WorldWideScience

Sample records for p-to-s converted waves

  1. Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 1. Theory

    Science.gov (United States)

    Poppeliers, Christian; Pavlis, Gary L.

    2003-02-01

    We present the theoretical foundations for a prestack migration technique to image teleseismic P-to-S converted phases. The method builds on teleseismic P wave deconvolution, pseudostation stacking [, 1999] and on the idea of using a plane wave decomposition for imaging as introduced by [1982]. Deconvolution operators are constructed by pseudostation stacking of the array aligned to the incident P wave arrival times to produce a space-variable deconvolution operator. The resulting data are then muted to remove the deconvolved direct P wave pulse and pseudostation stacked over a grid of feasible slowness vectors. The pseudostation stack interpolates the wave field onto a regular grid along Earth's surface producing a series (one per slowness vector) of uniformly sampled three-dimensional data cubes (two space variables and time). The plane wave components can be propagated downward using a form of approximate ray tracing with a three-dimensional Earth model. This yields a series of distorted cubes topologically equivalent to the original uniformly sampled data cubes. These data volumes are summed as a weighted stack with the weights derived from an integration formula for inverse scattering based on the generalized Radon transform. This allows an image of the subsurface to be constructed on an event by event basis beneath the array. We apply this technique to data from the Lodore array that was deployed in northwestern Colorado. The results suggest the presence of a major lithospheric-scale discontinuity defined by a south dipping boundary.

  2. Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 2. Stacking multiple events

    Science.gov (United States)

    Poppeliers, Christian; Pavlis, Gary L.

    2003-05-01

    In part 1 we developed the theoretical foundations of a prestack migration procedure to image forward scattered P to S (PdS) converted waves in the coda of teleseismic P waves. This paper addresses the issue of how to optimally stack data from multiple events migrated by this procedure. We apply matrix perturbation theory to develop an objective way to quantify noise in deconvolved PdS data. Application of the theory demonstrates that an optimal stack requires weighting the migrated data from each event by a signal-to-noise ratio criterion. We also find that the migrated PdS images have to be binned by back azimuth and balanced prior to the final stack. This is necessary to mitigate coherent noise that results from aliased microseism noise that is enhanced by our processing method. We processed 23 events recorded by the Lodore array in northwestern Colorado with our procedure. The results indicate the presence of a major, lithospheric scale discontinuity defined by a south dipping boundary within the crust that we interpret as the subsurface expression of the Cheyenne Belt. The suture is also marked by a transition in crustal thickness from 35 km on the Archean side to over 40 km on the Colorado Plateau side. We also observe a strong difference in the lithospheric mantle PdS conversion signature on opposite sides of the suture that suggests delamination and northward convergence of the Colorado lithosphere beneath the Wyoming province.

  3. Prestack planewave migration of teleseismic P-to-S converted phases

    Science.gov (United States)

    Poppeliers, Christian John

    This research presents a new prestack migration technique to image the Earth with forward scattered teleseismic P-to-S converted phases (receiver functions). The method builds on the pseudostation stacking technique presented by Neal and Pavlis [1999 and a planewave decomposition-based migration technique introduced by Treitel et al. [1982]. We apply this procedure to dozens of teleseismic earthquakes recorded by the Lodore array in northwestern Colorado, which was deployed to image the subsurface structure of the Cheyenne belt. The Cheyenne belt has been interpreted as the surface expression of a suture zone between the Archean-age Wyoming province and the Proterozoic-age Colorado Plateau. The end result of applying planewave migration to many events recorded by the Lodore array is that we obtain a high resolution image which suggests the presence of a major, lithospheric scale discontinuity between the Wyoming province and the Colorado Plateau. The imaged discontinuity extends to a depth of at least 90km, which is the maximum depth that we can image with the Lodore array. Additionally, we apply planewave migration to approximately one dozen teleseismic earthquakes recorded by a large array in the Tien Shan mountains (Asia) to image a major suture zone there. Based the two different datasets provided by the Lodore array and the Tien Shan array, we suggest that scars from continental sutures extend to depths greater than 200 km and remain as distinct features for hundreds of millions of years. In a separate study, we analyze data from 35 three-component seismic recording instruments deployed in a 5 x 7 grid over a steep slope. The array was deployed to record to site response of the steep slope and recorded ten underwater explosions detonated in a lake which was adjacent to the slope. The explosions were approximately 800 meters from the array. We found that the slope crest had a local acceleration approximately twice that of the surrounding flat ground

  4. Three-dimensional Kirchhoff-approximate generalized Radon transform imaging using teleseismic P-to-S scattered waves

    Science.gov (United States)

    Liu, Kaijian; Levander, Alan

    2013-03-01

    Teleseismic imaging techniques utilizing mode converted/scattered waves are gaining importance due to the deployment of increasingly dense broad-band seismograph arrays. Although common-conversion point (CCP) stacking is widely used to determine structure from Ps or Sp scattered wavefields isolated by receiver function (RF) processing, this method is limited due to its assumption of a layered medium: Dipping events and diffractions are not treated correctly. As an extension of previous 2-D generalized Radon transform (GRT) imaging methods, we present a 3-D Kirchhoff-approximate imaging technique to migrate scattered waves in 3-D. We first derive the 3-D migration formula for P-to-S conversions using the GRT solution to the linear inverse elastic wave scattering problem. Then we illustrate the Kirchhoff method using finite-difference synthetic seismograms from several 3-D models. Next, we apply the method to two portable broad-band array data sets in the western United States to image the Mendocino Triple Junction and the High Lava Plains (HLP) crust and uppermost mantle structures. From the HLP data, we construct the Ps transmission coefficient images with three-component Green's functions. The 1.0 and 0.5 Hz images show a continuous undulating Moho, as well as three negative upper-mantle events at 50-80 km depth. Compared to the CCP images, the Moho is more clearly imaged, particularly near 117.5°W-117.8°W at the western edge of the Owyhee Plateau. The three negative events in the upper mantle correlate well with the top of three low-Vs zones (-3 per cent contour) in the Rayleigh wave tomography model. The migrated Ps RF data from Mendocino clearly image the rapid decrease in depth of the lithosphere-asthenosphere boundary from ˜65 km beneath the subducting Gorda Plate to 30-50 km beneath the Coast Ranges slab window. The final image is consistent with, but has higher resolution than the Vs structure determined from joint receiver function/Rayleigh wave

  5. Cycloidal Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  6. Electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  7. SSG Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter

    2008-01-01

    head hydroturbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter...... and the studies behind the process that leads to its construction. The pilot plant is an on-shore full scale module in 3 levels with an expected power production of 320 MWh/y in the North Sea. Location, wave climate and laboratory tests results will be used here to describe the pilot plant and its characteristics.......The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low...

  8. Proposed electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  9. Wave energy converter test application

    OpenAIRE

    Hottola, Niko

    2016-01-01

    This thesis was made for wave energy company Wello Oy. Given assignment was to find the suitable generator and frequency converter for a wave energy converter test application. The primary objective was to find a suitable generator for direct drive, in order to avoid the weight of the test application rising too high. In this thesis the possible machine types for test application are presented and what are their advenatages and disadvantages. In addition, the operation of the frequency co...

  10. The SSG Wave Energy Converter

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Margheritini, Lucia; Kofoed, Jens Peter

    2012-01-01

    The Sea-wave Slot-cone Generator concept (SSG) is a Wave Energy Converter based on the wave overtopping principle utilizing several reservoirs placed on top of each other, in which the energy of the incoming wave will be stored as potential energy. The water captured in the reservoirs will then run...... through turbines for electricity production. The system utilizes a wide spectrum of different wave conditions by means of multiple reservoirs, located at different levels above the still water level. Thereby, it obtains a high overall efficiency and it can be suitable for shoreline and breakwater...... applications, presenting particular advantages such as: sharing structure costs, availability of grid connection and infrastructures, recirculation of water inside the harbor, as the outlet of the turbines is on the rear part of the system. Recently, plans for the SSG pilot installation were in progress...

  11. Reliability of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon

    . Structural reliability considerations and optimizations impact operation and maintenance (O&M) costs as well as the initial investment costs. Furthermore, there is a control system for WEC applications which defines the harvested energy but also the loads onto the structure. Therefore, extreme loads but also...... WEPTOS. Calibration of safety factors are performed for welded structures at theWavestar device including different control systems for harvesting energy from waves. In addition, a case study of different O&M strategies for WECs is discussed, and an example of reliability-based structural optimization......There are many different working principles for wave energy converters (WECs) which are used to produce electricity from waves. In order for WECs to become successful and more competitive to other renewable electricity sources, the consideration of the structural reliability of WECs is essential...

  12. Reliability of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon

    for welded structures at the Wavestar device includingdifferent control systems for harvesting energy from waves. In addition, a casestudy of different O&M strategies for WECs is discussed, and an example ofreliability-based structural optimization of the Wavestar foundation ispresented. The work performed......There are many different working principles for wave energy converters (WECs) which are used to produce electricity from waves. In order for WECs tobecome successful and more competitive to other renewable electricity sources,the consideration of the structural reliability of WECs is essential.......Structural reliability considerations and optimizations impact operation andmaintenance (O&M) costs as well as the initial investment costs.Furthermore, there is a control system for WEC applications which defines theharvested energy but also the loads onto the structure. Therefore, extremeloads but also fatigue loads...

  13. Reliability of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon

    There are many different working principles for wave energy converters (WECs) which are used to produce electricity from waves. In order for WECs to become successful and more competitive to other renewable electricity sources, the consideration of the structural reliability of WECs is essential....... Structural reliability considerations and optimizations impact operation and maintenance (O&M) costs as well as the initial investment costs. Furthermore, there is a control system for WEC applications which defines the harvested energy but also the loads onto the structure. Therefore, extreme loads but also...... of the Wavestar foundation is presented. The work performed in this thesis focuses on the Wavestar and WEPTOS WEC devices which are only two working principles out of a large diversity. Therefore, in order to gain general statements and give advice for standards for structural WEC designs, more working principles...

  14. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...

  15. Ocean floor mounting of wave energy converters

    Science.gov (United States)

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  16. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....

  17. Propagation characteristics of converted refracted wave and its application in static correction of converted wave

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Three-component seismic exploration through P-wave source and three-component geophone is an effective technique used in complicated reservoir exploration. In three-component seismic exploration data processing,one of the difficulties is static correction of converted wave. This paper analyzes propagation characteristics of non-converted and converted refracted waves,and discovers a favor-able condition for the formation of converted refracted wave,i.e. the velocity of overlaying medium S wave is much lower than that of underlying medium S wave. In addition,the paper proposes the static correction method of converted wave based on PPS converted refracted wave,and processes the real three-component seismic data with better results of static correction of converted wave.

  18. Near-Shore Floating Wave Energy Converters

    DEFF Research Database (Denmark)

    Ruol, Piero; Zanuttigh, Barbara; Martinelli, Luca

    2011-01-01

    Aim of this note is to analyse the possible application of a Wave Energy Converter (WEC) as a combined tool to protect the coast and harvest energy. Physical model tests are used to evaluate wave transmission past a near-shore floating WEC of the wave activated body type, named DEXA. Efficiency...

  19. State estimation for wave energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Bacelli, Giorgio; Coe, Ryan Geoffrey

    2017-04-01

    This report gives a brief discussion and examples on the topic of state estimation for wave energy converters (WECs). These methods are intended for use to enable real-time closed loop control of WECs.

  20. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...

  1. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...

  2. Underwater noise from a wave energy converter

    DEFF Research Database (Denmark)

    Tougaard, Jakob

    A recent addition to the anthropogenic sources of underwater noise is offshore wave energy converters. Underwater noise was recorded from the Wavestar wave energy converter located at Hastholm, Denmark (57°7.73´N, 8°37.23´E). The Wavestar is a full-scale test and demonstration converter...... in full operation and start and stop of the converter. Median broad band (10 Hz – 20 kHz) sound pressure level (Leq) was 123 dB re. 1 Pa, irrespective of status of the wave energy converter (stopped, running or starting/stopping). The most pronounced peak in the third-octave spectrum was in the 160 Hz...... significant noise above ambient could be detected above the 250 Hz band. The absolute increase in noise above ambient was very small. L50 third-octave levels in the four bands with the converter running were thus only 1-2 dB above ambient L50 levels. The noise recorded 25 m from the wave energy converter...

  3. Development of the Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    The development of the wave energy converter Wave Dragon (WD) is presented. The WD is based on the overtopping principle. Initially a description of the WD is given. Then the development over time in terms of the various research and development projects working with the concept is described...

  4. Fracture imaging with converted elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.T.; Nakagawa, S.; Myer, L.R.

    2001-05-29

    This paper examines the seismic signatures of discrete, finite-length fractures, and outlines an approach for elastic, prestack reverse-time imaging of discrete fractures. The results of this study highlight the importance of incorporating fracture-generated P-S converted waves into the imaging method, and presents an alternate imaging condition that can be used in elastic reverse-time imaging when a direct wave is recorded (e.g., for crosswell and VSP acquisition geometries).

  5. Experimental Study on the WavePiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.

    This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....

  6. Aquabuoy Wave Energy Converter

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Margheritini, Lucia; Frigaard, Peter

    The work reported here is part of the contract agreement between the Finavera Renewables Ocean Energy Ltd. and the Department of Civil Engineering Hydraulics and Coastal Engineering Laboratory to instrument a model in scale 1:10 to prototype of the AquaBuOY (AB) wave energy converter and to analyse...

  7. Experiments on the WavePiston, Wave Energy Converter

    DEFF Research Database (Denmark)

    Angelelli, E.; Zanuttigh, B.; Kofoed, Jens Peter

    2011-01-01

    This paper analyses the performance of a new Wave Energy Converter (WEC) of the Oscillating Water Column type (OWC), named WavePiston. This near-shore floating device is composed of plates (i.e. energy collectors) sliding around a cylinder, that is placed perpendicular to the shore. Tests...

  8. Performance Evaluation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Pecher, Arthur

    Ocean waves provide a sustainable, power-dense, predictable and widely available source of energy that could provide about 10 % of worlds energy needs. While research into wave energy has been undertaken for decades, a significant increase in related activities has been seen in the recent years......, with more than 150 concepts currently being developed worldwide. Wave energy conversion concepts can be of many kinds, as the energy in the waves can be absorbed in many different ways. However, each concept is expected to require a thorough development process, involving different phases and prototypes....... Guidelines for the development of wave energy converters recommend the use of different prototypes, having different sizes, which have to perform tank tests or sea trials. This implicates the need of different testing environment, which shifts from being controllable to uncontrollable with the development...

  9. Coordinated Control of Wave Energy Converters Subject to Motion Constraints

    OpenAIRE

    2016-01-01

    In this paper, a generic coordinated control method for wave energy converters is proposed, and the constraints on motion amplitudes and the hydrodynamic interaction between converters are considered. The objective of the control problem is to maximize the energy converted from ocean waves, and this is achieved by coordinating the power take-off (PTO) damping of each wave energy converter in the frequency domain in each sea state. In a case study, a wave energy farm consisting of four convert...

  10. Prototype testing of the wave energy converter wave dragon

    Energy Technology Data Exchange (ETDEWEB)

    Kofoed, Jens Peter; Frigaard, Peter [Hydraulics and Coastal Engineering Laboratory, Department of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, Aalborg 9000 (Denmark); Friis-Madsen, Erik [Loewenmark F.R.I., Copenhagen (Denmark); Soerensen, Hans Chr. [SPOK, Copenhagen (Denmark)

    2006-02-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57x27m wide and 237tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive measuring program has been carried out, establishing the background for optimal design of the structure and regulation of the power take off system. Planning for deployment of a 4MW power production unit in the Atlantic by 2007 is in progress. (author)

  11. Wave-to-wire Modelling of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ferri, Francesco

    , but talking about renewable energy partially ravels the problem out. Wave energy is a large, mostly untapped, renewable energy resource. It has the potential to contribute significantly to the future energy mix, but the sector has not yet rolled off into the market in consequence of a number of technical...... and non-technical issues. These can be efficiently summarised in the cost of the energy produced by the various wave energy converters: If compared with other renewable energy technologies the cost of energy from the ocean waves is still significantly higher. Holding the comparison it also important...... to noticed that there is not a clear front runner in the wave energy sector, which fades effort and funding over a too broad frame. In order to assist efficient development and analysis of wave energy converters and therefore to accelerate the sector progression towards commercialisation, a generally...

  12. Will oscillating wave surge converters survive tsunamis?

    Directory of Open Access Journals (Sweden)

    L. O’Brien

    2015-07-01

    Full Text Available With an increasing emphasis on renewable energy resources, wave power technology is becoming one of the realistic solutions. However, the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed, creating large destructive waves. The question posed here is whether an oscillating wave surge converter (OWSC could withstand the force of an incoming tsunami. Several tools are used to provide an answer: an analytical 3D model developed within the framework of linear theory, a numerical model based on the non-linear shallow water equations and empirical formulas. Numerical results show that run-up and draw-down can be amplified under some circumstances, leading to an OWSC lying on dry ground!

  13. Performance Evaluation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Pecher, Arthur

    Ocean waves provide a sustainable, power-dense, predictable and widely available source of energy that could provide about 10 % of worlds energy needs. While research into waveenergy has been undertaken for decades, a significant increase in related activities has been seen in the recent years......, with more than 150 concepts currently being developed worldwide. Wave energy conversion concepts can be of many kinds, as the energy in the waves can be absorbed in many different ways. However, each concept is expected to require a thorough development process, involving different phases and prototypes....... Guidelines for the development of wave energy converters recommend the use of different prototypes, having different sizes, which have to perform tank tests or sea trials. Thisimplicates the need of different testing environment, which shifts from being controllable to uncontrollable with the development...

  14. Clustering of cycloidal wave energy converters

    Science.gov (United States)

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  15. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  16. Testing, Analysis and Control of Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James

    of a textbook, a submitted journal paper and three peer-reviewed conference papers. The content can be broadly divided into four topics: experiences gained with the Wave Dragon prototype device; power-production verification; overtopping analysis; and improvements in control. A comprehensive record...... the expected performance. Other sources of generation are presented, including development and tank testing of a novel power absorbing joint. Wave Dragon belongs in the family of overtopping wave energy converters. The energy is captured by waves running up a ramp and overtopping the crest into a reservoir...

  17. Image processing to optimize wave energy converters

    Science.gov (United States)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  18. Hydraulic Response of the Wave Energy Converter Wave Dragon in Nissum Bredning

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype.......This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype....

  19. Development of the Wave Energy Converter -Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian;

    2000-01-01

    2Over the years wave energy has gradually been brought into focus, as it has become clear that the fossil energy resources are limited, and cause large environmental problems, e.g. CO2 pollution. On this background a number of different wave energy converters have been proposed. In Denmark...... the government have decided to appropriate 20 mill. DKK (approx. 2,7 mill. EUR) to the development of wave energy devices over two years, 1998-1999, and the European Community (EC) also supports the development through the JOULECRAFT program....

  20. Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    2012-01-01

    This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...

  1. Hydraulic behaviour of the floating wave energy converter Wave Dragon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The objective of the project is to establish a scale 1:4.5 test model of the floating offshore wave energy converter - Wave Dragon - for testing at 5 m water depth in the Inlet Nissum Bredning. The test model will be equipped with an existing diameter 340 mm model turbine plus additional outlet tubes simulating the resistance from 1 - 16 turbines. The model will be designed to stay afloat even with a total loss of air pressure in the open bottom buoyancy chambers. The test series will primarily focus on measurements of hydraulic response, forces in the mooring system and overtopping quantities. Also data such as head, rotational speed and power production from the turbine will be monitored during the whole test period. The project will verify the effect of the pressured air buoyancy system, which cannot be scaled correctly in laboratory scale models. The test results will allow for an evaluation of the Wave Dragon power production as a function of sea state and freeboard height, in order to calibrate the existing WD-power simulation software. The model can be utilized for further testing of turbine regulation and stress and strain in the structure, establishing the necessary knowledge base for deploying a full-scale demonstration plant. This CD-ROM contains various videos, reports, notes, conference papers and Power Point presentations on the making of the wave energy converter Wave Dragon. (BA)

  2. Wave Induced Loads on the LEANCON Wave Energy Converter

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Beserra, Eliab Ricarte

    This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the wave induced loads on the device, based...... on a desktop study based on available literature, supplemented by laboratory testing of models of the WEC provided by LEANCON. LEANCON, represented by Kurt Due Rasmussen, has been heavily involved in the testing of the device, including the instrumentation, model setup and execution of the tests...... in the laboratory, all under the supervision of the personnel of the Wave Energy Research Group at Department of Civil Engineering, Aalborg University....

  3. Operation and maintenance strategies for wave energy converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Marquis, Laurent; Kofoed, Jens Peter;

    2015-01-01

    Inspection and maintenance costs are a significant contributor to the cost of energy for wave energy converters. There are different operation and maintenance strategies for wave energy converters. Maintenance can be performed after failure (corrective) or before a breakdown (preventive) occurs...... and maintenance costs estimations for wave energy converter applications including real weather data and damage accumulation. Furthermore, uncertainties related with costs, structural damage accumulation, inspection accuracy and different maintenance strategies can be included. This article contains a case study...

  4. Mapping the Hawaiian plume conduit with converted seismic waves

    Science.gov (United States)

    Li; Kind; Priestley; Sobolev; Tilmann; Yuan; Weber

    2000-06-22

    The volcanic edifice of the Hawaiian islands and seamounts, as well as the surrounding area of shallow sea floor known as the Hawaiian swell, are believed to result from the passage of the oceanic lithosphere over a mantle hotspot. Although geochemical and gravity observations indicate the existence of a mantle thermal plume beneath Hawaii, no direct seismic evidence for such a plume in the upper mantle has yet been found. Here we present an analysis of compressional-to-shear (P-to-S) converted seismic phases, recorded on seismograph stations on the Hawaiian islands, that indicate a zone of very low shear-wave velocity (effects of the Hawaiian plume conduit in the asthenosphere and mantle transition zone with excess temperature of approximately 300 degrees C. Large variations in the transition-zone thickness suggest a lower-mantle origin of the Hawaiian plume similar to the Iceland plume, but our results indicate a 100 degrees C higher temperature for the Hawaiian plume.

  5. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010.......This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010....

  6. Nongeometrically converted shear waves in marine streamer data

    NARCIS (Netherlands)

    Drijkoningen, G.G.; El Allouche, N.; Thorbecke, J.W.; Bada, G.

    2012-01-01

    Under certain circumstances, marine streamer data contain nongeometrical shear body wave arrivals that can be used for imaging. These shear waves are generated via an evanescent compressional wave in the water and convert to propagating shear waves at the water bottom. They are called “nongeometrica

  7. Nongeometrically converted shear waves in marine streamer data

    NARCIS (Netherlands)

    Drijkoningen, G.G.; El Allouche, N.; Thorbecke, J.W.; Bada, G.

    2012-01-01

    Under certain circumstances, marine streamer data contain nongeometrical shear body wave arrivals that can be used for imaging. These shear waves are generated via an evanescent compressional wave in the water and convert to propagating shear waves at the water bottom. They are called “nongeometrica

  8. Coordinated Control of Wave Energy Converters Subject to Motion Constraints

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-06-01

    Full Text Available In this paper, a generic coordinated control method for wave energy converters is proposed, and the constraints on motion amplitudes and the hydrodynamic interaction between converters are considered. The objective of the control problem is to maximize the energy converted from ocean waves, and this is achieved by coordinating the power take-off (PTO damping of each wave energy converter in the frequency domain in each sea state. In a case study, a wave energy farm consisting of four converters based on the concept developed by Uppsala University is studied. In the solution, motion constraints, including constraints on the amplitudes of displacement and velocity, are included. Twelve months of sea states, based on measured wave data at the Lysekil test site on the Swedish west coast, are used in the simulation to evaluate the performance of the wave energy farm using the new method. Results from the new coordinated control method and traditional control method are compared, indicating that the coordinated control of wave energy converters is an effective way to improve the energy production of wave energy farm in harmonic waves.

  9. Practical performances of MPC for wave energy converters

    DEFF Research Database (Denmark)

    Ferri, Francesco; Tetu, Amelie; Hals, J.

    2016-01-01

    Maximising the efficiency of Wave Energy Converter (WEC) is one of the important tasks toward the exploitation of the wave energy resource. Along with a proper design of the device, an important way to achieve better energy performances is to improve the wave-body interaction by applying an appro...

  10. Experimental Study of the Weptos Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    This paper presents the power performance results of the experimental study of the WEPTOS wave energy converter (WEC). This novel device combines an established and efficient wave energy absorbing mechanism with an adjustable structure that can regulate the amount of incoming wave energy and redu...

  11. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Weisz, A.

    This report presents the results of an experimental study of the wave energy converting abilities of the Langlee wave energy converter (WEC). It focused mainly on evaluating the power generating capabilities of the device, including investigations of the following issues: Scaling ratiosPTO loadingWave...... height and wave period dependencyOblique incoming waves and directional spreading of waves (3D waves)Damping platesMooring forces and fixed structure setupPitch, surge and heave motion During the study the model supplied by the client (Langlee Wave Power AS) has been heavily instrumented - up to 23...... different instruments was deployed to measure and record data. Tests were performed at scales of 1:30 and 1:20 based on the realized reference wave states....

  12. Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    2012-01-01

    This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...... from the MIKE21BW model is compared to results from a simpler model, based on the integration of wave energy flux. The conclusion is that the simplified approach provides results similar to the transmission obtained from the numerical model, both for a single WD and a farm of multiple WDs....

  13. Hydraulic Evaluation of the Crest Wing Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scale...... model (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept. of Civil Engineering, Aalborg (Frigaard et al., 2008......). The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate total power take off....

  14. Concept Study of Foundation Systems for Wave Energy Converters

    DEFF Research Database (Denmark)

    Molina, Salvador Devant; Vaitkunaite, Evelina; Ibsen, Lars Bo

    Analysis of possible foundation solution for Wave Energy Converters (WEC) is presented by investigating and optimizing novel foundation systems recently developed for offshore wind turbines. Gravity based, pile and bucket foundations are innovative foundation systems that are analyzed. Concept...

  15. Model Predictive Control of a Wave Energy Converter

    DEFF Research Database (Denmark)

    Andersen, Palle; Pedersen, Tom Søndergård; Nielsen, Kirsten Mølgaard;

    2015-01-01

    In this paper reactive control and Model Predictive Control (MPC) for a Wave Energy Converter (WEC) are compared. The analysis is based on a WEC from Wave Star A/S designed as a point absorber. The model predictive controller uses wave models based on the dominating sea states combined with a model...... connecting undisturbed wave sequences to sequences of torque. Losses in the conversion from mechanical to electrical power are taken into account in two ways. Conventional reactive controllers are tuned for each sea state with the assumption that the converter has the same efficiency back and forth. MPC...

  16. Structural Modeling and Analysis of a Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Lambertsen, Søren Heide; Damkilde, Lars

    2012-01-01

    A fatigue analysis is being carried out for a wave energy converter subjected to ocean wave loads. The device is a bottom fixed structure, located in a shallow water environment. Interest is focused on the local stress response of a structural detail and a subsequent calculation of its fatigue life...... by using the rainflow counting approach. The wave energy converter is characterized by its ability to enter in a storm protection mode which - whenever extreme conditions occur - will drastically reduce the exposure to wave loads. The predicted fatigue life is calculated for two different control cases...

  17. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  18. Experimental Study of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy

    This report presents the results of an experimental study on the power conversion capabilities and structural loads of the WEPTOS wave energy converter. The investigation focuses mainly at identifying the performance of the WEPTOS prototype in a wide range of production wave states and at the moo...

  19. Levelized Cost of Energy of the Weptos wave energy converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the cost of energy calculations of a wave energy array of 90 MW, consisting of 25 x 3.6 MW Weptos wave energy converters. The calculation has been made in analogy with a publically available document presented by the UK government, covering the case of a similar size wind...

  20. An Appraisal of the DEXA Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report has been requested by VækstFonden and aims at giving an overview of the experimental tests and a general appraisal of the DEXA wave energy converter (WEC). The reported results and findings were obtained during previously performed experimental tests by the Wave Energy Research Group...

  1. Experimental Study on A Pendulum Wave Energy Converter

    Institute of Scientific and Technical Information of China (English)

    QIU Shou-qiang; YE Jia-wei; WANG Dong-jiao; LIANG Fu-lin

    2013-01-01

    Many of the existing wave energy converters (WEC) are of oscillating water column (OWC) and point absorber (PA) types.Fewer references have been published in public on the pendulum type WEC.A series of experimental tests on a bottom-hinged pendulum WEC model are carried out and some results are revealed in the present study.The purpose of this paper is to present a detailed description of the tests.It is found that wave energy conversion efficiency varies with the applied damping and wave conditions.In addition,special attention is given to the effect of the water ballast on the efficiency of the wave energy converter.It is demonstrated that the ballast plays an important role in energy extraction.Better understanding on how the performance of the device is influenced by damping,wave height,wave period and ballast is shown.

  2. Imaging of converted-wave ocean-bottom seismic data

    Science.gov (United States)

    Rosales Roche, Daniel Alejandro

    Converted-wave data can be imaged with several methodologies. The transformation of data into the image space, is defined by an imaging operator, the simplest of which is normal moveout correction plus stack. Most of the converted-wave processing is carried out in the data domain, that is in time, data midpoint location, and data offset, this processing is not ideal for this type of seismic data. The processing should be carried out in the image domain, that is the one composed of depth, image midpoint location and image subsurface offset. Different processing techniques are created for an accurate image of converted wave seismic data. First, in 2-D Ocean-Bottom Seismic (OBC), the image space for converted-wave data is defined in the angle domain to form converted-wave angle-domain common-image gathers (PS-ADCIGs). The PS-ADCIGs can also be mapped into two complementary ADCIGs, the first one is function only of the P-incidence angle, the second ADCIG is function of the S-reflection angle. The method to obtain PS-ADCIGs is independent of the migration algorithm implemented, as long as the migration algorithm is based on wavefield downward-continuation, and the final prestack image is a function of the horizontal subsurface offset. The final process is done for 3-D seismic data, the creation of the converted-wave azimuth moveout operator (PS-AMO) and the converted-wave common-azimuth migration (PS-CAM) allows the definition and accurate image of 3-D prestack ocean-bottom seismic data.

  3. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood

    2014-01-01

    The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator...... is an additive device attached to the buoy which may include damping, stiffness or similar terms hence will affect the dynamic motion of the buoy. Therefore such a device can be seen as a closed-loop controller. The objective of the wave energy converter is to harvest as much energy from sea as possible....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....

  4. On the dynamics of a novel ocean wave energy converter

    KAUST Repository

    Orazov, B.

    2010-11-01

    Buoy-type ocean wave energy converters are designed to exhibit resonant responses when subject to excitation by ocean waves. A novel excitation scheme is proposed which has the potential to improve the energy harvesting capabilities of these converters. The scheme uses the incident waves to modulate the mass of the device in a manner which amplifies its resonant response. To illustrate the novel excitation scheme, a simple one-degree of freedom model is developed for the wave energy converter. This model has the form of a switched linear system. After the stability regime of this system has been established, the model is then used to show that the excitation scheme improves the power harvesting capabilities by 2565 percent even when amplitude restrictions are present. It is also demonstrated that the sensitivity of the device\\'s power harvesting capabilities to changes in damping becomes much smaller when the novel excitation scheme is used. © 2010 Elsevier Ltd. All rights reserved.

  5. Integration of Wave Energy Converters into Coastal Protection Schemes

    DEFF Research Database (Denmark)

    Zanuttigh, B.; Martinelli, L.; Castagnetti, M.

    2010-01-01

    The purpose of this paper is to examine the feasibility of using wave energy converters for coastal protection through laboratory tests. The paper considers the case of a near-shore floating device of the Wave Activated Body type, named DEXA. The influence of the device length and of the wave...... parameters on device efficiency and on inshore wave transmission are investigated. A preliminary design procedure to optimise both device efficiency and wave transmission is proposed by means of an hypothetical application to the Adriatic coast. The effects induced by the device on coastal morphology...

  6. EB Frond wave energy converter - phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The EB Frond project is a wave energy programme developed by The Engineering Business (EB) from an original idea at Lancaster University. The EB Frond is a wave generator with a collector vane on top of an arm that pivots near the seabed. Phase 1 of the project demonstrated the technical feasibility of the project and provided proof of concept. Phase 2 involved further assesment of the technical and commercial viability of the concept through the development of mathematical and physical modelling methods. The work involved small-scale (1/25th) testing in wave tanks at Newcastle and Lancaster Universities and the development, verification and validation of a time domain mathematical model. The decision by EB to put on hold its renewable generation programme meant that plans to test at an intermediate scale (1/16th), assess different survival strategies in extreme wave conditions, carry out site characterisation for full-scale systems and to produce a robust economic model were not fulfilled. However, the mathematical and physical modelling work was used to develop an economic model for the Frond system. This produced a predicted unit cost of electricity by a pre-commercial 5 MW demonstration farm of about 17 pence/kWh. The report discusses the small-scale testing, test results, mathematical modelling, analysis and interpretation, survivability, the economic model and the development route to full-scale production.

  7. CFD study of the overtopping discharge of the Wave Dragon wave energy converter

    DEFF Research Database (Denmark)

    Eskilsson, K.; Palm, J.; Kofoed, Jens Peter

    2015-01-01

    The Wave Dragon is a floating Wave Energy Converter (WEC) working by the overtopping principle. The overtopping discharge has been determined by model scale experiments in wave basins. In the present study we numerically simulate the overtopping behavior of the Wave Dragon device using a VOFbased...

  8. Practical performances of MPC for wave energy converters

    DEFF Research Database (Denmark)

    Ferri, Francesco; Tetu, Amelie; Hals, J.

    2016-01-01

    Maximising the efficiency of Wave Energy Converter (WEC) is one of the important tasks toward the exploitation of the wave energy resource. Along with a proper design of the device, an important way to achieve better energy performances is to improve the wave-body interaction by applying...... version (1:20) of a single floater of the Wavestar WEC: a single degree of freedom point absorber. The system was tested with regular and irregular long crested waves in the deep basing at Aalborg University, DK and results of the MPC are compared with standard resistive controller architecture...

  9. On Mooring Solutions for Large Wave Energy Converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Kofoed, Jens Peter; Ferri, Francesco

    2017-01-01

    The present paper describes the work carried out in the project ’Mooring Solutions for Large Wave Energy Converters’, which is a Danish research project carried out in a period of three years from September 2014, with the aim of reducing cost of the moorings for four wave energy converters......-model based optimization process with the aim of optimizing the mooring layout for each WEC according to cost of the systems....

  10. A Design Outline for Floating Point Absorber Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Mohammed Faizal

    2014-04-01

    Full Text Available An overview of the most important development stages of floating point absorber wave energy converters is presented. At a given location, the wave energy resource has to be first assessed for varying seasons. The mechanisms used to convert wave energy to usable energy vary for different wave energy conversion systems. The power output of the generator will have variations due to varying incident waves. The wave structure-interaction leads to modifications in the incident waves; thus, the power output is also affected. The device has to be stable enough to prevent itself from capsizing. The point absorber will give optimum performance when the incident wave frequencies correspond to the natural frequency of the device. The methods for calculating natural frequencies for pitching and heaving systems are presented. Mooring systems maintain the point absorber at the desired location. Various mooring configurations as well as the most commonly used materials for mooring lines are discussed. An overview of scaled modelling is also presented.

  11. Experimental Study on a Rotor for WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy

    This report presents the results of an experimental study of the power conversion capabilities of one single rotor of the WEPTOS wave energy converter. The investigation focuses mainly on defining the optimal weight distribution in the rotor in order to improve the hydraulic performance through...

  12. Hydraulic Evaluation of the LEANCON Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the power production of the device, based...

  13. Experimental testing of moorings for large floating wave energy converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    2016-01-01

    This paper presents the outcome of a test campaign, which investigates the behaviour of a synthetic mooring system applied to the Floating Power Plant wave energy converter. The study investigates the motion and tension response under operational and extreme sea states expected at the deployment...

  14. Optimization of Overtopping Wave Energy Converters by Geometry Control

    DEFF Research Database (Denmark)

    Victor, L.; Troch, P.; Kofoed, Jens Peter

    2011-01-01

    In this paper, the results of a study on the effects of geometry control on the performance of overtopping wave energy converters with a simple geometry built in coastal structures (simple OWECs) are presented. Empirical formulae, derived based on experimental tests on simple OWECs with varying...

  15. Experimental testing of moorings for large floating wave energy converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    2016-01-01

    This paper presents the outcome of a test campaign, which investigates the behaviour of a synthetic mooring system applied to the Floating Power Plant wave energy converter. The study investigates the motion and tension response under operational and extreme sea states expected at the deployment ...

  16. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Sichani, Mahdi Teimouri; Mirzaei, Mahmood

    2014-01-01

    The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator is an a....... This approach is then taken into account and an MPC controller is designed for a model WEC and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller.......The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator...... is an additive device attached to the buoy which may include damping, stiffness or similar terms hence will affect the dynamic motion of the buoy. Therefore such a device can be seen as a closed-loop controller. The objective of the wave energy converter is to harvest as much energy from sea as possible...

  17. Research on Energy Conversion System of Floating Wave Energy Converter

    Institute of Scientific and Technical Information of China (English)

    张亚群; 盛松伟; 游亚戈; 吴必军; 刘洋

    2014-01-01

    A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydraulic power take-off system, which suits for the floating wave energy devices, includes hydraulic system and power generation system. The hydraulic control system uses a special“self-hydraulic control system”to control hydraulic system to release or save energy under the maximum and the minimum pressures. The maximum pressure is enhanced to 23 MPa, the minimum to 9 MPa. Quite a few experiments show that the recent hydraulic system is evidently improved in efficiency and reliability than our previous one, that is expected to be great significant in the research and development of our prototype about wave energy conversion.

  18. The SSG Wave Energy Converter: Performance, Status and Recent Developments

    Directory of Open Access Journals (Sweden)

    Mariano Buccino

    2012-01-01

    Full Text Available The Sea-wave Slot-cone Generator (SSG is a Wave Energy Converter based on the wave overtopping principle; it employs several reservoirs placed on top of each other, in which the energy of incoming waves is stored as potential energy. Then, the captured water runs through turbines for electricity production. The system works under a wide spectrum of different wave conditions, giving a high overall efficiency. It can be suitable for shoreline and breakwater applications and presents particular advantages, such as sharing structure costs, availability of grid connection and recirculation of water inside the harbor, as the outlet of the turbines is on the rear part of the system. Recently, plans for the SSG pilot installations are in progress at the Svaaheia site (Norway, the port of Hanstholm (Denmark and the port of Garibaldi (Oregon, USA. In the last-mentioned two projects, the Sea-wave Slot-cone Generator technology is integrated into the outer harbor breakwater and jetty reconstruction projects. In the last years extensive studies have been performed on the hydraulic and the structural response of this converter, with the aim of optimizing the design process. The investigations have been conducted by physical model tests and numerical simulations and many results have been published on both conference proceedings and journals. The main scope of this paper is reviewing the most significant findings, to provide the reader with an organic overview on the present status of knowledge.

  19. Aiding Design of Wave Energy Converters via Computational Simulations

    Science.gov (United States)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  20. Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Pecher, Arthur; Kofoed, Jens Peter

    2010-01-01

    The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions of the perf......The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions...

  1. The Force of a Tsunami on a Wave Energy Converter

    CERN Document Server

    O'Brien, Laura; Renzi, Emiliano; Dutykh, Denys; Dias, Frédéric

    2012-01-01

    With an increasing emphasis on renewable energy resources, wave power technology is fast becoming a realistic solution. However, the recent tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed creating large destructive waves. The question posed here is whether a nearshore wave energy converter (WEC) could withstand the force of an incoming tsunami. The analytical 3D model of Renzi & Dias (2012) developed within the framework of a linear theory and applied to an array of fixed plates is used. The time derivative of the velocity potential allows the hydrodynamic force to be calculated.

  2. Stochastic control of inertial sea wave energy converter.

    Science.gov (United States)

    Raffero, Mattia; Martini, Michele; Passione, Biagio; Mattiazzo, Giuliana; Giorcelli, Ermanno; Bracco, Giovanni

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks.

  3. Structural Reliability of Plain Bearings for Wave Energy Converter Applications

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten Mejlhede; Sørensen, John Dalsgaard

    2016-01-01

    The levelized cost of energy (LCOE) from wave energy converters (WECs) needs to be decreased in order to be able to become competitive with other renewable electricity sources. Probabilistic reliability methods can be used to optimize the structure of WECs. Optimization is often performed...... the hydraulic cycle when waves are passing. The new PTO system leads to different load characteristics at the floater itself compared to the actual setup where the turbine/generator is directly coupled to the fluctuating hydraulic pressure within the PTO system. This paper calculates the structural reliability...

  4. Reliability-Based Structural Optimization of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten; Sørensen, John Dalsgaard

    2014-01-01

    More and more wave energy converter (WEC) concepts are reaching prototype level. Once the prototype level is reached, the next step in order to further decrease the levelized cost of energy (LCOE) is optimizing the overall system with a focus on structural and maintenance (inspection) costs......, as well as on the harvested power from the waves. The target of a fully-developed WEC technology is not maximizing its power output, but minimizing the resulting LCOE. This paper presents a methodology to optimize the structural design of WECs based on a reliability-based optimization problem...

  5. User guide – COE Calculation Tool for Wave Energy Converters

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Kofoed, Jens Peter; Jensen, Niels Ejner Helstrup

    Aalborg University together with Energinet.dk and Julia F. Chozas Consulting Engineer, have released a freely available online spreadsheet to evaluate the Levelised Cost of Energy (LCOE) for wave energy projects. The open-access tool calculates the LCOE based on the power production of a Wave...... Energy Converter (WEC) at a particular location. Production data may derive from laboratory testing, numerical modelling or from sea trials. The tool has been developed as a transparent and simple model that evaluates WEC’s economic feasibility in a range of locations, while scaling WEC’s features...

  6. Modeling and Simulation of a Wave Energy Converter INWAVE

    OpenAIRE

    Seung Kwan Song; Yong Jun Sung; Jin Bae Park

    2017-01-01

    INGINE Inc. developed its own wave energy converter (WEC) named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO). Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six de...

  7. Hydroelectromechanical modelling of a piezoelectric wave energy converter

    Science.gov (United States)

    Renzi, E.

    2016-11-01

    We investigate the hydroelectromechanical-coupled dynamics of a piezoelectric wave energy converter. The converter is made of a flexible bimorph plate, clamped at its ends and forced to motion by incident ocean surface waves. The piezoceramic layers are connected in series and transform the elastic motion of the plate into useful electricity by means of the piezoelectric effect. By using a distributed-parameter analytical approach, we couple the linear piezoelectric constitutive equations for the plate with the potential-flow equations for the surface water waves. The resulting system of governing partial differential equations yields a new hydroelectromechanical dispersion relation, whose complex roots are determined with a numerical approach. The effect of the piezoelectric coupling in the hydroelastic domain generates a system of short- and long-crested weakly damped progressive waves travelling along the plate. We show that the short-crested flexural wave component gives a dominant contribution to the generated power. We determine the hydroelectromechanical resonant periods of the device, at which the power output is significant.

  8. Survivability mode and extreme loads on the mooring lines of the Wave Dragon Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Parmeggiani, S.; Kofoed, J.P.

    2010-11-15

    This report is a product of the cooperation agreement between Wave Dragon and Aalborg University regarding phase 2 of the development of the Wave Dragon Wave Energy Converter. The research is carried out by testing the 1:51.8 scale model of the Wave Dragon, aiming at the assessment of the survivability of the device in extreme waves and evaluation of the design loads for the mooring component. The outcome of the research will be used as input for future research work aimed at the design of the mooring system and the certification of the structural design for the full scale Wave Dragon demonstrator. (Author)

  9. Efficient way to convert propagating waves into guided waves via gradient wire structures.

    Science.gov (United States)

    Chu, Hong Chen; Luo, Jie; Lai, Yun

    2016-08-01

    We propose a method for the design of gradient wire structures that are capable of converting propagating waves into guided waves along the wire. The conversion process is achieved by imposing an additional wave vector to the scattered waves via the gradient wire structure, such that the wave vector of scattered waves is beyond the wave number in the background medium. Thus, the scattered waves turn into evanescent waves. We demonstrate that two types of gradient wire structures, with either a gradient permittivity and a fixed radius, or a gradient radius and a fixed permittivity, can both be designed to realize such a wave conversion effect. The principle demonstrated in our work has potential applications in various areas including nanophotonics, silicone photonics, and plasmonics.

  10. Turbine Control Strategy using Wave Prediction to Optimise Power Take Off of Overtopping Wave Energy Converters

    DEFF Research Database (Denmark)

    Tedd, James; Knapp, Wilfried; Frigaard, Peter;

    2005-01-01

    This paper presents the control strategy used on Wave Dragon overtopping wave energy converter. The nature of overtopping requires that for optimum performance the water level in the reservoir must be controlled by controlling the turbine outflows. A history of the simulations performed is included...

  11. Comparison of Foundation Systems for Wave Energy Converters Wavestar

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl;

    2013-01-01

    In order to deliver cost competitive solutions, Wave Energy Converters (WEC) must be optimized in several fields, e.g. transportation, installation, structure, machinery etc. Large expenses lie on the superstructure support, i.e. the offshore foundation. Geotechnical analysis and optimization....... In such a solution horizontal wind and wave loads are dominant. Gravity based, pile and bucket foundations are universally applied solutions for the offshore structures. The suitability of these types for a WEC is analysed and commented. The foundations are designed to satisfy ultimate and serviceability limit state...... of six possible foundation solutions for WEC are presented in this article. The study is performed for WEC superstructure supported by two or four foundations. In the four-column system horizontal wind and wave loads are transformed as a pair of vertical forces, acting in tension and compression. When...

  12. A Method for EIA Scoping of Wave Energy Converters

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Hansen, Anne Merrild; Frigaard, Peter

    2012-01-01

    During the first decade of the 21st Century the World faces spread concern for global warming caused by rise of green house gasses produced mainly by combustion of fossil fuels. Under this latest spin all renewable energies run parallel in order to achieve sustainable development. Among them wave...... energy has an unequivocal potential and technology is ready to enter the market and contribute to the renewable energy sector. Yet, frameworks and regulations for wave energy development are not fully ready, experiencing a setback caused by lack of understanding of the interaction of the technologies....... This paper presents the development of a classification of wave energy converters that is based on the different impact the technologies are expected to have on the environment. This innovative classification can be used in order to simplify the scoping process for developers and authorities....

  13. Study of a Novel Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    This study investigates the performance of an oscillating surge wave energy converter (OSWEC) that utilizes adjustable geometry as a means of controlling the hydrodynamic coefficients, a concept originally proposed by [1]. The body of the device consists of a bottom-hinged solid rectangular frame with five horizontal flaps spanning the interior of the frame. The flaps can rotate independently about their center of rotation within the frame like a large window shutter. Changing the orientation of the flaps alters the hydrodynamic coefficients and natural frequency of the device as well as the ability to shed or absorb structural loads accordingly. This ability may allow the device to operate in a wider range of sea states than other current wave energy converter designs. This paper presents and compares the results of numerical simulations and experimental testing of the OSWEC's response to regular waves with all five of the horizontal fin configurations sharing the same orientation of 0 degrees (fully closed interior) and 90 degrees (fully open). The numerical simulations were performed using WAMIT, which calculates hydrodynamic coefficients using a boundary element method code to solve the linear potential flow problem, and WEC-Sim, a MATLAB-based tool that simulates multibody devices in the time domain by solving the governing equations of motion. A 1:14 scale model of the device was built for experimental evaluation in an 8-m-long, 1-m wide wave tank, which supports a water depth of 0.7 m. The OSWEC motion in different wave conditions was measured with displacement sensors while nonlinear wave-structure interaction effects like slamming and overtopping were captured using a high-speed camera and used to understand differences between the simulation and experiments.

  14. Specification of Instrumentation of Multi MW Wave Dragon Offshore Wave Energy Converter

    DEFF Research Database (Denmark)

    Gilling, Lasse; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter of the overtopping type and is described e.g. in Tedd et. al. (2006). The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the exp......Wave Dragon is a wave energy converter of the overtopping type and is described e.g. in Tedd et. al. (2006). The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based...

  15. Design Specifications for the Hanstholm WEPTOS Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Tommy Larsen

    2012-04-01

    Full Text Available The WEPTOS wave energy converter (WEC is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack-moored and floating structure absorbs the energy of the waves through a multitude of rotors. The shape of the rotors is based on the renowned Salter’s Duck. On each leg, the rotors pivot around a common axle, through which the rotors transfer the absorbed power to a common power take off system. The study investigates the required capacity of the power take off (PTO system and the structural forces on a WEPTOS WEC prototype, intended for installation at Hanstholm (Denmark, based on large scale experimental tests using a highly realistic laboratory model of the complete device. The results hereof includes the rotational speed and transmitted torque (and hereby power to the PTO system using different PTO control strategies, the impact of fluctuations of the available mechanical power and the effect of limiting the PTO capacity on the annual energy production. Acquisition of structural forces includes mooring forces and structural bending moments in both production and extreme wave conditions, illustrating that the regulation of the angle in the A shape ensures that extreme forces on the structure can be kept in the same order of magnitude as in production conditions.

  16. Extreme Loads on the Mooring Lines and Survivability Mode for the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, E.

    2011-01-01

    One of the main challenges Wave Energy Converters have to face on the road towards commercialization is to ensure survivability in extreme condition at a reasonable capital costs. For a floating device like the Wave Dragon, a reliable mooring system is essential. The control strategy of the Wave...... by approximately 20-30% by lowering the crest level and balancing the device to lean a little towards the front....

  17. Modeling and Simulation of a Wave Energy Converter INWAVE

    Directory of Open Access Journals (Sweden)

    Seung Kwan Song

    2017-01-01

    Full Text Available INGINE Inc. developed its own wave energy converter (WEC named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO. Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six degrees of movement of the buoy, it is possible to extract energy efficiently even under low energy density conditions provided in the coastal areas. In the PTO module, the ratchet gears convert the reciprocating movement of the rope drum into a uni-directional rotation and determine the transmission of power from the relation of the angular velocities between the rope drum and the generator. In this process, the discontinuity of the power transmission occurs and causes the modeling divergence. Therefore, we introduce the concept of the virtual torsion spring in order to prevent the impact error in the ratchet gear module, thereby completing the PTO modeling. In this paper, we deal with dynamic analysis in the time domain, based on Newtonian mechanics and linear wave theory. We derive the combined dynamics of the buoy and PTO modules via geometric relation between the buoy and mooring ropes, then suggest the ratchet gear mechanism with the virtual torsion spring element to reduce the dynamic errors during the phase transitions. Time domain simulation is carried out under irregular waves that reflect the actual wave states of the installation area, and we evaluate the theoretical performance using the capture width ratio.

  18. Different Reliability Assessment Approaches for Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten Mejlhede; Sørensen, John Dalsgaard

    2015-01-01

    Reliability assessments are of importance for wave energy converters (WECs) due to the fact that accessibility might be limited in case of failure and maintenance. These failure rates can be adapted by reliability considerations. There are two different approaches to how reliability can...... be estimated: the so-called classical reliability theory and the probabilistic reliability theory. The classical reliability theory is often used for failure rate estimations of mechanical and electrical components, whereas the probabilistic reliability theory is commonly used for structural components...

  19. WEC3: Wave Energy Converter Code Comparison Project: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Combourieu, Adrien; Lawson, Michael; Babarit, Aurelien; Ruehl, Kelley; Roy, Andre; Costello, Ronan; Laporte Weywada, Pauline; Bailey, Helen

    2017-01-01

    This paper describes the recently launched Wave Energy Converter Code Comparison (WEC3) project and present preliminary results from this effort. The objectives of WEC3 are to verify and validate numerical modelling tools that have been developed specifically to simulate wave energy conversion devices and to inform the upcoming IEA OES Annex VI Ocean Energy Modelling Verification and Validation project. WEC3 is divided into two phases. Phase 1 consists of a code-to-code verification and Phase II entails code-to-experiment validation. WEC3 focuses on mid-fidelity codes that simulate WECs using time-domain multibody dynamics methods to model device motions and hydrodynamic coefficients to model hydrodynamic forces. Consequently, high-fidelity numerical modelling tools, such as Navier-Stokes computational fluid dynamics simulation, and simple frequency domain modelling tools were not included in the WEC3 project.

  20. Experimental Modeling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik

    2011-01-01

    The Wave Dragon Wave Energy Converter is currently facing a precommercial phase. At this stage of development a reliable overtopping model is highly required, in order to predict the performance of the device at possible deployment locations. A model formulation derived for an overtopping device...... with general geometry has been used so far. The paper presents an updated formulation drawn through the tank testing of a scaled model the Wave Dragon. The sensitivity analysis of the main features influencing the overtopping flow led to an updated model formulation which can be specifically suited...... for the Wave Dragon....

  1. Experimental Modeling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik

    2011-01-01

    The Wave Dragon Wave Energy Converter is currently facing a precommercial phase. At this stage of development a reliable overtopping model is highly required, in order to predict the performance of the device at possible deployment locations. A model formulation derived for an overtopping device...... with general geometry has been used so far. The paper presents an updated formulation drawn through the tank testing of a scaled model the Wave Dragon. The sensitivity analysis of the main features influencing the overtopping flow led to an updated model formulation which can be specifically suited...... for the Wave Dragon....

  2. HYDRODYNAMIC ANALYSIS OF SHORELINE OWC TYPE WAVE ENERGY CONVERTERS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A numerical model to predict the hydrodynamic performance of a shoreline-mounted wave energy converter, normally referred to as Oscillating Water Column (OWC), was established. Based on the 3D boundary integral equation method, the 3D Green's function was utilized to describe the hydrodynamic flow around the device. Using geometrical data of a wave absorber device symmetrically placed in a channel with various barrier depths, the hydrodynamic efficiencies were calculated for regular waves. The results were the ncompared with analytical results published elsewhere Malmo[8] . And the comparison is shown to be good, thus validating the proposed numerical model. Furthermore, extensive experiments were also made in a wave tank with a 1:12 scale model of an OWC device of different geometrical configurations. The experimental measurements were compared with calculations using the newly developed numerical model. The comparison, which is also shown to be satisfactory, provides further support of the correctness and the accuracy of the numerical method presented in the paper.

  3. Experiments with Point Absorber Type Wave Energy Converters in a Large-Scale Wave Basin

    DEFF Research Database (Denmark)

    Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim

    2014-01-01

    Wave Energy Converters (WECs) extract energy from ocean waves and have the potential to produce a significant contribution of electricity from renewable sources. However, large "WEC farms" or "WEC arrays" are expected to have "WEC array effects", expressed as the impact of the WECs on the wave...... of geometric layout configurations and wave conditions. WEC response, wave induced forces on the WECs and wave field modifications have been measured. Each WEC consists of a buoy with diameter of 0.315 m. Power take-off is modeled by realizing friction based energy dissipation through damping of the WECs...... array effects and for validation and extension of numerical models. This model validation will enable optimization of the geometrical layout of WEC arrays for real applications and reduction of the cost of energy from wave energy systems....

  4. Vertical Distribution of Wave Overtopping for Design of Multi Level Overtopping Based Wave Energy Converters

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2007-01-01

    This paper presents an expression describing the vertical distribution of overtopping, the experimental work leading to this, as well as the use of the expression for numerical optimization of the geometrical layout of the multi level overtopping based wave energy converter Seawave Slot-cone Gene......This paper presents an expression describing the vertical distribution of overtopping, the experimental work leading to this, as well as the use of the expression for numerical optimization of the geometrical layout of the multi level overtopping based wave energy converter Seawave Slot...

  5. Initial Assessment of Mooring Solutions for Floating Wave Energy Converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Kofoed, Jens Peter; Delaney, Martin

    2016-01-01

    The present study investigates three different types of mooring systems in order to establish potential cost reductions and applicability to wave energy converters (WECs). Proposed mooring systems for three existing WECs create the basis for this study, and the study highlights areas of interest ...... type system can provide a paramount cost reduction compared to a traditional CALM type system with chain lines. Similarly, use of nylon ropes similarly appears to provide low cost.......The present study investigates three different types of mooring systems in order to establish potential cost reductions and applicability to wave energy converters (WECs). Proposed mooring systems for three existing WECs create the basis for this study, and the study highlights areas of interest...... using a preliminary cost estimation and discussion of buildability issues. Using synthetic rope and variations in the mooring configuration has the potential of influencing the cost significantly. In order to quantify this potential, a simple quasi-static analysis is performed, which shows that a SALM...

  6. Hydraulic evaluation of the Crest Wing wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Kofoed, J.P.; Antonishen, M.

    2008-09-15

    The Crest Wing Wave Energy Converter is currently being developed by Henning Pilgaard, of WaveEnergyFyn, Denmark. It is meant to act like a carpet on the water, conforming to the shape of each wave and using that movement to generate power. The thought of making a WEC that acts like a carpet on top of the waves is not new; ongoing or past projects such as the Pelamis and Cockerel Raft were designed with this thought in mind. The real difference with the Crest Wing is that it has skirt drafts, that extend down into the water and create suction; this increases the effective mass of the WEC while minimizing the material use. Special attention was given to the design of the first and last floaters as they are meant to act as a smooth transition between wave and machine. Their purpose is to make sure that no air gets under the two middle floaters so that suction is not broken and the device continues to function well. In summary the Crest Wing functions and is able to produce power with a good overall efficiency. The configuration with relative reference PTO (Power Take Off) is superior. It has not been proven that the idea of mounting skirts on the floaters is leading to a better performance. Thus, the study leads to the conclusion that the idea of making a simple hinged raft type device is good, and it is likely that the construction cost for a device of this type can be kept down. However, the study also leaves the chance that some limited draft of skirts in combination with inlet/outlet devices, could prove beneficial. In case of further testing on this device, an effort should be made to design and construct a more easily and accurately controlled PTO model in the test setup. This could greatly improve the quality of the output of such tests. (ln)

  7. Experimental Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    The Wave Dragon is a floating slack-moored Wave Energy Converter (WEC) of the overtopping type. Oncoming waves are focused by two wing reflectors towards the ramp of the device, surge-up and overtop into a reservoir placed at a higher level than the surface of the sea. The energy production takes...... place as the water is led back to the sea through a set of low-head hydro-turbines. After many years of development, Wave Dragon (WD) is now facing the phase of pre-commercial demonstration. In this phase it is very important to be able to use the available data to predict the performances of the device...... at different scales and locations. A flexible and comprehensive modelling tool is therefore highly required. Wave Dragon produces power through different steps of energy conversion: 1. Primary energy conversion: overtopping – The energy content of the wave (partly in the kinetic and partly in the potential...

  8. Model based feasibility study on bidirectional check valves in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check...

  9. Results of an Experimental Study of the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Espedal, J.

    2010-01-01

    This paper presents the results of the first experimental study of the Langlee wave energy converter (WEC), a semi-submerged oscillating wave surge converter. Its design extracts the energy from the surge motion of the waves through two pairs of working flaps, called water wings, which are placed...

  10. Experimental Investigation of Irregular Wave Cancellation Using a Cycloidal Wave Energy Converter

    Science.gov (United States)

    2012-07-01

    CycWEC consists of one or more hydrofoils attached equidistant to a shaft that is aligned parallel to the incoming waves. The entire device is fully sub...300 scale wave tunnel experiment. A CycWEC consists of one or more hydrofoils attached equidistant to a shaft that is aligned parallel to the incoming...Prescribed by ANSI Std Z39-18 g Gravity constant, 9.81[m/s2] t Time [s] λ Wavelength [m] R = 60mm Wave Energy Converter Radius [m] c = 50mm Hydrofoil Chord

  11. Imaging P-to-S conversions with multichannel receiver functions

    Science.gov (United States)

    Neal, Scott L.; Pavlis, Gary L.

    We present a new methodology in the direct imaging of P-to-S converted phases recorded on broadband seismic arrays. Our approach is based on conventional three-component array processing and receiver function techniques with the key addition of a weighted stack based on an aerial smoothing function. This creates synthetic arrays with a specified aperture whose image points vary continuously across the array. With this approach, it is possible to interpolate data from an array of broadband stations onto an arbitrarily fine grid. We have applied this technique to a single deep event recorded by the Lodore broadband array, located in northern Colorado and southern Wyoming. The resulting images show distinct differences in crustal structure across the array, and also image major upper mantle discontinuities.

  12. Analysis of Waves in the Near-Field of Wave Energy Converter Arrays through Stereo Video

    Science.gov (United States)

    Black, C.; Haller, M. C.

    2013-12-01

    Oregon State University conducted a series of laboratory experiments to measure and quantify the near-field wave effects caused within arrays of 3 and 5 Wave Energy Converters (WEC). As the waves and WECs interact, significant scattering and radiation occurs increasing/decreasing the wave heights as well as changing the direction the wave is traveling. These effects may vary based on the number of WECs within an array and their respective locations. The findings of this analysis will assist in selecting the WEC farm location and in improving WEC design. Analyzing the near-field waves will help determine the relative importance of absorption, scattering, and radiation as a function of the incident wave conditions and device performance. The WEC mooring system design specifications may also be impacted if the wave heights in the near-field are greater than expected. It is imperative to fully understand the near-field waves before full-scale WEC farms can be installed. Columbia Power Technologies' Manta served as the test WEC prototype on a 1 to 33 scale. Twenty-three wave gages measured the wave heights in both regular and real sea conditions at locations surrounding and within the WEC arrays. While these gages give a good overall picture of the water elevation behavior, it is difficult to resolve the complicated wave field within the WEC array using point gages. Here stereo video techniques are applied to extract the 3D water surface elevations at high resolution in order to reconstruct the multi-directional wave field in the near-field of the WEC array. The video derived wave information will also be compared against the wave gage data.

  13. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, D. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Copping, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, L. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  14. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  15. Measurements of Overtopping Flow Time Series on the Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter

    2009-01-01

    A study of overtopping flow series on the Wave Dragon prototype, a low crested device designed to maximise flow, in a real sea, is presented. This study aims to fill the gap in the literature on time series of flow overtopping low crested structures. By comparing to a simulated flow the character......A study of overtopping flow series on the Wave Dragon prototype, a low crested device designed to maximise flow, in a real sea, is presented. This study aims to fill the gap in the literature on time series of flow overtopping low crested structures. By comparing to a simulated flow...... the characteristics of the overtopping flow are discussed and the simulation algorithm is tested. Measured data is shown from a storm build up in October 2006, from theWave Dragon prototype situated in an inland sea in Northern Denmark. This wave energy converter extracts energy from the waves, by funnelling them...

  16. Minimising the lifetime carbon and energy intensities of the Oyster wave energy converter

    OpenAIRE

    Steynor, Jeffrey Robert

    2014-01-01

    Converting energy from ocean waves is an exciting concept aimed at reducing our dependency on fossil fuels. Ocean energy devices must convert the large forces and relatively small movements from ocean waves into electrical power with a minimum carbon and energy intensity in order to be economically viable. The research herein focuses on the Oyster, a flap-type pitching wave energy converter developed by Aquamarine Power. A device that has the minimal carbon or energy intensi...

  17. Reliability-Based Structural Optimization of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Simon Ambühl

    2014-12-01

    Full Text Available More and more wave energy converter (WEC concepts are reaching prototypelevel. Once the prototype level is reached, the next step in order to further decrease thelevelized cost of energy (LCOE is optimizing the overall system with a focus on structuraland maintenance (inspection costs, as well as on the harvested power from the waves.The target of a fully-developed WEC technology is not maximizing its power output,but minimizing the resulting LCOE. This paper presents a methodology to optimize thestructural design of WECs based on a reliability-based optimization problem and the intentto maximize the investor’s benefits by maximizing the difference between income (e.g., fromselling electricity and the expected expenses (e.g., structural building costs or failure costs.Furthermore, different development levels, like prototype or commercial devices, may havedifferent main objectives and will be located at different locations, as well as receive varioussubsidies. These points should be accounted for when performing structural optimizationsof WECs. An illustrative example on the gravity-based foundation of the Wavestar deviceis performed showing how structural design can be optimized taking target reliability levelsand different structural failure modes due to extreme loads into account.

  18. Wave Protection Effect of Periodic Row of Bottom-Hinged Flap-Type Wave Energy Converters

    Institute of Scientific and Technical Information of China (English)

    王冬姣; 邱守强; 叶家玮; 梁富琳

    2016-01-01

    A flap-type wave energy converter(WEC) is combined with a nearshore breakwater to expand the ap-plication of WECs both economically and environmentally. Based on the linear potential theory, an eigenfunction expansion solution is developed for a periodic row of bottom-hinged flap-type WECs exposed to normal waves. Additionally, the viscous effect is considered using the ship rolling solution method with a viscous damping term included in the equation of motion, and the viscous damping expression is also described. The proposed solution is verified by comparison with published literatures. The results including the wave energy conversion efficiency, the reflected and transmitted proportion of the incident wave energy are presented for a range of wave periods and geometric ratios. It is demonstrated that better wave protection effects can be attained with smaller gaps between the WECs, where the transmitted proportion of the incident wave energy is lower. An optimal geometric ratio thus exists for a given wave power absorption and a specific wave period.

  19. Wave Energy Converter Annual Energy Production Uncertainty Using Simulations

    Directory of Open Access Journals (Sweden)

    Clayton E. Hiles

    2016-09-01

    Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.

  20. An Experimental Study on A Trapezoidal Pendulum Wave Energy Converter in Regular Waves

    Institute of Scientific and Technical Information of China (English)

    王冬姣; 邱守强; 叶家玮

    2015-01-01

    Experimental studies were conducted on a trapezoidal pendulum wave energy converter in regular waves. To obtain the incident wave height, the analytical method (AM) was used to separate the incident and reflected waves propagating in a wave flume by analysing wave records measured at two locations. The response amplitude operator (RAO), primary conversion efficiency and the total conversion efficiency of the wave energy converter were studied; furthermore, the power take-off damping coefficients corresponding to the load resistances in the experiment were also obtained. The findings demonstrate that the natural period for a pendulum wave energy converter is relatively large. A lower load resistance gives rise to a larger damping coefficient. The model shows relatively higher wave energy conversion efficiency in the range of 1.0-1.2 s for the incident wave period. The maximum primary conversion efficiency achieved was 55.5%, and the maximum overall conversion efficiency was 39.4%.

  1. Experimental modelling of the overtopping flow on the Wave Dragon Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Parmeggiani, S.; Kofoed, J.P.

    2010-11-15

    The Wave Dragon is a floating slack-moored Wave Energy Converter (WEC) of the overtopping type. Oncoming waves are focused by two wing reflectors towards the ramp of the device, surge-up and overtop into a reservoir placed at a higher level than the surface of the sea. The energy production takes place as the water is led back to the sea through a set of low-head hydro-turbines. After many years of development, Wave Dragon (WD) is now facing the phase of pre-commercial demonstration. In this phase it is very important to be able to use the available data to predict the performances of the device at different scales and locations. A flexible and comprehensive modelling tool is therefore highly required. Wave Dragon produces power through different steps of energy conversion: 1. Primary energy conversion: overtopping - The energy content of the wave (partly in the kinetic and partly in the potential form) is transferred to the device in the form of volumes of water coming into the reservoir. These volumes are stored at a higher level than the surrounding sea, being a stock of potential energy. 2. Secondary energy conversion: turbines - The potential energy stored in the reservoir is transformed into mechanical energy as the water flows back to the sea, activating the lowhead hydro-turbines. 3. Tertiary energy conversion step: generators - The turbines shaft rotation activates the permanent magnet generators, converting mechanical energy into electrical energy. 4. Grid connection and delivery of the power - The electricity produced is delivered to the grid at the right frequency, by means of a frequency converter. The present research is focused on the overtopping. Being the primary energy conversion mechanism of the WD, the overtopping is indeed the stage where the performances of the device are influenced by local conditions and the geometric features of the set-up. This makes it the right step where to account for these features through an accurate modelling

  2. Structural Reliability of Plain Bearings for Wave Energy Converter Applications

    Directory of Open Access Journals (Sweden)

    Simon Ambühl

    2016-02-01

    Full Text Available The levelized cost of energy (LCOE from wave energy converters (WECs needs to be decreased in order to be able to become competitive with other renewable electricity sources. Probabilistic reliability methods can be used to optimize the structure of WECs. Optimization is often performed for critical structural components, like welded details, bolts or bearings. This paper considers reliability studies with a focus on plain bearings available from stock for the Wavestar device, which exists at the prototype level. The Wavestar device is a point absorber WEC. The plan is to mount a new power take-off (PTO system consisting of a discrete displacement cylinder (DDC, which will allow different hydraulic cycles to operate at constant pressure levels. This setup increases the conversion efficiency, as well as decouples the electricity production from the pressure variations within the hydraulic cycle when waves are passing. The new PTO system leads to different load characteristics at the floater itself compared to the actual setup where the turbine/generator is directly coupled to the fluctuating hydraulic pressure within the PTO system. This paper calculates the structural reliability of the different available plain bearings planned to be mounted at the new PTO system based on a probabilistic approach, and the paper gives suggestions for fulfilling the minimal target reliability levels. The considered failure mode in this paper is the brittle fatigue failure of plain bearings. The performed sensitivity analysis shows that parameters defining the initial crack size have a big impact on the resulting reliability of the plain bearing.

  3. Structural Loads Analysis for Wave Energy Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    van Rij, Jennifer A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluid dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process. The objective of this study is to verify the generalized body-modes approach in comparison to high-fidelity FSI simulations to accurately predict structural deflections and stress loads in a WEC. Two verification cases are considered, a free-floating barge and a fixed-bottom column. Details for both the generalized body-modes models and FSI models are first provided. Results for each of the models are then compared and discussed. Finally, based on the verification results obtained, future plans for incorporating the generalized body-modes method into the WEC simulation tool, WEC-Sim, and the overall WEC design process are discussed.

  4. Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Pecher, Arthur; Kofoed, Jens Peter

    2010-01-01

    The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions of the perf......The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions...... of the performance of the device at different scaling ratios and locations of interest is strongly required. The overtopping, depending on the local conditions of the deployment site, is identified as the right stage to be considered in the modelling. The existing formulation of the overtopping model needs...... to be updated in order to represent more accurately the effects of the geometrical features and stability of the device and of the local conditions and nonscalable parameters on the overtopping flow. The paper analyses the conditions at which the present formulation has been established and proposes a strategy...

  5. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

  6. R&D Towards Commercialization of Sea Wave Slot Cone Generator (SSG) Overtopping Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    a fruitful decade. Improvement of technologies together with financial support at different levels gave space to new ideas, bringing the research to gamble on different concepts. While innumerable projects went through an initial testing phase that lasts 5-10 years, only few of them reached the sea prototype...... between ventures and private investors, and to promote an accelerated shift from a technology to a market focus. This Thesis is presented as a collection of works published by the author on her research on the Sea wave Slot cone Generator wave energy converter. These include 1 accepted and 2 submitted...... journal papers; 7 peer-reviewed conference papers. The results are based on laboratory tests, numerical simulations and feasibility studies. Research presented in this Thesis contributes to reduce the technical and non-technical risks associated to the wave energy sector and promotes accelerated shift...

  7. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.; Lawson, Michael

    2016-06-24

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of the controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.

  8. Measurements of overtopping flow time series on the Wave Dragon, wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Tedd, James; Peter Kofoed, Jens [Department of Civil Engineering, Aalborg University, Sohngaardhomsvej 57, Aalborg 9000 (Denmark)

    2009-03-15

    A study of overtopping flow series on the Wave Dragon prototype, a low crested device designed to maximise flow, in a real sea, is presented. This study aims to fill the gap in the literature on time series of flow overtopping low crested structures. By comparing to a simulated flow the characteristics of the overtopping flow are discussed and the simulation algorithm is tested. Measured data is shown from a storm build up in October 2006, from the Wave Dragon prototype situated in an inland sea in Northern Denmark. This wave energy converter extracts energy from the waves, by funnelling them to run-up a ramp and overtop into a reservoir. This water is stored at a higher level than the average sea surface, before being discharged through hydro turbines. The waves, device sea handling and overtopping flow are measured by pressure transducers ahead of, beneath and in the device. Comparisons of the distribution and correlation show that the measurements support the use of the algorithm for generating a simulated flow. (author)

  9. Establishment of Motion Model for Wave Capture Buoy and Research on Hydrodynamic Performance of Floating-Type Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Gao Hongtao

    2015-09-01

    Full Text Available Floating-type wave energy converter has the advantages of high wave energy conversion efficiency, strong shock resistance ability in rough sea and stable output power. So it is regarded as a promising energy utilization facility. The research on hydrodynamic performance of wave capture buoys is the precondition and key to the wave energy device design and optimization. A simplified motion model of the buoys in the waves is established. Based on linear wave theory, the equations of motion of buoys are derived according to Newton’s second law. The factors of wave and buoys structural parameters on wave energy absorption efficiency are discussed in the China’s Bohai Sea with short wave period and small wave height. The results show that the main factor which affects the dynamic responses of wave capture buoys is the proximity of the natural frequency of buoys to the wave period. And the incoming wave power takes a backseat role to it at constant wave height. The buoys structural parameters such as length, radius and immersed depth, influence the wave energy absorption efficiency, which play significant factors in device design. The effectiveness of this model is validated by the sea tests with small-sized wave energy devices. The establishment methods of motion model and analysis results are expected to be helpful for designing and manufacturing of floating-type wave energy converter.

  10. Analysis of Wave Reflection from Wave Energy Converters Installed as Breakwaters in Harbour

    DEFF Research Database (Denmark)

    Zanuttigh, B.; Margheritini, Lucia; Gambles, L.

    2009-01-01

    Amplification and renovation of harbours, none the last for the need of straitening existing structures because of the increased storminess due to climate change, is a practice that is repeating itself all around the world. To this purpose, integration of breakwaters and Wave Energy Converters...... (WECs) based on two different technologies, one based on the overtopping principle and the other of Oscillating Water Column (OWC) type, revealed to be suitable with different advantages compared to offshore installations, among the others: sharing of costs, cheaper accessibility and maintenance, lower...

  11. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lawson, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Li, Y. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Previsic, M. [Re Vision Consulting, Sacramento, CA (United States); Epler, J. [Re Vision Consulting, Sacramento, CA (United States); Lou, J. [Oregon State Univ., Corvallis, OR (United States)

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  12. Experimental Validation of aWave Energy Converter Array Hydrodynamics Tool

    DEFF Research Database (Denmark)

    Ruiz, Pau Mercadé; Ferri, Francesco; Kofoed, Jens Peter

    2017-01-01

    This paper uses experimental data to validate a wave energy converter (WEC) array hydrodynamics tool developed within the context of linearized potential flow theory. To this end, wave forces and power absorption by an array of five-point absorber WECs in monochromatic and panchromatic waves were...

  13. Low-pressure hydro turbines and control equipment for wave energy converters (Wave Dragon). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, H.C.; Hansen, R.

    2001-06-01

    The Wave Dragon is a 4 MW floating offshore wave energy converter of the overtopping type. Through performing tests on a scale 1:50 model of the Wave Dragon, real-time overtopping time series were provided. These allowed the development of a feasible turbine and regulation strategy for handling the varying heads and flows occurring in the reservoir. A model turbine with a runner diameter of 340 mm was designed, and tested in a conventional turbine test stand. The results revealed very high efficiencies (91.3% peak efficiency), and more importantly a very flat performance curve yielding high turbine efficiency for the complete range of heads available at the Wave Dragon. A suitable power take-off and grid connection system was developed, addressing power quality issues, as well as more practical issues of flexible cabling solutions. It was concluded that feasible solutions to the technical barriers envisioned prior to the project had been found. Also means for improving the overtopping characteristics of the device were put forward. The feasibility of the Wave Dragon at original 1st generation design was investigated and key performance figures were given as net annual power production of 5.1-3.1 GWh/year, 2,775-3,150 Euro/kW in construction costs and a power production price of 0.19-0.27 Euro/kWh. The figures includes availability losses, all losses in the power train, and losses from restricted freedom of movement for two of the scenarios, with a wave energy potential of 16 and 24 kW/m wave front respectively. Significant scope for improvement, especially from enhanced overtopping from improved design, mass production and learning effects were also identified. Through implementing the known technical improvements to the Wave Dragon design identified through the project an annual net power production of 8.9 GWh/year and a production price of 0.12 Euro/kWh is foreseen for a 24 kW/m wave potential. With additional technical improvements, mass production benefits and

  14. Experimental Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    The Wave Dragon is a floating slack-moored Wave Energy Converter (WEC) of the overtopping type. Oncoming waves are focused by two wing reflectors towards the ramp of the device, surge-up and overtop into a reservoir placed at a higher level than the surface of the sea. The energy production takes...... place as the water is led back to the sea through a set of low-head hydro-turbines. After many years of development, Wave Dragon (WD) is now facing the phase of pre-commercial demonstration. In this phase it is very important to be able to use the available data to predict the performances of the device...... form) is transferred to the device in the form of volumes of water coming into the reservoir. These volumes are stored at a higher level than the surrounding sea, being a stock of potential energy. 2. Secondary energy conversion: turbines – The potential energy stored in the reservoir is transformed...

  15. Validation of a Tool for the Initial Dynamic Design of Mooring Systems for Large Floating Wave Energy Converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    2017-01-01

    Mooring of floating wave energy converters is an important topic in renewable research since it highly influences the overall cost of the wave energy converter and thereby the cost of energy. In addition, several wave energy converter failures have been observed due to insufficient mooring system...

  16. Inclusion of Structural Flexibility in Design Load Analysis for Wave Energy Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); van Rij, Jennifer A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-14

    Hydroelastic interactions, caused by ocean wave loading on wave energy devices with deformable structures, are studied in the time domain. A midfidelity, hybrid modeling approach of rigid-body and flexible-body dynamics is developed and implemented in an open-source simulation tool for wave energy converters (WEC-Sim) to simulate the dynamic responses of wave energy converter component structural deformations under wave loading. A generalized coordinate system, including degrees of freedom associated with rigid bodies, structural modes, and constraints connecting multiple bodies, is utilized. A simplified method of calculating stress loads and sectional bending moments is implemented, with the purpose of sizing and designing wave energy converters. Results calculated using the method presented are verified with those of high-fidelity fluid-structure interaction simulations, as well as low-fidelity, frequency-domain, boundary element method analysis.

  17. Full wave dc-to-dc converter using energy storage transformers

    Science.gov (United States)

    Moore, E. T.; Wilson, T. G.

    1969-01-01

    Full wave dc-to-dc converter, for an ion thrustor, uses energy storage transformers to provide a method of dc-to-dc conversion and regulation. The converter has a high degree of physical simplicity, is lightweight and has high efficiency.

  18. Stakeholder requirements for commercially successful wave energy converter farms

    Energy Technology Data Exchange (ETDEWEB)

    Babarit, Aurélien; Bull, Diana; Dykes, Katherine; Malins, Robert; Nielsen, Kim; Costello, Ronan; Roberts, Jesse; Bittencourt Ferreira, Claudio; Kennedy, Ben; Weber, Jochem

    2017-12-01

    In this study, systems engineering techniques are applied to wave energy to identify and specify stakeholders' requirements for a commercially successful wave energy farm. The focus is on the continental scale utility market. Lifecycle stages and stakeholders are identified. Stakeholders' needs across the whole lifecycle of the wave energy farm are analyzed. A list of 33 stakeholder requirements are identified and specified. This list of requirements should serve as components of a technology performance level metric that could be used by investors and funding agencies to make informed decisions when allocating resources. It is hoped that the technology performance level metric will accelerate wave energy conversion technology convergence.

  19. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    Science.gov (United States)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  20. Designing and Testing Composite Energy Storage Systems for Regulating the Outputs of Linear Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Zanxiang Nie

    2017-01-01

    Full Text Available Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermittent power of wave energy converters. Hardware systems have been constructed to control the linear wave energy converter and the composite energy storage system. The performance of the composite energy storage system has been verified in experiments by using electronics-based wave energy emulators.

  1. Simplified Design Procedures for Moorings of Wave-Energy Converters

    DEFF Research Database (Denmark)

    Bergdahl, Lars; Kofoed, Jens Peter

    The goal of the report is that the reader shall be able to self-dependently make a first, preliminary analysis of wave-induced horizontal loads, motions and mooring forces for a moored floating wave energy device. Necessary prerequisites to attain that goal are the understanding of the physical...

  2. Experimental Testing of the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    2011-01-01

    arrangement, with the flaps placed symmetrically opposing each other on a floating reference structure. This minimises the net force on the reference frame and increases the stability of the reference frame under optimal wave conditions. This paper presents the results and analysis from the wave tanks, which...... addressed the following: The Power Take Offs (PTOs) were simulated using a motor to resist the motion of the wings, according to the damping profile. Torque and velocity measurements were used to predict the wave- to mechanical-power conversion efficiency of the device. A number of wing types...... and configurations were tested to compare their power conversion efficiency. The power production for five selected irregular wave states was used to estimate the power matrix of the full scale the device, by making certain assumptions about the power conversion efficiencies dependency on the peak wave height...

  3. Physical Modelling of an Array of 25 Heaving Wave Energy Converters to Quantify Variation of Response and Wave Conditions

    DEFF Research Database (Denmark)

    2013-01-01

    for the evaluation of array interaction models and environmental scale models. Each wave energy converter unit has a diameter of 0.315 m and power absorption is due to friction of both a power take off system and bearings. Response is measured on all floats and surge force on five floats. Wave gauges are located...

  4. Convertion Shear Wave Velocity to Standard Penetration Resistance

    Science.gov (United States)

    Madun, A.; Tajuddin, S. A. A.; Abdullah, M. E.; Abidin, M. H. Z.; Sani, S.; Siang, A. J. L. M.; Yusof, M. F.

    2016-07-01

    Multichannel Analysis Surface Wave (MASW) measurement is one of the geophysics exploration techniques to determine the soil profile based on shear wave velocity. Meanwhile, borehole intrusive technique identifies the changes of soil layer based on soil penetration resistance, i.e. standard penetration test-number of blows (SPT-N). Researchers across the world introduced many empirical conversions of standard penetration test blow number of borehole data to shear wave velocity or vice versa. This is because geophysics test is a non-destructive and relatively fast assessment, and thus should be promoted to compliment the site investigation work. These empirical conversions of shear wave velocity to SPT-N blow can be utilised, and thus suitable geotechnical parameters for design purposes can be achieved. This study has demonstrated the conversion between MASW and SPT-N value. The study was conducted at the university campus and Sejagung Sri Medan. The MASW seismic profiles at the University campus test site and Sejagung were at a depth of 21 m and 13 m, respectively. The shear wave velocities were also calculated empirically using SPT-N value, and thus both calculated and measured shear wave velocities were compared. It is essential to note that the MASW test and empirical conversion always underestimate the actual shear wave velocity of hard layer or rock due to the effect of soil properties on the upper layer.

  5. Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Chang, Grace; Jones, Craig

    2014-09-01

    The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

  6. Experimental Hydraulic Optimization of the Wave Energy Converter Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    This report presents the results of a experimental hydraulic optimization of the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs. In the present SSG setup three reservoirs has been used. Model tests have been performed...

  7. Numerical Simulation of Wake Effects in the Lee of a Farm of Wave Dragon Wave Energy Converters

    DEFF Research Database (Denmark)

    Beels, C.; Troch, P.; De Visch, K.;

    2009-01-01

    . In this paper wake effects in the lee of a single Wave Dragon WEC and multiple Wave Dragon WECs are studied in a time-dependent mild-slope equation model. The Wave Dragon WEC is a floating offshore converter of the overtopping type. The water volume of overtopped waves is first captured in a basin above mean...... sea level and then drains back to the sea through hydro turbines. The wake dimensions behind a single Wave Dragon WEC are investigated for uni- and multidirectional waves. An increasing directional spreading results in a faster wave redistribution behind the WEC. The power absorption of a farm of five...... Wave Dragon WECs, installed in a staggered grid, is calculated for varying inbetween distances. It is observed that an in-between distance of 2D is preferred, when taking spatial and safety considerations into account....

  8. Geometrical Optimization for Improved Power Capture of Multi-Level Overtopping Based Wave Energy Converters

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Victor, L.; Kofoed, Jens Peter

    2009-01-01

    In multi-level wave energy converters the water from incoming waves is stored in reservoirs one on top of the other. Prevision formula for the overtopping flow rates in the individual reservoirs is fundamental for dimensioning correctly the turbines and optimizing the device. Having a number...... words, the opening between two consecutive reservoirs. 13 different geometries have been tested in 2D irregular waves and a new formulation for prediction of overtopping in multilevel structures is presented....

  9. Optimal Control Of Nonlinear Wave Energy Point Converters

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten

    2013-01-01

    In this paper the optimal control law for a single nonlinear point absorber in irregular sea-states is derived, and proven to be a closed-loop controller with feedback from measured displacement, velocity and acceleration of the floater. However, a non-causal integral control component dependent...... idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states......, absorbs almost the same power as the optimal controller....

  10. Design Specifications for the Hanstholm WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    -moored and floating structure absorbs the energy of the waves through a multitude of rotors. The shape of the rotors is based on the renowned Salter’s Duck. On each leg, the rotors pivot around a common axle, through which the rotors transfer the absorbed power to a common power take off system. The study...

  11. Numerical Modeling and Experimental Testing of a Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Kramer, Morten; Ferri, Francesco;

    numerical values for comparison with the experimental test results which were carried out in the same time. It is for this reason why Chapter 4 does consist exclusively of numerical values. Experimental values and measured time series of wave elevations have been used throughout the report in order to a...

  12. Energy Capture Optimization for an Adaptive Wave Energy Converter

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Meijer, Harmen; van Rooij, Marijn; Clemente Pinol, Silvia; Galvan Garcia, Bruno; Prins, Wouter; Vakis, Antonis I.; Jayawardhana, Bayu

    2016-01-01

    Wave energy has great potential as a renewable energy source, and can therefore contribute significantly to the proportion of renewable energy in the global energy mix. This is especially important since energy mixes with high renewable penetration have become a worldwide priority. One solution to f

  13. 3D Tests on Overtopping for SSG Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Kofoed, Jens Peter

    This report presents the results of the first study based on laboratory tests of the behaviour of the SSG pilot module in 3D wave conditions. This study was recommended already during Phase 2 of the Co-operation agreement between WEVEnergy AS (Norway) and Aalborg University, Department of Civil...

  14. Neural rotational speed control for wave energy converters

    Science.gov (United States)

    Amundarain, M.; Alberdi, M.; Garrido, A. J.; Garrido, I.

    2011-02-01

    Among the benefits arising from an increasing use of renewable energy are: enhanced security of energy supply, stimulation of economic growth, job creation and protection of the environment. In this context, this study analyses the performance of an oscillating water column device for wave energy conversion in function of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose, a model of neural rotational speed control system is presented, simulated and implemented. This scheme is employed to appropriately adapt the speed of the doubly-fed induction generator coupled to the turbine according to the pressure drop entry, so as to avoid the undesired stalling behaviour. It is demonstrated that the proposed neural rotational speed control design adequately matches the desired relationship between the slip of the doubly-fed induction generator and the pressure drop input, improving the power generated by the turbine generator module.

  15. Graphene-based magnetless converter of terahertz wave polarization

    Science.gov (United States)

    Melnikova, Veronica S.; Polischuk, Olga V.; Popov, Vyacheslav V.

    2016-04-01

    The polarization conversion of terahertz radiation by the periodic array of graphene nanoribbons located at the surface of a high-refractive-index dielectric substrate (terahertz prism) is studied theoretically. Giant polarization conversion at the plasmon resonance frequencies takes place without applying external DC magnetic field. It is shown that the total polarization conversion can be reached at the total internal reflection of THz wave from the periodic array of graphene nanoribbons even at room temperature.

  16. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.

    Science.gov (United States)

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant). Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121-125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.

  17. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.

    Directory of Open Access Journals (Sweden)

    Jakob Tougaard

    Full Text Available Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth. Median sound pressure levels (Leq in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant. Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq 121-125 dB re 1 μPa was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.

  18. Parameter based design of a twin-cylinder wave energy converter for real sea-states

    CERN Document Server

    Xu, Dali; Stiassnie, Michael

    2016-01-01

    We discuss the hydrodynamics of a wave energy converter consisting of two vertically floating, coaxial cylinders connected by dampers and allowed to heave, sway and roll. This design, viable in deep water and able to extract energy independent of the incident wave direction, is examined for monochromatic waves as well as broad-banded seas described by a Pierson Moskowitz spectrum. Several possible device sizes are considered, and their performance is investigated for a design spectrum, as well as for more severe sea states, with a view towards survivability of the converters. In terms of device motions and captured power, a quantitative assessment of converter design as it relates to survival and operation is provided. Most results are given in dimensionless form to allow for a wide range of applications.

  19. Increasing durability and lowering the overall cost of wave energy converters using Ultra High Performance Concrete

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Damkilde, Lars; Hansen, Niels A.

    2013-01-01

    Lowering the overall cost of wave energy converters is a necessity for creating a feasible solution to renewable energy. The design of wave energy converters is in general based on traditional steel design methods. In the design of steel structures subjected to significant dynamical loading...... and a harsh environment issues such fatigue resistance and durability are of major concern. The welded joints in steel structures significantly reduce the fatigue resistance and give a low utilization ratio of the steel material. Furthermore is coating of all exposed steel surfaces a necessity to secure...... as primary material in the design of wave energy converters is a feasible and promising solution, which reduce the overall cost of the structure significantly. This will be illustrated by means of a feasibility study carried out on the Wavestar project, where special attention is pointed at the arm and float...

  20. Model Testing of the Wave Energy Converter Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    This report presents the results of a preliminary experimental study of the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs. In the present SSG setup three reservoirs has been used. Model tests have been performed using...... a scale model (length scale 1:15) of a SSG device to be installed on the west coast of the island Kvitsøy near Stavanger, Norway. The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The model has been subjected to regular and irregular waves...

  1. Near-Shore Floating Wave Energy Converters:applications for coastal protection

    OpenAIRE

    Ruol, Piero; Zanuttigh, Barbara; Martinelli, Luca; Kofoed, Jens Peter; Frigaard, Peter

    2010-01-01

    Aim of this note is to analyse the possible application of a Wave Energy Converter (WEC) as a combined tool to protect the coast and harvest energy. Physical model tests are used to evaluate wave transmission past a near-shore floating WEC of the wave activated body type, named DEXA. Efficiency and transmission characteristics are approximated to functions of wave height, period and obliquity. Their order of magnitude are 20% and 80%, respectively. It is imagined that an array of DEXA is depl...

  2. Effects of Mooring Systems on the Performance of a Wave Activated Body Energy Converter

    DEFF Research Database (Denmark)

    Zanuttigh, Barbara; Angelelli, Elisa; Kofoed, Jens Peter

    2013-01-01

    Aim of this paper is to analyse the power and hydraulic performance of a floating Wave Energy Converter with the purpose at optimising its design for installation in arrays. The paper presents new experiments carried out in 1:30 scale on a single device of the Wave Activated Body type in the deep......-water wave tank at Aalborg University. Power production and wave transmission were examined by changing the mooring system, the wave attack and the device orientation with respect to the incoming waves.. To assure the best performance the device size may be “tuned” based on the local peak wave length...... and the mooring system should be selected to allow the device for large movements....

  3. A Methodology for Production and Cost Assessment of a Farm of Wave Energy Converters

    DEFF Research Database (Denmark)

    Beels, C.; Troch, P.; Kofoed, Jens Peter;

    2011-01-01

    the power production and cost of a farm of WECs is applied to the Wave Dragon Wave Energy Converter (WD–WEC). The WD–WEC is a floating offshore converter of the overtopping type, which captures the water volume of overtopped waves in a basin above mean sea level and produces power when the water drains back......To generate a substantial amount of power, Wave Energy Converters (WECs) are arranged in several rows or in a ‘farm’. Both the power production and cost of a farm are lay-out dependent. In this paper, the wave power redistribution in and around three farm lay-outs in a near shore North Sea wave...... climate, is assessed numerically using a time-dependent mild-slope equation model. The modelling of the wave power redistribution is an efficient tool to assess the power production of a farm. Further, for each lay-out an optimal (low cost) submarine cable network is designed. The methodology to assess...

  4. Initial Sea Trails of the DEXA D05 Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report presents an analysis of sensors data leading to an initial assessment of the power performance from sea trails of the DEXA D05 Wave Energy Converter (WEC). The sea trails where performed approx. 1 nautical mile offshore from Hanstholm, Denmark during 2011. The converter was 1:5 scale....... The DEXA D05 WEC was built, deployed and operated by the client DEXAWAVE ApS and the analysis of the sensor data, given here, has been carried out by John Lavelle under supervision by Jens Peter Kofoed in the Wave Energy Research Group at the department of Civil Engineering, Aalborg University (AAU)....

  5. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Kramer, Morten; Vidal, Enrique

    2013-01-01

    The Wavestar Wave Energy Converter (WEC) is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO) system, converting the wave induced motion of the floats into a steady power output to the grid....... In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy...

  6. On theory and simulation of heaving-buoy wave-energy converters with control

    Energy Technology Data Exchange (ETDEWEB)

    Eidsmoen, H.

    1995-12-01

    Heaving-buoy wave-energy converters with control were studied. The buoy is small compared to the wavelength. The resonance bandwidth is then narrow and the energy conversion in irregular waves can be significantly increased if the oscillatory motion of the device can be actively controlled, and the power output from the converter will vary less with time than the wave power transport. A system of two concentric cylinders of the same radius, oscillating in heave only, is analysed in the frequency-domain. The mathematical model can be used to study a tight-moored buoy, as well as a buoy reacting against a submerged body. The knowledge of the frequency-domain hydrodynamic parameters is used to develop frequency-domain and time-domain mathematical models of heaving-buoy wave energy converters. The main emphasis is on using control to maximize the energy production and to protect the machinery of the wave-energy converter in very large waves. Three different methods are used to study control. (1) In the frequency-domain explicit analytical expressions for the optimum oscillation are found, assuming a continuous sinusoidal control force, and from these expressions the optimum time-domain oscillation can be determined. (2) The second method uses optimal control theory, using a control variable as the instrument for the optimisation. Unlike the first method, this method can include non-linearities. But this method gives numerical time series for the state variables and the control variable rather than analytical expressions for the optimum oscillation. (3) The third method is time-domain simulation. Non-linear forces are included, but the method only gives the response of the system to a given incident wave. How the different methods can be used to develop real-time control is discussed. Simulations are performed for a tight-moored heaving-buoy converter with a high-pressure hydraulic system for energy production and motion control. 147 refs., 38 figs., 22 tabs.

  7. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  8. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  9. Hydrodynamic Behavior of Overtopping Wave Energy Converters Built in Sea Defense Structures

    DEFF Research Database (Denmark)

    Victor, Lander; Kofoed, Jens Peter; Troch, Peter

    2010-01-01

    Many sea defense structures need to be adapted to the rising sea water level and changing wave climate due to global warming. The accordingly required investment opens perspectives for wave energy converters (WECs) – that are built as part of the sea defense structures – to become economically...... viable. In this paper the average overtopping discharges q of overtopping wave energy devices built in sea defense structures are studied. Physical model tests with this type of devices have been carried out in a wave flume leading to experimental q - values. The experimental q -values are compared...... with predicted average overtopping discharges by existing empirical formulae from literature. Overtopping converters have low relative crest freeboards and smooth slope characteristics to maximize overtopping, which is contradictive to the basic role of sea defense structures. As a consequence, the achieved...

  10. A Physical Study of Converted Wave AVO in a Fractured Reservoir

    Science.gov (United States)

    Chang, C. H.; Chang, Y. F.; Tsao, H. C.; Chang, J. W.

    2015-12-01

    Benefiting by the multicomponent seismic acquisition and processing techniques, the applications of converted waves in petroleum exploration is thus highlighted. A converted (C-) wave is initiated by a downward traveling P-wave that is converted on reflection to upcoming S-waves. Ascribing to its origins, C-wave takes the behaviors of P- and S-wave and becomes as one of the popular seismic attributes in the studies of a fractured reservoir. Making use of the scaled physical model, we aim on inspecting the azimuthal Amplitude Variation with Offset (AVO) of C-wave in a reservoir of vertically aligned fractures. In order to facilitate the objective of this study, reflection experiments were carried out on the orthogonal plane of a Horizontal Transversely Isotropic (HTI) model which is created to simulate a fractured reservoir. In laboratory manipulation, acoustic energy is triggered by a P-type transducer and the reflected energy is received an S-type transducer to detect the reflected energy, i.e. C-waves, originating by mode conversion. From fracture strike to facture normal, end-on shooting reflections were acquired from seven different directions. The angular interval in between the successive observation is 15 degrees. While viewing into the reflection profiles, events of P-, C1- and C2-waves can be readily identified. In the acquired profiles, the P-wave AVO is clearly observed and the phenomenon of C-wave splitting is revealed by the separation of traveltime-distance curves of C1- and C2-waves. However, it is aware of that the C-wave amplitudes are not simply varied or attenuated with offset in each observation. The complicated behaviors of C-wave AVO could be caused by the amount of energy, which is incident angle dependent, in reflected S-waves. Hence, our results indicate that the azimuthal C-wave AVO might not be a reliable seismic signature which can be used to delineate the fracture orientation of a fractured reservoir.

  11. A review of hydrodynamic investigations into arrays of ocean wave energy converters

    CERN Document Server

    De Chowdhury, S; Sanchez, A Madrigal; Fleming, A; Winship, B; Illesinghe, S; Toffoli, A; Babanin, A; Penesis, I; Manasseh, R

    2015-01-01

    Theoretical, numerical and experimental studies on arrays of ocean wave energy converter are reviewed. The importance of extracting wave power via an array as opposed to individual wave-power machines has long been established. There is ongoing interest in implementing key technologies at commercial scale owing to the recent acceleration in demand for renewable energy. To date, several reviews have been published on the science and technology of harnessing ocean-wave power. However, there have been few reviews of the extensive literature on ocean wave-power arrays. Research into the hydrodynamic modelling of ocean wave-power arrays is analysed. Where ever possible, comparisons are drawn with physical scaled experiments. Some critical knowledge gaps have been found. Specific emphasis has been paid on understanding how the modelling and scaled experiments are likely to be complementary to each other.

  12. DESIGN OF SINGLE PHASE FULLY CONTROLLED CONVERTER USING COSINE WAVE CROSSING CONTROL WITH VARIOUS PROTECTIONS

    Directory of Open Access Journals (Sweden)

    GENO PETER .P

    2010-09-01

    Full Text Available The single phase fully controlled converter is used to convert single phase A.C supply to D.C supply. Such converter finds application in dc motor loads for motoring and electrical braking of the motor. There are two types of control schemes to control the firing of thyristors, they are Cosine wave crossing control and Ramp comparator control. In this paper, cosine wave crossing control is used for the control circuit. The advantage of this scheme is that the output voltage is proportional to the control voltage ie., the output voltage is independent of the variation of input voltage. The various protections such as over current, short circuit, under voltage protections etc are included. The main objective of this project is to design an efficient, simple, robust and economical control circuit thereby making the fully controlled converter. The fully controlled converter uses four thyristors . It is a two quadrant converter was voltage polarity can reverse, but current direction cannot reverse because of unidirectional nature of thyristors. In this paper, I have presented the control circuit for the thyristors along with the protection circuits to control Dc Motors of rating 220V,5.8 A and 1500rpm .

  13. Structural Modeling and Analysis of a Wave Energy Converter Applying Dynamical Substructuring Method

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Damkilde, Lars; Gao, Zhen

    2013-01-01

    This paper deals with structural modeling and analysis of a wave energy converter. The device, called Wavestar, is a bottom fixed structure, located in a shallow water environment at the Danish Northwest coast. The analysis is concentrated on a single float and its structural arm which connects...

  14. A Novel All-optical Wavelength Converter Based on Self-pump Four-wave Mixing

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianxiao; CHEN Zhangyuan; TAO Zhenning; WU Deming; XU Anshi; WANG Ziyu

    2002-01-01

    A novel scheme of all-optical wavelength converter(AOWC) based on dual pump four-wave mixing(DP-FWM) was demonstrated. To suppress the ASE noise of the semiconductor optical amplifier (SOA), one of the two pumps was generated interiorly from a loop laser constructed mainly by tunable optical filter and SOA. The theoretical model and some experimental results were presented.

  15. Revenue Optimization for the Ocean Grazer Wave Energy Converter through Storage Utilization

    NARCIS (Netherlands)

    Dijkstra, H.T.; Barradas Berglind, J.J.; Meijer, H.; van Rooij, Marijn; Prins, W.A.; Vakis, A. I.; Jayawardhana, B.

    2016-01-01

    Increased penetration of renewable energy generation motivates a change of paradigm in the way power systems are structured and operated, as advocated by the smart grid concept. Accordingly, in this paper we investigate the lossless storage capabilities of the Ocean Grazer wave energy converter (WEC

  16. Optimising Reactive Control in non-ideal Efficiency Wave Energy Converters

    DEFF Research Database (Denmark)

    Strager, Thomas; Lopez, Pablo Fernandez; Giorgio, Giuseppe

    2014-01-01

    When analytically optimising the control strategy in wave energy converters which use a point absorber, the efficiency aspect is generally neglected. The results presented in this paper provide an analytical expression for the mean harvested electrical power in non-ideal efficiency situations...

  17. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  18. Numerical Analysis of a Large Floating Wave Energy Converter with Adjustable Structural Geometry

    DEFF Research Database (Denmark)

    Ferri, Francesco; Pecher, Arthur Francois Serge; Kofoed, Jens Peter

    2015-01-01

    The current cost of energy (CoE) from wave energy converters (WECs) is still significantly higher than other renewable energy resources, thus the sector has not yet reached a competitive level. WECs have a relative small turnover compared to the high capital cost, which to a large extent is drive...

  19. Methodology for dense spatial sampling of multicomponent recording of converted waves in shallow marine environments

    NARCIS (Netherlands)

    El Allouche, N.; Drijkoningen, G.G.; Van der Neut, J.R.

    2010-01-01

    A widespread use of converted waves for shallow marine applications is hampered by spatial aliasing and field efficiency. Their short wavelengths require dense spatial sampling which often needs to be achieved by receivers deployed on the seabed. We adopted a new methodology where the dense spatial

  20. Control of a 420 KN Discrete Displacement Cylinder Drive for the Wavestar Wave Energy Converter

    DEFF Research Database (Denmark)

    Hansen, Rico H.; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    To improve the power production of their 1 MW wave energy converter, Wavestar is developing a new transmission based on discrete hydraulics. The discrete hydraulic system allows all cylinders to supply a common accumulator storage while maintaining low-loss individual force control of the 20 abso...

  1. Quantification of Wave Model Uncertainties Used for Probabilistic Reliability Assessments of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2015-01-01

    Wave models used for site assessments are subjected to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Four different wave models are considered, and validation...... uncertainties can be implemented in probabilistic reliability assessments....

  2. Experimental study on the wave loads on a rotor of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    Experimental tests have been performed to investigate the wave load on the rotor in design wave conditions. These wave loads should give an indication of the required structural strength around the rotors as well as for other equipment such as the bearings. During the lab tests, the wave loads ha...

  3. Power maximization of a point absorber wave energy converter using improved model predictive control

    Science.gov (United States)

    Milani, Farideh; Moghaddam, Reihaneh Kardehi

    2017-08-01

    This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.

  4. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang; Wright, Alan

    2015-09-09

    The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of the device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.

  5. Extrapolation of extreme response for different mooring line systems of floating wave energy converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sterndorff, Martin; Sørensen, John Dalsgaard

    2014-01-01

    Mooring systems for floating wave energy converters (WECs) are a major cost driver. Failure of mooring systems often occurs due to extreme loads. This paper introduces an extrapolation method for extreme response which accounts for the control system of a WEC that controls the loads onto the stru......Mooring systems for floating wave energy converters (WECs) are a major cost driver. Failure of mooring systems often occurs due to extreme loads. This paper introduces an extrapolation method for extreme response which accounts for the control system of a WEC that controls the loads onto...... the structure and the harvested power of the device as well as the fact that extreme loads may occur during operation and not at extreme wave states when the device is in storm protection mode. The extrapolation method is based on shortterm load time series and applied to a case study where up-scaled surge load...

  6. Reliability-based Calibration of Partial Safety Factors for Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten Mejlhede; Sørensen, John Dalsgaard

    2015-01-01

    of partial safety factors for design of welded details for wave energy converter applications is presented in this paper using probabilistic methods. The paper presents an example with focus on the Wavestar device. SN curves and Rainflow counting are used to model fatigue without considering inspections......Wave energy converters (WECs), which harvest energy from the waves and transfer them to electricity, are a new technology, where structural standards need to be developed. An important step towards standardization is the calibration of partial safety factors. A methodology for calibration....... The influence of inspections is modelled using a fracture mechanics approach, which is calibrated by the SN curve approach. Furthermore, the paper assesses the influence of the inspection quality. The results show that with multiple inspections during the lifetime of the device and by applying a good inspection...

  7. Short term wave forecasting, using digital filters, for improved control of Wave Energy Converters

    DEFF Research Database (Denmark)

    Tedd, James; Frigaard, Peter

    2007-01-01

    experimentally. Results are shown form measurements taken on the Wave Dragon prototype device, a floating overtopping device situated in Northern Denmark. In this case the method is able to accurately predict the surface elevation at the device 11.2 seconds before the measurement is made. This is sufficient......This paper presents a Digital Filter method for real time prediction of waves incident upon a Wave Energy device. The method transforms waves measured at a point ahead of the device, to expected waves incident on the device. The relationship between these incident waves and power capture is derived...

  8. Power Take-Off Simulation for Scale Model Testing of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Scott Beatty

    2017-07-01

    Full Text Available Small scale testing in controlled environments is a key stage in the development of potential wave energy conversion technology. Furthermore, it is well known that the physical design and operational quality of the power-take off (PTO used on the small scale model can have vast effects on the tank testing results. Passive mechanical elements such as friction brakes and air dampers or oil filled dashpots are fraught with nonlinear behaviors such as static friction, temperature dependency, and backlash, the effects of which propagate into the wave energy converter (WEC power production data, causing very high uncertainty in the extrapolation of the tank test results to the meaningful full ocean scale. The lack of quality in PTO simulators is an identified barrier to the development of WECs worldwide. A solution to this problem is to use actively controlled actuators for PTO simulation on small scale model wave energy converters. This can be done using force (or torque-controlled feedback systems with suitable instrumentation, enabling the PTO to exert any desired time and/or state dependent reaction force. In this paper, two working experimental PTO simulators on two different wave energy converters are described. The first implementation is on a 1:25 scale self-reacting point absorber wave energy converter with optimum reactive control. The real-time control system, described in detail, is implemented in LabVIEW. The second implementation is on a 1:20 scale single body point absorber under model-predictive control, implemented with a real-time controller in MATLAB/Simulink. Details on the physical hardware, software, and feedback control methods, as well as results, are described for each PTO. Lastly, both sets of real-time control code are to be web-hosted, free for download, modified and used by other researchers and WEC developers.

  9. Wave-to-wire Modelling of Wave Energy Converters : Critical Assessment, Developments and Applicability for Economical Optimisation

    DEFF Research Database (Denmark)

    Ferri, Francesco

    untapped, renewable energy resource that has the potential to contribute significantly to the future energy mix, especially in an environmental friendly future scenario. What is bounding the sector to roll off into the market is the cost of the produced energy: too high if compared with other renewable......The idea to use the motion of a wavy sea surface to produce electricity was investigate in the seventies, in a time when the earliest wave energy converters were conceived and developed. But nowadays still none of the patented devices reached a commercial stage. Wave energy is a large, mostly...

  10. On the Effects of Geometry Control on the Performance of Overtopping Wave Energy Converters

    DEFF Research Database (Denmark)

    Victor, Lander; Troch, Peter; Kofoed, Jens Peter

    2011-01-01

    Overtopping wave energy converters (OWECs) are designed to extract energy from ocean waves based on wave overtopping into a reservoir, which is emptied into the ocean through a set of low-head turbines, and typically feature a low crest freeboard and a smooth impermeable steep slope. In the process...... of optimizing the performance of OWECs, the question arises whether adapting the slope geometry to the variable wave characteristics at the deployment site (i.e., geometry control) can increase the overall hydraulic efficiency and overall hydraulic power compared to a fixed slope geometry. The effect of five...... different geometry control scenarios on the overall hydraulic efficiency and overall hydraulic power of OWECs has been simulated for three possible deployment sites using empirical prediction formulae. The results show that the effect of an adaptive slope angle is relatively small. On the other hand...

  11. Short term wave forecasting, using digital filters, for improved control of Wave Energy Converters

    Energy Technology Data Exchange (ETDEWEB)

    Tedd, J.; Frigaard, P. [Department of Civil Engineering, Aalborg University, Aalborg (Denmark)

    2007-07-01

    This paper presents a Digital Filter method for real time prediction of waves incident upon a Wave Energy device. The method transforms waves measured at a point ahead of the device, to expected waves incident on the device. The relationship between these incident waves and power capture is derived experimentally. Results are shown form measurements taken on the Wave Dragon prototype device, a floating overtopping device situated in Northern Denmark. In this case the method is able to accurately predict the surface elevation at the device 11.2 seconds before the measurement is made. This is sufficient to allow advanced control systems to be developed using this knowledge to significantly improve power capture.

  12. Mechanical constraint converts planar waves into helices on tunicate and sea urchin sperm flagella.

    Science.gov (United States)

    Ishijima, Sumio

    2012-01-01

    The change in the flagellar waves of spermatozoa from a tunicate and sea urchins was examined using high-speed video microscopy to clarify the regulation of localized sliding between doublet microtubules in the axoneme. When the tunicate Ciona spermatozoa attached to a coverslip surface by their heads in seawater or they moved in seawater with increased viscosity, the planar waves of the sperm flagella were converted into left-handed helical waves. On the other hand, conversion of the planar waves into helical waves in the sea urchin Hemicentrotus spermatozoa was not seen in seawater with an increased viscosity as well as in ordinary seawater. However, the sea urchin Clypeaster spermatozoa showed the conversion, albeit infrequently, when they thrust their heads into seawater with an increased viscosity. The chirality of the helical waves of the Clypeaster spermatozoa was right-handed. When Ciona spermatozoa swam freely near a glass surface, they moved in relatively large circular paths (yawing motion). There was no difference in the proportion of spermatozoa yawing in either a clockwise or counterclockwise direction when viewed from above, which was also different from that of the sea urchin spermatozoa. These observations suggest that the planar waves generally observed on the sperm flagella are mechanically regulated, although their stability must depend on the Ca(2+) concentration in the cell. Furthermore, the chirality of the helical waves may be determined by the intracellular Ca(2+) concentration and changed by transmitting the localized active sliding between the doublet microtubules around the axoneme in an alternative direction.

  13. Hydrodynamics of the Oscillating Wave Surge Converter in the open ocean

    CERN Document Server

    Renzi, E

    2012-01-01

    A potential flow model is derived for a large flap-type oscillating wave energy converter in the open ocean. Application of the Green's integral theorem in the fluid domain yields a hypersingular integral equation for the jump in potential across the flap. Solution is found via a series expansion in terms of the Chebyshev polynomials of the second kind and even order. Several relationships are then derived between the hydrodynamic parameters of the system. Comparison is made between the behaviour of the converter in the open ocean and in a channel. The degree of accuracy of wave tank experiments aiming at reproducing the performance of the device in the open ocean is quantified. Parametric analysis of the system is then undertaken. It is shown that increasing the flap width has the beneficial effect of broadening the bandwidth of the capture factor curve. This phenomenon can be exploited in random seas to achieve high levels of efficiency.

  14. Optimisation of Working Areas in Discrete Hydraulic Power Take off-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Hansen, Rico Hjerm; Pedersen, Henrik C.

    2012-01-01

    Fluid power is the leading technology in Power Take Off(PTO) systems in Wave Energy Converters(WEC’s), due to the capability of generating high force at low velocity. However, as hydraulic force controlling system may suffer from large energy losses the efficiency of the hydraulic PTO systems may...... be a limiting factor for wave energy. Therefore, a secondary controlled force system has been proposed as PTO element for WEC’s. This paper investigates the configuration of a multi-chamber cylinder utilising two common pressure lines. By usage of model based optimisation an optimal number and size of working...

  15. Beach Response to Wave Energy Converter Farms Acting as Coastal Defence

    DEFF Research Database (Denmark)

    Mendoza, Edgar; Silva, Rodolfo; Zanuttigh, Barbara

    2014-01-01

    beach maintenance and coastal safety. This may be an opportunity for the multi-purpose use of Wave Energy Converters (WECs) if the foreseen increase of energy demand in coastal areas is also considered. In this paper a group of WECs based on different operating concepts is numerically tested in front...... against new experimental results. The wave field is then used as input for the analytical calculation of the long-shore sediment transport and the coastline trend is estimated by applying the continuity of sediment equation. The characteristics of the selected numerical models give this work a first...

  16. User guide - COE calculation tool for wave energy converters. Draft version 1

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Chozas, J.; Kofoed, J.P. [Aalborg Univ., Aalborg (Denmark); Helstrup Jensen, N.E. [Energinet.dk, Fredericia (Denmark)

    2013-08-15

    Aalborg University together with Energinet.dk and Julia F. Chozas Consulting Engineer, have released a freely available online spreadsheet to evaluate the Levelised Cost of Energy (LCOE) for wave energy projects. The open-access tool calculates the LCOE based on the power production of a Wave Energy Converter (WEC) at a particular location. Production data may derive from laboratory testing, numerical modelling or from sea trials. The tool has been developed as a transparent and simple model that evaluates WEC's economic feasibility in a range of locations, while scaling WEC's features to the selected site. (Author)

  17. Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC)

    Science.gov (United States)

    Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo

    2016-11-01

    A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016).

  18. Progress Towards the Development of a Traveling Wave Direct Energy Converter for Aneutronic Fusion Propulsion Applications

    Science.gov (United States)

    Tarditi, A. G.; Chap, A.; Wolinsky, J.; Scott, J. H.

    2015-01-01

    A coordinated experimental and theory/simulation effort has been carried out to investigate the physics of the Traveling Wave Direct Energy Converter (TWDEC), a scheme that has been proposed in the past for the direct conversion into electricity of the kinetic energy of an ion beam generated from fusion reactions. This effort has been focused in particular on the TWDEC process in the high density beam regime, thus accounting for the ion beam expansion due to its space charge.

  19. Mass-modulation schemes for a class of wave energy converters: Experiments, models, and efficacy

    OpenAIRE

    Diamond, CA; Judge, CQ; Orazov, B; Savaş, Ö; O'Reilly, OM

    2015-01-01

    © 2015, Elsevier Ltd. All rights reserved. In a recent series of works, mass-modulation schemes have been proposed for a class of ocean wave energy converter (WEC). The goal of the schemes is to improve the energy harvesting capabilities of these devices by taking advantage of the ambient water. However this improvement comes at the cost of increased system complexity and possible impulse loadings at the instances where the mass changes. In the present work, experimental results for a pair of...

  20. A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical Parameters

    Science.gov (United States)

    Mosher, Mark

    Within a wave energy converter's operational bandwidth, device operation tends to be optimal in converting mechanical energy into a more useful form at an incident wave period that is proximal to that of a power-producing mode of motion. Point absorbers, a particular classification of wave energy converters, tend to have a relative narrow optimal bandwidth. When not operating within the narrow optimal bandwidth, a point absorber's response and efficiency is attenuated. Given the wide range of sea-states that can be expected during a point absorber's operational life, these devices require a means to adjust, or control, their natural response to maximize the amount of energy absorbed in the large population of non-optimal conditions. In the field of wave energy research, there is considerable interest in the use of non-linear control techniques to this end. Non-linear control techniques introduce time-varying and state dependent control parameters into the point absorber motion equations, which usually motivates a computationally expensive numerical integration to determine the response of the device - important metrics such as gross converted power and relative travels of the device's pieces are extracted through post processing of the time series data. As an alternative, the work presented in this thesis was based on a closed form perturbation based approach for analysis of the response of a device with periodically-varying control parameters, subject to regular wave forcing, in the frequency domain. The proposed perturbation based method provides significant savings in computational time and enables the device's response to be represented in a closed form manner with a relatively small number of solution components - each component is comprised of a complex amplitude and oscillation frequency. This representation of the solution was found to be very concise and descriptive, and to lend itself to the calculation of gross absorbed power and travel constraint

  1. Quantification of Wave Model Uncertainties Used for Probabilistic Reliability Assessments of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2015-01-01

    data are collected from published scientific research. The bias and the root-mean-square error, as well as the scatter index, are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example, this paper presents how the quantified...

  2. Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik

    2013-01-01

    An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration....... An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection...... of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon...

  3. Numerical comparison between deep water and intermediate water depth expressions applied to a wave energy converter

    Directory of Open Access Journals (Sweden)

    Pedro Beirão

    2015-09-01

    Full Text Available The energy that can be captured from the sea waves and converted into electricity should be seen as a contribution to decrease the excessive dependency and growing demand of fossil fuels. Devices suitable to harness this kind of renewable energy source and convert it into electricity—wave energy converters (WECs—are not yet commercially competitive. There are several types of WECs, with different designs and working principles. One possible classification is their distance to the shoreline and thus their depth. Near-shore devices are one of them since they are typically deployed at intermediate water depth (IWD. The selection of the WEC deployment site should be a balance between several parameters; water depth is one of them. Another way of classifying WECs is grouping them by their geometry, size and orientation. Considering a near-shore WEC belonging to the floating point category, this paper is focused on the numerical study about the differences arising in the power captured from the sea waves when the typical deep water (DW assumption is compared with the more realistic IWD consideration. Actually, the production of electricity will depend, among other issues, on the depth of the deployment site. The development of a dynamic model including specific equations for the usual DW assumption as well as for IWD is also described. Derived equations were used to build a time domain simulator (TDS. Numerical results were obtained by means of simulations performed using the TDS. The objective is to simulate the dynamic behavior of the WEC due to the action of sea waves and to characterize the wave power variations according with the depth of the deployment site.

  4. Numerical Simulation of Section Systems in the Pelamis Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Hongzhou He

    2013-01-01

    Full Text Available The working principle of the Pelamis wave energy converter is described in this paper. The sectional size suitable for the outside sea of Xiamen Bay is redesigned according to the Froude and Strouhal similarity criteria. The swing angles, hydrodynamic coefficients, and wave exciting forces are calculated based on the AQWA hydrodynamic software and the average outside sea condition of Xiamen Bay. It is concluded that the Pelamis after redesigned by the Froude and Strouhal similarity criteria can run better in the outside sea area of Xiamen Bay. The three sections indirectly contacted with the fixed axis have larger swing angles. The wave period and height affect the speed ofthe response of the section and its swing angle range, respectively. The larger the total forces, the larger the swing angles. The wave circular frequency has a greater effect on the added mass and the wave exciting force than on the radiation damping; the heave added mass and the heave wave exciting force will become smaller when the heave radiation damping becomes larger with the increase of the wave circular frequency.

  5. Converted-wave Seismology in Anisotropic Media Revisited, Part I: Basic Theory

    Institute of Scientific and Technical Information of China (English)

    XiangyangLi; JianxinYuan

    2005-01-01

    We have developed new basic theories for calculating the conversion point and the travel time of the P-SV converted wave (C-wave) in anisotropic, inhomogeneous media. This enables the use of conventional procedures such as semblance analysis, Dix-type model building and Kirchhoff summation, to implement anisotropic processing, and makes anisotropic processing affordable. Here we present these new developments in two parts: basic theory and application to velocity analysis and parameter estimation. This part deals with the basic theory, including both conversion-point calculation and moveout analysis.Existing equations for calculating the PS-wave (C-wave) conversion point in layered media with vertical transverse isotropy (VTI) are strictly limited to offsets about half the reflector depth (an offset-depth ratio, x/z, of 0.5), and those for calculating the C-wave traveltimes are limited to offsets equal to the reflector depth (x/z=1.0). In contrast, the new equations for calculating the conversion-point extend into offsets about three-times the reflector depth (x/z=3.0), those for calculating the C-wave traveltimes extend into offsets twice the reflector depth (x/z=2.0). With the improved accuracy, the equations can help in C-wave data processing and parameter estimation in anisotropic, inhomogeneous media.

  6. Hydrodynamic analysis and shape optimization for vertical axisymmetric wave energy converters

    Science.gov (United States)

    Zhang, Wan-chao; Liu, Heng-xu; Zhang, Liang; Zhang, Xue-wei

    2016-12-01

    The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.

  7. Development of a nearshore oscillating surge wave energy converter with variable geometry

    Energy Technology Data Exchange (ETDEWEB)

    Tom, N. M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lawson, M. J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wright, A. D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    This paper presents an analysis of a novel wave energy converter concept that combines an oscillating surge wave energy converter (OSWEC) with control surfaces. The control surfaces allow for a variable device geometry that enables the hydrodynamic properties to be adapted with respect to structural loading, absorption range and power-take-off capability. The device geometry is adjusted on a sea state-to-sea state time scale and combined with wave-to-wave manipulation of the power take-off (PTO) to provide greater control over the capture efficiency, capacity factor, and design loads. This work begins with a sensitivity study of the hydrodynamic coefficients with respect to device width, support structure thickness, and geometry. A linear frequency domain analysis is used to evaluate device performance in terms of absorbed power, foundation loads, and PTO torque. Previous OSWEC studies included nonlinear hydrodynamics, in response a nonlinear model that includes a quadratic viscous damping torque that was linearized via the Lorentz linearization. Inclusion of the quadratic viscous torque led to construction of an optimization problem that incorporated motion and PTO constraints. Results from this study found that, when transitioning from moderate-to-large sea states the novel OSWEC was capable of reducing structural loads while providing a near constant power output.

  8. FPA Tuned Fuzzy Logic Controlled Synchronous Buck Converter for a Wave/SC Energy System

    Directory of Open Access Journals (Sweden)

    SAHIN, E.

    2017-02-01

    Full Text Available This paper presents a flower pollination algorithm (FPA tuned fuzzy logic controlled (FLC synchronous buck converter (SBC for an integrated wave/ supercapacitor (SC hybrid energy system. In order to compensate the irregular wave effects on electrical side of the wave energy converter (WEC, a SC unit charged by solar panels is connected in parallel to the WEC system and a SBC is controlled to provide more reliable and stable voltage to the DC load. In order to test the performance of the designed FLC, a classical proportional-integral-derivative (PID controller is also employed. Both of the controllers are optimized by FPA which is a pretty new optimization algorithm and a well-known optimization algorithm of which particle swarm optimization (PSO to minimize the integral of time weighted absolute error (ITAE performance index. Also, the other error-based objective functions are considered. The entire energy system and controllers are developed in Matlab/Simulink and realized experimentally. Real time applications are done through DS1104 Controller Board. The simulation and experimental results show that FPA tuned fuzzy logic controller provides lower value performance indices than conventional PID controller by reducing output voltage sags and swells of the wave/SC energy system.

  9. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  10. Design of full scale wave simulator for testing Power Take Off systems for wave energy converters

    DEFF Research Database (Denmark)

    Pedersen, H. C.; Hansen, R. H.; Hansen, Anders Hedegaard

    2016-01-01

    For wave energy to become a major future contributor of renewable energy it is a requirement that the efficiency and reliability of the Power Take-Off (PTO) systems is significantly improved. However, the cost of installing and testing PTO-systems at sea is very high. The focus of the current paper...... is therefore on the design and commissioning of a full scale wave simulator for testing PTO-systems for point absorbers. The challenge is to be able to design a system, which mimics the behavior of a wave when interacting with a given PTO-system – especially when considering discrete type PTO......-systems. The paper presents the designed system, including the major design considerations. A model of the complete system is presented and controllers for the system are developed. These enable the system to emulate the wave behavior and the wave–float interaction. Finally both simulation and experimental results...

  11. Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Parmeggiani, Stefano [Wave Dragon Ltd., London (United Kingdom); Kofoed, Jens Peter [Aalborg Univ. (Denmark). Department of Civil Engineering; Friis-Madsen, Erik [Wave Dragon Ltd., London (United Kingdom)

    2013-04-15

    An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration. An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection between platform and reflectors. The study is carried out in four phases, each of them specifically targeted at quantifying one of these effects through a sensitivity analysis and at modeling it through custom-made parameters. These are depending on features of the wave or the device configuration, all of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon increased, as the updated model allows improved accuracy and precision respect to the former version.

  12. Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Erik Friis-Madsen

    2013-04-01

    Full Text Available An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration. An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection between platform and reflectors. The study is carried out in four phases, each of them specifically targeted at quantifying one of these effects through a sensitivity analysis and at modeling it through custom-made parameters. These are depending on features of the wave or the device configuration, all of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon increased, as the updated model allows improved accuracy and precision respect to the former version.

  13. A SYSTEM TO MAKE USE OF EXISTING BREAKWATERS AS OVERTOPPING WAVE ENERGY CONVERTERS

    Directory of Open Access Journals (Sweden)

    DENIZ ÜNSALAN

    2016-06-01

    Full Text Available The main purpose of building breakwaters is to produce safe havens for ships and boats in rough seas. The general architecture for a breakwater is a wall with a trapezoidal -shaped cross section extending parallel to the shoreline. As the waves from the open sea approach, they are encountered by the so- called slope and revetment of the breakwater, where the wave is broken and its energy is dissipated and/or reflected back. However, the ever -increasing attractiveness of the utilization of waves as energy sources, paralleling to the increasing monetary and envir onmental costs of energy, has led the authors to consider the vast amounts of this otherwise dissipated energy into useful electrical energy. A wave energy conversion concept, which can be classified as an “overtopping” wave energy converter was conceived, where the open sea-facing (revetment side of the breakwater is fitted by a water collecting channel at a suitable height above the calm water level, running alongside the breakwater. The channel leads the collected water to a powerhouse containing a low head turbine (or a set of such turbines discharging it to the calm water of the inner harbour. Power obtained from these turbines can be converted to electrical energy. In this study, an estimation of the volume of water collected by the channel and the energy production for a proposed breakwater - power station system for a typical rough weather shall be made. It is deemed that the feasibility of this system is comparable to and even higher than the other wave energy conversion systems since it does not require additional facilities and power supply lines to be built due to its proximity to the existing energy transmission lines, except for the addition of new features/installations to the existing breakwaters.

  14. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.; Lawson, Michael

    2016-06-01

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of the controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.

  15. Performance analysis of a wave energy converter using numerical simulation technique

    Institute of Scientific and Technical Information of China (English)

    Mohammed; Asid; ZULLAH; Deepak; PRASAD; Mohammed; Rafiuddin; AHMED; Young-Ho; LEE

    2010-01-01

    A general purpose viscous flow solver Ansys CFX was used to study a Savonius type wave energy converter in a 3D numerical viscous wave tank.This paper presents the results of a computational fluid dynamics(CFD) analysis of the effect of blade configuration on the performance of two Savonius rotors for wave energy extraction.A piston-type wave generator was incorporated in the computational domain to generate the desired incident waves.A complete OWC system with a 3-bladed Savonius rotor was modeled in a three dimensional numerical wave tank and the hydrodynamic conversion efficiency was estimated.The flow over the rotors was assumed to be two-dimensional(2D),viscous,turbulent and unsteady.The CFX code was used with a solver of the coupled conservation equations of mass,momentum and energy,with an implicit time scheme and with the adoption of the hexahedral mesh and the moving mesh techniques in areas of moving surfaces.Turbulence was modeled with the k-e model.The results indicated that the developed models are suitable to analyze the water flows both in the chamber and in the turbine.For the turbine,the numerical results of pressure and torque were compared for the two cases.

  16. Application of the Most Likely Extreme Response Method for Wave Energy Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang; Lawson, Michael

    2016-07-01

    Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based on spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.

  17. Application of the Most Likely Extreme Response Method for Wave Energy Converters

    Energy Technology Data Exchange (ETDEWEB)

    Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang; Lawson, Michael

    2016-06-24

    Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based on spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.

  18. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Enrique Vidal

    2013-08-01

    Full Text Available The Wavestar Wave Energy Converter (WEC is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO system, converting the wave induced motion of the floats into a steady power output to the grid. In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC is created, allowing near loss free discrete force control. This paper presents a complete PTO system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical power is achievable for all relevant sea conditions.

  19. On forced oscillations of a simple model for a novel wave energy converter

    KAUST Repository

    Orazov, Bayram

    2011-05-11

    The dynamics of a simple model for an ocean wave energy converter is discussed. The model for the converter is a hybrid system consisting of a pair of harmonically excited mass-spring-dashpot systems and a set of four state-dependent switching rules. Of particular interest is the response of the model to a wide spectrum of harmonic excitations. Partially because of the piecewise-smooth dynamics of the system, the response is far more interesting than the linear components of the model would suggest. As expected with hybrid systems of this type, it is difficult to establish analytical results, and hence, with the assistance of an extensive series of numerical integrations, an atlas of qualitative results on the limit cycles and other forms of bounded oscillations exhibited by the system is presented. In addition, the presence of unstable limit cycles, the stabilization of the unforced system using low-frequency excitation, the peculiar nature of the response of the system to high-frequency excitation, and the implications of these results on the energy harvesting capabilities of the wave energy converter are discussed. © 2011 Springer Science+Business Media B.V.

  20. Survivability Mode and Extreme Loads on the Mooring Lines of the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    of the survivability of the device in extreme waves and evaluation of the design loads for the mooring component. The testing has been carried out in October 2010 by PhD student Stefano Parmeggiani and Master students Giovanna Bevilacqua and Giacomo Girardi Ferruzza at the Hydraulic and Coastal Laboratories...... of the department of Civil Engineering at Aalborg University. The outcome of the research will be used as input for future research work aimed at the design of the mooring system and the certification of the structural design for the full scale Wave Dragon demonstrator....

  1. Selection of Design Power of Wave Energy Converters Based on Wave Basin Experiments

    DEFF Research Database (Denmark)

    Martinelli, L.; Zanuttigh, B.; Kofoed, Jens Peter

    2011-01-01

    of the measured efficiency; description of the energy production by means of a function of the design capacity; application of a simple formula for cost benefit analysis. The analyses here proposed are based on the experimental results of 3D tests on two floating wave energy devices, named LEANCON and DEXA...

  2. Preliminary Results from Second Phase Sea Testing of the Wave Dragon Prototype Wave Energy Converter

    DEFF Research Database (Denmark)

    Soerensen, Hans Chr.; Tedd, James; Friis-Madsen, Erik;

    2006-01-01

    In March 2006 the prototype Wave Dragon has been redeployed to a more energetic site in Nissum Bredning an inland sea in Western Denmark. This has followed a period of renovation of many aspects of the device which have resulted in 20% higher energy output. This paper describes the preliminary re...

  3. Preliminary Results from Second Phase Sea Testing of the Wave Dragon Prototype Wave Energy Converter

    DEFF Research Database (Denmark)

    Soerensen, Hans Chr.; Tedd, James; Friis-Madsen, Erik

    2006-01-01

    In March 2006 the prototype Wave Dragon has been redeployed to a more energetic site in Nissum Bredning an inland sea in Western Denmark. This has followed a period of renovation of many aspects of the device which have resulted in 20% higher energy output. This paper describes the preliminary...

  4. Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber.

    Science.gov (United States)

    Zhang, Ailing; Demokan, M S

    2005-09-15

    We demonstrate a 10 Gbit/s nonreturn-to-zero wavelength converter based on four-wave mixing in a 20 m highly nonlinear photonic crystal fiber. The tunable wavelength conversion bandwidth (3 dB) is about 100 nm. The conversion efficiency is -16 dB when the pump power is 22.5 dBm. Phase modulation was not used to suppress the stimulated Brillouin scattering; thus the linewidth of the converted wavelength remained very narrow. The eye diagrams show that there is no additional noise during wavelength conversion. The measured power penalty at a 10(-9) bit-error-rate level is about 0.7 dB.

  5. Pemodelan Sistem Hidrolis Terhadap Variasi Tinggi Gelombang Air Laut Pada Sistem Wave Energy Hyperbaric Converter (WEHC

    Directory of Open Access Journals (Sweden)

    Frengki Mohamad Felayati

    2015-12-01

    Full Text Available Perbedaan karakteristik gelombang berpengaruh terhadap listrik yang dihasilkan pembangkit listrik tenaga gelombang laut. Termasuk WEHC (Wave Energy Hyperbaric Converter dalam instalasinya perlu dianalisa aliran energi terhadap variasi tinggi gelombang air laut dan mengetahui tinggi gelombang optimum untuk instalasinya. Sistem ini bekerja dengan sub sistem antara lain buoy, arm, hydraulic pump, hyperbaric accumulator, hyperbaric chamber, dan turbin pelton. Sistem bekerja secara tertutup dengan menggunakan fluida fresh water. Implementasi dari converter ini yaitu di daerah pantai curam atau dengan rekayasa struktur yang sesuai. Pembuatan simulasi menggunakan MATLAB Simulink dengan memvariasikan tinggi gelombang laut antara 1 – 2 m dan periode gelombang 5 – 7 m. Rancangan sistem ini menghasilkan daya terkecil 8.8 kW yaitu pada periode gelombang 7 s dan tinggi gelombang 1 m. Sedangkan daya terbesar yaitu 24.9 kW pada periode gelombang 5 s dan tinggi gelombang 2 m dengan efisiensi sebesar 82.8%.

  6. Electron heating via mode converted ion Bernstein waves in the Alcator C-Mod tokamak

    Science.gov (United States)

    Bonoli, P. T.

    1996-11-01

    Highly localized electron heating (FWHM ≈ 0.5) has also been observed in D-(^3He) plasmas at 7.9 T. In this case the ^3He cyclotron resonance is on-axis and the fundamental D resonance and mode conversion layer are on the high field side of the tokamak. The concentration of ^3He in these experiments was in the range n_^3He / ne ~= (0.2 - 0.3) and the location of the mode conversion layer was controlled by changing the ^3He concentration or the toroidal magnetic field. The rf heating profiles were deduced using an rf power modulation technique in which the local electron heating rate was obtained from a ``break in slope'' analysis of the measured electron temperature versus time. Detailed comparisons with 1-D and toroidal full-wave ICRF models (FELICE and FISIC codes) have been carried out. The 1-D predictions for the fractional electron power absorption and damping location are found to be in qualitative agreement with the experiment. However discrepancies have been found between the full-wave toroidal code predictions and experiment. This disagreement is thought to be due to a lack of radial and poloidal resolution in the solution of the mode converted ion Bernstein wave in toroidal geometry and will be discussed. A fast wave current drive package has been modified to study the current generated via the mode converted IBW. Based on these numerical results and the experimental results for power absorption, off-axis current of up to 200 kA is predicted for C-Mod with unidirectional wave spectrum, which should be sufficient for studying reversed shear advanced tokamak plasmas. Work supported by USDOE Contract No. DE-AC02-78ET51013. Ôn behalf of the Alcator Group

  7. Converted seismic wave analysis in the Gulf of Corinth region by using local eartquake records

    Science.gov (United States)

    Latorre, D.; Virieux, J.; Monfret, T.; Monteiller, V.; Got, J.-L.; Lyon-Caen, H.

    2003-04-01

    In the framework of the 3F Corinth project, we have analyzed seismograms of passive tomographic experiments deployed previously around the Aigion area in the western Gulf of Corinth. We have successfully tracked possible converted PS and SP phases. These phases might bring constraints in tectonic and geometrical description of this extension zone. Seismic data recorded by both a two months passive tomographic experiment in 1991 and an aftershock study in 1995 have been organized for converted phase analysis. In order to do so, obtaining an accurate background smooth velocity structure was essential. Therefore we have developed both a seismic tomographic linearized inversion and a global search investigation of converted phases on an arbitrary interface using the same interpolation of velocity structure, travel-time estimation and partial differential kernel for the tomographic part. A smooth velocity structure is deduced from our data set which reproduces globally previous tomographic results. We introduced a curved interface described by a B-spline interpolation without any modification of the background velocity structure. Transmitted as well as reflected PS and SP theoretical travel-times are computed for different interface geometries and depths. Move-out and mutes of seismograms are performed by using these theoretical travel-times. On these windows, different signal processing techniques, based on component rotation, component product, polarization analysis and stacking techniques, are applied in order to emphasize seismic wave energy associated with converted phases. We have detected an important concentration of seismic wave energy associated with a sub-horizontal interface lying between 5 km and 8 km in relation with our background structure. Sensibility of energy concentration with respect to the shape on the interface will be presented and discussed. The detection of possible flat interface at the bottom of the superficial crust will introduce

  8. On The Dynamics and Design of a Two-body Wave Energy Converter

    Science.gov (United States)

    Liang, Changwei; Zuo, Lei

    2016-09-01

    A two-body wave energy converter oscillating in heave is studied in this paper. The energy is extracted through the relative motion between the floating and submerged bodies. A linearized model in the frequency domain is adopted to study the dynamics of such a two-body system with consideration of both the viscous damping and the hydrodynamic damping. The closed form solution of the maximum absorption power and corresponding power take-off parameters are obtained. The suboptimal and optimal designs for a two-body system are proposed based on the closed form solution. The physical insight of the optimal design is to have one of the damped natural frequencies of the two body system the same as, or as close as possible to, the excitation frequency. A case study is conducted to investigate the influence of the submerged body on the absorption power of a two-body system subjected to suboptimal and optimal design under regular and irregular wave excitations. It is found that the absorption power of the two-body system can be significantly higher than that of the single body system with the same floating buoy in both regular and irregular waves. In regular waves, it is found that the mass of the submerged body should be designed with an optimal value in order to achieve the maximum absorption power for the given floating buoy. The viscous damping on the submerged body should be as small as possible for a given mass in both regular and irregular waves.

  9. Critical Factors Influencing Viability of Wave Energy Converters in Off-Grid Luxury Resorts and Small Utilities

    Directory of Open Access Journals (Sweden)

    Aksel Botne Sandberg

    2016-12-01

    Full Text Available This paper examines technical and non-technical factors that are critical to the viability of commercialization of wave energy converters in off-grid luxury resorts and small utilities. Critical factors are found by investigating Levelized Cost of Energy, and using the tools PESTEL and Porter’s five competitive forces. Identified factors are then applied on three business cases to investigate their impact on viability. The results show that one of the main challenges facing off-grid commercialization is the few wave energy converter units installed per location, negating the economy of scale that large wave energy farms count on to achieve competitive cost levels. In addition, factors like current cost of energy, available wave resources, distance from shore, infrastructure, supply chain logistics, and electricity demand are found to be deciding factors for viability. Despite these challenges, it is found that there are potentially viable off-grid business cases for commercialization of wave energy converters.

  10. Modelling and Testing of Wave Dragon Wave Energy Converter Towards Full Scale Deployment

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano

    -commercial stage in which it has proven difficult to secure the necessary funding for the deployment of a full-scale demonstrator unit. The work presented aims at easing this process, by increasing public and scientific knowledge of the device, as well as by showing the latest progress in its development. Research....... This is mainly due to the development of an updated overtopping model specifically suited to Wave Dragon, which allows greater quality to predictions of the primary energy absorption of the device compared to previous versions. At the same time an equitable approach has been described and used in the performance......, the research has also provided a deeper insight into the physics of the overtopping process by individually assessing the influence of related device configuration and wave features, which goes beyond the present application and may be used for other overtopping WECs as well. Comprehensive analysis...

  11. Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Chozas, Julia Fernandez; Pecher, Arthur

    2011-01-01

    At the present pre-commercial phase of the wave energy sector, device developers are called to provide reliable estimates on power performance and production at possible deployment locations. The EU EquiMar project has proposed a novel approach, where the performance assessment is based mainly...... on experimental data deriving from sea trials rather than solely on numerical predictions. The study applies this methodology to evaluate the performance of Wave Dragon at two locations in the North Sea, based on the data acquired during the sea trials of a 1:4.5 scale prototype. Indications about power...... performance and production of the device at the target locations, as well as on the applicability of the methodology, are provided....

  12. The Inter Facility Testing of a Standard Oscillating Water Column (OWC) Type Wave Energy Converter (WEC)

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt; Thomsen, Jonas Bjerg

    This report describes the behavior and preliminary performance of a simplified standard oscillating water column (OWC) wave energy converter (WEC). The same tests will be conducted at different scales at 6 different test facilities and the results obtained will be used for comparison. This projec...... at Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg. For further information regarding the content of this report please contact Morten Thøtt Andersen (mta@civil.aau.dk) or Jonas Bjerg Thomsen (jbt@civil.aau.dk) from the Department of Civil Engineering....

  13. Development of the Second-Generation Oscillating Surge Wave Energy Converter with Variable Geometry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-25

    This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.

  14. Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters

    OpenAIRE

    Arthur Pecher; Aligi Foglia; Jens Peter Kofoed

    2014-01-01

    A quasi-static analysis and sensitivity investigation of two different mooring configurations—a single anchor leg mooring (SALM) and a three-legged catenary anchor leg system (CALM)—is presented. The analysis aims to indicate what can be expected in terms of requirements for the mooring system size and stiffness. The two mooring systems were designed for the same reference load case, corresponding to a horizontal design load at the wave energy converter (WEC) of 2000 kN and a water depth of 3...

  15. Cost, Time, and Risk Assessment of Different Wave Energy Converter Technology Development Trajectories: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jochem W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Laird, Daniel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Costello, Ronan [Wave Venture; Roberts, Jesse [Sandia National Laboratories; Bull, Diana [Sandia National Laboratories; Babarit, Aurelien [Ecole Centrale de Nantes; Nielsen, Kim [Ramboll; Ferreira, Claudio Bittencourt [DNV-GL; Kennedy, Ben [Wave Venture

    2017-09-14

    This paper presents a comparative assessment of three fundamentally different wave energy converter technology development trajectories. The three technology development trajectories are expressed and visualised as a function of technology readiness levels and technology performance levels. The assessment shows that development trajectories that initially prioritize technology readiness over technology performance are likely to require twice the development time, consume a threefold of the development cost, and are prone to a risk of technical or commercial failure of one order of magnitude higher than those development trajectories that initially prioritize technology performance over technology readiness.

  16. Design of a multi-poppet on-off valve for wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    Fluid power systems are the leading technology for the power take off system in ocean wave energy converters. However, fluid power systems often suffer from poor efficiency, especially in part loads. This degrades the PTO system efficiency and therefore lower the energy production. To overcome...... than 15 ms. The pilot stage is directly actuated and utilises internal valve pressure as supply and an external tank connection as drain. The current article presents the design process leading to the final valve design. This includes the geometric design of the main stage, the choice of pilot valve...

  17. Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots

    Directory of Open Access Journals (Sweden)

    Valentina Vannucchi

    2016-12-01

    Full Text Available This paper presents an assessment of offshore wave energy potential at the scale of the whole Mediterranean Sea. The offshore wave data were propagated, by means of numerical modeling, toward four Italian coastal areas, namely stretches of coast of Tuscany, Liguria, Sardinia and Sicily. For each area, the wave power and the monthly, seasonal and annual variability at water depths of 50 m and 15 m were analyzed and hotspots were located. The results show strong variability of the wave energy potential from point to point of the same area thus highlighting the need for spatially detailed analysis. The higher values of wave energy potential are located in the hotspots of Sardinia and Sicily, at 11.4 kW/m and 9.1 kW/m, respectively. The Tuscany and the Liguria hotspots are characterized, respectively, by 4.7 kW/m and 2.0 kW/m. In order to point out which state of the art WEC is best suited for the Italian areas, the performances of six different state of the art Wave Energy Converters (WECs were evaluated. Finally, a comparison of the performances of each WEC in the selected Italian sites and in some European (EU oceanic sites was conducted. The energy potential in the most energetic EU oceanic site, among those here investigated, is up to 38-times greater than the potentials in the studied Italian areas but the power output, of the best WEC technology, is no more than nine times greater.

  18. On the concept of sloped motion for free-floating wave energy converters.

    Science.gov (United States)

    Payne, Grégory S; Pascal, Rémy; Vaillant, Guillaume

    2015-10-08

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range.

  19. Study of hydrodynamic characteristics of a Sharp Eagle wave energy converter

    Science.gov (United States)

    Zhang, Ya-qun; Sheng, Song-wei; You, Ya-ge; Huang, Zhen-xin; Wang, Wen-sheng

    2017-06-01

    According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture.

  20. Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Arthur Pecher

    2014-02-01

    Full Text Available A quasi-static analysis and sensitivity investigation of two different mooring configurations—a single anchor leg mooring (SALM and a three-legged catenary anchor leg system (CALM—is presented. The analysis aims to indicate what can be expected in terms of requirements for the mooring system size and stiffness. The two mooring systems were designed for the same reference load case, corresponding to a horizontal design load at the wave energy converter (WEC of 2000 kN and a water depth of 30 m. This reference scenario seems to be representative for large WECs operating in intermediate water depths, such as Weptos, Wave Dragon and many others, including reasonable design safety factors. Around this reference scenario, the main influential parameters were modified in order to investigate their impact on the specifications of the mooring system, e.g. the water depth, the horizontal design load, and a mooring design parameter.

  1. Optimal Constant DC Link Voltage Operation of aWave Energy Converter

    Directory of Open Access Journals (Sweden)

    Mats Leijon

    2013-04-01

    Full Text Available This article proposes a simple and reliable damping strategy for wave powerfarm operation of small-scale point-absorber converters. The strategy is based on passiverectification onto a constant DC-link, making it very suitable for grid integration of the farm.A complete model of the system has been developed in Matlab Simulink, and uses real sitedata as input. The optimal constant DC-voltage is evaluated as a function of the significantwave height and energy period of the waves. The total energy output of the WEC is derivedfor one year of experimental site data. The energy output is compared for two cases, onewhere the optimal DC-voltage is determined and held constant at half-hour basis throughoutthe year, and one where a selected value of the DC-voltage is kept constant throughout theyear regardless of sea state.

  2. Design of Bidirectional Check Valve for Discrete Fluid Power Force System for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Discrete fluid power force systems consisting of a multichamber cylinder, a witching manifold and common pressure lines have been proposed as a technology for increasing the efficiency of the power take off system in ocean wave energy converters. However the force shifting of these discrete systems...... enables passive force switching under minimal pressure difference, hence minimal energy loss. The bidirectional check valve is designed with a rated flow in the range of 1000L/min@5bar. The flow direction of the bidirectional check valve is set by the setting the pilot pressure. This paper presents...... a functionality test of a 125 L/min@5bar bidirectional check, leading to the design and modelling of a bidirectional check valve for ocean wave energy. It shows that a feasible bidirectional check valve may be configured by employing a multi-poppet topology for the main stage and utilising a 3/2 switching valve...

  3. Optimal Discrete PTO Force Point Absorber Wave Energy Converters in Regular Waves

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.

    2013-01-01

    the conventional fluid power systems suffer of poor efficiency. Therefore discrete fluid power force systems have been proposed. Limited research has, however, been conducted with focus on choosing the discrete force levels and force profiles for a discrete PTO system for WECs. This paper is to support the design...... of discrete force systems for PTO, by focusing on how to choose the optimal PTO force levels and force profile when seeking to increase energy harvesting. The work concerns point absorber WECs and utilises a simple float model based on linear wave theory. Utilising the principle of superposition...

  4. Balancing Power Absorption and Structural Loading for an Assymmetric Heave Wave-Energy Converter in Regular Waves: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2016-07-01

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would require the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.

  5. Balancing Power Absorption and Structural Loading for an Asymmetric Heave Wave-Energy Converter in Regular Waves

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2016-06-24

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would require the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.

  6. Computational simulations of the interaction of water waves with pitching flap-type ocean wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Using an in-house computational framework, we have studied the interaction of water waves with pitching flap-type ocean wave energy converters (WECs). The computational framework solves the full 3D Navier-Stokes equations and captures important effects, including the fluid-solid interaction, the nonlinear and viscous effects. The results of the computational tool, is first compared against the experimental data on the response of a flap-type WEC in a wave tank, and excellent agreement is demonstrated. Further simulations at the model and prototype scales are presented to assess the validity of the Froude scaling. The simulations are used to address some important questions, such as the validity range of common WEC modeling approaches that rely heavily on the Froude scaling and the inviscid potential flow theory. Additionally, the simulations examine the role of the Keulegan-Carpenter (KC) number, which is often used as a measure of relative importance of viscous drag on bodies exposed to oscillating flows. The performance of the flap-type WECs is investigated at various KC numbers to establish the relationship between the viscous drag and KC number for such geometry. That is of significant importance because such relationship only exists for simple geometries, e.g., a cylinder. Support from the National Science Foundation is gratefully acknowledged.

  7. Application of the time-dependent mild-slope equations for the simulation of wake effects in the lee of a farm of Wave Dragon wave energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Beels, Charlotte; Troch, Peter; De Visch, Kenneth; De Backer, Griet [Ghent University, Department of Civil Engineering, Technologiepark 904, B-9052 Zwijnaarde (Belgium); Kofoed, Jens Peter [Aalborg University, Department of Civil Engineering, Sohngaardsholmsvej 57, DK-9000 Aalborg (Denmark)

    2010-08-15

    Time-dependent mild-slope equations have been extensively used to compute wave transformations near coastal and offshore structures for more than 20 years. Recently the wave absorption characteristics of a Wave Energy Converter (abbreviated as WEC) of the overtopping type have been implemented in a time-dependent mild-slope equation model by using numerical sponge layers. In this paper the developed WEC implementation is applied to a single Wave Dragon WEC and multiple Wave Dragon WECs. The Wave Dragon WEC is a floating offshore converter of the overtopping type. Two wave reflectors focus the incident wave power towards a ramp. The focussed waves run up the ramp and overtop in a water reservoir above mean sea level. The obtained potential energy is converted into electricity when the stored water drains back to the sea through hydro turbines. The wave reflectors and the main body (ramp and reservoir) are simulated as porous structures, exhibiting the same reflection, respectively absorption characteristics as obtained for the prototype Wave Dragon WEC. The wake effects behind a single Wave Dragon WEC are studied in detail for uni- and multidirectional waves. The shadow zone indicating the wake effect is decreasing with increasing directional spreading. The wake in the lee of a farm of five Wave Dragon WECs, installed in a staggered grid (3 WECs in the first row and 2 WECs in the second row), is calculated for three in-between distances of respectively D, 2D and 3D, with D the distance between the tips of the wave reflectors of a single WEC. As a result, a farm of five Wave Dragon WECs installed in a staggered grid with an in-between distance of 2D is preferred, when taking cost and spatial considerations into account. (author)

  8. Influence of material selection on the structural behavior of a wave energy converter

    Directory of Open Access Journals (Sweden)

    Cândida M. S. P. Malça

    2014-09-01

    Full Text Available In the last decades, the world energy demand has raised significantly. Concerning this fact, wave energy should be considered as a valid alternative for electricity production. Devices suitable to harness this kind of renewable energy source and convert it into electricity are not yet commercially competitive. This paper is focused on the selection and analysis of different types of elastic materials and their influence on the structural behavior of a wave energy converter (WEC. After a brief characterization of the device, a tridimensional computer aided design (3D CAD numerical model was built and several finite element analyses (FEA were performed through a commercial finite element code. The main components of the WEC, namely the buoy, supporting cables and hydraulic cylinder were simulated assuming different materials. The software used needs, among other parameters, the magnitude of the resultant hydrodynamic forces acting upon the floating buoy obtained from a WEC time domain simulator (TDS which was built based on the WEC dynamic model previously developed. The Von Mises stress gradients and displacement fields determined by the FEA demonstrated that, regardless of the WEC component, the materials with low Young's modulus seems to be unsuitable for this kind of application. The same is valid for the material yield strength since materials with a higher yield strength lead to a better structural behavior of WEC components because lower stress and displacement values were obtained. The developed 3D CAD numerical model showed to be suitable to analyze different combinations of structural conditions. They could depend of different combinations of buoy position and resultant hydrodynamic forces acting upon the buoy, function of the specific sea wave parameters found on the deployment site.

  9. Numerical Modeling on Hydrodynamic Performance of A Bottom-Hinged Flap Wave Energy Converter

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hai-tao; SUN Zhi-lin; HAO Chun-ling; SHEN Jia-fa

    2013-01-01

    The hydrodynamic performance of a bottom-hinged flap wave energy converter (WEC) is investigated through a frequency domain numerical model.The numerical model is verified through a two-dimensional analytic solution,as well as the qualitative analysis on the dynamic response of avibrating system.The concept of "optimum density" of the bottom-hinged flap is proposed,and its analytic expression is derived as well.The frequency interval in which the optimum density exists is also obtained.The analytic expression of the optimum linear damping coefficient is obtained by a bottom-hinged WEC.Some basic dynamic properties involving natural period,excitation moment,pitch amplitude,and optimum damping coefficient are analyzed and discussed in detail.In addition,this paper highlights the analysis of effects on the conversion performance of the device exerted by some important parameters.The results indicate that "the optimum linear damping period of 5.0 s" is the most ideal option in the short wave sea states with the wave period below 6.0 s.Shallow water depth,large flap thickness and low flap density are advised in the practical design of the device in short wave sea states in order to maximize power capture.In the sea state with water depth of 5.0 m and wave period of 5.0 s,the results of parametric optimization suggest a flap with the width of 8.0 m,thickness of 1.6 m,and with the density as little as possible when the optimum power take-off (PTO) damping coefficient is adopted.

  10. Characterization and Scaling of Heave Plates for Ocean Wave Energy Converters

    Science.gov (United States)

    Rosenberg, Brian; Mundon, Timothy

    2016-11-01

    Ocean waves present a tremendous, untapped source of renewable energy, capable of providing half of global electricity demand by 2040. Devices developed to extract this energy are known as wave energy converters (WECs) and encompass a wide range of designs. A somewhat common archetype is a two-body point-absorber, in which a surface float reacts against a submerged "heave" plate to extract energy. Newer WEC's are using increasingly complex geometries for the submerged plate and an emerging challenge in creating low-order models lies in accurately determining the hydrodynamic coefficients (added mass and drag) in the corresponding oscillatory flow regime. Here we present experiments in which a laboratory-scale heave plate is sinusoidally forced in translation (heave) and rotation (pitch) to characterize the hydrodynamic coefficients as functions of the two governing nondimensional parameters, Keulegan-Carpenter number (amplitude) and Reynolds number. Comparisons against CFD simulations are offered. As laboratory-scale physical model tests remain the standard for testing wave energy devices, effects and implications of scaling (with respect to a full-scale device) are also investigated.

  11. Coupled Mooring Analyses for the WEC-Sim Wave Energy Converter Design Tool: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sirnivas, Senu; Yu, Yi-Hsiang; Hall, Matthew; Bosma, Bret

    2016-07-01

    A wave-energy-converter-specific time-domain modeling method (WEC-Sim) was coupled with a lumped-mass-based mooring model (MoorDyn) to improve its mooring dynamics modeling capability. This paper presents a verification and validation study on the coupled numerical method. First, a coupled model was built to simulate a 1/25 model scale floating power system connected to a traditional three-point catenary mooring with an angle of 120 between the lines. The body response and the tension force on the mooring lines at the fairlead in decay tests and under regular and irregular waves were examined. To validate and verify the coupled numerical method, the simulation results were compared to the measurements from a wave tank test and a commercial code (OrcaFlex). Second, a coupled model was built to simulate a two-body point absorber system with a chain-connected catenary system. The influence of the mooring connection on the point absorber was investigated. Overall, the study showed that the coupling of WEC-Sim and the MoorDyn model works reasonably well for simulating a floating system with practical mooring designs and predicting the corresponding dynamic loads on the mooring lines. Further analyses on improving coupling efficiency and the feasibility of applying the numerical method to simulate WEC systems with more complex mooring configuration are still needed.

  12. Coupled Mooring Analyses for the WEC-Sim Wave Energy Converter Design Tool

    Energy Technology Data Exchange (ETDEWEB)

    Sirnivas, Senu; Yu, Yi-Hsiang; Hall, Matthew; Bosma, Bret

    2016-06-24

    A wave-energy-converter-specific time-domain modeling method (WEC-Sim) was coupled with a lumped-mass-based mooring model (MoorDyn) to improve its mooring dynamics modeling capability. This paper presents a verification and validation study on the coupled numerical method. First, a coupled model was built to simulate a 1/25 model scale floating power system connected to a traditional three-point catenary mooring with an angle of 120 between the lines. The body response and the tension force on the mooring lines at the fairlead in decay tests and under regular and irregular waves were examined. To validate and verify the coupled numerical method, the simulation results were compared to the measurements from a wave tank test and a commercial code (OrcaFlex). Second, a coupled model was built to simulate a two-body point absorber system with a chain-connected catenary system. The influence of the mooring connection on the point absorber was investigated. Overall, the study showed that the coupling of WEC-Sim and the MoorDyn model works reasonably well for simulating a floating system with practical mooring designs and predicting the corresponding dynamic loads on the mooring lines. Further analyses on improving coupling efficiency and the feasibility of applying the numerical method to simulate WEC systems with more complex mooring configuration are still needed.

  13. Optimizing the Performance of Solo Duck Wave Energy Converter in Tide

    Directory of Open Access Journals (Sweden)

    Jinming Wu

    2017-02-01

    Full Text Available The high efficiency performance of the Edinburgh Duck wave energy converter (WEC in 2D regular wave tests makes it a promising wave energy conversion scheme. A solo Duck WEC will be able to apply the point absorber effect to further enhance its performance. Since released degree of freedom will decrease the efficiency, a Duck WEC with fixed pitching axis will be a better option. However, for fixed supported WECs, tide is a non-ignorable consideration. In this paper, a movable mass method is utilized in the whole tidal range to not only balance the Duck to appropriate beak angles, but also follow the variation of hydrodynamic coefficients to keep cancelling the reactance of the system impedance so that complex conjugate control can be realized to optimize the power capture performance of the Duck WEC in tide. Results show that the beak angle should be adjusted to as large a value as possible so that the response amplitude of the Duck at maximum relative capture width will be reasonable small, and the lowest weight of the movable mass is found when its designed position locates at the center of the Duck profile.

  14. Investigation of Wave Energy Converter Effects on the Nearshore Environment: A Month-Long Study in Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool, SNL - SWAN, was used to perform model simulations for hourly initial wave conditio ns measured during the month of October 2009. The model was run with an array of 50 wave energy converters (WECs) and compared with model runs without WECs. Maximum changes in H s were found in the lee of the WEC array along the angles of incident wave dire ction and minimal changes were found along the western side of the model domain due to wave shadowing by land. The largest wave height reductions occurred during observed typhoon conditions and resulted in 14% decreases in H s along the Santa Cruz shoreline . Shoreline reductions in H s were 5% during s outh swell wave conditions and negligible during average monthly wave conditions.

  15. Fatigue reliability and calibration of fatigue design factors of wave energy converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Ferri, Francesco; Kofoed, Jens Peter

    2015-01-01

    Target reliability levels, which are chosen dependent on the consequences in case of structural collapse, are used in this paper to calibrate partial safety factors for structural details of wave energy converters (WECs). The consequences in case of structural failure are similar for WECs...... and offshore wind turbines (no fatalities, low environmental pollution). Therefore, it can be assumed that the target reliability levels for WEC applications can be overtaken from offshore wind turbine studies. The partial safety factors cannot be directly overtaken from offshore wind turbines because the load...... is considered in order to extend and maintain a certain target safety level. This paper uses the Wavestar prototype located at Hanstholm (DK) as case study in order to calibrate FDFs for welded and bolted details in steel structures of an offshore bottom-fixed WEC with hydraulic floaters....

  16. Numerical Time Integration Methods for a Point Absorber Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Kramer, Morten

    2012-01-01

    The objective of this abstract is to provide a review of models for motion simulation of marine structures with a special emphasis on wave energy converters. The time-domain model is applied to a point absorber system working in pitch mode only. The device is similar to the well-known Wavestar...... float located in the Danish North Sea. The main objective is to produce a tool that can accurately simulate the dynamics of a floating structure with an arbitrary geometry provided the frequency domain coefficients are calculated beforehand. The latter calculation is based on linear fluid structure...... interaction (small deformations of the fluid surface and body), inviscid incompressible, irrotational flow and a linearized Euler-Bernoulli formulation of the fluid pressure. The time-domain analysis of a floating structure involves the calculation of a convolution integral between the impulse response...

  17. Numerical Analysis of a Large Floating Wave Energy Converter with Adjustable Structural Geometry

    DEFF Research Database (Denmark)

    Ferri, Francesco; Pecher, Arthur Francois Serge; Kofoed, Jens Peter

    2015-01-01

    The current cost of energy (CoE) from wave energy converters (WECs) is still significantly higher than other renewable energy resources, thus the sector has not yet reached a competitive level. WECs have a relative small turnover compared to the high capital cost, which to a large extent is driven...... by the structural loads in extreme conditions. TheWeptos is a large floating WEC, with multiple absorbers, which has proven to be a serious candidate for the renewable energy market, due to both relevant power performance and reduced cost if compared with other WECs. The scope of this article is to compare two...... different configurations of the Weptos machine, using the cost of energy (CoE) as a base of comparison. The numerical results are obtained via a multi-body analysis carried out in frequency domain....

  18. X-Ray Converters On Dense Ionization Waves With Tunable Velocities

    Science.gov (United States)

    Zhidkov, A.; Esirkepov, T.; Fujii, T.; Nemoto, K.; Koga, J.; Bulanov, S. V.

    2009-07-01

    The optical field ionization of a transparent media by two, cylindrically focused femtosecond laser pulses may result in production of an ionization wave (IW). Velocity of such a quasi-plane IW in the vicinity of pulse intersection can be tuned by changing the intersection angle and can even exceed the speed of light. We study the conversion of a coherent light to x-rays by means of particle-in-cell simulation and by solution of continuous equation with the correct current: j(x,t) = -e∫(dNe/dt0)v(t,t0)dt0.X-ray spectrum of converted lower frequency light changes from the monochromatic to a high order harmonic-like with the duration of ionizing pulses. The conversion efficiency can be increased via suppression the energy of the generated magnetic field.

  19. Application of the Time-Dependent Mild-Slope Equations for the Simulation of Wake Effects in the Lee of a Farm of Wave Dragon Wave Energy Converters

    DEFF Research Database (Denmark)

    Beels, Charlotte; Troch, Peter; Visch, Kenneth De;

    2010-01-01

    in a time-dependent mild-slope equation model by using numerical sponge layers. In this paper the developed WEC implementation is applied to a single Wave Dragon WEC and multiple Wave Dragon WECs. The Wave Dragon WEC is a floating offshore converter of the overtopping type. Two wave reflectors focus...... and reservoir) are simulated as porous structures, exhibiting the same reflection, respectively absorption characteristics as obtained for the prototype Wave Dragon WEC. The wake effects behind a single Wave Dragon WEC are studied in detail for uni- and multidirectional waves. The shadow zone indicating...... the wake effect is decreasing with increasing directional spreading. The wake in the lee of a farm of five Wave Dragon WECs, installed in a staggered grid (3 WECs in the first row and 2 WECs in the second row), is calculated for three in-between distances of respectively D, 2D and 3D, with D the distance...

  20. Sea-state Modification and Heaving Float Interaction Factors from Physical Modelling of Arrays of Wave Energy Converters

    DEFF Research Database (Denmark)

    Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim

    2015-01-01

    Waveenergy converters (WECs) extract energy from ocean waves and have the potential to produce a significant amount of electricity from a renewable resource. However, large “WEC farms” or “WEC arrays” (composed of a large number of individual WECs) are expected to exhibit “WEC array effects...... response, wave induced forces on the WECs, and wave field modifications have been measured. A first understanding of WEC array effects is obtained. This unique experimental set-up of up to 25 individual WEC units in an array layout, placed in a large wave tank, is at present the largest set-up of its kind...

  1. Research and application of spectral inversion technique in frequency domain to improve resolution of converted PS-wave

    Science.gov (United States)

    Zhang, Hua; He, Zhen-Hua; Li, Ya-Lin; Li, Rui; He, Guamg-Ming; Li, Zhong

    2017-06-01

    Multi-wave exploration is an effective means for improving precision in the exploration and development of complex oil and gas reservoirs that are dense and have low permeability. However, converted wave data is characterized by a low signal-to-noise ratio and low resolution, because the conventional deconvolution technology is easily affected by the frequency range limits, and there is limited scope for improving its resolution. The spectral inversion techniques is used to identify λ/8 thin layers and its breakthrough regarding band range limits has greatly improved the seismic resolution. The difficulty associated with this technology is how to use the stable inversion algorithm to obtain a high-precision reflection coefficient, and then to use this reflection coefficient to reconstruct broadband data for processing. In this paper, we focus on how to improve the vertical resolution of the converted PS-wave for multi-wave data processing. Based on previous research, we propose a least squares inversion algorithm with a total variation constraint, in which we uses the total variance as a priori information to solve under-determined problems, thereby improving the accuracy and stability of the inversion. Here, we simulate the Gaussian fitting amplitude spectrum to obtain broadband wavelet data, which we then process to obtain a higher resolution converted wave. We successfully apply the proposed inversion technology in the processing of high-resolution data from the Penglai region to obtain higher resolution converted wave data, which we then verify in a theoretical test. Improving the resolution of converted PS-wave data will provide more accurate data for subsequent velocity inversion and the extraction of reservoir reflection information.

  2. Exploring the Potential for Increased Production from the Wave Energy Converter Lifesaver by Reactive Control

    Directory of Open Access Journals (Sweden)

    Marta Molinas

    2013-07-01

    Full Text Available Fred Olsen is currently testing their latest wave energy converter (WEC, Lifesaver, outside of Falmouth Bay in England, preparing it for commercial operation at the Wavehub test site. Previous studies, mostly focusing on hydrodynamics and peak to average power reduction, have shown that this device has potential for increased power extraction using reactive control. This article extends those analyses, adding a detailed model of the all-electric power take-off (PTO system, consisting of a permanent magnet synchronous generator, inverter and DC-link. Time domain simulations are performed to evaluate the PTO capabilities of the modeled WEC. However, when tuned towards reactive control, the generator losses become large, giving a very low overall system efficiency. Optimal control with respect to electrical output power is found to occur with low added mass, and when compared to pure passive loading, a 1% increase in annual energy production is estimated. The main factor reducing the effect of reactive control is found to be the minimum load-force constraint of the device. These results suggest that the Lifesaver has limited potential for increased production by reactive control. This analysis is nevertheless valuable, as it demonstrates how a wave-to-wire model can be used for investigation of PTO potential, annual energy production estimations and evaluations of different control techniques for a given WEC device.

  3. Multicriteria analysis to evaluate wave energy converters based on their environmental impact: an Italian case study

    Science.gov (United States)

    Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego

    2010-05-01

    The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 €. On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present

  4. Towards a new tool to develop a 3-D shear-wave velocity model from converted waves

    Science.gov (United States)

    Colavitti, Leonardo; Hetényi, György

    2017-04-01

    The main target of this work is to develop a new method in which we exploit converted waves to construct a fully 3-D shear-wave velocity model of the crust. A reliable 3-D model is very important in Earth sciences because geological structures may vary significantly in their lateral dimension. In particular, shear-waves provide valuable complementary information with respect to P-waves because they usually guarantee a much better correlation in terms of rock density and mechanical properties, reducing the interpretation ambiguities. Therefore, it is fundamental to develop a new technique to improve structural images and to describe different lithologies in the crust. In this study we start from the analysis of receiver functions (RF, Langston, 1977), which are nowadays largely used for structural investigations based on passive seismic experiments, to map Earth discontinuities at depth. The RF technique is also commonly used to invert for velocity structure beneath single stations. Here, we plan to combine two strengths of RF method: shear-wave velocity inversion and dense arrays. Starting from a simple 3-D forward model, synthetic RFs are obtained extracting the structure along a ray to match observed data. During the inversion, thanks to a dense stations network, we aim to build and develop a multi-layer crustal model for shear-wave velocity. The initial model should be chosen simple to make sure that the inversion process is not influenced by the constraints in terms of depth and velocity posed at the beginning. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999a, b), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter

  5. Balancing Power Output and Structural Fatigue of Wave Energy Converters by Means of Control Strategies

    Directory of Open Access Journals (Sweden)

    Francesco Ferri

    2014-04-01

    Full Text Available In order to reduce the cost of electricity produced by wave energy converters (WECs, the benefit of selling electricity as well as the investment costs of the structure has to be considered. This paper presents a methodology for assessing the control strategy for a WEC with respect to both energy output and structural fatigue loads. Different active and passive control strategies are implemented (proportional (P controller, proportional-integral (PI controller, proportional-integral-derivative with memory compensation (PID controller, model predictive control (MPC and maximum energy controller (MEC, and load time-series resulting from numerical simulations are used to design structural parts based on fatigue analysis using rain-flow counting, Stress-Number (SN curves and Miner’s rule. The objective of the methodology is to obtain a cost-effective WEC with a more comprehensive analysis of a WEC based on a combination of well known control strategies and standardised fatigue methods. The presented method is then applied to a particular case study, the Wavestar WEC, for a specific location in the North Sea. Results, which are based on numerical simulations, show the importance of balancing the gained power against structural fatigue. Based on a simple cost model, the PI controller is shown as a viable solution.

  6. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  7. The S to P convert wave from the bottom of sediment basin in the near-field seismic records

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    From the near-field records of aftershocks of October 1989 and March 1991 Datong earthquakes, an extra phase between P and S arrivals is found. High-precision epicenter location shows that some of these records are obtained with the incidental angle less than the critical angle. This excludes the possibility that the extra wave phase is a refractive wave from ground surface. Particle motion analysis shows that the characteristic of the extra wave is similar to that of P wave, therefore it is very possible that the extra phase is an S to P convert wave from the bottom of sediment basin. Suppose a low velocity layer covers on a high velocity basement. Successful simulation by synthetic seismogram conforms that the extra phase is an S-P convert wave from the interface of basin bottom. Modifying the depth of interface at each ray path to match the waveform, we obtain an interface distribution in space. In this way a brief imagine of bottom could be shown, and Datong basin has a (V( shape basin bottom.

  8. 3C3D VSP Imaging of Salt Flanks Using Converted Waves in the Gulf of Mexico

    Science.gov (United States)

    Li, Y.; Doherty, F.; Jackson, J.

    2005-05-01

    Locating salt boundary and imaging updip sediment structures flanking the salt domes are very important tasks for exploration in the Gulf of Mexico since major petroleum reserves are often trapped underneath overhangs of diapiric salt domes. Although the top of salt and less steep structures can be well imaged using current surface seismic methods, the steep sides of a salt dome with irregularly shapes are hard to image with adequate accuracy. Thus, Vertical Seismic Profiling (VSP) surveys with three-component (3C) receivers in wells are usually requested for improving images of subsurface structures. Conventional multi-offset VSP (OVSP) and refraction salt proximity (SP) surveys are widely applied in the Gulf of Mexico to improve images of slat interfaces, sub-salt and salt flank structures using P waves. In this paper, we will focus on using converted waves to image the steep salt-sediment boundary. A VSP dataset, including multi-OVSP and a SP survey, acquired in the Gulf of Mexico was used in this study. We analyzed 3C OVSP data to identify and separate converted waves, such as PS, P-SP, P-SS, generated at a salt boundary. Then both PP wave and converted waves were 3C3D depth migrated to generate images of the steep salt-sediment interface. Both transmitted P-P and P-S converted waves from the SP survey were used to calculate 3D salt exit points which delineate the steep salt face. The VSP results derived from both methods are abundant and a suitable 3D visualization tool is required for visual integration and interpretation. The image volumes and other available geophysical and geological data were integrated using a 3D visualization tool specially designed for VSP solutions. The migrated images using PP and converted waves provides a precise and complete definition of the steep salt face and reservoir sands flanking the salt dome. This study indicates that both reflection and reflection surveys can result in a consistent location of the steep salt flank

  9. Optical Wavelength Converters Based on Four Wave Mixing in SOA-MZI Configuration

    Directory of Open Access Journals (Sweden)

    Rajni

    2016-01-01

    Full Text Available Wavelength converter plays an important role for increasing the capacity and flexibility of future broadcast network. This paper investigates the performance of a 10Gb/s the SOA based FWM wavelength converter. All performances are analyzed in terms of its shifted wavelength conversion efficiency, Q-factors and converted signal powers. The converters are modeled and simulated using Optisystem7 Software, by varying the probe signal wavelength and power. It was found that conversion efficiency and OSNR of the converted signal both decreased at large detuning wavelengths. Similarly, higher total SOA input powers worsened the conversion efficiency, but steadily improved the OSNR. FWM wavelength converter had the lowest conversion efficiency for CW sources.

  10. Nearshore Tests of the Tidal Compensation System for Point-Absorbing Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Valeria Castellucci

    2015-04-01

    Full Text Available The power production of the linear generator wave energy converter developed at Uppsala University is affected by variations of mean sea level. The reason is that these variations change the distance between the point absorber located on the surface and the linear generator located on the seabed. This shifts the average position of the translator with respect to the center of the stator, thereby reducing the generator output power. A device mounted on the point absorber that compensates for tides of small range by regulating the length of the connection line between the buoy at the surface and the linear generator has been constructed and tested. This paper describes the electro-mechanical, measurement, communication and control systems installed on the buoy and shows the results obtained before its connection to the generator. The adjustment of the line was achieved through a linear actuator, which shortens the line during low tides and vice versa. The motor that drives the mechanical device was activated remotely via SMS. The measurement system that was mounted on the buoy consisted of current and voltage sensors, accelerometers, strain gauges and inductive and laser sensors. The data collected were transferred via Internet to a Dropbox server. As described within the paper, after the calibration of the sensors, the buoy was assembled and tested in the waters of Lysekil harbor, a few kilometers from the Uppsala University research site. Moreover, the performance of the sensors, the motion of the mechanical device, the power consumption, the current control strategy and the communication system are discussed.

  11. Wave Basin Experiments with Large Wave Energy Converter Arrays to Study Interactions between the Converters and Effects on Other Users in the Sea and the Coastal Area

    DEFF Research Database (Denmark)

    Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim

    2014-01-01

    are measured to provide data for understanding WEC array interactions and to evaluate array interaction numerical models. Each WEC consists of a buoy with a diameter of 0.315 m and power take-off (PTO) is modeled by realizing friction based energy dissipation through damping of the WEC’s motion. Wave gauges...

  12. Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, K.; Michelen, C.; Kanner, S.; Lawson, M.; Yu, Y. H.

    2014-03-01

    To promote and support the wave energy industry, a wave energy converter (WEC) design tool, WEC-Sim, is being developed by Sandia National Laboratories and the National Renewable Energy Laboratory. In this paper, the WEC-Sim code is used to model a point absorber WEC designed by the U.S. Department of Energy's reference model project. Preliminary verification was performed by comparing results of the WEC-Sim simulation through a code-to-code comparison, utilizing the commercial codes ANSYS-AQWA, WaveDyn, and OrcaFlex. A preliminary validation of the code was also performed by comparing WEC-Sim simulation results to experimental wave tank tests.

  13. Investigation on the energy absorption performance of a fixed-bottom pressure-differential wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Babarit, A.; Wendt, F.; Yu, Y. -H.; Weber, J.

    2017-04-01

    In this article, we investigate the energy absorption performance of a fixed-bottom pressure-differential wave energy converter. Two versions of the technology are considered: one has the moving surfaces on the bottom of the air chambers whereas the other has the moving surfaces on the top. We developed numerical models in the frequency domain, thereby enabling the power absorption of the two versions of the device to be assessed. It is observed that the moving surfaces on the top allow for easier tuning of the natural period of the system. Taking into account stroke limitations, the design is optimized. Results indicate that the pressure-differential wave energy converter is a highly efficient technology both with respect to energy absorption and selected economic performance indicators.

  14. Pre-design of a pendular wave energy converter; Predimensionnement d'un houlo-generateur pendulaire

    Energy Technology Data Exchange (ETDEWEB)

    Ruellan, M.; Rozel, B.; Ben Ahmed, H.; Multon, B. [Ecole nationale Superieure de Cachan, SPEELabs/SATIE, Antenne de Bretagne, 94 (France); Babarit, A.; Clement, A. [Ecole Centrale de Nantes, LMF, UMR CNRS 6598, 44 (France)

    2006-06-15

    This paper presents the principle of an electromagnetic generator pre-design for wave energy converter. We first describe the principle of pendular wave energy converter (WEC) developed in the SEAREV project (Energy Program of CNRS). The behavior of power take off (PTO: the generator) reflects a strong coupling between hydrodynamic, mechanical and electrical phenomena, thus leading to a complex device design problem. We lay out herein a design methodology to be applied on a swell cycle of limited duration, yet which remains representative of the inherent problems raised. We present a simplified optimization approach of the system as well as the first established results, principally in term of laws control. A method of power leveling is also proposed. At last, a pre-design of an electromagnetic permanent magnet generator on a cycle, allowing to satisfy the specifications, is carried out with and without speed multiplier gearbox. (authors)

  15. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Kyuho; Park, Jisu [Seoul National University, Seoul (Korea, Republic of); Jang, Seon-Jun [Innovation KR, Seoul (Korea, Republic of)

    2015-01-15

    This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.

  16. Technical and Non-Technical Issues towards the Commercialisation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    and the synergies in this area with offshore wind energy projects. . v. It studies the benefits of including wave energy in diversified renewable energy systems, chiefly with respect to power output variability and availability. . vi. It evaluates one of the most commonly claimed advantages for the wave energy...... sector: the predictability of waves, and assesses the value of wave forecasting in electricity markets. . vii. Lastly, it reviews the economic assessment of wave energy projects. . The scope of the thesis is broad and embraces subjects that can be categorised within technical and non......-technical disciplines. This combination of findings leads to an overview of the wave energy field and of WEC developments. It underlines hindrances that can affect developments when WECs are commissioned and the benefits wave energy brings to energy systems, especially when wave and wind generation is combined....

  17. Technical and Non-Technical Issues Towards the Commercialisation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    it. iv. It investigates the opportunities to grid-connect offshore wave energy projects and the synergies in this area with offshore wind energy projects. v. It studies the benefits of including wave energy in diversified renewable energy systems, chiefly with respect to power output variability...... and availability. vi. It evaluates one of the most commonly claimed advantages for the wave energy sector: the predictability of waves, and assesses the value of wave forecasting in electricity markets. vii. Lastly, it reviews the economic assessment of wave energy projects. The scope of the thesis is broad...... and embraces subjects that can be categorised within technical and non-technical disciplines. This combination of findings leads to an overview of the wave energy field and of WEC developments. It underlines hindrances that can affect developments when WECs are commissioned and the benefits wave energy brings...

  18. Estimation of Downtime and of Missed Energy Associated with a Wave Energy Converter by the Equivalent Power Storm Model

    Directory of Open Access Journals (Sweden)

    Felice Arena

    2015-10-01

    Full Text Available The design of any wave energy converter involves the determination of relevant statistical data on the wave energy resource oriented to the evaluation of the structural reliability and energy performance of the device. Currently, limited discussions concern the estimation of parameters connected to the energy performance of a device. Thus, this paper proposes a methodology for determining average downtime and average missed energy, which is the energy that is not harvested because of device deactivations during severe sea storms. These quantities are fundamental for evaluating the expected inactivity of a device during a year or during its lifetime and are relevant for assessing the effectiveness of a device working at a certain site. For this purpose, the equivalent power storm method is used for their derivation, starting from concepts pertaining to long-term statistical analysis. The paper shows that the proposed solutions provide reliable estimations via comparison with results obtained by processing long wave data.

  19. Experimental study on a wide range of wave and current conditions of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the results of an experimental study that was performed on small scale model that was a replication of the full-scale Weptos WEC intended for DanWEC. The tests were performed in the circular basin at FloWave at Edinburgh University in October 2014. The laboratory facilities h...... the capabilities to have simultaneously currents and waves from any possible direction and also to produce advanced wave specifications....

  20. Imaging P-to-S conversions with broad-band seismic arrays using multichannel time-domain deconvolution

    Science.gov (United States)

    Neal, Scott L.; Pavlis, Gary L.

    2001-09-01

    This paper describes a series of innovations in the problem of deconvolving forward scattered P-to-S conversions. We introduce a theoretical foundation for a recently developed multichannel stacking technique and show that this process is equivalent to a spatial convolution of the incident wavefield with the discretely sampled set of station locations. We then show that deconvolution of the stacked data is a form of multichannel deconvolution with a spatially variable set of weights equal to those used in stacking. This result is independent of the particular deconvolution method that is used. A second innovation focuses on the design of deconvolution operators that correctly account for the loss of high frequency components of P-to-S conversions caused by differential attenuation of P and S waves. We describe two complimentary methods to implement this: (1) through the use of a regularization operator that penalizes high frequencies and increases with P-to-S lag time, or (2) through the use of a quelling operator. For the latter, we introduce the use of a t* operator that is applied to the deconvolution matrix operator. The t* operator progressively filters the vertical component seismogram with increasing P-to-S lag time and is based on an earth model of body wave attenuation. Both techniques produce progressively smoother solutions for increasing P-to-S lag times. The quelling approach has two advantages: (1) it is based on the physical principle that this solution is designed to address, and (2) it provides a unified inversion framework for the combination of stacking and deconvolution. This combination may be interpreted as a three-dimensional quelling (smoothing) operator that is applied to the full wavefield to stabilize the inversion. Application of this procedure to synthetic data shows that while the addition of a time dependent component to the deconvolution tends to decrease the frequency content of the solution, the amplitude of background ringing is

  1. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    Science.gov (United States)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  2. Statistical Analysis of Power Production from OWC Type Wave Energy Converters

    DEFF Research Database (Denmark)

    Martinelli, L.; Zanuttigh, B.; Kofoed, Jens Peter

    2009-01-01

    a method that allows the choice of the optimal power generation capacity for which the device should be designed, when subjected to any given wave climate. The analysis is based on the experimental results of existing tests carried out in the 3D deep water wave tank at Aalborg University, Denmark. First...

  3. Introduction Of Wavestar Wave Energy Converters At The Danish Offshore Wind Power Plant Horns Rev 2

    DEFF Research Database (Denmark)

    Marquis, L.; Kramer, Morten; Kringelum, J.

    with this combination. This can increase the value of the produced power from future wind/wave plants. Further potential synergies of combining wind and wave energy in the same area include increased energy production from the available area and sharing of infrastructure costs as well as O&M facilities. In a future...

  4. Combined Production Of A Full-Scale Wave Converter And A Full-Scale Wind Turbine

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Kramer, Morten; Sørensen, H.C.

    2012-01-01

    correlation between winds and waves, characterised by an average delay of 2 to 3 hours. Up to 9hours-delay the correlation remains high. Regarding power productions, results show every portfolio combining wave and wind technologies provides important benefits: minimises the percentage of time of zero...

  5. Combined Production Of A Full-Scale Wave Converter And A Full-Scale Wind Turbine

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Kramer, Morten; Sørensen, H.C.

    2012-01-01

    correlation between winds and waves, characterised by an average delay of 2 to 3 hours. Up to 9hours-delay the correlation remains high. Regarding power productions, results show every portfolio combining wave and wind technologies provides important benefits: minimises the percentage of time of zero...

  6. Mathematical and numerical modeling of the AquaBuOY wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Wacher, A.; Nielsen, K.

    2008-12-15

    We have introduced a mathematical model of the vertical dynamics of the AquaBuOY's IPS buoy and hose-pump power take off system. The numerical results obtained proved to be very accurate as compared to real life data of Finavera's fiftieth and tenth scales of the AquaBuOY. The numerical implementation of the model is extremely fast for the regular wave regime and nearly real time for the irregular wave regime, however the results in the irregular wave regime are far more accurate than for regular waves. The model and method have proved to be robust, efficient and accurate however future work is recommended in the time integration scheme used to solve the ordinary differential equations in the irregular wave regime as it would be useful for optimization over many variables to make the numerical integration faster. (Author)

  7. Basin Testing of Wave Energy Converters in Trondheim: Investigation of Mooring Loads and Implications for Wider Research

    Directory of Open Access Journals (Sweden)

    Vladimir Krivtsov

    2014-04-01

    Full Text Available This paper describes the physical model testing of an array of wave energy devices undertaken in the NTNU (Norwegian University of Science and Technology Trondheim basin between 8 and 20 October 2008 funded under the EU Hydralabs III initiative, and provides an analysis of the extreme mooring loads. Tests were completed at 1/20 scale on a single oscillating water column device and on close-packed arrays of three and five devices following calibration of instrumentation and the wave and current test environment. One wave energy converter (WEC was fully instrumented with mooring line load cells, optical motion tracker and accelerometers and tested in regular waves, short- and long-crested irregular waves and current. The wave and current test regimes were measured by six wave probes and a current meter. Arrays of three and five similar WECs, with identical mooring systems, were tested under similar environmental loading with partial monitoring of mooring forces and motions. The majority of loads on the mooring lines appeared to be broadly consistent with both logistic and normal distribution; whilst the right tail appeared to conform to the extreme value distribution. Comparison of the loads at different configurations of WEC arrays suggests that the results are broadly consistent with the hypothesis that the mooring loads should differ. In particular; the results from the tests in short crested seas conditions give an indication that peak loads in a multi WEC array may be considerably higher than in 1-WEC configuration. The test campaign has contributed essential data to the development of Simulink™ and Orcaflex™ models of devices, which include mooring system interactions, and data have also been obtained for inter-tank comparisons, studies of scale effects and validation of mooring system numerical models. It is hoped that this paper will help to draw the attention of a wider scientific community to the dataset freely available from the

  8. Technical and Non-Technical Issues Towards the Commercialisation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    it. iv. It investigates the opportunities to grid-connect offshore wave energy projects and the synergies in this area with offshore wind energy projects. v. It studies the benefits of including wave energy in diversified renewable energy systems, chiefly with respect to power output variability....... As a result, the thesis first identifies the phases that generally appear within WEC developments, it then determines the stages where there is a gap in research, and lastly, it analyses the identified key subjects. Accordingly, the thesis elaborates on seven areas: i. It examines regulatory frameworks...... to energy systems, especially when wave and wind generation is combined....

  9. An Open-Access COE Calculation tool for Wave Energy Converters

    DEFF Research Database (Denmark)

    2013-01-01

    Aalborg University together with Energinet.dk, the Danish Transmission System Operator, have released a freely available online spreadsheet to evaluate the Levelised Cost of Energy (LCOE) for wave energy projects. The open-access tool calculates the LCOE based on the power production of a Wave...... this is conceived as an open-access tool, available to device developers as well as academia. It can eventually help in the development of wave energy by contributing to open talks with investors, stakeholders, politicians and the general public....

  10. A Study of Energy Conversion Efficiency of a Savonius Type Wave Energy Converter System

    Science.gov (United States)

    Tutar, Mustafa; Erdem, Ceyhan

    In the present study, two-dimensional, two-phase and turbulent flow around a horizontal axis 3-bladed Savonius rotor is considered. Numerical wave tank (NWT) simulations based on FVM/FDM technique in association with volume of fluid (VOF) element method are performed for specified values of wave heights for no-rotor flow case. Once validated against the theoretical data, the numerical simulations are extended to investigate the overall performance of the turbine over a very large range of wave height conditions for the rotor-flow case.

  11. Technical and Non-Technical Issues towards the Commercialisation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    and the synergies in this area with offshore wind energy projects. . v. It studies the benefits of including wave energy in diversified renewable energy systems, chiefly with respect to power output variability and availability. . vi. It evaluates one of the most commonly claimed advantages for the wave energy......, it then determines the stages where there is a gap in research, and lastly, it analyses the identified key subjects. Accordingly, the thesis elaborates on seven areas: . i. It examines regulatory frameworks for wave energy developments and how they affect project execution. . ii. It investigates the role...... of stakeholder´s and of the public’s opinion on project’s implementation. iii. It addresses the need to evaluate the power performance of WECs in sea trials, and explains a recently-developed methodology to do it. . iv. It investigates the opportunities to grid-connect offshore wave energy projects...

  12. Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters

    National Research Council Canada - National Science Library

    Arthur Pecher; Aligi Foglia; Jens Peter Kofoed

    2014-01-01

    ...) of 2000 kN and a water depth of 30 m. This reference scenario seems to be representative for large WECs operating in intermediate water depths, such as Weptos, Wave Dragon and many others, including reasonable design safety factors...

  13. Characterization of loads on a hemispherical point absorber wave energy converter

    DEFF Research Database (Denmark)

    Jakobsen, Morten Møller; Beatty, Scott; Iglesias, G.

    2016-01-01

    Highlights •Slammingpressure on shell surface of hemisphere and comparison asymptotic theory. •Excitationforces from experiments and comparison with numerical inviscid boundary elementmodel. •Applicationof found coefficients in normal operation conditions for the wave energydevice.......Highlights •Slammingpressure on shell surface of hemisphere and comparison asymptotic theory. •Excitationforces from experiments and comparison with numerical inviscid boundary elementmodel. •Applicationof found coefficients in normal operation conditions for the wave energydevice....

  14. Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter

    NARCIS (Netherlands)

    Vakis, Antonis I.; Anagnostopoulos, John S.

    2016-01-01

    A multi-pump, multi-piston power take-off wave energy converter ((MPPTO)-P-2 WEC) has been proposed for use with a novel renewable energy harvester termed the Ocean Grazer. The (MPPTO)-P-2 WEC utilizes wave motion to pump via buoys connected to pistons working fluid within a closed circuit and store

  15. Balancing Power Absorption and Structural Loading for a Novel Fixed-Bottom Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Alan D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-08

    In this work, the net power delivered to the grid from a nonideal power take-off (PTO) is introduced followed by a review of the pseudo-spectral control theory. A power-to-load ratio, used to evaluate the pseudo-spectral controller performance, is discussed, and the results obtained from optimizing a multiterm objective function are compared against results obtained from maximizing the net output power to the grid. Simulation results are then presented for four different oscillating wave energy converter geometries to highlight the potential of combing both geometry and PTO control to maximize power while minimizing loads.

  16. 低信噪比转换波地震资料静校正%Static corrections for low S/N ratio converted-wave seismic data

    Institute of Scientific and Technical Information of China (English)

    李国发; 彭苏萍

    2008-01-01

    Converted waves have slow velocity and low signal-to-noise ratio. It is also difficult to pick first-breaks and bin the common-conversion-points (CCP). Some statics methods, which work well for P-wave data, can't be effectively used for solving converted-wave statics problems. This has become the main obstacle to breakthroughs in converted-wave data processing. To improve converted-wave static corrections, first, a statics method based on the common-receiver-point (CRP) stack is used for the initial receiver static correction to enhance the coherency of the CRP stack. Second, a stack-power-maximization static correction which improves the continuity of the CCP stack is used for detailed receiver statics. Finally, a non-surface-consistent residual moveout correction of the CCP gathers is used to enhance the stack power of reflection signals from different depths. Converted-wave statics are solved by the joint use of the three correction methods.

  17. Comparison of the Experimental and Numerical Results of Modelling a 32-Oscillating Water Column (OWC, V-Shaped Floating Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    John V. Ringwood

    2013-08-01

    Full Text Available Combining offshore wind and wave energy converting apparatuses presents a number of potentially advantageous synergies. To facilitate the development of a proposed floating platform combining these two technologies, proof of concept scale model testing on the wave energy converting component of this platform has been conducted. The wave energy component is based on the well-established concept of the oscillating water column. A numerical model of this component has been developed in the frequency domain, and the work presented here concerns the results of this modelling and testing. The results of both are compared to assess the validity and usefulness of the numerical model.

  18. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  19. Analysis of a Wave Energy Converter with Particular Focus on the Effects of Power Take-Off Forces on the Structural Responses

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen

    Wave energy is regarded as a major and promising renewable energy resource. The most critical factor to the success of deploying a wave energy converter in an ocean environment is the cost. The key factors affecting the costs include the performance, capital costs, operation and maintenance costs...... to evaluate the electrical power generated by a given wave energy device from a given wave condition. The first part of this work focuses on the development of such a numerical model. An important task is to quantify the wave-induced load effects to ensure that the input is correct and a safe and robust...

  20. WET-NZ Multi-Mode Wave Energy Converter Advancement Project

    Energy Technology Data Exchange (ETDEWEB)

    Kopf, Steven

    2013-10-15

    The overall objective of the project was to verify the ocean wavelength functionality of the WET-NZ through targeted hydrodynamic testing at wave tank scale and controlled open sea deployment of a 1/2 scale (1:2) experimental device. This objective was accomplished through a series of tasks designed to achieve four specific goals: Wave Tank Testing to Characterize Hydrodynamic Characteristics;  Open-Sea Testing of a New 1:2 Scale Experimental Model;  Synthesis and Analysis to Demonstrate and Confirm TRL5/6 Status;  Market Impact & Competitor Analysis, Business Plan and Commercialization Strategy.

  1. Synchronization of the distributed PWM carrier waves for modular multilevel converters

    DEFF Research Database (Denmark)

    Burlacu, Paul Dan; Mathe, Laszlo; Teodorescu, Remus

    2014-01-01

    The half-bridge modular multilevel converter has proven itself to be a suitable solution for HVDC application. In order to achieve high modularity and fault tolerance, distributed control strategy is one possible solution and is discussed in this paper. When distributed control strategy is used, ...... the PWM outputs of each sub-module increasing the total harmonic distortion of the output voltage. This paper presents a solution to synchronize the PWM outputs of the MMC submodules using EtherCAT communication protocol focusing on phase shifted PWM modulation technique....

  2. A Novel Reconfigurable Ultra-broadband Millimeter-wave Photonic Harmonic Down-converter

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Zhao, Ying; Deng, Lei;

    2011-01-01

    We propose a novel ultra-broadband reconfigurable photonic harmonic mixer functioning as a millimeter-wave downconverter for multigigabit wireless applications. Based on frequency conversion implemented by an optical frequency comb generator, the photonic mixer is able to operate up to 100GHz...

  3. Screening of Available Tools for Dynamic Mooring Analysis of Wave Energy Converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    2017-01-01

    The focus on alternative energy sources has increased significantly throughout the last few decades, leading to a considerable development in the wave energy sector. In spite of this, the sector cannot yet be considered commercialized, and many challenges still exist, in which mooring of floating...

  4. Comparison and sensitivity investigations of a CALM and SALM type mooring system for wave energy converters

    DEFF Research Database (Denmark)

    Pecher, Arthur; Foglia, Aligi; Kofoed, Jens Peter

    2014-01-01

    , such as Weptos, Wave Dragon and many others, including reasonable design safety factors. Around this reference scenario, the main influential parameters were modified in order to investigate their impact on the specifications of the mooring system, e.g. the water depth, the horizontal design load, and a mooring...

  5. Seismic Data Analysis to the Converted Wave Acquisition: A Case Study in Offshore Malaysia

    Science.gov (United States)

    Latiff, A. H. Abdul; Osman, S. A. A.; Jamaludin, S. N. F.

    2016-07-01

    Many fields in offshore Malaysia suffer from the presence of shallow gas cloud which is one of the major issues in the basin. Seismic images underneath the gas cloud often show poor resolution which makes the geophysical and geological interpretation difficult. This effect can be noticed from the amplitude dimming, loss of high-frequency energy, and phase distortion. In this work, the subsurface will be analyzed through the geophysical interpretation of the converted P-S data. This P-S converted dataset was obtained through ocean bottom cable (OBC) procedure which was conducted at a shallow gas affected field located in Malaysian Basin. The geophysical interpretation process begin by picking the clear faults system and horizons, followed by thorough post-stack seismic data processing procedure. Finally, the attributes analyses were implemented to the seismic section in order to image the unseen faults system. The interpreted seismic sections show significant improvement in the seismic images, particularly through median filter process. Moreover, the combination of structural smoothing and variance procedure had contributed to the correct faults location interpretation.

  6. Silicon-on-Sapphire Waveguides: Mode-converting Couplers and Four-wave Mixing

    Science.gov (United States)

    2014-09-01

    width of the waveguides was between 1600 and 1900 nm . Figure 1 shows gain bands for a waveguide with 500- nm height and 1700 - nm width, demonstrating...1. Calculated conversion efficiency of four-wave mixing in 1700 - nm wide silicon-on-sapphire waveguide. Color bar indicates conversion efficiency in...dominance. Previous investigations show that this spectral range is of interest for applications that include free-space communications, laser radar

  7. Investigation and Optimisation of a Discrete Fluid Power PTO-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard

    recently focused research on improving the power take off (PTO) system converting the mechanical motion of the floats into electricity. This has brought attention to discrete fluid power (DFP) technology, especially secondary controlled common pressure rail systems. A novel discrete PTO-system has been...... proposed and found feasible for the Wavestar WEC. However, with a technology shift from a continuous to a discrete fluid power PTO-system, new challenges emerge. The current project investigates and optimises the novel discrete fluid power PTO-system proposed for the Wavestar WEC. Initiating from...... an investigation of energy extraction by WECs utilising a discrete PTO force, an investigation of the system configuration is conducted. Hence, the configuration of the multi-chamber cylinder and the common pressure rails are investigated for the discrete fluid power force system. A method for choosing the system...

  8. Risk-based Operation and Maintenance Approach for Wave Energy Converters Taking Weather Forecast Uncertainties into Account

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten Mejlhede; Sørensen, John Dalsgaard

    2016-01-01

    Inspection and maintenance costs are significant contributors to the cost of energy for wave energy converters. Maintenance can be performed after failure (corrective) or before a breakdown (preventive) occurs. Furthermore, helicopter and boat can be used to transport equipment and personnel...... to the device for operation and maintenance actions. This article focusses on a risk-based inspection and maintenance planning approach involving minimization of the overall repair costs including costs due to lost electricity production. The study includes real weather data and damage accumulation as well...... as uncertainties related with imperfect weather forecasts, costs, structural damage accumulation, inspection accuracy and the applied maintenance strategies. This article contains a case study where the risk-based maintenance strategy is applied for the Wavestar device....

  9. Performance analysis of semiconductor optical amplifier using four wave mixing based wavelength Converter for all Optical networks.

    Directory of Open Access Journals (Sweden)

    Anupjeet Kaur

    2013-07-01

    Full Text Available In this paper, investigations are made on performance analysis of the semiconductor optical amplifier (SOA using four wave mixing (FWM based wavelength converter. This analysis is done at 10Gb/s in terms of shifted wavelength conversion efficiency, quality factor (Qparameter and bit error rate (BER for up and down conversions. The investigations are carried out by varying the probe signal wavelength and bias current of SOA. From the numerical simulations it has been observed that downconversion efficiency is more than Up-conversion efficiency and it starts decreases at larger wavelengths. It is found that maximum FWM conversion efficiency is around 27.3417 dB at current 160 mA and 28.5669 dB at current 160 mA for up and down conversion respectively for 10Gb/s.

  10. Advanced Direct-Drive Generator for Improved Availability of Oscillating Wave Surge Converter Power Generation Systems Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Englebretson, Steven [ABB Inc., Cary, NC (United States); Ouyang, Wen [ABB Inc., Cary, NC (United States); Tschida, Colin [ABB Inc., Cary, NC (United States); Carr, Joseph [ABB Inc., Cary, NC (United States); Ramanan, V.R. [ABB Inc., Cary, NC (United States); Johnson, Matthew [Texas A& M Univ., College Station, TX (United States); Gardner, Matthew [Texas A& M Univ., College Station, TX (United States); Toliyat, Hamid [Texas A& M Univ., College Station, TX (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Hazra, Samir [ABB Inc., Cary, NC (United States); Bhattacharya, Subhashish [ABB Inc., Cary, NC (United States)

    2017-05-13

    This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability of the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.

  11. 转换波AVO反演速度比各横波反射系数%Converted wave AVO inversion for average velocity ratio and shear wave reflection coefficient

    Institute of Scientific and Technical Information of China (English)

    魏修成; 陈天胜; 季玉新

    2008-01-01

    Based on the empirical Gardner equation describing the relationship between density and compressional wave velocity, the converted wave reflection coefficient extrema attributes for AVO analysis are proposed and the relations between the extrema position and amplitude, average velocity ratio across the interface, and shear wave reflection coefficient are derived. The extrema position is a monotonically decreasing function of average velocity ratio, and the extrema amplitude is a function of average velocity ratio and shear wave reflection coefficient. For theoretical models, the average velocity ratio and shear wave reflection coefficient are inverted from the extrema position and amplitude obtained from fitting a power function to converted wave AVO curves. Shear wave reflection coefficient sections have clearer physical meaning than conventional converted wave stacked sections and establish the theoretical foundation for geological structural interpretation and event correlation. 'The method of inverting average velocity ratio and shear wave reflection coefficient from the extrema position and amplitude obtained from fitting a power function is applied to real CCP gathers. The inverted average velocity ratios are consistent with those computed from compressional and shear wave well logs.

  12. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  13. Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength

    Science.gov (United States)

    Kroh, Tim; Ahlrichs, Andreas; Sprenger, Benjamin; Benson, Oliver

    2017-09-01

    Future quantum networks require a hybrid platform of dissimilar quantum systems. Within the platform, joint quantum states have to be mediated either by single photons, photon pairs or entangled photon pairs. The photon wavelength has to lie within the telecommunication band to enable long-distance fibre transmission. In addition, the temporal shape of the photons needs to be tailored to efficiently match the involved quantum systems. Altogether, this requires the efficient coherent wavelength-conversion of arbitrarily shaped single-photon wave packets. Here, we demonstrate the heralded temporal filtering of single photons as well as the synchronisation of state manipulation and detection as key elements in a typical experiment, besides of delaying a photon in a long fibre. All three are realised by utilising commercial telecommunication fibre-optical components which will permit the transition of quantum networks from the lab to real-world applications. The combination of these renders a temporally filtering single-photon storage in a fast switchable fibre loop possible.

  14. Balancing the Power-to-Load Ratio for a Novel Variable Geometry Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Alan D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    This work attempts to balance power absorption against structural loading for a novel variable geometry wave energy converter. The variable geometry consists of four identical flaps that will be opened in ascending order starting with the flap closest to the seafloor and moving to the free surface. The influence of a pitch motion constraint on power absorption when utilizing a nonideal power take-off (PTO) is examined and found to reduce the losses associated with bidirectional energy flow. The power-to-load ratio is evaluated using pseudo-spectral control to determine the optimum PTO torque based on a multiterm objective function. The pseudo-spectral optimal control problem is extended to include load metrics in the objective function, which may now consist of competing terms. Separate penalty weights are attached to the surge-foundation force and PTO control torque to tune the optimizer performance to emphasize either power absorption or load shedding. PTO efficiency is not included in the objective function, but the penalty weights are utilized to limit the force and torque amplitudes, thereby reducing losses associated with bidirectional energy flow. Results from pseudo-spectral control demonstrate that shedding a portion of the available wave energy can provide greater reductions in structural loads and reactive power.

  15. Investigating the Adaptability of the Multi-Pump Multi-Piston Power Take-Off System for a Novel Wave Energy Converter

    NARCIS (Netherlands)

    Wei, Y.; Barradas Berglind, J.J; van Rooij, M.; Prins, WA; Jayawardhana, B.; Vakis, A. I.

    2017-01-01

    In this work, a numerical model is developed in order to investigate the adaptability of the multi-pump multi-piston power take-off (MP2PTO) system of a novel wave energy converter (WEC). This model is realized in the MATLAB/SIMULINK environment, using the multi-body dynamics solver Multibody™, whic

  16. A Particle-in-Cell Simulation for the Traveling Wave Direct Energy Converter (TWDEC) for Fusion Propulsion

    Science.gov (United States)

    Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.

    2013-01-01

    A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.

  17. Implementing Nonlinear Buoyancy and Excitation Forces in the WEC-Sim Wave Energy Converter Modeling Tool: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, M.; Yu, Y. H.; Nelessen, A.; Ruehl, K.; Michelen, C.

    2014-05-01

    Wave energy converters (WECs) are commonly designed and analyzed using numerical models that combine multi-body dynamics with hydrodynamic models based on the Cummins Equation and linearized hydrodynamic coefficients. These modeling methods are attractive design tools because they are computationally inexpensive and do not require the use of high performance computing resources necessitated by high-fidelity methods, such as Navier Stokes computational fluid dynamics. Modeling hydrodynamics using linear coefficients assumes that the device undergoes small motions and that the wetted surface area of the devices is approximately constant. WEC devices, however, are typically designed to undergo large motions in order to maximize power extraction, calling into question the validity of assuming that linear hydrodynamic models accurately capture the relevant fluid-structure interactions. In this paper, we study how calculating buoyancy and Froude-Krylov forces from the instantaneous position of a WEC device (referred to as instantaneous buoyancy and Froude-Krylov forces from herein) changes WEC simulation results compared to simulations that use linear hydrodynamic coefficients. First, we describe the WEC-Sim tool used to perform simulations and how the ability to model instantaneous forces was incorporated into WEC-Sim. We then use a simplified one-body WEC device to validate the model and to demonstrate how accounting for these instantaneously calculated forces affects the accuracy of simulation results, such as device motions, hydrodynamic forces, and power generation.

  18. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data, 2nd Edition

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Neary, Vincent S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies

    2015-09-01

    This report presents met-ocean data and wave energy characteristics at eight U.S. wave energy converter (WEC) test and potential deployment sites. Its purpose is to enable the comparison of wave resource characteristics among sites as well as the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment, and operations and maintenance. For each site, this report catalogues wave statistics recommended in the International Electrotechnical Commission Technical Speci cation (IEC 62600-101 TS) on Wave Energy Characterization, as well as the frequency of occurrence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services.

  19. Power performance measurements on Wave Star in Nissum Bredning. Final report; Wave energy converter; Effektmaalinger paa Wave Star i Nissum Bredning. Afsluttende rapport

    Energy Technology Data Exchange (ETDEWEB)

    Frigaard, P.; Lykke Andersen, T.

    2009-04-15

    The Wave Star test machine in Nissum Bredning was put in continuous operation on 24 July 2006. Over the past 2 1/2 years the produced power was measured continuously and with only minor interruptions. The measurements cover operation for all seasons in a very changeable climate. There is thus gaining operational experience under different wave conditions. In the period the machine has been running with a simple form of control and Power Take Off system (PTO), which form the background for effect measurements with the existing control strategy. Calculations have shown that the use of more advanced forms of control can increase the efficiency of Wave Star significantly. New control systems are therefore still under development with the primary objective to increase performance from the wave energy plant. To test and develop the methods, a new mini-hydraulic station with associated second generation PTO was developed and constructed for testing in Nissum Bredning. The mini-hydraulic station is coupled to a single float, while the other machine's 39 floats are still connected to the existing PTO system. As the existing PTO system can be applied to the 39 floats simultaneously with the new PTO used on 1 float, effect can be measured on the two systems simultaneously. The first tentative experiments with the new second generation PTO seem very promising. During the first measurements made in March 2009 the new system achieved an average yield of 3.1 times the average output from a float on the existing machine. In the coming period more experiments will be performed with the mini-hydraulic station to test the new PTO in various sea conditions. Since the mini-hydraulic station can simulate various forms of control, they also will be tested under real wave conditions in Nissum Bredning. The effect optimization should continue to be subject to a greater targeted effort, as improvements in this area can increase energy production and thus reduce the kWh cost of energy

  20. Design of a quasi-flat linear permanent magnet generator for pico-scale wave energy converter in south coast of Yogyakarta, Indonesia

    Science.gov (United States)

    Azhari, Budi; Prawinnetou, Wassy; Hutama, Dewangga Adhyaksa

    2017-03-01

    Indonesia has several potential ocean energies to utilize. One of them is tidal wave energy, which the potential is about 49 GW. To convert the tidal wave energy to electricity, linear permanent magnet generator (LPMG) is considered as the best appliance. In this paper, a pico-scale tidal wave power converter was designed using quasi-flat LPMG. The generator was meant to be applied in southern coast of Yogyakarta, Indonesia and was expected to generate 1 kW output. First, a quasi-flat LPMG was designed based on the expected output power and the wave characteristic at the placement site. The design was then simulated using finite element software of FEMM. Finally, the output values were calculated and the output characteristics were analyzed. The results showed that the designed power plant was able to produce output power of 725.78 Wp for each phase, with electrical efficiency of 64.5%. The output characteristics of the LPMG: output power would increase as the average wave height or wave period increases. Besides, the efficiency would increase if the external load resistance increases. Meanwhile the output power of the generator would be maximum at load resistance equals 11 Ω.

  1. Estimation of Q and inverse Q filtering for prestack reflected PP-and converted PS-waves%叠前纵波和转换波地震资料Q值提取及反Q滤波

    Institute of Scientific and Technical Information of China (English)

    严红勇; 刘洋

    2009-01-01

    Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas' exploration problems. The improvement of converted wave resolution is one of the key problems.The main factor affecting converted wave resolution is the absorption of seismic waves in overlying strata. In order to remove the effect of absorption on converted waves, inverse Q filtering is used to improve the resolution. In this paper, we present a method to estimate the S-wave Q values from prestack converted wave gathers. Furthermore, we extend a stable and effective poststack inverse Q filtering method to prestack data which uses wave field continuation along the ray path to compensate for attenuation in prestack common shot PP-and PS-waves. The results of theoretical modeling prove that the method of estimating the S-wave Q values has high precision. The results from synthetic and real data prove that the stable inverse Q filtering method can effectively improve the resolution of prestack PP- and PS-waves.

  2. Square wave series voltage compensator with high frequency DC-DC converter; Compensador serie de tensao em onda quadrada com conversor CC-CC de alta frequencia

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Angelo Roberto Rodrigues Resende; Caetano, William Douglas; Pires, Igor Amariz; Silva, Arlete Vieira da [Centro Universitario de Belo Horizonte (UnBH), MG (Brazil)], e-mails: angelogalo2005@hotmail.com, wdouglasbh@gmail.com, igor_amariz@yahoo.com.br, arlete.silva@prof.unibh.br

    2011-07-01

    The square wave series voltage compensator is an equipment used to mitigate voltage sags. In the case of occurrence of a voltage disturbance, the compensator acts generating a square wave voltage to supply the missing voltage. The energy inserted for the compensation is taken from the electrical grid, by a linear source. The purpose of this paper is to present a switching shunt converter instead of a linear one, with the same output parameters in order to increase the power density. This efficiency is demonstrated by simulations. (author)

  3. Study based on Wave EnergyConverter Technology Patent Analysis%基于波能发电装置技术专利分析的研究

    Institute of Scientific and Technical Information of China (English)

    曾涛; 何雨馨

    2015-01-01

    波能发电是当今新能源开发利用的重要方式之一,通过对波能发电装置国内外专利申请的情况进行分析统计,对国内外波能发电装置的技术发展路线和发展趋势进行梳理,分析我国波能发电与国外的技术差距,为我国波能发电装置的发展提供参考.%Electricity generated from wave energy is becoming an important wayof new energy exploitation, the pa-per tries to find out the technical route and developing trend of wave energy converter by analyzingthe data of therelevant patent application both in Chinaand abroad, analyzes the technology gapon wave energy electricity gen-eration with foreign countries, providing reference for the development of domestic wave energy converter.

  4. Research on Converted Wave AVA Trace Gathering Technology%基于模型的P-SV转换波AVA反演预处理

    Institute of Scientific and Technical Information of China (English)

    鲁统祥; 何兵寿

    2011-01-01

    转换波AVA反演是利用转换波资料获取地下弹性参数的有效手段,AVA道集的准确抽取是利用AVA道集进行转换波资料反演的前提.基于模型抽取共转换点道集的处理思路是:首先依据目的层构造模型,采用基于模型的转换波速度分析方法获取目标层的纵横波速度比,在此基础上计算各道对应的转换点位置,进而抽取共转换点道集;以获得的共转换点道集为输人数据,采用三参量速度分析与动校正技术实现转换波资料动校正;在均方根意义下通过求取转换波的射线路径获得人射角信息并最终抽取转换波AVA反演道集.另外为消除因人射角分布不均造成的空道现象,提出了大面元法,该方法不仅对缺失的人射角有补偿作用,还能在一定程度上提高地震资料的信噪比.%Converted wave AVA iaversion is an effective method to get underground elastic parameters using converted wave data,while collecting AVA gathers accurately is the conditian to use AVA gathers to invert.The article collected common conversion point gather on the base of model, first.we used the tectonic model of inteaded interval, then got the velocity ratio of the intended interval using the converted wave analysis method basing on model.and got the accurate converted point,then collected common conversion point gather using the common conversion point gather data, used the three parameters velocity analysis and NMO correction to carry out the converted wave NMO correction; then got the incident angle and eventually collected the converted wave AVA inversion gather by calculating the converted wave ray path.THis article also presented a method to eliminate the phenomenon of the zero gather caused by the uneven angle distribution, and data processing achieved good effect, Besides.to eliminate the phenomenon of the zero gather coused by the uneven angle distribution, the article presented binning method, this method not only can

  5. Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

    Directory of Open Access Journals (Sweden)

    Kyoung-Rok Lee

    2013-12-01

    Full Text Available A floating Oscillating Water Column (OWC wave energy converter, a Backward Bent Duct Buoy (BBDB, was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

  6. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-04-20

    WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based on the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.

  7. Design and Control of the PowerTake-Off System for a Wave Energy Converter with Multiple Absorbers

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm

    feasibility for real PTO systems still causes dispute. In this dissertation an analytical result is provided, proving that reactive control is highly beneficial at even “low” PTO efficiencies. The formulated reactive control is tested in a wave tank with 1:20 scale absorbers, validating the expected...... performance. The wave tank tests also verify the derived wave and absorber models, which are based on linear wave theory. This increases the confidence in the heavy use of models through-out the work. A new high performing control method is developed for wave power extraction characterised...... force control of a multi-chambered cylinder driven by the absorber, while efficiently transferring the generated power directly into a battery of high pressure accumulators. The concept allows DDCs of multiple absorbers to supply the same accumulator battery, where a hydraulic motor may use the stored...

  8. Control Strategy of an Impulse Turbine for an Oscillating Water Column-Wave Energy Converter in Time-Domain Using Lyapunov Stability Method

    Directory of Open Access Journals (Sweden)

    Seung Kwan Song

    2016-10-01

    Full Text Available We present two control strategies for an oscillating water column-wave energy converter (OWC-WEC in the time domain. We consider a fixed OWC-WEC on the open sea with an impulse turbine module. This system mainly consists of a chamber, turbine and electric generator. For the time domain analysis, all of the conversion stages considering mutualities among them should be analyzed based on the Newtonian mechanics. According to the analysis of Newtonian mechanics, the hydrodynamics of wave energy absorption in the chamber and the turbine aerodynamic performance are directly coupled and share the internal air pressure term via the incompressible air assumption. The turbine aerodynamics and the dynamics of the electric generator are connected by torque load through the rotor shaft, which depends on an electric terminal load that acts as a control input. The proposed control strategies are an instant maximum turbine efficiency tracking control and a constant angular velocity of the turbine rotor control methods. Both are derived by Lyapunov stability analysis. Numerical simulations are carried out under irregular waves with various heights and periods in the time domain, and the results with the controllers are analyzed. We then compare these results with simulations carried out in the absence of the control strategy in order to prove the performance of the controllers.

  9. Influence of the excitation force estimator methodology within a predictive controller framework on the overall cost of energy minimisation of a wave energy converter

    DEFF Research Database (Denmark)

    Ferri, Francesco; Ambühl, Simon; Kofoed, Jens Peter

    2015-01-01

    is linked to the cost of the energy (CoE) produced from the different wave energy converters (WEC). The CoE from the different WECs is not yet comparable with other energy resources, due to a relative low efficiency coupled with the high structural costs. Within the sector a large effort has been addressed......, the application of an advance control strategy will most probably increase the loads exerted on the structure, leading to an increment of the structural cost. Therefore, the problem of minimising the CoE produced by a WEC is at least a 2Dproblem. In a previous article [3], the minimisation problem has been...... was implemeted with perfect knowledge of the future loadtime series, which is physically not achivable. This article is an extension of the work presented in [3] with a closer focus on the infuence of the excitation force prediction on the capability of the MPC architecture. Different estimator models...

  10. On/off multi-poppet valve for switching manifold in discrete fluid power force system PTO in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Fluid power systems are the leading technology for power take off systems in ocean wave energy converters. However, fluid power systems often suffer from poor efficiency, especially in part loads. This degrades the PTO system efficiency and therefore lowers the energy production. To overcome...... less than 10 ms. The pilot stage is directly actuated and utilises internal valve pressure as supply and an external tank connection as drain. The current paper presents the multi-disciplinary design process leading to the final valve design. This includes the geometric design of the main stage......, the choice of pilot valve, structural mechanical issues and modelling and simulation of various valve configurations. Hence, a mechatronic design process is utilised to choose the best valve configuration....

  11. Demonstration of the Recent Additions in Modeling Capabilities for the WEC-Sim Wave Energy Converter Design Tool: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-03-01

    WEC-Sim is a mid-fidelity numerical tool for modeling wave energy conversion (WEC) devices. The code uses the MATLAB SimMechanics package to solve the multi-body dynamics and models the wave interactions using hydrodynamic coefficients derived from frequency domain boundary element methods. In this paper, the new modeling features introduced in the latest release of WEC-Sim will be presented. The first feature discussed is the conversion of the fluid memory kernel to a state-space approximation that provides significant gains in computational speed. The benefit of the state-space calculation becomes even greater after the hydrodynamic body-to-body coefficients are introduced as the number of interactions increases exponentially with the number of floating bodies. The final feature discussed is the capability toadd Morison elements to provide additional hydrodynamic damping and inertia. This is generally used as a tuning feature, because performance is highly dependent on the chosen coefficients. In this paper, a review of the hydrodynamic theory for each of the features is provided and successful implementation is verified using test cases.

  12. Four-parameter velocity analysis and its applications to the Ken-71 area converted-wave data%转换波四参数速度分析方法在k71地区的应用

    Institute of Scientific and Technical Information of China (English)

    石建新

    2008-01-01

    3-D converted-wave data were acquired using digital MEMS (micro-electromechanical system) three component (3C) sensors in the alternating sand and shale sequence in the overburden of the Shengli Ken-71 area. This gives rise to serious non-hyperbolic moveout effects in the converted-wave data due to both the asymmetrical ray path and anisotropic effects. Conventional velocity analysis and moveout correction based on isotropic methods do not flatten reflections events. Here, we use a four-parameter theory to evaluate these effects and process the data. These four parameters include the PS converted wave stacking velocity (VC2), the vertical velocity ratio (y0), the effective velocity ratio (yeff), and the anisotropy parameter (xeff). The method utilizes the moveout information at different offsets to estimate the different parameters and ensures that the events are properly aligned for stacking. As a result, this four-parameter theory leads to an improvement in imaging quality and correlation between the P-waves and converted-waves.

  13. Hydrodynamics of triangular-grid arrays of floating point-absorber wave energy converters with inter-body and bottom slack-mooring connections

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, Pedro C.; Falcao, Antonio F. de O.; Gato, Luiz M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal); Justino, Paulo A.P. [Laboratorio Nacional de Energia e Geologia, 1649-038 Lisboa (Portugal)

    2009-07-01

    It may be convenient that dense arrays of floating point absorbers are spread-moored to the sea bottom through only some of their elements (possibly located in the periphery), while the other array elements are prevented from drifting and colliding with each other by connections to adjacent elements. An array of identical floating point absorbers located at the grid points of an equilateral triangular grid is considered in the paper. A spread set of slack-mooring lines connect the peripheric floaters to the bottom. A weight is located at the centre of each triangle whose function is o pull the three floaters towards each other and keep the inter-body moorings lines under tension. The whole system - buoys, moorings and power take-off systems - is assumed linear, so that a frequency domain analysis may be employed. Hydrodynamic interference between the oscillating bodies is neglected. Equations are presented for a set of three identical point absorbers. This is then extended to more complex equilateral iriangular grid arrays. Results from numerical simulations, with regular and irregular waves, are presented for the motions and power absorption of hemispherical converters in arrays of three and seven elements and different mooring and power take-off parameters, and wave incidence angles. Comparisons are given with the unmoored and independently-moored buoy situations.

  14. Comparison of Mooring Loads in Survivability Mode on the Wave Dragon Wave Energy Converter Obtained by a Numerical Model and Experimental Data

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Muliawan, Made Jaya; Gao, Zhen;

    2012-01-01

    to be carried out numerically, through coupled analyses of alternative solutions. The present study deals with the preliminary hydrodynamic characterization of Wave Dragon needed in order to calibrate the numerical model to be used for the mooring design. A hydrodynamic analysis of the small scale model......, with experimental results derived from tank tests of a small scale model. Due to the complex geometry of the device, a sensitivity analysis is performed to discuss the influence of the mean position on the quality of the numerical predictions. Good correspondence is achieved between the experimental and numerical...... model. The numerical model is hence considered reliable for future design applications....

  15. Cascaded resonant bridge converters

    Science.gov (United States)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  16. Sea testing and optimisation of power production on a scale 1:4.5 test rig of the offshore wave energy converter wave dragon. Summary of final technical report

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-15

    The 4-11 MW Wave Dragon is a slack moored device that can be deployed in large parks wherever a sufficient wave climate and a water depth of more than 20 m is found--typically this is the case in the North Sea and in the Atlantic, offering significant economic and environmental benefits for the EU. The primary objective of the project was to establish the scientific knowledge base needed for deploying a full-scale prototype of the overtopping wave energy converter Wave Dragon. This has been obtained through long-term field-testing on a test rig with all systems installed. The scale 1:4.5 prototype has an installed power of 20 kW corresponding to 4 MW in full-scale with full-turbine deployment and is grid connected. The scale 1:4.5 prototype has been designed based on the conclusions from a previous EU Craft project. The basic test rig construction is provided through a project sponsored by the Danish Energy Authority. The test site is in protected waters in Nissum Bredning, Denmark, where the wave climate resembles North Sea conditions (scale 1:4.5) which in accordance with model law resembles a power scale of 1:200. The test results after more than 20,000 hours of operation cover: Long-term field testing of turbine operation, control strategy testing and optimisation, power monitoring and evaluation, stress and strain measurements and analysis, and mooring and cable systems analysis. The model tools developed in the previous EU Craft project have been validated and slightly modified based on the measured data. A Life Cycle Analysis and Finite Element Modelling have been performed. A report on market analysis, economic risk assessment and job creation potential has also been carried out. The project has established the necessary scientific and technical knowledge base for engaging in the establishment of a full-scale prototype in exposed waters. This includes the existence of a well-established design basis and documentation of technical viability through long

  17. Angiotensin converting enzyme inhibitors effect on arterial stiffness and wave reflections: a meta-analysis and meta-regression of randomised controlled trials.

    Science.gov (United States)

    Shahin, Yousef; Khan, Junaid Alam; Chetter, Ian

    2012-03-01

    Several studies have assessed the effect of angiotensin converting enzyme inhibitors (ACEIs) on arterial stiffness and wave reflections as measured by pulse wave velocity (PWV) and augmentation index (AIx), respectively. We conducted a meta-analysis to investigate this effect in comparison to placebo and to other antihypertensive agents. Additionally, we investigated this effect when ACEIs are combined with other antihypertensive agents and in comparison to a combination of antihypertensive agents. MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials (CENTRAL) were searched from inception to May 2011 on randomised controlled trials (RCTs) which assessed the effect of ACEIs on arterial stiffness vs. placebo or no treatment and ACEIs vs. angiotensin receptor blockers (ARBs), calcium channel blockers (CCBs), β-blockers and diuretics. RCTs which assessed the effect of ACEIs combined with other antihypertensives or compared ACEIs with a combination of antihypertensives were also sought. Data from included RCTs were pooled with use of fixed and random effects meta-analysis of the weighted mean change differences between the comparator groups. Heterogeneity across studies was assessed with the I(2) statistic. In 5 trials including 469 patients, treatment with ACEIs (n=227) vs. placebo (n=216) significantly reduced PWV (pooled mean change difference -1.69, 95% C.I. -2.05, -1.33, pACEIs (n=178) insignificantly reduced PWV when compared with other antihypertensives (ARBs, CCBs, β-blockers, diuretics and a combination of ACEI and ARB) (n=220) (pooled mean change difference -0.19, 95% C.I. -0.59, 0.21, p=0.36, I(2)=0%). ACEI effect on AIx in comparison to placebo was assessed in 7 trials. Treatment with ACEIs significantly reduced AIx (pooled mean change difference -3.79, 95% C.I. -5.96, -1.63, p=0.0006) with significant heterogeneity. In 7 trials, treatment with ACEIs significantly reduced AIx when compared with other antihypertensives (pooled mean change

  18. Wavelength Converters

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Wolfson, David;

    1999-01-01

    at 2.5 Gbit/s, the regeneration causes a reduction of the required input power to an in-line EDFA of ~6 dB for a power penalty of 1 dB at a bit error rate of 10-9. If two converters are concatenated the power requirement is reduced ~8 dB. Obviously, the power reduction allows for longer spans between....... It is predicted that jitter accumulation can be minimised by using a 9-10 dB ratio between the signal and CW power also assuring a high extinction ratio. Using this guideline simulations show that 20 cross-gain modulation converters can be cascaded at 10 Gbit/s with only ~20 ps of accumulated jitter...... and an extinction ratio of ~10 dB.The regenerative capabilities of the cross-phase converters are described and verified experimentally at 20 Gbit/s, where the noise redistribution and improvement of the signal-to-noise ratio clearly is demonstrated by controlling the input power to an EDFA. In a similar experiment...

  19. Impact of ISWEC sea wave energy converter on posidonia oceanica meadows assessed by satellite remote sensing in the coastal areas of Pantelleria island

    Science.gov (United States)

    Borfecchia, Flavio; Micheli, Carla; Belmonte, Alessandro; De Cecco, Luigi; Sannino, Gianmaria; Bracco, Giovanni; Mattiazzo, Giuliana; Vittoria Struglia, Maria

    2016-04-01

    Marine renewable energy extraction plays a key role both in energy security of small islands and in mitigation of climate change, but at the same time poses the important question of monitoring the effects of the interaction of such devices with the marine environment. In this work we present a new methodology, integrating satellite remote sensing techniques with in situ observations and biophysical parameters analysis, for the monitoring and mapping of Posidonia Oceanica (PO) meadows in shallow coastal waters. This methodology has been applied to the coastal area offshore Pantelleria Island (Southern Mediterranean) where the first Italian Inertial Sea Wave Energy Converter (ISWEC) prototype has been recently installed. The prototype, developed by the Polytechnic of Turin consists of a platform 8 meters wide, 15 meters long and 4.5 meters high, moored at about 800 meters from the shore and at 31 m depth. It is characterized by high conversion efficiency, resulting from its adaptability to different wave conditions, and a limited environmental impact due to its mooring innovative method with absence of fixed anchors to the seabed. The island of Pantelleria, is characterized by high transparency of coastal waters and PO meadows ecosystems with still significant levels of biodiversity and specific adaptation to accentuated hydrodynamics of these shores. Although ISWEC is a low-impact mooring inertial system able to ensure a reliable connection to the electric grid with minimal impact on seagrass growing in the seabed, the prototype installation and operation involves an interaction with local PO and seagrass meadows and possible water transparency decreasing. In this view monitoring of local PO ecosystem is mandatory in order to allow the detection of potential stress and damages due to ISWEC related activities and/or other factors. However, monitoring and collection of accurate and repetitive information over large areas of the necessary parameters by means of

  20. Emissions Tests Of Two Dc-To-Dc Converters

    Science.gov (United States)

    Mclyman, W. T.

    1992-01-01

    Report describes tests to characterize unwanted electric and magnetic fields, at frequencies up to few megahertz, radiated by two dc-to-dc converters, one 20-kHz square-wave converter; the other, a 33-kHz sine-wave converter. Part of effort to develop "quiet" power converter for use aboard spacecraft. Converter required to interfere minimally with delicate instruments measuring electric and magnetic fields.

  1. A Novel Three-port DC/DC Converter for Wave Power Generation System%一种适用于波浪能发电系统的新型三端口DC/DC变换器

    Institute of Scientific and Technical Information of China (English)

    陈美伊; 王维俊; 温亚东; 叶盛

    2016-01-01

    A novel three-port DC/DC converter for wave power generation system is proposed. The topology is a three-port full-bridge converter generated based on the two-port full-bridge converter by increasing a transformer secondary winding. The converter not only meet the demand of wide input range voltage application and high security, but also realize the buck-boost transformation. Adopting the soft switching technology, the topology is suitable for high-power application. Finally, in this paper the work states and operational modes are analyzed, and the theoretical analysis is verified by saber simulation.%提出了一种新型的三端口DC/DC变换器电路拓扑。在全桥变换器的基础上,增加一个变压器副边,形成三端口全桥变换器。该拓扑不仅输入电压变化范围宽,输入输出变比大,安全性高,实现了升降压变换;并且采用了软开关技术,适用于大功率场合。分析了该变换器的工作状态和开关模态,并通过Saber 仿真验证了理论分析的正确性。

  2. 基于虚拟偏移距方法的各向异性转换波保幅叠前时间偏移%Anisotropic converted wave amplitude-preserving prestack time migration by the pseudo-offset method

    Institute of Scientific and Technical Information of China (English)

    张丽艳; 刘洋

    2008-01-01

    In this paper, we use the method of pseudo-offset migration (POM) to complete converted wave pre-stack time migration with amplitude-preservation in an anisotropic medium. The method maps the original traces into common conversion scatter point (CCSP) gathers directly by POM, which simplifies the conventional processing procedure for converted waves. The POM gather fold and SNR are high, which is favorable for velocity analysis and especially suitable for seismic data with low SNR. We used equivalent anisotropic theory to compute anisotropic parameters. Based on the scattering wave traveltime equation in a VTI medium, the POM pseudo-offset migration in anisotropic media was deduced. By amplitude-preserving POM gather mapping, velocity analysis, stack processing, and so on, the anisotropic migration results were acquired. The forward modeling computation and actual data processing demonstrate the validity of converted wave pre-stack time migration with amplitude-preservation using the anisotropic POM method.

  3. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies......, concerning a hydraulic evaluation and optimisation of the geometry of the Wave Dragon, is presented. Furthermore, the plans for the future development projects are sketched....

  4. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...

  5. A Double Modulation Wave Carrier-Based PWM Strategy for Three-Level Neutral Point Clamped Converter%基于双调制波的三电平NPC变流器载波调制策略

    Institute of Scientific and Technical Information of China (English)

    李宁; 王跃; 王兆安

    2014-01-01

    In modulation strategies for three-level neutral point clamped (NPC) converters the double modulation wave carrier-based PWM (DMWPWM) strategy is such a modulation strategy, by which the neutral point voltage control under the entire modulation index and full power factor can be achieved. Firstly, the basic principle of existing DMWPWM strategies are analyzed and the relation between modulation wave in DMWPWM and that in traditional sinusoidal pulse width modulation (SPWM) is analyzed, and on this basis a DMWPWM strategy for three-level NPC converter is proposed;secondly, in the aspects of total harmonic distortion (THD) characteristic of output phase voltage, DC voltage utilization and switching loss of the device the proposed DMWPWM strategy is compared with traditional SPWM strategy to further expound the features of the proposed method. The correctness of theoretical analysis is validated by results from simulation and experiments.%三电平NPC变流器的调制策略中,双调制波载波调制策略(double modulation wave carrier-based PWM , DMWPWM)是一种可以实现全调制度和全功率因数中点电压无波动的调制策略。首先分析了已有DMWPWM策略的基本原理,推导了DMWPWM策略调制波与传统SPWM策略调制波的关系,在此基础上提出了应用于三电平NPC变流器的DMWPWM策略。然后,从输出相电压总谐波畸变率(total harmonic distortion,THD)特性、直流电压利用率以及器件开关损耗三方面对新型DMWPWM策略与传统正弦脉冲宽度调制(sinusoidal pulse width modulation,SPWM)策略进行对比,进一步阐明了所提方法特点。仿真和实验结果验证了理论分析的正确性。

  6. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov;

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  7. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov;

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on air-optical wavelength converter types based on semiconductor optical amplifiers....

  8. Technologies for converter topologies

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan; Zhang, Haiyu

    2017-02-28

    In some embodiments of the disclosed inverter topologies, an inverter may include a full bridge LLC resonant converter, a first boost converter, and a second boost converter. In such embodiments, the first and second boost converters operate in an interleaved manner. In other disclosed embodiments, the inverter may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, and a transformer.

  9. Power Converters for Accelerators

    CERN Document Server

    Visintini, R

    2015-01-01

    Particle accelerators use a great variety of power converters for energizing their sub-systems; while the total number of power converters usually depends on the size of the accelerator or combination of accelerators (including the experimental setup), the characteristics of power converters depend on their loads and on the particle physics requirements: this paper aims to provide an overview of the magnet power converters in use in several facilities worldwide.

  10. The photoelectric displacement converter

    Science.gov (United States)

    Dragoner, Valeriu V.

    2005-02-01

    In the article are examined questions of constructing photoelectric displacement converter satisfying demands that are stated above. Converter has channels of approximate and precise readings. The approximate reading may be accomplished either by the method of reading from a code mask or by the method of the consecutive calculation of optical scale gaps number. Phase interpolator of mouar strips" gaps is determined as a precise measuring. It is shown mathematical model of converter that allow evaluating errors and operating speed of conversion.

  11. Subduction and collision processes in the Central Andes constrained by converted seismic phases.

    Science.gov (United States)

    Yuan, X; Sobolev, S V; Kind, R; Oncken, O; Bock, G; Asch, G; Schurr, B; Graeber, F; Rudloff, A; Hanka, W; Wylegalla, K; Tibi, R; Haberland, C; Rietbrock, A; Giese, P; Wigger, P; Röwer, P; Zandt, G; Beck, S; Wallace, T; Pardo, M; Comte, D

    The Central Andes are the Earth's highest mountain belt formed by ocean-continent collision. Most of this uplift is thought to have occurred in the past 20 Myr, owing mainly to thickening of the continental crust, dominated by tectonic shortening. Here we use P-to-S (compressional-to-shear) converted teleseismic waves observed on several temporary networks in the Central Andes to image the deep structure associated with these tectonic processes. We find that the Moho (the Mohorovicić discontinuity--generally thought to separate crust from mantle) ranges from a depth of 75 km under the Altiplano plateau to 50 km beneath the 4-km-high Puna plateau. This relatively thin crust below such a high-elevation region indicates that thinning of the lithospheric mantle may have contributed to the uplift of the Puna plateau. We have also imaged the subducted crust of the Nazca oceanic plate down to 120 km depth, where it becomes invisible to converted teleseismic waves, probably owing to completion of the gabbro-eclogite transformation; this is direct evidence for the presence of kinetically delayed metamorphic reactions in subducting plates. Most of the intermediate-depth seismicity in the subducting plate stops at 120 km depth as well, suggesting a relation with this transformation. We see an intracrustal low-velocity zone, 10-20 km thick, below the entire Altiplano and Puna plateaux, which we interpret as a zone of continuing metamorphism and partial melting that decouples upper-crustal imbrication from lower-crustal thickening.

  12. High speed data converters

    CERN Document Server

    Ali, Ahmed MA

    2016-01-01

    This book covers high speed data converters from the perspective of a leading high speed ADC designer and architect, with a strong emphasis on high speed Nyquist A/D converters. For our purposes, the term 'high speed' is defined as sampling rates that are greater than 10 MS/s.

  13. Electrical Power Converter

    NARCIS (Netherlands)

    Ferreira, J.A.

    2014-01-01

    Electrical power converter for converting electrical power of a power source connected or connectable at an input to electrical DC-power at an output, wherein between the input and the output a first circuit of submodules is provided, wherein said first circuit of submodules and the power source for

  14. Searching for structure in the mid-mantle: Observations of converted phases beneath Iceland and Europe

    Science.gov (United States)

    Jenkins, J.; Deuss, A. F.; Cottaar, S.

    2016-12-01

    Until recently, most of the lower mantle was considered to be well-mixed with strong heterogeneity restricted to the lowermost several hundred kilometers above the core-mantle boundary, also known as the D'' layer. However, several recent studies have started to hint at a potential change in earth structure at mid-mantle depths, with evidence from both seismic tomography (Fukao and Obayashi 2013, French and Romanowichz, 2015) and global viscosity structure (Rudolph et al., 2015). We present the first continental-wide search for mid-mantle P to S wave converted phases and find most observations come from approximately 1000 km depth beneath Iceland and Western Europe. Conversions are identified using a data set of 50,000 high quality receiver functions which are systematically searched for robust signals from the mid-mantle. Potential P to s conversions are analysed in terms of slowness to determine whether they are true observations from depth or simply surface multiples arriving at similar times. We find broad regions with robust signals from approximately 1000 km depth in several locations; beneath Iceland and across Western Europe, beneath Ireland, Scotland, Eifel and south towards NW Italy and Spain. Similar observations have previously been observed mainly in subduction zone settings, and have been hypothesised to be caused by down-going oceanic crustal material. Here we present observations which correlate with slow seismic velocities in recent tomographic models (Rickers et al., (2013); French and Romanowicz, (2015)). These low velocities appear to be a channel deviating from the broad mantle plume beneath Iceland at mid-mantle depths. We hypothesise that the mid-mantle seismic signals we observe are caused by either a phase transition occurring locally in a specific composition or by small-scale chemical heterogeneities swept along with upwelling material and ponding around 1000 km.

  15. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Knapp, W.

    2006-01-01

    Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... this extended period. The prototype is highly instrumented. The overtopping characteristic and the power produced are presented here. This has enabled comparison between the prototype and earlier results from both laboratory model and computer simulation. This gives the optimal operating point and the expected...

  16. Overview of Wave to Wire Models

    DEFF Research Database (Denmark)

    Nielsen, Kim; Kramer, Morten Mejlhede; Ferri, Francesco

    A “Wave to Wire” (W2W) model is a numerical tool that can calculate the power output from a specified Wave Energy Converter (WEC), under specified ocean wave conditions. The tool can be used to assess and optimize the performance of a Wave Energy Converter (WEC) design and provide knowledge of th...

  17. Wave Dragon MW

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...

  18. Wave Dragon MW

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...

  19. The Wave Energy Sector

    DEFF Research Database (Denmark)

    2017-01-01

    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been ...

  20. Converting Nonclassicality into Entanglement

    Science.gov (United States)

    Killoran, N.; Steinhoff, F. E. S.; Plenio, M. B.

    2016-02-01

    Quantum mechanics exhibits a wide range of nonclassical features, of which entanglement in multipartite systems takes a central place. In several specific settings, it is well known that nonclassicality (e.g., squeezing, spin squeezing, coherence) can be converted into entanglement. In this work, we present a general framework, based on superposition, for structurally connecting and converting nonclassicality to entanglement. In addition to capturing the previously known results, this framework also allows us to uncover new entanglement convertibility theorems in two broad scenarios, one which is discrete and one which is continuous. In the discrete setting, the classical states can be any finite linearly independent set. For the continuous setting, the pertinent classical states are "symmetric coherent states," connected with symmetric representations of the group S U (K ). These results generalize and link convertibility properties from the resource theory of coherence, spin coherent states, and optical coherent states, while also revealing important connections between local and nonlocal pictures of nonclassicality.

  1. Improving Power Converter Reliability

    DEFF Research Database (Denmark)

    Ghimire, Pramod; de Vega, Angel Ruiz; Beczkowski, Szymon

    2014-01-01

    The real-time junction temperature monitoring of a high-power insulated-gate bipolar transistor (IGBT) module is important to increase the overall reliability of power converters for industrial applications. This article proposes a new method to measure the on-state collector?emitter voltage...... of a high-power IGBT module during converter operation, which may play a vital role in improving the reliability of the power converters. The measured voltage is used to estimate the module average junction temperature of the high and low-voltage side of a half-bridge IGBT separately in every fundamental...... is measured in a wind power converter at a low fundamental frequency. To illustrate more, the test method as well as the performance of the measurement circuit are also presented. This measurement is also useful to indicate failure mechanisms such as bond wire lift-off and solder layer degradation...

  2. Converting Nonclassicality into Entanglement.

    Science.gov (United States)

    Killoran, N; Steinhoff, F E S; Plenio, M B

    2016-02-26

    Quantum mechanics exhibits a wide range of nonclassical features, of which entanglement in multipartite systems takes a central place. In several specific settings, it is well known that nonclassicality (e.g., squeezing, spin squeezing, coherence) can be converted into entanglement. In this work, we present a general framework, based on superposition, for structurally connecting and converting nonclassicality to entanglement. In addition to capturing the previously known results, this framework also allows us to uncover new entanglement convertibility theorems in two broad scenarios, one which is discrete and one which is continuous. In the discrete setting, the classical states can be any finite linearly independent set. For the continuous setting, the pertinent classical states are "symmetric coherent states," connected with symmetric representations of the group SU(K). These results generalize and link convertibility properties from the resource theory of coherence, spin coherent states, and optical coherent states, while also revealing important connections between local and nonlocal pictures of nonclassicality.

  3. Thermionic photovoltaic energy converter

    Science.gov (United States)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  4. Life cycle assessment of the wave energy converter: Wave Dragon

    DEFF Research Database (Denmark)

    Hans Chr., Sørensen; Stefan, Naef; Stefan, Anderberg

    Any power production technology should be able to demonstrate that it's able to comply with current and future environmental regulation and that it demonstrates a considerable surplus in the energy balance being a part of the entire power system. This means that the energy used throughout all...... the lifecycle stages; from provision of materials over manufacturing of components and assembly, to deployment and use and eventually the disposal stage, is considerably less than the energy produced by the devise during its use/production stage....

  5. Wave Data Analysis

    DEFF Research Database (Denmark)

    Alikhani, Amir; Frigaard, Peter; Burcharth, Hans F.

    1998-01-01

    The data collected over the course of the experiment must be analysed and converted into a form suitable for its intended use. Type of analyses range from simple to sophisticated. Depending on the particular experiment and the needs of the researcher. In this study three main part of irregular wave...... data analyses are presented e.g. Time Domain (Statistical) Analyses, Frequency Domain (Spectral) Analyses and Wave Reflection Analyses. Random wave profile and definitions of representative waves, distributions of individual wave height and wave periods and spectra of sea waves are presented....

  6. The Wave Energy Device

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William

    2006-01-01

    The Wave Dragon is a 4 to 11 MW offshore wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power......'s first offshore wave energy converter. During this period an extensive measuring program has established the background for optimal design of the structure and regulation of the power take off system. Planning for full scale deployment of a 7 MW unit within the next 2 years is in progress. The prototype....... In the period from 1998 to 2001 extensive testing on a scale 1:50 model was carried at Aalborg University. During the last two years, testing has started on a prototype of the Wave Dragon in Nissum Bredning, Denmark (scale 1:4.5 of the North Sea). The prototype was grid connected in May 2003 as the world...

  7. A dc to dc converter

    Science.gov (United States)

    Willis, A. E.; Gould, J. M.; Matheney, J. L.; Garrett, H. (Inventor)

    1984-01-01

    The object of the invention is to provide an improved converter for converting one direct current voltage to another. A plurality of phased square wave voltages are provided from a ring counter through amplifiers to a like plurality of output transformers. Each of these transformers has two windings, and S(1) winding and an S(2) winding. The S(1) windings are connected in series, then the S(2) windings are connected in series, and finally, the two sets of windings are connected in series. One of six SCRs is connected between each two series connected windings to a positive output terminal and one of diodes is connected between each set of two windings of a zero output terminal. By virtue of this configuration, a quite high average direct current voltage is obtained, which varies between full voltage and two-thirds full voltage rather than from full voltage to zero. Further, its variation, ripple frequency, is reduced to one-sixth of that present in a single phase system. Application to raising battery voltage for an ion propulsion system is mentioned.

  8. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  9. Angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Sørensen, P G; Rømer, F K; Cortes, D

    1984-01-01

    In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or radiolog......In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical...

  10. Converting the reset

    NARCIS (Netherlands)

    Hoogland, J.K.; Neumann, C.D.D.; Bloch, D.

    2001-01-01

    We give a simple algorithm to incorporate the effects of resets in convertible bond prices, without having to add an extra factor to take into account the value of the reset. Furthermore we show that the effect of a notice period, and additional make-whole features, can be treated in a straightforwa

  11. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  12. Definition of Power Converters

    CERN Document Server

    Bordry, F

    2015-01-01

    The paper is intended to introduce power conversion principles and to define common terms in the domain. The concept s of sources and switches are defined and classified. From the basic laws of source interconnections, a generic method of power converter synthesis is presented. Some examples illustrate this systematic method. Finally, the commutation cell and soft commuta tion are introduced and discussedd.

  13. Convertible Proxy Signcryption Scheme

    Institute of Scientific and Technical Information of China (English)

    李继国; 李建中; 曹珍富; 张亦辰

    2004-01-01

    In 1996, Mambo et al introduced the concept of proxy signature. However, proxy signature can only provide the delegated authenticity and cannot provide confidentiality. Recently, Gamage et al and Chan and Wei proposed different proxy signcryption schemes respectively, which extended the concept of proxy signature.However, only the specified receiver can decrypt and verify the validity of proxy signcryption in their schemes.To protect the receiver' s benefit in case of a later dispute, Wu and Hsu proposed a convertible authenticated encryption scheme, which carn enable the receiver to convert signature into an ordinary one that can be verified by anyone. Based on Wu and Hsu' s scheme and improved Kim' s scheme, we propose a convertible proxy signcryption scheme. The security of the proposed scheme is based on the intractability of reversing the one-way hash function and solving the discrete logarithm problem. The proposed scheme can satisfy all properties of strong proxy signature and withstand the public key substitution attack and does not use secure channel. In addition, the proposed scheme can be extended to convertible threshold proxy signcryption scheme.

  14. The Convertible Arbitrage Strategy Analyzed

    NARCIS (Netherlands)

    Loncarski, I.; Ter Horst, J.R.; Veld, C.H.

    2006-01-01

    This paper analyzes convertible bond arbitrage on the Canadian market for the period 1998 to 2004.Convertible bond arbitrage is the combination of a long position in convertible bonds and a short position in the underlying stocks. Convertible arbitrage has been one of the most successful strategies

  15. Advanced DC/DC converters

    CERN Document Server

    Luo, Fang Lin

    2003-01-01

    INTRODUCTIONHistorical ReviewMultiple Quadrant ChoppersPump CircuitsDevelopment of DC/DC Conversion TechniqueCategorize Prototypes and DC/DC Converters Family TreeVOLTAGE-LIFT CONVERTERSIntroductionSeven Self-Lift ConvertersPositive Output Luo-ConvertersNegative Output Luo-ConvertersModified Positive Output Luo-Converters Double Output Luo-ConvertersPOSITIVE OUTPUT SUPER-LIFT LUO-CONVERTERS IntroductionMain SeriesAdditional SeriesEnhanced Series Re-Enhanced Series Multiple-Enhanced Series Summary of Positive Output

  16. Microprocessor controlled static converter

    Directory of Open Access Journals (Sweden)

    Stefan Szabo

    2005-10-01

    Full Text Available This paper wants to demonstrate a way of implementing a microcontroller into an DC motor speed control loop. The static power converter is a fully controlled rectifier bridge, using standard SCR's. The bridge's control signals are supplied by the microcontroller and are phase-angle or burst types. The automation loop contains a software PI-style regulator. All the experimental results shows that this aproach is flexibile enough to be used on a large scale.

  17. DSP controlled power converter

    OpenAIRE

    Chan, CH; Pong, MH

    1995-01-01

    A digital controller is designed and implemented by a Digital Signal Processor (DSP) to replace the Pulse Width Modulator (PWM) and error amplifier compensation network in a two wheeler forward converter. The DSP controller is designed in three approaches: a) Discretization of analog controller - the design is based on the transfer function of the error amplifier compensation network. b) Digital PID controller design - the design is based on the general form of the pulse transfer function of ...

  18. Robust Wave Resource Estimation

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    2013-01-01

    An assessment of the wave energy resource at the location of the Danish Wave Energy test Centre (DanWEC) is presented in this paper. The Wave Energy Converter (WEC) test centre is located at Hanstholm in the of North West Denmark. Information about the long term wave statistics of the resource...... is necessary for WEC developers, both to optimise the WEC for the site, and to estimate its average yearly power production using a power matrix. The wave height and wave period sea states parameters are commonly characterized with a bivariate histogram. This paper presents bivariate histograms and kernel...... density estimates of the PDF as a function both of Hm0 and Tp, and Hm0 and T0;2, together with the mean wave power per unit crest length, Pw, as a function of Hm0 and T0;2. The wave elevation parameters, from which the wave parameters are calculated, are filtered to correct or remove spurious data...

  19. X-Y Converter Family

    DEFF Research Database (Denmark)

    Bhaskar, Mahajan Sagar; Sanjeevikumar, Padmanaban; Wheeler, Patrick

    2016-01-01

    A New breed of a buck boost converter, named as the XY converter family is proposed in this article. In the XY family, 16 topologies are presented which are highly suitable for renewable energy applications which require a high ratio of DC-DC converter; such as a photovoltaic multilevel inverter...... system, high voltage automotive applications and industrial drives. Compared to the traditional boost converter and existing recent converters, the proposed XY converter family has the ability to provide a higher output voltage by using less number of power devices and reactive components. Other distinct...... features of the XY converter family are i) Single control switch ii) Provide negative output voltage iii) Non-isolated topologies iv) High conversion ratio without making the use of high duty cycle and v) modular structure. XY family is compared with the recent high step-up converters and the detailed...

  20. Overtopping Measurements on the Wave Dragon Nissum Bredning Prototype

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Rasmussen, Michael R.

    2004-01-01

    The paper describes the methods used to estimate (calculated from some indirect measurements) the overtopping of the wave energy converter Wave Dragon placed in a real sea environment. The wave energy converter in quistion is the 237-tonne heavy Wave Dragon Nissum Bredning Prototype. Comparisons...

  1. Resonant power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2012-01-01

    This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them wit

  2. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...

  3. The Wave Dragon

    DEFF Research Database (Denmark)

    Sørensen, H. C.; Hansen, R.; Friis-Madsen, E.

    2000-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type, utilizing a patented wave reflector design to focus the waves towards a ramp, and the overtopping is used for electricity production through a set of Kaplan/propeller hydro turbines. During the last 2 years, excessive...... design an testing has been performed on a scale 1:50 model of the Wave Dragon, and on a scale 1:3:5 model turbine. Thus survivability, overtopping, hydraulic response, turbine performance and feasibility have been verified....

  4. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    Science.gov (United States)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  5. Wave Dragon Buoyancy Regulation Study

    DEFF Research Database (Denmark)

    Jakobsen, Jens; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter, which was deployed offshore at Nissum Bredning in Denmark in 2003. The experience gained from operating Wave Dragon during 2003 and 2004 has shown that the buoyancy regulation system can be improved in a number of ways. This study describes the current...

  6. Bidirectional buck boost converter

    Science.gov (United States)

    Esser, Albert Andreas Maria

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero.

  7. Gallium phosphide energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Sims, P.E.; Dinetta, L.C.; Goetz, M.A.

    1995-10-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp {minus}17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  8. Innovative Breakwaters Design for Wave Energy Conversion

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Stagonas, D.; Müller, G.

    2012-01-01

    This paper intends contributing to an economically and environmentally sustainable development of coastal infrastructures by investigating the possibility of combining together breakwaters and Wave Energy Converters (WEC). The latter change the wave energy to electricity, which may serve both the...

  9. Millimeter-wave receiver design for plasma diagnostics

    DEFF Research Database (Denmark)

    Leipold, Frank; Hansen, S. K.; Jacobsen, Asger Schou;

    2016-01-01

    Scattered millimeter waves entering from the collective Thomson scattering diagnostic at ASDEX Upgrade fusion device are generally elliptically polarized. In order to convert the millimeter waves to linearly polarized waves (required for the detector), birefringent window assemblies (sapphire) have...

  10. Manufacturing method of photoelectric converter

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Shunpei; Suzuki, Kunio; Fukada, Takeshi; Kanehana, Mikio

    1987-06-25

    This is a photoelectric converter wherein a photoelectromotive force is generated by utilizing the shorter wavelength side by the 1st converter and by utilizing the longer wavelength side by the 2nd converter; as a whole, wider wavelength range of light can be converted into electricity. In the 1st. converter, an electrode on the side of semi-incident surface is made transparent as well as an electrode equipped on the back of a non-mono-crystalline semiconductor. Light which passed this is introduced into the 2nd converter to generate an electromotive force. This invention especially relates with a method of forming this 2nd converter. In preparing I-type non-mono-crystalline semiconductor among the semiconductors having PIN junction, PCVD method is used by means of ECR (Electron Cyclotron Resonance) by using a hydrogen- or halogen- added Si-semiconductor instead of using expensive Ge, etc, which are common in the conventional method. (3 figs)

  11. Unity power factor converter

    Science.gov (United States)

    Wester, Gene W. (Inventor)

    1980-01-01

    A unity power factor converter capable of effecting either inversion (dc-to-dc) or rectification (ac-to-dc), and capable of providing bilateral power control from a DC source (or load) through an AC transmission line to a DC load (or source) for power flow in either direction, is comprised of comparators for comparing the AC current i with an AC signal i.sub.ref (or its phase inversion) derived from the AC ports to generate control signals to operate a switch control circuit for high speed switching to shape the AC current waveform to a sine waveform, and synchronize it in phase and frequency with the AC voltage at the AC ports, by selectively switching the connections to a series inductor as required to increase or decrease the current i.

  12. Dead time optimization method for power converter

    Science.gov (United States)

    Deselaers, C.; Bergmann, U.; Gronwald, F.

    2013-07-01

    This paper introduces a method for dead time optimization in variable speed motor drive systems. The aim of this method is to reduce the conduction time of the freewheeling diode to a minimum without generation of cross conduction. This results in lower losses, improved EMC, and less overshooting of the phase voltage. The principle of the method is to detect beginning cross currents without adding additional components in the half bridge like resistors or inductances. Only the wave shape of the phase voltage needs to be monitored during switching. This is illustrated by an application of the method to a real power converter.

  13. Integrated power electronic converters and digital control

    CERN Document Server

    Emadi, Ali; Nie, Zhong

    2009-01-01

    Non-isolated DC-DC ConvertersBuck ConverterBoost ConverterBuck-Boost ConverterIsolated DC-DC ConvertersFlyback ConverterForward ConverterPush-Pull ConverterFull-Bridge ConverterHalf-Bridge ConverterPower Factor CorrectionConcept of PFCGeneral Classification of PFC CircuitsHigh Switching Frequency Topologies for PFCApplication of PFC in Advanced Motor DrivesIntegrated Switched-Mode Power ConvertersSwitched-Mode Power SuppliesThe Concept of Integrated ConverterDefinition of Integrated Switched-Mode Power Supplies (ISMPS)Boost-Type Integrated TopologiesGeneral Structure of Boost-Type Integrated T

  14. Advanced power electronics converters PWM converters processing AC voltages

    CERN Document Server

    dos Santos, Euzeli

    2014-01-01

    This book covers power electronics, in depth, by presenting the basic principles and application details, which can be used both as a textbook and reference book.  Introduces a new method to present power electronics converters called Power Blocks Geometry. Applicable for courses focusing on power electronics, power electronics converters, and advanced power converters. Offers a comprehensive set of simulation results to help understand the circuits presented throughout the book

  15. The effects of wetting layer on electronic and optical properties of intersubband P-to-S transitions in strained dome-shaped InAs/GaAs quantum dots

    Directory of Open Access Journals (Sweden)

    Mohammadreza Shahzadeh

    2014-06-01

    Full Text Available The authors report on the impact of wetting layer thickness and quantum dot size on the electronic and optical properties of dome-shaped InAs/GaAs quantum dots (QDs with strained potential. Two wetting layer thicknesses of 0.5 and 2.0 nm were compared. A strong size dependence of P-to-S transition energy, transition dipole moment, oscillator strength, and linear and third-order nonlinear susceptibilities were concluded. The P-to-S transition dipole moment was shown to be purely in-plane polarization. The linear and nonlinear absorption and dispersion showed a red shift when the wetting layer thickness was increased. Our results revealed that the nonlinear susceptibility is much more sensitive to QD size compared to the linear susceptibility. An interpretation of the results was presented based on the probability density of finding the electron inside the dot and wetting layer. The results are in good agreement with previously reported experimental data.

  16. Nanostructure Neutron Converter Layer Development

    Science.gov (United States)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  17. Impedance source power electronic converters

    CERN Document Server

    Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang

    2016-01-01

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...

  18. A thermochemical energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Toyeguti, K.; Indzima, T.

    1982-08-09

    Mercury is used as the active mass of the anode in the converter and 0/sub 2/ is used as the active cathode material. The reaction of Mercury + 1/2 0/sub 2/-Hg0 occurs with a discharge. With heating to 500/sup 0/C the regeneration of the Mercury, Hg0 yields Mercury + 1/2 0/sub 2/, occurs. The device for performing the thermochenical conversion of energy contains an element body, an oxygen chamber, an oxygen electrode, a chamber with an alkaline liquid electrolyte, a separator, an auxiliary separator, an electrode and a chamber with the Mercury. The thermochemical reaction occurs in the reactor to which the Hg0 is transported along a pipe which has a refrigerator and a valve. The Mercury is fed into the element from a reservoir. The Mercury reduced in the reactor and in a reaction tower is fed into it through a closed cycle. The bellows is connected with the reactor by a pipe with a refrigerator. Through it the 0/sub 2/ goes in a closed cycle to the chamber. The current forming reactions are Hg + 20H-anion yields Hg0 + H/sub 2/0 + 2e and 1/2 0/sub 2/ + H/sub 2/0 + 2e yields 20H-anion. The voltage on the outleads of the element is approximately 0.3 volts.

  19. DC to DC converters: operation; Hacheurs: fonctionnement

    Energy Technology Data Exchange (ETDEWEB)

    Bernot, F. [Ecole d' Ingenieurs de Tours, 37 (France)

    2002-05-01

    This article deals with pulse width modulation (PWM) and pulse position modulation (PPM) DC to DC converters. A tri-phase PWM converter is made of 6 simple DC/DC converters grouped together into 3 reversible converters of the same type: 1 - single-quadrant voltage lowering converters (hydraulic analogy, study with ideal elements, full scheme with input and output filters); 2 - single-quadrant voltage raising converters (hydraulic analogy, operation); 3 - two quadrants reversible converters (structure construction, quadrants of operation, reversible converter connected to a DC motor); 4 - four-quadrants reversible converters; 5 - other converters structure (current converters and converters with intermediate storage, asymmetrical converters, converters with capacitive storage, insulated converters, resonating converters, status); 6 - conclusion. (J.S.)

  20. The Wave Energy Sector

    DEFF Research Database (Denmark)

    2017-01-01

    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...

  1. Conversion from surface wave to surface wave on reflection

    DEFF Research Database (Denmark)

    Novitsky, Andrey

    2010-01-01

    We discuss the reflection and transmission of an incident surface wave to a pure surface wave state at another interface. This is allowed only for special media parameters: at least one of the media must be magnetic. We found such material characteristics that the obliquely incident surface wave...... can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves....

  2. Impedance Source Power Electronic Converters

    DEFF Research Database (Denmark)

    Liu, Yushan; Abu-Rub, Haitham; Ge, Baoming

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable...... and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key...... control methods. Presents the latest power conversion solutions that aim to advance the role of power electronics into industries and sustainable energy conversion systems. Compares impedance source converter/inverter applications in renewable energy power generation and electric vehicles as well...

  3. Radiation tolerant power converter controls

    CERN Document Server

    Todd, B; King, Q; Uznanski, S

    2012-01-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to signifi...

  4. Power converter simulation and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ghazy, M.A.

    1989-01-01

    There has been a great deal of progress made in computer aided design and analysis in the power electronic field. Many of the simulation packages are inefficient and time consuming in simulating switching converters. This thesis proposes an efficient, simple, general simulation approach to simulate any power converter with less computation time and space requirements on computer. In this approach the equations of power converters are formulated using network topology. In this thesis several procedures have been explained for the steady-state computation of power electronic circuits. Also, the steady-state analyses have been accomplished by a new technique called Fourier series method. For a complete system consisting of converters, filters, and electric machines, the simulation is complicated if a frequency domain technique is used. This thesis introduces a better technique which decouples the system into subsystems and simulates it in the time domain. The design of power converters using optimization techniques is presented in this thesis. Finally, the theory of Variable Structured Systems has been applied to power converters. Sliding mode control for DC-DC and DC-AC power converters is introduced as a tool to accomplish desired characteristics.

  5. TE01 mode converter for highly overmoded circular waveguide at 188 GHz

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Zhurbenko, Vitaliy; Ardenkjær-Larsen, Jan Henrik

    2016-01-01

    A design of a G-band TE01 mode converter is presented in this work. It consists of a TE01 mode launcher followed by a tapered waveguide section. Full-wave simulated reflection coefficient of stainless steel converter is better than −15 dB and transmission coefficient is better than −1.5 dB in a f...

  6. PWM DC/DC Converter

    OpenAIRE

    Chen, Juan

    2008-01-01

    This report is the result of a Master Thesis work done at Seaward Electronics Inc. in Beijing, China from June to December in 2007. The main goal for this thesis is to verify and improve the performance of Honey-PWM DC-DC converter, which has been fabricated by a standard 0.6um CMOS processes. The project was started with studying of Buck converter structure. After the understanding of the converter structure, the project goes in to the analyses phase for each sub-cells, including the theory,...

  7. PS-wave Q estimation based on the P-wave Q values

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Lu, J.; Shi, Y.; Yang, C. [Chinese Academy of Sciences, Beijing (China). Inst. of Geology & Geophysics

    2009-12-15

    Through assumption of the equivalent velocity and equivalent quality factor of the PS-wave, in visco-elastic media, PS-wave Q estimation can be realized with the P-wave quality factor and P- to S-wave velocity ratio. For sedimentary rock, which has strong agglutination, the internal friction is mainly contributed by the shear friction along crevices or inter-granular crevices, so that a relationship between PS-wave Q values and P-wave Q values can be built up even when the S-wave Q values are unknown. In the estimation of the PS-wave quality factor, the P- to S-wave velocity ratio can be computed based on two-way traveltimes of PP and PS events respectively, in order to avoid the influence of the inaccuracy of P- and S-wave velocities. The method is demonstrated with a zero-offset VSP data in a coal-mining field. The results of P-wave and PS-wave Q values estimated show a consistency with lithology revealed from drilling.

  8. Mode-converted ultrasonic scattering in polycrystals with elongated grains.

    Science.gov (United States)

    Arguelles, Andrea P; Kube, Christopher M; Hu, Ping; Turner, Joseph A

    2016-09-01

    Elastic wave scattering is used to study polycrystalline media for a wide range of applications. Received signals, which include scattering from the randomly oriented grains comprising the polycrystal, contain information from which useful microstructural parameters may often be inferred. Recently, a mode-converted diffuse ultrasonic scattering model was developed for evaluating the scattered response of a transverse wave from an incident longitudinal wave in a polycrystalline medium containing equiaxed single-phase grains with cubic elastic symmetry. In this article, that theoretical mode-converted scattering model is modified to account for grain elongation within the sample. The model shows the dependence on scattering angle relative to the grain axis orientation. Experimental measurements were performed on a sample of 7475-T7351 aluminum using a pitch-catch transducer configuration. The results show that the mode-converted scattering can be used to determine the dimensions of the elongated grains. The average grain shape determined from the experimental measurements is compared with dimensions extracted from electron backscatter diffraction, an electron imaging technique. The results suggest that mode-converted diffuse ultrasonic scattering has the potential to quantify detailed information about grain microstructure.

  9. Laser system with wavelength converter

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to an apparatus comprising a diode laser (10) providing radiation in a first wavelength interval, a radiation conversion unit (12) having an input and an output, the radiation converter configured to receive the radiation in the first wavelength interval from the diode...... laser at the input, the radiation conversion unit configured to convert the radiation in the first wavelength interval to radiation in a second wavelength interval and the output configured to output the converted radiation, the second wavelength interval having one end point outside the first...... wavelength interval. Further, the invention relates to a method of optically pumping a target laser (14) in a laser system, the laser system comprising a laser source providing radiation at a first frequency, the laser source being optically connected to an input of a frequency converter, the frequency...

  10. Time-to-digital converters

    CERN Document Server

    Henzler, Stephan

    2010-01-01

    This text covers the fundamentals of time-to-digital converters on analog and digital conversion principles. It includes a theoretical investigation into quantization, linearity, noise and variability, and it details a range of advanced TDC architectures.

  11. Boron nitride converted carbon fiber

    Science.gov (United States)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  12. Photoelectric converters with quantum coherence

    OpenAIRE

    Su, Shan-He; Sun, Chang-Pu; Li, Sheng-Wen; Chen, Jin-Can

    2016-01-01

    Photon impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nano-sized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons. We sh...

  13. Radiation tolerant power converter controls

    Science.gov (United States)

    Todd, B.; Dinius, A.; King, Q.; Uznanski, S.

    2012-11-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to significantly increased radiation induced effects in materials close to the accelerator, including the FGC. Recent radiation tests indicate that the current FGC would not be sufficiently reliable. A so-called FGClite is being designed to work reliably in the radiation environment in the post-LS1 era. This paper outlines the concepts of power converter controls for machines such as the LHC, introduces the risks related to radiation and a radiation tolerant project flow. The FGClite is then described, with its key concepts and challenges: aiming for high reliability in a radiation field.

  14. Transformerless dc-Isolated Converter

    Science.gov (United States)

    Rippel, Wally E.

    1987-01-01

    Efficient voltage converter employs capacitive instead of transformer coupling to provide dc isolation. Offers buck/boost operation, minimal filtering, and low parts count, with possible application in photovoltaic power inverters, power supplies and battery charges. In photovoltaic inverter circuit with transformerless converter, Q2, Q3, Q4, and Q5 form line-commutated inverter. Switching losses and stresses nil because switching performed when current is zero.

  15. Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe

    Science.gov (United States)

    Jenkins, J.; Deuss, A.; Cottaar, S.

    2017-02-01

    Until recently, most of the lower mantle was generally considered to be well-mixed with strong heterogeneity restricted to the lowermost several hundred kilometres above the core-mantle boundary, known as the D″ layer. However several recent studies have started to hint at a potential change in Earth's structure at mid-mantle depths beneath the transition zone. Here we present a continental-wide search of Europe and the North Atlantic for mid-mantle P-to-s wave converted phases. Our data set consists of close to 50,000 high quality receiver functions. These are combined in slowness and depth stacks to identify seismic discontinuities in the range of 800-1400 km depth to determine at which depths and in which tectonic settings these features exist. Receiver functions are computed in different frequency bands to resolve the sharpness of the observed discontinuities. We find most seismic velocity jumps are observed between 975-1050 km depth, localised beneath western Europe and Iceland. The shear wave velocity jumps are roughly 1-2.5% velocity increase with depth occurring over less than 8 km in width. The most robust observations are coincident with areas of active upwelling (under Iceland) and an elongate lateral low velocity anomaly imaged in recent tomographic models which has been interpreted as diverted plume material at depth. The lack of any suggested phase change in a normal pyrolitic mantle composition at around 1000 km depth indicates the presence of regional chemical heterogeneity within the mid-mantle, potentially caused by diverted plume material. We hypothesise that our observations represent either a phase change within chemically distinct plume material itself, or are caused by small scale chemical heterogeneities entrained within the upwelling plume, either in the form of recycled basaltic material or deep sourced chemically distinct material from LLSVPs. Our observations, which cannot be directly linked to an area of either active or ancient

  16. Radiation effects on DC-DC Converters

    Science.gov (United States)

    Zhang, Dexin; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2000-01-01

    DC-DC switching converters are circuits that can be used to convert a DC voltage of one value to another by switching action. They are increasing being used in space systems. Most of the popular DC-DC switching converters utilize power MOSFETs. However power MOSFETs, when subjected to radiation, are susceptible to degradation of device characteristics or catastrophic failure. This work focuses on the effects of total ionizing dose on converter performance. Four fundamental switching converters (buck converter, buck-boost converter, cuk converter, and flyback converter) were built using Harris IRF250 power MOSFETs. These converters were designed for converting an input of 60 volts to an output of about 12 volts with a switching frequency of 100 kHz. The four converters were irradiated with a Co-60 gamma source at dose rate of 217 rad/min. The performances of the four converters were examined during the exposure to the radiation. The experimental results show that the output voltage of the converters increases as total dose increases. However, the increases of the output voltage were different for the four different converters, with the buck converter and cuk converter the highest and the flyback converter the lowest. We observed significant increases in output voltage for cuk converter at a total dose of 24 krad (si).

  17. Simplifying the circuit of Josephson parametric converters

    Science.gov (United States)

    Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George

    Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results

  18. Hybrid-free Josephson Parametric Converter

    Science.gov (United States)

    Frattini, N. E.; Narla, A.; Sliwa, K. M.; Shankar, S.; Hatridge, M.; Devoret, M. H.

    A necessary component for any quantum computation architecture is the ability to perform efficient quantum operations. In the microwave regime of superconducting qubits, these quantum-limited operations can be realized with a non-degenerate Josephson junction based three-wave mixer, the Josephson Parametric Converter (JPC). Currently, the quantum signal of interest must pass through a lossy 180 degree hybrid to be presented as a differential drive to the JPC. This hybrid therefore places a limit on the quantum efficiency of the system and also increases the device footprint. We present a new design for the JPC eliminating the need for any external hybrid. We also show that this design has nominally identical performance to the conventional JPC. Work supported by ARO, AFOSR and YINQE.

  19. Binary/BCD-to-ASCII data converter

    Science.gov (United States)

    Miller, A. J.

    1977-01-01

    Converter inputs multiple precision binary words, converts data to multiple precision binary-coded decimal, and routes data back to computer. Converter base can be readily changed without need for new gate structure for each base changeover.

  20. Wind Energy Conversion Based on Matrix Converter

    Directory of Open Access Journals (Sweden)

    Mutharasan Anburaj

    2014-07-01

    Full Text Available In recent years renewable sources such as solar, wave and wind are used for the generation of electricity. Wind is one of the major renewable sources. The amount of energy from a Wind Energy Conversion System (WECS depends not only on the wind at the site, but also on the control strategy used for the WECS. In assistance to get the appropriate wind energy from the conversion system, wind turbine generator will be run in variable speed mode. The variable speed capability is achieved through the use of an advanced power electronic converter. Fixed speed wind turbines and induction generators are often used in wind farms. But the limitations of such generators are low efficiency and poor power quality which necessitates the variable speed wind turbine generators such as Doubly Fed Induction Generator (DFIG and Permanent Magnet Synchronous Generator (PMSG. A high-performance configuration can be obtained by using Scherbius drive composed of a DFIG and a converter in combination AC-DC-AC connect between stator & rotor points for providing the required variable speed operation

  1. Wave energy: a Pacific perspective.

    Science.gov (United States)

    Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen

    2012-01-28

    This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy.

  2. PWM Converter Power Density Barriers

    Science.gov (United States)

    Kolar, Johann W.; Drofenik, Uwe; Biela, Juergen; Heldwein, Marcelo; Ertl, Hans; Friedli, Thomas; Round, Simon

    Power density of power electronic converters has roughly doubled every 10 years since 1970. Behind this trajectory is the continuous advancement of power semiconductor devices, which has increased the converter switching frequencies by a factor of 10 every decade. However, today's cooling concepts and passive components are major barriers for a continuation of this trend. To identify such technological barriers, this paper investigates the volume of the cooling system and passive components as a function of the switching frequency for power electronic converters and determines the switching frequency that minimizes the total volume. A power density limit of 28kW/dm3 at 300kHz is calculated for an isolated DC-DC converter, 44kW/dm3 at 820kHz for a three-phase unity power factor PWM rectifier, and 26kW/dm3 at 21kHz for a sparse matrix converter. For single-phase AC-DC conversion a general limit of 35kW/dm3 results from the DC link capacitor. These power density limits highlight the need to broaden the scope of power electronics research to include cooling systems, high frequency electromagnetics, interconnection and packaging technology, and multi-domain modelling and simulation to ensure further advancement along the power density trajectory.

  3. Post combustion in converter steelmaking

    Energy Technology Data Exchange (ETDEWEB)

    Oghbasilasie, H.; Holappa, L.

    1997-12-31

    The purpose of this work is to study the fundamentals of post combustion and the effect of different process parameters on the post combustion ratio (PCR) and heat transfer efficiency (HTE) in converter steelmaking process. The PCR and HTE have been determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE. Based on enthalpy considerations, post combustion of CO gas is regarded as one of the most effective means of increasing the heat supply to the BOP. The thermodynamic study of gas-metal-slag reactions gives the limiting conditions for post combustion inside the converter reactor. Different process parameters influencing both thermodynamic equilibria and kinetic conditions can greatly affect the post combustion ratio. Different features of converter processes as well smelting reduction processes utilizing post combustion have been reviewed. (orig.) SULA 2 Research Programme; 26 refs.

  4. Stirling Converters For Solar Power

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1993-01-01

    Two designs expected to meet long-term goals for performance and cost. Proposed for advanced systems to convert solar thermal power to electrical power. Each system, designed to operate with 11-m-diameter paraboloidal reflector, includes solar-energy receiver, liquid-metal heat-transport subsystem, free-piston Stirling engine, cooling subsystem, alternator or generator coupled directly or indirectly to commercial electric-power system, and control and power-conditioning circuitry. System converts approximately 75 kW of input solar thermal power falling on collector to about 25 kW of output electrical power.

  5. Simplified design of data converters

    CERN Document Server

    Lenk, John

    1997-01-01

    Simplified Design of Data Converters shows how to design and experiment with data converters, both analog-to-digital and digital to analog. The design approach here is the same one used in all of John Lenk's best-selling books on simplified and practical design. Throughout the book, design problems start with guidelines for selecting all components on a trial-value basis, assuming a specific design goal and set of conditions. Then, using the guideline values in experimental circuits, the desired results are produced by varying the experimental component values, if needed.If you are a w

  6. Design and Control for the Buck-Boost Converter Combining 1-Plus-D Converter and Synchronous Rectified Buck Converters

    OpenAIRE

    2015-01-01

    In this paper, a design and control for the buck-boost converter, i.e., 1-plus-D converter with a positive output voltage, is presented, which combines the 1-plus-D converter and the synchronous rectified (SR) buck converter. By doing so, the problem in voltage bucking of the 1-plus-D converter can be solved, thereby increasing the application capability of the 1-plus-D converter. Since such a converter operates in continuous conduction mode inherently, it possesses the nonpulsating output cu...

  7. AC-DC PFC Converter Using Combination of Flyback Converter and Full-bridge DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Moh. Zaenal Efendi

    2014-06-01

    Full Text Available This paper presents a combination of power factor correction converter using Flyback converter and Full-bridge dc-dc converter in series connection. Flyback converter is operated in discontinuous conduction mode so that it can serve as a power factor correction converter and meanwhile Full-bridge dc-dc converter is used for dc regulator. This converter system is designed to produce a 86 Volt of output voltage and 2 A of output current. Both simulation and experiment results show that the power factor of this converter achieves up to 0.99 and meets harmonic standard of IEC61000-3-2. Keywords: Flyback Converter, Full-bridge DC-DC Converter, Power Factor Correction.

  8. Quantum Frequency Conversion of Single-Photon States by Three and Four-Wave Mixing

    DEFF Research Database (Denmark)

    Raymer, Michael G.; Reddy, Dileep V.; Andersen, Lasse Mejling

    2013-01-01

    Three- or four-wave mixing can convert a single-photon wave packet to a new frequency. By tailoring the shapes of the pump(s), one can achieve add/drop functionality for different temporally orthogonal wave packets.......Three- or four-wave mixing can convert a single-photon wave packet to a new frequency. By tailoring the shapes of the pump(s), one can achieve add/drop functionality for different temporally orthogonal wave packets....

  9. XML Docbook to Mediawiki Converter

    Directory of Open Access Journals (Sweden)

    Maria Chiara Pievatolo

    2013-05-01

    Full Text Available A Perl script, based on the work of Stefano Selleri, to migrate XML-Docbook 4.X documents to Wiki markup. I added some lines to meet my need to convert my Kant translations from Docbook to MediaWiki. A sample of the output can be...

  10. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  11. High-Performance Data Converters

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    Novel techniques for multi-bit oversampled data conversion are described. State-of-the-art oversampled data converters are analyzed, leading to the conclusion that their performance is limited mainly by low-resolution signal representation. To increase the resolution, high-performance, high...

  12. 全波升压式C-dump变换器发电运行时两种工作模式的分析与比较%Simulation and Comparison of Separate Operating Mode and Combining Operating Mode of Full-Wave Boosting C-dump Converter

    Institute of Scientific and Technical Information of China (English)

    纪昉; 周波; 穆新华

    2001-01-01

    为使无刷直流电机减小体积、减轻重量、降低成本,选择了电容储能型(C-dump)变换器作为飞机起动/发电系统主电路,考虑发电运行的性能要求对变换器拓扑作了改进。改进得到的全波升压式C-dump变换器可作为双向功率流变换器,应用于无刷直流电机起动/发电系统,具有重要的实用价值。全波升压式C-dump变换器 由两级功率变换电路构成,发电运行时有两种工作模式:单级工作模式和两级工作模式。本文分析了C-dump变换器发电运行的原理和特性,介绍了这两种工作模式的原理和特性,详细分析了两种工作模式的输出电压纹波、主开关管占空比、发电效率与电机转速的关系,最后进行了仿真分析与比较。%Considering the trend of reducing the volume, weight and cost of brushless DC motors, Cdump topology is used as the power stage of airplane-starter/generator system, with some improvements on the topology to achieve better performance in regenerating mode. Operation principles and characteristics of the regenerating mode are analyzed. The basic principles and operating characteristics of two operating modes (separate operating mode and combining operating mode) applied for generative operating mode of full-wave boosting C-dump converter are introduced. The relationship between rotor speed and the voltage ripple, duty ratio of power switch and efficiency of generator is discussed in detail. In conclusion, the simulating analysis and the comparison based on C-dump converter and electric machine of airplane of brushless starter/generator double function mode are made.

  13. Converted waves in shallow marine environments: modelling and field experiments

    NARCIS (Netherlands)

    El Allouche, N.

    2011-01-01

    The shallow marine subsurface is explored for various engineering purposes e.g. constructing installations and platforms, laying pipelines and dredging for sand. Knowledge of the soil properties is essential to minimize the risks involved with these offshore activities. Energy resources in the form

  14. 78 FR 40132 - Wave Energy Converter Prize Administration Webinar

    Science.gov (United States)

    2013-07-03

    ... technologies to drastically increase WEC performance. Intellectual property rights will be retained by the... disclosure; (6) when such information might lose its confidential character due to the passage of time; and...

  15. Bidirectional dc-to-dc Power Converter

    Science.gov (United States)

    Griesbach, C. R.

    1986-01-01

    Solid-state, series-resonant converter uses high-voltage thyristors. Converter used either to convert high-voltage, low-current dc power to lowvoltage, high current power or reverse. Taking advantage of newly-available high-voltage thyristors to provide better reliability and efficiency than traditional converters that use vacuum tubes as power switches. New converter essentially maintenance free and provides greatly increased mean time between failures. Attractive in industrial applications whether or not bidirectional capability is required.

  16. Parametric study of laser photovoltaic energy converters

    Science.gov (United States)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  17. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...... to generate power. Model tests have been performed using scale models (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept....... of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate mechanical power available to the power take off....

  18. Photoelectric converters with quantum coherence

    Science.gov (United States)

    Su, Shan-He; Sun, Chang-Pu; Li, Sheng-Wen; Chen, Jin-Can

    2016-05-01

    Photon impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nanosized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency ηCA. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons. We show that, by adopting a pair of suitable degenerate states, quantum coherences induced by the couplings of QDs to sunlight and fermion baths can coexist steadily in nanoelectronic systems. Our analysis indicates that the efficiency at maximum power is no longer limited to ηCA through manipulation of carefully controlled quantum coherences.

  19. Photoelectric converter; Koden henkan soshi

    Energy Technology Data Exchange (ETDEWEB)

    Sawayama, I.

    1995-04-07

    The conventional solar cell module wherein plural photovoltaic elements formed on a metal substrate are connected and coated by weatherproof and translucent resin has defects such as pinholes, and separation because moisture infiltrating from the outside causes dissolution of such conductive matrix as silver in the collecting electrode. This invention relates to a photoelectric converter which has little decrease in the output under the environment of light irradiation, wherein a photoelectric converting semiconductor, a transparent conductive layer on the above-mentioned semiconductor, and conductive member containing water repellent fine powder grains on this transparent conductive layer are laminated successively. Polytetrafluoroethylene, polydimethyl siloxane, polyethylene, and nylon are desirable to be employed as the water repellent fine powder grains. The fine powder grains are mixed with conductive filler and binder to produce conductive paste, pattern-applied by a screen printing machine, and subjected to thermal treatment to form a conductive member. 3 figs., 1 tab.

  20. Photoelectric converters with quantum coherence.

    Science.gov (United States)

    Su, Shan-He; Sun, Chang-Pu; Li, Sheng-Wen; Chen, Jin-Can

    2016-05-01

    Photon impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nanosized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency η_{CA}. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons. We show that, by adopting a pair of suitable degenerate states, quantum coherences induced by the couplings of QDs to sunlight and fermion baths can coexist steadily in nanoelectronic systems. Our analysis indicates that the efficiency at maximum power is no longer limited to η_{CA} through manipulation of carefully controlled quantum coherences.

  1. Newnes short wave listening handbook

    CERN Document Server

    Pritchard, Joe

    2013-01-01

    Newnes Short Wave Listening Handbook is a guide for starting up in short wave listening (SWL). The book is comprised of 15 chapters that discuss the basics and fundamental concepts of short wave radio listening. The coverage of the text includes electrical principles; types of signals that can be heard in the radio spectrum; and using computers in SWL. The book also covers SWL equipment, such as receivers, converters, and circuits. The text will be of great use to individuals who want to get into short wave listening.

  2. Simplified dc to dc converter

    Science.gov (United States)

    Gruber, R. P. (Inventor)

    1984-01-01

    A dc to dc converter which can start with a shorted output and which regulates output voltage and current is described. Voltage controlled switches directed current through the primary of a transformer the secondary of which includes virtual reactance. The switching frequency of the switches is appropriately varied to increase the voltage drop across the virtual reactance in the secondary winding to which there is connected a low impedance load. A starting circuit suitable for voltage switching devices is provided.

  3. Biomass compounds converted to gasoline

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-08

    It is claimed that corn, castor, and jojoba oils as well as Hevea latex can be converted in high yields to gasoline by passage over zeolite catalysts at 450 degrees to 500 degrees centigrade. Gasoline yields are 60% from corn oil (essentially tristearin), compared with 50% yields from methanol. Latex depolymerizes before conversion. Fat and oil molecules adopt conformations that enable them to enter zeolite interstices, resulting in high yields of C6 to C9 aromatics.

  4. Workshop 4 Converter cooling & recuperation

    Science.gov (United States)

    Iles, Peter; Hindman, Don

    1995-01-01

    Cooling the PV converter increases the overall TPV system efficiency, and more than offsets the losses incurred in providing cooling systems. Convective air flow methods may be sufficient, and several standard water cooling systems, including thermo-syphon radiators, capillary pumps or microchannel plates, are available. Recuperation is used to increase system efficiency, rather than to increase the emitter temperature. Recuperators operating at comparable high temperatures, such as in high temperature turbines have worked effectively.

  5. Computerized simulation of converter process

    Energy Technology Data Exchange (ETDEWEB)

    Jalkanen, H.; Suomi, M.L.; Wallgren, M. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1996-12-31

    Converter process is essentially an oxidising refining process aiming in addition to (1) the primary refining action, decarburisation of high carbon iron melt, also to (2) maximal elimination of impurity elements, especially silicon, phosphorus and sulphur, (3) melting of substantial amounts of scrap using the extra heat released in oxidation reactions and (4) to exact final steel temperature control, optimal for further treatments. `Quantitative modelling of such a complex non-stationary chemical process as oxygen converting necessitates extensive formulation of chemical and thermal evolution of the process in connection with the technological properties of the reactor and the process control measures. A comprehensive converter simulation program like CONSIM-3. 1 and its preceding versions that is based on the theoretical and practical knowledge on the process can be used for (1) educating specialists and smelter personnel, (2) planning of the blowing programs, (3) developing and testing of process control systems and after some elaboration and restructuring (4) it can be integrated to static or dynamic process control systems. (orig.) SULA 2 Research Programme; 10 refs.

  6. Design and Control for the Buck-Boost Converter Combining 1-Plus-D Converter and Synchronous Rectified Buck Converters

    Directory of Open Access Journals (Sweden)

    Jeevan Naik

    2015-06-01

    Full Text Available In this paper, a design and control for the buck-boost converter, i.e., 1-plus-D converter with a positive output voltage, is presented, which combines the 1-plus-D converter and the synchronous rectified (SR buck converter. By doing so, the problem in voltage bucking of the 1-plus-D converter can be solved, thereby increasing the application capability of the 1-plus-D converter. Since such a converter operates in continuous conduction mode inherently, it possesses the nonpulsating output current, thereby not only decreasing the current stress on the output capacitor but also reducing the output voltage ripple. Above all, both the 1-plus-D converter and the SR buck converter, combined into a buck–boost converter with no right-half plane zero, use the same power switches, thereby causing the required circuit to be compact and the corresponding cost to be down. Furthermore, during the magnetization period, the input voltage of the 1-plus-D converter comes from the input voltage source, whereas during the demagnetization period, the input voltage of the 1-plus-D converter comes from the output voltage of the SR buck converter.

  7. High-power converters for space applications

    Science.gov (United States)

    Park, J. N.; Cooper, Randy

    1991-06-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  8. Simulation Results of Double Forward Converter

    Directory of Open Access Journals (Sweden)

    P. Vijaya KUMAR

    2009-12-01

    Full Text Available This work aims to find a better forward converter for DC to DC conversion.Simulation of double forward converter in SMPS system is discussed in this paper. Aforward converter with RCD snubber to synchronous rectifier and/or to current doubleris also discussed. The evolution of the forward converter is first reviewed in a tutorialfashion. Performance parameters are discussed including operating principle, voltageconversion ratio, efficiency, device stress, small-signal dynamics, noise and EMI. Itscircuit operation and its performance characteristics of the forward converter with RCDsnubber and double forward converter are described and the simulation results arepresented.

  9. Si Bule Masuk Islam: Western Converts to Islam in Indonesia - more than just Converts of Convenience?

    OpenAIRE

    M. A. Kevin Brice

    2015-01-01

    In discussing converts to Islam, two different types of converts are often identified based on the reason for conversion: converts of convenience and converts of conviction. The common view is that in most (if not all) cases, conversion to Islam in Indonesia by Westerners is about facilitating marriage and so the converts should be classified as converts of convenience. Evidence of the commonality of this view is considered by reference to advice offered to Westerners about marriage to Indone...

  10. multilevel buck converter for automotive electrical load

    African Journals Online (AJOL)

    user

    development of DCM based buck converter and its applications in the HEVs/EVs using ... The paper also highlights the implications of implementing a single stage buck converter, and ..... instance when the saw tooth signal within the internal.

  11. Converting pest insects into food

    DEFF Research Database (Denmark)

    Offenberg, Hans Joachim; Wiwatwittaya, Decha

    2010-01-01

    on management, 32-115 kg ant brood (mainly new queens) was harvested per ha per year without detrimental effect on colony survival and worker ant densities. This suggest that ant biocontrol and ant harvest can be sustainable integrated in plantations and double benefits derived. As ant production is fuelled...... by pest insects, problematic pests are converted into food and additional earnings. To assess the profitability of providing additional food for the ants, O. smaragdina food conversion efficiency (ECI) was estimated in the laboratory. This estimate suggests the feeding of weaver ants in ant farms...

  12. Power electronics converters and regulators

    CERN Document Server

    Dokić, Branko L

    2015-01-01

    This book is the result of the extensive experience the authors gained through their year-long occupation at the Faculty of Electrical Engineering at the University of Banja Luka. Starting at the fundamental basics of electrical engineering, the book guides the reader into this field and covers all the relevant types of converters and regulators. Understanding is enhanced by the given examples, exercises and solutions. Thus this book can be used as a textbook for students, for self-study or as a reference book for professionals.

  13. Converting pest insects into food

    DEFF Research Database (Denmark)

    Offenberg, Hans Joachim; Wiwatwittaya, Decha

    2010-01-01

    Canopy dwelling weaver ants (Oecophylla spp.) are used to control a variety of pests in a number of tropical tree crops. What is less familiar is the existence of commercial markets where these ants and their brood are sold for (i) human consumption, (ii) pet food or (iii) traditional medicine...... by pest insects, problematic pests are converted into food and additional earnings. To assess the profitability of providing additional food for the ants, O. smaragdina food conversion efficiency (ECI) was estimated in the laboratory. This estimate suggests the feeding of weaver ants in ant farms...

  14. OAM mode converter in twisted fibers

    DEFF Research Database (Denmark)

    Usuga Castaneda, Mario A.; Beltran-Mejia, Felipe; Cordeiro, Cristiano

    2014-01-01

    We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA.......We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA....

  15. Analysis and design of converters in Matlab

    OpenAIRE

    Lorente Sanjurjo, Rodrigo

    2010-01-01

    This project will try to provide better understanding of data converters, more specifically in the mathematical representation and coding of non idealities of the converter. As programming tool it will be used the MATLAB environment, with which will carry out the coding and the analysis of the behavior of the converters by adding diverse nonlinearities, taking advantage of the simplicity, clarity, and extensibility that provides this environment. Summarizing, it is going to study the converte...

  16. Study of Wave Conditions at Kvitsøy Prototype Location of Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Guinot, Florent

    This report presents the results of a study of the wave conditions at the planned location of the prototype of the wave energy converter (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs.......This report presents the results of a study of the wave conditions at the planned location of the prototype of the wave energy converter (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs....

  17. Ecologically Optimal Solution of Power Semiconductors Converters

    Directory of Open Access Journals (Sweden)

    Ivan Lokseninec

    2003-01-01

    Full Text Available One of the relevant scientific programs of Department of Power Electrical Systems is research of ecologically optimal topologies main circuits of power converters. This paper presents some methods how to reduce unfavourable influences of power converters on the grid. The achieved results were applieed in praxis, especially in the power converters produced by Electrotechnical Research and Projecting Institute in Nova Dubnica.

  18. Statistical Analysis of Wave Climate Data Using Mixed Distributions and Extreme Wave Prediction

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-05-01

    Full Text Available The investigation of various aspects of the wave climate at a wave energy test site is essential for the development of reliable and efficient wave energy conversion technology. This paper presents studies of the wave climate based on nine years of wave observations from the 2005–2013 period measured with a wave measurement buoy at the Lysekil wave energy test site located off the west coast of Sweden. A detailed analysis of the wave statistics is investigated to reveal the characteristics of the wave climate at this specific test site. The long-term extreme waves are estimated from applying the Peak over Threshold (POT method on the measured wave data. The significant wave height and the maximum wave height at the test site for different return periods are also compared. In this study, a new approach using a mixed-distribution model is proposed to describe the long-term behavior of the significant wave height and it shows an impressive goodness of fit to wave data from the test site. The mixed-distribution model is also applied to measured wave data from four other sites and it provides an illustration of the general applicability of the proposed model. The methodologies used in this paper can be applied to general wave climate analysis of wave energy test sites to estimate extreme waves for the survivability assessment of wave energy converters and characterize the long wave climate to forecast the wave energy resource of the test sites and the energy production of the wave energy converters.

  19. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    Science.gov (United States)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  20. Control of spiral waves and turbulent states in a cardiac model by travelling-wave perturbations

    Institute of Scientific and Technical Information of China (English)

    王鹏业; 谢平; 尹华伟

    2003-01-01

    We propose a travelling-wave perturbation method to control the spatiotemporal dynamics in a cardiac model.It is numerically demonstrated that the method can successfully suppress the wave instability(alternans in action potential duration) in the one-dimensional case and convert spiral waves and turbulent states to the normal travelling wave states in the two-dimensional case.An experimental scheme is suggested which may provide a new design for a cardiac defibrillator.

  1. Valuing Convertible Bonds Based on LSRQM Method

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2014-01-01

    Full Text Available Convertible bonds are one of the essential financial products for corporate finance, while the pricing theory is the key problem to the theoretical research of convertible bonds. This paper demonstrates how to price convertible bonds with call and put provisions using Least-Squares Randomized Quasi-Monte Carlo (LSRQM method. We consider the financial market with stochastic interest rates and credit risk and present a detailed description on calculating steps of convertible bonds value. The empirical results show that the model fits well the market prices of convertible bonds in China’s market and the LSRQM method is effective.

  2. Inventing a Better Way to Capture the Energy of Waves

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    NREL's ocean energy research team's efforts to develop more robust and cost-effective wave energy converters have yielded a record of invention titled, 'Wave Energy Conversion Devices with Actuated Geometry.' This innovative wave device features a wave converter with controlled geometry that increases energy capture and prevents large waves from overloading the generator. The invention's control system actuates flaps that open and close depending on wave conditions. Better control of the wave forces acting on wave energy conversion devices provides a solution to one of wave energy's biggest challenges -- and could cut the cost of wave energy in half.

  3. Advanced Control Techniques for WEC Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Jasinski, M.;

    2007-01-01

    This paper presents the ongoing work on control of the Wave Dragon wave energy converter. Research is being conducted in and between several centers across Europe. This is building upon the knowledge gained in the prototype project, and will enable much better performance of the future deployment...

  4. Estimation of wave conditions at Liseleje location

    DEFF Research Database (Denmark)

    Borgarino, Bruno; Brorsen, Michael

    This report present the near-shore waves conditions at Liseleje. This study has been carried out as a first step to evaluate the possibility of installing an overtopping wave energy converter at Liseleje. The offshore conditions have first been calculated, using 30 years recorded wind data. Then ...

  5. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...

  6. Efficiency of Capacitively Loaded Converters

    DEFF Research Database (Denmark)

    Andersen, Thomas; Huang, Lina; Andersen, Michael A. E.;

    2012-01-01

    This paper explores the characteristic of capacitance versus voltage for dielectric electro active polymer (DEAP) actuator, 2kV polypropylene film capacitor as well as 3kV X7R multi layer ceramic capacitor (MLCC) at the beginning. An energy efficiency for capacitively loaded converters...... is introduced as a definition of efficiency. The calculated and measured efficiency curves for charging DEAP actuator, polypropylene film capacitor and X7R MLCC are provided and compared. The attention has to be paid for the voltage dependent capacitive load, like X7R MLCC, when evaluating the charging...... polypropylene film capacitor can be the equivalent capacitive load. Because of the voltage dependent characteristic, X7R MLCC cannot be used to replace the DEAP actuator. However, this type of capacitor can be used to substitute the capacitive actuator with voltage dependent property at the development phase....

  7. Manufacturing method of photoelectric converter

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Koji; Niwa, Yasuo

    1987-06-24

    In a method of making a thin film for a photoelectric converter by a method to form an electroconductive layer by burning a mixture of lead oxide and chromic oxide, thickness of the film was limited and the poreless uniform film was not obtainable. The intransparency of the film gave low conversion efficiency only. This invention enabled to obtain a transparent film wherein an oxide (containing lead and chrome) is used as a target to form, in vacuum, a thin film of the oxide, and then this thin film is heat-treated in an atmosphere at least containing lead. Thin transparent film was obtained enhancing the conversion efficiency. High quality and high reliability are ensured because a poreless uniform film can be obtained. Cost was reduced because mass-production was made possible by the use of a vacuum technique. (5 figs)

  8. Wave Dragon Buoyancy Regulation Study

    DEFF Research Database (Denmark)

    Jakobsen, Jens; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter, which was deployed offshore at Nissum Bredning in Denmark in 2003. The experience gained from operating Wave Dragon during 2003 and 2004 has shown that the buoyancy regulation system can be improved in a number of ways. This study describes the current situ...... situation, and proposes a number of activities in order to improve the buoyancy regulation system. This work was performed under EU ENERGIE contract no. ENK5-CT-2002-00603, and is a contribution to WP 2.3/2.4 and D40/D41....

  9. Energy Extraction from a Slider-Crank Wave Energy under Irregular Wave Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-08-24

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  10. Stress wave focusing transducers

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  11. Cross-Regulation Assessment of DIDO Buck-Boost Converter for Renewable Energy Application

    Directory of Open Access Journals (Sweden)

    Deepak Elamalayil Soman

    2017-06-01

    Full Text Available When medium- or high-voltage power conversion is preferred for renewable energy sources, multilevel power converters have received much of the interest in this area as methods for enhancing the conversion efficiency and cost effectiveness. In such cases, multilevel, multi-input multi-output (MIMO configurations of DC-DC converters come to the scenario for integrating several sources together, especially considering the stringent regulatory needs and the requirement of multistage power conversion systems. Considering the above facts, a three-level dual input dual output (DIDO buck-boost converter, as the simplest form of MIMO converter, is proposed in this paper for DC-link voltage regulation. The capability of this converter for cross regulating the DC-link voltage is analyzed in detail to support a three-level neutral point clamped inverter-based grid connection in the future. The cross-regulation capability is examined under a new type of pulse delay control (PDC strategy and later compared with a three-level boost converter (TLBC. Compared to conventional boost converters, the high-voltage three-level buck boost converter (TLBBC with PDC exhibits a wide controllability range and cross regulation capability. These enhanced features are extremely important for better regulating variable output renewable energy sources such as solar, wind, wave, marine current, etc. The simulation and experimental results are provided to validate the claim.

  12. Three-phase AC-AC power converters based on matrix converter topology matrix-reactance frequency converters concept

    CERN Document Server

    Szczesniak, Pawel

    2013-01-01

    AC voltage frequency changes is one of the most important functions of solid state power converters. The most desirable features in frequency converters are the ability to generate load voltages with arbitrary amplitude and frequency, sinusoidal currents and voltages waveforms; the possibility of providing unity power factor for any load; and, finally, a simple and compact power circuit. Over the past decades, a number of different frequency converter topologies have appeared in the literature, but only the converters with either a voltage or current DC link are commonly used in industrial app

  13. Assessing wave energy effects on biodiversity: the wave hub experience.

    Science.gov (United States)

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  14. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...

  15. Radiation-Tolerant DC-DC Converters

    Science.gov (United States)

    Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn

    2012-01-01

    A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).

  16. Converting Relational Database Into Xml Document

    Directory of Open Access Journals (Sweden)

    Kanagaraj.S

    2012-03-01

    Full Text Available XML (Extensible Markup Language is emerging and gradually accepted as the standard for data interchange in the Internet world. Interoperation of relational database and XML database involves schema and data translations. Through EER (extended entity relationship model can convert the schema of relational database into XML. The semantics of the relational database, captured in EER diagram, are mapped to XML schema using stepwise procedures and mapped to XML document under the definitions of the XML schema. Converting Relational Database into XML Document is a process of converting the existing databases into XML file format. Existing conversion techniques convert a single database into xml. The proposed approach performs the conversion of databases like Ms-Access, MS-SQL to XML file format. Read the tables information from the corresponding database and generate code for the appropriate databases and convert the tables into XML flat file format. This converted XML file is been presented to the user.

  17. Worlds Largest Wave Energy Project 2007 in Wales

    DEFF Research Database (Denmark)

    Christensen, Lars; Friis-Madsen, Erik; Kofoed, Jens Peter

    2006-01-01

    a large number of fundamentally different technologies are utilised to harvest wave energy. The Wave Dragon belongs to the wave overtopping class of converters and the paper describes the fundamentals and the technical solutions used in this wave energy converter. An offshore floating WEC like the Wave......This paper introduces world largest wave energy project being developed in Wales and based on one of the leading wave energy technologies. The background for the development of wave energy, the total resource ands its distribution around the world is described. In contrast to wind energy turbines...... Dragon has to be scaled in accordance with the wave climate at the deployment site, which makes the Welch demonstrator device the worlds largest WEC so far with a total width of 300 meters. The project budget, the construction methods and the deployment site are also given....

  18. Development of a Modular Power Converter

    Science.gov (United States)

    Stepanov, A.; Biesenieks, L.; Sokolovs, A.; Galkin, I.

    2009-01-01

    This report describes the most important details of elaboration of a versatile power module that can be utilized as a part of various converters. Two or more modules connected together can form a frequency converter or multilevel converter or 3-phase inverter/rectifier etc. Initially the module was developed for fast prototyping of uninterruptible power supplies and energy systems with alternative energy sources. The module can be used also as a basis for laboratory equipment of the power electronics course.

  19. Regeneration of ZVS converter with Resonant inductor

    Directory of Open Access Journals (Sweden)

    J.Sivavara Prasad

    2011-09-01

    Full Text Available This paper presents an analysis of the regeneration of zero-voltage-switching converter with resonant inductor, quasi-resonant converters, and full-bridge zero-voltage-switched PWM Converter. The design of a clamping circuit considering a saturable resonant inductor is presented and compared with the design of a clamping circuit with a linear resonant inductor. A diode model with reverse recovery is employed to simulate the effects.

  20. Fundamentals and hard-switching converters

    CERN Document Server

    Ioinovici, Adrian

    2013-01-01

    Volume 1 Fundamentals and Hard-switching Converters introduces the key challenges in power electronics from basic components to operation principles and presents classical hard- and soft-switching DC to DC converters, rectifiers and inverters. At a more advanced level, it provides comprehensive analysis of DC and AC models comparing the available approaches for their derivation and results. A full treatment of DC to DC hard-switching converters is given, from fundamentals to modern industrial solutions and practical engineering insight. The author elucidates various contradictions and misunderstandings in the literature, for example, in the treatment of the discontinuous conduction operation or in deriving AC small-signal models of converters.

  1. DC/DC Converter Stability Testing Study

    Science.gov (United States)

    Wang, Bright L.

    2008-01-01

    This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.

  2. Commutation Processes in Multiresonant ZVS Bridge Converter

    Directory of Open Access Journals (Sweden)

    Miroslaw Luft

    2008-01-01

    Full Text Available The analysis of the multiresonant ZVS DC/DC bridge converter is presented. The control system of the converter is basedon the method of frequency control at the constant time of transistor turn-off with a phase shift. The operation of the circuit is givenand the operating range of the converter is defined where ZVS switching operation is assured. Control characteristics are given andthe converter’s efficiency is defined. The circuit’s operation is analysed on the basis of results of the converter simulation tests using Simplorer programme.

  3. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    -link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault......-tolerant adjustable speed drive systems; mission profile oriented reliability design in wind turbine and photovoltaic systems; reliability of power conversion systems in photovoltaic applications; power supplies for computers; and high-power converters. Reliability of Power Electronic Converter Systems is essential...... reading for researchers, professionals and students working with power electronics and their applications, particularly those specializing in the development and application of power electronic converters and systems....

  4. Innovative Design for Sea Dikes and Breakwaters for Wave Energy Conversion

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Stagonas, Dimitris; Müller, Gerald

    2012-01-01

    This paper intends contributing to an economically and environmentally sustainable development of coastal infrastructures by investigating the possibility of combining together breakwaters and Wave Energy Converters (WEC). The latter change the wave energy to electricity, which may serve both the...

  5. A high voltage gain quasi Z-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    A compact quasi-Z-source DC/DC converter is presented with high voltage gain, isolated output, and improved efficiency. The improvements in size and performance were achieved by using a square wave inverter with only two output switches driving an isolating transformer in push-pull mode, followed...

  6. Ware Star - Scale 1:40 model test, test report 2; Wave Star - Skala 1:40 modelforsoeg, forsoegsrapport 2

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, M.; Lykke Andersen, Thomas

    2005-01-01

    This report describes model tests with the wave energy converter Wave Star carried out at Aalborg University. This report succeeds to reports presenting numerical calculations. The objective of the tests presented in this report is to determine and optimize the Wave Star concept's power uptake for different physical configurations of the converter. (BA)

  7. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    Science.gov (United States)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  8. Development of Wave Dragon from Scale 1:50 to Prototype

    DEFF Research Database (Denmark)

    Soerensen, H. C.; Friis-Madsen, E.; Panhauser, W.;

    2003-01-01

    The Wave Dragon is a 4 to 11 MW offshore wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power......’s first offshore wave energy converter. During the coming 2 years an extensive measuring program will establish the background for optimal design of the structure and regulation of the power take off system. Planning for full scale deployment of a 7 MW unit within the next 2-3 years is in progress....

  9. Computation of Green's Function of 3-D Radiative Transport Equations for Non-isotropic Scattering of P and Unpolarized S Waves

    Science.gov (United States)

    Margerin, Ludovic

    2017-07-01

    In this work, I propose to model the propagation of high-frequency seismic waves in the heterogeneous Earth by means of a coupled system of radiative transfer equations for P and S waves. The model describes the propagation of both coherent and diffuse waves in a statistically isotropic heterogeneous medium and takes into account key phenomena such as scattering conversions between propagation modes, scattering anisotropy and absorption. The main limitation of the approach lies in the neglect of the shear wave polarization information. The canonical case of a medium with uniform scattering and absorption properties is studied in details. Using an adjoint formalism, Green's functions (isotropic point source solutions) of the transport equation are shown to obey a reciprocity relation relating the P energy density radiated by an S source to the S energy density radiated by a P source. A spectral method of calculation of the Green's function is presented. Application of Fourier, Hankel and Legendre transforms to time, space and angular variables, respectively, turns the equation of transport into a numerically tractable penta-diagonal linear system of equations. The implementation of the spectral method is discussed in details and validated through one-to-one comparisons with Monte Carlo simulations. Numerical experiments in different propagation regimes illustrate that the ratio between the correlation length of heterogeneities and the incident wavelength plays a key role in the rate of stabilization of the P-to-S energy ratio in the coda. The results suggest that the rapid stabilization of energy ratios observed in the seismic coda is a signature of the broadband nature of crustal heterogeneities. The impact of the texture of the medium on both pulse broadening and generation of converted S wave arrivals by explosion sources is illustrated. The numerical study indicates that smooth media enhance the visibility of ballistic-like S arrivals from P sources.

  10. Model Testing of Hydraulic Damping of the Reflector Joint on Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter

    Further development of the Wave Dragon wave energy converter in preparation for full-scale demonstration in the North Sea, PHASE A. FU4305, A4305 & ENS j.nr. 7903-030......Further development of the Wave Dragon wave energy converter in preparation for full-scale demonstration in the North Sea, PHASE A. FU4305, A4305 & ENS j.nr. 7903-030...

  11. Model Testing of Hydraulic Damping of the Reflector Joint on Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter

    Further development of the Wave Dragon wave energy converter in preparation for full-scale demonstration in the North Sea, PHASE A. FU4305, A4305 & ENS j.nr. 7903-030......Further development of the Wave Dragon wave energy converter in preparation for full-scale demonstration in the North Sea, PHASE A. FU4305, A4305 & ENS j.nr. 7903-030...

  12. Multilevel converters for 10 MW Wind Turbines

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2011-01-01

    Several promising multi-level converter configurations for 10 MW Wind Turbines both with direct drive and one-stage gear box drive using Permanent Magnet Synchronous Generator (PMSG) are proposed, designed and compared. Reliability is a crucial indicator for large scale wind power converters...

  13. Present trends in HVDC converter station design

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Lennart; Asplund, Gunnar; Bjorklund, Hans; Flisberg, Gunnar [ABB Power Systems AB, Ludvika (Sweden)

    1994-12-31

    HVDC converter station technology has developed rapidly to satisfy increasing requirements during past 10 - 15 years, but there has not been any dramatic changes since thyristor valves were introduced in the mid 70s. This paper describes some recent and expected future developments, that will substantiality change and simplify future converter stations. (author) 4 refs., 7 figs.

  14. High-Efficiency dc/dc Converter

    Science.gov (United States)

    Sturman, J.

    1982-01-01

    High-efficiency dc/dc converter has been developed that provides commonly used voltages of plus or minus 12 Volts from an unregulated dc source of from 14 to 40 Volts. Unique features of converter are its high efficiency at low power level and ability to provide output either larger or smaller than input voltage.

  15. Power Converters Secure Electronics in Harsh Environments

    Science.gov (United States)

    2013-01-01

    In order to harden power converters for the rigors of space, NASA awarded multiple SBIR contracts to Blacksburg, Virginia-based VPT Inc. The resulting hybrid DC-DC converters have proven valuable in aerospace applications, and as a result the company has generated millions in revenue from the product line and created four high-tech jobs to handle production.

  16. High Precision Current Measurement for Power Converters

    CERN Document Server

    Cerqueira Bastos, M

    2015-01-01

    The accurate measurement of power converter currents is essential to controlling and delivering stable and repeatable currents to magnets in particle accelerators. This paper reviews the most commonly used devices for the measurement of power converter currents and discusses test and calibration methods.

  17. Time-Interleaved Analog to Digital Converters

    NARCIS (Netherlands)

    Louwsma, S.M.; van Tuijl, Adrianus Johannes Maria; Nauta, Bram

    2010-01-01

    This book describes the research carried out by our PhD student Simon Louwsma at the University of Twente, The Netherlands in the field of high-speed Analogto- Digital (AD) converters. AD converters are crucial circuits for modern systems where information is stored or processed in digital form. Due

  18. Input-output rearrangement of isolated converters

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Kovacevic, Milovan; Mønster, Jakob Døllner;

    2015-01-01

    is not a requirement. The proposed technique is particularly valuable in power conversion at very high frequencies, and may be combined with other stress reduction methods. Finally, the new arrangements are experimentally verified both on off the shelf converters and on a VHF resonant SEPIC converter. All results...

  19. Modeling and Simulation of Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

  20. Radiation Effects on DC-DC Converters

    Science.gov (United States)

    Zhang, De-Xin; AbdulMazid, M. D.; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2001-01-01

    In this work, several DC-DC converters were designed and built. The converters are Buck Buck-Boost, Cuk, Flyback, and full-bridge zero-voltage switched. The total ionizing dose radiation and single event effects on the converters were investigated. The experimental results for the TID effects tests show that the voltages of the Buck Buck-Boost, Cuk, and Flyback converters increase as total dose increased when using power MOSFET IRF250 as a switching transistor. The change in output voltage with total dose is highest for the Buck converter and the lowest for Flyback converter. The trend of increase in output voltages with total dose in the present work agrees with those of the literature. The trends of the experimental results also agree with those obtained from PSPICE simulation. For the full-bridge zero-voltage switch converter, it was observed that the dc-dc converter with IRF250 power MOSFET did not show a significant change of output voltage with total dose. In addition, for the dc-dc converter with FSF254R4 radiation-hardened power MOSFET, the output voltage did not change significantly with total dose. The experimental results were confirmed by PSPICE simulation that showed that FB-ZVS converter with IRF250 power MOSFET's was not affected with the increase in total ionizing dose. Single Event Effects (SEE) radiation tests were performed on FB-ZVS converters. It was observed that the FB-ZVS converter with the IRF250 power MOSFET, when the device was irradiated with Krypton ion with ion-energy of 150 MeV and LET of 41.3 MeV-square cm/mg, the output voltage increased with the increase in fluence. However, for Krypton with ion-energy of 600 MeV and LET of 33.65 MeV-square cm/mg, and two out of four transistors of the converter were permanently damaged. The dc-dc converter with FSF254R4 radiation hardened power MOSFET's did not show significant change at the output voltage with fluence while being irradiated by Krypton with ion energy of 1.20 GeV and LET of 25