just oppositely to their d-state counterparts. Non-constant matrix elements are shown to be necessary for calculations of transitions due to time-harmonic perturbation in Cu. Compared with Cu, Al-based IPE in p-type Schottky shows the highest PCE (QY) up to about 0.2673% (5.2410%) at ΦB = 0.95 eV (0.5 eV) and a film thickness of 11 nm (20 nm). It is predicted that metals with relatively dispersionless d bands (such as Cu) in most cases do not outperform metals with photon-accessible parallel bands (such as Al) in photon energy conversion using a planar p-type Schottky junction.

  15. Modulated charge injection in p-type dye-sensitized solar cells using fluorene-based light absorbers.

    Science.gov (United States)

    Liu, Zonghao; Xiong, Dehua; Xu, Xiaobao; Arooj, Qudsia; Wang, Huan; Yin, Liyuan; Li, Wenhui; Wu, Huaizhi; Zhao, Zhixin; Chen, Wei; Wang, Mingkui; Wang, Feng; Cheng, Yi-Bing; He, Hongshan

    2014-03-12

    In this study, new pull-push arylamine-fluorene based organic dyes zzx-op1, zzx-op2, and zzx-op3 have been designed and synthesized for p-type dye-sensitized solar cells (p-DSCs). In zzx-op1, a di(p-carboxyphenyl)amine (DCPA) was used as an electron donor, a perylenemonoimide (PMID) as an electron acceptor, and a fluorene (FLU) unit with two aliphatic hexyl chains as a π-conjugated linker. In zzx-op2 and zzx-op3, a 3,4-ethylenedioxythiophene (EDOT) and a thiophene were inserted consecutively between PMID and FLU to tune the energy levels of the frontier molecular orbitals of the dyes. The structural modification broadened the spectral coverage from an onset of 700 nm for zzx-op1 to 750 nm for zzx-op3. The electron-rich EDOT and thiophene lifted up the HOMO (highest occupied molecular orbital) levels of zzx-op2 and zzx-op3, making their potential more negative than zzx-op1. When three dyes were employed in p-type DSCs with I(-)/I3(-) as a redox couple and NiO nanoparticles as hole materials, zzx-op1 exhibited impressive energy conversion efficiency of 0.184% with the open-circuit voltage (VOC) of 112 mV and the short-circuit current density (JSC) of 4.36 mA cm(-2) under AM 1.5G condition. Density functional theory calculations, transient photovoltage decay measurements, and electrochemical impedance spectroscopic studies revealed that zzx-op1 sensitized solar cell exhibited much higher charge injection efficiency (90.3%) than zzx-op2 (53.9%) and zzx-op3 (39.0%), indicating a trade-off between spectral broadening and electron injection driving force in p-type DSCs.

  16. Two-dimensional ferromagnet/semiconductor transition metal dichalcogenide contacts: p-type Schottky barrier and spin-injection control

    KAUST Repository

    Gan, Liyong; Cheng, Yingchun; Schwingenschlö gl, Udo; Zhang, Qingyun

    2013-01-01

    We study the ferromagnet/semiconductor contacts formed by transition metal dichalcogenide monolayers, focusing on semiconducting MoS2 and WS2 and ferromagnetic VS2. We investigate the degree of p-type doping and demonstrate tuning of the Schottky barrier height by vertical compressive pressure. An analytical model is presented for the barrier heights that accurately describes the numerical findings and is expected to be of general validity for all transition metal dichalcogenide metal/semiconductor contacts. Furthermore, magnetic proximity effects induce a 100% spin polarization at the Fermi level in the semiconductor where the spin splitting increases up to 0.70 eV for increasing pressure.

  17. Influence of nanosized inclusions on the room temperature thermoelectrical properties of a p-type bismuth–tellurium–antimony alloy

    International Nuclear Information System (INIS)

    Bernard-Granger, Guillaume; Addad, Ahmed; Navone, Christelle; Soulier, Mathieu; Simon, Julia; Szkutnik, Pierre-David

    2012-01-01

    Transmission electron microscopy observations and thermoelectrical property measurements (electrical conductivity, Seebeck coefficient and thermal conductivity) at room temperature have been completed on two fully dense polycrystalline p-type bismuth–tellurium–antimony alloy samples. It is shown that the presence of antimony oxide-based nanosized inclusions (controlled as to volume fraction and size distribution), homogeneously dispersed in the surrounding matrix leads to a dimensionless figure of merit (ZT) of ∼1.3 at room temperature. For comparison, when such inclusions are missing the ZT value is only 0.6.

  18. Prediction and theoretical characterization of p-type organic semiconductor crystals for field-effect transistor applications.

    Science.gov (United States)

    Atahan-Evrenk, Sule; Aspuru-Guzik, Alán

    2014-01-01

    The theoretical prediction and characterization of the solid-state structure of organic semiconductors has tremendous potential for the discovery of new high performance materials. To date, the theoretical analysis mostly relied on the availability of crystal structures obtained through X-ray diffraction. However, the theoretical prediction of the crystal structures of organic semiconductor molecules remains a challenge. This review highlights some of the recent advances in the determination of structure-property relationships of the known organic semiconductor single-crystals and summarizes a few available studies on the prediction of the crystal structures of p-type organic semiconductors for transistor applications.

  19. Two-dimensional ferromagnet/semiconductor transition metal dichalcogenide contacts: p-type Schottky barrier and spin-injection control

    KAUST Repository

    Gan, Liyong

    2013-09-26

    We study the ferromagnet/semiconductor contacts formed by transition metal dichalcogenide monolayers, focusing on semiconducting MoS2 and WS2 and ferromagnetic VS2. We investigate the degree of p-type doping and demonstrate tuning of the Schottky barrier height by vertical compressive pressure. An analytical model is presented for the barrier heights that accurately describes the numerical findings and is expected to be of general validity for all transition metal dichalcogenide metal/semiconductor contacts. Furthermore, magnetic proximity effects induce a 100% spin polarization at the Fermi level in the semiconductor where the spin splitting increases up to 0.70 eV for increasing pressure.

  20. Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption

    International Nuclear Information System (INIS)

    Wang, C; Fu, X Q; Xue, X Y; Wang, Y G; Wang, T H

    2007-01-01

    P-type CuO nanorods were synthesized by a hydrothermal method and the ethanol-sensing properties of sensors based on CuO were investigated. The sensor resistance increased when it was exposed to ethanol and decreased in the air, which is contrary to the case for sensors realized from n-type semiconductor. The resistance of the CuO-based sensor was about 2 kΩ in air and 6 kΩ in ethanol vapour with concentration of 2000 ppm. Such a sensing property is attributed to surface accumulation conduction. Sensors based on CuO nanorods have potential applications in detecting ethanol in low concentration

  1. Primary defect transformations in high-resistivity p-type silicon irradiated with electrons at cryogenic temperatures

    CERN Document Server

    Makarenko, L F; Korshunov, F P; Murin, L I; Moll, M

    2009-01-01

    It has been revealed that self-interstitials formed under low intensity electron irradiationin high resistivity p-type silicon can be retained frozen up to room temperature. Low thermal mobility of the self-interstitials suggests that Frenkelpair sinsilicon can be stable at temperatures of about or higher than 100K. A broad DLTS peak with activation energy of 0.14–0.17eV can be identified as related to Frenkel pairs. This peak anneals out at temperatures of 120 140K. Experimental evidences are presented that be coming more mobile under forwardcurrent injection the self-interstitials change their charge state to a less positive one.

  2. A Systematic Inventory of Motives for Becoming an Orchestra Conductor: A Preliminary Study

    Science.gov (United States)

    Makris, Ioannis; Mullet, Etienne

    2009-01-01

    The study examined the various motives (reasons) that may have led an individual to become an orchestra conductor interpreting classical works, using Apter's (2001) Metamotivational Theory framework. Questionnaires derived from the theory, consisting of 92 possible motives for becoming an orchestra conductor, were presented to 101 orchestra…

  3. Powder-in-Tube (PIT) Nb3Sn conductors for high-field magnets

    NARCIS (Netherlands)

    Lindenhovius, J.H.; Hornsveld, E.M.; den Ouden, A.; Wessel, Wilhelm A.J.; ten Kate, Herman H.J.

    2000-01-01

    New Nb3Sn conductors, based on the powder-in-tube (PIT) process, have been developed for application in accelerator magnets and high-field solenoids. For application in accelerator magnets, SMI has developed a binary 504 filament PIT conductor by optimizing the manufacturing process and adjustment

  4. Power line conductor icing prevention by the Joule effect : parametric analysis and energy requirements

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Z.; Farzaneh, M.; Kiss, L.I. [Quebec Univ., Chicoutimi, PQ (Canada). Industrial Chair on Atmospheric Icing of Power Network Equipment

    2005-07-01

    A mathematical model to calculate the minimum current intensity needed to prevent potentially damaging ice accretion on power line conductors was presented. The influence of atmospheric parameters such as wind speed, air temperature and liquid water were considered. Energy analysis was developed for an aluminum and steel reinforced conductor with circular cylindrical wire and concentric layers. Atmospheric parameters and the duration of the freezing conditions were considered with reference to the Joule effect. The model was then compared with experiments and simulations performed at an icing wind tunnel and in a climate room. It was determined that the equivalent thermal conductivity of the conductor should be assessed to identify the temperature distribution in the power line conductor. The radial component of the thermal conductivity was estimated on the basis of experiments performed in the wind tunnel, which provided a good estimation of the equivalent thermal conductivity and overall heat transfer coefficient around the stranded conductor. Experimental results were compared with values obtained from theoretically equivalent conductivity models. It was observed that the convective heat transfer coefficients around stranded conductors were higher than around smooth cylinders, and that the mathematical calculations slightly overestimated the wind tunnel measurements due to difficulties in estimating the wetted surface and the overall convection heat transfer coefficient around a stranded conductor. The typical range for the equivalent thermal conductivity of stranded conductors was also presented. 13 refs., 1 tab., 11 figs.

  5. The Connoisseurship of Conducting: A Qualitative Study of Exemplary Wind Band Conductors

    Science.gov (United States)

    Barry, Nancy; Henry, Daniel

    2015-01-01

    This study aimed to gain an in-depth perspective through examining how the conducting pedagogy of three selected exemplary high school and college instrumental music conductors function within the context of an actual rehearsal. A typical rehearsal was video recorded, followed by a "think-aloud" session in which the conductor viewed the…

  6. An experimental method to determine the electrostatic field enhancement factor of a practical conductor surface

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1989-01-01

    A method of determining the field enhancement factor of a practical conductor is presented. The method is developed from a modified theory of discharge onset in a gaseous medium. This modification incorporates the influence of conductor surface roughness. Onset data from an experimental study...

  7. Synthesis and Characterization of Ethylenedithio-MPTTF-PTM Radical Dyad as a Potential Neutral Radical Conductor

    DEFF Research Database (Denmark)

    Souto, Manuel; Bendixen, Dan; Jensen, Morten

    2016-01-01

    During the last years there has been a high interest in the development of new purely-organic single-component conductors. Very recently, we have reported a new neutral radical conductor based on the perchlorotriphenylmethyl (PTM) radical moiety linked to a monopyrrolo-tetrathiafulvalene (MPTTF...

  8. The Virtual Conductor: Learning and Teaching about Music, Performing, and Conducting

    NARCIS (Netherlands)

    Nijholt, Antinus; Reidsma, Dennis; Ebbers, Rob; ter Maat, Mark

    2008-01-01

    The Virtual Conductor is an artificial conducting system for tutoring purposes that uses real-time audio analysis of music played by musicians and uses this analysis to animate a virtual human that acts as a conductor. The analysis detects the tempo and the dynamics of the music, compares the

  9. Current Density Distribution on the Perimeter of Waveguide Exciter Cylindrical Vibrator Conductor

    OpenAIRE

    Zakharia, Yosyp

    2010-01-01

    On ground of electrodynamic analysis the surface current distribution nonuniformity on the perimeter of waveguide-exciter cylindrical conductor is found. Considerable influence of current distribution nonuniformity on exciter input reactance is established. It is also showed, that the current distribution on the vibrator perimeter, for conductor radius no greater then 0,07 of waveguide cross section breadth, approximately uniform is.

  10. Twenty years of cable-in-conduit conductors: 1975-1995

    International Nuclear Information System (INIS)

    Dresner, L.

    1995-01-01

    This paper reviews our progress during the last two decades in understanding cable-in-conduit conductors. The emphasis is on the physical principles governing the behavior of cable-in-conduit conductors, and no detailed mathematics is presented. The paper is constructed as a historical narrative

  11. Transport current dependence of the hysteresis loss in silver sheathed BSCOO-2212 conductors

    NARCIS (Netherlands)

    Hemmes, Herman K.; Woudstra, Martin J.; ten Kate, Herman H.J.; Tenbrink, Johannes

    1994-01-01

    A technique is described to study the critical current density and penetration fieldassociated with the transport current in a silver sheathed BSCCO conductor. A transport current flowing in a conductor in a varying magnetic field will only influence magnetisation currents that are in competition

  12. Measuring ac-loss in high temperature superconducting cable-conductors using four probe methods

    DEFF Research Database (Denmark)

    Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten; Olsen, Søren Krüger

    1999-01-01

    Measuring the ac-loss of superconducting cable conductors have many aspects in common with measuring the ac-loss of single superconducting tapes. In a cable conductor all tapes are connected to each other and to the test circuit through normal metal joints in each end. This makes such measurement...

  13. The CEA JOSEFA test facility for sub-size conductors and joints

    International Nuclear Information System (INIS)

    Decool, P.; Libeyre, P.; Van Houtte, D.; Ciazynski, D.; Zani, L.; Serries, J.P.; Cloez, H.; Bej, S.

    2003-01-01

    The JOSEFA (Joint Sub-size Experiment FAcility) experimental test facility, installed at CEA/Cadarache is devoted to perform tests at cryogenic temperature on sub-size superconducting conductor and joint samples under parallel or transverse magnetic field. This facility was built in 1993 to investigate the performances of joints of cable-in-conduit conductors at sub-size level and further upgraded in the framework of European tasks. The samples of hairpin type using sub-size ITER conductors are cooled by a circulation of supercritical helium in a temperature range from 5 to 15 K and tested at a maximum current up to 10 kA. Two different helium bath cooled magnets allow to apply DC or AC transverse magnetic field up to 3.5 T or longitudinal magnetic field up to 7.5 T. A sliding system with a 240 mm stroke on the sample cryostat allows to test separately in the same sample either the conductor or the joint performances. The paper reports on how, through the conductor and joint development tasks, the facility performances were successfully increased and tested. The ITER TFMC joints using Nb3Sn conductors were first developed on this facility. The last developments, performed on ITER PF NbTi conductors and joints proved this facility to be a versatile and useful tool for superconducting magnet developments and showed the interest of possible upgrading to finalize conductor design. (author)

  14. Status of European manufacture of Toroidal Field conductor and strand for JT-60SA project

    Energy Technology Data Exchange (ETDEWEB)

    Zani, Louis, E-mail: louis.zani@jt60sa.org [Fusion for Energy, D-85748 Garching (Germany); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Barabaschi, Pietro; Di Pietro, Enrico [Fusion for Energy, D-85748 Garching (Germany)

    2013-10-15

    In the framework of the JT-60SA project, part of the Broader Approach (BA) agreement, EURATOM provides to Japan, the Toroidal Field (TF) magnet system, consisting of 18 superconducting coils. The procurement of the conductor for the TF coils is managed by Fusion for Energy, acting as EU representative in the BA agreement. The TF conductor procurement is split into two contracts, one dedicated to the production of Niobium Titanium (NbTi) and Cu strand and the other to TF conductor production through strand cabling and cable jacketing operations. The TF conductor is a rectangular-shaped cable-in-conduit conductor formed by 486 (0.81 mm diameter) strands (2/3 NbTi–1/3 Cu) wrapped in a stainless steel foil and embedded into a stainless steel jacket. The 18 TF coils require (including spares) 115 ‘Unit Lengths’ (UL) of such conductor, each 240 m long for a total of about 28 km. Correspondingly about 10,000 km for NbTi and 5000 km for Cu strand are produced. The Japanese company Furukawa Electric Co. (FEC) is in charge of TF strand manufacture while the Italian company Italian Consortium for Applied Superconductivity (ICAS) is in charge of cabling and jacketing of TF conductor ULs. In the paper, we provide information on the production stages presently achieved in TF strand and conductor contracts.

  15. Fabrication process of a superconducting multifilament conductor of a cable and resulting electric conductor. Procede de fabrication d'un conducteur a brins multifilamentaires supraconducteurs, et conducteur en resultant

    Energy Technology Data Exchange (ETDEWEB)

    Fevrier, A; Verhaege, T; Bonnet, P

    1990-10-05

    Elementary conductors constituted of a plurality of superconducting filaments in a metallic matrix are prepared and then twisted. Elementary conductors with a diameter between 0.05 and 0.25 mm without electric insulation are twisted after heating with a pitch of four time the diameter, finally the conductor is insulated.

  16. Hole polaron-polaron interaction in transition metal oxides and its limit to p-type doping

    Science.gov (United States)

    Chen, Shiyou; Wang, Lin-Wang

    2014-03-01

    Traditionally the origin of the poor p-type conductivity in some transition metal oxides (TMOs) was attributed to the limited hole concentration: the charge-compensating donor defects, such as oxygen vacancies and cation interstitials, can form spontaneously as the Fermi energy shifts down to near the valence band maximum. Besides the thermodynamic limit to the hole concentration, the limit to the hole mobility can be another possible reason, e.g., the hole carrier can form self-trapped polarons with very low carrier mobility. Although isolated hole polarons had been found in some TMOs, the polaron-polaron interaction is not well-studied. Here we show that in TMOs such as TiO2 and V2O5, the hole polarons prefer to bind with each other to form bipolarons, which are more stable than free hole carriers or separated polarons. This pushes the hole states upward into the conduction band and traps the holes. The rise of the Fermi energy suppresses the spontaneous formation of the charge-compensating donor defects, so the conventional mechanism becomes ineffective. Since it can happen in the impurity-free TMO lattices, independent of any extrinsic dopant, it acts as an intrinsic and general limit to the p-type conductivity in these TMOs. This material is based upon work performed by the JCAP, a US DOE Energy Innovation Hub, the NSFC (No. 61106087 and 91233121) and special funds for major state basic research (No. 2012CB921401).

  17. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Bradley, A.W.; Chan, Y.D.; Mertens, S.; Poon, A.W.P. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arnquist, I.J.; Hoppe, E.W.; Kouzes, R.T.; LaFerriere, B.D.; Orrell, J.L. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F.T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Barabash, A.S.; Konovalov, S.I.; Yumatov, V. [National Research Center ' ' Kurchatov Institute' ' Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bertrand, F.E.; Galindo-Uribarri, A.; Radford, D.C.; Varner, R.L.; White, B.R.; Yu, C.H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Brudanin, V.; Shirchenko, M.; Vasilyev, S.; Yakushev, E.; Zhitnikov, I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Busch, M. [Duke University, Department of Physics, Durham, NC (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Buuck, M.; Cuesta, C.; Detwiler, J.A.; Gruszko, J.; Guinn, I.S.; Leon, J.; Robertson, R.G.H. [University of Washington, Department of Physics, Center for Experimental Nuclear Physics and Astrophysics, Seattle, WA (United States); Caldwell, A.S.; Christofferson, C.D.; Dunagan, C.; Howard, S.; Suriano, A.M. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chu, P.H.; Elliott, S.R.; Goett, J.; Massarczyk, R.; Rielage, K. [Los Alamos National Laboratory, Los Alamos, NM (United States); Efremenko, Yu. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Ejiri, H. [Osaka University, Research Center for Nuclear Physics, Ibaraki, Osaka (Japan); Finnerty, P.S.; Gilliss, T.; Giovanetti, G.K.; Henning, R.; Howe, M.A.; MacMullin, J.; Meijer, S.J.; O' Shaughnessy, C.; Rager, J.; Shanks, B.; Trimble, J.E.; Vorren, K.; Xu, W. [Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States); Green, M.P. [North Carolina State University, Department of Physics, Raleigh, NC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Guiseppe, V.E.; Tedeschi, D.; Wiseman, C. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Jasinski, B.R. [University of South Dakota, Department of Physics, Vermillion, SD (United States); Keeter, K.J. [Black Hills State University, Department of Physics, Spearfish, SD (United States); Kidd, M.F. [Tennessee Tech University, Cookeville, TN (United States); Martin, R.D. [Queen' s University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON (Canada); Romero-Romero, E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Vetter, K. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); Wilkerson, J.F. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States)

    2016-11-15

    A search for Pauli-exclusion-principle-violating K{sub α} electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 x 10{sup 30} s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 x 10{sup 30} s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of {sup 76}Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation. (orig.)

  18. Binary Oxide p-n Heterojunction Piezoelectric Nanogenerators with an Electrochemically Deposited High p-Type Cu2O Layer.

    Science.gov (United States)

    Baek, Seung Ki; Kwak, Sung Soo; Kim, Joo Sung; Kim, Sang Woo; Cho, Hyung Koun

    2016-08-31

    The high performance of ZnO-based piezoelectric nanogenerators (NGs) has been limited due to the potential screening from intrinsic electron carriers in ZnO. We have demonstrated a novel approach to greatly improve piezoelectric power generation by electrodepositing a high-quality p-type Cu2O layer between the piezoelectric semiconducting film and the metal electrode. The p-n heterojunction using only oxides suppresses the screening effect by forming an intrinsic depletion region, and thus sufficiently enhances the piezoelectric potential, compared to the pristine ZnO piezoelectric NG. Interestingly, a Sb-doped Cu2O layer has high mobility and low surface trap states. Thus, this doped layer is an attractive p-type material to significantly improve piezoelectric performance. Our results revealed that p-n junction NGs consisting of Au/ZnO/Cu2O/indium tin oxide with a Cu2O:Sb (cuprous oxide with a small amount of antimony) layer of sufficient thickness (3 μm) exhibit an extraordinarily high piezoelectric potential of 0.9 V and a maximum output current density of 3.1 μA/cm(2).

  19. Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon

    Science.gov (United States)

    Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar

    2015-08-01

    A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).

  20. High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy

    International Nuclear Information System (INIS)

    Hung, Le Thanh; Van Nong, Ngo; Snyder, G. Jeffrey; Viet, Man Hoang; Balke, Benjamin; Han, Li; Stamate, Eugen; Linderoth, Søren; Pryds, Nini

    2015-01-01

    Highlights: • p-type segmented leg of oxide and half-Heusler was for the first time demonstrated. • The maximum conversion efficiency reached a value of about 5%. • The results are among the highest reported values so far for oxide-based legs. • Oxide-based segmented leg is very promising for generating electricity. - Abstract: In this study, a segmented p-type leg of doped misfit-layered cobaltite Ca 2.8 Lu 0.15 Ag 0.05 Co 4 O 9+δ and half-Heusler Ti 0.3 Zr 0.35 Hf 0.35 CoSb 0.8 Sn 0.2 alloy was fabricated and characterized. The thermoelectric properties of single components, segmented leg, and the electrical contact resistance of the joint part were measured as a function of temperature. The output power generation characteristics of segmented legs were characterized in air under various temperature gradients, ΔT, with the hot side temperature up to 1153 K. At ΔT ≈ 756 K, the maximum conversion efficiency reached a value of ∼5%, which is about 65% of that expected from the materials without parasitic losses. The long-term stability investigation for two weeks at the hot and cold side temperatures of 1153/397 K shows that the segmented leg has good durability as a result of stable and low electrical resistance contacts

  1. Chemical Vapor Deposition Growth of Degenerate p-Type Mo-Doped ReS2 Films and Their Homojunction.

    Science.gov (United States)

    Qin, Jing-Kai; Shao, Wen-Zhu; Xu, Cheng-Yan; Li, Yang; Ren, Dan-Dan; Song, Xiao-Guo; Zhen, Liang

    2017-05-10

    Substitutional doping of transition metal dichalcogenide two-dimensional materials has proven to be effective in tuning their intrinsic properties, such as band gap, transport characteristics, and magnetism. In this study, we realized substitutional doping of monolayer rhenium disulfide (ReS 2 ) with Mo via chemical vapor deposition. Scanning transmission electron microscopy demonstrated that Mo atoms are successfully doped into ReS 2 by substitutionally replacing Re atoms in the lattice. Electrical measurements revealed the degenerate p-type semiconductor behavior of Mo-doped ReS 2 field effect transistors, in agreement with density functional theory calculations. The p-n diode device based on a doped ReS 2 and ReS 2 homojunction exhibited gate-tunable current rectification behaviors, and the maximum rectification ratio could reach up to 150 at V d = -2/+2 V. The successful synthesis of p-type ReS 2 in this study could largely promote its application in novel electronic and optoelectronic devices.

  2. Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance

    Science.gov (United States)

    Wang, Shanyu; Zheng, Gang; Luo, Tingting; She, Xiaoyu; Li, Han; Tang, Xinfeng

    2011-11-01

    In this study, we prepared a series of Ag-doped PbSe bulk materials by a melting-quenching process combined with a subsequent spark plasma sintering process, and systematically investigated the doping effects of Ag on the thermoelectric properties. Ag substitution in the Pb site does not introduce resonant levels near the valence band edge or detectable change in the density of state in the vicinity of the Fermi level, but moves the Fermi level down and increases the carrier concentration to a maximum value of ~4.7 × 1019 cm-3 which is still insufficient for heavily doped PbSe compounds. Nonetheless, the non-monotonic variation in carrier concentration with increasing Ag content indicates that Ag doping reaches the solution limit at ~1.0% and the excessive Ag presumably acts as donors in the materials. Moreover, the large energy gap of the PbSe-based material wipes off significant 'roll-over' in the Seebeck coefficient at elevated temperatures which gives rise to high power factors, being comparable to p-type Te analogues. Consequently, the maximum ZT reaches ~1.0 for the 1.5% Ag-doped samples with optimized carrier density, which is ~70% improvement in comparison with an undoped sample and also superior to the commercialized p-type PbTe materials.

  3. Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance

    International Nuclear Information System (INIS)

    Wang Shanyu; Zheng Gang; Luo Tingting; She Xiaoyu; Li Han; Tang Xinfeng

    2011-01-01

    In this study, we prepared a series of Ag-doped PbSe bulk materials by a melting-quenching process combined with a subsequent spark plasma sintering process, and systematically investigated the doping effects of Ag on the thermoelectric properties. Ag substitution in the Pb site does not introduce resonant levels near the valence band edge or detectable change in the density of state in the vicinity of the Fermi level, but moves the Fermi level down and increases the carrier concentration to a maximum value of ∼4.7 × 10 19 cm -3 which is still insufficient for heavily doped PbSe compounds. Nonetheless, the non-monotonic variation in carrier concentration with increasing Ag content indicates that Ag doping reaches the solution limit at ∼1.0% and the excessive Ag presumably acts as donors in the materials. Moreover, the large energy gap of the PbSe-based material wipes off significant 'roll-over' in the Seebeck coefficient at elevated temperatures which gives rise to high power factors, being comparable to p-type Te analogues. Consequently, the maximum ZT reaches ∼1.0 for the 1.5% Ag-doped samples with optimized carrier density, which is ∼70% improvement in comparison with an undoped sample and also superior to the commercialized p-type PbTe materials.

  4. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Kito, Masahiro; Hiramatsu, Kazumasa

    1989-01-01

    Distinct p-type conduction is realized with Mg-doped GaN by the low-energy electron-beam irradiation (LEEBI) treatment, and the properties of the GaN p-n junction LED are reported for the first time. It was found that the LEEBI treatment drastically lowers the resistivity and remarkably enhances the PL efficiency of MOVPE-grown Mg-doped GaN. The Hall effect measurement of this Mg-doped GaN treated with LEEBI at room temperature showed that the hole concentration is ∼2·10 16 cm -3 , the hole mobility is ∼8 cm 2 /V·s and the resistivity is ∼35Ω· cm. The p-n junction LED using Mg-doped GaN treated with LEEBI as the p-type material showed strong near-band-edge emission due to the hole injection from the p-layer to the n-layer at room temperature. (author)

  5. P-n junction diodes with polarization induced p-type graded InxGa1-xN layer

    Science.gov (United States)

    Enatsu, Yuuki; Gupta, Chirag; Keller, Stacia; Nakamura, Shuji; Mishra, Umesh K.

    2017-10-01

    In this study, p-n junction diodes with polarization induced p-type layer are demonstrated on Ga polar (0001) bulk GaN substrates. A quasi-p-type region is obtained by linearly grading the indium composition in un-doped InxGa1-xN layers from 0% to 5%, taking advantage of the piezoelectric and spontaneous polarization fields which exist in group III-nitride heterostructures grown in the typical (0001) or c-direction. The un-doped graded InxGa1-xN layers needed to be capped with a thin Mg-doped InxGa1-xN layer to make good ohmic contacts and to reduce the on-resistance of the p-n diodes. The Pol-p-n junction diodes exhibited similar characteristics compared to reference samples with traditional p-GaN:Mg layers. A rise in breakdown voltage from 30 to 110 V was observed when the thickness of the graded InGaN layer was increased from 100 to 600 nm at the same grade composition.

  6. Comparative studies on p-type CuI grown on glass and copper substrate by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, Sunetra L.; Latthe, Sanjay S. [Air Glass Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, Maharashtra (India); Kappenstein, Charles [University of Poitiers, Laboratory of Catalysis in Organic Chemistry, LA CCO, UMR CNRS 6503, Poitiers-86000 (France); Mukherjee, S.K. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400085, Maharashtra India (India); Rao, A. Venkateswara, E-mail: avrao2012@gmail.com [Air Glass Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, Maharashtra (India)

    2010-04-01

    Depending upon the method of synthesis and the nature of substrate surface, there is variation in the physico-chemical properties of the material. Cuprous iodide films are deposited at room temperature on the glass and copper substrates by a simple SILAR method and the obtained results are compared. The p-type material with optical band gap 2.88 eV is found to be possessing face-centered cubic crystal structure with lattice parameter 6.134 A. We observed irregular particles for the CuI film on the glass substrate while patterned arrays of micro-rods with cabbage like tips on copper substrate, for the same preparative conditions. Also, the material deposited on copper is showing superhydrophobic nature (contact angle {approx}156{sup o}) while that on glass it is hydrophilic (contact angle {approx}88{sup o}). We have characterized the thin films by X-ray diffraction, scanning electron microscopy, surface roughness and contact angle measurement, thermoelectric power measurement and optical studies. This hydrophobic, p-type material with wide band gap will be helpful in the development of optoelectronic devices.

  7. Comparative studies on p-type CuI grown on glass and copper substrate by SILAR method

    International Nuclear Information System (INIS)

    Dhere, Sunetra L.; Latthe, Sanjay S.; Kappenstein, Charles; Mukherjee, S.K.; Rao, A. Venkateswara

    2010-01-01

    Depending upon the method of synthesis and the nature of substrate surface, there is variation in the physico-chemical properties of the material. Cuprous iodide films are deposited at room temperature on the glass and copper substrates by a simple SILAR method and the obtained results are compared. The p-type material with optical band gap 2.88 eV is found to be possessing face-centered cubic crystal structure with lattice parameter 6.134 A. We observed irregular particles for the CuI film on the glass substrate while patterned arrays of micro-rods with cabbage like tips on copper substrate, for the same preparative conditions. Also, the material deposited on copper is showing superhydrophobic nature (contact angle ∼156 o ) while that on glass it is hydrophilic (contact angle ∼88 o ). We have characterized the thin films by X-ray diffraction, scanning electron microscopy, surface roughness and contact angle measurement, thermoelectric power measurement and optical studies. This hydrophobic, p-type material with wide band gap will be helpful in the development of optoelectronic devices.

  8. Preparation and thermoelectric properties of p-Type PrzFe4-xCoxSb12 skutterudites

    International Nuclear Information System (INIS)

    Shin, Dong-Kil; Kim, Il-Ho

    2014-01-01

    p-Type Pr z Fe 4-x Co x Sb 12 (z = 0.8, 1.0 and x = 0, 0.5, 1.0) skutterudites were synthesized by encapsulated melting and annealing and were consolidated with hot pressing. The effects of Pr filling and Co substitution for Fe (charge compensation) on the transport and the thermoelectric properties were examined. A few secondary phases, such as Sb and FeSb 2 , were formed together with the skutterudite phase, but the formation was suppressed with increasing Pr and Co contents. We confirmed that Pr filled in the voids and that Co was substituted for Fe in all specimens because the lattice constant increased with increasing Pr content and decreased with increasing Co content. The electrical conductivity decreased slightly with increasing temperature, showing degenerate semiconductor characteristics. The Hall and the Seebeck coefficients showed positive signs, indicating that the major carriers were holes (p-type conduction). The electrical conductivity and the thermal conductivity were decreased due to a decrease in the carrier concentration with increasing Pr and Co contents. As a result, the dimensionless figure of merit, ZT, was improved by Pr filling and Co substitution, and a maximum ZT = 0.89 was obtained at 723 K for Pr 0.8 Fe 3 CoSb 12 .

  9. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    Maike Bublitz

    2015-07-01

    Full Text Available Membrane proteins are key players in biological systems, mediating signalling events and the specific transport of e.g. ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.

  10. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; Markvardsen, Anders J.; Gutmann, Matthias J.; Barends, Thomas R. M.; Mattle, Daniel; Shoeman, Robert L.; Doak, R. Bruce; Boutet, Sébastien; Messerschmidt, Marc; Seibert, Marvin M.; Williams, Garth J.; Foucar, Lutz; Reinhard, Linda; Sitsel, Oleg; Gregersen, Jonas L.; Clausen, Johannes D.; Boesen, Thomas; Gotfryd, Kamil; Wang, Kai-Tuo; Olesen, Claus; Møller, Jesper V.; Nissen, Poul; Schlichting, Ilme

    2015-06-11

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.

  11. Magnetism in the p-type Monolayer II-VI semiconductors SrS and SrSe

    Science.gov (United States)

    Lin, Heng-Fu; Lau, Woon-Ming; Zhao, Jijun

    2017-01-01

    Using density functional theory calculations, we study the electronic and magnetic properties of the p-type monolayer II-VI semiconductors SrX (X = S,Se). The pristine SrS and SrSe monolayers are large band gap semiconductor with a very flat band in the top valence band. Upon injecting hole uniformly, ferromagnetism emerges in those system in a large range of hole density. By varying hole density, the systems also show complicated phases transition among nonmagnetic semiconductor, half metal, magnetic semiconductor, and nonmagnetic metal. Furthermore, after introducing p-type dopants in SrS and SrSe via substitutionary inserting P (or As) dopants at the S (or Se) sites, local magnetic moments are formed around the substitutional sites. The local magnetic moments are stable with the ferromagnetic order with appreciable Curie temperature. The ferromagnetism originates from the instability of the electronic states in SrS and SrSe with the large density of states at the valence band edge, which demonstrates a useful strategy for realizing the ferromagnetism in the two dimensional semiconductors. PMID:28378761

  12. P-stop isolation study of irradiated n-in-p type silicon strip sensors for harsh radiation environment

    CERN Document Server

    AUTHOR|(CDS)2084505

    2015-01-01

    In order to determine the most radiation hard silicon sensors for the CMS Experiment after the Phase II Upgrade in 2023 a comprehensive study of silicon sensors after a fluence of up to $1.5\\times10^{15} n_{eq}/cm^{2}$ corresponding to $3000 fb^{-1}$ after the HL-LHC era has been carried out. The results led to the decision that the future Outer Tracker (20~cm${<}R{<}$110~cm) of CMS will consist of n-in-p type sensors. This technology is more radiation hard but also the manufacturing is more challenging compared to p-in-n type sensors due to additional process steps in order to suppress the accumulation of electrons between the readout strips. One possible isolation technique of adjacent strips is the p-stop structure which is a p-type material implantation with a certain pattern for each individual strip. However, electrical breakdown and charge collection studies indicate that the process parameters of the p-stop structure have to be carefully calibrated in order to achieve a sufficient strip isolatio...

  13. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC

    Science.gov (United States)

    Sakwe, S. A.; Müller, R.; Wellmann, P. J.

    2006-04-01

    We have developed a KOH-based defect etching procedure for silicon carbide (SiC), which comprises in situ temperature measurement and control of melt composition. As benefit for the first time reproducible etching conditions were established (calibration plot, etching rate versus temperature and time); the etching procedure is time independent, i.e. no altering in KOH melt composition takes place, and absolute melt temperature values can be set. The paper describes this advanced KOH etching furnace, including the development of a new temperature sensor resistant to molten KOH. We present updated, absolute KOH etching parameters of n-type SiC and new absolute KOH etching parameters for low and highly p-type doped SiC, which are used for quantitative defect analysis. As best defect etching recipes we found T=530 °C/5 min (activation energy: 16.4 kcal/mol) and T=500 °C/5 min (activation energy: 13.5 kcal/mol) for n-type and p-type SiC, respectively.

  14. Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation

    Science.gov (United States)

    Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima

    2016-08-01

    Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.

  15. Effect of gate dielectrics on the performance of p-type Cu2O TFTs processed at room temperature

    KAUST Repository

    Al-Jawhari, Hala A.

    2013-12-01

    Single-phase Cu2O films with p-type semiconducting properties were successfully deposited by reactive DC magnetron sputtering at room temperature followed by post annealing process at 200°C. Subsequently, such films were used to fabricate bottom gate p-channel Cu2O thin film transistors (TFTs). The effect of using high-κ SrTiO3 (STO) as a gate dielectric on the Cu2O TFT performance was investigated. The results were then compared to our baseline process which uses a 220 nm aluminum titanium oxide (ATO) dielectric deposited on a glass substrate coated with a 200 nm indium tin oxide (ITO) gate electrode. We found that with a 150 nm thick STO, the Cu2O TFTs exhibited a p-type behavior with a field-effect mobility of 0.54 cm2.V-1.s-1, an on/off ratio of around 44, threshold voltage equaling -0.62 V and a sub threshold swing of 1.64 V/dec. These values were obtained at a low operating voltage of -2V. The advantages of using STO as a gate dielectric relative to ATO are discussed. © (2014) Trans Tech Publications, Switzerland.

  16. Characterization of a heavy metal translocating P-type ATPase gene from an environmental heavy metal resistance Enterobacter sp. isolate.

    Science.gov (United States)

    Chien, Chih-Ching; Huang, Chia-Hsuan; Lin, Yi-Wei

    2013-03-01

    Heavy metals are common contaminants found in polluted areas. We have identified a heavy metal translocating P-type ATPase gene (hmtp) via fosmid library and in vitro transposon mutagenesis from an Enterobacter sp. isolate. This gene is believed to participate in the bacterium's heavy metal resistance traits. The complete gene was identified, cloned, and expressed in a suitable Escherichia coli host cell. E. coli W3110, RW3110 (zntA::Km), GG48 (ΔzitB::Cm zntA::Km), and GG51 (ΔzitB::Cm) were used to study the possible effects of this gene for heavy metal (cadmium and zinc in particular) resistance. Among the E. coli strains tested, RW3110 and GG48 showed more sensitivity to cadmium and zinc compared to the wild-type E. coli W3110 and strain GG51. Therefore, strains RW3110 and GG48 were chosen for the reference hosts for further evaluation of the gene's effect. The results showed that expression of this heavy metal translocating P-type ATPase gene could increase the ability for zinc and cadmium resistance in the tested microorganisms.

  17. Efficiency for close geometries and extended sources of a p-type germanium detector with low-energy sensitivity

    International Nuclear Information System (INIS)

    Keyser, R.M.; Twomey, T.R.

    2007-01-01

    Typically, germanium detectors designed to have good sensitivity to low-energy photons and good efficiency at high energies are constructed from n-type crystals with a boron-implanted outer contact. These detectors usually exhibit inferior resolution and peak shape compared to ones made from p-type crystals. To overcome the resolution and peak-shape deficiencies, a new method of construction of a germanium detector element was developed. This has resulted in a gamma-ray detector with high sensitivity to photon energies from 14 keV to 2 MeV, while maintaining good resolution and peak shape over this energy range. Efficiency measurements, done according to the draft IEEE 325-2004 standard, show efficiencies typical of a GMX or n-type detector at low energies. The detectors are of large diameter suitable for counting extended samples such as filter papers. The Gaussian peak shape and good resolution typical of a GEM or p-type are maintained for the high count rates and peak separation needed for activation analysis. (author)

  18. CCAN and TCAN - 1 1/2-D compressible-flow and time-dependent codes for conductor analysis

    International Nuclear Information System (INIS)

    Gierszewski, P.J.; Wan, A.S.; Yang, T.F.

    1983-01-01

    This report documents the computer programs CCAN (steady-state Compressible flow Conductor ANalysis) and TCAN (Time-dependent incompressible-flow Conductor ANalysis). These codes calculate temperature, pressure, power and other engineering quantities along the length of an actively-cooled electrical conductor. Present versions contain detailed property information for copper and aluminum conductors; and gaseous helium, liquid nitrogen and water coolants. CCAN and TCAN are available on the NMFECC CDC 7600

  19. Electromagnetic response of a conductor with complex conductivity

    Science.gov (United States)

    Leylekian, L.; Ocio, M.; Hammann, J.

    1993-02-01

    The aim of this paper is to describe the electromagnetic response of a conductor with complex conductivity. We will show how the geometry of the measuring apparatus can modify the amplitude of this response. We will particularly emphasize the role that plays a complex conductivity, as we can find in granular superconductors, on the mesured magnetic susceptibility of the sample. Cet article a pour but de décrire la réponse électromagnétique d'un conducteur muni d'une conductivité complexe. Nous montrerons comment la géométrie du dispositif de mesure peut modifier l'amplitude de cette réponse. Nous insisterons particulièrement sur le rôle que joue une conductivité complexe, comme nous pouvons en trouver dans les supraconducteurs granulaires, sur la susceptibilité magnétique mesurée de l'échantillon.

  20. Control of Flux Pinning in MOD YBCO Coated Conductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. [American Superconductor Corporation, Westborough, MA; Huang, Y. [American Superconductor Corporation, Westborough, MA; Li, X. [American Superconductor Corporation, Westborough, MA; Kodenkandath, Thomas [American Superconductor Corporation, Westborough, MA; Rupich, Marty [American Superconductor Corporation, Westborough, MA; Schoop, U. [American Superconductor Corporation, Westborough, MA; Verebelyi, D. T. [American Superconductor Corporation, Westborough, MA; Thieme, C. L. H. [American Superconductor Corporation, Westborough, MA; Siegal, E. E. [American Superconductor Corporation, Westborough, MA; Holesinger, T. G. [Los Alamos National Laboratory (LANL); Maiorov, B. [Los Alamos National Laboratory (LANL); Miller, D. J. [Argonne National Laboratory (ANL); Maroni, V. A. [Argonne National Laboratory (ANL); Goyal, Amit [ORNL; Specht, Eliot D [ORNL; Paranthaman, Mariappan Parans [ORNL

    2007-01-01

    Two different types of defect structures have been identified to be responsible for the enhanced pinning in metal organic deposited YBCO films. Rare earth additions result in the formation of nanodots in the YBCO matrix, which form uncorrelated pinning centers, increasing pinning in all magnetic field orientations. 124-type intergrowths, which form as laminar structures parallel to the ab-plane, are responsible for the large current enhancement when the magnetic field is oriented in the ab-plane. TEM studies showed that the intergrowths emanate from cuprous containing secondary phase particles, whose density is partially controlled by the rare earth doping level. Critical process parameters have been identified to control this phase formation, and therefore, control the f 24 intergrowth formation. This work has shown that through process control and proper conductor design, either by adjusting the composition or by multiple coatings of different functional layers, the desired angular dependence can be achieved.

  1. Control of flux pinning in MOD YBCO coated conductor.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Huang, Y.; Li, X.; Kodenkandath, T.; Rupich, M. W.; Schoop, U.; Verebelyi, D. T.; Thieme, C. L. H.; Siegal, E.; Holesinger, T. G.; Maiorov, B.; Civale, L.; Miller, D. J.; Maroni, V. A.; Li, J.; Martin, P. M.; Specht, E. D.; Goyal, A.; Paranthaman, M. P.; American Superconductor Corp.; LANL; ORNL

    2007-06-01

    NTwo different types of defect structures have been identified to be responsible for the enhanced pinning in metal organic deposited YBCO films. Rare earth additions result in the formation of nanodots in the YBCO matrix, which form uncorrelated pinning centers, increasing pinning in all magnetic field orientations. 124-type intergrowths, which form as laminar structures parallel to the ab-plane, are responsible for the large current enhancement when the magnetic field is oriented in the ab-plane. TEM studies showed that the intergrowths emanate from cuprous containing secondary phase particles, whose density is partially controlled by the rare earth doping level. Critical process parameters have been identified to control this phase formation, and therefore, control the f 24 intergrowth formation. This work has shown that through process control and proper conductor design, either by adjusting the composition or by multiple coatings of different functional layers, the desired angular dependence can be achieved.

  2. Why is AgBr not a superionic conductor

    International Nuclear Information System (INIS)

    Andreoni, W.; Tosi, M.P.

    1982-03-01

    The behaviour of AgCl and AgBr is contrasted with that of fluorite-type crystals, which also are Frenkel conductors at low temperatures but undergo a diffuse transition to a superionic phase before melting. Concentrating on AgBr for which the relevant defect parameters are better known, a Debye-Hueckel model for the interactions between defects, modified for saturation of screening at high defect concentrations, is used to show that both Frenkel and Schottky disorder are present and rapidly increasing with temperature in the hot solid, with the Schottky component rapidly overtaking the Frenkel component. It is suggested that this defect behaviour frustrates a superionic transition and leads to melting accompanied by an anomalous ionic conductivity in the premelting region. The model is tested by a comparison with data on the Frenkel defect concentration in superionic PbF 2 . (author)

  3. Computation of transient 3-D eddy current in nonmagnetic conductor

    International Nuclear Information System (INIS)

    Yeh, H.T.

    1978-01-01

    A numerical procedure was developed to solve transient three-dimensional (3-D) eddy current problems for nonmagnetic conductor. Integral equation formulation in terms of vector potential is used to simplify the matching of boundary conditions. The resulting equations and their numerical approximation were shown to be singular and to require special handling. Several types of symmetries were introduced. They not only reduce the number of algebraic equations to be solved, but also modify the nature of the equations and render them nonsingular. Temporal behavior was obtained with the Runge-Kutta method. The program is tested in several examples of eddy currents for its spatial and temporal profiles, shielding, boundary surface effects, and application of various symmetry options

  4. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    International Nuclear Information System (INIS)

    Hernández, C.; Consejo, C.; Chaubet, C.; Degiovanni, P.

    2014-01-01

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor

  5. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, C. [Departamento de Física, Universidad Militar Nueva Granada, Carrera 11 101-80 Bogotá D.C. (Colombia); Consejo, C.; Chaubet, C., E-mail: christophe.chaubet@univ-montp2.fr [Université Montpellier 2, Laboratoire Charles Coulomb UMR5221, F-34095 Montpellier, France and CNRS, Laboratoire Charles Coulomb UMR5221, F-34095 Montpellier (France); Degiovanni, P. [Université de Lyon, Fédération de Physique Andrée Marie Ampère, CNRS, Laboratoire de Physique de l' Ecole Normale Supérieure de Lyon, 46 allée d' Italie, 69364 Lyon Cedex 07 (France)

    2014-03-28

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.

  6. YBCO coated conductors by reactive thermal co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Schmatz, U.; Hoffmann, Ch.; Bauer, M.; Metzger, R.; Berberich, P.; Kinder, H. [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2001-12-01

    Coated tape conductors of YBCO require a deposition process allowing to obtain a high volume growth rate in order to produce long lengths of tape in a reasonable amount of time. We present our tape coating system where 15 parallel loops of travelling tape of 1 cm width can be coated simultaneously by reactive thermal co-evaporation. For high critical current densities, in-plane alignment of the YBCO film is necessary. Inclined substrate deposition (ISD) is a technique that allows to deposit in-plane oriented buffer layers suitable for YBCO growth at high deposition rates. We present results obtained for YBCO films grown on MgO-ISD buffer layers deposited by e-gun evaporation onto metallic tape substrates. (orig.)

  7. Ground-based transmission line conductor motion sensor

    International Nuclear Information System (INIS)

    Jacobs, M.L.; Milano, U.

    1988-01-01

    A ground-based-conductor motion-sensing apparatus is provided for remotely sensing movement of electric-power transmission lines, particularly as would occur during the wind-induced condition known as galloping. The apparatus is comprised of a motion sensor and signal-generating means which are placed underneath a transmission line and will sense changes in the electric field around the line due to excessive line motion. The detector then signals a remote station when a conditioning of galloping is sensed. The apparatus of the present invention is advantageous over the line-mounted sensors of the prior art in that it is easier and less hazardous to install. The system can also be modified so that a signal will only be given when particular conditions, such as specific temperature range, large-amplitude line motion, or excessive duration of the line motion, are occurring

  8. PAC study of ionic motion in silver compound superionic conductors

    International Nuclear Information System (INIS)

    Mekata, M.; Seguchi, Y.

    1983-01-01

    Ionic motion in superionic conductors, Ag 2 S, Ag 2 Se and Ag 3 SI was investigated by γ-γ PAC on 111 Cd. Diffusion constant measurements showed that probe ions migrate almost as fast as Ag + ions above 500 K in Ag 2 S and Ag 2 Se and above 700 K in Ag 3 SI. Multivalent impurities were found to be unstable in AgI and Ag 2 Te. The correlation time of ionic motion was deduced from the observed relaxation rate together with the diffusion constants. The correlation time and its activation energy increase in order of Ag 2 S, Ag 2 Se and Ag 3 SI. The flight distance of Ag + ions remains almost constant in the measured temperature range. (Auth.)

  9. Cable-in-conduit conductor optimization for fusion magnet applications

    International Nuclear Information System (INIS)

    Miller, J.R.; Kerns, J.A.

    1987-01-01

    Careful design of the toroidal-field (TF) and poloidal-field (PF) coils in a tokamak machine using cable-in-conduit conductors (CICC) can result in quite high overall winding-pack current densities - even with the high nuclear heat loads that may be imposed in operating a fusion reactor - and thereby help reduce the overall machine size. In our design process, we systematically examined the operational environment of a magnet, e.g., mechanical stresses, current, field, heat load, coolant temperature, and cooldown stresses, to determine the optimum amounts of copper, superconductor, helium, and sheath material for the CICC. This process is being used to design the superconducting magnet systems that comprise the Tokamak Ignition/Burn Experimental Reactor (TIBER II). 13 refs., 2 figs

  10. On Faraday's law in the presence of extended conductors

    Science.gov (United States)

    Bilbao, Luis

    2018-06-01

    The use of Faraday's Law of induction for calculating the induced currents in an extended conducting body is discussed. In a general case with arbitrary geometry, the solution to the problem of a moving metal object in the presence of a magnetic field is difficult and implies solving Maxwell's equations in a time-dependent situation. In many cases, including cases with good conductors (but not superconductors) Ampère's Law can be neglected and a simpler solution based solely in Faraday's law can be obtained. The integral form of Faraday's Law along any loop in the conducting body is equivalent to a Kirkhhoff's voltage law of a circuit. Therefore, a numerical solution can be obtained by solving a linear system of equations corresponding to a discrete number of loops in the body.

  11. Manufacture of the Poloidal Field Conductor Insert Coil (PFCI)

    International Nuclear Information System (INIS)

    Baker, W.; Rajainmaeki, H.; Salpietro, E.; Keefe, C.

    2006-01-01

    Within the framework of the R(and)D programme for ITER (International Thermonuclear Experimental Reactor) the European team EFDA (European Fusion Development Agreement) have been charged with the design and manufacture of the Poloidal Field Conductor Insert Coil (PFCI). The purpose of the PFCI is to test and demonstrate the performance of long length full scale NbTi conductors in ITER relevant conditions. The PFCI will be tested in the Central Solenoid Model Coil test facility at the JAEA Naka Japan. This paper details the complete manufacturing details of the PFCI including development, forming machining, pre-assembly, impregnation, final assembly and testing. The PFCI is a single layer wound solenoid of 9 turns with a transition joggle in the centre section of the winding and an intermediate joint connection between the upper termination and the main coil winding. To give the required overall dimensions to fit in the testing facility, pre-formed and machined glass resin composite filler pieces are assembled with the winding and finally Vacuum Pressure Impregnated to create a single assembly unit. The PFCI is enclosed for assembly in a support structure which consist of an upper and lower flange that each are made up by 4 machined stainless steel castings which are electrically insulated by epoxy glass sheet material and 12 tie rods which preload the complete assembly in the vertical direction while the upper flange is equipped with 4 radial restraining jacks and the lower flange is equipped with 4 sets of studs and shear keys to withstand the net vertical and lateral electromagnetic forces. The PFCI is equipped with inductive heaters, voltage taps, temperature transducers, strain gauges and other instrumentation as diagnostics to monitor the performance. The current status of the manufacture is that the coil is in the process of final impregnation and should be completed and delivered before the summer of this year. (author)

  12. Manufacture of the poloidal field conductor insert coil (PFCI)

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany); Keefe, C. [Tesla Engineering, Storrington, Sussex (United Kingdom); Rajainmaeki, H. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)], E-mail: hannu.rajainmaki@tech.efda.org; Salpietro, E. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)

    2007-10-15

    Within the framework of the R and D programme for international thermonuclear experimental reactor (ITER) the European team European Fusion Development Agreement (EFDA) has been charged with the design and manufacture of the poloidal field conductor insert coil (PFCI). The purpose of the PFCI is to test and demonstrate the performance of long-length full-scale NbTi conductors in ITER-relevant conditions. The PFCI will be tested in the central solenoid model coil test facility at the JAEA, Naka, Japan. This paper details the complete manufacturing of the PFCI including development, forming machining, pre-assembly, impregnation, final assembly and testing. The PFCI is a single-layered wound solenoid of nine turns with a transition joggle in the centre section of the winding and an intermediate joint connection between the upper termination and the main coil winding. To give the required overall dimensions to fit in the testing facility, preformed and machined glass resin composite filler pieces are assembled with the winding and is finally vacuum pressure impregnated (VPI) to create a single assembly unit. The PFCI is enclosed for assembly in a support structure, which consists of an upper and lower flange, each made up of four electrically insulated machined stainless steel castings, and 12 tie rods preloading the complete assembly in the vertical direction. The upper flange is equipped with four radial restraining jacks and the lower flange is equipped with four sets of studs and shear keys to withstand the net vertical and lateral electromagnetic forces. The PFCI is equipped with inductive heaters, voltage taps, temperature transducers, strain gauges and other instrumentation as diagnostics to monitor the performance. The current status of the manufacture is that the coil has passed the final acceptance tests and it is in the support structure assembly stage.

  13. Far-field potentials in cylindrical and rectangular volume conductors.

    Science.gov (United States)

    Dumitru, D; King, J C; Rogers, W E

    1993-07-01

    The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.

  14. Electronic and Ionic Conductors from Ordered Microporous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dincă, Mircea [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-10-30

    The proposed work aimed to establish metal-organic frameworks (MOFs) as new classes of high-surface area microporous electronic and ionic conductors. MOFs are crystalline materials with pore sizes ranging from 0.2 to ~ 2 nm (or larger for the latter) defined by inorganic or organic building blocks connected by rigid organic linkers. Myriad applications have been found or proposed for these materials, yet those that require electron transport or conductivity in combination with permanent porosity still lag behind because the vast majority of known frameworks are electrical insulators. Prior to our proposal and subsequent work, there were virtually no studies exploring the possibility of electronic delocalization in these materials. Therefore, our primary goal was to understand and control, at a fundamental level, the electron and ion transport properties of this class of materials, with no specific application proposed, although myriad applications could be envisioned for high surface area conductors. Our goals directly addressed one of the DOE-identified Grand Challenges for Basic Energy Sciences: designing perfect atom- and energy-efficient syntheses of revolutionary new forms of matter with tailored properties. Indeed, the proposed work is entirely synthetic in nature; owing to the molecular nature of the building blocks in MOFs, there is the possibility of unprecedented control over the structure and properties of solid crystalline matter. The goals also tangentially addressed the Grand Challenge of controlling materials processes at the level of electrons: the scope of our program is to create new materials where charges (electrons and/or ions) move according to predefined pathways.

  15. Transparent conductive p-type lithium-doped nickel oxide thin films deposited by pulsed plasma deposition

    Science.gov (United States)

    Huang, Yanwei; Zhang, Qun; Xi, Junhua; Ji, Zhenguo

    2012-07-01

    Transparent p-type Li0.25Ni0.75O conductive thin films were prepared on conventional glass substrates by pulsed plasma deposition. The effects of substrate temperature and oxygen pressure on structural, electrical and optical properties of the films were investigated. The electrical resistivity decreases initially and increases subsequently as the substrate temperature increases. As the oxygen pressure increases, the electrical resistivity decreases monotonically. The possible physical mechanism was discussed. And a hetero p-n junction of p-Li0.25Ni0.75O/n-SnO2:W was fabricated by depositing n-SnO2:W on top of the p-Li0.25Ni0.75O, which exhibits typical rectifying current-voltage characteristics.

  16. Transparent conductive p-type lithium-doped nickel oxide thin films deposited by pulsed plasma deposition

    International Nuclear Information System (INIS)

    Huang Yanwei; Zhang Qun; Xi Junhua; Ji Zhenguo

    2012-01-01

    Transparent p-type Li 0.25 Ni 0.75 O conductive thin films were prepared on conventional glass substrates by pulsed plasma deposition. The effects of substrate temperature and oxygen pressure on structural, electrical and optical properties of the films were investigated. The electrical resistivity decreases initially and increases subsequently as the substrate temperature increases. As the oxygen pressure increases, the electrical resistivity decreases monotonically. The possible physical mechanism was discussed. And a hetero p-n junction of p-Li 0.25 Ni 0.75 O/n-SnO 2 :W was fabricated by depositing n-SnO 2 :W on top of the p-Li 0.25 Ni 0.75 O, which exhibits typical rectifying current-voltage characteristics.

  17. Identifying individual n- and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator

    KAUST Repository

    Lin, S S

    2009-08-18

    Based on a comparative study between the piezoelectric outputs of n-type nanowires (NWs) and n-core/p-shell NWs along with the previous study (Lu et al 2009 Nano. Lett. 9 1223), we demonstrate a one-step technique for identifying the conductivity type of individual ZnO nanowires (NWs) based on the output of a piezoelectric nanogenerator without destroying the sample. A negative piezoelectric output voltage indicates an NW is n-type and it appears after the tip scans across the center of the NW, while a positive output voltage reveals p-type conductivity and it appears before the tip scans across the central line of the NW. This atomic force microscopy based technique is reliable for statistically mapping the majority carrier type in ZnO NWs arrays. The technique may also be applied to other wurtzite semiconductors, such as GaN, CdS and ZnS. © 2009 IOP Publishing Ltd.

  18. Expression of a prokaryotic P-type ATPase in E. coli Plasma Membranes and Purification by Ni2+-affinity chromatography

    Directory of Open Access Journals (Sweden)

    Geisler Markus

    1998-01-01

    Full Text Available In order to characterize the P-type ATPase from Synechocystis 6803 [Geisler (1993 et al. J. Mol. Biol. 234, 1284] and to facilitate its purification, we expressed an N-terminal 6xHis-tagged version of the ATPase in an ATPase deficient E. coli strain. The expressed ATPase was immunodetected as a dominant band of about 97 kDa localized to the E. coli plasma membranes representing about 20-25% of the membrane protein. The purification of the Synecho-cystis 6xHis-ATPase by single-step Ni-affinity chromatography under native and denaturating conditions is described. ATPase activity and the formation of phosphointermediates verify the full function of the enzyme: the ATPase is inhibited by vanadate (IC50= 119 &mgr;M and the formation of phosphorylated enzyme intermediates shown by acidic PAGE depends on calcium, indicating that the Synechocystis P-ATPase functions as a calcium pump.

  19. Low p-type contact resistance by field-emission tunneling in highly Mg-doped GaN

    Science.gov (United States)

    Okumura, Hironori; Martin, Denis; Grandjean, Nicolas

    2016-12-01

    Mg-doped GaN with a net acceptor concentration (NA-ND) in the high 1019 cm-3 range was grown using ammonia molecular-beam epitaxy. Electrical properties of NiO contact on this heavily doped p-type GaN were investigated. A potential-barrier height of 0.24 eV was extracted from the relationship between NA-ND and the specific contact resistivity (ρc). We found that there is an optimum NA-ND value of 5 × 1019 cm-3 for which ρc is as low as 2 × 10-5 Ω cm2. This low ρc is ascribed to hole tunneling through the potential barrier at the NiO/p+-GaN interface, which is well accounted for by the field-emission model.

  20. Control of N/N2 species ratio in NO plasma for p-type doping of ZnO

    International Nuclear Information System (INIS)

    Chen Xingyou; Zhang Zhenzhong; Jiang Mingming; Wang Shuangpeng; Li Binghui; Shan Chongxin; Liu Lei; Zhao Dongxu; Shen Dezhen; Yao Bin

    2011-01-01

    Nitrogen-doped ZnO thin films were grown on c-plane sapphire (Al 2 O 3 ) substrates via plasma-assisted molecular beam epitaxy using plasma activated nitric oxide (NO) as the oxygen source and dopant. X-ray diffraction measurements indicate that a small NO flux benefits the crystal quality of the thin films. Hall effect measurements indicate that the electron density of the ZnO films decreases gradually with decreasing NO flux, and the conduction reverses to p-type at a certain flux. Optical emission spectra indicate that the N atom content in the NO plasma increases with decreasing NO flux, and the origin of this is discussed. X-ray photoelectron spectroscopy measurements demonstrate that the number of N atom occupied O sites in the ZnO lattice increases correspondingly.

  1. p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Xiu, F.X.; Yang, Z.; Mandalapu, L.J.; Liu, J.L.; Beyermann, W. P.

    2006-01-01

    Phosphorus-doped p-type ZnO films were grown on r-plane sapphire substrates using molecular-beam epitaxy with a solid-source GaP effusion cell. X-ray diffraction spectra and reflection high-energy electron diffraction patterns indicate that high-quality single crystalline (1120) ZnO films were obtained. Hall and resistivity measurements show that the phosphorus-doped ZnO films have high hole concentrations and low resistivities at room temperature. Photoluminescence (PL) measurements at 8 K reveal a dominant acceptor-bound exciton emission with an energy of 3.317 eV. The acceptor energy level of the phosphorus dopant is estimated to be 0.18 eV above the valence band from PL spectra, which is also consistent with the temperature dependence of PL measurements

  2. Large-Scale Surfactant-Free Synthesis of p-Type SnTe Nanoparticles for Thermoelectric Applications

    Directory of Open Access Journals (Sweden)

    Guang Han

    2017-02-01

    Full Text Available A facile one-pot aqueous solution method has been developed for the fast and straightforward synthesis of SnTe nanoparticles in more than ten gram quantities per batch. The synthesis involves boiling an alkaline Na2SnO2 solution and a NaHTe solution for short time scales, in which the NaOH concentration and reaction duration play vital roles in controlling the phase purity and particle size, respectively. Spark plasma sintering of the SnTe nanoparticles produces nanostructured compacts that have a comparable thermoelectric performance to bulk counterparts synthesised by more time- and energy-intensive methods. This approach, combining an energy-efficient, surfactant-free solution synthesis with spark plasma sintering, provides a simple, rapid, and inexpensive route to p-type SnTe nanostructured materials.

  3. Rectification properties of n-type nanocrystalline diamond heterojunctions to p-type silicon carbide at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masaki; Amano, Ryo; Shimoda, Naotaka [Graduate School of Automotive Science, Kyushu University, Nishiku, Fukuoka 819-0395 (Japan); Kato, Yoshimine, E-mail: yoshimine.kato@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Kyushu University, Nishiku, Fukuoka 819-0395 (Japan); Teii, Kungen [Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-04-14

    Highly rectifying heterojunctions of n-type nanocrystalline diamond (NCD) films to p-type 4H-SiC substrates are fabricated to develop p-n junction diodes operable at high temperatures. In reverse bias condition, a potential barrier for holes at the interface prevents the injection of reverse leakage current from the NCD into the SiC and achieves the high rectification ratios of the order of 10{sup 7} at room temperature and 10{sup 4} even at 570 K. The mechanism of the forward current injection is described with the upward shift of the defect energy levels in the NCD to the conduction band of the SiC by forward biasing. The forward current shows different behavior from typical SiC Schottky diodes at high temperatures.

  4. Formation of Ga2O3 by the oxidation of p-type GaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pinnisch, Melanie; Reppin, Daniel; Stehr, Jan; Laufer, Andreas; Hofmann, Detlev M.; Meyer, Bruno K. [1. Physikalisches Institut, Justus-Liebig-University, Giessen (Germany)

    2010-07-01

    Both GaN and Ga{sub 2}O{sub 3} are wide band gap semiconductors with energies of 3.45 eV and 4.9 eV, respectively. While GaN can be achieved p- or n-type conducting by doping, Ga{sub 2}O{sub 3} is n-type or high resistive dependent on the presence of oxygen vacancies. We studied the conversion of p-type Mg doped GaN thin films to Ga{sub 2}O{sub 3} by thermal treatments in the temperature range from 600 C to 1200 C and in different atmospheres. Changes of the film properties were studied by means of X-ray diffraction, photo-electron spectroscopy and atomic force microscopy. Optical and magnetic resonance methods were used to investigate the evolution of the dopands and defects.

  5. The Influence Of Dead Layer Effect On The Characteristics Of The High Purity Germanium P-Type Detector

    International Nuclear Information System (INIS)

    Ngo Quang Huy

    2011-01-01

    The present work aims at reviewing the studies of the influence of dead layer effect on the characteristics of a high purity germanium (HPGe) p-type detector, obtained by the author and his colleagues in the recent years. The object for study was the HPGe GC1518 detector-based gamma spectrometer of the Center for Nuclear Techniques, Ho Chi Minh City. The studying problems were: The modeling of an HPGe detector-based gamma spectrometer with using the MCNP code; the method of determining the thickness of dead layer by experimental measurements of gamma spectra and the calculations using MCNP code; the influence of material parameters and dead layer on detector efficiency; the increase of dead layer thickness over the operating time of the GC1518 detector; the influence of dead layer thickness increase on the decrease of detector efficiency; the dead layer effect for the gamma spectra measured in the GC1518 detector. (author)

  6. Electronic structure of p type Delta doped systems; Estructura electronica de sistemas dopadas con Delta de tipo p

    Energy Technology Data Exchange (ETDEWEB)

    Gaggero S, L.M.; Perez A, R. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey s/n, 28040 Madrid (Spain)

    1998-12-31

    We summarize of the results obtained for the electronic structure of quantum wells that consist in an atomic layer doped with impurities of p type. The calculations are made within the frame worth of the wrapper function approach to independent bands and with potentials of Hartree. We study the cases reported experimentally (Be in GaAs and B in Si). We present the levels of energy, the wave functions and the rate of the electronic population between the different subbands, as well as the dependence of these magnitudes with the density of impurities in the layer. The participation of the bans of heavy holes is analysed, light and split-off band in the total electronic population. The effect of the temperature is discussed and we give a possible qualitative explanation of the experimental optical properties. (Author)

  7. High temperature thermoelectric properties of p-type skutterudites BaxYbyCo4-zFezSb12

    KAUST Repository

    Dong, Y.

    2012-01-01

    Several polycrystalline p-type skutterudites with compositions Ba xYb yCo 4-zFe zSb 12, with varying filler concentrations x and y, and z = 1 to 2, were synthesized by reacting the constituents and subsequent solid state annealing, followed by densification by hot-pressing. Their thermoelectric properties were evaluated from 300 to 820 K. The Yb filling fraction increased with Fe content while the amount of Fe substitution had little influence on the Ba filling fraction. High purity specimens were obtained when the Fe content was low. Bipolar conduction contributed to the thermal conductivity at elevated temperatures. A maximum ZT value of 0.7 was obtained at 750 K for the specimen with the highest Fe content and filling fraction. The potential for thermoelectric applications is also discussed. © 2012 American Institute of Physics.

  8. P-type doping of semipolar GaN(11 anti 22) by plasma-assisted molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Das, A.; Lahourcade, L. [Equipe Mixte CEA-CNRS, Nanophysique et Semiconducteurs, CEA-Grenoble, INAC/SP2M, Grenoble (France); Pernot, J. [Institut Neel, CNRS et Universite Joseph Fourier, Grenoble (France); Valdueza-Felip, S. [Equipe Mixte CEA-CNRS, Nanophysique et Semiconducteurs, CEA-Grenoble, INAC/SP2M, Grenoble (France); Dept. Electronica, Escuela Politecnica, Universidad de Alcala, Alcala de Henares, Madrid (Spain); Ruterana, P. [CIMAP, UMR6252, CNRS-ENSICAEN-CEA-UCBN, Caen (France); Laufer, A.; Eickhoff, M. [I. Physikalisches Institut, Justus-Liebig-Universitaet Giessen (Germany); Monroy, E.

    2010-07-15

    We report the effect of Mg doping on the growth kinetics of semipolar GaN(11-22) synthesized by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN(11-22). As a result, the growth widow is reduced for Mg doped layers, and we observe a certain deterioration of the surface morphology. In spite of this difficulties, homogenous Mg incorporation is achieved and layers display p -type conductivity for Mg atomic concentration higher than 7 x 10{sup 18} cm{sup -3}. Microscopy studies show no evidence of the pyramidal defects or polarity inversion domains found in Mg-doped GaN(0001). (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. A study of transition from n- to p-type based on hexagonal WO3 nanorods sensor

    Science.gov (United States)

    Wu, Ya-Qiao; Hu, Ming; Wei, Xiao-Ying

    2014-04-01

    Hexagonal WO3 nanorods are fabricated by a facile hydrothermal process at 180 °C using sodium tungstate and sodium chloride as starting materials. The morphology, structure, and composition of the prepared nanorods are studied by scanning electron microscopy, X-ray diffraction spectroscopy, and energy dispersive spectroscopy. It is found that the agglomeration of the nanorods is strongly dependent on the PH value of the reaction solution. Uniform and isolated WO3 nanorods with diameters ranging from 100 nm-150 nm and lengths up to several micrometers are obtained at PH = 2.5 and the nanorods are identified as being hexagonal in phase structure. The sensing characteristics of the WO3 nanorod sensor are obtained by measuring the dynamic response to NO2 with concentrations in the range 0.5 ppm-5 ppm and at working temperatures in the range 25 °C-250 °C. The obtained WO3 nanorods sensors are found to exhibit opposite sensing behaviors, depending on the working temperature. When being exposed to oxidizing NO2 gas, the WO3 nanorod sensor behaves as an n-type semiconductor as expected when the working temperature is higher than 50 °C, whereas, it behaves as a p-type semiconductor below 50 °C. The origin of the n- to p-type transition is correlated with the formation of an inversion layer at the surface of the WO3 nanorod at room temperature. This finding is useful for making new room temperature NO2 sensors based on hexagonal WO3 nanorods.

  10. A study of transition from n- to p-type based on hexagonal WO3 nanorods sensor

    International Nuclear Information System (INIS)

    Wu Ya-Qiao; Hu Ming; Wei Xiao-Ying

    2014-01-01

    Hexagonal WO 3 nanorods are fabricated by a facile hydrothermal process at 180 °C using sodium tungstate and sodium chloride as starting materials. The morphology, structure, and composition of the prepared nanorods are studied by scanning electron microscopy, X-ray diffraction spectroscopy, and energy dispersive spectroscopy. It is found that the agglomeration of the nanorods is strongly dependent on the PH value of the reaction solution. Uniform and isolated WO 3 nanorods with diameters ranging from 100 nm–150 nm and lengths up to several micrometers are obtained at PH = 2.5 and the nanorods are identified as being hexagonal in phase structure. The sensing characteristics of the WO 3 nanorod sensor are obtained by measuring the dynamic response to NO 2 with concentrations in the range 0.5 ppm–5 ppm and at working temperatures in the range 25 °C–250 °C. The obtained WO 3 nanorods sensors are found to exhibit opposite sensing behaviors, depending on the working temperature. When being exposed to oxidizing NO 2 gas, the WO 3 nanorod sensor behaves as an n-type semiconductor as expected when the working temperature is higher than 50 °C, whereas, it behaves as a p-type semiconductor below 50 °C. The origin of the n- to p-type transition is correlated with the formation of an inversion layer at the surface of the WO 3 nanorod at room temperature. This finding is useful for making new room temperature NO 2 sensors based on hexagonal WO 3 nanorods. (general)

  11. Detection of smaller Jc region and damage in YBCO coated conductors by using permanent magnet method

    International Nuclear Information System (INIS)

    Hattori, K.; Saito, A.; Takano, Y.; Suzuki, T.; Yamada, H.; Takayama, T.; Kamitani, A.; Ohshima, S.

    2011-01-01

    We developed a non-destructive method for measuring the critical current density (J c ) in YBCO-coated conductors by using a permanent magnet (Sm 2 Co 17 ). J c could be determined from the repulsive force (F r ) generated between a permanent magnet and a coated conductor where shielding current flows. We also examined the influence of damage to the film on the J c distribution. The measured F r when the permanent magnet approached the cut part was smaller than that of the undamaged area. We developed a non-destructive method for measuring the critical current density (J c ) in YBCO-coated conductors by using a permanent magnet (Sm 2 Co 17 ). J c could be determined from the repulsive force (F r ) generated between a permanent magnet and a coated conductor where shielding current flows. We tried to detect a smaller J c region in the coated conductor by using the system. The J c distribution could be determined without influence from the thick copper film on YBCO thin film. We also examined the influence of damage to the film on the J c distribution. The surface of the coated conductors was cut by using a knife. The measured F r when the permanent magnet approached the cut part was smaller than that of the undamaged area. This J c measurement technique will be useful for detecting smaller J c regions and defects in coated conductors.

  12. Development of 1 m HTS conductor using YBCO on textured metal substrate

    International Nuclear Information System (INIS)

    Yagi, M.; Sakamoto, H.; Mukoyama, S.; Yamamoto, K.; Amemiya, N.; Nagaya, S.; Kashima, N.; Shiohara, Y.

    2009-01-01

    We fabricated 1 m high temperature superconducting conductor (HTS conductor) using YBa 2 Cu 3 O 7-x coated conductors (YBCO tapes) on textured metal substrates, which are expected to be lower in cost than YBCO tapes using ion-beam assisted deposition. Those substrate and intermediate layers were manufactured by Furukawa Electric, and YBCO and a protective layer were applied to the intermediate layer by Chubu Electric Power. Before fabricating the conductor, a 0.1 mm thick copper tape was soldered to the YBCO tape, and 10 mm wide YBCO tape was divided into three strips by a YAG laser. To have sufficient current capacity for 1 kA, a two-layer conductor was fabricated, and its critical current (I c ) was 1976 A, but the magnetic properties of the textured metal substrates affected the increase in AC loss. In a low current region, the AC loss in this conductor was much higher than the Norris strip model, but approached the Norris strip model in the high current region because the magnetization was almost saturated. Low AC loss of 0.144 W/m at 1 kA rms was achieved even though the conductor had a small outer diameter of 20 mm and was composed of YBCO tapes with magnetic substrates.

  13. Calorimetric method for current sharing temperature measurements in ITER conductor samples in SULTAN

    International Nuclear Information System (INIS)

    Bagnasco, M.

    2009-01-01

    Several Toroidal Field Conductor short samples with slight layout variations have been assembled and tested in the SULTAN facility at CRPP. The measurement campaigns started in 2007 and are still ongoing. The performance of every conductor is expressed in terms of current sharing temperature (T cs ), i.e. the temperature at which a defined electric field, 10 μV/m, is detected in the cable due to the incipient superconducting-to-normal state transition. The T cs at specific operating conditions is the key design parameter for the ITER conductors and is the main object of the qualification tests. Typically, the average electric field is measured with voltage tap pairs attached on the jacket along the conductor. The inability however to explain observed premature voltage developments opened the discussion about possible alternative measuring methods. The He flow calorimetric method is based on the measurement of the resistive power generation in the conductor. It relies on the detection of very small temperature increases along the conductor in steady state operation. The accuracy and the reliability of the calorimetric method in SULTAN are critically discussed, with particular emphasis on the instrumentation requirements and test procedures. The application of the calorimetric method to the recent SULTAN test campaigns is described with its merits and limits. For future tests of ITER conductors in SULTAN, the calorimetric method for T cs test is proposed as a routine procedure.

  14. A Novel Method for Detection and Classification of Covered Conductor Faults

    Directory of Open Access Journals (Sweden)

    Stanislav Misak

    2016-01-01

    Full Text Available Medium-Voltage (MV overhead lines with Covered Conductors (CCs are increasingly being used around the world primarily in forested or dissected terrain areas or in urban areas where it is not possible to utilize MV cable lines. The CC is specific in high operational reliability provided by the conductor core insulation compared to Aluminium-Conductor Steel-Reinforced (ACSR overhead lines. The only disadvantage of the CC is rather the problematic detection of faults compared to the ACSR. In this work, we consider the following faults: the contact of a tree branch with a CC and the fall of a conductor on the ground. The standard protection relays are unable to detect the faults and so the faults pose a risk for individuals in the vicinity of the conductor as well as it compromises the overall safety and reliability of the MV distribution system. In this article, we continue with our previous work aimed at the method enabling detection of the faults and we introduce a method enabling a classification of the fault type. Such a classification is especially important for an operator of an MV distribution system to plan the optimal maintenance or repair the faulty conductors since the fall of a tree branch can be solved later whereas the breakdown of a conductor means an immediate action of the operator.

  15. Electrohydrodynamic direct—writing of conductor—insulator-conductor multi-layer interconnection

    International Nuclear Information System (INIS)

    Zheng Gao-Feng; Pei Yan-Bo; Wang Xiang; Zheng Jian-Yi; Sun Dao-Heng

    2014-01-01

    A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor—insulator—conductor multi-layer interconnection structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is utilized to fabricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained results show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10 −7 Ω·m and 1.39 × 10 −7 Ω·m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor—insulator—conductor multi-layer interconnections in the electronic industry

  16. Development of an YBCO coil with SSTC conductors for high field application

    Science.gov (United States)

    Shi, Y.; Liu, H. J.; Liu, F.; Tan, Y. F.; Jin, H.; Yu, M.; Lei, L.; Guo, L.; Hong, Z. Y.

    2018-07-01

    With the continuous reduction of the production costs and improvement of the transport performance, YBCO coated conductor is the most promising candidate for the high field magnet application due to its high irreversibility field and strong mechanical properties. Presently a stable production capacity of the YBCO conductors has been achieved by Shanghai Superconducting Technology Co., Ltd (SSTC) in China. Therefore, the demand in high field application with YBCO conductors is growing in China. This paper describes the design, fabrication and preliminary experiment of a solenoid coil with YBCO conductors supplied by SSTC to validate the possibility of high field application. Four same double pancakes were manufactured and assembled for the YBCO coil where the outer diameter and height was 54.3 and 48 mm respectively to match the dimensional limitation of the 14 T background magnets. The critical current (Ic) of YBCO conductors was obtained by measuring as a function of the applied field perpendicular to the YBCO conductor surface which provides the necessary input parameters for preliminary performance evaluation of the coil. Finally the preliminary test and discussion at 77 and 4.2 K were carried out. The consistency of four double pancakes Ic was achieved. The measured results indicate that the fabrication technology of HTS coil is reliable which gives the conference for the in-field test in high field application. This YBCO coil is the first demonstration of the SSTC YBCO coated conductors.

  17. Corona Onset Characteristics of Bundle Conductors in UHV AC Power Lines at 2200 m Altitude

    Directory of Open Access Journals (Sweden)

    Shilong Huang

    2018-04-01

    Full Text Available The corona onset characteristic of bundle conductors is an important limiting factor for the design of UHV AC power lines in high-altitude areas. An experimental study on the corona characteristics of 8 × LGJ630, 6 × LGJ720, 8 × LGJ720 and 10 × LGJ720 bundle conductors commonly used in UHV power lines under dry and wet conductor conditions, as well as artificial moderate and heavy rain conditions, was conducted in Ping’an County, Xining City (elevation 2200 m. By using the tangent line method, the corona onset voltages and onset electric field of four types of conductors at high altitudes are obtained for the first time. In addition, the calculation model of corona onset voltage considering the outer strands’ effect on the electric field and the geometric factor in the corona cage in high altitude areas is established. The comparison of the calculation results and experimental results under dry conditions verifies the model’s correctness. Based on the results, an optimal selection scheme for high altitudes is proposed. The roughness coefficient was also calculated and analysed: the roughness coefficient of bundled conductors was between 0.59 and 0.77, and the roughness coefficient of the wet conductor was between the dry and rainy conditions. Both the experimental data and the calculation model can provide a reference for conductor selection for UHV AC power lines for use in high-altitude areas.

  18. Assessment of the noise annoyance among subway train conductors in Tehran, Iran.

    Science.gov (United States)

    Hamidi, Mansoureh; Kavousi, Amir; Zaheri, Somayeh; Hamadani, Abolfazl; Mirkazemi, Roksana

    2014-01-01

    Subway transportation system is a new phenomenon in Iran. Noise annoyance interferes with the individual's task performance, and the required alertness in the driving of subway trains. This is the first study conducted to measure the level of noise and noise annoyance among conductors of subway organization in Tehran, Iran. This cross sectional study was conducted among 167 randomly selected train conductors. Information related to noise annoyance was collected by using a self-administered questionnaire. The dosimetry and sound metering was done for the conductors and inside the cabins. There were 41 sound metering measuring samples inside the conductors' cabin, and there were 12 samples of conductors' noise exposure. The results of sound level meter showed that the mean Leq was 73.0 dBA ± 8.7 dBA and the dosimetry mean measured Leq was 82.1 dBA ± 6.8 dBA. 80% of conductors were very annoyed/annoyed by noise in their work place. 53.9% of conductors reported that noise affected their work performance and 63.5% reported that noise causes that they lose their concentration. The noise related to movement of train wheels on rail was reported as the worst by 83.2% followed by the noise of brakes (74.3%) and the ventilation noise (71.9%). 56.9% of conductors reported that they are suffering from sleeplessness, 40.1% from tinnitus and 80.2% feeling fatigue and sleepy. The study results showed the high level of noise and noise annoyance among train conductors and the poor health outcome of their exposure to this level of noise.

  19. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    Science.gov (United States)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  20. n value and Jc distribution dependence of AC transport current losses in HTS conductors

    International Nuclear Information System (INIS)

    Ogawa, Jun; Sawai, Yusuke; Nakayama, Haruki; Tsukamoto, Osami; Miyagi, Daisuke

    2004-01-01

    Compared with LTS materials, HTS materials have some peculiarities affecting AC loss characteristics of the conductors. We measured the AC transport current losses in YBCO thin film coated conductors and a Bi2223/Ag sheathed tape. Comparing the measured data with analytical calculations, the dependence of the AC transport current losses on the n value and critical current density distributions are studied. It is shown that, considering the n values and J c distributions, the peculiarities in the HTS materials can be taken into consideration and the transport current losses in HTS conductors can be calculated by the same analytical method used for LTS