WorldWideScience

Sample records for p-to-s converted waves

  1. P-S & S-P Elastic Wave Conversions from Linear Arrays of Oriented Microcracks

    Science.gov (United States)

    Jiang, L.; Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Natural and induced processes can produce oriented mechanical discontinuities such as en echelon cracks, fractures and faults. Previous research has shown that compressional to shear (P-S) wave conversions occur at normal incidence to a fracture because of cross-coupling fracture compliances (Nakagawa et al., 2000). Here, experiments and computer simulation are presented to demonstrate the link among cross-coupling stiffness, microcrack orientation and energy partitioning among P, S, and P-S/S-P waves. A FormLabs 2 3D printer was used to fabricate 7 samples (50 mm x 50 mm x 100 mm) with linear arrays of microcracks oriented at 0, 15, 30, 45, 60, 75, and 900 with a print resolution of 0.025 mm. The microcracks were elliptical in cross-sections (2 mm long by 1 mm wide), through the 50 mm thickness of sample, and spaced 3 mm (center-to-center for adjacent cracks). A 25 mm length of each sample contained no microcracks to act as a reference material. Broadband transducers (0.2-1.5 MHz) were used to transmit and receive P and polarized S wave signals that were propagated at normal incidence to the linear array of microcracks. P-wave amplitude increased, while S-wave amplitude remained relatively constant, as the microcrack orientation increased from 0o to 90o. At normal incidence, P-S and S-P wave conversions emerged and increased in amplitude as the crack inclination increased from 00 to 450. From 450 to 900, the amplitude of these converted modes decreased. Between negative and positive crack angles, the P-to-S and S-to-P waves were 1800 phase reversed. The observed energy partitioning matched the computed compliances obtained from numerical simulations with ABAQUS. The cross-coupling compliance for cracks inclined at 450 was found to be the smallest magnitude. 3D printing enabled the study of microstructural effects on macro-scale wave measurements. Information on the orientation of microcracks or even en echelon fractures and faults is contained in P-S conversions

  2. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    Science.gov (United States)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress

  3. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...

  4. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010.......This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010....

  5. Coordinated Control of Wave Energy Converters Subject to Motion Constraints

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-06-01

    Full Text Available In this paper, a generic coordinated control method for wave energy converters is proposed, and the constraints on motion amplitudes and the hydrodynamic interaction between converters are considered. The objective of the control problem is to maximize the energy converted from ocean waves, and this is achieved by coordinating the power take-off (PTO damping of each wave energy converter in the frequency domain in each sea state. In a case study, a wave energy farm consisting of four converters based on the concept developed by Uppsala University is studied. In the solution, motion constraints, including constraints on the amplitudes of displacement and velocity, are included. Twelve months of sea states, based on measured wave data at the Lysekil test site on the Swedish west coast, are used in the simulation to evaluate the performance of the wave energy farm using the new method. Results from the new coordinated control method and traditional control method are compared, indicating that the coordinated control of wave energy converters is an effective way to improve the energy production of wave energy farm in harmonic waves.

  6. SSG Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter

    2008-01-01

    The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low...... head hydroturbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter...

  7. Sensitivity analysis of P-waves and S-waves to gas hydrate in the Shenhu area using OBS

    Science.gov (United States)

    Xing, Lei; Liu, Xueqin; Zhang, Jin; Liu, Huaishan; Zhang, Jing; Li, Zizheng; Wang, Jianhua

    2018-02-01

    Compared to towed streamers, ocean-bottom seismometers (OBS) obtain both S-wave data and richer wavefield information. In this paper, the induced polarization method is used to conduct wavefield separation on OBS data obtained from the Shenhu area in the South China Sea. A comparison of the changes in P- and S-waves, and a comprehensive analysis of geological factors within the area, enable analysis and description of the occurrence of natural gas hydrate in the study area. Results show an increase in P-wave velocity when natural gas hydrate exists in the formation, whereas the S-wave velocity remains almost constant, as S-waves can only propagate through the rock skeleton. Therefore, the bottom-simulating reflection (BSR) response of the P-wave is better than that of the S-wave in the frequency analysis profile. In a wide-angle section, the refractive wave of the hydrate layer is evident when using P-wave components but identification is difficult with S-wave components. This velocity model illustrates the sensitivity of P- and S-wave components to gas hydrate. The use of this polarization method and results of analysis provide technical and theoretical support for research on hydrate deposits and other geological features in the Shenhu area.

  8. Covariant trace formalism for heavy meson s-wave to p-wave transitions

    International Nuclear Information System (INIS)

    Balk, S.; Koerner, J.G.; Thompson, G.; Hussain, F.

    1992-06-01

    Heavy meson, s- to p-wave, weak transitions are studied in the context of the Heavy Quark Effective Theory using covariant meson wave functions. We use the trace formalism to evaluate the weak transitions. As expected from heavy quark symmetry, the eight transitions between s- and p-wave states are described in terms of only two universal form factors which are given in terms of explicit wave function overlap integrals. We present our results in terms of both invariant and helicity amplitudes. Using our helicity amplitude expressions we discuss rate formulae, helicity structure functions and joint angular decay distributions in the decays B-bar→D**(→(D,D*)+π)+W - (→l - ν l ). The heavy quark symmetry predictions for the one-pion transitions D**→(D,D*)+π are similarly worked out by using trace techniques. (author). 35 refs, 3 figs, 2 tabs

  9. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....

  10. Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2015-06-01

    Full Text Available This paper investigates a passive control method of a point absorbing wave energy converter by considering the displacement and velocity constraints under irregular waves in the time domain. A linear generator is used as a power take-off unit, and the equivalent damping force is optimized to improve the power production of the wave energy converter. The results from nonlinear and linear passive control methods are compared, and indicate that the nonlinear passive control method leads to the excitation force in phase with the velocity of the converter that can significantly improve the energy production of the converter.

  11. Model Predictive Control of a Wave Energy Converter

    DEFF Research Database (Denmark)

    Andersen, Palle; Pedersen, Tom Søndergård; Nielsen, Kirsten Mølgaard

    2015-01-01

    In this paper reactive control and Model Predictive Control (MPC) for a Wave Energy Converter (WEC) are compared. The analysis is based on a WEC from Wave Star A/S designed as a point absorber. The model predictive controller uses wave models based on the dominating sea states combined with a model...... connecting undisturbed wave sequences to sequences of torque. Losses in the conversion from mechanical to electrical power are taken into account in two ways. Conventional reactive controllers are tuned for each sea state with the assumption that the converter has the same efficiency back and forth. MPC...

  12. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. During the last months, extensive testing has started...

  13. Evasion of HSR in S-wave charmonium decaying to P-wave light hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang [Qufu Normal University, Department of Physics, Qufu (China); Liu, Xiao-Hai [Peking University, Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Zhao, Qiang [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); CAS, Theoretical Physics Center for Science Facilities, Beijing (China)

    2013-09-15

    The S-wave charmonium decaying to a P-wave and S-wave light hadron pairs are supposed to be suppressed by the helicity selection rule in the perturbative QCD framework. With an effective Lagrangian method, we show that the intermediate charmed meson loops can provide a possible mechanism for the evasion of the helicity selection rule, and result in sizeable decay branching ratios in some of those channels. The theoretical predictions can be examined by the forthcoming BES-III data in the near future. (orig.)

  14. Cycloidal Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  15. Earthquake early warning using P-waves that appear after initial S-waves

    Science.gov (United States)

    Kodera, Y.

    2017-12-01

    As measures for underprediction for large earthquakes with finite faults and overprediction for multiple simultaneous earthquakes, Hoshiba (2013), Hoshiba and Aoki (2015), and Kodera et al. (2016) proposed earthquake early warning (EEW) methods that directly predict ground motion by computing the wave propagation of observed ground motion. These methods are expected to predict ground motion with a high accuracy even for complicated scenarios because these methods do not need source parameter estimation. On the other hand, there is room for improvement in their rapidity because they predict strong motion prediction mainly based on the observation of S-waves and do not explicitly use P-wave information available before the S-waves. In this research, we propose a real-time P-wave detector to incorporate P-wave information into these wavefield-estimation approaches. P-waves within a few seconds from the P-onsets are commonly used in many existing EEW methods. In addition, we focus on P-waves that may appear in the later part of seismic waves. Kurahashi and Irikura (2013) mentioned that P-waves radiated from strong motion generation areas (SMGAs) were recognizable after S-waves of the initial rupture point in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) (the Tohoku-oki earthquake). Detecting these P-waves would enhance the rapidity of prediction for the peak ground motion generated by SMGAs. We constructed a real-time P-wave detector that uses a polarity analysis. Using acceleration records in boreholes of KiK-net (band-pass filtered around 0.5-10 Hz with site amplification correction), the P-wave detector performed the principal component analysis with a sliding window of 4 s and calculated P-filter values (e.g. Ross and Ben-Zion, 2014). The application to the Tohoku-oki earthquake (Mw 9.0) showed that (1) peaks of P-filter that corresponded to SMGAs appeared in several stations located near SMGAs and (2) real-time seismic intensities (Kunugi et al

  16. A physical model study of the travel times and conversion point locations of P-SV converted waves in vertical transversely isotropic media

    Science.gov (United States)

    Tseng, C.

    2013-12-01

    In exploration seismology, subsurface medium commonly exhibits anisotropy, characterized by a vertical transversely isotropic (VTI) model. Due to the need of exploring small reservoirs in complex structures, the seismic exploration is extended to deal with anisotropic media. The P-S converted wave seismic exploration is a relatively inexpensive, broadly applicable, and effective way to obtain the S-wave information of the medium. In anisotropic traveltime analysis, the moveout curve of horizontal P-SV event can help to determine the ratio of the P- and SV-wave vertical velocities, the normal moveout (NMO) velocity of SV-waves, and the anisotropy parameters. The P-SV conversion point (CP) location is of great importance to P-SV data binning, NMO corrections and common conversion point (CCP) stacking, and the anisotropy has a more significant effect on the conversion point location than on the moveout. In this study, we attempt to inspect the theoretical non-hyperbolic moveout and CP equations for the P-SV waves reflected from a VTI layer by numerical calculations and physical modeling. We are also interested in visualizing the variations of the conversion point locations from a designed VTI medium. In traveltime analysis, the theoretical moveout curve is accurate up to offsets about one and a half times the reflector depth (x/z=1.5). However, the moveout curve computed by Fermat's principle fits well to the physical data. The CP locations of P-SV waves are similar to those calculated by Fermat's principle and theoretical CP equation, which are verified by the physical modeling.

  17. Underwater noise from a wave energy converter

    DEFF Research Database (Denmark)

    Tougaard, Jakob

    A recent addition to the anthropogenic sources of underwater noise is offshore wave energy converters. Underwater noise was recorded from the Wavestar wave energy converter located at Hastholm, Denmark (57°7.73´N, 8°37.23´E). The Wavestar is a full-scale test and demonstration converter...... in full operation and start and stop of the converter. Median broad band (10 Hz – 20 kHz) sound pressure level (Leq) was 123 dB re. 1 Pa, irrespective of status of the wave energy converter (stopped, running or starting/stopping). The most pronounced peak in the third-octave spectrum was in the 160 Hz...... significant noise above ambient could be detected above the 250 Hz band. The absolute increase in noise above ambient was very small. L50 third-octave levels in the four bands with the converter running were thus only 1-2 dB above ambient L50 levels. The noise recorded 25 m from the wave energy converter...

  18. Ocean floor mounting of wave energy converters

    Science.gov (United States)

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  19. High-frequency matrix converter with square wave input

    Science.gov (United States)

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  20. Controller for a wave energy converter

    Science.gov (United States)

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  1. Temporal change in shallow subsurface P- and S-wave velocities and S-wave anisotropy inferred from coda wave interferometry

    Science.gov (United States)

    Yamamoto, M.; Nishida, K.; Takeda, T.

    2012-12-01

    Recent progresses in theoretical and observational researches on seismic interferometry reveal the possibility to detect subtle change in subsurface seismic structure. This high sensitivity of seismic interferometry to the medium properties may thus one of the most important ways to directly observe the time-lapse behavior of shallow crustal structure. Here, using the coda wave interferometry, we show the co-seismic and post-seismic changes in P- and S-wave velocities and S-wave anisotropy associated with the 2011 off the Pacific coast of Tohoku earthquake (M9.0). In this study, we use the acceleration data recorded at KiK-net stations operated by NIED, Japan. Each KiK-net station has a borehole whose typical depth is about 100m, and two three-component accelerometers are installed at the top and bottom of the borehole. To estimate the shallow subsurface P- and S-wave velocities and S-wave anisotropy between two sensors and their temporal change, we select about 1000 earthquakes that occurred between 2004 and 2012, and extract body waves propagating between borehole sensors by computing the cross-correlation functions (CCFs) of 3 x 3 component pairs. We use frequency bands of 2-4, 4-8, 8-16 Hz in our analysis. Each averaged CCF shows clear wave packets traveling between borehole sensors, and their travel times are almost consistent with those of P- and S-waves calculated from the borehole log data. Until the occurrence of the 2011 Tohoku earthquake, the estimated travel time at each station is rather stable with time except for weak seasonal/annual variation. On the other hand, the 2011 Tohoku earthquake and its aftershocks cause sudden decrease in the S-wave velocity at most of the KiK-net stations in eastern Japan. The typical value of S-wave velocity changes, which are measured by the time-stretching method, is about 5-15%. After this co-seismic change, the S-wave velocity gradually recovers with time, and the recovery continues for over one year following the

  2. Hydraulic Response of the Wave Energy Converter Wave Dragon in Nissum Bredning

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype.......This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype....

  3. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  4. Proposed electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  5. On the dynamics of a novel ocean wave energy converter

    KAUST Repository

    Orazov, B.

    2010-11-01

    Buoy-type ocean wave energy converters are designed to exhibit resonant responses when subject to excitation by ocean waves. A novel excitation scheme is proposed which has the potential to improve the energy harvesting capabilities of these converters. The scheme uses the incident waves to modulate the mass of the device in a manner which amplifies its resonant response. To illustrate the novel excitation scheme, a simple one-degree of freedom model is developed for the wave energy converter. This model has the form of a switched linear system. After the stability regime of this system has been established, the model is then used to show that the excitation scheme improves the power harvesting capabilities by 2565 percent even when amplitude restrictions are present. It is also demonstrated that the sensitivity of the device\\'s power harvesting capabilities to changes in damping becomes much smaller when the novel excitation scheme is used. © 2010 Elsevier Ltd. All rights reserved.

  6. Full wave dc-to-dc converter using energy storage transformers

    Science.gov (United States)

    Moore, E. T.; Wilson, T. G.

    1969-01-01

    Full wave dc-to-dc converter, for an ion thrustor, uses energy storage transformers to provide a method of dc-to-dc conversion and regulation. The converter has a high degree of physical simplicity, is lightweight and has high efficiency.

  7. Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    2012-01-01

    This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...

  8. Electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  9. Resonant Wave Energy Converters: Concept development

    International Nuclear Information System (INIS)

    Arena, Felice; Barbaro, Giuseppe; Fiamma, Vincenzo; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati, Federica Mara

    2015-01-01

    The Resonant Wave Energy Converter (REWEC) is a device for converting sea wave energy to electrical energy. It belongs to the family of Oscillating Water Columns and is composed by an absorbing chamber connected to the open sea via a vertical duct. The paper gives a holistic view on the concept development of the device, starting from its implementation in the context of submerged breakwaters to the recently developed vertical breakwaters. [it

  10. s- and p-wave neutron spectroscopy. Xc. Intermediate structure: 88Sr

    International Nuclear Information System (INIS)

    Malan, J.G.; Pineo, W.F.E.; Divadeenam, M.; Choi, B.H.; Bilpuch, E.G.; Newson, H.W.

    1975-01-01

    Neutron total cross section measurements of natural Sr were made from 50-875 keV using a high resolution proton beam and the 7 Li(p,n) reaction as a neutron source. These data were analyzed with the help of an R-Matrix code to extract resonance (energies and other) parameters up to about 850 keV. 2p-1h and particle-vibration doorway interpretation of the s-,p- and d-wave resonances is attempted in terms of the sum rule Σγ/subn/ 2 =γ/subd/ 2 . Predictions based on both of these models agree with the experimental results. As expected the p-wave resonances are stronger than either s- and d-wave structure. Theory accounts for the p-wave strength remarkably well. Possible location of the p-wave s.p. resonance is reproduced with a real potential and its damping due to the imaginary potential is calculated. More fragmentation of the strong p-wave doorways is observed than was expected for a compound nucleus so near 90 Zr, but a larger strength function is observed, apparently due to the p-wave giant resonance. (U.S.)

  11. BAYESZ, S-Wave, P-Wave Resonance Level Spacing and Strength Functions

    International Nuclear Information System (INIS)

    Moore, M.S.

    1982-01-01

    A - Description of problem or function: BAYESZ calculates average s- and p-wave level spacings, strength functions, and average radiation widths of a mixed sequence of s- and p-wave resonances whose parameters are supplied as input. The code is based on two physical assumptions: 1) The neutron reduced width distribution for each open channel is a chi-squared distribution with one degree of freedom, i.e. Porter-Thomas. 2) The spacing distribution follows the Gaussian Orthogonal Ensemble. This property is used, however, only to fix the s- to p-wave level density ratio as proportional to (2J+1) with a spin cut-off correction. B - Method of solution: The method used is an extension of that described by Moore et al. in reference (1), and is based on the method of moments of a truncated Porter-Thomas distribution. C - Restrictions on the complexity of the problem: Parameters for a maximum of 500 individual resonances can be specified. This restriction can be relaxed by increasing array dimensions

  12. Underwater Noise from a Wave Energy Converter is unlikely to Affect Marine Mammals

    DEFF Research Database (Denmark)

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure leve...... on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.......Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels...... were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water...

  13. Parametric pendulum based wave energy converter

    Science.gov (United States)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  14. Protonium spectrosopy and identification of P-wave and S-wave initial states of p-p annihilations at rest with the ASTERIX experiment at LEAR

    International Nuclear Information System (INIS)

    Gastaldi, U.; Ahmad, S.; Amsler, C.

    1984-01-01

    This chapter discusses an experiment designed to study the general features of p - p interactions at rest, to extend work done in the spectroscopy of light mesons produced in p - p annihilations at rest, and to search with high sensitivity for gluonium, qq - qq baryonium structures and NN states bound by strong interactions. The effect of using a gas target and a large acceptance X-ray detector is examined. The rate and the signature of antiprotons stopping in the gas target are investigated. Topics covered include the protonium cascade and spectroscopy; a comparison of S-wave and P-wave p - p annihilations at rest; - p stop and the formation of p - p atoms; the x-ray detector (projection chamber, electronics, tests); and examples of estimations of signal and background (protonium spectroscopy, search of resonances in P-wave annihilations, search of resonances in S-wave annihilations). The distinctive features of the ASTERIX experiment are the use of a gaseous H 2 target instead of a conventional liquid H 2 one; an X-ray detector of large overall detection efficiency, low energy threshold and low background rate that enables identification of P-wave and S-wave annihilation events from 2P and 1S levels of protonium; a detection system for the products of p - p annihilations; and a trigger system that enables filtration of the acquisition of events by means of two independent chains of processors working in parallel

  15. What is the difference in the p-wave and s-wave photodetachment in an electric field?

    OpenAIRE

    Du, M. L.

    2009-01-01

    By applying closed-orbit theory to an existing model, a simple formula is derived for the modulation function of s-wave photo-detachment in the presence of a static electric field. We then compare the s-wave modulation function with the p-wave modulation function. We show the maximums (minimums) in the s-wave modulation function correspond to the minimums (maximums) in the p-wave modulation function because of a phase difference of $\\pi$ in their oscillations. The oscillation amplitude in the...

  16. Development of the Wave Energy Converter -Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    2Over the years wave energy has gradually been brought into focus, as it has become clear that the fossil energy resources are limited, and cause large environmental problems, e.g. CO2 pollution. On this background a number of different wave energy converters have been proposed. In Denmark the go...

  17. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Weisz, A.

    This report presents the results of an experimental study of the wave energy converting abilities of the Langlee wave energy converter (WEC). It focused mainly on evaluating the power generating capabilities of the device, including investigations of the following issues: Scaling ratiosPTO loadingWave...... height and wave period dependencyOblique incoming waves and directional spreading of waves (3D waves)Damping platesMooring forces and fixed structure setupPitch, surge and heave motion During the study the model supplied by the client (Langlee Wave Power AS) has been heavily instrumented - up to 23...... different instruments was deployed to measure and record data. Tests were performed at scales of 1:30 and 1:20 based on the realized reference wave states....

  18. Optimisation of 40 Gb/s wavelength converters based on four-wave mixing in a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Schulze, K.; Petersen, Martin Nordal; Herrera, J.

    2007-01-01

    The optimum operating powers and wavelengths for a 40 Gb/s wavelength converter based on four-wave mixing in a semiconductor 14 optical amplifier are inferred from experimental results. From these measurements, some general rules of thumb are derived for this kind of devices. Generally, the optim...

  19. Image processing to optimize wave energy converters

    Science.gov (United States)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  20. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.

    Directory of Open Access Journals (Sweden)

    Jakob Tougaard

    Full Text Available Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth. Median sound pressure levels (Leq in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant. Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq 121-125 dB re 1 μPa was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.

  1. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.

    Science.gov (United States)

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant). Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121-125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.

  2. ESTIMA, Neutron Width Level Spacing, Neutron Strength Function of S- Wave, P-Wave Resonances

    International Nuclear Information System (INIS)

    Fort, E.

    1982-01-01

    1 - Description of problem or function: ESTIMA calculates level spacing and neutron strength function of a mixed sequence of s- and p-wave resonances given a set of neutron widths as input parameters. Three algorithms are used, two of which calculate s-wave average parameters and assume that the reduced widths obey a Porter-Thomas distribution truncated by a minimum detection threshold. The third performs a maximum likelihood fit to a truncated chi-squared distribution of any specified number of degrees of freedom, i.e. it can be used for calculating s-wave or p-wave average parameters. Resonances of undeclared angular orbital momentum are divided into groups of probable s-wave and probable p-wave by a simple application of Bayes' Theorem. 2 - Method of solution: Three algorithms are used: i) GAMN method, based on simple moments properties of a Porter-Thomas distribution. ii) Missing Level Estimator, a simplified version of the algorithm used by the program BAYESZ. iii) ESTIMA, a maximum likelihood fit. 3 - Restrictions on the complexity of the problem: A maximum of 400 resonances is allowed in the version available from NEADB, however this restriction can be relaxed by increasing array dimensions

  3. Three-Dimensional Passive-Source Reverse-Time Migration of Converted Waves: The Method

    Science.gov (United States)

    Li, Jiahang; Shen, Yang; Zhang, Wei

    2018-02-01

    At seismic discontinuities in the crust and mantle, part of the compressional wave energy converts to shear wave, and vice versa. These converted waves have been widely used in receiver function (RF) studies to image discontinuity structures in the Earth. While generally successful, the conventional RF method has its limitations and is suited mostly to flat or gently dipping structures. Among the efforts to overcome the limitations of the conventional RF method is the development of the wave-theory-based, passive-source reverse-time migration (PS-RTM) for imaging complex seismic discontinuities and scatters. To date, PS-RTM has been implemented only in 2D in the Cartesian coordinate for local problems and thus has limited applicability. In this paper, we introduce a 3D PS-RTM approach in the spherical coordinate, which is better suited for regional and global problems. New computational procedures are developed to reduce artifacts and enhance migrated images, including back-propagating the main arrival and the coda containing the converted waves separately, using a modified Helmholtz decomposition operator to separate the P and S modes in the back-propagated wavefields, and applying an imaging condition that maintains a consistent polarity for a given velocity contrast. Our new approach allows us to use migration velocity models with realistic velocity discontinuities, improving accuracy of the migrated images. We present several synthetic experiments to demonstrate the method, using regional and teleseismic sources. The results show that both regional and teleseismic sources can illuminate complex structures and this method is well suited for imaging dipping interfaces and sharp lateral changes in discontinuity structures.

  4. Model based feasibility study on bidirectional check valves in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check....../Off and bidirectional check valves. Based on the analysis it is found that the energy production may be slightly improved by using bidirectional check valves as compared to on/off valves, due to a decrease in switching losses. Furthermore a reduction in high flow peaks are realised. The downside being increased...

  5. Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters

    Science.gov (United States)

    Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan

    2017-08-01

    The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.

  6. Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters.

    Science.gov (United States)

    Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan

    2017-01-01

    The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.

  7. Simulation of Thermal Processes in Metamaterial MM-to-IR Converter for MM-wave Imager

    International Nuclear Information System (INIS)

    Zagubisalo, Peter S; Paulish, Andrey G; Kuznetsov, Sergey A

    2014-01-01

    The main characteristics of MM-wave image detector were simulated by means of accurate numerical modelling of thermophysical processes in a metamaterial MM-to-IR converter. The converter represents a multilayer structure consisting of an ultra thin resonant metamaterial absorber and a perfect emissive layer. The absorber consists of a dielectric self-supporting film that is metallized from both sides. A micro-pattern is fabricated from one side. Resonant absorption of the MM waves induces the converter heating that yields enhancement of IR emission from the emissive layer. IR emission is detected by IR camera. In this contribution an accurate numerical model for simulation of the thermal processes in the converter structure was created by using COMSOL Multiphysics software. The simulation results are in a good agreement with experimental results that validates the model. The simulation shows that the real time operation is provided for the converter thickness less than 3 micrometers and time response can be improved by decreasing of the converter thickness. The energy conversion efficiency of MM waves into IR radiation is over 80%. The converter temperature increase is a linear function of a MM-wave radiation power within three orders of the dynamic range. The blooming effect and ways of its reducing are also discussed. The model allows us to choose the ways of converter structure optimization and improvement of image detector parameters

  8. Experimental Study on the WavePiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.

    This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....

  9. Experiments on the WavePiston, Wave Energy Converter

    DEFF Research Database (Denmark)

    Angelelli, E.; Zanuttigh, B.; Kofoed, Jens Peter

    2011-01-01

    This paper analyses the performance of a new Wave Energy Converter (WEC) of the Oscillating Water Column type (OWC), named WavePiston. This near-shore floating device is composed of plates (i.e. energy collectors) sliding around a cylinder, that is placed perpendicular to the shore. Tests...... in the wave basin at Aalborg University allowed to investigate power production in the North Sea typical wave climate, with varying design parameters such as plate dimensions and their mutual distance. The power produced per meter by each collector is about the 5% of the available wave power. Experimental...... results and survivability considerations suggest that the WavePiston would be particularly suited for installations in milder seas. An example application is therefore presented in the Mediterranean Sea, off-shore the island of Sicily. In this case, each collector harvests the 10% of the available wave...

  10. Design Specifications for the Hanstholm WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    The WEPTOS wave energy converter (WEC) is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack-moored and ......The WEPTOS wave energy converter (WEC) is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack...

  11. Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Pecher, Arthur; Kofoed, Jens Peter

    2010-01-01

    The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions of the perf......The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions...

  12. Experimental Study of the Weptos Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    This paper presents the power performance results of the experimental study of the WEPTOS wave energy converter (WEC). This novel device combines an established and efficient wave energy absorbing mechanism with an adjustable structure that can regulate the amount of incoming wave energy and reduce...... loads in extreme wave conditions. This A-shaped floating structure absorbs the energy in the waves through a multitude of rotors, the shape of which is based on the renowned Salter’s Duck. These rotors pivot around a common axle, one for each leg of the structure, to which the rotors transfer...... the absorbed wave energy and which is connected to a common power take off system (one for each leg). The study investigates the performance of the device in a large range of wave states and estimates the performance in terms of mechanical power available to the power take off system of the WEPTOS WEC for two...

  13. Power converter for raindrop energy harvesting application: Half-wave rectifier

    Science.gov (United States)

    Izrin, Izhab Muhammad; Dahari, Zuraini

    2017-10-01

    Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.

  14. Specification of Instrumentation of Multi MW Wave Dragon Offshore Wave Energy Converter

    DEFF Research Database (Denmark)

    Gilling, Lasse; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter of the overtopping type and is described e.g. in Tedd et. al. (2006). The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the exp......Wave Dragon is a wave energy converter of the overtopping type and is described e.g. in Tedd et. al. (2006). The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based...

  15. GENERAL P, TYPE-I S, AND TYPE-II S WAVES IN ANELASTIC SOLIDS; INHOMOGENEOUS WAVE FIELDS IN LOW-LOSS SOLIDS.

    Science.gov (United States)

    Borcherdt, Roger D.; Wennerberg, Leif

    1985-01-01

    The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.

  16. Wave Induced Loads on the LEANCON Wave Energy Converter

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Beserra, Eliab Ricarte

    This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the wave induced loads on the device, based...... in the laboratory, all under the supervision of the personnel of the Wave Energy Research Group at Department of Civil Engineering, Aalborg University....

  17. Nongeometrically converted shear waves in marine streamer data

    NARCIS (Netherlands)

    Drijkoningen, G.G.; El Allouche, N.; Thorbecke, J.W.; Bada, G.

    2012-01-01

    Under certain circumstances, marine streamer data contain nongeometrical shear body wave arrivals that can be used for imaging. These shear waves are generated via an evanescent compressional wave in the water and convert to propagating shear waves at the water bottom. They are called

  18. Wave Basin Experiments with Large Wave Energy Converter Arrays to Study Interactions between the Converters and Effects on Other Users in the Sea and the Coastal Area

    DEFF Research Database (Denmark)

    Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim

    2014-01-01

    Experiments have been performed in the Shallow Water Wave Basin of DHI (Hørsholm, Denmark), on large arrays of up to 25 heaving point absorber type Wave Energy Converters (WECs), for a range of geometric layout configurations and wave conditions. WEC response and modifications of the wave field a...

  19. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    Science.gov (United States)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  20. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data, 2nd Edition

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Neary, Vincent S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies

    2015-09-01

    This report presents met-ocean data and wave energy characteristics at eight U.S. wave energy converter (WEC) test and potential deployment sites. Its purpose is to enable the comparison of wave resource characteristics among sites as well as the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment, and operations and maintenance. For each site, this report catalogues wave statistics recommended in the International Electrotechnical Commission Technical Speci cation (IEC 62600-101 TS) on Wave Energy Characterization, as well as the frequency of occurrence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services.

  1. What Do s- and p-Wave Neutron Average Radiative Widths Reveal

    Energy Technology Data Exchange (ETDEWEB)

    Mughabghab, S.F.

    2010-04-30

    A first observation of two resonance-like structures at mass numbers 92 and 112 in the average capture widths of the p-wave neutron resonances relative to the s-wave component is interpreted in terms of a spin-orbit splitting of the 3p single-particle state into P{sub 3/2} and P{sub 1/2} components at the neutron separation energy. A third structure at about A = 124, which is not correlated with the 3p-wave neutron strength function, is possibly due to the Pygmy Dipole Resonance. Five significant results emerge from this investigation: (i) The strength of the spin-orbit potential of the optical-model is determined as 5.7 {+-} 0.5 MeV, (ii) Non-statistical effects dominate the p-wave neutron-capture in the mass region A = 85 - 130, (iii) The background magnitude of the p-wave average capture-width relative to that of the s-wave is determined as 0.50 {+-} 0.05, which is accounted for quantitatively in tenns of the generalized Fermi liquid model of Mughabghab and Dunford, (iv) The p-wave resonances arc partially decoupled from the giant-dipole resonance (GDR), and (v) Gamma-ray transitions, enhanced over the predictions of the GDR, are observed in the {sup 90}Zr - {sup 98}Mo and Sn-Ba regions.

  2. Development of the Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    The development of the wave energy converter Wave Dragon (WD) is presented. The WD is based on the overtopping principle. Initially a description of the WD is given. Then the development over time in terms of the various research and development projects working with the concept is described. Thi...

  3. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    OpenAIRE

    O'Boyle, Louise; Elsäßer, Björn; Whittaker, Trevor

    2017-01-01

    Wave energy converters (WECs) inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An ...

  4. User guide – COE Calculation Tool for Wave Energy Converters

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Kofoed, Jens Peter; Jensen, Niels Ejner Helstrup

    Aalborg University together with Energinet.dk and Julia F. Chozas Consulting Engineer, have released a freely available online spreadsheet to evaluate the Levelised Cost of Energy (LCOE) for wave energy projects. The open-access tool calculates the LCOE based on the power production of a Wave...... Energy Converter (WEC) at a particular location. Production data may derive from laboratory testing, numerical modelling or from sea trials. The tool has been developed as a transparent and simple model that evaluates WEC’s economic feasibility in a range of locations, while scaling WEC’s features...

  5. Turbine Control Strategy using Wave Prediction to Optimise Power Take Off of Overtopping Wave Energy Converters

    OpenAIRE

    Tedd, James; Knapp, Wilfried; Frigaard, Peter; Kofoed, Jens Peter

    2005-01-01

    This paper presents the control strategy used on Wave Dragon overtopping wave energy converter. The nature of overtopping requires that for optimum performance the water level in the reservoir must be controlled by controlling the turbine outflows. A history of the simulations performed is included. The concept of including an element of prediction, based on wave records a short distance in front of the Wave Dragon, is introduced. Initial simulations indicate a possibility to increase product...

  6. Wave-to-wire Modelling of Wave Energy Converters : Critical Assessment, Developments and Applicability for Economical Optimisation

    DEFF Research Database (Denmark)

    Ferri, Francesco

    The idea to use the motion of a wavy sea surface to produce electricity was investigate in the seventies, in a time when the earliest wave energy converters were conceived and developed. But nowadays still none of the patented devices reached a commercial stage. Wave energy is a large, mostly unt...

  7. Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Bret Bosma

    2015-08-01

    Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage.

  8. Near-Shore Floating Wave Energy Converters

    DEFF Research Database (Denmark)

    Ruol, Piero; Zanuttigh, Barbara; Martinelli, Luca

    2011-01-01

    and transmission characteristics are approximated to functions of wave height, period and obliquity. Their order of magnitude are 20% and 80%, respectively. It is imagined that an array of DEXA is deployed in front of Marina di Ravenna beach (IT), a highly touristic site of the Adriatic Coast. Based on the CERC......Aim of this note is to analyse the possible application of a Wave Energy Converter (WEC) as a combined tool to protect the coast and harvest energy. Physical model tests are used to evaluate wave transmission past a near-shore floating WEC of the wave activated body type, named DEXA. Efficiency...

  9. Holographic s-wave and p-wave Josephson junction with backreaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong-Qiang; Liu, Shuai [Institute of Theoretical Physics, Lanzhou University,Lanzhou 730000, People’s Republic of (China)

    2016-11-22

    In this paper, we study the holographic models of s-wave and p-wave Josephoson junction away from probe limit in (3+1)-dimensional spacetime, respectively. With the backreaction of the matter, we obtained the anisotropic black hole solution with the condensation of matter fields. We observe that the critical temperature of Josephoson junction decreases with increasing backreaction. In addition to this, the tunneling current and condenstion of Josephoson junction become smaller as backreaction grows larger, but the relationship between current and phase difference still holds for sine function. Moreover, condenstion of Josephoson junction deceases with increasing width of junction exponentially.

  10. Hydrodynamic Characteristics and Strength Analysis of a Novel Dot-matrix Oscillating Wave Energy Converter

    Science.gov (United States)

    Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong

    2017-12-01

    The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.

  11. Turbine Control Strategy using Wave Prediction to Optimise Power Take Off of Overtopping Wave Energy Converters

    DEFF Research Database (Denmark)

    Tedd, James; Knapp, Wilfried; Frigaard, Peter

    2005-01-01

    This paper presents the control strategy used on Wave Dragon overtopping wave energy converter. The nature of overtopping requires that for optimum performance the water level in the reservoir must be controlled by controlling the turbine outflows. A history of the simulations performed is included...

  12. Investigation and Optimisation of a Discrete Fluid Power PTO-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard

    Patents on ocean wave energy dates back to 1799, however no wave energy converter (WEC) concept have a commercialised device. The cost of energy produced with wave energy converters is very high compared to traditional energy sources. Even when compared to energy from wind turbines wave energy...... investigation show how the wave climate naturally influence the optimal system configuration yielding maximal energy output, and how one may choose the system configuration based on the installation site. The switching manifold is the control element of the secondary controlled force system. The force...... needs cost reductions. Hence, next to political will, the main obstacle for a commercial break through of wave energy technology is the high cost of energy. Initiatives to lower costs are made in areas of minimising structural costs and increasing the energy production per device. Wave Star A/S has...

  13. Practical performances of MPC for wave energy converters

    DEFF Research Database (Denmark)

    Ferri, Francesco; Tetu, Amelie; Hals, J.

    2016-01-01

    Maximising the efficiency of Wave Energy Converter (WEC) is one of the important tasks toward the exploitation of the wave energy resource. Along with a proper design of the device, an important way to achieve better energy performances is to improve the wave-body interaction by applying an appro...

  14. Towards a new technique to construct a 3D shear-wave velocity model based on converted waves

    Science.gov (United States)

    Hetényi, G.; Colavitti, L.

    2017-12-01

    A 3D model is essential in all branches of solid Earth sciences because geological structures can be heterogeneous and change significantly in their lateral dimension. The main target of this research is to build a crustal S-wave velocity structure in 3D. The currently popular methodologies to construct 3D shear-wave velocity models are Ambient Noise Tomography (ANT) and Local Earthquake Tomography (LET). Here we propose a new technique to map Earth discontinuities and velocities at depth based on the analysis of receiver functions. The 3D model is obtained by simultaneously inverting P-to-S converted waveforms recorded at a dense array. The individual velocity models corresponding to each trace are extracted from the 3D initial model along ray paths that are calculated using the shooting method, and the velocity model is updated during the inversion. We consider a spherical approximation of ray propagation using a global velocity model (iasp91, Kennett and Engdahl, 1991) for the teleseismic part, while we adopt Cartesian coordinates and a local velocity model for the crust. During the inversion process we work with a multi-layer crustal model for shear-wave velocity, with a flexible mesh for the depth of the interfaces. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter space. Depending on the studied area, this method can accommodate possible independent and complementary geophysical data (gravity, active seismics, LET, ANT, etc.), helping to reduce the non-linearity of the inversion. Our first focus of application is the Central Alps, where a 20-year long dataset of

  15. Performance Evaluation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Pecher, Arthur

    . Guidelines for the development of wave energy converters recommend the use of different prototypes, having different sizes, which have to perform tank tests or sea trials. This implicates the need of different testing environment, which shifts from being controllable to uncontrollable with the development......, with more than 150 concepts currently being developed worldwide. Wave energy conversion concepts can be of many kinds, as the energy in the waves can be absorbed in many different ways. However, each concept is expected to require a thorough development process, involving different phases and prototypes...

  16. State estimation for wave energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Bacelli, Giorgio; Coe, Ryan Geoffrey

    2017-04-01

    This report gives a brief discussion and examples on the topic of state estimation for wave energy converters (WECs). These methods are intended for use to enable real-time closed loop control of WECs.

  17. Hydraulic Evaluation of the Crest Wing Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scale...... model (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept. of Civil Engineering, Aalborg (Frigaard et al., 2008......). The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate total power take off....

  18. Advanced computational simulations of water waves interacting with wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  19. P- and S-body wave tomography of the state of Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Preston, Leiph

    2010-04-01

    P- and S-body wave travel times collected from stations in and near the state of Nevada were inverted for P-wave velocity and the Vp/Vs ratio. These waves consist of Pn, Pg, Sn and Sg, but only the first arriving P and S waves were used in the inversion. Travel times were picked by University of Nevada Reno colleagues and were culled for inclusion in the tomographic inversion. The resulting tomographic model covers the entire state of Nevada to a depth of {approx}90 km; however, only the upper 40 km indicate relatively good resolution. Several features of interest are imaged including the Sierra Nevada, basin structures, and low velocities at depth below Yucca Mountain. These velocity structure images provide valuable information to aide in the interpretation of geothermal resource areas throughout the state on Nevada.

  20. Clustering of cycloidal wave energy converters

    Science.gov (United States)

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  1. Initial Sea Trails of the DEXA D05 Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report presents an analysis of sensors data leading to an initial assessment of the power performance from sea trails of the DEXA D05 Wave Energy Converter (WEC). The sea trails where performed approx. 1 nautical mile offshore from Hanstholm, Denmark during 2011. The converter was 1:5 scale....... The DEXA D05 WEC was built, deployed and operated by the client DEXAWAVE ApS and the analysis of the sensor data, given here, has been carried out by John Lavelle under supervision by Jens Peter Kofoed in the Wave Energy Research Group at the department of Civil Engineering, Aalborg University (AAU)....... model of the planned full scale DEXA WEC with a hydraulic Power Take Off (PTO). The converter had sensors to measure mooring forces, motions, as well as pressure and displacement sensors in the PTOs. The report gives the calculated power production efficiency and an analysis of the mooring forces...

  2. Hydroelectromechanical modelling of a piezoelectric wave energy converter

    Science.gov (United States)

    Renzi, E.

    2016-11-01

    We investigate the hydroelectromechanical-coupled dynamics of a piezoelectric wave energy converter. The converter is made of a flexible bimorph plate, clamped at its ends and forced to motion by incident ocean surface waves. The piezoceramic layers are connected in series and transform the elastic motion of the plate into useful electricity by means of the piezoelectric effect. By using a distributed-parameter analytical approach, we couple the linear piezoelectric constitutive equations for the plate with the potential-flow equations for the surface water waves. The resulting system of governing partial differential equations yields a new hydroelectromechanical dispersion relation, whose complex roots are determined with a numerical approach. The effect of the piezoelectric coupling in the hydroelastic domain generates a system of short- and long-crested weakly damped progressive waves travelling along the plate. We show that the short-crested flexural wave component gives a dominant contribution to the generated power. We determine the hydroelectromechanical resonant periods of the device, at which the power output is significant.

  3. Short-Term Wave Forecasting for Real-Time Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Real-time control of wave energy converters requires knowledge of future incident wave elevation in order to approach optimal efficiency of wave energy extraction. We present an approach where the wave elevation is treated as a time series and it is predicted only from its past history. A comparison of a range of forecasting methodologies on real wave observations from two different locations shows how the relatively simple linear autoregressive model, which implicitly models the cyclical beh...

  4. Nonlinear effects on mode-converted lower-hybrid waves

    International Nuclear Information System (INIS)

    Kuehl, H.H.

    1976-01-01

    Nonlinear ponderomotive force effects on mode-converted lower-hybrid waves are considered. The nonlinear distortion of these waves is shown to be governed by the cubic nonlinear Schroedinger equation. The threshold condition for self-focusing and filamentation is derived

  5. Aiding Design of Wave Energy Converters via Computational Simulations

    Science.gov (United States)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  6. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  7. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-08-01

    Full Text Available It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  8. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    Science.gov (United States)

    Wang, Liguo; Engström, Jens; Leijon, Mats; Isberg, Jan

    2016-08-01

    It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  9. Strong electron dissipation by a mode converted ion hybrid (Bernstein) wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Ram, A.K.

    1996-01-01

    The fast wave approximation, extended to include the effects of electron dissipation, is used to calculate the power mode converted to the ion hybrid (Bernstein) wave in the vicinity of the ion hybrid resonance. The power absorbed from the fast wave by ion cyclotron damping and by electron Landau and transit time damping (including cross terms) is also calculated. The fast wave equation is solved for either the Budden configuration of a cut-off-resonance pair or the triplet configuration of cut-off-resonance-cut-off. The fraction mode converted is compared for the triplet case and the Budden multi-pass situation. The electron damping rate of the ion hybrid wave is obtained from the local dispersion relation and a ray tracing code is used to calculate the damping of the mode converted ion hybrid wave by the electrons as it propagates away from the resonance. Quantitative results for a range of conditions relevant to JET, TFTR and ITER are given. copyright 1996 American Institute of Physics

  10. Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter

    DEFF Research Database (Denmark)

    López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede

    2017-01-01

    Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented....

  11. Ocean Wave Energy: Underwater Substation System for Wave Energy Converters

    International Nuclear Information System (INIS)

    Rahm, Magnus

    2010-01-01

    This thesis deals with a system for operation of directly driven offshore wave energy converters. The work that has been carried out includes laboratory testing of a permanent magnet linear generator, wave energy converter mechanical design and offshore testing, and finally design, implementation, and offshore testing of an underwater collector substation. Long-term testing of a single point absorber, which was installed in March 2006, has been performed in real ocean waves in linear and in non-linear damping mode. The two different damping modes were realized by, first, a resistive load, and second, a rectifier with voltage smoothing capacitors and a resistive load in the DC-link. The loads are placed on land about 2 km east of the Lysekil wave energy research site, where the offshore experiments have been conducted. In the spring of 2009, another two wave energy converter prototypes were installed. Records of array operation were taken with two and three devices in the array. With two units, non-linear damping was used, and with three units, linear damping was employed. The point absorbers in the array are connected to the underwater substation, which is based on a 3 m3 pressure vessel standing on the seabed. In the substation, rectification of the frequency and amplitude modulated voltages from the linear generators is made. The DC voltage is smoothened by capacitors and inverted to 50 Hz electrical frequency, transformed and finally transmitted to the on-shore measuring station. Results show that the absorption is heavily dependent on the damping. It has also been shown that by increasing the damping, the standard deviation of electrical power can be reduced. The standard deviation of electrical power is reduced by array operation compared to single unit operation. Ongoing and future work include the construction and installation of a second underwater substation, which will connect the first substation and seven new WECs

  12. Critical Factors Influencing Viability of Wave Energy Converters in Off-Grid Luxury Resorts and Small Utilities

    Directory of Open Access Journals (Sweden)

    Aksel Botne Sandberg

    2016-12-01

    Full Text Available This paper examines technical and non-technical factors that are critical to the viability of commercialization of wave energy converters in off-grid luxury resorts and small utilities. Critical factors are found by investigating Levelized Cost of Energy, and using the tools PESTEL and Porter’s five competitive forces. Identified factors are then applied on three business cases to investigate their impact on viability. The results show that one of the main challenges facing off-grid commercialization is the few wave energy converter units installed per location, negating the economy of scale that large wave energy farms count on to achieve competitive cost levels. In addition, factors like current cost of energy, available wave resources, distance from shore, infrastructure, supply chain logistics, and electricity demand are found to be deciding factors for viability. Despite these challenges, it is found that there are potentially viable off-grid business cases for commercialization of wave energy converters.

  13. Physical measurements of breaking wave impact on a floating wave energy converter

    Science.gov (United States)

    Hann, Martyn R.; Greaves, Deborah M.; Raby, Alison

    2013-04-01

    Marine energy converter must both efficiently extract energy in small to moderate seas and also successfully survive storms and potential collisions. Extreme loads on devices are therefore an important consideration in their design process. X-MED is a SuperGen UKCMER project and is a collaboration between the Universities of Manchester, Edinburgh and Plymouth and the Scottish Association for Marine Sciences. Its objective is to extend the knowledge of extreme loads due to waves, currents, flotsam and mammal impacts. Plymouth Universities contribution to the X-MED project involves measuring the loading and response of a taut moored floating body due to steep and breaking wave impacts, in both long crested and directional sea states. These measurements are then to be reproduced in STAR-CCM+, a commercial volume of fluid CFD solver, so as to develop techniques to predict the wave loading on wave energy converters. The measurements presented here were conducted in Plymouth Universities newly opened COAST laboratories 35m long, 15.5m wide and 3m deep ocean basin. A 0.5m diameter taut moored hemispherical buoy was used to represent a floating wave energy device or support structure. The changes in the buoys 6 degree of freedom motion and mooring loads are presented due to focused breaking wave impacts, with the breaking point of the wave changed relative to the buoy.

  14. Performance Evaluation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Pecher, Arthur

    Ocean waves provide a sustainable, power-dense, predictable and widely available source of energy that could provide about 10 % of worlds energy needs. While research into waveenergy has been undertaken for decades, a significant increase in related activities has been seen in the recent years......, with more than 150 concepts currently being developed worldwide. Wave energy conversion concepts can be of many kinds, as the energy in the waves can be absorbed in many different ways. However, each concept is expected to require a thorough development process, involving different phases and prototypes....... Guidelines for the development of wave energy converters recommend the use of different prototypes, having different sizes, which have to perform tank tests or sea trials. Thisimplicates the need of different testing environment, which shifts from being controllable to uncontrollable with the development...

  15. Dominant wave frequency and amplitude estimation for adaptive control of wave energy converters

    OpenAIRE

    Nguyen , Hoai-Nam; Tona , Paolino; Sabiron , Guillaume

    2017-01-01

    International audience; Adaptive control is of great interest for wave energy converters (WEC) due to the inherent time-varying nature of sea conditions. Robust and accurate estimation algorithms are required to improve the knowledge of the current sea state on a wave-to-wave basis in order to ensure power harvesting as close as possible to optimal behavior. In this paper, we present a simple but innovative approach for estimating the wave force dominant frequency and wave force dominant ampl...

  16. Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC)

    Science.gov (United States)

    Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo

    2016-11-01

    A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016).

  17. Experimental Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    The Wave Dragon is a floating slack-moored Wave Energy Converter (WEC) of the overtopping type. Oncoming waves are focused by two wing reflectors towards the ramp of the device, surge-up and overtop into a reservoir placed at a higher level than the surface of the sea. The energy production takes...

  18. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

  19. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Louise O’Boyle

    2017-01-01

    Full Text Available Wave energy converters (WECs inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An experimental campaign to map, at high resolution, the wave field variation around arrays of 5 oscillating water column WECs and a methodology for extracting scattered and radiated waves is presented. The results highlight the importance of accounting for the full extent of the WEC behavior when assessing impacts on the wave field. The effect of radiated waves on the wave field is not immediately apparent when considering changes to the entire wave spectrum, nor when observing changes in wave climate due to scattered and radiated waves superimposed together. The results show that radiated waves may account for up to 50% of the effects on wave climate in the near field in particular operating conditions.

  20. An Appraisal of the DEXA Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report has been requested by VækstFonden and aims at giving an overview of the experimental tests and a general appraisal of the DEXA wave energy converter (WEC). The reported results and findings were obtained during previously performed experimental tests by the Wave Energy Research Group...

  1. Contribution from S and P waves in pp annihilation at rest

    CERN Document Server

    Bendiscioli, G; Fontana, A; Montagna, P; Rotondi, A; Salvini, P; Bertin, A; Bruschi, M; Capponi, M; De Castro, S; Donà, R; Galli, D; Giacobbe, B; Marconi, U; Massa, I; Piccinini, M; Cesari, N S; Spighi, R; Vecchi, S; Vagnoni, V M; Villa, M; Vitale, A; Zoccoli, A; Bianconi, A; Bonomi, G; Lodi-Rizzini, E; Venturelli, L; Zenoni, A; Cicalò, C; De Falco, A; Masoni, A; Puddu, G; Serci, S; Usai, G L; Gorchakov, O E; Prakhov, S N; Rozhdestvensky, A M; Tretyak, V I; Poli, M; Gianotti, P; Guaraldo, C; Lanaro, A; Lucherini, V; Petrascu, C; Kudryavtsev, A E; Balestra, F; Bussa, M P; Busso, L; Cerello, P G; Denisov, O Yu; Ferrero, L; Grasso, A; Maggiora, A; Panzarasa, A; Panzieri, D; Tosello, F; Botta, E; Bressani, Tullio; Calvo, D; Costa, S; D'Isep, D; Feliciello, A; Filippi, A; Marcello, S; Mirfakhraee, N; Agnello, M; Iazzi, F; Minetti, B; Tessaro, S

    2001-01-01

    The annihilation frequencies of 19 pp annihilation reactions at rest obtained in different target densities are analysed in order to determine the values of the P-wave annihilation percentage at each target density and the average hadronic branching ratios from P- and S-states. Both the assumptions of linear dependence of the annihilation frequencies on the P-wave annihilation percentage of the protonium state and the approach with the enhancement factors of Batty (1989) are considered. Furthermore the cases of incompatible measurements are discussed. (55 refs).

  2. Simulation of mode converted ion Bernstein wave - beam deuteron interactions on TFTR

    Science.gov (United States)

    Herrmann, Mark; Fisch, Nathaniel

    1998-11-01

    Experiments on TFTR have documented strong interactions between mode converted ion Bernstein waves (MCIBW) and beam deuterons(D. S. Darrow et al.), Nucl. Fusion 36, 509 (1996).^,(N. J. Fisch et al.), IAEA, Vol. 1, p. 271 (1996). This is of particular interest in the study of α channelling, since the most promising scenarios(M. C. Herrmann and N. J. Fisch, Phys. Rev. Lett. 79), 1495 (1997). rely on a suitable combination of MCIBW and Alfvén eigenmodes to achieve the cooling of the α particles. Collisional effects, realistic wave fields, and a detailed model of the wave-particle interaction have been added to the Monte Carlo simulations which are used to simulate α channelling in order to model TFTR experiments(M. C. Herrmann, Ph.D. thesis, Princeton University, 1998.). The results are found to be in qualitative agreement with the data. In addition, the simulation is used, in conjunction with the data, to demonstrate the existence of the k_\\|-flip of the MCIBW, and to infer a diffusion coefficient for the beam deuterons interacting with the wave. This diffusion coefficient significantly exceeds what would be expected on the basis of quasilinear theory with the fields specified by 1 D ray tracing of the MCIBW.

  3. Experimental Validation of a Wave Energy Converter Array Hydrodynamics Tool

    DEFF Research Database (Denmark)

    Ruiz, Pau Mercadé; Ferri, Francesco; Kofoed, Jens Peter

    2017-01-01

    This paper uses experimental data to validate a wave energy converter (WEC) array hydrodynamics tool developed within the context of linearized potential flow theory. To this end, wave forces and power absorption by an array of five-point absorber WECs in monochromatic and panchromatic waves were...

  4. On Mooring Solutions for Large Wave Energy Converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Kofoed, Jens Peter; Ferri, Francesco

    2017-01-01

    The present paper describes the work carried out in the project ’Mooring Solutions for Large Wave Energy Converters’, which is a Danish research project carried out in a period of three years from September 2014, with the aim of reducing cost of the moorings for four wave energy converters...

  5. Optimized Latching Control of Floating Point Absorber Wave Energy Converter

    Science.gov (United States)

    Gadodia, Chaitanya; Shandilya, Shubham; Bansal, Hari Om

    2018-03-01

    There is an increasing demand for energy in today’s world. Currently main energy resources are fossil fuels, which will eventually drain out, also the emissions produced from them contribute to global warming. For a sustainable future, these fossil fuels should be replaced with renewable and green energy sources. Sea waves are a gigantic and undiscovered vitality asset. The potential for extricating energy from waves is extensive. To trap this energy, wave energy converters (WEC) are needed. There is a need for increasing the energy output and decreasing the cost requirement of these existing WECs. This paper presents a method which uses prediction as a part of the control scheme to increase the energy efficiency of the floating-point absorber WECs. Kalman Filter is used for estimation, coupled with latching control in regular as well as irregular sea waves. Modelling and Simulation results for the same are also included.

  6. Propagation and damping of mode converted ion-Bernstein waves in toroidal plasmas

    International Nuclear Information System (INIS)

    Ram, A.K.; Bers, A.

    1991-01-01

    In the heating of tokamak plasmas by waves in the ion-cyclotron range of frequencies, the fast Alfven waves launched at the plasma edge can mode convert to the ion-Bernstein waves (IBW). The propagation and damping of these mode converted waves was studied using a ray tracing code that follows the fast phase and the amplitude of the electromagnetic field along the IBW ray trajectories in a toroidal plasma. A simple analytical model is developed that describes the numerically observed features of propagation and damping of the IBW's. It is found that along the ray trajectory of the IBW there is an upshift of the poloidal mode numbers, which can lead to the electron Landau damping of the wave. This damping is dependent on the strength of the toroidal plasma current. From the properties of the upshift of the poloidal mode numbers, it is concluded that the mode converted ion-Bernstein waves are not suitable candidates for electron current drive

  7. Wave Resource Characterization at US Wave Energy Converter (WEC) Test Sites

    Science.gov (United States)

    Dallman, A.; Neary, V. S.

    2016-02-01

    The US Department of Energy's (DOE) Marine and Hydrokinetic energy (MHK) Program is supporting a diverse research and development portfolio intended to accelerate commercialization of the marine renewable industry by improving technology performance, reducing market barriers, and lowering the cost of energy. Wave resource characterization at potential and existing wave energy converter (WEC) test sites and deployment locations contributes to this DOE goal by providing a catalogue of wave energy resource characteristics, met-ocean data, and site infrastructure information, developed utilizing a consistent methodology. The purpose of the catalogue is to enable the comparison of resource characteristics among sites to facilitate the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and operations and maintenance. The first edition included three sites: the Pacific Marine Energy Center (PMEC) North Energy Test Site (NETS) offshore of Newport, Oregon, the Kaneohe Bay Naval Wave Energy Test Site (WETS) offshore of Oahu, HI, and a potential site offshore of Humboldt Bay, CA (Eureka, CA). The second edition was recently finished, which includes five additional sites: the Jennette's Pier Wave Energy Converter Test Site in North Carolina, the US Army Corps of Engineers (USACE) Field Research Facility (FRF), the PMEC Lake Washington site, the proposed PMEC South Energy Test Site (SETS), and the proposed CalWave Central Coast WEC Test Site. The operational sea states are included according to the IEC Technical Specification on wave energy resource assessment and characterization, with additional information on extreme sea states, weather windows, and representative spectra. The methodology and a summary of results will be discussed.

  8. Four-wave mixing and parametric four-wave mixing near the 4P-4S transition of the potassium atom

    International Nuclear Information System (INIS)

    Katharakis, M; Merlemis, N; Serafetinides, A; Efthimiopoulos, T

    2002-01-01

    Potassium 4S 1/2 -6S 1/2 two-photon excitation initiates the emission of several internally generated photons. For the first time two emission lines, one close to and one below the potassium 4P 3/2 level, are reported for low pumping intensity. Radiation emitted below the 4P 3/2 level is due to a parametric four-wave mixing process that uses the photons emitted at the 5P 3/2 -4S 1/2 transition and a two-step four-wave mixing process generates the line emitted close to the 4P 3/2 level

  9. Inclusion of Structural Flexibility in Design Load Analysis for Wave Energy Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); van Rij, Jennifer A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-14

    Hydroelastic interactions, caused by ocean wave loading on wave energy devices with deformable structures, are studied in the time domain. A midfidelity, hybrid modeling approach of rigid-body and flexible-body dynamics is developed and implemented in an open-source simulation tool for wave energy converters (WEC-Sim) to simulate the dynamic responses of wave energy converter component structural deformations under wave loading. A generalized coordinate system, including degrees of freedom associated with rigid bodies, structural modes, and constraints connecting multiple bodies, is utilized. A simplified method of calculating stress loads and sectional bending moments is implemented, with the purpose of sizing and designing wave energy converters. Results calculated using the method presented are verified with those of high-fidelity fluid-structure interaction simulations, as well as low-fidelity, frequency-domain, boundary element method analysis.

  10. Optimal control of a wave energy converter

    NARCIS (Netherlands)

    Hendrikx, R.W.M.; Leth, J.; Andersen, P; Heemels, W.P.M.H.

    2017-01-01

    The optimal control strategy for a wave energy converter (WEC) with constraints on the control torque is investigated. The goal is to optimize the total energy delivered to the electricity grid. Using Pontryagin's maximum principle, the solution is found to be singular-bang. Using higher order

  11. Survivability Mode and Extreme Loads on the Mooring Lines of the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    This report is a product of the cooperation agreement between Wave Dragon and Aalborg University regarding phase 2 of the development of the Wave Dragon Wave Energy Converter. The research is carried out by testing the 1:51.8 scale model of the Wave Dragon, aiming at the assessment of the surviva......This report is a product of the cooperation agreement between Wave Dragon and Aalborg University regarding phase 2 of the development of the Wave Dragon Wave Energy Converter. The research is carried out by testing the 1:51.8 scale model of the Wave Dragon, aiming at the assessment...... of the department of Civil Engineering at Aalborg University. The outcome of the research will be used as input for future research work aimed at the design of the mooring system and the certification of the structural design for the full scale Wave Dragon demonstrator....

  12. Further Development of SNL‐Swan, a Validated Wave Energy Converter

    OpenAIRE

    Porter, Aaron; Ruehl, Kelley; Chartrand, Chris

    2014-01-01

    Commercialization of wave energy will lead to the necessary deployment of Wave Energy Converters (WECs) in arrays, or wave farms. In order for projects in the United States to be approved, regulatory agencies must perform an Environmental Assessment proving little to no environmental impact. However, little is known about the environmental impacts of such wave farms. As a result, the environmental impacts of wave farms are largely determined by numerical wave models capable of modeling large ...

  13. Enhancement of mode-converted electron Bernstein wave emission during National Spherical Torus Experiment H-mode plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Jones, B.; Le Blanc, B.P.; Maingi, R.

    2002-01-01

    A sudden, threefold increase in emission from fundamental electrostatic electron Bernstein waves (EBW) which mode convert and tunnel to the electromagnetic X-mode has been observed during high energy and particle confinement (H-mode) transitions in the National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The mode-converted EBW emission viewed normal to the magnetic field on the plasma midplane increases when the density profile steepens in the vicinity of the mode conversion layer, which is located in the plasma scrape off. The measured conversion efficiency during the H-mode is consistent with the calculated EBW to X-mode conversion efficiency derived using edge density data. Calculations indicate that there may also be a small residual contribution to the measured X-mode electromagnetic radiation from polarization-scrambled, O-mode emission, converted from EBWs

  14. Shallow water effects on wave energy converters with hydraulic power take-off system

    Directory of Open Access Journals (Sweden)

    Ashank Sinha

    2016-12-01

    Full Text Available The effect of water depth on the power absorption by a single heaving point absorber wave energy converter, attached to a hydraulic power take-off system, is simulated and analysed. The wave energy flux for changing water depths is presented and the study is carried out at a location in the north-west Portuguese coast, favourable for wave power generation. This analysis is based on a procedure to modify the wave spectrum as the water depth reduces, namely, the TMA spectrum (Transformation spectrum. The present study deals with the effect of water depth on the spectral shape and significant wave heights. The reactive control strategy, which includes an external damping coefficient and a negative spring term, is used to maximize power absorption by the wave energy converter. The presented work can be used for making decisions regarding the best water depth for the installation of point absorber wave energy converters in the Portuguese nearshore.

  15. Competing p-wave orders

    International Nuclear Information System (INIS)

    Donos, Aristomenis; Gauntlett, Jerome P; Pantelidou, Christiana

    2014-01-01

    We construct electrically charged, asymptotically AdS 5 black hole solutions that are dual to d = 4 CFTs in a superfluid phase with either p-wave or (p + ip)-wave order. The two types of black holes have non-vanishing charged two-form in the bulk and appear at the same critical temperature in the unbroken phase. Both the p-wave and the (p + ip)-wave phase can be thermodynamically preferred, depending on the mass and charge of the two-form, and there can also be first order transitions between them. The p-wave black holes have a helical structure and some of them exhibit the phenomenon of pitch inversion as the temperature is decreased. Both the p-wave and the (p + ip)-wave black holes have zero entropy density ground states at zero temperature and we identify some new ground states which exhibit scaling symmetry, including a novel scenario for the emergence of conformal symmetry in the IR. (paper)

  16. Study of a Novel Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Choiniere, Michael [University of Maine; Thiagarajan, Krish P. [University of Maine

    2017-08-01

    This study investigates the performance of an oscillating surge wave energy converter (OSWEC) that utilizes adjustable geometry as a means of controlling the hydrodynamic coefficients, a concept originally proposed by [1]. The body of the device consists of a bottom-hinged solid rectangular frame with five horizontal flaps spanning the interior of the frame. The flaps can rotate independently about their center of rotation within the frame like a large window shutter. Changing the orientation of the flaps alters the hydrodynamic coefficients and natural frequency of the device as well as the ability to shed or absorb structural loads accordingly. This ability may allow the device to operate in a wider range of sea states than other current wave energy converter designs. This paper presents and compares the results of numerical simulations and experimental testing of the OSWEC's response to regular waves with all five of the horizontal fin configurations sharing the same orientation of 0 degrees (fully closed interior) and 90 degrees (fully open). The numerical simulations were performed using WAMIT, which calculates hydrodynamic coefficients using a boundary element method code to solve the linear potential flow problem, and WEC-Sim, a MATLAB-based tool that simulates multibody devices in the time domain by solving the governing equations of motion. A 1:14 scale model of the device was built for experimental evaluation in an 8-m-long, 1-m wide wave tank, which supports a water depth of 0.7 m. The OSWEC motion in different wave conditions was measured with displacement sensors while nonlinear wave-structure interaction effects like slamming and overtopping were captured using a high-speed camera and used to understand differences between the simulation and experiments.

  17. Aquabuoy Wave Energy Converter

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Margheritini, Lucia; Frigaard, Peter

    The work reported here is part of the contract agreement between the Finavera Renewables Ocean Energy Ltd. and the Department of Civil Engineering Hydraulics and Coastal Engineering Laboratory to instrument a model in scale 1:10 to prototype of the AquaBuOY (AB) wave energy converter and to analyse...... its performances in real sea testing in Nissum Bredning, Denmark. This report is part of Fineveras contribution to ForskEl project no 6435 “AquaBuOY skala 1:10 forsøg I Nissum Bredning”....

  18. Instrumentation of the model in scaled 1:10 to prototype of the AquaBuOY wave energy converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Frigaard, Peter

    The objective of this report is to provide guidelines for the instrumentation of a model in scale 1:10 to prototype of the AquaBuOY wave energy converter. The model will be located in Nissum Bredning area: this is an important waterway already used by Aalborg University for real sea tests of wave...... energy converters....

  19. Operation and maintenance strategies for wave energy converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Marquis, Laurent; Kofoed, Jens Peter

    2015-01-01

    costs including costs due to lost electricity production are minimized. The risk-based approach is compared with an approach where only boats are used and another approach where the target is to minimize the downtime of the device. This article presents a dynamic approach for total operation......Inspection and maintenance costs are a significant contributor to the cost of energy for wave energy converters. There are different operation and maintenance strategies for wave energy converters. Maintenance can be performed after failure (corrective) or before a breakdown (preventive) occurs....... Furthermore, a helicopter and boats can be used to transport equipment and personnel to the device, or the whole device can be towed to a harbour for operation and maintenance actions. This article describes, among others, a risk-based inspection and maintenance planning approach where the overall repair...

  20. Experimental Modeling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik

    2011-01-01

    The Wave Dragon Wave Energy Converter is currently facing a precommercial phase. At this stage of development a reliable overtopping model is highly required, in order to predict the performance of the device at possible deployment locations. A model formulation derived for an overtopping device...... with general geometry has been used so far. The paper presents an updated formulation drawn through the tank testing of a scaled model the Wave Dragon. The sensitivity analysis of the main features influencing the overtopping flow led to an updated model formulation which can be specifically suited...... for the Wave Dragon....

  1. Investigation of Wave Height Reduction behind the Wave Dragon Wave Energy Converters and Application in Santander, Spain

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck; Andersen, Thomas Lykke

    This paper deals with a case study on the wave height reduction behind floating Wave Dragon wave energy converters in Santander Bay, Spain. The study is performed using the MIKE21 Boussinesq model from DHI. The Wave Dragon transmission characteristics in the numerical wave propagation model...... are based on previously performed physical model tests in scale 1:51. Typical winter storm conditions are considered in the case study together with different stiffness in the mooring system of the floating device. From the study it is found that if multiple Wave Dragons are positioned in a farm the wave...

  2. CFD Simulations of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular Waves

    Directory of Open Access Journals (Sweden)

    Brecht Devolder

    2018-03-01

    Full Text Available In this paper we use the Computational Fluid Dynamics (CFD toolbox OpenFOAM to perform numerical simulations of multiple floating point absorber wave energy converters (WECs arranged in a geometrical array configuration inside a numerical wave tank (NWT. The two-phase Navier-Stokes fluid solver is coupled with a motion solver to simulate the hydrodynamic flow field around the WECs and the wave-induced rigid body heave motion of each WEC within the array. In this study, the numerical simulations of a single WEC unit are extended to multiple WECs and the complexity of modelling individual floating objects close to each other in an array layout is tackled. The NWT is validated for fluid-structure interaction (FSI simulations by using experimental measurements for an array of two, five and up to nine heaving WECs subjected to regular waves. The validation is achieved by using mathematical models to include frictional forces observed during the experimental tests. For all the simulations presented, a good agreement is found between the numerical and the experimental results for the WECs’ heave motions, the surge forces on the WECs and the perturbed wave field around the WECs. As a result, our coupled CFD–motion solver proves to be a suitable and accurate toolbox for the study of fluid-structure interaction problems of WEC arrays.

  3. Converted waves in a shallow marine environment : Experimental and modeling studies

    NARCIS (Netherlands)

    El Allouche, N.; Drijkoningen, G.G.; Versteeg, W.; Ghose, R.

    2011-01-01

    Seismic waves converted from compressional to shear mode in the shallow subsurface can be useful not only for obtaining shear-wave velocity information but also for improved processing of deeper reflection data. These waves generated at deep seas have been used successfully in hydrocarbon

  4. Non-overlapped P- and S-wave Poynting vectors and its solution on Grid Method

    KAUST Repository

    Lu, Yong Ming; Liu, Qiancheng

    2017-01-01

    Poynting vector represents the local directional energy flux density of seismic waves in geophysics. It is widely used in elastic reverse time migration (RTM) to analyze source illumination, suppress low-wavenumber noise, correct for image polarity and extract angle-domain common imaging gather (ADCIG). However, the P and S waves are mixed together during wavefield propagation such that the P and S energy fluxes are not clean everywhere, especially at the overlapped points. In this paper, we use a modified elastic wave equation in which the P and S vector wavefields are naturally separated. Then, we develop an efficient method to evaluate the separable P and S poynting vectors, respectively, based on the view that the group velocity and phase velocity have the same direction in isotropic elastic media. We furthermore formulate our method using an unstructured mesh based modeling method named the grid method. Finally, we verify our method using two numerical examples.

  5. Non-overlapped P- and S-wave Poynting vectors and its solution on Grid Method

    KAUST Repository

    Lu, Yong Ming

    2017-12-12

    Poynting vector represents the local directional energy flux density of seismic waves in geophysics. It is widely used in elastic reverse time migration (RTM) to analyze source illumination, suppress low-wavenumber noise, correct for image polarity and extract angle-domain common imaging gather (ADCIG). However, the P and S waves are mixed together during wavefield propagation such that the P and S energy fluxes are not clean everywhere, especially at the overlapped points. In this paper, we use a modified elastic wave equation in which the P and S vector wavefields are naturally separated. Then, we develop an efficient method to evaluate the separable P and S poynting vectors, respectively, based on the view that the group velocity and phase velocity have the same direction in isotropic elastic media. We furthermore formulate our method using an unstructured mesh based modeling method named the grid method. Finally, we verify our method using two numerical examples.

  6. Will oscillating wave surge converters survive tsunamis?

    Directory of Open Access Journals (Sweden)

    L. O’Brien

    2015-07-01

    Full Text Available With an increasing emphasis on renewable energy resources, wave power technology is becoming one of the realistic solutions. However, the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed, creating large destructive waves. The question posed here is whether an oscillating wave surge converter (OWSC could withstand the force of an incoming tsunami. Several tools are used to provide an answer: an analytical 3D model developed within the framework of linear theory, a numerical model based on the non-linear shallow water equations and empirical formulas. Numerical results show that run-up and draw-down can be amplified under some circumstances, leading to an OWSC lying on dry ground!

  7. Determination of elastic anisotropy of rocks from P- and S-wave velocities: numerical modelling and lab measurements

    Science.gov (United States)

    Svitek, Tomáš; Vavryčuk, Václav; Lokajíček, Tomáš; Petružálek, Matěj

    2014-12-01

    The most common type of waves used for probing anisotropy of rocks in laboratory is the direct P wave. Information potential of the measured P-wave velocity, however, is limited. In rocks displaying weak triclinic anisotropy, the P-wave velocity depends just on 15 linear combinations of 21 elastic parameters, called the weak-anisotropy parameters. In strong triclinic anisotropy, the P-wave velocity depends on the whole set of 21 elastic parameters, but inversion for six of them is ill-conditioned and these parameters are retrieved with a low accuracy. Therefore, in order to retrieve the complete elastic tensor accurately, velocities of S waves must also be measured and inverted. For this purpose, we developed a lab facility which allows the P- and S-wave ultrasonic sounding of spherical rock samples in 132 directions distributed regularly over the sphere. The velocities are measured using a pair of P-wave sensors with the transmitter and receiver polarized along the radial direction and using two pairs of S-wave sensors with the transmitter and receiver polarized tangentially to the spherical sample in mutually perpendicular directions. We present inversion methods of phase and ray velocities for elastic parameters describing general triclinic anisotropy. We demonstrate on synthetic tests that the inversion becomes more robust and stable if the S-wave velocities are included. This applies even to the case when the velocity of the S waves is measured in a limited number of directions and with a significantly lower accuracy than that of the P wave. Finally, we analyse velocities measured on a rock sample from the Outokumpu deep drill hole, Finland. We present complete sets of elastic parameters of the sample including the error analysis for several levels of confining pressure ranging from 0.1 to 70 MPa.

  8. Short-Term Wave Forecasting with AR models in Real-Time Optimal Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Time domain control of wave energy converters requires knowledge of future incident wave elevation in order to approach conditions for optimal energy extraction. Autoregressive models revealed to be a promising approach to the prediction of future values of the wave elevation only from its past history. Results on real wave observations from different ocean locations show that AR models allow to achieve very good predictions for more than one wave period in the future if ...

  9. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  10. Electron heating and current drive by mode converted slow waves

    International Nuclear Information System (INIS)

    Majeski, R.; Phillips, C.K.; Wilson, J.R.

    1994-01-01

    An approach to obtaining efficient single pass mode conversion at high parallel wave number from the fast magnetosonic wave to the slow ion Bernstein wave, in a two-ion species tokamak plasma, is described. The intent is to produce localized electron heating or current drive via the mode converted slow wave. In particular, this technique can be adapted to off-axis current drive for current profile control. Modeling for the case of deuterium-tritium plasmas in TFTR is presented

  11. Different Reliability Assessment Approaches for Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten Mejlhede; Sørensen, John Dalsgaard

    2015-01-01

    Reliability assessments are of importance for wave energy converters (WECs) due to the fact that accessibility might be limited in case of failure and maintenance. These failure rates can be adapted by reliability considerations. There are two different approaches to how reliability can...

  12. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  13. Experimental Testing of the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    2011-01-01

    Aalborg University carried out wave tank testing a 1:20 scale model of Langlee, an oscillating wave-surge type of Wave Energy Converter (WEC). Langlee is designed to operate in deep water, with the hinged flaps attached to a, moored, semi-submerged reference frame. Langlee has a novel flap...... arrangement, with the flaps placed symmetrically opposing each other on a floating reference structure. This minimises the net force on the reference frame and increases the stability of the reference frame under optimal wave conditions. This paper presents the results and analysis from the wave tanks, which...... addressed the following: The Power Take Offs (PTOs) were simulated using a motor to resist the motion of the wings, according to the damping profile. Torque and velocity measurements were used to predict the wave- to mechanical-power conversion efficiency of the device. A number of wing types...

  14. Automatic picking of direct P, S seismic phases and fault zone head waves

    Science.gov (United States)

    Ross, Z. E.; Ben-Zion, Y.

    2014-10-01

    We develop a set of algorithms for automatic detection and picking of direct P and S waves, as well as fault zone head waves (FZHW), generated by earthquakes on faults that separate different lithologies and recorded by local seismic networks. The S-wave picks are performed using polarization analysis and related filters to remove P-wave energy from the seismograms, and utilize STA/LTA and kurtosis detectors in tandem to lock on the phase arrival. The early portions of P waveforms are processed with STA/LTA, kurtosis and skewness detectors for possible first-arriving FZHW. Identification and picking of direct P and FZHW is performed by a multistage algorithm that accounts for basic characteristics (motion polarities, time difference, sharpness and amplitudes) of the two phases. The algorithm is shown to perform well on synthetic seismograms produced by a model with a velocity contrast across the fault, and observed data generated by earthquakes along the Parkfield section of the San Andreas fault and the Hayward fault. The developed techniques can be used for systematic processing of large seismic waveform data sets recorded near major faults.

  15. On theory and simulation of heaving-buoy wave-energy converters with control

    Energy Technology Data Exchange (ETDEWEB)

    Eidsmoen, H.

    1995-12-01

    Heaving-buoy wave-energy converters with control were studied. The buoy is small compared to the wavelength. The resonance bandwidth is then narrow and the energy conversion in irregular waves can be significantly increased if the oscillatory motion of the device can be actively controlled, and the power output from the converter will vary less with time than the wave power transport. A system of two concentric cylinders of the same radius, oscillating in heave only, is analysed in the frequency-domain. The mathematical model can be used to study a tight-moored buoy, as well as a buoy reacting against a submerged body. The knowledge of the frequency-domain hydrodynamic parameters is used to develop frequency-domain and time-domain mathematical models of heaving-buoy wave energy converters. The main emphasis is on using control to maximize the energy production and to protect the machinery of the wave-energy converter in very large waves. Three different methods are used to study control. (1) In the frequency-domain explicit analytical expressions for the optimum oscillation are found, assuming a continuous sinusoidal control force, and from these expressions the optimum time-domain oscillation can be determined. (2) The second method uses optimal control theory, using a control variable as the instrument for the optimisation. Unlike the first method, this method can include non-linearities. But this method gives numerical time series for the state variables and the control variable rather than analytical expressions for the optimum oscillation. (3) The third method is time-domain simulation. Non-linear forces are included, but the method only gives the response of the system to a given incident wave. How the different methods can be used to develop real-time control is discussed. Simulations are performed for a tight-moored heaving-buoy converter with a high-pressure hydraulic system for energy production and motion control. 147 refs., 38 figs., 22 tabs.

  16. Stochastic control of inertial sea wave energy converter.

    Science.gov (United States)

    Raffero, Mattia; Martini, Michele; Passione, Biagio; Mattiazzo, Giuliana; Giorcelli, Ermanno; Bracco, Giovanni

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks.

  17. Design and control of a point absorber wave energy converter with an open loop hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    Highlights: • Point absorber wave energy converter is presented. • Piston pump module captures and converts wave energy. • Hydraulic accumulator stores/releases the surplus energy. • Fuzzy controller adjusts the displacement of hydraulic motor. • Generator outputs meet the electricity demand precisely. - Abstract: In this paper, a point absorber wave energy converter combined with offshore wind turbine is proposed. In the system, the wave energy is captured and converted into hydraulic energy by a piston pump module, which is combined with a wind turbine floating platform, and then the hydraulic energy is converted into electricity energy by a variable displacement hydraulic motor and induction generator. In order to smooth and stabilize the captured wave energy, a hydraulic accumulator is applied to store and release the excess energy. In order to meet the demand power a fuzzy controller is designed to adjust the displacement of hydraulic motor and controlled the output power. Simulation under irregular wave condition has been carried out to verify the validity of the mathematical model and the effectiveness of the controller strategy. The results show that the wave energy converter system could deliver the required electricity power precisely as the motor output torque is controlled. The accumulator could damp out all the fluctuations in output power, so the wave energy would become a dispatchable power source.

  18. Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter

    NARCIS (Netherlands)

    Vakis, Antonis I.; Anagnostopoulos, John S.

    2016-01-01

    A multi-pump, multi-piston power take-off wave energy converter ((MPPTO)-P-2 WEC) has been proposed for use with a novel renewable energy harvester termed the Ocean Grazer. The (MPPTO)-P-2 WEC utilizes wave motion to pump via buoys connected to pistons working fluid within a closed circuit and store

  19. Hydrodynamic Modelling and Layout Optimisation of Wave Energy Converter Arrays

    DEFF Research Database (Denmark)

    Ruiz, Pau Mercadé

    2017-01-01

    in various positions and orientations are finally investigated. This thesis intends in this way to offer a practical approach to the analysis of wave energy converters when they operate together as an array and the optimal design of array layouts. The topics covered by the text include propagation of waves...

  20. Designing and Testing Composite Energy Storage Systems for Regulating the Outputs of Linear Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Zanxiang Nie

    2017-01-01

    Full Text Available Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermittent power of wave energy converters. Hardware systems have been constructed to control the linear wave energy converter and the composite energy storage system. The performance of the composite energy storage system has been verified in experiments by using electronics-based wave energy emulators.

  1. A novel method for predicting the power outputs of wave energy converters

    Science.gov (United States)

    Wang, Yingguang

    2018-03-01

    This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.

  2. Experimental Study of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy

    This report presents the results of an experimental study on the power conversion capabilities and structural loads of the WEPTOS wave energy converter. The investigation focuses mainly at identifying the performance of the WEPTOS prototype in a wide range of production wave states...... and at the mooring forces and structural bending moments in extreme wave conditions, in order to estimate the performance and structural loads of larger WEPTOS machines being located at various offshore locations of interest. The following aspects were the main subjects of investigation: Performance of the prototype...... under a constant and linear PTO loading, the opening angle of the device, the effect of alterations to the wave conditions, and mooring forces and structural bending moments in production and extreme wave states. During the study, a highly realistic scale model was supplied by the client, WEPTOS, which...

  3. Comparison of heaving buoy and oscillating flap wave energy converters

    Science.gov (United States)

    Abu Bakar, Mohd Aftar; Green, David A.; Metcalfe, Andrew V.; Najafian, G.

    2013-04-01

    Waves offer an attractive source of renewable energy, with relatively low environmental impact, for communities reasonably close to the sea. Two types of simple wave energy converters (WEC), the heaving buoy WEC and the oscillating flap WEC, are studied. Both WECs are considered as simple energy converters because they can be modelled, to a first approximation, as single degree of freedom linear dynamic systems. In this study, we estimate the response of both WECs to typical wave inputs; wave height for the buoy and corresponding wave surge for the flap, using spectral methods. A nonlinear model of the oscillating flap WEC that includes the drag force, modelled by the Morison equation is also considered. The response to a surge input is estimated by discrete time simulation (DTS), using central difference approximations to derivatives. This is compared with the response of the linear model obtained by DTS and also validated using the spectral method. Bendat's nonlinear system identification (BNLSI) technique was used to analyze the nonlinear dynamic system since the spectral analysis was only suitable for linear dynamic system. The effects of including the nonlinear term are quantified.

  4. A SYSTEM TO MAKE USE OF EXISTING BREAKWATERS AS OVERTOPPING WAVE ENERGY CONVERTERS

    Directory of Open Access Journals (Sweden)

    DENIZ ÜNSALAN

    2016-06-01

    Full Text Available The main purpose of building breakwaters is to produce safe havens for ships and boats in rough seas. The general architecture for a breakwater is a wall with a trapezoidal -shaped cross section extending parallel to the shoreline. As the waves from the open sea approach, they are encountered by the so- called slope and revetment of the breakwater, where the wave is broken and its energy is dissipated and/or reflected back. However, the ever -increasing attractiveness of the utilization of waves as energy sources, paralleling to the increasing monetary and envir onmental costs of energy, has led the authors to consider the vast amounts of this otherwise dissipated energy into useful electrical energy. A wave energy conversion concept, which can be classified as an “overtopping” wave energy converter was conceived, where the open sea-facing (revetment side of the breakwater is fitted by a water collecting channel at a suitable height above the calm water level, running alongside the breakwater. The channel leads the collected water to a powerhouse containing a low head turbine (or a set of such turbines discharging it to the calm water of the inner harbour. Power obtained from these turbines can be converted to electrical energy. In this study, an estimation of the volume of water collected by the channel and the energy production for a proposed breakwater - power station system for a typical rough weather shall be made. It is deemed that the feasibility of this system is comparable to and even higher than the other wave energy conversion systems since it does not require additional facilities and power supply lines to be built due to its proximity to the existing energy transmission lines, except for the addition of new features/installations to the existing breakwaters.

  5. Stochastic Control of Inertial Sea Wave Energy Converter

    Science.gov (United States)

    Mattiazzo, Giuliana; Giorcelli, Ermanno

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks. PMID:25874267

  6. Stochastic Control of Inertial Sea Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Mattia Raffero

    2015-01-01

    Full Text Available The ISWEC (inertial sea wave energy converter is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks.

  7. Double system wave energy converter for the breaker zone

    International Nuclear Information System (INIS)

    Malavasi, Stefano; Negri; Marco

    2015-01-01

    In this paper a particular type of wave energy converter, namely EDS (Energy Double System) is presented. It is a two-body point absorber composed by a heaving float and a surging paddle, mounted on the same structure and aligned along the wave propagation direction. The system is designed for working in the breaker zone, where waves close to breaking can generate a considerable surging force on the paddle. A scale EDS model has been built and tested in the wave flume of the Hydraulics Laboratory of the 'Politecnico' of Milan. The power absorbed by the system, varying its configuration, position and wave, has been measured, and interesting efficiencies have been found.

  8. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang; Wright, Alan

    2015-09-09

    The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of the device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.

  9. Design Specifications for the Hanstholm WEPTOS Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Tommy Larsen

    2012-04-01

    Full Text Available The WEPTOS wave energy converter (WEC is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack-moored and floating structure absorbs the energy of the waves through a multitude of rotors. The shape of the rotors is based on the renowned Salter’s Duck. On each leg, the rotors pivot around a common axle, through which the rotors transfer the absorbed power to a common power take off system. The study investigates the required capacity of the power take off (PTO system and the structural forces on a WEPTOS WEC prototype, intended for installation at Hanstholm (Denmark, based on large scale experimental tests using a highly realistic laboratory model of the complete device. The results hereof includes the rotational speed and transmitted torque (and hereby power to the PTO system using different PTO control strategies, the impact of fluctuations of the available mechanical power and the effect of limiting the PTO capacity on the annual energy production. Acquisition of structural forces includes mooring forces and structural bending moments in both production and extreme wave conditions, illustrating that the regulation of the angle in the A shape ensures that extreme forces on the structure can be kept in the same order of magnitude as in production conditions.

  10. Inertial Sea Wave Energy Converter from Mediterranean Sea to Ocean - Design Optimization

    Science.gov (United States)

    Calleri, Marco

    Optimization of the number of gyroscopes and flywheel rotational speed of a Wave Energy Converter able to produce 725 kW as the nominal power, in the chosen installation site, respecting some imposed constraints and some dimensions from the previous design, by minimizing the cost of the device and the bearing power losses, through the minimization of the LCOE of the device.

  11. Electron heating and current drive by mode converted slow waves

    International Nuclear Information System (INIS)

    Majeski, R.; Phillips, C.K.; Wilson, J.R.

    1994-08-01

    An approach to obtaining efficient single pass mode conversion at high parallel wavenumber from the fast magnetosonic wave to the slow ion Bernstein wave, in a two ion species tokamak plasma, is described. The intent is to produce localized electron heating or current drive via the mode converted slow wave. In particular, this technique can be adapted to off-axis current drive for current profile control. Modelling for the case of deuterium-tritium plasmas in TFTR is presented

  12. Reliability-Based Structural Optimization of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten; Sørensen, John Dalsgaard

    2014-01-01

    More and more wave energy converter (WEC) concepts are reaching prototype level. Once the prototype level is reached, the next step in order to further decrease the levelized cost of energy (LCOE) is optimizing the overall system with a focus on structural and maintenance (inspection) costs......, as well as on the harvested power from the waves. The target of a fully-developed WEC technology is not maximizing its power output, but minimizing the resulting LCOE. This paper presents a methodology to optimize the structural design of WECs based on a reliability-based optimization problem...

  13. Measurements of ion cyclotron range of frequencies mode converted wave intensity with phase contrast imaging in Alcator C-Mod and comparison with full-wave simulations

    International Nuclear Information System (INIS)

    Tsujii, N.; Porkolab, M.; Bonoli, P. T.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Jaeger, E. F.; Green, D. L.; Harvey, R. W.

    2012-01-01

    Radio frequency waves in the ion cyclotron range of frequencies (ICRF) are widely used to heat tokamak plasmas. In ICRF heating schemes involving multiple ion species, the launched fast waves convert to ion cyclotron waves or ion Bernstein waves at the two-ion hybrid resonances. Mode converted waves are of interest as actuators to optimise plasma performance through current drive and flow drive. In order to describe these processes accurately in a realistic tokamak geometry, numerical simulations are essential, and it is important that these codes be validated against experiment. In this study, the mode converted waves were measured using a phase contrast imaging technique in D-H and D- 3 He plasmas. The measured mode converted wave intensity in the D- 3 He mode conversion regime was found to be a factor of ∼50 weaker than the full-wave predictions. The discrepancy was reduced in the hydrogen minority heating regime, where mode conversion is weaker.

  14. Quasi-Resonant Full-Wave Zero-Current Switching Buck Converter Design, Simulation and Application

    OpenAIRE

    Yanik, G.; Isen, E.

    2015-01-01

    —This paper presents a full wave quasi-resonant zerocurrent switching buck converter design, simulation and application. The converter control uses with zero-current switching (ZCS) technique to decrease the switching losses. Comparing to conventional buck converter, resonant buck converter includes a resonant tank equipped with resonant inductor and capacitor. The converter is analyzed in mathematical for each subintervals. Depending on the desired input and output electrical quantities, con...

  15. Numerical Simulation of Wake Effects in the Lee of a Farm of Wave Dragon Wave Energy Converters

    DEFF Research Database (Denmark)

    Beels, C.; Troch, P.; De Visch, K.

    2009-01-01

    . In this paper wake effects in the lee of a single Wave Dragon WEC and multiple Wave Dragon WECs are studied in a time-dependent mild-slope equation model. The Wave Dragon WEC is a floating offshore converter of the overtopping type. The water volume of overtopped waves is first captured in a basin above mean...

  16. Hydrodynamic Behavior of Overtopping Wave Energy Converters Built in Sea Defense Structures

    DEFF Research Database (Denmark)

    Victor, Lander; Kofoed, Jens Peter; Troch, Peter

    2010-01-01

    Many sea defense structures need to be adapted to the rising sea water level and changing wave climate due to global warming. The accordingly required investment opens perspectives for wave energy converters (WECs) – that are built as part of the sea defense structures – to become economically...... viable. In this paper the average overtopping discharges q of overtopping wave energy devices built in sea defense structures are studied. Physical model tests with this type of devices have been carried out in a wave flume leading to experimental q - values. The experimental q -values are compared...... with predicted average overtopping discharges by existing empirical formulae from literature. Overtopping converters have low relative crest freeboards and smooth slope characteristics to maximize overtopping, which is contradictive to the basic role of sea defense structures. As a consequence, the achieved...

  17. Optimisation of Working Areas in Discrete Hydraulic Power Take off-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Hansen, Rico Hjerm; Pedersen, Henrik C.

    2012-01-01

    Fluid power is the leading technology in Power Take Off(PTO) systems in Wave Energy Converters(WEC’s), due to the capability of generating high force at low velocity. However, as hydraulic force controlling system may suffer from large energy losses the efficiency of the hydraulic PTO systems may...

  18. Effect of P T symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media

    Science.gov (United States)

    Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao

    2018-04-01

    We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.

  19. Levelized Cost of Energy of the Weptos wave energy converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the cost of energy calculations of a wave energy array of 90 MW, consisting of 25 x 3.6 MW Weptos wave energy converters. The calculation has been made in analogy with a publically available document presented by the UK government, covering the case of a similar size wind...

  20. A DC to 3-phase series-resonant converter with low harmonic distortion

    NARCIS (Netherlands)

    Huisman, H.; Haan, de S.W.H.

    1985-01-01

    A type of dc to 3-phase series-resonant converter (s.r.converter) or potentially submegawatt industrial applications is presented. The converter provides variable-frequency sine-wave currents, with low harmonic distortion at the output terminals, and with the frequency ranging from -200 through dc

  1. A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Gimara Rajapakse

    2017-10-01

    Full Text Available Despite the predictability and availability at large scale, wave energy conversion (WEC has still not become a mainstream renewable energy technology. One of the main reasons is the large variations in the extracted power which could lead to instabilities in the power grid. In addition, maintaining the speed of the turbine within optimal range under changing wave conditions is another control challenge, especially in oscillating water column (OWC type WEC systems. As a solution to the first issue, this paper proposes the direct connection of a battery bank into the dc-link of the back-to-back power converter system, thereby smoothening the power delivered to the grid. For the second issue, model predictive controllers (MPCs are developed for the rectifier and the inverter of the back-to-back converter system aiming to maintain the turbine speed within its optimum range. In addition, MPC controllers are designed to control the battery current as well, in both charging and discharging conditions. Operations of the proposed battery direct integration scheme and control solutions are verified through computer simulations. Simulation results show that the proposed integrated energy storage and control solutions are capable of delivering smooth power to the grid while maintaining the turbine speed within its optimum range under varying wave conditions.

  2. R&D Towards Commercialization of Sea Wave Slot Cone Generator (SSG) Overtopping Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    between ventures and private investors, and to promote an accelerated shift from a technology to a market focus. This Thesis is presented as a collection of works published by the author on her research on the Sea wave Slot cone Generator wave energy converter. These include 1 accepted and 2 submitted......Global energy needs are likely to continue to grow steadily for the next two and a half decades (International Energy Agency, 2006). If governments continue with current policies the world’s energy needs would be more than 50% higher in 2030 than today. Over 60% of that increase would be covered...... in the form of oil and natural gas. Climate destabilizing carbon-dioxide emissions would continue to rise, calling into question the long-term sustainability of the global energy system. More vigorous government policies in consuming countries are steering the world onto an energy path oriented to reduce...

  3. Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks

    Science.gov (United States)

    Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan

    2017-07-01

    Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.

  4. Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts

    Directory of Open Access Journals (Sweden)

    Hung-Ju Shih

    2018-02-01

    Full Text Available A 12-year sea-state hindcast for Taiwanese waters, covering the period from 2005 to 2016, was conducted using a fully coupled tide-surge-wave model. The hindcasts of significant wave height and peak period were employed to estimate the wave power resources in the waters surrounding Taiwan. Numerical simulations based on unstructured grids were converted to structured grids with a resolution of 25 × 25 km. The spatial distribution maps of offshore annual mean wave power were created for each year and for the 12-year period. Waters with higher wave power density were observed off the northern, northeastern, southeastern (south of Green Island and southeast of Lanyu and southern coasts of Taiwan. Five energetic sea areas with spatial average annual total wave energy density of 60–90 MWh/m were selected for further analysis. The 25 × 25 km square grids were then downscaled to resolutions of 5 × 5 km, and five 5 × 5 km optimal areas were identified for wave energy converter deployments. The spatial average annual total wave energy yields at the five optimal areas (S1–(S5 were estimated to be 64.3, 84.1, 84.5, 111.0 and 99.3 MWh/m, respectively. The prevailing wave directions for these five areas lie between east and northeast.

  5. Measurements of Overtopping Flow Time Series on the Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter

    2009-01-01

    A study of overtopping flow series on the Wave Dragon prototype, a low crested device designed to maximise flow, in a real sea, is presented. This study aims to fill the gap in the literature on time series of flow overtopping low crested structures. By comparing to a simulated flow the character......A study of overtopping flow series on the Wave Dragon prototype, a low crested device designed to maximise flow, in a real sea, is presented. This study aims to fill the gap in the literature on time series of flow overtopping low crested structures. By comparing to a simulated flow...... the characteristics of the overtopping flow are discussed and the simulation algorithm is tested. Measured data is shown from a storm build up in October 2006, from theWave Dragon prototype situated in an inland sea in Northern Denmark. This wave energy converter extracts energy from the waves, by funnelling them...

  6. Experimental investigation on the hydrodynamic performance of a wave energy converter

    Science.gov (United States)

    Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu

    2017-06-01

    Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.

  7. Direct AC–AC grid interface converter for ocean wave energy system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2015-01-01

    Highlights: • Novel power grid interface converter for ocean wave energy system. • Unlike conventional approach, generator output is directly converted into fixed frequency AC for synchronous connection. • High conversion efficient and power quality could be achieved. - Abstract: Ocean wave energy is very promising. However, existing systems are using rectifying circuits to convert variable voltage and variable frequency output of electric generator into DC voltage and then use grid-tied inverter to connect to the power grid. Such arrangement will not only reduce the overall efficient but also increase the cost of the system. A direct AC–AC converter is a desirable solution. In this paper, a six-switch AC–AC converter has been proposed as a single phase grid-connected interface. New switching scheme has been derived for the converter such that the virtual input AC–DC conversion and the output DC–AC conversion can be decoupled. State-space averaging model and pulse width modulation scheme have been derived for the converter. As the input and the output operations can be decoupled, two independent controllers have been designed to handle the input AC–DC regulation and the output DC–AC regulation. The proposed scheme demands for two separate duty ratios and novel switching scheme has been derived to realize the combined duty ratios in one switching cycle. Power regulation, harmonics elimination and power factor correction control algorithms have also been derived for the converter when it is connected to the supply grid. Experimental results of a small scale model are included to demonstrate the effectiveness of the proposed switching and control schemes

  8. Calculation of the total electron excitation cross section in the Born approximation using Slater wave functions for the Li (2s yields 2p), Li (2s yields 3p), Na (3s yields 4p), Mg (3p yields 4s), Ca (4s yields 4p) and K (4s yields 4p) excitations. M.S. Thesis

    Science.gov (United States)

    Simsic, P. L.

    1974-01-01

    Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.

  9. Reliability-Based Structural Optimization of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Simon Ambühl

    2014-12-01

    Full Text Available More and more wave energy converter (WEC concepts are reaching prototypelevel. Once the prototype level is reached, the next step in order to further decrease thelevelized cost of energy (LCOE is optimizing the overall system with a focus on structuraland maintenance (inspection costs, as well as on the harvested power from the waves.The target of a fully-developed WEC technology is not maximizing its power output,but minimizing the resulting LCOE. This paper presents a methodology to optimize thestructural design of WECs based on a reliability-based optimization problem and the intentto maximize the investor’s benefits by maximizing the difference between income (e.g., fromselling electricity and the expected expenses (e.g., structural building costs or failure costs.Furthermore, different development levels, like prototype or commercial devices, may havedifferent main objectives and will be located at different locations, as well as receive varioussubsidies. These points should be accounted for when performing structural optimizationsof WECs. An illustrative example on the gravity-based foundation of the Wavestar deviceis performed showing how structural design can be optimized taking target reliability levelsand different structural failure modes due to extreme loads into account.

  10. SSG wave energy converter. Design, reliability and hydraulic performance of an innovative overtopping device

    Energy Technology Data Exchange (ETDEWEB)

    Margheritini, L.; Frigaard, P. [Department of Civil Engineering, Aalborg University. Sohngaardsholmsvej 57, DK-9000 Aalborg (Denmark); Vicinanza, D. [Department of Civil Engineering - CIRIAM, Seconda Universita di Napoli. Via Roma 29, 81031 Aversa (Caserta) (Italy)

    2009-05-15

    The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each other above the mean water level in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low head hydro-turbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter and the studies behind the process that leads to its construction. The pilot plant is an on-shore full-scale module in 3 levels with an expected power production of 320 MWh/y in the North Sea. Location, wave climate and laboratory tests' results will be used here to describe the pilot plant and its characteristics. (author)

  11. Concept Study of Foundation Systems for Wave Energy Converters

    DEFF Research Database (Denmark)

    Molina, Salvador Devant; Vaitkunaite, Evelina; Ibsen, Lars Bo

    Analysis of possible foundation solution for Wave Energy Converters (WEC) is presented by investigating and optimizing novel foundation systems recently developed for offshore wind turbines. Gravity based, pile and bucket foundations are innovative foundation systems that are analyzed. Concept...

  12. Power Take-Off Simulation for Scale Model Testing of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Scott Beatty

    2017-07-01

    Full Text Available Small scale testing in controlled environments is a key stage in the development of potential wave energy conversion technology. Furthermore, it is well known that the physical design and operational quality of the power-take off (PTO used on the small scale model can have vast effects on the tank testing results. Passive mechanical elements such as friction brakes and air dampers or oil filled dashpots are fraught with nonlinear behaviors such as static friction, temperature dependency, and backlash, the effects of which propagate into the wave energy converter (WEC power production data, causing very high uncertainty in the extrapolation of the tank test results to the meaningful full ocean scale. The lack of quality in PTO simulators is an identified barrier to the development of WECs worldwide. A solution to this problem is to use actively controlled actuators for PTO simulation on small scale model wave energy converters. This can be done using force (or torque-controlled feedback systems with suitable instrumentation, enabling the PTO to exert any desired time and/or state dependent reaction force. In this paper, two working experimental PTO simulators on two different wave energy converters are described. The first implementation is on a 1:25 scale self-reacting point absorber wave energy converter with optimum reactive control. The real-time control system, described in detail, is implemented in LabVIEW. The second implementation is on a 1:20 scale single body point absorber under model-predictive control, implemented with a real-time controller in MATLAB/Simulink. Details on the physical hardware, software, and feedback control methods, as well as results, are described for each PTO. Lastly, both sets of real-time control code are to be web-hosted, free for download, modified and used by other researchers and WEC developers.

  13. Plan for the Brent Spar. Wind and wave energy converter

    International Nuclear Information System (INIS)

    De Vries, E.

    1996-01-01

    In a competition on the future of the much discussed oil platform Brent Spar of Shell the idea to retrofit the platform into a combined wind/wave energy converter appears to be an attractive option for Shell

  14. The SSG Wave Energy Converter: Performance, Status and Recent Developments

    Directory of Open Access Journals (Sweden)

    Mariano Buccino

    2012-01-01

    Full Text Available The Sea-wave Slot-cone Generator (SSG is a Wave Energy Converter based on the wave overtopping principle; it employs several reservoirs placed on top of each other, in which the energy of incoming waves is stored as potential energy. Then, the captured water runs through turbines for electricity production. The system works under a wide spectrum of different wave conditions, giving a high overall efficiency. It can be suitable for shoreline and breakwater applications and presents particular advantages, such as sharing structure costs, availability of grid connection and recirculation of water inside the harbor, as the outlet of the turbines is on the rear part of the system. Recently, plans for the SSG pilot installations are in progress at the Svaaheia site (Norway, the port of Hanstholm (Denmark and the port of Garibaldi (Oregon, USA. In the last-mentioned two projects, the Sea-wave Slot-cone Generator technology is integrated into the outer harbor breakwater and jetty reconstruction projects. In the last years extensive studies have been performed on the hydraulic and the structural response of this converter, with the aim of optimizing the design process. The investigations have been conducted by physical model tests and numerical simulations and many results have been published on both conference proceedings and journals. The main scope of this paper is reviewing the most significant findings, to provide the reader with an organic overview on the present status of knowledge.

  15. Energy conversion of orbital motions in gravitational waves: Simulation and test of the Seaspoon wave energy converter

    International Nuclear Information System (INIS)

    Di Fresco, L.; Traverso, A.

    2014-01-01

    Highlights: • We investigate an innovative wave energy converter. • We study a robust technology derived from wind power sector. • We increased the performance of a drag type rotor exploiting the motion of ocean waves and a simple flat plate component. • We proved the working principle with a numerical model first and with experimental test in wave flume later. • We aim to obtain a robust large energy harvester able to operate in mild energy sea and with an extended operating range. - Abstract: The conversion of ocean wave power into sustainable electrical power represents a major opportunity to Nations endowed with such a kind of resource. At the present time the most of the technological innovations aiming at converting such resources are at early stage of development, with only a handful of devices close to be at the commercial demonstration stage. The Seaspoon device, thought as a large energy harvester, catches the kinetic energy of ocean waves with promising conversion efficiency, and robust technology, according to specific “wave-motion climate”. University of Genoa aims to develop a prototype to be deployed in medium average energy content seas (i.e. Mediterranean or Eastern Asia seas). This paper presents the first simulation and experimental results carried out on a reduced scale proof-of-concept model tested in the laboratory wave flume

  16. Cost Optimization of Mooring Solutions for Large Floating Wave Energy Converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    2018-01-01

    The increasing desire for using renewable energy sources throughout the world has resulted in a considerable amount of research into and development of concepts for wave energy converters. By now, many different concepts exist, but still, the wave energy sector is not at a stage that is considere...

  17. Structural Modeling and Analysis of a Wave Energy Converter Applying Dynamical Substructuring Method

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Damkilde, Lars; Gao, Zhen

    2013-01-01

    to the relative stiff behavior of the arm the calculation can be reduced to a quasi-static analysis. The hydrodynamic and the structural analyses are thus performed separately. In order to reduce the computational time of the finite element calculation the main structure is modeled as a superelement......This paper deals with structural modeling and analysis of a wave energy converter. The device, called Wavestar, is a bottom fixed structure, located in a shallow water environment at the Danish Northwest coast. The analysis is concentrated on a single float and its structural arm which connects...... the WEC to a jackup structure. The wave energy converter is characterized by having an operational and survival mode. The survival mode drastically reduces the exposure to waves and therfore to the wave loads. Structural response analysis of the Wavestar arm is carried out in this study. Due...

  18. Selection of Design Power of Wave Energy Converters Based on Wave Basin Experiments

    DEFF Research Database (Denmark)

    Martinelli, L.; Zanuttigh, B.; Kofoed, Jens Peter

    2011-01-01

    of the measured efficiency; description of the energy production by means of a function of the design capacity; application of a simple formula for cost benefit analysis. The analyses here proposed are based on the experimental results of 3D tests on two floating wave energy devices, named LEANCON and DEXA......Aim of this paper is to develop a method for selecting the optimal power generation capacity for which a wave energy converter (WEC) should be rated. This method is suitable for the earliest stages of development, when several studies are missing, including design of the Power Take Off (PTO) system...

  19. Wave-to-wire Modelling of Wave Energy Converters : Critical Assessment, Developments and Applicability for Economical Optimisation

    DEFF Research Database (Denmark)

    Ferri, Francesco

    The idea to use the motion of a wavy sea surface to produce electricity was investigate in the seventies, in a time when the earliest wave energy converters were conceived and developed. But nowadays still none of the patented devices reached a commercial stage. Wave energy is a large, mostly...... untapped, renewable energy resource that has the potential to contribute significantly to the future energy mix, especially in an environmental friendly future scenario. What is bounding the sector to roll off into the market is the cost of the produced energy: too high if compared with other renewable...... energy sources. Generally speaking, the devices have a low efficiency and a high structural cost. The aim of the thesis is to push the research toward a cost minimisation algorithm, based on numerical simulation, which account for both efficiency and structural cost of the device. In order to achieve...

  20. Model based design of efficient power take-off systems for wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C.

    2011-01-01

    The Power Take-Off (PTO) is the core of a Wave Energy Converter (WECs), being the technology converting wave induced oscillations from mechanical energy to electricity. The induced oscillations are characterized by being slow with varying frequency and amplitude. Resultantly, fluid power is often...... an essential part of the PTO, being the only technology having the required force densities. The focus of this paper is to show the achievable efficiency of a PTO system based on a conventional hydro-static transmission topology. The design is performed using a model based approach. Generic component models...

  1. Optimization of Overtopping Wave Energy Converters by Geometry Control

    DEFF Research Database (Denmark)

    Victor, L.; Troch, P.; Kofoed, Jens Peter

    2011-01-01

    In this paper, the results of a study on the effects of geometry control on the performance of overtopping wave energy converters with a simple geometry built in coastal structures (simple OWECs) are presented. Empirical formulae, derived based on experimental tests on simple OWECs with varying...

  2. P-Wave and S-Wave Velocity Structure of Submarine Landslide Associated With Gas Hydrate Layer on Frontal Ridge of Northern Cascadia Margin

    Science.gov (United States)

    He, T.; Lu, H.; Yelisetti, S.; Spence, G.

    2015-12-01

    The submarine landslide associated with gas hydrate is a potential risk for environment and engineering projects, and thus from long time ago it has been a hot topic of hydrate research. The study target is Slipstream submarine landslide, one of the slope failures observed on the frontal ridges of the Northern Cascadia accretionary margin off Vancouver Island. The previous studies indicated a possible connection between this submarine landslide feature and gas hydrate, whose occurrence is indicated by a prominent bottom-simulating reflector (BSR), at a depth of ~265-275 m beneath the seafloor (mbsf). The OBS (Ocean Bottom Seismometer) data collected during SeaJade (Seafloor Earthquake Array - Japan Canada Cascadia Experiment) project were used to derive the subseafloor velocity structure for both P- and S-wave using travel times picked from refraction and reflection events. The P-wave velocity structure above the BSR showed anomalous high velocities of about 2.0 km/s at shallow depths of 100 mbsf, closely matching the estimated depth of the glide plane (100 ± 10 m). Forward modelling of S-waves was carried out using the data from the OBS horizontal components. The S-wave velocities, interpreted in conjunction with the P-wave results, provide the key constraints on the gas hydrate distribution within the pores. The hydrate distribution in the pores is important for determining concentrations, and also for determining the frame strength which is critical for controlling slope stability of steep frontal ridges. The increase in S-wave velocity suggests that the hydrate is distributed as part of the load-bearing matrix to increase the rigidity of the sediment.

  3. A Frequency-Domain Model for a Novel Wave Energy Converter

    NARCIS (Netherlands)

    Wei, Yanji; Yu, Zhiheng; Barradas Berglind, Jose de Jesus; van Rooij, Marijn; Prins, Wouter; Jayawardhana, Bayu; Vakis, Antonis I.

    In this work, we develop a frequency-domain model for the novel Ocean Grazer (OG) wave energy converter (WEC), with the intention to study the hydrodynamic behavior of its array of floater elements individually connected to power take-off (PTO) systems. To investigate these hydrodynamic

  4. Modeling and Simulation of a Wave Energy Converter INWAVE

    Directory of Open Access Journals (Sweden)

    Seung Kwan Song

    2017-01-01

    Full Text Available INGINE Inc. developed its own wave energy converter (WEC named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO. Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six degrees of movement of the buoy, it is possible to extract energy efficiently even under low energy density conditions provided in the coastal areas. In the PTO module, the ratchet gears convert the reciprocating movement of the rope drum into a uni-directional rotation and determine the transmission of power from the relation of the angular velocities between the rope drum and the generator. In this process, the discontinuity of the power transmission occurs and causes the modeling divergence. Therefore, we introduce the concept of the virtual torsion spring in order to prevent the impact error in the ratchet gear module, thereby completing the PTO modeling. In this paper, we deal with dynamic analysis in the time domain, based on Newtonian mechanics and linear wave theory. We derive the combined dynamics of the buoy and PTO modules via geometric relation between the buoy and mooring ropes, then suggest the ratchet gear mechanism with the virtual torsion spring element to reduce the dynamic errors during the phase transitions. Time domain simulation is carried out under irregular waves that reflect the actual wave states of the installation area, and we evaluate the theoretical performance using the capture width ratio.

  5. Initial Assessment of Mooring Solutions for Floating Wave Energy Converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Kofoed, Jens Peter; Delaney, Martin

    2016-01-01

    The present study investigates three different types of mooring systems in order to establish potential cost reductions and applicability to wave energy converters (WECs). Proposed mooring systems for three existing WECs create the basis for this study, and the study highlights areas of interest ...

  6. Explosion Generated Seismic Waves and P/S Methods of Discrimination from Earthquakes with Insights from the Nevada Source Physics Experiments

    Science.gov (United States)

    Walter, W. R.; Ford, S. R.; Pitarka, A.; Pyle, M. L.; Pasyanos, M.; Mellors, R. J.; Dodge, D. A.

    2017-12-01

    The relative amplitudes of seismic P-waves to S-waves are effective at identifying underground explosions among a background of natural earthquakes. These P/S methods appear to work best at frequencies above 2 Hz and at regional distances ( >200 km). We illustrate this with a variety of historic nuclear explosion data as well as with the recent DPRK nuclear tests. However, the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of path, frequency and event properties such as size, depth, and geology, remains incompletely understood. A goal of current research, such as the Source Physics Experiments (SPE), is to improve our physical understanding of the mechanisms of explosion S-wave generation and advance our ability to numerically model and predict them. The SPE conducted six chemical explosions between 2011 and 2016 in the same borehole in granite in southern Nevada. The explosions were at a variety of depths and sizes, ranging from 0.1 to 5 tons TNT equivalent yield. The largest were observed at near regional distances, with P/S ratios comparable to much larger historic nuclear tests. If we control for material property effects, the explosions have very similar P/S ratios independent of yield or magnitude. These results are consistent with explosion S-waves coming mainly from conversion of P- and surface waves, and are inconsistent with source-size based models. A dense sensor deployment for the largest SPE explosion allowed this conversion to be mapped in detail. This is good news for P/S explosion identification, which can work well for very small explosions and may be ultimately limited by S-wave detection thresholds. The SPE also showed explosion P-wave source models need to be updated for small and/or deeply buried cases. We are developing new P- and S-wave explosion models that better match all the empirical data. Historic nuclear explosion seismic data shows that the media in which

  7. Wave Energy Converters based on Dielectric Elastomer generators: Status and perspectives

    International Nuclear Information System (INIS)

    Fontana, Marco; Vertechy, Rocco

    2015-01-01

    Dielectric Elastomers (DEs) are a very promising technology for the development of energy harvesting devices based on the variable-capacitance electrostatic generator principle. This paper discusses the potentialities of DE technology for advancing the ocean wave energy sector. In particular, three innovative concepts of wave energy converters with DE-based power take-off system are introduced and described.

  8. Hydraulic Evaluation of the LEANCON Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the power production of the device, based...... on laboratory testing of a model of the WEC provided by LEANCON. LEANCON, represented by Kurt Due Rasmussen, has been heavily involved in the testing of the device, including the instrumentation, model setup and execution of the tests in the laboratory, all under the supervision of the personnel of the Wave...... Energy Research Group at Department of Civil Engineering, Aalborg University....

  9. Experimental Study on a Rotor for WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy

    This report presents the results of an experimental study of the power conversion capabilities of one single rotor of the WEPTOS wave energy converter. The investigation focuses mainly on defining the optimal weight distribution in the rotor in order to improve the hydraulic performance through...

  10. Experimental testing of moorings for large floating wave energy converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    2016-01-01

    This paper presents the outcome of a test campaign, which investigates the behaviour of a synthetic mooring system applied to the Floating Power Plant wave energy converter. The study investigates the motion and tension response under operational and extreme sea states expected at the deployment ...

  11. Numerical study of hydrodynamic behavior and conversion efficiency of a two-buoy wave energy converter

    Science.gov (United States)

    Yang, Cen; Zhang, Yong-liang

    2018-04-01

    In this paper we propose a two-buoy wave energy converter composed of a heaving semi-submerged cylindrical buoy, a fixed submerged cylindrical buoy and a power take-off (PTO) system, and investigate the effect of the fixed submerged buoy on the hydrodynamics of the heaving semi-submerged buoy based on the three-dimensional potential theory. And the dynamic response of the semi-submerged buoy and the wave energy conversion efficiency of the converter are analyzed. The difference of the hydrodynamics and the wave energy conversion efficiency of a semi-submerged buoy converter with and without a fixed submerged buoy is discussed. It is revealed that the influence of the fixed submerged buoy on the exciting wave force, the added mass, the radiation damping coefficient and the wave energy conversion efficiency can be significant with a considerable variation, depending on the vertical distance between the heaving semi-submerged buoy and the fixed submerged buoy, the diameter ratio of the fixed submerged buoy to the heaving semi-submerged buoy and the water depth.

  12. Layout Optimisation of Wave Energy Converter Arrays

    DEFF Research Database (Denmark)

    Ruiz, Pau Mercadé; Nava, Vincenzo; Topper, Mathew B. R.

    2017-01-01

    This paper proposes an optimisation strategy for the layout design of wave energy converter (WEC) arrays. Optimal layouts are sought so as to maximise the absorbed power given a minimum q-factor, the minimum distance between WECs, and an area of deployment. To guarantee an efficient optimisation......, a four-parameter layout description is proposed. Three different optimisation algorithms are further compared in terms of performance and computational cost. These are the covariance matrix adaptation evolution strategy (CMA), a genetic algorithm (GA) and the glowworm swarm optimisation (GSO) algorithm...

  13. P and S wave Coda Calibration in Central Asia and South Korea

    Science.gov (United States)

    Kim, D.; Mayeda, K.; Gok, R.; Barno, J.; Roman-Nieves, J. I.

    2017-12-01

    Empirically derived coda source spectra provide unbiased, absolute moment magnitude (Mw) estimates for events that are normally too small for accurate long-period waveform modeling. In this study, we obtain coda-derived source spectra using data from Central Asia (Kyrgyzstan networks - KN and KR, and Tajikistan - TJ) and South Korea (Korea Meteorological Administration, KMA). We used a recently developed coda calibration module of Seismic WaveForm Tool (SWFT). Seismic activities during this recording period include the recent Gyeongju earthquake of Mw=5.3 and its aftershocks, two nuclear explosions from 2009 and 2013 in North Korea, and a small number of construction and mining-related explosions. For calibration, we calculated synthetic coda envelopes for both P and S waves based on a simple analytic expression that fits the observed narrowband filtered envelopes using the method outlined in Mayeda et al. (2003). To provide an absolute scale of the resulting source spectra, path and site corrections are applied using independent spectral constraints (e.g., Mw and stress drop) from three Kyrgyzstan events and the largest events of the Gyeongju sequence in Central Asia and South Korea, respectively. In spite of major tectonic differences, stable source spectra were obtained in both regions. We validated the resulting spectra by comparing the ratio of raw envelopes and source spectra from calibrated envelopes. Spectral shapes of earthquakes and explosions show different patterns in both regions. We also find (1) the source spectra derived from S-coda is more robust than that from the P-coda at low frequencies; (2) unlike earthquake events, the source spectra of explosions have a large disagreement between P and S waves; and (3) similarity is observed between 2016 Gyeongju and 2011 Virginia earthquake sequence in the eastern U.S.

  14. Experimental Hydraulic Optimization of the Wave Energy Converter Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    This report presents the results of a experimental hydraulic optimization of the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs. In the present SSG setup three reservoirs has been used. Model tests have been performed...

  15. A Methodology for Equitable Performance Assessment and Presentation of Wave Energy Converters Based on Sea Trials

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Pecher, Arthur; Margheritini, Lucia

    2013-01-01

    This paper provides a methodology for the analysis and presentation of data obtained from sea trials of wave energy converters (WEC). The equitable aspect of this methodology lies in its wide application, as any WEC at any scale or stage of development can be considered as long as the tests are p...... parameters influence the performance of the WEC can also be investigated using this methodology.......This paper provides a methodology for the analysis and presentation of data obtained from sea trials of wave energy converters (WEC). The equitable aspect of this methodology lies in its wide application, as any WEC at any scale or stage of development can be considered as long as the tests...... leads to testing campaigns that are not as extensive as desired. Therefore, the performance analysis should be robust enough to allow for not fully complete sea trials and sub optimal performance data. In other words, this methodology is focused at retrieving the maximum amount of useful information out...

  16. Resonant Wave Energy Converters: Small-scale field experiments and first full-scale prototype

    International Nuclear Information System (INIS)

    Arena, Felice; Fiamma, Vincenzo; Iannolo, Roberto; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati Federica Maria

    2015-01-01

    The Resonant Wave Energy Converter 3 (REWEC3) is a device belonging to the family of Oscillating Water Columns (OWCs), that can convert the energy of incident waves into electrical energy via turbines. In contrast to classical OWCs, it incorporates a small vertical U-shaped duct to connect the water column to the open wave field. This article shows the results of a small-scale field experiment involving a REWEC3 designed for working with a 2 kW turbine. Then, the next experimental activity on a REWEC3 installed in the NOEL laboratory with the collaboration of ENEA, is presented. Finally, the first prototype of ReWEC3 under construction in Civitavecchia (Rome, Italy) is shown. The crucial features of the construction stage are discussed and some initial performances are provided. [it

  17. Wave Energy Converters : An experimental approach to onshore testing, deployments and offshore monitoring

    OpenAIRE

    Ulvgård, Liselotte

    2017-01-01

    The wave energy converter (WEC) concept developed at Uppsala University consists of a point absorbing buoy, directly connected to a permanent magnet linear generator. Since 2006, over a dozen full scale WECs have been deployed at the Lysekil Research Site, on the west coast of Sweden. Beyond the development of the WEC concept itself, the full scale approach enables, and requires, experimental and multidisciplinary research within several peripheral areas, such as instrumentation, offshore ope...

  18. Empirical Global Relations Converting M S and m b to Moment Magnitude

    Science.gov (United States)

    Scordilis, E. M.

    2006-04-01

    The existence of several magnitude scales used by seismological centers all over the world and the compilation of earthquake catalogs by many authors have rendered globally valid relations connecting magnitude scales a necessity. This would allow the creation of a homogeneous global earthquake catalog, a useful tool for earthquake research. Of special interest is the definition of global relations converting different magnitude scales to the most reliable and useful scale of magnitude, the moment magnitude, M W. In order to accomplish this, a very large sample of data from international seismological sources (ISC, NEIC, HRVD, etc.) has been collected and processed. The magnitude scales tested against M W are the surface wave magnitude, M S, the body wave magnitude, m b, and the local magnitude, M L. The moment magnitudes adopted have been taken from the CMT solutions of HRVD and USGS. The data set used in this study contains 20,407 earthquakes, which occurred all over the world during the time period 1.1.1976-31.5.2003, for which moment magnitudes are available. It is shown that well-defined relations hold between M W and m b and M S and that these relations can be reliably used for compiling homogeneous, with respect to magnitude, earthquake catalogs.

  19. A Helicopter View of the Special Issue on Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Diego Vicinanza

    2017-02-01

    Full Text Available This paper intends to provide the reader with an overview of the Special Issue on Wave Energy Converters. Through 16 contributions from authors of 10 different countries, a number of key topics have been tackled, including resource assessment, engineering design, and financial analysis. As a whole, the Special Issue forms an interesting and helpful compendium on the state of the art of wave energy extraction and exploitation.

  20. Determination of the S-wave scattering shape parameter P from the zero-energy wave function

    International Nuclear Information System (INIS)

    Kermode, M.W.; van Dijk, W.

    1990-01-01

    We show that for S-wave scattering at an energy k 2 by a local potential which supports no more than one bound state, the shape parameter P and coefficients of higher powers of k 2 in the effective range expansion function cotδ=-1/a+1/2 r 0 k 2 -Pr 0 3 k 3 +Qr 0 5 k 6 +..., where δ is the phase shift, may be obtained from the zero-energy wave function, u 0 (r). Thus δ itself may be determined from u 0 . We show that Pr 0 3 =∫ 0 R [β(r)u 0 2 (r)-bar β(r)bar u 0 2 (r)]dr, where r 0 is the effective range, β(r) is determined from an integral involving the wave function, and bar β(r) is a simple function of r which involves the scattering length and effective range

  1. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter

    Science.gov (United States)

    Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young

    2017-05-01

    This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.

  2. Gas-hydrate concentration estimated from P- and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada

    Science.gov (United States)

    Carcione, José M.; Gei, Davide

    2004-05-01

    We estimate the concentration of gas hydrate at the Mallik 2L-38 research site using P- and S-wave velocities obtained from well logging and vertical seismic profiles (VSP). The theoretical velocities are obtained from a generalization of Gassmann's modulus to three phases (rock frame, gas hydrate and fluid). The dry-rock moduli are estimated from the log profiles, in sections where the rock is assumed to be fully saturated with water. We obtain hydrate concentrations up to 75%, average values of 37% and 21% from the VSP P- and S-wave velocities, respectively, and 60% and 57% from the sonic-log P- and S-wave velocities, respectively. The above averages are similar to estimations obtained from hydrate dissociation modeling and Archie methods. The estimations based on the P-wave velocities are more reliable than those based on the S-wave velocities.

  3. Experimental study on p-wave neutron strength functions for light nuclei

    International Nuclear Information System (INIS)

    Koester, L.; Waschkowski, W.; Meier, J.; Rau, G.; Salehi, M.

    1988-01-01

    Broad energy distributions in fast neutron beams have been achieved by appropriate filtering of the 236 U fission radiation provided from the RENT converter facility at the FRM research reactor. Transmission measurements in such beams result in average cross sections to which resonance reactions and shape elastic scattering contribute. We used a silicon (124.5 cm) filtered beam with a median energy of 143 keV (width 20 keV) and beams with 1.3 MeV (0.55 to 3 MeV) and 2.1 MeV (1 to 5.5 MeV) obtained through different filter combinations of lead and polyethylene. The relative high energies and the broad spectra made it possible to determine experimentally the contributions of s- and p-wave resonance reactions to the average cross section even for light nuclei. Using the three different beams we determined the average cross sections for the elements in the mass region A = 9 to 65. Analysing the measured cross sections by means of the R matrix formalism provided a complete set of p-wave strength functions and distant level parameters. Moreover, single particle shell effects in the cross sections were observed. In conclusion we obtained information on the 2P and the 3S size resonances and about the validity of the optical model for neutron reactions with light nuclei. (orig.)

  4. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.; Lawson, Michael

    2016-06-01

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of the controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.

  5. Optimising Reactive Control in non-ideal Efficiency Wave Energy Converters

    DEFF Research Database (Denmark)

    Strager, Thomas; Lopez, Pablo Fernandez; Giorgio, Giuseppe

    2014-01-01

    When analytically optimising the control strategy in wave energy converters which use a point absorber, the efficiency aspect is generally neglected. The results presented in this paper provide an analytical expression for the mean harvested electrical power in non-ideal efficiency situations....... These have been derived under the assumptions of monochromatic incoming waves and linear system behaviour. This allows to establish the power factor of a system with non-ideal efficiency. The locus of the optimal reactive control parameters is then studied and an alternative method of representation...... is developed to model the optimal control parameters. Ultimately we present a simple method of choosing optimal control parameters for any combination of efficiency and wave frequency....

  6. Towards a new tool to develop a 3-D shear-wave velocity model from converted waves

    Science.gov (United States)

    Colavitti, Leonardo; Hetényi, György

    2017-04-01

    The main target of this work is to develop a new method in which we exploit converted waves to construct a fully 3-D shear-wave velocity model of the crust. A reliable 3-D model is very important in Earth sciences because geological structures may vary significantly in their lateral dimension. In particular, shear-waves provide valuable complementary information with respect to P-waves because they usually guarantee a much better correlation in terms of rock density and mechanical properties, reducing the interpretation ambiguities. Therefore, it is fundamental to develop a new technique to improve structural images and to describe different lithologies in the crust. In this study we start from the analysis of receiver functions (RF, Langston, 1977), which are nowadays largely used for structural investigations based on passive seismic experiments, to map Earth discontinuities at depth. The RF technique is also commonly used to invert for velocity structure beneath single stations. Here, we plan to combine two strengths of RF method: shear-wave velocity inversion and dense arrays. Starting from a simple 3-D forward model, synthetic RFs are obtained extracting the structure along a ray to match observed data. During the inversion, thanks to a dense stations network, we aim to build and develop a multi-layer crustal model for shear-wave velocity. The initial model should be chosen simple to make sure that the inversion process is not influenced by the constraints in terms of depth and velocity posed at the beginning. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999a, b), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter

  7. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  8. Estimation of numerical uncertainty in computational fluid dynamics simulations of a passively controlled wave energy converter

    DEFF Research Database (Denmark)

    Wang, Weizhi; Wu, Minghao; Palm, Johannes

    2018-01-01

    for almost linear incident waves. First, we show that the computational fluid dynamics simulations have acceptable agreement to experimental data. We then present a verification and validation study focusing on the solution verification covering spatial and temporal discretization, iterative and domain......The wave loads and the resulting motions of floating wave energy converters are traditionally computed using linear radiation–diffraction methods. Yet for certain cases such as survival conditions, phase control and wave energy converters operating in the resonance region, more complete...... dynamics simulations have largely been overlooked in the wave energy sector. In this article, we apply formal verification and validation techniques to computational fluid dynamics simulations of a passively controlled point absorber. The phase control causes the motion response to be highly nonlinear even...

  9. Pelamis wave energy converter. Verification of full-scale control using a 7th scale model

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The Pelamis Wave Energy Converter is a new concept for converting wave energy for several applications including generation of electric power. The machine is flexibly moored and swings to meet the water waves head-on. The system is semi-submerged and consists of cylindrical sections linked by hinges. The mechanical operation is described in outline. A one-seventh scale model was built and tested and the outcome was sufficiently successful to warrant the building of a full-scale prototype. In addition, a one-twentieth scale model was built and has contributed much to the research programme. The work is supported financially by the DTI.

  10. Investigating the adaptability of the multi-pump multi-piston power take-off system for a novel wave energy converter

    NARCIS (Netherlands)

    Wei, Y.; Barradas Berglind, J.J; van Rooij, M.; Prins, WA; Jayawardhana, B.; Vakis, A. I.

    2017-01-01

    In this work, a numerical model is developed in order to investigate the adaptability of the multi-pump multi-piston power take-off ((MPPTO)-P-2) system of a novel wave energy converter (WEC). This model is realized in the MATLAB/SIMULINK environment, using the multi-body dynamics solver Multibody

  11. Prediction of the Individual Wave Overtopping Volumes of a Wave Energy Converter using Experimental Testing and First Numerical Model Results

    DEFF Research Database (Denmark)

    Victor, L.; Troch, P.; Kofoed, Jens Peter

    2009-01-01

    For overtopping wave energy converters (WECs) a more efficient energy conversion can be achieved when the volumes of water, wave by wave, that enter their reservoir are known and can be predicted. A numerical tool is being developed using a commercial CFD-solver to study and optimize...... nearshore 2Dstructure. First numerical model results are given for a specific test with regular waves, and are compared with the corresponding experimental results in this paper....

  12. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiawei; Huang, Wenhua [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhu, Qi [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China)

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  13. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    International Nuclear Information System (INIS)

    Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi

    2015-01-01

    A dual-cavity TM 02 –TM 01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM 01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM 01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM 01 mode feedback

  14. Statistical Analysis of Power Production from OWC Type Wave Energy Converters

    DEFF Research Database (Denmark)

    Martinelli, L.; Zanuttigh, B.; Kofoed, Jens Peter

    2009-01-01

    Oscillating Water Column based wave energy plants built so far have experienced a low efficiency in the conversion of the bidirectional oscillating flow. A new concept is considered here, the LeanCon Wave Energy Converter (WEC), that unifies the flow direction by use of non-return valves...... (wave period, wave height). Average performance and stochastic variability is thus obtained for any sea state and therefore also for the annual wave climate of interest. An example application of a LeanCon unit is carried out for a location off-shore Cagliari (Italy). Conclusions provide economic......, into a unidirectional flow, making the use of more efficient air turbines possible. Hereby, a more steady flow is also obtained. The general objective of this note is to examine, the power take off (PTO) efficiency under irregular wave conditions, for WECs with flow redirection. Final practical aim is to identify...

  15. A traveling wave direct energy converter for a D-3He fusion reactor

    International Nuclear Information System (INIS)

    Sato, K.; Katayama, H.; Miyawaki, F.; Tajima, T.

    1994-01-01

    A concept of a traveling wave direct energy converter (TWDEC) is developed for 14.7-MeV fusion protons based on the principle of a backward wave oscillator. Separation of fusion protons from thermal ions is accomplished by using ExB ion drift. Energy conversion rate up to 0.87 is attained by applying three-stage modulation of the proton beam. A one-dimensional particle-circuit code is developed to examine self-excitation of the traveling wave and its stability under loading. Electrostatic wave with a fixed frequency is excited spontaneously, and stability of the wave is ensured under loading. (author)

  16. Development of S-wave portable vibrator; S ha potable vibrator shingen no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kaida, Y; Matsubara, Y [OYO Corp., Tokyo (Japan); Nijhof, V; Brouwer, J

    1996-05-01

    An S-wave portable vibrator to serve as a seismic source has been developed for the purpose of applying the shallow-layer reflection method to the study of the soil ground. The author, et al., who previously developed a P-wave portable vibrator has now developed an S-wave version, considering the advantage of the S-wave over the P-wave in that, for example, the S-wave velocity may be directly compared with the N-value representing ground strength and that the S-wave travels more slowly than the P-wave through sticky soil promising a higher-resolution exploration. The experimentally constructed S-wave vibrator consists of a conventional P-wave vibrator and an L-type wooden base plate combined therewith. Serving as the monitor for vibration is a conventional accelerometer without any modification. The applicability test was carried out at a location where a plank hammering test was once conducted for reflection aided exploration, and the result was compared with that of the plank hammering test. As the result, it was found that after some preliminary treatment the results of the two tests were roughly the same but that both reflected waves were a little sharper in the S-wave vibrator test than in the plank hammering test. 4 refs., 9 figs., 1 tab.

  17. Comparison of Mooring Loads in Survivability Mode on the Wave Dragon Wave Energy Converter Obtained by a Numerical Model and Experimental Data

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Muliawan, Made Jaya; Gao, Zhen

    2012-01-01

    The Wave Dragon Wave Energy Converter is ready to be up-scaled to commercial size. The design and feasibility analysis of a 1.5 MW pre-commercial unit to be deployed at the DanWEC test center in Hanstholm, Denmark, is currently ongoing. With regard to the mooring system, the design has to be carr......The Wave Dragon Wave Energy Converter is ready to be up-scaled to commercial size. The design and feasibility analysis of a 1.5 MW pre-commercial unit to be deployed at the DanWEC test center in Hanstholm, Denmark, is currently ongoing. With regard to the mooring system, the design has...... to be carried out numerically, through coupled analyses of alternative solutions. The present study deals with the preliminary hydrodynamic characterization of Wave Dragon needed in order to calibrate the numerical model to be used for the mooring design. A hydrodynamic analysis of the small scale model...

  18. Computational study on full-wave inversion based on the elastic wave-equation; Dansei hado hoteishiki full wave inversion no model keisan ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering; Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan)

    1997-05-27

    Algorithm is constructed and a program developed for a full-wave inversion (FWI) method utilizing the elastic wave equation in seismic exploration. The FWI method is a method for obtaining a physical property distribution using the whole observed waveforms as the data. It is capable of high resolution which is several times smaller than the wavelength since it can handle such phenomena as wave reflection and dispersion. The method for determining the P-wave velocity structure by use of the acoustic wave equation does not provide information about the S-wave velocity since it does not consider S-waves or converted waves. In an analysis using the elastic wave equation, on the other hand, not only P-wave data but also S-wave data can be utilized. In this report, under such circumstances, an inverse analysis algorithm is constructed on the basis of the elastic wave equation, and a basic program is developed. On the basis of the methods of Mora and of Luo and Schuster, the correction factors for P-wave and S-wave velocities are formulated directly from the elastic wave equation. Computations are performed and the effects of the hypocenter frequency and vibration transmission direction are examined. 6 refs., 8 figs.

  19. Holographic p-wave superconductor models with Weyl corrections

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-04-01

    Full Text Available We study the effect of the Weyl corrections on the holographic p-wave dual models in the backgrounds of AdS soliton and AdS black hole via a Maxwell complex vector field model by using the numerical and analytical methods. We find that, in the soliton background, the Weyl corrections do not influence the properties of the holographic p-wave insulator/superconductor phase transition, which is different from that of the Yang–Mills theory. However, in the black hole background, we observe that similarly to the Weyl correction effects in the Yang–Mills theory, the higher Weyl corrections make it easier for the p-wave metal/superconductor phase transition to be triggered, which shows that these two p-wave models with Weyl corrections share some similar features for the condensation of the vector operator.

  20. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Enrique Vidal

    2013-08-01

    Full Text Available The Wavestar Wave Energy Converter (WEC is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO system, converting the wave induced motion of the floats into a steady power output to the grid. In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC is created, allowing near loss free discrete force control. This paper presents a complete PTO system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical power is achievable for all relevant sea conditions.

  1. Initial Characterization of the Wave Resource at Several High Energy U.S. Sites

    OpenAIRE

    Dallman, Ann; Neary, Vincent S.

    2014-01-01

    Wave energy resource characterization efforts are critical for developing knowledge of the physical conditions experienced by wave energy converter (WEC) devices and arrays. Developers are lacking a consistent characterization of possible wave energy test sites, and therefore Sandia National Laboratories (SNL) has been tasked with developing a catalogue characterizing three high energy U.S. test sites. The initial results and framework for the catalogue are discussed in this paper. U.S. De...

  2. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...

  3. Hyperfine structure of the S- and P-wave states of muonic deuterium

    International Nuclear Information System (INIS)

    Martynenko, A. P.; Martynenko, G. A.; Sorokin, V. V.; Faustov, R. N.

    2016-01-01

    Corrections of order α"5 and α"6 to the hyperfine structure of the S- and P-wave states of muonic deuteriumwere calculated on the basis of the quasipotential approach in quantum electrodynamics. Relativistic corrections, vacuum-polarization and deuteron-structure effects, and recoil corrections were taken into account in this calculation. The resulting hyperfine-splitting values can be used in a comparison with experimental data obtained by the CREMA Collaboration.

  4. Poisson's ratio model derived from P- and S-wave reflection seismic data at the CO2CRC Otway Project pilot site, Australia

    Science.gov (United States)

    Beilecke, Thies; Krawczyk, Charlotte M.; Tanner, David C.; Ziesch, Jennifer; Research Group Protect

    2014-05-01

    Compressional wave (P-wave) reflection seismic field measurements are a standard tool for subsurface exploration. 2-D seismic measurements are often used for overview measurements, but also as near-surface supplement to fill gaps that often exist in 3-D seismic data sets. Such supplementing 2-D measurements are typically simple with respect to field layout. This is an opportunity for the use of shear waves (S-waves). Within the last years, S-waves have become more and more important. One reason is that P- and S-waves are differently sensitive to fluids and pore fill so that the additional S-wave information can be used to enhance lithological studies. Another reason is that S-waves have the advantage of higher spatial resolution. Within the same signal bandwidth they typically have about half the wavelength of P-waves. In near-surface unconsolidated sediments they can even enhance the structural resolution by one order of magnitude. We make use of these capabilities within the PROTECT project. In addition to already existing 2-D P-wave data, we carried out a near surface 2-D S-wave field survey at the CO2CRC Otway Project pilot site, close to Warrnambool, Australia in November 2013. The combined analysis of P-wave and S-wave data is used to construct a Poisson's Ratio 2-D model down to roughly 600 m depth. The Poisson's ratio values along a 1 km long profile at the site are surprisingly high, ranging from 0.47 in the carbonate-dominated near surface to 0.4 at depth. In the literature, average lab measurements of 0.22 for unfissured carbonates and 0.37 for fissured examples have been reported. The high values that we found may indicate areas of rather unconsolidated or fractured material, or enhanced fluid contents, and will be subject of further studies. This work is integrated in a larger workflow towards prediction of CO2 leakage and monitoring strategies for subsurface storage in general. Acknowledgement: This work was sponsored in part by the Australian

  5. Layout Optimisation of Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Pau Mercadé Ruiz

    2017-08-01

    Full Text Available This paper proposes an optimisation strategy for the layout design of wave energy converter (WEC arrays. Optimal layouts are sought so as to maximise the absorbed power given a minimum q-factor, the minimum distance between WECs, and an area of deployment. To guarantee an efficient optimisation, a four-parameter layout description is proposed. Three different optimisation algorithms are further compared in terms of performance and computational cost. These are the covariance matrix adaptation evolution strategy (CMA, a genetic algorithm (GA and the glowworm swarm optimisation (GSO algorithm. The results show slightly higher performances for the latter two algorithms; however, the first turns out to be significantly less computationally demanding.

  6. Model Testing of the Wave Energy Converter Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    This report presents the results of a preliminary experimental study of the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs. In the present SSG setup three reservoirs has been used. Model tests have been performed using...... a scale model (length scale 1:15) of a SSG device to be installed on the west coast of the island Kvitsøy near Stavanger, Norway. The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The model has been subjected to regular and irregular waves...... corresponding to typical conditions off shore from the intended installation site. The overtopping rates for the individual reservoirs have been measured and the potential energy in the overtopping water has been calculated....

  7. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    Science.gov (United States)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the

  8. Detecting P and S-wave of Mt. Rinjani seismic based on a locally stationary autoregressive (LSAR) model

    Science.gov (United States)

    Nurhaida, Subanar, Abdurakhman, Abadi, Agus Maman

    2017-08-01

    Seismic data is usually modelled using autoregressive processes. The aim of this paper is to find the arrival times of the seismic waves of Mt. Rinjani in Indonesia. Kitagawa algorithm's is used to detect the seismic P and S-wave. Householder transformation used in the algorithm made it effectively finding the number of change points and parameters of the autoregressive models. The results show that the use of Box-Cox transformation on the variable selection level makes the algorithm works well in detecting the change points. Furthermore, when the basic span of the subinterval is set 200 seconds and the maximum AR order is 20, there are 8 change points which occur at 1601, 2001, 7401, 7601,7801, 8001, 8201 and 9601. Finally, The P and S-wave arrival times are detected at time 1671 and 2045 respectively using a precise detection algorithm.

  9. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System

    International Nuclear Information System (INIS)

    Sim, Kyuho; Park, Jisu; Jang, Seon-Jun

    2015-01-01

    This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance

  10. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Kyuho; Park, Jisu [Seoul National University, Seoul (Korea, Republic of); Jang, Seon-Jun [Innovation KR, Seoul (Korea, Republic of)

    2015-01-15

    This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.

  11. 3D P and S Wave Velocity Structure and Tremor Locations in the Parkfield Region

    Science.gov (United States)

    Zeng, X.; Thurber, C. H.; Shelly, D. R.; Bennington, N. L.; Cochran, E. S.; Harrington, R. M.

    2014-12-01

    We have assembled a new dataset to refine the 3D seismic velocity model in the Parkfield region. The S arrivals from 184 earthquakes recorded by the Parkfield Experiment to Record MIcroseismicity and Tremor array (PERMIT) during 2010-2011 were picked by a new S wave picker, which is based on machine learning. 74 blasts have been assigned to four quarries, whose locations were identified with Google Earth. About 1000 P and S wave arrivals from these blasts at permanent seismic network were also incorporated. Low frequency earthquakes (LFEs) occurring within non-volcanic tremor (NVT) are valuable for improving the precision of NVT location and the seismic velocity model at greater depths. Based on previous work (Shelley and Hardebeck, 2010), waveforms of hundreds of LFEs in same family were stacked to improve signal qualify. In a previous study (McClement et al., 2013), stacked traces of more than 30 LFE families at the Parkfileld Array Seismic Observatory (PASO) have been picked. We expanded our work to include LFEs recorded by the PERMIT array. The time-frequency Phase Weight Stacking (tf-PWS) method was introduced to improve the stack quality, as direct stacking does not produce clear S-wave arrivals on the PERMIT stations. This technique uses the coherence of the instantaneous phase among the stacked signals to enhance the signal-to-noise ratio (SNR) of the stack. We found that it is extremely effective for picking LFE arrivals (Thurber et al., 2014). More than 500 P and about 1000 S arrivals from 58 LFE families were picked at the PERMIT and PASO arrays. Since the depths of LFEs are much deeper than earthquakes, we are able to extend model resolution to lower crustal depths. Both P and S wave velocity structure have been obtained with the tomoDD method. The result suggests that there is a low velocity zone (LVZ) in the lower crust and the location of the LVZ is consistent with the high conductivity zone beneath the southern segment of the Rinconada fault that

  12. WEC3: Wave Energy Converter Code Comparison Project: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Combourieu, Adrien; Lawson, Michael; Babarit, Aurelien; Ruehl, Kelley; Roy, Andre; Costello, Ronan; Laporte Weywada, Pauline; Bailey, Helen

    2017-01-01

    This paper describes the recently launched Wave Energy Converter Code Comparison (WEC3) project and present preliminary results from this effort. The objectives of WEC3 are to verify and validate numerical modelling tools that have been developed specifically to simulate wave energy conversion devices and to inform the upcoming IEA OES Annex VI Ocean Energy Modelling Verification and Validation project. WEC3 is divided into two phases. Phase 1 consists of a code-to-code verification and Phase II entails code-to-experiment validation. WEC3 focuses on mid-fidelity codes that simulate WECs using time-domain multibody dynamics methods to model device motions and hydrodynamic coefficients to model hydrodynamic forces. Consequently, high-fidelity numerical modelling tools, such as Navier-Stokes computational fluid dynamics simulation, and simple frequency domain modelling tools were not included in the WEC3 project.

  13. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  14. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  15. Hydrodynamic Investigation of a Concentric Cylindrical OWC Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2018-04-01

    Full Text Available A fixed, concentric, cylindrical oscillating water column (OWC wave energy converter (WEC is proposed for shallow offshore sites. Compared with the existing shoreline OWC device, this wave energy device is not restricted by the wave directions and coastline geography conditions. Analytical solutions are derived based on the linear potential-flow theory and eigen-function expansion technique to investigate hydrodynamic properties of the device. Three typical free-surface oscillation modes in the chamber are discussed, of which the piston-type mode makes the main contribution to the energy conversion. The effects of the geometrical parameters on the hydrodynamic properties are further investigated. The resonance frequency of the chamber, the power extraction efficiency, and the effective frequency bandwidth of the device is discussed, amongst other topics. It is found that the proposed OWC-WEC device with a lower draft and wider chamber breadth has better power extraction ability.

  16. Fatigue reliability and calibration of fatigue design factors of wave energy converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Ferri, Francesco; Kofoed, Jens Peter

    2015-01-01

    Target reliability levels, which are chosen dependent on the consequences in case of structural collapse, are used in this paper to calibrate partial safety factors for structural details of wave energy converters (WECs). The consequences in case of structural failure are similar for WECs and off...

  17. Voltage Impact of a Wave Energy Converter on an Unbalanced Distribution Grid and Corrective Actions

    Directory of Open Access Journals (Sweden)

    Hugo Mendonça

    2017-10-01

    Full Text Available Renewable energy is steadily increasing its penetration level in electric power systems. Wind and solar energy have reached a high degree of maturity, and their impacts on the grid are well known. However, this is not the case for emerging sources like wave energy. This work explores the impact of the fluctuating power injected by a wave energy converter on the distribution grid voltage and proposes a strategy for mitigating the induced voltage fluctuations. The paper describes the mechanics of how a fluctuating active power injection leads to grid voltage fluctuations and presents an unbalanced three-phase power flow tool that allows one to quantitatively analyze the voltage evolution at every phase and bus of a distribution grid driven by this power injection. The paper also proposes a corrective action for mitigating the voltage fluctuations that makes use of the hardware resources already available in the wave energy converter, by means of a control strategy on the reactive capability of the grid-side inverter. The use of a STATCOM as additional reactive compensation equipment is also explored. The effectiveness of the proposal is assessed in the IEEE 13-bus test feeder showing that, in some cases, the wave energy converter by itself is able to mitigate the voltage fluctuations that it causes. If not, a STATCOM can provide the extra reactive capability needed.

  18. Numerical hydrodynamic analysis of an offshore stationary–floating oscillating water column–wave energy converter using CFD

    Directory of Open Access Journals (Sweden)

    Ahmed Elhanafi

    2017-01-01

    Full Text Available Offshore oscillating water columns (OWC represent one of the most promising forms of wave energy converters. The hydrodynamic performance of such converters heavily depends on their interactions with ocean waves; therefore, understanding these interactions is essential. In this paper, a fully nonlinear 2D computational fluid dynamics (CFD model based on RANS equations and VOF surface capturing scheme is implemented to carry out wave energy balance analyses for an offshore OWC. The numerical model is well validated against published physical measurements including; chamber differential air pressure, chamber water level oscillation and vertical velocity, overall wave energy extraction efficiency, reflected and transmitted waves, velocity and vorticity fields (PIV measurements. Following the successful validation work, an extensive campaign of numerical tests is performed to quantify the relevance of three design parameters, namely incoming wavelength, wave height and turbine damping to the device hydrodynamic performance and wave energy conversion process. All of the three investigated parameters show important effects on the wave–pneumatic energy conversion chain. In addition, the flow field around the chamber's front wall indicates areas of energy losses by stronger vortices generation than the rear wall.

  19. Structured Innovation of High-Performance Wave Energy Converter Technology: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jochem W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Laird, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-25

    Wave energy converter (WEC) technology development has not yet delivered the desired commercial maturity nor, and more importantly, the techno-economic performance. The reasons for this have been recognized and fundamental requirements for successful WEC technology development have been identified. This paper describes a multi-year project pursued in collaboration by the National Renewable Energy Laboratory and Sandia National Laboratories to innovate and develop new WEC technology. It specifies the project strategy, shows how this differs from the state-of-the-art approach and presents some early project results. Based on the specification of fundamental functional requirements of WEC technology, structured innovation and systemic problem solving methodologies are applied to invent and identify new WEC technology concepts. Using Technology Performance Levels (TPL) as an assessment metric of the techno-economic performance potential, high performance technology concepts are identified and selected for further development. System performance is numerically modelled and optimized and key performance aspects are empirically validated. The project deliverables are WEC technology specifications of high techno-economic performance technologies of TPL 7 or higher at TRL 3 with some key technology challenges investigated at higher TRL. These wave energy converter technology specifications will be made available to industry for further, full development and commercialisation (TRL 4 - TRL 9).

  20. Tunneling current into the vortex lattice states of s-and p- wave superconductors

    International Nuclear Information System (INIS)

    Kowalewski, L.; Nogala, M.M.; Thomas, M.; Wojciechowski, R.J.

    2000-01-01

    The tunneling current between the metallic tip of a scanning microscope and s- and p-wave superconductors in quantizing magnetic field is investigated. The differential conductance is calculated both as a function of bias voltage at the centre of the vortex line and for varying position of the scanning tunneling microscope tip at a stable voltage. (author)

  1. Overview of Wave to Wire Models

    DEFF Research Database (Denmark)

    Nielsen, Kim; Kramer, Morten Mejlhede; Ferri, Francesco

    A “Wave to Wire” (W2W) model is a numerical tool that can calculate the power output from a specified Wave Energy Converter (WEC), under specified ocean wave conditions. The tool can be used to assess and optimize the performance of a Wave Energy Converter (WEC) design and provide knowledge...

  2. On forced oscillations of a simple model for a novel wave energy converter

    KAUST Repository

    Orazov, Bayram

    2011-05-11

    The dynamics of a simple model for an ocean wave energy converter is discussed. The model for the converter is a hybrid system consisting of a pair of harmonically excited mass-spring-dashpot systems and a set of four state-dependent switching rules. Of particular interest is the response of the model to a wide spectrum of harmonic excitations. Partially because of the piecewise-smooth dynamics of the system, the response is far more interesting than the linear components of the model would suggest. As expected with hybrid systems of this type, it is difficult to establish analytical results, and hence, with the assistance of an extensive series of numerical integrations, an atlas of qualitative results on the limit cycles and other forms of bounded oscillations exhibited by the system is presented. In addition, the presence of unstable limit cycles, the stabilization of the unforced system using low-frequency excitation, the peculiar nature of the response of the system to high-frequency excitation, and the implications of these results on the energy harvesting capabilities of the wave energy converter are discussed. © 2011 Springer Science+Business Media B.V.

  3. Automatic detection of P- and S-wave arrival times: new strategies based on the modified fractal method and basic matching pursuit.

    Science.gov (United States)

    Chi Durán, R. K.; Comte, D.; Diaz, M. A.; Silva, J. F.

    2017-12-01

    In this work, new strategies for automatic identification of P- and S-wave arrival times from digital recorded local seismograms are proposed and analyzed. The database of arrival times previously identified by a human reader was compared with automatic identification techniques based on the Fourier transformation in reduced time (spectrograms), fractal analysis, and the basic matching pursuit algorithm. The first two techniques were used to identify the P-wave arrival times, while the third was used for the identification of the S-wave. For validation, the results were compared with the short-time average over long-time average (STA/LTA) of Rietbrock et al., Geophys Res Lett 39(8), (2012) for the database of aftershocks of the 2010 Maule Mw = 8.8 earthquake. The identifiers proposed in this work exhibit good results that outperform the STA/LTA identifier in many scenarios. The average difference from the reference picks (times obtained by the human reader) in P- and S-wave arrival times is 1 s.

  4. Optimal Configurations of Wave Energy Converter Arrays with a Floating Body

    Directory of Open Access Journals (Sweden)

    Zhang Wanchao

    2016-10-01

    Full Text Available An array of floating point-absorbing wave energy converters (WECs is usually employed for extracting efficiently ocean wave energy. For deep water environment, it is more feasible and convenient to connect the absorbers array with a floating body, such as a semi-submersible bottom-moored disk, whose function is to act as the virtual seabed. In the present work, an array of identical floating symmetrically distributed cylinders in a coaxial moored disk as a wave energy device is proposed The power take-off (PTO system in the wave energy device is assumed to be composed of a linear/nonlinear damper activated by the buoys heaving motion. Hydrodynamic analysis of the examined floating system is implemented in frequency domain. Hydrodynamic interferences between the oscillating bodies are accounted for in the corresponding coupled equations. The array layouts under the constraint of the disk, incidence wave directions, separating distance between the absorbers and the PTO damping are considered to optimize this kind of WECs. Numerical results with regular waves are presented and discussed for the axisymmetric system utilizing heave mode with these interaction factors, in terms of a specific numbers of cylinders and expected power production.

  5. Development of a wave-induced forcing threshold for nearshore impact of Wave Energy Converter arrays

    Science.gov (United States)

    O'Dea, A.; Haller, M. C.; Ozkan-Haller, H. T.

    2016-02-01

    Wave-induced forcing is a function of spatial gradients in the wave radiation stresses and is the main driver of alongshore currents, rip currents, and nearshore sediment transport. The installation of nearshore Wave Energy Converter (WEC) arrays may cause significant changes in the surf zone radiation stresses and could therefore impact nearshore littoral processes. In the first part of this study, a new threshold for nearshore hydrodynamic impact due to the presence of WEC devices is established based on changes in the alongshore radiation stress gradients shoreward of WEC arrays. The threshold is defined based on the relationship between nearshore radiation stresses and alongshore currents as observed in field data. Next, we perform a parametric study of the nearshore impact of WEC arrays using the SWAN wave model. Trials are conducted on an idealized, alongshore-uniform beach with a range of WEC array configurations, locations, and incident wave conditions, and conditions that generate radiation stress gradients above the impact threshold are identified. Finally, the same methodology is applied to two wave energy test sites off the coast of Newport, OR with more complicated bathymetries. Although the trends at the field sites are similar to those seen in the parametric study, the location and extent of the changes in the alongshore radiation stress gradients appear to be heavily influenced by the local bathymetry.

  6. High frequency measurement of P- and S-wave velocities on crystalline rock massif surface - methodology of measurement

    Science.gov (United States)

    Vilhelm, Jan; Slavík, Lubomír

    2014-05-01

    For the purpose of non-destructive monitoring of rock properties in the underground excavation it is possible to perform repeated high-accuracy P- and S-wave velocity measurements. This contribution deals with preliminary results gained during the preparation of micro-seismic long-term monitoring system. The field velocity measurements were made by pulse-transmission technique directly on the rock outcrop (granite) in Bedrichov gallery (northern Bohemia). The gallery at the experimental site was excavated using TBM (Tunnel Boring Machine) and it is used for drinking water supply, which is conveyed in a pipe. The stable measuring system and its automatic operation lead to the use of piezoceramic transducers both as a seismic source and as a receiver. The length of measuring base at gallery wall was from 0.5 to 3 meters. Different transducer coupling possibilities were tested namely with regard of repeatability of velocity determination. The arrangement of measuring system on the surface of the rock massif causes better sensitivity of S-transducers for P-wave measurement compared with the P-transducers. Similarly P-transducers were found more suitable for S-wave velocity determination then P-transducers. The frequency dependent attenuation of fresh rock massif results in limited frequency content of registered seismic signals. It was found that at the distance between the seismic source and receiver from 0.5 m the frequency components above 40 kHz are significantly attenuated. Therefore for the excitation of seismic wave 100 kHz transducers are most suitable. The limited frequency range should be also taken into account for the shape of electric impulse used for exciting of piezoceramic transducer. The spike pulse generates broad-band seismic signal, short in the time domain. However its energy after low-pass filtration in the rock is significantly lower than the energy of seismic signal generated by square wave pulse. Acknowledgments: This work was partially

  7. Experiments to Improve Power Conversion Parameters in a Traveling Wave Direct Energy Converter Simulator

    International Nuclear Information System (INIS)

    Takeno, Hiromasa; Kiriyama, Yuusuke; Yasaka, Yasuyoshi

    2005-01-01

    An experimental study of direct power conversion for D- 3 He fusion is presented. In a small-scale simulator of direct energy converter, which is based on a principle of deceleration of 14.7MeV protons by traveling wave field, a new structure of an external transmission circuit in experiment is proposed for the purpose of enhancement of deceleration electrode voltages. A prototype circuit was designed and constructed, resulting improvement of voltage amplitude in an order of magnitude. A more practical circuit, in which inductor elements were manufactured by using coaxial cables, was also constructed and tested. An excitation of the third harmonic frequency with a significant amplitude was observed. The cause of this problem is attributed to the modulated ion beam which has a third harmonic component and fact that the inductance of the element nonlinearly depends on frequency. This problem is serious for a practical scale energy converter, and a careful design of the circuit could avoid the problem

  8. Power maximization of a point absorber wave energy converter using improved model predictive control

    Science.gov (United States)

    Milani, Farideh; Moghaddam, Reihaneh Kardehi

    2017-08-01

    This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.

  9. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood

    2014-01-01

    by forcing this condition. In the paper the theoretical framework for this principal is shown. The optimal controller requires information of the sea state for infinite horizon which is not applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this requirement....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....

  10. Revenue Optimization for the Ocean Grazer Wave Energy Converter through Storage Utilization

    NARCIS (Netherlands)

    Dijkstra, H.T.; Barradas Berglind, J.J.; Meijer, H.; van Rooij, Marijn; Prins, W.A.; Vakis, A. I.; Jayawardhana, B.

    2016-01-01

    Increased penetration of renewable energy generation motivates a change of paradigm in the way power systems are structured and operated, as advocated by the smart grid concept. Accordingly, in this paper we investigate the lossless storage capabilities of the Ocean Grazer wave energy converter

  11. Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator

    OpenAIRE

    Jing Zhang; Haitao Yu; Zhenchuan Shi

    2018-01-01

    Coastal waves are an abundant nonpolluting and renewable energy source. A wave energy converter (WEC) must be designed for efficient and steady operation in highly energetic ocean environments. A direct-drive wave energy conversion (D-DWEC) system with a tubular permanent magnet linear generator (TPMLG) on a wind and solar photovoltaic complementary energy generation platform is proposed to improve the conversion efficiency and reduce the complexity and device volume of WECs. The operating pr...

  12. Observation of interaction of shock wave with gas bubble by image converter camera

    Science.gov (United States)

    Yoshii, M.; Tada, M.; Tsuji, T.; Isuzugawa, Kohji

    1995-05-01

    When a spark discharge occurs at the first focal point of a semiellipsoid or a reflector located in water, a spherical shock wave is produced. A part of the wave spreads without reflecting on the reflector and is called direct wave in this paper. Another part reflects on the semiellipsoid and converges near the second focal point, that is named the focusing wave, and locally produces a high pressure. This phenomenon is applied to disintegrators of kidney stone. But it is concerned that cavitation bubbles induced in the body by the expansion wave following the focusing wave will injure human tissue around kidney stone. In this paper, in order to examine what happens when shock waves strike bubbles on human tissue, the aspect that an air bubble is truck by the spherical shock wave or its behavior is visualized by the schlieren system and its photographs are taken using an image converter camera. Besides,the variation of the pressure amplitude caused by the shock wave and the flow of water around the bubble is measured with a pressure probe.

  13. FPA Tuned Fuzzy Logic Controlled Synchronous Buck Converter for a Wave/SC Energy System

    Directory of Open Access Journals (Sweden)

    SAHIN, E.

    2017-02-01

    Full Text Available This paper presents a flower pollination algorithm (FPA tuned fuzzy logic controlled (FLC synchronous buck converter (SBC for an integrated wave/ supercapacitor (SC hybrid energy system. In order to compensate the irregular wave effects on electrical side of the wave energy converter (WEC, a SC unit charged by solar panels is connected in parallel to the WEC system and a SBC is controlled to provide more reliable and stable voltage to the DC load. In order to test the performance of the designed FLC, a classical proportional-integral-derivative (PID controller is also employed. Both of the controllers are optimized by FPA which is a pretty new optimization algorithm and a well-known optimization algorithm of which particle swarm optimization (PSO to minimize the integral of time weighted absolute error (ITAE performance index. Also, the other error-based objective functions are considered. The entire energy system and controllers are developed in Matlab/Simulink and realized experimentally. Real time applications are done through DS1104 Controller Board. The simulation and experimental results show that FPA tuned fuzzy logic controller provides lower value performance indices than conventional PID controller by reducing output voltage sags and swells of the wave/SC energy system.

  14. User guide - COE calculation tool for wave energy converters. Draft version 1

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Chozas, J.; Kofoed, J.P. [Aalborg Univ., Aalborg (Denmark); Helstrup Jensen, N.E. [Energinet.dk, Fredericia (Denmark)

    2013-08-15

    Aalborg University together with Energinet.dk and Julia F. Chozas Consulting Engineer, have released a freely available online spreadsheet to evaluate the Levelised Cost of Energy (LCOE) for wave energy projects. The open-access tool calculates the LCOE based on the power production of a Wave Energy Converter (WEC) at a particular location. Production data may derive from laboratory testing, numerical modelling or from sea trials. The tool has been developed as a transparent and simple model that evaluates WEC's economic feasibility in a range of locations, while scaling WEC's features to the selected site. (Author)

  15. A rule-based phase control methodology for a slider-crank wave energy converter power take-off system

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Bogucki, Darek; Yu, Yi-Hsiang

    2017-09-01

    The slider crank is a proven mechanical linkage system with a long history of successful applications, and the slider-crank ocean wave energy converter (WEC) is a type of WEC that converts linear motion into rotation. This paper presents a control algorithm for a slider-crank WEC. In this study, a time-domain hydrodynamic analysis is adopted, and an AC synchronous machine is used in the power take-off system to achieve relatively high system performance. Also, a rule-based phase control strategy is applied to maximize energy extraction, making the system suitable for not only regular sinusoidal waves but also irregular waves. Simulations are carried out under regular sinusoidal wave and synthetically produced irregular wave conditions; performance validations are also presented with high-precision, real ocean wave surface elevation data. The influences of significant wave height, and peak period upon energy extraction of the system are studied. Energy extraction results using the proposed method are compared to those of the passive loading and complex conjugate control strategies; results show that the level of energy extraction is between those of the passive loading and complex conjugate control strategies, and the suboptimal nature of this control strategy is verified.

  16. Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies

    Science.gov (United States)

    Vedanti, Nimisha; Malkoti, Ajay; Pandey, O. P.; Shrivastava, J. P.

    2018-03-01

    Petrophysical properties and ultrasonic P- and S-wave attenuation measurements on 35 Deccan basalt core specimens, recovered from Killari borehole site in western India, provide unique reference data-sets for a lesser studied Deccan Volcanic Province. These samples represent 338-m-thick basaltic column, consisting four lava flows each of Ambenali and Poladpur Formations, belonging to Wai Subgroup of the Deccan volcanic sequence. These basalt samples are found to be iron-rich (average FeOT: 13.4 wt%), but relatively poor in silica content (average SiO2: 47.8 wt%). The saturated massive basalt cores are characterized by a mean density of 2.91 g/cm3 (range 2.80-3.01 g/cm3) and mean P- and S-wave velocities of 5.89 km/s (range 5.01-6.50 km/s) and 3.43 km/s (range 2.84-3.69 km/s), respectively. In comparison, saturated vesicular basalt cores show a wide range in density (2.40-2.79 g/cm3) as well as P-wave (3.28-4.78 km/s) and S-wave (1.70-2.95 km/s) velocities. Based on the present study, the Deccan volcanic sequence can be assigned a weighted mean density of 2.74 g/cm3 and a low V p and V s of 5.00 and 3.00 km/s, respectively. Such low velocities in Deccan basalts can be attributed mainly to the presence of fine-grained glassy material, high iron contents, and hydrothermally altered secondary mineral products, besides higher porosity in vesicular samples. The measured Q values in saturated massive basalt cores vary enormously (Q p: 33-1960 and Q s: 35-506), while saturated vesicular basalt samples exhibit somewhat lesser variation in Q p (6-46) as well as Q s (5-49). In general, high-porosity rocks exhibit high attenuation, but we observed the high value of attenuation in some of the massive basalt core samples also. In such cases, energy loss is mainly due to the presence of fine-grained glassy material as well as secondary alteration products like chlorophaeite, that could contribute to intrinsic attenuation. Dominance of weekly bound secondary minerals might also be

  17. Frequency-Domain Hydrodynamic Modelling of Dense and Sparse Arrays of Wave Energy Converters

    NARCIS (Netherlands)

    Wei, Yanji; Barradas Berglind, Jose de Jesus; Yu, Zhiheng; van Rooij, Marijn; Prins, Wouter; Jayawardhana, Bayu; Vakis, Antonis I.

    2018-01-01

    In this work, we develop a frequency-domain model to study the hydrodynamic behaviour of a floater blanket (FB), i.e., an array of floater elements individually connected to power take-off (PTO) systems, which constitutes the core technology of the novel Ocean Grazer (OG) wave energy converter

  18. Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.

    2014-01-01

    the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping...

  19. P-wave assignment of 232Th neutron resonances

    International Nuclear Information System (INIS)

    Corvi, F.; Pasquariello, G.; Veen, T. van der

    1978-01-01

    A method of p-wave assignment which exploits the parity dependence of the primary capture γ-ray spectrum was applied to the 232 Th resonance. The yield of capture γ-rays above 4.4 MeV from a 6 mm thick metallic thorium disk was measured in the neutron energy range 20-2200 eV and compared to a similar run with γ-rays in the range 3.7 - 4.4 MeV. A total of 58 resonances showing an enhancement of the high energy γ-ray yield were assigned as p-waves. Assuming that their reduced neutron widths follow a Porter-Thomas distribution, their average value and then the p-wave strength function S 1 were estimated with a maximum likelihood method. The results are: average neutron width=3.4(+0.8 or -0.6)meV; S 1 = 2.0 (+0.5 or -0.4).10 -4

  20. Hydrodynamic analysis and shape optimization for vertical axisymmetric wave energy converters

    Science.gov (United States)

    Zhang, Wan-chao; Liu, Heng-xu; Zhang, Liang; Zhang, Xue-wei

    2016-12-01

    The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.

  1. Low-lying S-wave and P-wave dibaryons in a nodal structure analysis

    International Nuclear Information System (INIS)

    Liu Yuxin; Li Jingsheng; Bao Chengguang

    2003-01-01

    The inherent nodal surface structure analysis approach is proposed for six-quark clusters with u, d, and s quarks. The wave functions of the six-quark clusters are classified, and the contribution of the hidden-color channels are discussed. The quantum numbers and configurations of the wave functions of the low-lying dibaryons are obtained. The states [ΩΩ] (0,0 + ) , [ΩΩ] (0,2 - ) , [Ξ * Ω] (1/2,0 + ) , and [Σ * Σ * ] (0,4 - ) and the hidden-color channel states with the same quantum numbers are proposed to be the candidates of experimentally observable dibaryons

  2. Synchronous Control of Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Oleschuk, Valentin; Blaabjerg, Frede; Bose, Bimal K.

    2002-01-01

    A novel method of direct synchronous pulsewidth modulation (PWM) is applied for control of modular multilevel converters consisting from three standard triphase inverter modules along with an 0.33 p.u. output transformer. The proposed method provides synchronisation of the voltage waveforms...... for each module and the composed voltage at the output of the converter. Multilevel output voltage of the converter has quarter-wave symmetry during the whole range including the zone of overmodulation. Both continuous and discontinuous versions of synchronous PWM, based on vector approach...

  3. Current-Mode CMOS A/D Converter for pA to nA Input Currents

    DEFF Research Database (Denmark)

    Breten, Madalina; Lehmann, Torsten; Bruun, Erik

    1999-01-01

    This paper describes a current mode A/D converter designed for a maximum input current range of 5nA and a resolution of the order of 1pA. The converter is designed for a potentiostat for amperometric chemical sensors and provides a constant polarization voltage for the measuring electrode....... A prototype chip using the dual slope conversion method has been fabricated in a 0.7micron CMOS process. Experimental results from this converter are reported. Design problems and limitations of the converter are discussed and a new conversion technique providing a larger dynamic range and easy calibration...

  4. P wave dispersion and maximum P wave duration are independently associated with rapid renal function decline.

    Science.gov (United States)

    Su, Ho-Ming; Tsai, Wei-Chung; Lin, Tsung-Hsien; Hsu, Po-Chao; Lee, Wen-Hsien; Lin, Ming-Yen; Chen, Szu-Chia; Lee, Chee-Siong; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung

    2012-01-01

    The P wave parameters measured by 12-lead electrocardiogram (ECG) are commonly used as noninvasive tools to assess for left atrial enlargement. There are limited studies to evaluate whether P wave parameters are independently associated with decline in renal function. Accordingly, the aim of this study is to assess whether P wave parameters are independently associated with progression to renal end point of ≥25% decline in estimated glomerular filtration rate (eGFR). This longitudinal study included 166 patients. The renal end point was defined as ≥25% decline in eGFR. We measured two ECG P wave parameters corrected by heart rate, i.e. corrected P wave dispersion (PWdisperC) and corrected P wave maximum duration (PWdurMaxC). Heart function and structure were measured from echocardiography. Clinical data, P wave parameters, and echocardiographic measurements were compared and analyzed. Forty-three patients (25.9%) reached renal end point. Kaplan-Meier curves for renal end point-free survival showed PWdisperC > median (63.0 ms) (log-rank P = 0.004) and PWdurMaxC > median (117.9 ms) (log-rank Pfunction decline.

  5. P-wave and surface wave survey for permafrost analysis in alpine regions

    Science.gov (United States)

    Godio, A.; Socco, L. V.; Garofalo, F.; Arato, A.; Théodule, A.

    2012-04-01

    of seismic data involved the tomographic interpretation of traveltime P-wave first arrivals by considering the continuous refraction of the ray-paths. Several surface-wave dispersion curves were extracted in f-k domain along the seismic line and then inverted through a laterally constrained inversion algorithm to obtain a pseudo-2D section of S-wave velocity. Georadar investigation (about 2 km of georadar lines in the first site) confirmed the presence both of fine and coarse sediments in the uppermost layer; the seismic data allowed the moraines to be characterized down to 20-25 meters of depth. At the elevation of 2700 m asl, we observed a general decrease of the P-wave traveltimes collected in November, when the near surface layer was in frozen condition, respect to the data acquired in June. The frozen layer is responsible of the inversion of P-wave velocity with depth; the higher velocity layer (frozen) cannot be detected in the tomographic interpretation of refraction tomographic of the P-wave arrivals. Compressional wave velocity ranges from 700 m/s on the uppermost part, to 2000-2500 m/s in the internal part of the sediments reaching values higher than 5000 m/s at depth about 20 m. The analysis of surface wave permitted to estimate a slight increase from summer to winter of the S-wave velocity, in the depth range between 0 to 5 m.

  6. Dispersion calculation method based on S-transform and coordinate rotation for Love channel waves with two components

    Science.gov (United States)

    Feng, Lei; Zhang, Yugui

    2017-08-01

    Dispersion analysis is an important part of in-seam seismic data processing, and the calculation accuracy of the dispersion curve directly influences pickup errors of channel wave travel time. To extract an accurate channel wave dispersion curve from in-seam seismic two-component signals, we proposed a time-frequency analysis method based on single-trace signal processing; in addition, we formulated a dispersion calculation equation, based on S-transform, with a freely adjusted filter window width. To unify the azimuth of seismic wave propagation received by a two-component geophone, the original in-seam seismic data undergoes coordinate rotation. The rotation angle can be calculated based on P-wave characteristics, with high energy in the wave propagation direction and weak energy in the vertical direction. With this angle acquisition, a two-component signal can be converted to horizontal and vertical directions. Because Love channel waves have a particle vibration track perpendicular to the wave propagation direction, the signal in the horizontal and vertical directions is mainly Love channel waves. More accurate dispersion characters of Love channel waves can be extracted after the coordinate rotation of two-component signals.

  7. Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System

    Directory of Open Access Journals (Sweden)

    Anders Hedegaard Hansen

    2018-03-01

    Full Text Available Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how the inclusion of a loss model may increase the energy output. Based on the presented results it is concluded that power extraction algorithms based on model predictive control principles are both feasible and favorable for use in a discrete fluid power power take-off system for point absorber wave energy converters.

  8. P-wave dispersion: relationship to left ventricular function in sickle cell anaemia.

    Science.gov (United States)

    Oguanobi, N I; Onwubere, B J; Ike, S O; Anisiuba, B C; Ejim, E C; Ibegbulam, O G

    2011-01-01

    The prognostic implications of P-wave dispersion in patients with a variety of cardiac disease conditions are increasingly being recognised. The relationship between P-wave dispersion and left ventricular function in sickle cell anaemia is unknown. This study was aimed at evaluating the relationship between P-wave dispersion and left ventricular function in adult Nigerian sickle cell anaemia patients. Between February and August 2007, a total of 62 sickle cell anaemia patients (aged 18-44 years; mean 28.27 ± 5.58) enrolled in the study. These were drawn from patients attending the adult sickle cell clinic of the University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu. An equal number of age- and gender-matched normal subjects served as controls. All the participants were evaluated with electrocardiography and echocardiography. P-wave dispersion was defined as the difference between the maximum and minimum P-wave duration measured in a 12-lead electrocardiogram. P-wave duration and P-wave dispersion were significantly higher in patients than in controls. Significant correlation was demonstrated between P-wave dispersion and age in the patients (r = 0.387; p = 0.031). A comparison of subsets of sickle cell anaemia patients and controls with comparable haematocrit values (30-35%) showed significantly higher P-wave duration and P-wave dispersion in the patients than in the controls. The P-wave duration in patients and controls, respectively, was 111.10 ± 14.53 ms and 89.14 ± 16.45 ms (t = 3.141; p = 0.006). P-wave dispersion was 64.44 ± 15.86 ms in the patients and 36.43 ± 10.35 ms in the controls (t = 2.752; p = 0.013). Significant negative correlation was found between P-wave dispersion and left ventricular transmitral E/A ratio (r = -0.289; p = 0.023). These findings suggest that P-wave dispersion could be useful in the evaluation of sickle cell patients with left ventricular diastolic dysfunction. Further prospective studies are recommended to evaluate

  9. Experimental test of a dynamically tuned wave energy converter based on inflatable dielectric elastomer generators (Conference Presentation)

    Science.gov (United States)

    Moretti, Giacomo; Vertechy, Rocco; Fontana, Marco

    2017-04-01

    Dielectric Elastomer Generators (DEGs) are very promising systems that are able to directly convert oscillating mechanical energy into direct electricity. Their nature and main attributes make them particularly interesting for harvesting energy form ocean waves. In this context, several efforts have been made in the last years to develop effective Wave Energy Converters based on DEG [1-4]. In this contribution, we present a novel Wave Energy Converter (WEC) based on the Oscillating Water Column principle. The device features an inflatable DEG as Power Take Off (PTO) system and collector - i.e. the part of the device that is directly interacting with waves - that possesses a coaxial-ducted shape as described in [5]. Models of the coupled behavior that consider the electro-hyperelastic response of the DEG and the hydrodynamics are presented. It is shown that the dynamic response and the effectiveness of the system can be largely improved through an appropriate dimensioning of the geometry of the device. Specifically, the dynamic response of the system can be designed to match the corresponding harmonic content of water waves achieving an effective conversion of the incoming mechanical energy. A small/intermediate scale prototype of the system is built and tested in a wave tank facility - i.e. a basin in which artificially controlled waves can be generated - available at Flowave (UK). Mathematical models are validated against experimental results for monochromatic and panchromatic tests. During the experiments, we obtained peak of estimated power output in the range of 1 W to 4 W with an energy density for the dielectric material of approximately 80-120W/kg. The achieved results represent a milestone in the study of WEC based on DEG, paving the path toward scaling up of this technology.

  10. Seasonality of P wave microseisms from NCF-based beamforming using ChinArray

    Science.gov (United States)

    Wang, Weitao; Gerstoft, Peter; Wang, Baoshan

    2018-06-01

    Teleseismic P wave microseisms produce interference signals with high apparent velocity in noise cross-correlation functions (NCFs). Sources of P wave microseisms can be located with NCFs from seismic arrays. Using the vertical-vertical component NCFs from a large-aperture array in southwestern China (ChinArray), we studied the P wave source locations and their seasonality of microseisms at two period bands (8-12 and 4-8 s) with an NCF-based beamforming method. The sources of P, PP and PKPbc waves are located. The ambiguity between P and PP source locations is analysed using averaged significant ocean wave height and sea surface pressure as constraints. The results indicate that the persistent P wave sources are mainly located in the deep oceans such as the North Atlantic, North Pacific and Southern Ocean, in agreement with previous studies. The Gulf of Alaska is found to generate P waves favouring the 8-12 s period band. The seasonality of P wave sources is consistent with the hemispheric storm pattern, which is stronger in local winter. Using the identified sources, arrival times of the interference signals are predicted and agree well with observations. The interference signals exhibit seasonal variation, indicating that body wave microseisms in southwestern China are from multiple seasonal sources.

  11. An adaptive Bayesian inversion for upper mantle structure using surface waves and scattered body waves

    Science.gov (United States)

    Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.

    2018-04-01

    We present a methodology for 1-D imaging of upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterisation based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.

  12. Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2018-03-01

    Full Text Available Coastal waves are an abundant nonpolluting and renewable energy source. A wave energy converter (WEC must be designed for efficient and steady operation in highly energetic ocean environments. A direct-drive wave energy conversion (D-DWEC system with a tubular permanent magnet linear generator (TPMLG on a wind and solar photovoltaic complementary energy generation platform is proposed to improve the conversion efficiency and reduce the complexity and device volume of WECs. The operating principle of D-DWECs is introduced, and detailed analyses of the proposed D-DWEC’s floater system, wave force characteristics, and conversion efficiency conducted using computational fluid dynamics are presented. A TPMLG with an asymmetric slot structure is designed to increase the output electric power, and detailed analyses of the magnetic field distribution, detent force characteristics, and no-load and load performances conducted using finite element analysis are discussed. The TPMLG with an asymmetric slot, which produces the same power as the TPMLG with a symmetric slot, has one fifth detent force of the latter. An experiment system with a prototype of the TPMLG with a symmetric slot is used to test the simulation results. The experiment and analysis results agree well. Therefore, the proposed D-DWEC fulfills the requirements of WEC systems.

  13. Design and Control of the PowerTake-Off System for a Wave Energy Converter with Multiple Absorbers

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm

    waves. This enables a comparison of the performance of the wave power extraction methods according to PTO requirements. The framework also allows comparing performance of fundamentally different PTOs. The idea of reactive control for increasing power absorption dates back to the 1970’s, and today its...... techniques. The research leads to three potential PTO systems, where one is a magnetic gear based PTO. The gear is based on implementing the function of a screw and nut magnetically by placing permanent magnets in a helical pattern. A PTO layout with the magnetic lead screw is found and analysed using...... simulations. The feasibility leads to having a group of master students designing a working prototype at a scale of 17kN with a half meter stroke. The magnetic lead screw is able to directly convert a linear motion of 0.5m/s to a rotational motion above 1000rpm, driving a conventional generator. Two other...

  14. Utilization of solvothermally grown InP/ZnS quantum dots as wavelength converters for fabrication of white light-emitting diodes.

    Science.gov (United States)

    Jang, Eun-Pyo; Yang, Heesun

    2013-09-01

    This work reports on a simple solvothermal synthesis of InP/ZnS core/shell quantum dots (QDs) using a much safer and cheaper phosphorus precursor of tris(dimethylamino)phosphine than the most popularly chosen tris(trimethylsilyl)phosphine. The band gap of InP QDs is facilely controlled by varying the solvothermal core growth time (4 vs. 6 h) with a fixed temperature of 150 degrees C, and the successive solvothermal ZnS shelling at 220 degrees C for 6 h results in green- and yellow-emtting InP/ZnS QD with emission quantum yield of 41-42%. The broad size distribution of as-synthesized InP/ZnS QDs, which appears to be inherent in the current solvothermal approach, is improved by a size-selective sorting procedure, and the emission properties of the resulting size-sorted QD fractions are investigated. To produce white emission for general lighting source, a blue light-emitting diode (LED) is combined with non-size-soroted green or yellow QDs as wavelength converters. Furthermore, the QD-LED that includes a blend of green and yellow QDs is fabricated to generate a white lighting source with an enhanced color rendering performance, and its electroluminescent properties are characterized in detail.

  15. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    Energy Technology Data Exchange (ETDEWEB)

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations

  16. Séparation des ondes P et S à l'aide de la matrice spectrale avec informations à priori The Separation of P and S Waves Using the Spectral Matrix with a Priori Information

    Directory of Open Access Journals (Sweden)

    Mari J. L.

    2006-11-01

    out in two steps: (a First step: Realignment of the data, according to an apparent velocity model given a priori or introduced by picking, to give to the wave Wi(f an infinite apparent velocity. (b Second step: Limitation of the recording time in a time window centered on the wave to be extracted so as to minimize the interference of the other waves. The average applied to calculate the matrix is a high frequency average and a low distance average to preserve the variation in the character of the wave (phase and amplitude. The first eigenvector of the spectral matrix thus estimated represents the wave vector Si(f of the desired wave Wi (f. To extract p waves, it is necessary to calculate p matrices. This gives a set of normalized vectors Si(f for i = 1 to p. We shall apply this type of treatment to seismic data of the VSP type, recorded in a well drilled on a complex geological structure. Presentation of the data - The VSP consists in 48 measurement points located between the depths of 1050 and 1755 m, at intervals of 15 m. The source is a vertical vibrator, transmitting a vibroseismic signal in the frequency band 14 to 125 Hz, over a duration of 8 s. The source is offset 654 m from the wellhead. The average number of vibrations per measurement point is 3. The well geophone is the Schlumberger SAT. C probe, equipped with a system of three gimbal-mounted geophones, the time sampling interval is 2 ms, for a recording time of 2 s after correlation. Data preprocessing includes correlation, printing, stacking of the unit recordings at each level, and the re-orientation of the horizontal components, designed to compensate for the rotation of the tool and to obtain a seismic recording located in the plane passing through the well and the source. Figures 1 and 2 show the vertical component Z of the VSP and the horizontal component X after re-orientation. Wave separation. Separation is aimed to extract the downgoing and upgoing P compressional waves and the SV shear waves

  17. Estimation of excitation forces for wave energy converters control using pressure measurements

    Science.gov (United States)

    Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.

    2017-08-01

    Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.

  18. Amplitude analysis for the process K/sup -/p to ( pi /sup +/ pi /sup - /)/sub s-wave/ Sigma /sup 0/(1385)

    CERN Document Server

    Barreiro, F; Hemingway, R J; Holmgren, S O; Kluyver, J G; Losty, Michael J; Massaro, G G G; Timmermans, J; Van de Walle, R T; Zalewski, K

    1977-01-01

    Transversity amplitudes and spin density matrix elements are determined for the process K/sup -/p to ( pi /sup +/ pi /sup -/) Sigma /sup 0/(1385)/sub s-wave/. Predictions of the additive quark model and of duality diagrams are tested and found consistent with the data; this is the first information about the applicability of these models to processes where a scalar object is produced at the mesonic vertex. (5 refs).

  19. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, D. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Copping, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, L. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  20. Enhanced coupling of the fast wave to electrons through mode conversion to the ion hybrid wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Fuchs, V.; Ram, A.K.; Bers, A.

    1996-07-01

    The mode conversion of the fast compressional Alfven wave to the ion hybrid wave is analyzed with particular reference to a plasma with two ion species present in approximately equal proportions. Two configurations are considered, the first referring to the usual resonance-cut-off case and the second to a cut-off-resonance-cut-off situation. The optimum conditions for maximising the mode converted energy are given. The second order fast wave equation is generalised to include the effect of the parallel electric field. Hence, all ion and electron loss mechanisms for the fast wave are incorporated, including mode conversion at the two-ion hybrid resonance. The significance of the approximate equality of the two ion species concentrations is that the mode converted ion hybrid wave is damped only by the electrons. The damping of the ion hybrid wave is described with the aid of the local dispersion relation and by means of a toroidal ray tracing code. In particular, the ray tracing calculation shows that the mode converted energy is totally absorbed by the electrons close to the two-ion hybrid resonance. The generalised fast wave equation is solved to determine how much energy is lost from the fast wave, incident from the low field side, before it encounters the two-ion hybrid resonance. For comparable concentrations of the two ion species, the mode converted power can be separated from the power directly absorbed by the ions and electrons from the fast wave. This allows the conditions to be ascertained under which strong electron heating through mode conversion dominates the direct dissipation of the fast wave. (UK)

  1. In-medium P-wave quarkonium from the complex lattice QCD potential

    International Nuclear Information System (INIS)

    Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander

    2016-01-01

    We extend our lattice QCD potential based study http://dx.doi.org/10.1007/JHEP12(2015)101 of the in-medium properties of heavy quark bound states to P-wave bottomonium and charmonium. Similar to the behavior found in the S-wave channel their spectra show a characteristic broadening, as well as mass shifts to lower energy with increasing temperature. In contrast to the S-wave states, finite angular momentum leads to the survival of spectral peaks even at temperatures, where the continuum threshold reaches below the bound state remnant mass. We elaborate on the ensuing challenges in defining quarkonium dissolution and present estimates of melting temperatures for the spin averaged χ b and χ c states. As an application to heavy-ion collisions we further estimate the contribution of feed down to S-wave quarkonium through the P-wave states after freezeout.

  2. In-medium P-wave quarkonium from the complex lattice QCD potential

    Energy Technology Data Exchange (ETDEWEB)

    Burnier, Yannis [Institute of Theoretical Physics, EPFL,CH-1015 Lausanne (Switzerland); Kaczmarek, Olaf [Fakultät für Physik, Universität Bielefeld,D-33615 Bielefeld (Germany); Rothkopf, Alexander [Institute for Theoretical Physics, Heidelberg University,Philosophenweg 16, 69120 Heidelberg (Germany)

    2016-10-07

    We extend our lattice QCD potential based study http://dx.doi.org/10.1007/JHEP12(2015)101 of the in-medium properties of heavy quark bound states to P-wave bottomonium and charmonium. Similar to the behavior found in the S-wave channel their spectra show a characteristic broadening, as well as mass shifts to lower energy with increasing temperature. In contrast to the S-wave states, finite angular momentum leads to the survival of spectral peaks even at temperatures, where the continuum threshold reaches below the bound state remnant mass. We elaborate on the ensuing challenges in defining quarkonium dissolution and present estimates of melting temperatures for the spin averaged χ{sub b} and χ{sub c} states. As an application to heavy-ion collisions we further estimate the contribution of feed down to S-wave quarkonium through the P-wave states after freezeout.

  3. Transdimensional inversion of scattered body waves for 1D S-wave velocity structure - Application to the Tengchong volcanic area, Southwestern China

    Science.gov (United States)

    Li, Mengkui; Zhang, Shuangxi; Bodin, Thomas; Lin, Xu; Wu, Tengfei

    2018-06-01

    Inversion of receiver functions is commonly used to recover the S-wave velocity structure beneath seismic stations. Traditional approaches are based on deconvolved waveforms, where the horizontal component of P-wave seismograms is deconvolved by the vertical component. Deconvolution of noisy seismograms is a numerically unstable process that needs to be stabilized by regularization parameters. This biases noise statistics, making it difficult to estimate uncertainties in observed receiver functions for Bayesian inference. This study proposes a method to directly invert observed radial waveforms and to better account for data noise in a Bayesian formulation. We illustrate its feasibility with two synthetic tests having different types of noises added to seismograms. Then, a real site application is performed to obtain the 1-D S-wave velocity structure beneath a seismic station located in the Tengchong volcanic area, Southwestern China. Surface wave dispersion measurements spanning periods from 8 to 65 s are jointly inverted with P waveforms. The results show a complex S-wave velocity structure, as two low velocity zones are observed in the crust and uppermost mantle, suggesting the existence of magma chambers, or zones of partial melt. The upper magma chambers may be the heart source that cause the thermal activity on the surface.

  4. Characterization and Scaling of Heave Plates for Ocean Wave Energy Converters

    Science.gov (United States)

    Rosenberg, Brian; Mundon, Timothy

    2016-11-01

    Ocean waves present a tremendous, untapped source of renewable energy, capable of providing half of global electricity demand by 2040. Devices developed to extract this energy are known as wave energy converters (WECs) and encompass a wide range of designs. A somewhat common archetype is a two-body point-absorber, in which a surface float reacts against a submerged "heave" plate to extract energy. Newer WEC's are using increasingly complex geometries for the submerged plate and an emerging challenge in creating low-order models lies in accurately determining the hydrodynamic coefficients (added mass and drag) in the corresponding oscillatory flow regime. Here we present experiments in which a laboratory-scale heave plate is sinusoidally forced in translation (heave) and rotation (pitch) to characterize the hydrodynamic coefficients as functions of the two governing nondimensional parameters, Keulegan-Carpenter number (amplitude) and Reynolds number. Comparisons against CFD simulations are offered. As laboratory-scale physical model tests remain the standard for testing wave energy devices, effects and implications of scaling (with respect to a full-scale device) are also investigated.

  5. On the Effects of Geometry Control on the Performance of Overtopping Wave Energy Converters

    DEFF Research Database (Denmark)

    Victor, Lander; Troch, Peter; Kofoed, Jens Peter

    2011-01-01

    Overtopping wave energy converters (OWECs) are designed to extract energy from ocean waves based on wave overtopping into a reservoir, which is emptied into the ocean through a set of low-head turbines, and typically feature a low crest freeboard and a smooth impermeable steep slope. In the process...... of optimizing the performance of OWECs, the question arises whether adapting the slope geometry to the variable wave characteristics at the deployment site (i.e., geometry control) can increase the overall hydraulic efficiency and overall hydraulic power compared to a fixed slope geometry. The effect of five...... different geometry control scenarios on the overall hydraulic efficiency and overall hydraulic power of OWECs has been simulated for three possible deployment sites using empirical prediction formulae. The results show that the effect of an adaptive slope angle is relatively small. On the other hand...

  6. Simplified Design Procedures for Moorings of Wave-Energy Converters

    DEFF Research Database (Denmark)

    Bergdahl, Lars; Kofoed, Jens Peter

    The goal of the report is that the reader shall be able to self-dependently make a first, preliminary analysis of wave-induced horizontal loads, motions and mooring forces for a moored floating wave energy device. Necessary prerequisites to attain that goal are the understanding of the physical p...

  7. Balancing Power Absorption and Structural Loading for an Assymmetric Heave Wave-Energy Converter in Regular Waves: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2016-07-01

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would require the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.

  8. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    Science.gov (United States)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  9. Study of mode-converted and directly-excited ion Bernstein waves by CO2 laser scattering in Alcator C

    International Nuclear Information System (INIS)

    Takase, Y.; Fiore, C.L.; McDermott, F.S.; Moody, J.D.; Porkolab, M.; Shepard, T.; Squire, J.

    1987-01-01

    Mode-converted and directly excited ion Bernstein waves (IBW) were studied using CO 2 laser scattering in the Alcator C tokamak. During the ICRF fast wave heating experiments, mode-converted IBW was observed on the high-field side of the resonance in both second harmonic and minority heating regimes. By comparing the relative scattered powers from the two antennas separated by 180 0 toroidally, an increased toroidal wave damping with increasing density was inferred. In the IBW heating experiments, optimum direct excitation is obtained when an ion-cyclotron harmonic layer is located just behind the antenna. Wave absorption at the ω = 3Ω/sub D/ = 1.5Ω/sub H/ layer was directly observed. Edge ion heating was inferred from the IBW dispersion when this absorption layer was located in the plasma periphery, which may be responsible for the observed improvement in particle confinement

  10. Hydraulic evaluation of the Crest Wing wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Kofoed, J.P.; Antonishen, M.

    2008-09-15

    The Crest Wing Wave Energy Converter is currently being developed by Henning Pilgaard, of WaveEnergyFyn, Denmark. It is meant to act like a carpet on the water, conforming to the shape of each wave and using that movement to generate power. The thought of making a WEC that acts like a carpet on top of the waves is not new; ongoing or past projects such as the Pelamis and Cockerel Raft were designed with this thought in mind. The real difference with the Crest Wing is that it has skirt drafts, that extend down into the water and create suction; this increases the effective mass of the WEC while minimizing the material use. Special attention was given to the design of the first and last floaters as they are meant to act as a smooth transition between wave and machine. Their purpose is to make sure that no air gets under the two middle floaters so that suction is not broken and the device continues to function well. In summary the Crest Wing functions and is able to produce power with a good overall efficiency. The configuration with relative reference PTO (Power Take Off) is superior. It has not been proven that the idea of mounting skirts on the floaters is leading to a better performance. Thus, the study leads to the conclusion that the idea of making a simple hinged raft type device is good, and it is likely that the construction cost for a device of this type can be kept down. However, the study also leaves the chance that some limited draft of skirts in combination with inlet/outlet devices, could prove beneficial. In case of further testing on this device, an effort should be made to design and construct a more easily and accurately controlled PTO model in the test setup. This could greatly improve the quality of the output of such tests. (ln)

  11. Time- and Frequency-domain Comparisons of the Wavepiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Read, Robert; Bingham, Harry

    Analysis of wave-energy converters is most frequently undertaken in the time-domain. This formulation allows the direct inclusion of nonlinear time-varying loads such as power take-off (PTO) reactions, mooring forces, and viscous drag. However, integrating the governing equations of motion...... forces arising from both the PTO reactions and the non-negligible viscous drag acting on the plate. Equivalent linear damping coeffcients are used to model these forces in the frequency domain, while they are included explicitly in the time domain. The main idea of this paper is to quantify...

  12. Evidence for a magma reservoir beneath the Taipei metropolis of Taiwan from both S-wave shadows and P-wave delays.

    Science.gov (United States)

    Lin, Cheng-Horng

    2016-12-23

    There are more than 7 million people living near the Tatun volcano group in northern Taiwan. For the safety of the Taipei metropolis, in particular, it has been debated for decades whether or not these volcanoes are active. Here I show evidence of a deep magma reservoir beneath the Taipei metropolis from both S-wave shadows and P-wave delays. The reservoir is probably composed of either a thin magma layer overlay or many molten sills within thick partially molten rocks. Assuming that 40% of the reservoir is partially molten, its total volume could be approximately 350 km 3 . The exact location and geometry of the magma reservoir will be obtained after dense seismic arrays are deployed in 2017-2020.

  13. Deeply Bound 1s and 2p Pionic States in 205Pb and Determination of the s-Wave Part of the Pion-Nucleus Interaction

    Science.gov (United States)

    Geissel, H.; Gilg, H.; Gillitzer, A.; Hayano, R. S.; Hirenzaki, S.; Itahashi, K.; Iwasaki, M.; Kienle, P.; Münch, M.; Münzenberg, G.; Schott, W.; Suzuki, K.; Tomono, D.; Weick, H.; Yamazaki, T.; Yoneyama, T.

    2002-03-01

    We observed well-separated 1s and 2p π- states in 205Pb in the 206Pb(d,3He) reaction at Td = 604.3 MeV. The binding energies and the widths determined are B1s = 6.762+/-0.061 MeV, Γ1s = 0.764+0.171-0.154 MeV, B2p = 5.110+/-0.045 MeV, and Γ2p = 0.321+0.060-0.062 MeV. They are used to deduce the real and imaginary strengths of the s-wave part of the pion-nucleus interaction, which translates into a positive mass shift of π- in 205Pb.

  14. A universal quantum frequency converter via four-wave-mixing processes

    Science.gov (United States)

    Cheng, Mingfei; Fang, Jinghuai

    2016-06-01

    We present a convenient and flexible way to realize a universal quantum frequency converter by using nondegenerate four-wave-mixing processes in the ladder-type three-level atomic system. It is shown that quantum state exchange between two fields with large frequency difference can be readily achieved, where one corresponds to the atomic resonant transition in the visible spectral region for quantum memory and the other to the telecommunication range wavelength (1550 nm) for long-distance transmission over optical fiber. This method would bring great facility in realistic quantum information processing protocols with atomic ensembles as quantum memory and low-loss optical fiber as transmission channel.

  15. Validation of a Tool for the Initial Dynamic Design of Mooring Systems for Large Floating Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Jonas Bjerg Thomsen

    2017-09-01

    Full Text Available Mooring of floating wave energy converters is an important topic in renewable research since it highly influences the overall cost of the wave energy converter and thereby the cost of energy. In addition, several wave energy converter failures have been observed due to insufficient mooring systems. When designing these systems, it is necessary to ensure the applicability of the design tool and to establish an understanding of the error between model and prototype. The present paper presents the outcome of an experimental test campaign and construction of a numerical model using the open-source boundary element method code NEMOH and the commercial time-domain mooring analysis tool OrcaFlex. The work used the wind/wave energy converter Floating Power Plant as a case study, which is defined as a large floating structure with a passive mooring system. The investigated mooring consists of a three-legged turret system with synthetic lines, and it was tested for both operational and extreme events. In order to understand the difference between the model and experimental results, no tuning of the model was done, besides adding drag elements with values found from a simplified methodology. This resembles initial design cases where no experimental data are available. Generally good agreement was found for the tensions in the lines when the drag element was applied, with some overestimation of the motions. The main cause of difference was found to be underestimation of linear damping. A model was tested with additional linear damping, and it illustrated that a final analysis needs to use experimental data to achieve the best results. However, the analyses showed that the investigated model can be used without tuning in initial investigations of mooring systems, and it is expected that this approach can be applied to other similar systems.

  16. 3D elastic full waveform inversion using P-wave excitation amplitude: Application to OBC field data

    KAUST Repository

    Oh, Juwon; Kalita, Mahesh; Alkhalifah, Tariq Ali

    2017-01-01

    We propose an efficient elastic full waveform inversion (FWI) based on the P-wave excitation amplitude (maximum energy arrival) approximation in the source wavefields. Because, based on the P-wave excitation approximation (ExA), the gradient direction is approximated by the cross-correlation of source and receiver wavefields at only excitation time, it estimates the gradient direction faster than its conventional counterpart. In addition to this computational speedup, the P-wave excitation approximation automatically ignores SP and SS correlations in the approximated gradient direction. In elastic FWI for ocean bottom cable (OBC) data, the descent direction for the S-wave velocity is often degraded by undesired long-wavelength features from the SS correlation. For this reason, the P-wave excitation approach increases the convergence rate of multi-parameter FWI compared to the conventional approach. The modified 2D Marmousi model with OBC acquisition is used to verify the differences between the conventional method and ExA. Finally, the feasibility of the proposed method is demonstrated on a real OBC data from North Sea.

  17. 3D elastic full waveform inversion using P-wave excitation amplitude: Application to OBC field data

    KAUST Repository

    Oh, Juwon

    2017-12-05

    We propose an efficient elastic full waveform inversion (FWI) based on the P-wave excitation amplitude (maximum energy arrival) approximation in the source wavefields. Because, based on the P-wave excitation approximation (ExA), the gradient direction is approximated by the cross-correlation of source and receiver wavefields at only excitation time, it estimates the gradient direction faster than its conventional counterpart. In addition to this computational speedup, the P-wave excitation approximation automatically ignores SP and SS correlations in the approximated gradient direction. In elastic FWI for ocean bottom cable (OBC) data, the descent direction for the S-wave velocity is often degraded by undesired long-wavelength features from the SS correlation. For this reason, the P-wave excitation approach increases the convergence rate of multi-parameter FWI compared to the conventional approach. The modified 2D Marmousi model with OBC acquisition is used to verify the differences between the conventional method and ExA. Finally, the feasibility of the proposed method is demonstrated on a real OBC data from North Sea.

  18. Application of the Most Likely Extreme Response Method for Wave Energy Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang; Lawson, Michael

    2016-07-01

    Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based on spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.

  19. Optimizing the Performance of Solo Duck Wave Energy Converter in Tide

    Directory of Open Access Journals (Sweden)

    Jinming Wu

    2017-02-01

    Full Text Available The high efficiency performance of the Edinburgh Duck wave energy converter (WEC in 2D regular wave tests makes it a promising wave energy conversion scheme. A solo Duck WEC will be able to apply the point absorber effect to further enhance its performance. Since released degree of freedom will decrease the efficiency, a Duck WEC with fixed pitching axis will be a better option. However, for fixed supported WECs, tide is a non-ignorable consideration. In this paper, a movable mass method is utilized in the whole tidal range to not only balance the Duck to appropriate beak angles, but also follow the variation of hydrodynamic coefficients to keep cancelling the reactance of the system impedance so that complex conjugate control can be realized to optimize the power capture performance of the Duck WEC in tide. Results show that the beak angle should be adjusted to as large a value as possible so that the response amplitude of the Duck at maximum relative capture width will be reasonable small, and the lowest weight of the movable mass is found when its designed position locates at the center of the Duck profile.

  20. S-P wave travel time residuals and lateral inhomogeneity in the mantle beneath Tibet and the Himalaya

    Science.gov (United States)

    Molnar, P.; Chen, W.-P.

    1984-01-01

    S-P wave travel time residuals were measured in earthquakes in Tibet and the Himalaya in order to study lateral inhomogeneities in the earth's mantle. Average S-P residuals, measured with respect to Jeffrey-Bullen (J-B) tables for 11 earthquakes in the Himalaya are less than +1 second. Average J-B S-P from 10 of 11 earthquakes in Tibet, however, are greater than +1 second even when corrected for local crustal thickness. The largest values, ranging between 2.5 and 4.9 seconds are for five events in central and northern Tibet, and they imply that the average velocities in the crust and upper mantle in this part of Tibet are 4 to 10 percent lower than those beneath the Himalaya. On the basis of the data, it is concluded that it is unlikely that a shield structure lies beneath north central Tibet unless the S-P residuals are due to structural variations occurring deeper than 250 km.

  1. Effects of Damping Plate and Taut Line System on Mooring Stability of Small Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2015-01-01

    Full Text Available Ocean wave energy can be used for electricity supply to ocean data acquisition buoys. A heaving buoy wave energy converter is designed and the damping plate and taut line system are used to provide the mooring stability for better operating conditions. The potential flow assumption is employed for wave generation and fluid structure interactions, which are processed by the commercial software AQWA. Effects of damping plate diameter and taut line linking style with clump and seabed weights on reduction of displacements in 6 degrees of freedom are numerically studied under different operating wave conditions. Tensile forces on taut lines of optimized mooring system are tested to satisfy the national code for wire rope utilization.

  2. Comparison of the Experimental and Numerical Results of Modelling a 32-Oscillating Water Column (OWC, V-Shaped Floating Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    John V. Ringwood

    2013-08-01

    Full Text Available Combining offshore wind and wave energy converting apparatuses presents a number of potentially advantageous synergies. To facilitate the development of a proposed floating platform combining these two technologies, proof of concept scale model testing on the wave energy converting component of this platform has been conducted. The wave energy component is based on the well-established concept of the oscillating water column. A numerical model of this component has been developed in the frequency domain, and the work presented here concerns the results of this modelling and testing. The results of both are compared to assess the validity and usefulness of the numerical model.

  3. Reliability-based Calibration of Partial Safety Factors for Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten Mejlhede; Sørensen, John Dalsgaard

    2015-01-01

    of partial safety factors for design of welded details for wave energy converter applications is presented in this paper using probabilistic methods. The paper presents an example with focus on the Wavestar device. SN curves and Rainflow counting are used to model fatigue without considering inspections....... The influence of inspections is modelled using a fracture mechanics approach, which is calibrated by the SN curve approach. Furthermore, the paper assesses the influence of the inspection quality. The results show that with multiple inspections during the lifetime of the device and by applying a good inspection...

  4. Three-Stage InP Submillimeter-Wave MMIC Amplifier

    Science.gov (United States)

    Pukala, David; Samoska, Lorene; Man, King; Gaier, Todd; Deal, William; Lai, Richard; Mei, Gerry; Makishi, Stella

    2008-01-01

    A submillimeter-wave monolithic integrated- circuit (S-MMIC) amplifier has been designed and fabricated using an indium phosphide (InP) 35-nm gate-length high electron mobility transistor (HEMT) device, developed at Northrop Grumman Corporation. The HEMT device employs two fingers each 15 micrometers wide. The HEMT wafers are grown by molecular beam epitaxy (MBE) and make use of a pseudomorphic In0.75Ga0.25As channel, a silicon delta-doping layer as the electron supply, an In0.52Al0.48As buffer layer, and an InP substrate. The three-stage design uses coplanar waveguide topology with a very narrow ground-to-ground spacing of 14 micrometers. Quarter-wave matching transmission lines, on-chip metal-insulator-metal shunt capacitors, series thin-film resistors, and matching stubs were used in the design. Series resistors in the shunt branch arm provide the basic circuit stabilization. The S-MMIC amplifier was measured for S-parameters and found to be centered at 320 GHz with 13-15-dB gain from 300-345 GHz. This chip was developed as part of the DARPA Submillimeter Wave Imaging Focal Plane Technology (SWIFT) program (see figure). Submillimeter-wave amplifiers could enable more sensitive receivers for earth science, planetary remote sensing, and astrophysics telescopes, particularly in radio astronomy, both from the ground and in space. A small atmospheric window at 340 GHz exists and could enable ground-based observations. However, the submillimeter-wave regime (above 300 GHz) is best used for space telescopes as Earth s atmosphere attenuates most of the signal through water and oxygen absorption. Future radio telescopes could make use of S-MMIC amplifiers for wideband, low noise, instantaneous frequency coverage, particularly in the case of heterodyne array receivers.

  5. Revenue maximisation and storage utilisation for the Ocean Grazer wave energy converter : A sensitivity analysis

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Dijkstra, H.T.; Wei, Yanji; van Rooij, Marijn; Meijer, Harmen; Prins, Wouter; Vakis, Antonis I.; Jayawardhana, Bayu

    2018-01-01

    This paper presents a revenue maximisation strategy for market integration of a novel wave energy converter (WEC), part of the Ocean Grazer platform. In particular, we evaluate and validate the aforementioned revenue maximisation model predictive control (MPC) strategy through extensive simulations

  6. Excitation of a surface wave by an s-polarized electromagnetic wave incident upon a boundary of a dense magnetoactive plasma

    International Nuclear Information System (INIS)

    Dragila, R.; Vukovic, S.

    1988-01-01

    The properties of surfave waves that are associated with a boundary between a rare plasma and a dense magnetoactive plasma and that propagate along a dc magnetic field are investigated. It is shown that the presence of the magnetic field introduces symmetry in terms of the polarization of the incident electromagnetic wave that excites the surface waves. A surface wave excited by an incident p-polarized (s-polarized) electromagnetic wave leaks in the form of an s-polarized (p-polarized) electromagnetic wave. The rate of rotation of polarization is independent of the polarization of the incident wave. Because a surface wave can leak in the form of an s-polarized electromagnetic wave, it can also be pumped by such a wave, and conditions were found for excitation of a surface wave by an s-polarized incident electromagnetic wave

  7. P-wave dispersion and its relationship to aortic stiffness in patients with acute myocardial infarction after cardiac rehabilitation

    Directory of Open Access Journals (Sweden)

    Rezzan Deniz Acar

    2014-07-01

    Full Text Available BACKGROUND: The aim of our study was to investigate the P-wave dispersion from standard electrocardiograms (ECGs in patients with acute myocardial infarction (AMI after cardiac rehabilitation (CR and determine its relation to arterial stiffness. METHODS: This is a prospective study included 33 patients with AMI and successfully re-vascularized by percutaneous coronary intervention (PCI underwent CR. Left ventricular ejection fraction (LVEF was measured by biplane Simpson’s method. Left atrium (LA volume was calculated. The maximum and minimum durations of P-waves (Pmax and Pmin, respectively were detected, and the difference between Pmax and Pmin was defined as P-wave dispersion (Pd = Pmax–Pmin. Aortic elasticity parameters were measured. RESULTS: LVEF was better after CR. The systolic and diastolic blood pressures decreased after CR, these differences were statistically significant. With exercise training, LA volume decreased significantly. Pmax and Pd values were significantly shorter after the CR program. The maximum and minimum P-waves and P-wave dispersion after CR were 97 ± 6 ms, 53 ± 5 ms, and 44 ± 5 ms, respectively. Aortic strain and distensibility increased and aortic stiffness index was decreased significantly. Aortic stiffness index was 0.4 ± 0.2 versus 0.3 ± 0.2, P = 0.001. Aortic stiffness and left atrial volume showed a moderate positive correlation with P-wave dispersion (r = 0.52, P = 0.005; r = 0.64, P = 0.000, respectively. CONCLUSION: This study showed decreased arterial stiffness indexes in AMI patient’s participated CR, with a significant relationship between the electromechanical properties of the LA that may raise a question of the preventive effect of CR from atrial fibrillation and stroke in patients with acute myocardial infarction.   Keywords: Cardiac Rehabilitation, P-Wave Dispersion, Aortic Stiffness, Acute Myocardial Infarction 

  8. Risk-based Operation and Maintenance Approach for Wave Energy Converters Taking Weather Forecast Uncertainties into Account

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten Mejlhede; Sørensen, John Dalsgaard

    2016-01-01

    Inspection and maintenance costs are significant contributors to the cost of energy for wave energy converters. Maintenance can be performed after failure (corrective) or before a breakdown (preventive) occurs. Furthermore, helicopter and boat can be used to transport equipment and personnel to t...

  9. On the concept of sloped motion for free-floating wave energy converters.

    Science.gov (United States)

    Payne, Grégory S; Pascal, Rémy; Vaillant, Guillaume

    2015-10-08

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range.

  10. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    Science.gov (United States)

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  11. P-wave indices in patients with pulmonary emphysema: do P-terminal force and interatrial block have confounding effects?

    Science.gov (United States)

    Chhabra, Lovely; Chaubey, Vinod K; Kothagundla, Chandrasekhar; Bajaj, Rishi; Kaul, Sudesh; Spodick, David H

    2013-01-01

    Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60°) serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf), amplitude of initial positive component of P-waves in V1 (i-PV1), and interatrial block (IAB) have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf) was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (-) P wave in V1 or a biphasic (+/-) P wave in V1. s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03). s-Ptf also significantly correlated with IAB (P = 0.001); however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23). There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047); however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36). We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by right atrial displacement, and thus the common assumption that increased P-tf implies left atrial enlargement should be made with caution in patients with emphysema. Also, the lack of strong correlation between i-PV1 and P-amplitude in lead III or vertical P-vector may suggest the predominant role of downward

  12. P-wave excited {B}_{c}^{* * } meson photoproduction at the LHeC

    Science.gov (United States)

    Kai, He; Huan-Yu, Bi; Ren-You, Zhang; Xiao-Zhou, Li; Wen-Gan, Ma

    2018-05-01

    As an important sequential work of the S-wave {B}c(* ) ({}1{S}0({}3{S}1) ) meson production at the large hadron electron collider (LHeC), we investigate the production of the P-wave excited {B}c* * states (1 P 1 and 3 P J with J = 0, 1, 2) via photoproduction mechanism within the framework of nonrelativistic QCD at the LHeC. Generally, the {e}-+P\\to γ +g\\to {B}c* * +b+\\bar{c} process is considered as the main production mechanism at an electron–proton collider due to the large luminosity of the gluon. However, according to our experience on the S-wave {B}c(* ) meson production at the LHeC, the extrinsic production mechanism, i.e., {e}-+P\\to γ +c\\to {B}c* * +b and {e}-+P\\to γ +\\bar{b} \\to {B}c* * +\\bar{c}, could also provide dominating contributions at low p T region. A careful treatment between these channels is performed and the results on total and differential cross sections, together with main uncertainties are discussed. Taking the quark masses m b = 4.90 ± 0.40 GeV and m c = 1.50 ± 0.20 GeV into account and summing up all the production channels, we expect to accumulate ({2.48}-1.75+3.55)× {10}4 {B}c* * ({}1{P}1), ({1.14}-0.82+1.49)× {10}4 {B}c* * ({}3{P}0),({2.38}-1.74+3.39)× {10}4 {B}c* * ({}3{P}1) and ({5.59}-3.93+7.84)× {10}4 {B}c* * ({}3{P}2) events at the \\sqrt{S}=1.30 {{T}}{{e}}{{V}} LHeC in one operation year with luminosity { \\mathcal L }={10}33 cm‑2 s‑1. With such sizable events, it is worth studying the properties of excited P-wave {B}c* * states at the LHeC.

  13. Impact of Project P.A.T.H.S. on adolescent developmental outcomes in Hong Kong: findings based on seven waves of data.

    Science.gov (United States)

    Shek, Daniel T L; Ma, Cecilia M S

    2012-01-18

    The present study examined the longitudinal impact of Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes) on adolescent developmental outcomes in Hong Kong. Using a longitudinal randomized group design, seven waves of data were collected from 24 experimental schools (n=4049 at wave 1) in which students participated in the Tier 1 Program of Project P.A.T.H.S. and 24 control schools (n=3797 at wave 1). Results based on individual growth curve modeling generally showed that, relative to the control participants, participants in the experimental group had: (a) a higher level of positive development; (b) a lower level of substance abuse; and (c) a lower level of delinquent behavior. Participants who regarded the program to be beneficial also showed higher levels of positive development and lower levels of problem behavior than did the control school students. The present findings suggest that Project P.A.T.H.S. is effective in promoting positive development and preventing adolescent problem behavior in Chinese adolescents in Hong Kong.

  14. A Methodology for Production and Cost Assessment of a Farm of Wave Energy Converters

    DEFF Research Database (Denmark)

    Beels, C.; Troch, P.; Kofoed, Jens Peter

    2011-01-01

    to the sea through hydro turbines. It is observed that the cable cost is relatively small compared to the cost of the WD–WECs. As a result, WD–WECs should be installed in a lay-out to increase power production rather than decrease cable cost, taking spatial and safety considerations into account. WD......To generate a substantial amount of power, Wave Energy Converters (WECs) are arranged in several rows or in a ‘farm’. Both the power production and cost of a farm are lay-out dependent. In this paper, the wave power redistribution in and around three farm lay-outs in a near shore North Sea wave...... climate, is assessed numerically using a time-dependent mild-slope equation model. The modelling of the wave power redistribution is an efficient tool to assess the power production of a farm. Further, for each lay-out an optimal (low cost) submarine cable network is designed. The methodology to assess...

  15. Scattered P'P' waves observed at short distances

    Science.gov (United States)

    Earle, Paul S.; Rost, Sebastian; Shearer, Peter M.; Thomas, Christine

    2011-01-01

    We detect previously unreported 1 Hz scattered waves at epicentral distances between 30° and 50° and at times between 2300 and 2450 s after the earthquake origin. These waves likely result from off-azimuth scattering of PKPbc to PKPbc in the upper mantle and crust and provide a new tool for mapping variations in fine-scale (10 km) mantle heterogeneity. Array beams from the Large Aperture Seismic Array (LASA) clearly image the scattered energy gradually emerging from the noise and reaching its peak amplitude about 80 s later, and returning to the noise level after 150 s. Stacks of transverse versus radial slowness (ρt, ρr) show two peaks at about (2, -2) and (-2,-2) s/°, indicating the waves arrive along the major arc path (180° to 360°) and significantly off azimuth. We propose a mantle and surface PKPbc to PKPbc scattering mechanism for these observations because (1) it agrees with the initiation time and distinctive slowness signature of the scattered waves and (2) it follows a scattering path analogous to previously observed deep-mantle PK•KP scattering (Chang and Cleary, 1981). The observed upper-mantle scattered waves and PK•KP waves fit into a broader set of scattered waves that we call P′•d•P′, which can scatter from any depth, d, in the mantle.

  16. Developments in the design of the PS Frog Mk 5 wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, A.P.; Bradshaw, A.; Meadowcroft, J.A.C.; Aggidis, G. [Department of Engineering, Lancaster University Renewable Energy Group, Lancaster LA1 4YR (United Kingdom)

    2006-02-01

    This paper describes one of the innovative wave energy converters under development by the Lancaster University Renewable Energy Group. An offshore point-absorber wave energy converter, PS Frog Mk 5 consists of a large buoyant paddle with an integral ballasted 'handle' hanging below it. The waves act on the blade of the paddle and the ballast beneath provides the necessary reaction. When the WEC is pitching, power is extracted by partially resisting the sliding of a power-take-off mass, which moves in guides above sea level. Totally enclosed in a steel hull, with no external moving parts, PS Frog Mk. 5 is at least as robust as a ship and the survivability of the device is currently under investigation, though such work is beyond the scope of this paper. Such a device could be very economic in terms of power output per unit of capital cost. New inventive steps with experimental results and computer studies have led to promising improvements to the hull shape. The WEC is maintained in a resonant state by the use of special means to maintain a high dynamic magnifier in irregular seas. A robust feedback control system has been developed to ensure stability and maintain efficient power take-off. Some of these developments are described and illustrated with the results of computer simulations that show power outputs and device motion over a range of conditions. It is shown that useful advances have been made, with the power capture bordering on 2MW in an increasing proportion of sea states. (author)

  17. Scattering amplitude of ultracold atoms near the p-wave magnetic Feshbach resonance

    International Nuclear Information System (INIS)

    Zhang Peng; Naidon, Pascal; Ueda, Masahito

    2010-01-01

    Most of the current theories on the p-wave superfluid in cold atomic gases are based on the effective-range theory for the two-body scattering, where the low-energy p-wave scattering amplitude f 1 (k) is given by f 1 (k)=-1/[ik+1/(Vk 2 )+1/R]. Here k is the incident momentum, V and R are the k-independent scattering volume and effective range, respectively. However, due to the long-range nature of the van der Waals interaction between two colliding ultracold atoms, the p-wave scattering amplitude of the two atoms is not described by the effective-range theory [J. Math. Phys. 4, 54 (1963); Phys. Rev. A 58, 4222 (1998)]. In this paper we provide an explicit calculation for the p-wave scattering of two ultracold atoms near the p-wave magnetic Feshbach resonance. We show that in this case the low-energy p-wave scattering amplitude f 1 (k)=-1/[ik+1/(V eff k 2 )+1/(S eff k)+1/R eff ] where V eff , S eff , and R eff are k-dependent parameters. Based on this result, we identify sufficient conditions for the effective-range theory to be a good approximation of the exact scattering amplitude. Using these conditions we show that the effective-range theory is a good approximation for the p-wave scattering in the ultracold gases of 6 Li and 40 K when the scattering volume is enhanced by the resonance.

  18. Wave Energy Converter Annual Energy Production Uncertainty Using Simulations

    Directory of Open Access Journals (Sweden)

    Clayton E. Hiles

    2016-09-01

    Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.

  19. Optimal Constant DC Link Voltage Operation of aWave Energy Converter

    Directory of Open Access Journals (Sweden)

    Mats Leijon

    2013-04-01

    Full Text Available This article proposes a simple and reliable damping strategy for wave powerfarm operation of small-scale point-absorber converters. The strategy is based on passiverectification onto a constant DC-link, making it very suitable for grid integration of the farm.A complete model of the system has been developed in Matlab Simulink, and uses real sitedata as input. The optimal constant DC-voltage is evaluated as a function of the significantwave height and energy period of the waves. The total energy output of the WEC is derivedfor one year of experimental site data. The energy output is compared for two cases, onewhere the optimal DC-voltage is determined and held constant at half-hour basis throughoutthe year, and one where a selected value of the DC-voltage is kept constant throughout theyear regardless of sea state.

  20. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    Science.gov (United States)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  1. Balancing Power Output and Structural Fatigue of Wave Energy Converters by Means of Control Strategies

    Directory of Open Access Journals (Sweden)

    Francesco Ferri

    2014-04-01

    Full Text Available In order to reduce the cost of electricity produced by wave energy converters (WECs, the benefit of selling electricity as well as the investment costs of the structure has to be considered. This paper presents a methodology for assessing the control strategy for a WEC with respect to both energy output and structural fatigue loads. Different active and passive control strategies are implemented (proportional (P controller, proportional-integral (PI controller, proportional-integral-derivative with memory compensation (PID controller, model predictive control (MPC and maximum energy controller (MEC, and load time-series resulting from numerical simulations are used to design structural parts based on fatigue analysis using rain-flow counting, Stress-Number (SN curves and Miner’s rule. The objective of the methodology is to obtain a cost-effective WEC with a more comprehensive analysis of a WEC based on a combination of well known control strategies and standardised fatigue methods. The presented method is then applied to a particular case study, the Wavestar WEC, for a specific location in the North Sea. Results, which are based on numerical simulations, show the importance of balancing the gained power against structural fatigue. Based on a simple cost model, the PI controller is shown as a viable solution.

  2. Deployment and Maintenance of Wave Energy Converters at the Lysekil Research Site: A Comparative Study on the Use of Divers and Remotely-Operated Vehicles

    Directory of Open Access Journals (Sweden)

    Flore Rémouit

    2018-04-01

    Full Text Available Ocean renewable technologies have been rapidly developing over the past years. However, current high installation, operation, maintenance, and decommissioning costs are hindering these offshore technologies to reach a commercialization stage. In this paper we focus on the use of divers and remotely-operated vehicles during the installation and monitoring phase of wave energy converters. Methods and results are based on the wave energy converter system developed by Uppsala University, and our experience in offshore deployments obtained during the past eleven years. The complexity of underwater operations, carried out by either divers or remotely-operated vehicles, is emphasized. Three methods for the deployment of wave energy converters are economically and technically analyzed and compared: one using divers alone, a fully-automated approach using remotely-operated vehicles, and an intermediate approach, involving both divers and underwater vehicles. The monitoring of wave energy converters by robots is also studied, both in terms of costs and technical challenges. The results show that choosing an autonomous deployment method is more advantageous than a diver-assisted method in terms of operational time, but that numerous factors prevent the wide application of robotized operations. Technical solutions are presented to enable the use of remotely-operated vehicles instead of divers in ocean renewable technology operations. Economically, it is more efficient to use divers than autonomous vehicles for the deployment of six or fewer wave energy converters. From seven devices, remotely-operated vehicles become advantageous.

  3. Triphase Cascaded Converters with Direct Synchronous Pulswidth Modulation

    DEFF Research Database (Denmark)

    Oleschuk, V.; Blaabjerg, Frede; Bose, B. K.

    2002-01-01

    A novel method of direct synchronous pulse-width modulation (PWM) is applied for control of modular multilevel converters consisting from three standard triphase inverter modules along with an 0.33 p.u. output transformer. The proposed method provides synchronisation of the voltage waveforms...... for both each module and the composed voltage at the output of the converter. Multilevel output voltage of the converter has quarter-wave symmetry during the whole range including the zone of overmodulation. Both continuous and discontinuous versions of synchronous PWM, based on a vector approach...

  4. Computational simulations of the interaction of water waves with pitching flap-type ocean wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Using an in-house computational framework, we have studied the interaction of water waves with pitching flap-type ocean wave energy converters (WECs). The computational framework solves the full 3D Navier-Stokes equations and captures important effects, including the fluid-solid interaction, the nonlinear and viscous effects. The results of the computational tool, is first compared against the experimental data on the response of a flap-type WEC in a wave tank, and excellent agreement is demonstrated. Further simulations at the model and prototype scales are presented to assess the validity of the Froude scaling. The simulations are used to address some important questions, such as the validity range of common WEC modeling approaches that rely heavily on the Froude scaling and the inviscid potential flow theory. Additionally, the simulations examine the role of the Keulegan-Carpenter (KC) number, which is often used as a measure of relative importance of viscous drag on bodies exposed to oscillating flows. The performance of the flap-type WECs is investigated at various KC numbers to establish the relationship between the viscous drag and KC number for such geometry. That is of significant importance because such relationship only exists for simple geometries, e.g., a cylinder. Support from the National Science Foundation is gratefully acknowledged.

  5. Impacts on the Electrical System Economics from Critical Design Factors of Wave Energy Converters and Arrays

    OpenAIRE

    Sharkey, Fergus; Conlon, Michael; Gaughan, Kevin

    2013-01-01

    It is expected that ultimately, like offshore wind farms, electrical systems will make up to a quarter of the overall Capex of wave farms. This is a significant element of cost and consideration must be taken in the design of both individual wave energy converters (WECs) and arrays of WECs to ensure that these costs can be minimised. In a worst case scenario design decisions could increase the cost of the electrical system by several orders and ultimately make the technology uncompetitive. ...

  6. Renormalization group approach to a p-wave superconducting model

    International Nuclear Information System (INIS)

    Continentino, Mucio A.; Deus, Fernanda; Caldas, Heron

    2014-01-01

    We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.

  7. Shifts and widths of p-wave confinement induced resonances in atomic waveguides

    International Nuclear Information System (INIS)

    Saeidian, Shahpoor; Melezhik, Vladimir S; Schmelcher, Peter

    2015-01-01

    We develop and analyze a theoretical model to study p-wave Feshbach resonances of identical fermions in atomic waveguides by extending the two-channel model of Lange et al (2009 Phys. Rev. A 79 013622) and Saeidian et al (2012 Phys. Rev. A 86 062713). The experimentally known parameters of Feshbach resonances in free space are used as input of the model. We calculate the shifts and widths of p-wave magnetic Feshbach resonance of 40 K atoms emerging in harmonic waveguides as p-wave confinement induced resonance (CIR). Particularly, we show a possibility to control the width and shift of the p-wave CIR by the trap frequency and the applied magnetic field which could be used in corresponding experiments. Our analysis also demonstrates the importance of the inclusion of the effective range in the computational schemes for the description of the p-wave CIRs contrary to the case of s-wave CIRs where the influence of this term is negligible. (paper)

  8. A methodology to determine the power performance of wave energy converters at a particular coastal location

    International Nuclear Information System (INIS)

    Carballo, R.; Iglesias, G.

    2012-01-01

    Highlights: ► We develop a method to accurately compute the power output of a WEC at a site. ► The analysis of the wave resource is integrated seamlessly with the WEC efficiency. ► The intra-annual variability of the resource is considered. ► The method is illustrated with a case study: a WEC projected to be built in Spain. - Abstract: The assessment of the power performance of a wave energy converter (WEC) at a given site involves two tasks: (i) the characterisation of the wave resource at the site in question, and (ii) the computation of its power performance. These tasks are generally seen as disconnected, and tackled as such; they are, however, deeply interrelated – so much so that they should be treated as two phases of the same procedure. Indeed, beyond the characterisation of the wave resource of a certain area lies a crucial question: how much power would a WEC installed in that area output to the network? This work has two main objectives. First, to develop a methodology that integrates both tasks seamlessly and guarantees the accurate computation of the power performance of a WEC installed at a site of interest; it involves a large dataset of deepwater records and the implementation of a high-resolution, nested spectral model, which is used to propagate 95% of the total offshore wave energy to the WEC site. The second objective is to illustrate this methodology with a case study: an Oscillating Water Column (OWC) projected to be constructed at the breakwater of A Guarda (NW Spain). It is found that the approach presented allows to accurately determine the power that the WEC will output to the network, and that this power exhibits a significant monthly variability, so an estimate of the energy production based on mean annual values may be misleading.

  9. Study of hydrodynamic characteristics of a Sharp Eagle wave energy converter

    Science.gov (United States)

    Zhang, Ya-qun; Sheng, Song-wei; You, Ya-ge; Huang, Zhen-xin; Wang, Wen-sheng

    2017-06-01

    According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture.

  10. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  11. Influence of welded boundaries in anelastic media on energy flow, and characteristics of P, S-I, and S-II waves: Observational evidence for inhomogeneous body waves in low-loss solids

    Science.gov (United States)

    Borcherdt, Roger D.; Glassmoyer, Gary; Wennerberg, Leif

    1986-10-01

    A general computer code, developed to calculate anelastic reflection-refraction coefficients, energy flow, and the physical characteristics for general P, S-I, and S-II waves, quantitatively describes physical characteristics for wave fields in anelastic media that do not exist in elastic media. Consideration of wave fields incident on boundaries between anelastic media shows that scattered wave fields experience reductions in phase and energy speeds, increases in maximum attenuation and Q-1, and directions of maximum energy flow distinct from phase propagation. Each of these changes in physical characteristics are shown to vary with angle of incidence. Finite relaxation times for anelastic media result in energy flow due to interaction of superimposed radiation fields and contribute to energy flow across anelastic boundaries for all angles of incidence. Agreement of theoretical and numerical results with laboratory measurements argues for the validity of the theoretical and numerical formulations incorporating inhomogeneous wave fields. The agreement attests to the applicability of the model and helps confirm the existence of inhomogeneous body waves and their associated set of distinct physical characteristics in the earth. The existence of such body waves in layered, low-loss anelastic solids implies the need to reformulate some seismological models of the earth. The exact anelastic formulation for a liquid-solid interface with no low-loss approximations predicts the existence of a range of angles of incidence or an anelastic Rayleigh window, through which significant amounts of energy are transmitted across the boundary. The window accounts for the discrepancy apparent between measured reflection data presented in early textbooks and predictions based on classical elasticity theory. Characteristics of the anelastic Rayleigh window are expected to be evident in certain sets of wide-angle, ocean-bottom reflection data and to be useful in estimating Q-1 for some

  12. Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Dezhi Ning

    2017-09-01

    Full Text Available The performance of a dual-chamber Oscillating Water Column (OWC Wave Energy Converter (WEC is considered in the present study. The device has two sub-chambers with a shared orifice. A two-dimensional (2D fully nonlinear numerical wave flume based on the potential-flow theory and the time-domain higher-order boundary element method (HOBEM is applied for the simulation. The incident waves are generated by using the immerged sources and the air-fluid coupling influence is considered with a simplified pneumatic model. In the present study, the variation of the surface elevation and the water column volume in the two sub-chambers are investigated. The effects of the chamber geometry (i.e., the draft and breadth of two chambers on the surface elevation and the air pressure in the chamber are investigated, respectively. It is demonstrated that the surface elevations in the two sub-chambers are strongly dependent on the wave conditions. The larger the wavelength, the more synchronous motion of the two water columns in the two sub-chambers, thus, the lager the variation of the water column volume.

  13. Effects of wave energy converters on the surrounding soft-bottom macrofauna (west coast of Sweden).

    Science.gov (United States)

    Langhamer, O

    2010-06-01

    Offshore wave energy conversion is expected to develop, thus contributing to an increase in submerged constructions on the seabed. An essential concern related to the deployment of wave energy converters (WECs) is their possible impact on the surrounding soft-bottom habitats. In this study, the macrofaunal assemblages in the seabed around the wave energy converters in the Lysekil research site on the Swedish west coast and a neighbouring reference site were examined yearly during a period of 5 years (2004-2008). Macrobenthic communities living in the WECs' surrounding seabed were mainly composed by organisms typical for the area and depth off the Swedish west coast. At both sites the number of individuals, number of species and biodiversity were low, and were mostly small, juvenile organisms. The species assemblages during the first years of sampling were significantly different between the Lysekil research site and the nearby reference site with higher species abundance in the research site. The high contribution to dissimilarities was mostly due to polychaetes. Sparse macrofaunal densities can be explained by strong hydrodynamic forces and/or earlier trawling. WECs may alter the surrounding seabed with an accumulation of organic matter inside the research area. This indicates that the deployment of WECs in the Lysekil research site tends to have rather minor direct ecological impacts on the surrounding benthic community relative to the natural high variances.

  14. Upper-mantle velocities below the Scandinavian Mountains from P- and S- wave traveltime tomography

    DEFF Research Database (Denmark)

    Hejrani, Babak; Balling, N.; Jacobsen, B. H.

    2017-01-01

    More than 20000 arrival-times of teleseismic P- and S-waves were measured over a period of more than 10 years in five separate temporary and two permanent seismic networks covering the Scandinavian (Scandes) Mountains and adjacent areas of the Baltic Shield. The relative traveltime residuals were...... between Lofoten and the crest of the Northern Scandes Mountains and stays off the coast further north. Seismic velocities in the depth interval 100-300 km change across the UMVB from low relative VP and even lower relative VS on the western side to high relative VP and even higher relative VS to the east...

  15. Depth of source from long period P-waves

    International Nuclear Information System (INIS)

    Roy, Falguni

    1986-01-01

    Short period (SP) seismograms are much better than long period (LP) seismograms to get the time resolution needed for the focal depth estimation. However, complex scattering effects due to crustal inhomogeneities and also the multi-pathing of signals usually complicate the short period records. On the other hand the seismograms from long period signals demonstrate clear coherent body waves. Therefore, for intermediate depths (15-60 km) prediction error filtering of LP signals will be useful for identifying the depth phases. Such a study has been carried out in the first part of this report. In a group of 7 events, the p p phases have been extracted from LP signals and the depths so estimated compared well with the published data. For explosions at shallow depths (depth p phases will tend to cancel each other in LP seismograms. As the source depth increases, the cancellation becomes less effective. This feature can be used for the identification of an event as well as for getting an estimate of the source depth. This phenomenon can be successfully exploited for identifying multiple explosions, because at teleseismic distances (Δ > 30 o ) no LP (around 20s period) P waves will be seen in the seismogram due to such events whereas relatively strong SP signals and LP Rayleigh waves will be observed. This phenomenon has been studied for 16 events. For three of these events having m b as high as 6.1 and presumed to be underground explosions, one could not see any P wave on remaining 13 events (which were classified as earthquakes), it was possible to set a threshold value of m b above which an earthquake should produce LP P-wave signals at a given distance. (author)

  16. Hydroacoustic measurements of the radiated noise from Wave Energy Converters in the Lysekil project and project WESA

    OpenAIRE

    Haikonen, Kalle; Sundberg, Jan; Leijon, Mats

    2013-01-01

    Field measurements of the hydroacoustic noise from Wave Energy Converters (WECs) in the Lysekil project at Uppsala University and the Project WESA (joint effort between Uppsala University (Lead Partner), Ålands Teknikkluster r.f. and University of Turku) are presented. Anthropogenic noise is increasing in the oceans world wide and wave energy conversion may contribute to this noise, but to what extent? The main objective in this study is to examine the noise from full scale operating WECs in ...

  17. Neutron resonance spectroscopy on 113Cd: The p-wave levels

    International Nuclear Information System (INIS)

    Frankle, C.M.; Bowman, C.D.; Bowman, J.D.; Seestrom, S.J.; Sharapov, E.I.; Popov, Y.P.; Roberson, N.R.

    1992-01-01

    Weak levels in the compound nucleus 114 Cd were located by neutron time-of-flight spectroscopy techniques. Neutron capture measurements were performed with both a natural cadmium target and a highly enriched 113 Cd target. A total of 22 new resonances were located in the neutron energy interval 20-500 eV and were assumed to be p-wave. Resonance parameters, E 0 and gΓ n , are given for the newly identified levels. The p-wave strength function was determined to be 10 4 S 1 =2.8±0.8 and the average level spacing left-angle D 1 right-angle=14 eV. Comparison of the reduced widths with a Porter-Thomas distribution is consistent with having missed 15% of the p-wave levels

  18. Inclusive decays of {eta}{sub b} into S- and P-wave charmonium states

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhi-Guo, E-mail: hzgzlh@gmail.co [Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918(4), Beijing, 100049 (China); Theoretical Physics Center for Science Facilities, Beijing, 100049 (China); Li, Bai-Qing [Department of Physics, Huzhou Teachers College, Huzhou, 313000 (China)

    2010-09-20

    Inclusive S- and P-wave charmonium productions in the bottomonium ground state {eta}{sub b} decay are calculated at the leading order in the strong coupling constant {alpha}{sub s} and quarkonium internal relative velocity v in the framework of the NRQCD factorization approach. We find the contribution of {eta}{sub b{yields}{chi}c{sub J}}+gg followed by {chi}{sub c{sub J{yields}}}J/{psi}+{gamma} is also very important to inclusive J/{psi} production in the {eta}{sub b} decays, which maybe helpful to the investigation of the color-octet mechanism in the inclusive J/{psi} production in the {eta}{sub b} decays in the forthcoming LHCb and SuperB. As a complementary work, we also study the inclusive production of {eta}{sub c}, and {chi}{sub cJ} in the {eta}{sub b} decays, which may help us understand the X(3940) and X(3872) states.

  19. Laboratory measurements of P- and S-wave anisotropy in synthetic rocks by 3D printing

    Science.gov (United States)

    Kong, L.; Ostadhassan, M.; Tamimi, N.; Li, C.; Alexeyev, A.

    2017-12-01

    Synthetic rocks have been widely used to realize the models with controlled factors in rock physics and geomechanics experiments. Additive manufacturing technology, known as 3D printing, is becoming a popular method to produce the synthetic rocks as the advantages of timesaving, economics, and control. In terms of mechanical properties, the duplicability of 3D printed rock towards a natural rock has been studied whereas the seismic anisotropy still remains unknown as being the key factor in conducting rock physics experiments. This study utilized a 3D printer with gypsum as the ink to manufacture a series of synthetic rocks that have the shapes of octagonal prisms, with half of them printed from lateral and another half from the bottom. An ultrasonic investigation system was set up to measure the P- and S- wave velocities at different frequencies while samples were under dry conditions. The results show the impact of layered property on the P- and S- wave velocities. The measurement results were compared with the predicted results of Hudson model, demonstrating that the synthetic rock from 3D printing is a transverse isotropic model. The seismic anisotropy indicates that the availability of using 3D printed rocks to duplicate natural rocks for the purpose of recreating the experiments of rock physics. Future experiments will be performed on the dependence of seismic anisotropy on fracture geometry and density in 3D printed synthetic rocks.

  20. A Maxwell-vector p-wave holographic superconductor in a particular background AdS black hole metric

    Directory of Open Access Journals (Sweden)

    Dan Wen

    2018-05-01

    Full Text Available We study the p-wave holographic superconductor for AdS black holes with planar event horizon topology for a particular Lovelock gravity, in which the action is characterized by a self-interacting scalar field nonminimally coupled to the gravity theory which is labeled by an integer k. As the Lovelock theory of gravity is the most general metric theory of gravity based on the fundamental assumptions of general relativity, it is a desirable theory to describe the higher dimensional spacetime geometry. The present work is devoted to studying the properties of the p-wave holographic superconductor by including a Maxwell field which nonminimally couples to a complex vector field in a higher dimensional background metric. In the probe limit, we find that the critical temperature decreases with the increase of the index k of the background black hole metric, which shows that a larger k makes it harder for the condensation to form. We also observe that the index k affects the conductivity and the gap frequency of the holographic superconductors.

  1. A Maxwell-vector p-wave holographic superconductor in a particular background AdS black hole metric

    Science.gov (United States)

    Wen, Dan; Yu, Hongwei; Pan, Qiyuan; Lin, Kai; Qian, Wei-Liang

    2018-05-01

    We study the p-wave holographic superconductor for AdS black holes with planar event horizon topology for a particular Lovelock gravity, in which the action is characterized by a self-interacting scalar field nonminimally coupled to the gravity theory which is labeled by an integer k. As the Lovelock theory of gravity is the most general metric theory of gravity based on the fundamental assumptions of general relativity, it is a desirable theory to describe the higher dimensional spacetime geometry. The present work is devoted to studying the properties of the p-wave holographic superconductor by including a Maxwell field which nonminimally couples to a complex vector field in a higher dimensional background metric. In the probe limit, we find that the critical temperature decreases with the increase of the index k of the background black hole metric, which shows that a larger k makes it harder for the condensation to form. We also observe that the index k affects the conductivity and the gap frequency of the holographic superconductors.

  2. All-optical 40 Gbit/s compact integrated interferometric wavelength converter

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Hansen, Peter Bukhave

    1997-01-01

    An interferometric Michelson wavelength converter is presented that combines a speed-optimized semiconductor optical amplifier technology with the benefits of the integrated interferometer showing 40-Gbit/s wavelength conversion. The optimized wavelength converter demonstrates noninverted converted...

  3. Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Asmussen, Magnus Færing; Bech, Michael Møller

    2018-01-01

    Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how...... the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how...

  4. Design of a quasi-flat linear permanent magnet generator for pico-scale wave energy converter in south coast of Yogyakarta, Indonesia

    Science.gov (United States)

    Azhari, Budi; Prawinnetou, Wassy; Hutama, Dewangga Adhyaksa

    2017-03-01

    Indonesia has several potential ocean energies to utilize. One of them is tidal wave energy, which the potential is about 49 GW. To convert the tidal wave energy to electricity, linear permanent magnet generator (LPMG) is considered as the best appliance. In this paper, a pico-scale tidal wave power converter was designed using quasi-flat LPMG. The generator was meant to be applied in southern coast of Yogyakarta, Indonesia and was expected to generate 1 kW output. First, a quasi-flat LPMG was designed based on the expected output power and the wave characteristic at the placement site. The design was then simulated using finite element software of FEMM. Finally, the output values were calculated and the output characteristics were analyzed. The results showed that the designed power plant was able to produce output power of 725.78 Wp for each phase, with electrical efficiency of 64.5%. The output characteristics of the LPMG: output power would increase as the average wave height or wave period increases. Besides, the efficiency would increase if the external load resistance increases. Meanwhile the output power of the generator would be maximum at load resistance equals 11 Ω.

  5. Analysis of the impacts of Wave Energy Converter arrays on the nearshore wave climate in the Pacific Northwest

    Science.gov (United States)

    O'Dea, A.; Haller, M. C.

    2013-12-01

    As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN

  6. High-power millimeter-wave mode converters in overmoded circular waveguides using periodic wall perturbations

    International Nuclear Information System (INIS)

    Thumm, M.

    1984-07-01

    This work reports on measurements and calculations (coupled mode equations) on the conversion of circular elecric TEsub(0n) gyrotron mode compositions (TE 01 to TE 04 ) at 28 and 70 GHz to the linearly polarized TE 11 mode by means of a mode converter system using periodic waveguide wall perturbations. Mode transducers with axisymmetric radius perturbations transform the TEsub(0n) gyrotron mode mixture to the more convenient TE 01 mode for long-distance transmission through overmoded waveguides. Proper matching of the phase differences between the TEsub(0n) modes and of lengths and perturbation amplitudes of the several converter sections is required. A mode converter with constant diameter and periodically perturbed curvature transfers the unpolarized TE 01 mode into the TE 11 mode which produces an almost linearly polarized millimeter-wave beam needed for efficient electron cyclotron heating (ECRH) of plasmas in thermonuclear fusion devices. The experimentally determined TEsub(0n)-to-TE 01 conversion efficiency is (98+-1)% at 28 and 70 GHz (99% predicted) while the TE 01 -to-TE 11 converter has a (96+-2)% conversion efficiency at 28 GHz (95% predicted) and (94+-2)% at 70 GHz (93% predicted); ohmic losses are included. (orig./AH)

  7. COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS FOR OVERTOPPING DISCHARGE OF THE OBREC WAVE ENERGY CONVERTER

    Directory of Open Access Journals (Sweden)

    A. YAZID MALIKI

    2017-05-01

    Full Text Available OBREC is the latest innovation of overtopping wave energy converter (WEC which is coalesced with the rubble mound breakwaters. The acquisition of wave overtopping in a front reservoir and consequently releasing process through turbine is the concept of energy production in OBREC. The physical scale model studies of overtopping discharge of the OBREC have recently been done by previous researcher in wave flume at Aalborg University. This paper demonstrates the overtopping behavior of OBREC device using a VOF method with capabilities to solve RANS equation in the numerical suite Flow3D. The purpose of this research is to validate the overtopping discharge performance of the numerical model against the experiments of the OBREC. Based on the observation, the results have shown a good agreement between the validation and physical experiment.

  8. Analysis and dynamical modeling of a piston valve for a wave energy converter

    OpenAIRE

    Cruz Gispert, Albert

    2014-01-01

    The Ocean Grazer, a novel wave energy converter, has been proposed by the University of Groningen. The system can collect and store multiple forms of ocean energy, with a pistontype hydraulic pump as its core technology. In this work, the dynamical behavior of a piston valve for use in the piston pump system is studied. In order to gain insight into the dynamical behavior of the piston-type hydraulic pump, a simulation model is developed to describe the movement of the piston v...

  9. Screening of Available Tools for Dynamic Mooring Analysis of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Jonas Bjerg Thomsen

    2017-06-01

    Full Text Available The focus on alternative energy sources has increased significantly throughout the last few decades, leading to a considerable development in the wave energy sector. In spite of this, the sector cannot yet be considered commercialized, and many challenges still exist, in which mooring of floating wave energy converters is included. Different methods for assessment and design of mooring systems have been described by now, covering simple quasi-static analysis and more advanced and sophisticated dynamic analysis. Design standards for mooring systems already exist, and new ones are being developed specifically forwave energy converter moorings, which results in other requirements to the chosen tools, since these often have been aimed at other offshore sectors. The present analysis assesses a number of relevant commercial software packages for full dynamic mooring analysis in order to highlight the advantages and drawbacks. The focus of the assessment is to ensure that the software packages are capable of fulfilling the requirements of modeling, as defined in design standards and thereby ensuring that the analysis can be used to get a certified mooring system. Based on the initial assessment, the two software packages DeepC and OrcaFlex are found to best suit the requirements. They are therefore used in a case study in order to evaluate motion and mooring load response, and the results are compared in order to provide guidelines for which software package to choose. In the present study, the OrcaFlex code was found to satisfy all requirements.

  10. S, P, D, F, G-waves KN phase shifts in a constituent quark model with a spin-orbit interaction

    International Nuclear Information System (INIS)

    Lemaire, S.; Labarsouque, J.; Silvestre-Brac, B.

    2002-01-01

    The I=1 and I=0 kaon-nucleon s, p, d, f, g-waves phase shifts have been calculated in a nonrelativistic quark potential model using the resonating group method (RGM). The interquark potential includes gluon exchanges with a spin-orbit interaction. This force has been determined to reproduce as well as possible the meson and baryon spectra. The same force is employed for the cluster and intercluster dynamics and the relative KN wave-function is calculated without any approximation. While some channels are correctly described, the theory is still unable to explain others

  11. P-wave indices in patients with pulmonary emphysema: do P-terminal force and interatrial block have confounding effects?

    Directory of Open Access Journals (Sweden)

    Chhabra L

    2013-05-01

    Full Text Available Lovely Chhabra,1 Vinod K Chaubey,1 Chandrasekhar Kothagundla,1 Rishi Bajaj,1 Sudesh Kaul,1 David H Spodick2 1Department of Internal Medicine, 2Department of Cardiovascular Diseases, University of Massachusetts Medical School, Worcester, MA, USA Introduction: Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60° serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf, amplitude of initial positive component of P-waves in V1 (i-PV1, and interatrial block (IAB have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Materials and methods: Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (- P wave in V1 or a biphasic (+/- P wave in V1. Results: s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03. s-Ptf also significantly correlated with IAB (P = 0.001; however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23. There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047; however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36. Conclusion: We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by

  12. The Inter Facility Testing of a Standard Oscillating Water Column (OWC) Type Wave Energy Converter (WEC)

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt; Thomsen, Jonas Bjerg

    This report describes the behavior and preliminary performance of a simplified standard oscillating water column (OWC) wave energy converter (WEC). The same tests will be conducted at different scales at 6 different test facilities and the results obtained will be used for comparison. This project...

  13. On The Dynamics and Design of a Two-body Wave Energy Converter

    Science.gov (United States)

    Liang, Changwei; Zuo, Lei

    2016-09-01

    A two-body wave energy converter oscillating in heave is studied in this paper. The energy is extracted through the relative motion between the floating and submerged bodies. A linearized model in the frequency domain is adopted to study the dynamics of such a two-body system with consideration of both the viscous damping and the hydrodynamic damping. The closed form solution of the maximum absorption power and corresponding power take-off parameters are obtained. The suboptimal and optimal designs for a two-body system are proposed based on the closed form solution. The physical insight of the optimal design is to have one of the damped natural frequencies of the two body system the same as, or as close as possible to, the excitation frequency. A case study is conducted to investigate the influence of the submerged body on the absorption power of a two-body system subjected to suboptimal and optimal design under regular and irregular wave excitations. It is found that the absorption power of the two-body system can be significantly higher than that of the single body system with the same floating buoy in both regular and irregular waves. In regular waves, it is found that the mass of the submerged body should be designed with an optimal value in order to achieve the maximum absorption power for the given floating buoy. The viscous damping on the submerged body should be as small as possible for a given mass in both regular and irregular waves.

  14. Upper-mantle P- and S- wave velocities across the Northern Tornquist Zone from traveltime tomography

    DEFF Research Database (Denmark)

    Hejrani, Babak; Balling, N.; Jacobsen, B. H.

    2015-01-01

    This study presents P- and S-wave velocity variations for the upper mantle in southern Scandinavia and northern Germany based on teleseismic traveltime tomography. Tectonically, this region includes the entire northern part of the prominent Tornquist Zone which follows along the transition from old...... delineated between shield areas (with high seismic mantle velocity) and basins (with lower velocity). It continues northwards into southern Norway near the Oslo Graben area and further north across the Southern Scandes Mountains. This main boundary, extending to a depth of at least 300 km, is even more...

  15. Separation of S-wave pseudoscalar and pseudovector amplitudes in {pi}{sup -}p{yields}{pi}{sup +}{pi}{sup -}n reaction on polarized target

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, R.; Lesniak, L.; Rybicki, K. [Institute of Nuclear Physics, Cracow (Poland)

    1996-06-01

    A new analysis of S-wave production amplitudes for the reaction {pi}{sup -}p{yields}{pi}{sup +}{pi}{sup -}n on a transversely polarized target is performed. It is based on the results obtained by CERN-Cracow-Munich collaboration in the {pi}{pi} energy range from 600 MeV to 1600 MeV at 17.2 GeV/c {pi}{sup -} momentum. Energy-independent separation of the S-wave pseudoscalar amplitude ({pi} exchange) from the pseudovector amplitude (a{sub 1} exchange) is carried out using assumptions much weaker than those in all previous analyses. We show that, especially around 1000 MeV and around 1500 MeV, the a{sub 1} exchange amplitude cannot be neglected. The scalar-isoscalar {pi}{pi} phase shift are calculated using fairly weak assumptions. Our results are consistent both with the so called ``up`` and the well-known ``down`` solution, provided we choose those in which the S-wave phases increase slower with the effective {pi}{pi} mass than the P-wave phases. Above 1420 MeV both sets of phase shifts increase with energy faster than in the experiment on an unpolarized target. This fact can be related to the presence of scalar resonance f{sub o}(1500). (author). 41 refs, 9 figs, 1 tab.

  16. Influence of material selection on the structural behavior of a wave energy converter

    Directory of Open Access Journals (Sweden)

    Cândida M. S. P. Malça

    2014-09-01

    Full Text Available In the last decades, the world energy demand has raised significantly. Concerning this fact, wave energy should be considered as a valid alternative for electricity production. Devices suitable to harness this kind of renewable energy source and convert it into electricity are not yet commercially competitive. This paper is focused on the selection and analysis of different types of elastic materials and their influence on the structural behavior of a wave energy converter (WEC. After a brief characterization of the device, a tridimensional computer aided design (3D CAD numerical model was built and several finite element analyses (FEA were performed through a commercial finite element code. The main components of the WEC, namely the buoy, supporting cables and hydraulic cylinder were simulated assuming different materials. The software used needs, among other parameters, the magnitude of the resultant hydrodynamic forces acting upon the floating buoy obtained from a WEC time domain simulator (TDS which was built based on the WEC dynamic model previously developed. The Von Mises stress gradients and displacement fields determined by the FEA demonstrated that, regardless of the WEC component, the materials with low Young's modulus seems to be unsuitable for this kind of application. The same is valid for the material yield strength since materials with a higher yield strength lead to a better structural behavior of WEC components because lower stress and displacement values were obtained. The developed 3D CAD numerical model showed to be suitable to analyze different combinations of structural conditions. They could depend of different combinations of buoy position and resultant hydrodynamic forces acting upon the buoy, function of the specific sea wave parameters found on the deployment site.

  17. Deeply bound 1s and 2p pionic states in 205Pb and determination of the s-wave part of the pion-nucleus interaction

    International Nuclear Information System (INIS)

    Geissel, H.; Gilg, H.; Gillitzer, A.

    2001-06-01

    We observed well separated 1s and 2p π - states in 205 Pb in the 206 Pb(d, 3 He) reaction at T d = 604.3 MeV. The binding energies and the widths determined are: B 1s = 6.768 ± 0.044 (stat) ± 0.041 (syst) MeV, Γ 1s = 0.778 -0.130 +0.150 (stat) ± 0.055 (syst) MeV, B 2p = 5.110 ± 0.015 (stat) ± 0.042 (syst) MeV, and Γ 2p = 0.371 ± 0.037 (stat) ± 0.048 (syst) MeV. They are used to deduce the real and imaginary strengths of the s-wave part of the pion-nucleus interaction, yielding 26.1 -1.5 +1.7 MeV as a pion mass shift in the center of 205 Pb. (orig.)

  18. Structural Loads Analysis for Wave Energy Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    van Rij, Jennifer A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluid dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process. The objective of this study is to verify the generalized body-modes approach in comparison to high-fidelity FSI simulations to accurately predict structural deflections and stress loads in a WEC. Two verification cases are considered, a free-floating barge and a fixed-bottom column. Details for both the generalized body-modes models and FSI models are first provided. Results for each of the models are then compared and discussed. Finally, based on the verification results obtained, future plans for incorporating the generalized body-modes method into the WEC simulation tool, WEC-Sim, and the overall WEC design process are discussed.

  19. The Relationship Between Aging and P Wave Dispersion

    Directory of Open Access Journals (Sweden)

    İrfan Barutçu

    2009-12-01

    Full Text Available Objective: Atrial fibrillation (AF, commonly observed in advanced ages, displays striking age dependent increase and increased P wave dispersion (PWD has been shown to be a predictor of AF. In this studywe sought to determine whether P wave duration and PWD increase with aging. Method and Results: Eighty-three elderly subjects (group-I mean age 75±8 years and 40 healthy young subjects (group-II, mean age 37±6 years participated in this study. 12-lead ECG recorded at a paper speed of 50mm/s was obtained from each participant. Maximum (Pmax and minimum P wave duration (Pmin was measured manually with a caliper and the difference between two values was defined asPWD. Pmax and PWD were significantly higher in group-I compared to group-II. (98±8 vs. 93±8 p=0.01, 41±12 vs. 34±13 p=0.002, respectively. Among the elderly population when those with cardiovascular disorders such as hypertension, coronary artery disease and heart failure were excluded, Pmax and PWD were still significantly higher than the young population. (Pmax: 98±7 vs. 93±7, p=0.02 and PWD: 42±11 vs. 34±13, p=0.002. Moreover, on correlation analysis a positive correlation was detected between Pmaxand PWD and aging. (r=0.29, p=0.004; r=0.30, p=0.003 respectively.Conclusion: PWD shows age dependent increase and may be a useful marker for estimation the risk of developing AF seen in advanced ages.

  20. Modular approach for conversion to the ion-hybrid wave and α gyroresonance

    International Nuclear Information System (INIS)

    Kaufman, A.N.; Morehead, J.J.; Brizard, A.J.; Tracy, E.R.

    1997-01-01

    Linear conversion of an incoming magnetosonic wave (a.k.a. fast or compressional wave) to an ion-hybrid wave can be considered as a 3-step process in ray phase space. This is demonstrated by casting the cold-fluid model into the Friedland-Kaufman normal form for linear mode conversion. First, the incoming magnetosonic ray (MSR) converts a fraction of its action to an intermediate ion-hybrid ray (IHR), with the transmitted ray proceeding through the conversion layer. The IHR propagates in k-space to a second conversion point, where it converts in turn a fraction of its action into a reflected MSR, with the remainder of the its action constituting the converted IHR. The modular approach gives exact agreement with the more standard Budden formulation for the transmission, reflection and conversion coefficients, but has the important advantage of exposing the intermediate IHR. The existence of the intermediate IHR has important physical consequences as it can resonate with α particles. We estimate the time-integrated damping coefficient between the two conversions and show that ∫γdt is of order -100, thus the IH wave is completely annihilated between conversions and transfers its energy to the α close-quote s. This suggests that proposals to use the IH mode for current drive or DT heating are likely to fail in the presence of fusion α close-quote s. copyright 1997 American Institute of Physics

  1. Benefits of up-wave measurements in linear short-term wave forecasting for wave energy applications

    OpenAIRE

    Paparella, Francesco; Monk, Kieran; Winands, Victor; Lopes, Miguel; Conley, Daniel; Ringwood, John

    2014-01-01

    The real-time control of wave energy converters requires the prediction of the wave elevation at the location of the device in order to maximize the power extracted from the waves. One possibility is to predict the future wave elevation by combining its past history with the spatial information coming from a sensor which measures the free surface elevation upwave of the wave energy converter. As an application example, the paper focuses on the prediction of the wave eleva...

  2. Adjustable wideband reflective converter based on cut-wire metasurface

    International Nuclear Information System (INIS)

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Jianliang; Deng, Longjiang

    2015-01-01

    We present the design, analysis, and measurement of a broadband reflective converter using a cut-wire (CW) metasurface. Based on the characteristics of LC resonances, the proposed reflective converter can rotate a linearly polarized (LP) wave into its cross-polarized wave at three resonance frequencies, or convert the LP wave to a circularly polarized (CP) wave at two other resonance frequencies. Furthermore, the broad-band properties of the polarization conversion can be sustained when the incident wave is a CP wave. The polarization states can be adjusted easily by changing the length and width of the CW. The measured results show that a polarization conversion ratio (PCR) over 85% can be achieved from 6.16 GHz to 16.56 GHz for both LP and CP incident waves. The origin of the polarization conversion is interpreted by the theory of microwave antennas, with equivalent impedance and electromagnetic (EM) field distributions. With its simple geometry and multiple broad frequency bands, the proposed converter has potential applications in the area of selective polarization control. (paper)

  3. A new method of testing pile using dynamic P-S-curve made by amplitude of wave train

    Science.gov (United States)

    Hu, Yi-Li; Xu, Jun; Duan, Yong-Kong; Xu, Zhao-Yong; Yang, Run-Hai; Zhao, Jin-Ming

    2004-11-01

    A new method of detecting the vertical bearing capacity for single-pile with high strain is discussed in this paper. A heavy hammer or a small type of rocket is used to strike the pile top and the detectors are used to record vibration graphs. An expression of higher degree of strain (deformation force) is introduced. It is testified theoretically that the displacement, velocity and acceleration cannot be obtained by simple integral acceleration and differential velocity when long displacement and high strain exist, namely when the pile phase generates a whole slip relative to the soil body. That is to say that there are non-linear relations between them. It is educed accordingly that the force P and displacement S are calculated from the amplitude of wave train and (dynamic) P-S curve is drew so as to determine the yield points. Further, a method of determining the vertical bearing capacity for single-pile is discussed. A static load test is utilized to check the result of dynamic test and determine the correlative constants of dynamic-static P( Q)- S curve.

  4. Wave energy

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, T.J.T. (Queen' s Univ., Belfast, Northern Ireland (UK)); White, P.R.S. (Lanchester Polytechnic, Coventry (UK)); Baker, A.C.J. (Binnie and Partners, London (UK))

    1988-10-01

    An informal discussion on various wave energy converters is reported. These included a prototype oscillating water column (OWC) device being built on the Isle of Islay in Scotland; the SEA Clam; a tapering channel device (Tapchan) raising incoming waves into a lagoon on a Norwegian island and an OWC device on the same island. The Norwegian devices are delivering electricity at about 5.5p/KWh and 4p/KWh respectively with possibilities for reduction to 2.5-3p/KWh and 3p/KWh under favourable circumstances. The discussion ranged over comparisons with progress in wind power, engineering aspects, differences between inshore and offshore devices, tidal range and energy storage. (UK).

  5. Analysis of a Wave Energy Converter with Particular Focus on the Effects of Power Take-Off Forces on the Structural Responses

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen

    to evaluate the electrical power generated by a given wave energy device from a given wave condition. The first part of this work focuses on the development of such a numerical model. An important task is to quantify the wave-induced load effects to ensure that the input is correct and a safe and robust......Wave energy is regarded as a major and promising renewable energy resource. The most critical factor to the success of deploying a wave energy converter in an ocean environment is the cost. The key factors affecting the costs include the performance, capital costs, operation and maintenance costs...

  6. px+ipy Superfluid from s-Wave Interactions of Fermionic Cold Atoms

    International Nuclear Information System (INIS)

    Zhang Chuanwei; Tewari, Sumanta; Lutchyn, Roman M.; Das Sarma, S.

    2008-01-01

    Two-dimensional (p x +ip y ) superfluids or superconductors offer a playground for studying intriguing physics such as quantum teleportation, non-Abelian statistics, and topological quantum computation. Creating such a superfluid in cold fermionic atom optical traps using p-wave Feshbach resonance is turning out to be challenging. Here we propose a method to create a p x +ip y superfluid directly from an s-wave interaction making use of a topological Berry phase, which can be artificially generated. We discuss ways to detect the spontaneous Hall mass current, which acts as a diagnostic for the chiral p-wave superfluid

  7. Considering linear generator copper losses on model predictive control for a point absorber wave energy converter

    International Nuclear Information System (INIS)

    Montoya Andrade, Dan-El; Villa Jaén, Antonio de la; García Santana, Agustín

    2014-01-01

    Highlights: • We considered the linear generator copper losses in the proposed MPC strategy. • We maximized the power transferred to the generator side power converter. • The proposed MPC increases the useful average power injected into the grid. • The stress level of the PTO system can be reduced by the proposed MPC. - Abstract: The amount of energy that a wave energy converter can extract depends strongly on the control strategy applied to the power take-off system. It is well known that, ideally, the reactive control allows for maximum energy extraction from waves. However, the reactive control is intrinsically noncausal in practice and requires some kind of causal approach to be applied. Moreover, this strategy does not consider physical constraints and this could be a problem because the system could achieve unacceptable dynamic values. These, and other control techniques have focused on the wave energy extraction problem in order to maximize the energy absorbed by the power take-off device without considering the possible losses in intermediate devices. In this sense, a reactive control that considers the linear generator copper losses has been recently proposed to increase the useful power injected into the grid. Among the control techniques that have emerged recently, the model predictive control represents a promising strategy. This approach performs an optimization process on a time prediction horizon incorporating dynamic constraints associated with the physical features of the power take-off system. This paper proposes a model predictive control technique that considers the copper losses in the control optimization process of point absorbers with direct drive linear generators. This proposal makes the most of reactive control as it considers the copper losses, and it makes the most of the model predictive control, as it considers the system constraints. This means that the useful power transferred from the linear generator to the power

  8. Time-lapse changes of P- and S-wave velocities and shear wave splitting in the first year after the 2011 Tohoku earthquake, Japan: shallow subsurface

    Science.gov (United States)

    Sawazaki, Kaoru; Snieder, Roel

    2013-04-01

    We detect time-lapse changes in P- and S-wave velocities (hereafter, VP and VS, respectively) and shear wave splitting parameters associated with the 2011 Tohoku earthquake, Japan, at depths between 0 and 504 m. We estimate not only medium parameters but also the 95 per cent confidence interval of the estimated velocity change by applying a new least squares inversion scheme to the deconvolution analysis of KiK-net vertical array records. Up to 6 per cent VS reduction is observed at more than half of the analysed KiK-net stations in northeastern Japan with over 95 per cent confidence in the first month after the main shock. There is a considerable correlation between the S-wave traveltime delay and the maximum horizontal dynamic strain (MDS) by the main shock motion when the strain exceeds 5 × 10- 4 on the ground surface. This correlation is not clearly observed for MDS at the borehole bottom. On the contrary, VP and shear wave splitting parameters do not show systematic changes after the Tohoku earthquake. These results indicate that the time-lapse change is concentrated near the ground surface, especially in loosely packed soil layers. We conclude that the behaviour of VP, VS and shear wave splitting parameters are explained by the generation of omnidirectional cracks near the ground surface and by the diffusion of water in the porous subsurface. Recovery of VS should be related to healing of the crack which is proportional to the logarithm of the lapse time after the main shock and/or to decompaction after shaking.

  9. Theory of the synchronous motion of an array of floating flap gates oscillating wave surge converter

    Science.gov (United States)

    Michele, Simone; Sammarco, Paolo; d'Errico, Michele

    2016-08-01

    We consider a finite array of floating flap gates oscillating wave surge converter (OWSC) in water of constant depth. The diffraction and radiation potentials are solved in terms of elliptical coordinates and Mathieu functions. Generated power and capture width ratio of a single gate excited by incoming waves are given in terms of the radiated wave amplitude in the far field. Similar to the case of axially symmetric absorbers, the maximum power extracted is shown to be directly proportional to the incident wave characteristics: energy flux, angle of incidence and wavelength. Accordingly, the capture width ratio is directly proportional to the wavelength, thus giving a design estimate of the maximum efficiency of the system. We then compare the array and the single gate in terms of energy production. For regular waves, we show that excitation of the out-of-phase natural modes of the array increases the power output, while in the case of random seas we show that the array and the single gate achieve the same efficiency.

  10. Neutron capture in s-wave resonances of 56Fe, 58Ni, and 60Ni

    International Nuclear Information System (INIS)

    Wisshak, F.; Kaeppeler, F.; Reffo, G.; Fabbri, F.

    1983-07-01

    The neutron capture widths of s-wave resonances in 56 Fe (27.7 keV), 58 Ni(15.4 keV) and 60 Ni (12.5 keV) have been determined using a setup completely different from previous experiments. A pulsed 3-MV Van de Graaff accelerator and a kinematically collimated neutron beam, produced via the 7 Li (p,n) reaction, was used in the experiments. Capture gamma-rays were observed by three Moxon-Rae detectors with graphite-, bismuth-graphite-, and bismuth-converters, respectively. The samples were positioned at a neutron flight path of only 8 cm. Thus events due to capture of resonance scattered neutrons in the detectors or in surrounding materials are completely discriminated by their additional time of flight. The high neutron flux at the sample position allowed the use of very thin samples (0.15 mm-0.45 mm), avoiding large multiple scattering corrections. The data obtained with the individual detectors were corrected for the efficiency of the respective converter materials. For that purpose, detailed theoretical calculations of the capture gamma-ray spectra of the measured isotopes and of gold, which was used as a standard, were performed. The final results are: GAMMAsub(γ)(27.7 keV, 56 Fe) = 1.06 +- 0.05 eV, GAMMAsub(γ)(15.4 keV, 58 Ni) = 1.53 +- 0.10 eV and GAMMAsub(γ)(12.5 keV, 60 Ni) = 2.92 +- 0.19 eV. The accuracy obtained with the present experimental method represents an improvement of a factor 3-6 compared to previous experiments. The investigated s-wave resonances contribute 10-40% to the total capture rate of the respective isotopes in a typical fast reactor. (orig.) [de

  11. Testing, Analysis and Control of Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James

    of the incident waves upon a wave device allows the possibility of accurately tuning the power-take off mechanism (the hydro-turbines for the Wave Dragon) to capture more energy. A digital filter method for performing this prediction in real-time with minimal computational effort is presented. Construction...... of digital filters is well known within signal processing, but their use for this application in Wave Energy is new. The filter must be designed carefully as the frequency components of waves travel at different speeds. Research presented in this thesis has advanced the development of the Wave Dragon device...

  12. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    Science.gov (United States)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  13. Evaluation of phosphorus in thermally converted sewage sludge: P pools and availability to wheat

    DEFF Research Database (Denmark)

    Mackay, Jessica E.; Cavagnaro, Timothy R.; Jakobsen, Iver

    2017-01-01

    Aims Dried sewage sludge (SS) and the by-products of four SS thermal conversion processes (pyrolysis, incineration and two types of gasification) were investigated for phosphorus (P) availability. Methods A sequential extraction was used to determine the distribution of P among different P pools....... After mixing materials with soil, availability of the P was determined with soil P extractions and in a growth experiment with wheat. Results Thermally converted SS contained a greater proportion of P within recalcitrant pools than dried SS. Despite having very different P pool distributions......, the incinerated and dried SS provided similar amounts of P to plants. Plant P supply from dried and incinerated SS was lower than the comparable soluble P treatment (50 mg P kg−1), but higher than a soluble treatment at a lower rate (20 mg P kg−1). Plant P uptake in gasified and pyrolysed treatments was only...

  14. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    Science.gov (United States)

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  15. Hydraulic evaluation of Joltech’s GyroPTO for wave energy applications

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Pecher, Arthur Francois Serge; Guaraldi, Irene

    The work presented in this report was completed under the support from the Danish Energy Technological Development and Demonstration Program (EUDP), project no. 64014-0129 “Gyro electric energy converter unit for wave energy”. Testing took place in the wave basin at the Department of Civil Engine...

  16. Modelling performance of a small array of Wave Energy Converters: Comparison of Spectral and Boussinesq models

    International Nuclear Information System (INIS)

    Greenwood, Charles; Christie, David; Venugopal, Vengatesan; Morrison, James; Vogler, Arne

    2016-01-01

    This paper presents results from numerical simulations of three Oscillating Wave Surge Converters (OWSC) using two different computational models, Boussinesq wave (BW) and Spectral wave (SW) of the commercial software suite MIKE. The simulation of a shallow water wave farm applies alternative methods for implementing a frequency dependent absorption in both the BW and SW models, where energy extraction is based on experimental data from a scaled Oyster device. The effects of including wave diffraction within the SW model is tested by using diffraction smoothing steps and various directional wave conditions. The results of this study reveal important information on the models realms of validity that is heavily dependent on the incident sea state and the removal of diffraction for the SW model. This yields an increase in simulation accuracy for far-field disturbances when diffraction is entirely removed. This highlights specific conditions where the BW and SW model may thrive but also regions where reduced performance is observed. The results presented in this paper have not been validated with real sea site wave device array performance, however, the methodology described would be useful to device developers to arrive at preliminary decisions on array configurations and to minimise negative environmental impacts.

  17. Feasibility Study for Using a Linear Transverse Flux Machine as part of the Structure of Point Absorber Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Ilana Pereira da Costa Cunha

    2017-10-01

    Full Text Available This is a feasibility study for the generation of wave energy by means of a transverse flux machine connected to a device for converting wave energy known as Point Absorber. The article contains literature review on the topic and analysis of data obtained by means of a prototype built in the laboratory. Based on the results, the study concludes that this use is feasible.

  18. InP-based spotsize converter for integration with switching devices

    NARCIS (Netherlands)

    Stulemeijer, J.; Bakker, A.F.; Moerman, I.; Groen, F.H.; Smit, M.K.

    1999-01-01

    We have designed and fabricated an InGaAsP-InP based spotsize converter (SSC), which is compatible with the waveguide structure used in monolithic integrated ADM's and OXC's. In a first experiment, a total coupling loss to a cleaved fiber of 4.2 dB for TE and 3.9 dB for TM was realized with a 1.5

  19. Development of Wave Dragon from Scale 1:50 to Prototype

    DEFF Research Database (Denmark)

    Soerensen, H. C.; Friis-Madsen, E.; Panhauser, W.

    2003-01-01

    The Wave Dragon is a 4 to 11 MW offshore wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power....... In the period from 1998 to 2001 extensive testing on a scale 1:50 model was carried out. During the last month, testing has started on a prototype of the Wave Dragon in Nissum Bredning, Denmark (wave climate in scale 1:4.5 of the North Sea). The prototype has been grid connected in June 2003 as the world...

  20. Acoustic and Shear-Wave Velocities in Hydrate-Bearing Sediments Offshore Southwestern Taiwan: Tomography, Converted Waves Analysis and Reverse-Time Migration of OBS Records

    Directory of Open Access Journals (Sweden)

    Philippe Schnurle

    2006-01-01

    Full Text Available A 2.5-D combined seismic reflection and refraction survey has been conducted in the accretionary complex offshore of southwestern Taiwan where BSRs (Bottom Simulating Reflectors are highly concentrated and geochemical signals for the presence of gas hydrate are strong. In this study, we perform velocity analysis of the 6 4-component OBS (Ocean-Bottom Seismometer records along the southernmost transect of this seismic experiment. We utilize 3 independent methods in order to accurately determine the acoustic and shear-wave velocities of the sediments: 1-D Root Mean Square (RMS analysis of the P-P and P-S reflected events on individual datumed components, 2-D inversion of the P-P and P-S reflected and refracted events along the in-line transect, and 3-D acoustic inversion of the first arrivals. The principal sources of bias in the determination of the velocities are the 3-dimentional nature of the topography and the complexity of the underlying structures. The three methods result in consistent velocity profiles. Rapid lateral and vertical variations of the velocities are observed. We then investigate the large scale gas hydrate content through rock physic modeling: at the vertical of each OBS, shear-waves velocities are utilized to estimate the water-filled porosities, and the acoustic velocities predicted for a set of gas hydrate, quartz and clay contents are compared to the observed profiles.

  1. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    International Nuclear Information System (INIS)

    Wu Jia-Liang; Lin Bao-Qin; Da Xin-Yu

    2016-01-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x - or y -polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. (paper)

  2. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    Science.gov (United States)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  3. Atmel Microcontroller Based Soft Switched PWM ZVS Full Bridge DC to DC Converter

    Directory of Open Access Journals (Sweden)

    DEEPAK KUMAR NAYAK

    2010-12-01

    Full Text Available This paper deals with the simulation and implementation of soft switched PWM ZVS full bridge DC to DC converter. The 48V DC is efficiently reduced to 12V DC using a DC to DC converter. This converter has advantages like reduced switching losses, stresses and EMI. Input DC is converted into high frequency AC and it is stepped down to 12V level. Later it is rectified using a full wave rectifier. Laboratory model of microcontroller based DC to DC converter is fabricated and tested. The experimental results are compared with the simulation results.

  4. Balancing the Power-to-Load Ratio for a Novel Variable Geometry Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Alan D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    This work attempts to balance power absorption against structural loading for a novel variable geometry wave energy converter. The variable geometry consists of four identical flaps that will be opened in ascending order starting with the flap closest to the seafloor and moving to the free surface. The influence of a pitch motion constraint on power absorption when utilizing a nonideal power take-off (PTO) is examined and found to reduce the losses associated with bidirectional energy flow. The power-to-load ratio is evaluated using pseudo-spectral control to determine the optimum PTO torque based on a multiterm objective function. The pseudo-spectral optimal control problem is extended to include load metrics in the objective function, which may now consist of competing terms. Separate penalty weights are attached to the surge-foundation force and PTO control torque to tune the optimizer performance to emphasize either power absorption or load shedding. PTO efficiency is not included in the objective function, but the penalty weights are utilized to limit the force and torque amplitudes, thereby reducing losses associated with bidirectional energy flow. Results from pseudo-spectral control demonstrate that shedding a portion of the available wave energy can provide greater reductions in structural loads and reactive power.

  5. P-wave holographic superconductor/insulator phase transitions affected by dark matter sector

    International Nuclear Information System (INIS)

    Rogatko, Marek; Wysokinski, Karol I.

    2016-01-01

    The holographic approach to building the p-wave superconductors results in three different models: the Maxwell-vector, the SU(2) Yang-Mills and the helical. In the probe limit approximation, we analytically examine the properties of the first two models in the theory with dark matter sector. It turns out that the effect of dark matter on the Maxwell-vector p-wave model is the same as on the s-wave superconductor studied earlier. For the non-Abelian model we study the phase transitions between p-wave holographic insulator/superconductor and metal/superconductor. Studies of marginally stable modes in the theory under consideration allow us to determine features of p-wave holographic droplet in a constant magnetic field. The dependence of the superconducting transition temperature on the coupling constant α to the dark matter sector is affected by the dark matter density ρ_D. For ρ_D>ρ the transition temperature is a decreasing function of α. The critical chemical potential μ_c for the quantum phase transition between insulator and metal depends on the chemical potential of dark matter μ_D and for μ_D=0 is a decreasing function of α.

  6. Coupled s-wave and d-wave states in the heavy-fermion superconductor U/sub 1-//sub x/Th/sub x/Be/sub 13/

    International Nuclear Information System (INIS)

    Langner, A.; Sahu, D.; George, T.F.

    1988-01-01

    In the heavy-fermion superconductor U/sub 1-//sub x/Th/sub x/Be/sub 13/, superconducting states coexist for thorium concentrations 0 ≤ x ≤ 0.06. Assuming s-wave and d-wave symmetries for these states, we derive a Ginzburg-Landau free-energy expression which couples s- and d-wave states and is rotationally invariant, in contrast to the free-energy expression proposed by P. Kumar and P. Woelfle [Phys. Rev. Lett. 59, 1954 (1987)]. We discuss in detail the consequences that follow from our free-energy relation. In particular, we predict that in the above system there are two eigenfrequencies associated with the dynamics of phase oscillations (internal Josephson effect) which are characteristic of the s-wave and d-wave states

  7. Molecular components in P-wave charmed-strange mesons

    CERN Document Server

    Ortega, Pablo G.

    2016-10-26

    Results obtained by various experiments show that the $D_{s0}^{\\ast}(2317)$ and $D_{s1}(2460)$ mesons are very narrow states located below the $DK$ and $D^{\\ast}K$ thresholds, respectively. This is markedly in contrast with the expectations of naive quark models and heavy quark symmetry. Motivated by a recent lattice study which addresses the mass shifts of the $c\\bar{s}$ ground states with quantum numbers $J^{P}=0^{+}$ ($D_{s0}^{\\ast}(2317)$) and $J^{P}=1^{+}$ ($D_{s1}(2460)$) due to their coupling with $S$-wave $D^{(\\ast)}K$ thresholds, we perform a similar analysis within a nonrelativistic constituent quark model in which quark-antiquark and meson-meson degrees of freedom are incorporated. The quark model has been applied to a wide range of hadronic observables and thus the model parameters are completely constrained. The coupling between quark-antiquark and meson-meson Fock components is done using a modified version of the $^{3}P_{0}$ decay model. We observe that the coupling of the $0^{+}$ $(1^{+})$ mes...

  8. Cost, Time, and Risk Assessment of Different Wave Energy Converter Technology Development Trajectories: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jochem W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Laird, Daniel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Costello, Ronan [Wave Venture; Roberts, Jesse [Sandia National Laboratories; Bull, Diana [Sandia National Laboratories; Babarit, Aurelien [Ecole Centrale de Nantes; Nielsen, Kim [Ramboll; Ferreira, Claudio Bittencourt [DNV-GL; Kennedy, Ben [Wave Venture

    2017-09-14

    This paper presents a comparative assessment of three fundamentally different wave energy converter technology development trajectories. The three technology development trajectories are expressed and visualised as a function of technology readiness levels and technology performance levels. The assessment shows that development trajectories that initially prioritize technology readiness over technology performance are likely to require twice the development time, consume a threefold of the development cost, and are prone to a risk of technical or commercial failure of one order of magnitude higher than those development trajectories that initially prioritize technology performance over technology readiness.

  9. Finite nuclear size and Lamb shift of p-wave atomic states

    International Nuclear Information System (INIS)

    Milstein, A.I.; Sushkov, O.P.; Terekhov, I.S.

    2003-01-01

    We consider corrections to the Lamb shift of the p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotope shift related to the FNS. It is shown that the structure of the corrections is qualitatively different to that for the s-wave states. The perturbation theory expansion for the relative correction for a p 1/2 state starts with a α ln(1/Zα) term, while for the s 1/2 states it starts with a Zα 2 term. Here, α is the fine-structure constant and Z is the nuclear charge. In the present work, we calculate the α terms for that 2p states, the result for the 2p 1/2 state reads (8α/9π){ln[1/(Zα) 2 ]+0.710}. Even more interesting are the p 3/2 states. In this case the 'correction' is several orders of magnitude larger than the 'leading' FNS shift. However, absolute values of energy shifts related to these corrections are very small

  10. Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface

    Science.gov (United States)

    Mao, Chenyang; Yang, Yang; He, Xiaoxiang; Zheng, Jingming; Zhou, Chun

    2017-12-01

    In this paper, a broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface is proposed. The proposed metasurface can effectively convert linear-polarized (TE/TM) incident wave into the reflected wave with three different polarizations within the frequency bands of 5.5-22.75 GHz. Based on the electric and magnetic resonant features of the double-L-shaped structure, the proposed metasurface can convert linearly polarized waves into cross-polarized waves at three resonant frequency bands. Furthermore, the incident linearly polarized waves can be effectively converted into left/right handed circular-polarized (LHCP and RHCP) waves at other four non-resonance frequency bands. Thus, the proposed metasurface can be regarded as a seven-band multi-polarization converter. The prototype of the proposed polarization converter is analyzed and measured. Both simulated and measured results show the 3-dB axis ratio bandwidth of circular polarization bands and the high polarization conversion efficiency of cross-polarization bands when the incident wave changes from 0° to 30° at both TE and TM modes.

  11. Amplitude-to-frequency converter of radioisotope instruments

    International Nuclear Information System (INIS)

    Demchenkov, V.P.; Korobkov, I.N.

    1988-01-01

    An amplitude-to-frequency converter designed for signal processing of radioisotope relay devices is descibed. The basic elements of the converter are a scaling amplifier, an analog-to-digital converter, a code-to-frequency converter, a null-organ, a delay unit and a clock-pulse generator. The designed amplitude-to-frequency converter takes into account a prior information about the signal shape of the energy spectrum. The converter processes input pulses of 0.10 V amplitude and duration more than 2μs. The energy channel number is 64

  12. A Comparison Study of a Generic Coupling Methodology for Modeling Wake Effects of Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Tim Verbrugghe

    2017-10-01

    Full Text Available Wave Energy Converters (WECs need to be deployed in large numbers in an array layout in order to have a significant power production. Each WEC has an impact on the incoming wave field, by diffracting, reflecting and radiating waves. Simulating the wave transformations within and around a WEC array is complex; it is difficult, or in some cases impossible, to simulate both these near-field and far-field wake effects using a single numerical model, in a time- and cost-efficient way in terms of computational time and effort. Within this research, a generic coupling methodology is developed to model both near-field and far-field wake effects caused by floating (e.g., WECs, platforms or fixed offshore structures. The methodology is based on the coupling of a wave-structure interaction solver (Nemoh and a wave propagation model. In this paper, this methodology is applied to two wave propagation models (OceanWave3D and MILDwave, which are compared to each other in a wide spectrum of tests. Additionally, the Nemoh-OceanWave3D model is validated by comparing it to experimental wave basin data. The methodology proves to be a reliable instrument to model wake effects of WEC arrays; results demonstrate a high degree of agreement between the numerical simulations with relative errors lower than 5 % and to a lesser extent for the experimental data, where errors range from 4 % to 17 % .

  13. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    Science.gov (United States)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  14. Multicriteria analysis to evaluate wave energy converters based on their environmental impact: an Italian case study

    Science.gov (United States)

    Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego

    2010-05-01

    The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 €. On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present

  15. Wigner functions of s waves

    International Nuclear Information System (INIS)

    Dahl, J. P.; Varro, S.; Wolf, A.; Schleich, W. P.

    2007-01-01

    We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius--that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle

  16. Wigner functions of s waves

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Varro, S.; Wolf, A.

    2007-01-01

    We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius-that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables......: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle....

  17. Military jet pilots have higher p-wave dispersions compared to the transport aircraft aircrew

    Directory of Open Access Journals (Sweden)

    Mustafa Çakar

    2016-08-01

    Full Text Available Objectives: For the purpose of flight safety military aircrew must be healthy. P-wave dispersion (PWD is the p-wave length difference in an electrocardiographic (ECG examination and represents the risk of developing atrial fibrillation. In the study we aimed at investigating PWD in healthy military aircrew who reported for periodical examinations. Material and Methods: Seventy-five asymptomatic military aircrew were enrolled in the study. All the subjects underwent physical, radiologic and biochemical examinations, and a 12-lead electrocardiography. P-wave dispersions were calculated. Results: The mean age of the study participants was 36.15±8.97 years and the mean p-wave duration was 100.8±12 ms in the whole group. Forty-seven subjects were non-pilot aircrew, and 28 were pilots. Thirteen study subjects were serving in jets, 49 in helicopters, and 13 were transport aircraft pilots. Thirty-six of the helicopter and 11 of the transport aircraft aircrew were non-pilot aircrew. P-wave dispersion was the lowest in the transport aircraft aircrew, and the highest in jet pilots. P-wave dispersions were similar in the pilots and non-pilot aircrew. Twenty-three study subjects were overweight, 19 had thyroiditis, 26 had hepatosteatosis, 4 had hyperbilirubinemia, 2 had hypertension, and 5 had hyperlipidemia. The PWD was significantly associated with thyroid-stimulating hormone (TSH levels. Serum uric acid levels were associated with p-wave durations. Serum TSH levels were the most important predictor of PWD. Conclusions: When TSH levels were associated with PWD, uric acid levels were associated with p-wave duration in the military aircrew. The jet pilots had higher PWDs. These findings reveal that military jet pilots may have a higher risk of developing atrial fibrillation, and PWD should be recorded during periodical examinations.

  18. Semileptonic decays of B_c meson to S-wave charmonium states in the perturbative QCD approach

    International Nuclear Information System (INIS)

    Rui, Zhou; Li, Hong; Wang, Guang-xin; Xiao, Ying

    2016-01-01

    Inspired by the recent measurement of the ratio of B_c branching fractions to J/ψπ"+ and J/ψμ"+ν_μ final states at the LHCb detector, we study the semileptonic decays of B_c meson to the S-wave ground and radially excited 2S and 3S charmonium states with the perturbative QCD approach. After evaluating the form factors for the transitions B_c → P,V, where P and V denote pseudoscalar and vector S-wave charmonia, respectively, we calculate the branching ratios for all these semileptonic decays. The theoretical uncertainty of hadronic input parameters are reduced by utilizing the light-cone wave function for the B_c meson. It is found that the predicted branching ratios range from 10"-"7 up to 10"-"2 and could be measured by the future LHCb experiment. Our prediction for the ratio of branching fractions (BR(B_c"+→J/Ψπ"+))/(BR(B_c"+→J/Ψμ"+ν_μ)) is in good agreement with the data. For B_c → Vlν_l decays, the relative contributions of the longitudinal and transverse polarization are discussed in different momentum transfer squared regions. These predictions will be tested on the ongoing and forthcoming experiments. (orig.)

  19. Detecting the Elusive P-Wave: A New ECG Lead to Improve the Recording of Atrial Activity.

    Science.gov (United States)

    Kennedy, Alan; Finlay, Dewar D; Guldenring, Daniel; Bond, Raymond R; McLaughlin, James

    2016-02-01

    In this study, we report on a lead selection method that was developed to detect the optimal bipolar electrode placement for recording of the P-wave. The study population consisted of 117 lead body surface potential maps recorded from 229 healthy subjects. The optimal bipolar lead was developed using the training set (172 subjects) then extracted from the testing dataset (57 subjects) and compared to other lead systems previously reported for improved recording of atrial activity. All leads were assessed in terms of P-wave, QRS, and STT root mean square (RMS). The P/QRST RMS ratio was also investigated to determine the atrioventricular RMS ratio. Finally, the effect of minor electrode misplacements on the P-lead was investigated. The P-lead discovered in this study outperformed all other investigated leads in terms of P-wave RMS. The P-lead showed a significant improvement in median P-wave RMS (93 versus 72 μV, p < 0.001) over the next best lead, Lead II. An improvement in QRS and STT RMS was also observed from the P-lead in comparison to lead II (668 versus 573 μV, p < 0.001) and (327 versus 196 μV, p < 0.001). Although P-wave RMS was reduced by incorrect electrode placement, significant improvement over Lead II was still evident. The P-lead improves P-wave RMS signal strength over all other investigated leads. Also the P-lead does not reduce QRS and STT RMS making it an appropriate choice for atrial arrhythmia monitoring. Given the improvement in signal-to-noise ratio, an improvement in algorithms that rely on P-wave analysis may be achieved.

  20. Performance Analysis of Multiple Wave Energy Converters Placed on a Floating Platform in the Frequency Domain

    Directory of Open Access Journals (Sweden)

    Hyebin Lee

    2018-02-01

    Full Text Available Wind-wave hybrid power generation systems have the potential to become a significant source of affordable renewable energy. However, their strong interactions with both wind- and wave-induced forces raise a number of technical challenges for modelling. The present study undertakes a numerical investigation on multi-body hydrodynamic interaction between a wind-wave hybrid floating platform and multiple wave energy converters (WECs in a frequency domain. In addition to the exact responses of the platform and the WECs, the power take-off (PTO mechanism was taken into account for analysis. The coupled hydrodynamic coefficients and wave exciting forces were obtained from WAMIT, the 3D diffraction/radiation solver based on the boundary element method. The overall performance of the multiple WECs is presented and compared with the performance of a single isolated WEC. The analysis showed significant differences in the dynamic responses of the WECs when the multi-body interaction was considered. In addition, the PTO damping effect made a considerable difference to the responses of the WECs. However, the platform response was only minimally affected by PTO damping. With regard to energy capture, the interaction effect of the designed multiple WEC array layout is evaluated. The WEC array configuration showed both constructive and destructive effects in accordance with the incident wave frequency and direction.

  1. Quasiparticle Green's function theory of the Josephson effect in chiral p-wave superconductor/diffusive normal metal/chiral p-wave superconductor junctions

    NARCIS (Netherlands)

    Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We study the Josephson effect in chiral p-wave superconductor/diffusive normal metal (DN)/chiral p-wave superconductor (CP/DN/CP) junctions using quasiclassical Green's function formalism with proper boundary conditions. The px+ipy-wave symmetry of superconducting order parameter is chosen which is

  2. Number-to-voltage converter on commutated condensers

    International Nuclear Information System (INIS)

    Grekhov, Yu.N.

    1975-01-01

    A code-voltage converter using precision voltage dividers based on commutated capacitors [1] is described which is distinguished by the absence of precision elements. Each digit includes eight field-effect transistors in two 1KT682 microcircuit assemblies and three microcapacitors with a conventional unstable capacitance 6200 pF +- 50%. The converter has a speed of response that is not inferior to that of converters based on R-2R matrices, while in time stability of the characteristics, low interference level, and low output impedance it is superior to such converters

  3. Coupled Mooring Analyses for the WEC-Sim Wave Energy Converter Design Tool: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sirnivas, Senu; Yu, Yi-Hsiang; Hall, Matthew; Bosma, Bret

    2016-07-01

    A wave-energy-converter-specific time-domain modeling method (WEC-Sim) was coupled with a lumped-mass-based mooring model (MoorDyn) to improve its mooring dynamics modeling capability. This paper presents a verification and validation study on the coupled numerical method. First, a coupled model was built to simulate a 1/25 model scale floating power system connected to a traditional three-point catenary mooring with an angle of 120 between the lines. The body response and the tension force on the mooring lines at the fairlead in decay tests and under regular and irregular waves were examined. To validate and verify the coupled numerical method, the simulation results were compared to the measurements from a wave tank test and a commercial code (OrcaFlex). Second, a coupled model was built to simulate a two-body point absorber system with a chain-connected catenary system. The influence of the mooring connection on the point absorber was investigated. Overall, the study showed that the coupling of WEC-Sim and the MoorDyn model works reasonably well for simulating a floating system with practical mooring designs and predicting the corresponding dynamic loads on the mooring lines. Further analyses on improving coupling efficiency and the feasibility of applying the numerical method to simulate WEC systems with more complex mooring configuration are still needed.

  4. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  5. Multiple-band reflective polarization converter using U-shaped metamaterial

    International Nuclear Information System (INIS)

    Huang, Xiaojun; Yang, Dong; Yang, Helin

    2014-01-01

    A multiple-band metamaterial reflective polarization converter (RPC) is proposed, which is composed of the dielectric substrate sandwiched with U-shaped metallic patterns and continuous metal film. The proposed U-shaped metamaterial RPC (UMM-RPC) can convert a linearly polarized wave to its cross polarized wave at the three resonant frequencies, which also can convert the linearly polarized wave to circularly polarized wave at other three resonant frequencies. Furthermore, the proposed UMM-RPC can maintain the same conversional direction at the three resonant frequencies when incident on a circularly polarized wave. The simulated and measured results are in agreement in the entire frequency range, and the polarization conversion ratio is over 90% for both linear and circular polarizations. The surface current distributions of the UMM-RPC are discussed to look into the physical mechanism. The proposed UMM-RPC has simple geometry but more operating frequency bands compared to the previous designs and can be used in applications such as antenna radome, remote sensors, and radiometer

  6. Multiple-band reflective polarization converter using U-shaped metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaojun [College of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China); Department of Physics, Kashgar Teachers College, Kashgar 844000 (China); Yang, Dong [College of Physics and Electronics Science, Hubei Normal University, Huangshi 435002 (China); Yang, Helin, E-mail: emyang@mail.ccnu.edu.cn [College of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China)

    2014-03-14

    A multiple-band metamaterial reflective polarization converter (RPC) is proposed, which is composed of the dielectric substrate sandwiched with U-shaped metallic patterns and continuous metal film. The proposed U-shaped metamaterial RPC (UMM-RPC) can convert a linearly polarized wave to its cross polarized wave at the three resonant frequencies, which also can convert the linearly polarized wave to circularly polarized wave at other three resonant frequencies. Furthermore, the proposed UMM-RPC can maintain the same conversional direction at the three resonant frequencies when incident on a circularly polarized wave. The simulated and measured results are in agreement in the entire frequency range, and the polarization conversion ratio is over 90% for both linear and circular polarizations. The surface current distributions of the UMM-RPC are discussed to look into the physical mechanism. The proposed UMM-RPC has simple geometry but more operating frequency bands compared to the previous designs and can be used in applications such as antenna radome, remote sensors, and radiometer.

  7. Validation of a Tool for the Initial Dynamic Design of Mooring Systems for Large Floating Wave Energy Converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    2017-01-01

    -source boundary element method code NEMOH and the commercial time-domain mooring analysis tool OrcaFlex. The work used the wind/wave energy converter Floating Power Plant as a case study, which is defined as a large floating structure with a passive mooring system. The investigated mooring consists of a three...

  8. Progress Towards the Development of a Traveling Wave Direct Energy Converter for Aneutronic Fusion Propulsion Applications

    Science.gov (United States)

    Tarditi, A. G.; Chap, A.; Wolinsky, J.; Scott, J. H.

    2015-01-01

    A coordinated experimental and theory/simulation effort has been carried out to investigate the physics of the Traveling Wave Direct Energy Converter (TWDEC), a scheme that has been proposed in the past for the direct conversion into electricity of the kinetic energy of an ion beam generated from fusion reactions. This effort has been focused in particular on the TWDEC process in the high density beam regime, thus accounting for the ion beam expansion due to its space charge.

  9. Prolongation of the deployment and monitoring of a multiple oscillating water column wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Chudley, J.; Dai, Y.M.

    2003-07-01

    This report summarises the findings of a project to prolong the sea trials of a multiple oscillating water column wave energy converter (MOWC) device for another 12 months to obtain further data. The objectives of the project include the evaluation of the ability of the MOWC to generate reliable energy to produce electricity, the estimation of the conversion efficiency, and the identification of improvements to increase the conversion efficiency, Details are given of the analysis of the sea trials data, and the performance of the broadband oscillating water column prototype.

  10. A scattering approach to sea wave diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L., E-mail: letizia.corradini@unicam.it; Garbuglia, M., E-mail: milena.garbuglia@unicam.it; Maponi, P., E-mail: pierluigi.maponi@unicam.it [University of Camerino, via Madonna delle Carceri, 9, 62032, Camerino (Italy); Ruggeri, M., E-mail: ru.marco@faggiolatipumps.it [Faggiolati Pumps S.p.A., Z.Ind Sforzacosta, 62100, Macerata (Italy)

    2016-06-08

    This paper intends to show a model for the diffraction of sea waves approaching an OWC device, which converts the sea waves motion into mechanical energy and then electrical energy. This is a preliminary study to the optimisation of the device, in fact the computation of sea waves diffraction around the device allows the estimation of the sea waves energy which enters into the device. The computation of the diffraction phenomenon is the result of a sea waves scattering problem, solved with an integral equation method.

  11. Topography Estimation of the Core Mantle Boundary with ScS Reverberations and Diffraction Waves

    Science.gov (United States)

    Hein, B. E.; Nakata, N.

    2017-12-01

    In this study, we use the propagation of global seismic waves to study the Core Mantle Boundary (CMB). We focus on the use of S-wave reflections at the CMB (ScS reverberations) and outer-core diffracted waves. It is difficult imaging the CMB with the ScS wave because the complexity of the structure in the near surface ( 50 km); the complex structure degrades the signal-to-noise ratio of of the ScS. To avoid estimating the structure in the crust, we rely on the concept of seismic interferometry to extract wave propagation through mantle, but not through the crust. Our approach is compute the deconvolution between the ScS (and its reverberation) and direct S waves generated by intermediate to deep earthquakes (>50 km depth). Through this deconvolution, we have the ability to filter out the direct S wave and retrieve the wave field propagating from only the hypocenter to the outer core, but not between the hypocenter to the receiver. After the deconvolution, we can isolate the CMB reflected waves from the complicated wave phenomena because of the near-surface structure. Utilizing intermediate and deep earthquakes is key since we can suppress the near-surface effect from the surface to the hypocenter of the earthquakes. The variation of such waves (e.g., travel-time perturbation and/or wavefield decorrelation) at different receivers and earthquakes provides the information of the topography of the CMB. In order to get a more detailed image of the topography of the CMB we use diffracted seismic waves such as Pdiff , Sdiff, and P'P'. By using two intermediate to deep earthquakes on a great circle path with a station we can extract the wave propagation between the two earthquakes to simplify the waveform, similar to how it is preformed using the ScS wave. We generate more illumination of the CMB by using diffracted waves rather than only using ScS reverberations. The accurate topography of CMB obtained by these deconvolution analyses may provide new insight of the

  12. Elastic Wave-equation Reflection Traveltime Inversion Using Dynamic Warping and Wave Mode Decomposition

    KAUST Repository

    Wang, T.

    2017-05-26

    Elastic full waveform inversion (EFWI) provides high-resolution parameter estimation of the subsurface but requires good initial guess of the true model. The traveltime inversion only minimizes traveltime misfits which are more sensitive and linearly related to the low-wavenumber model perturbation. Therefore, building initial P and S wave velocity models for EFWI by using elastic wave-equation reflections traveltime inversion (WERTI) would be effective and robust, especially for the deeper part. In order to distinguish the reflection travletimes of P or S-waves in elastic media, we decompose the surface multicomponent data into vector P- and S-wave seismogram. We utilize the dynamic image warping to extract the reflected P- or S-wave traveltimes. The P-wave velocity are first inverted using P-wave traveltime followed by the S-wave velocity inversion with S-wave traveltime, during which the wave mode decomposition is applied to the gradients calculation. Synthetic example on the Sigbee2A model proves the validity of our method for recovering the long wavelength components of the model.

  13. Design of a multi-poppet on-off valve for wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    Fluid power systems are the leading technology for the power take off system in ocean wave energy converters. However, fluid power systems often suffer from poor efficiency, especially in part loads. This degrades the PTO system efficiency and therefore lower the energy production. To overcome...... the issues with poor system efficiency a discrete fluid power system is proposed as a main part of the PTO system. For the discrete system to be feasible large fluid power switching valves are needed. The current paper presents a two stage 1000 L/min@5bar multi-poppet on/off valve with a switching time less......, structural mechanical issues and modelling and simulation of various valve configurations. Hence in the design process a wide variety of topics are combined to chose the best valve configuration....

  14. Empirical correlation among the dynamic elastic constants and the waves P and S velocities in rocks; Correlaciones empiricas entre las constantes elasticas dinamicas y las velocidades de las ondas P y S de las rocas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Lopez, Enrique [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    Departing from the analysis of a data base on the velocities of the compression waves (V{sub p}) and the transverse waves (V{sub s}) in a group of 97 specimens of sedimentary, igneous and metamorphic rocks, the existence of four types of empirical correlation very well entailed between the dynamic elastic constants and the velocities V{sub p} and V{sub s}. These correlation allow the estimation with a very close approximation the elastic dynamic constants without the need of having available of the complete set of data (V{sub p}, V{sub s} and total density) that is normally required for its determination. The identified correlation is mathematically expressed by means of adjustment equations that reproduce in all of the cases the experimental values with a standard error of estimation within 10%, for the universe of rocks studied and with much less error for different specific lithological groups. The application methodologies of the correlation found for different cases of practical interest, are described. [Espanol] A partir del analisis de una base de datos experimentales sobre la velocidad de las ondas compresionales (V{sub p}) y de las ondas transversales (V{sub s}) de un conjunto de 97 especimenes de rocas sedimentarias, igneas y metamorficas, se identifica la existencia de cuatro tipos de correlaciones empiricas muy bien comportadas entre las constantes elasticas dinamicas y las velocidades V{sub p} y V{sub s}. Estas correlaciones permiten estimar con muy buena aproximacion las constantes elasticas dinamicas de las rocas sin tener que disponer del conjunto completo de datos (V{sub p}, V{sub s} y densidad total) que normalmente se requieren para su determinacion. Las correlaciones identificadas se expresan matematicamente mediante ecuaciones de ajuste que reproducen en todos los casos los valores experimentales con un error estandar de estimacion dentro de 10% para el universo de las rocas estudiadas, y con mucho menor error para diferentes grupos litologicos

  15. Empirical correlation among the dynamic elastic constants and the waves P and S velocities in rocks; Correlaciones empiricas entre las constantes elasticas dinamicas y las velocidades de las ondas P y S de las rocas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Lopez, Enrique [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    Departing from the analysis of a data base on the velocities of the compression waves (V{sub p}) and the transverse waves (V{sub s}) in a group of 97 specimens of sedimentary, igneous and metamorphic rocks, the existence of four types of empirical correlation very well entailed between the dynamic elastic constants and the velocities V{sub p} and V{sub s}. These correlation allow the estimation with a very close approximation the elastic dynamic constants without the need of having available of the complete set of data (V{sub p}, V{sub s} and total density) that is normally required for its determination. The identified correlation is mathematically expressed by means of adjustment equations that reproduce in all of the cases the experimental values with a standard error of estimation within 10%, for the universe of rocks studied and with much less error for different specific lithological groups. The application methodologies of the correlation found for different cases of practical interest, are described. [Espanol] A partir del analisis de una base de datos experimentales sobre la velocidad de las ondas compresionales (V{sub p}) y de las ondas transversales (V{sub s}) de un conjunto de 97 especimenes de rocas sedimentarias, igneas y metamorficas, se identifica la existencia de cuatro tipos de correlaciones empiricas muy bien comportadas entre las constantes elasticas dinamicas y las velocidades V{sub p} y V{sub s}. Estas correlaciones permiten estimar con muy buena aproximacion las constantes elasticas dinamicas de las rocas sin tener que disponer del conjunto completo de datos (V{sub p}, V{sub s} y densidad total) que normalmente se requieren para su determinacion. Las correlaciones identificadas se expresan matematicamente mediante ecuaciones de ajuste que reproducen en todos los casos los valores experimentales con un error estandar de estimacion dentro de 10% para el universo de las rocas estudiadas, y con mucho menor error para diferentes grupos litologicos

  16. Comparison of Mooring Loads in Survivability Mode on the Wave Dragon Wave Energy Converter Obtained by a Numerical Model and Experimental Data

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Muliawan, Made Jaya; Gao, Zhen

    2012-01-01

    The Wave Dragon Wave Energy Converter is ready to be up-scaled to commercial size. The design and feasibility analysis of a 1.5 MW pre-commercial unit to be deployed at the DanWEC test center in Hanstholm, Denmark, is currently ongoing. With regard to the mooring system, the design has...... in the frequency domain is performed by the software HydroD, which uses WAMIT as core software. The quadratic damping term, accounting for the viscous effect, is determined through an iterative procedure aimed at matching numerical predictions on the mooring tension, derived through time domain coupled analysis......, with experimental results derived from tank tests of a small scale model. Due to the complex geometry of the device, a sensitivity analysis is performed to discuss the influence of the mean position on the quality of the numerical predictions. Good correspondence is achieved between the experimental and numerical...

  17. Application of VSP to geological investigation; P ha oyobi S ha VSP wo mochiita shinso chishitsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    Kinugasa, Y [Geological Survey of Japan, Tsukuba (Japan); Feng, S; Sugiyama, T; Ishikawa, K [Chuoh Kaihatsu Corp., Tokyo (Japan)

    1997-05-27

    Discussed in this paper are the P-wave and S-wave zero-offset VSPs carried out utilizing boreholes located in Nada Ward, Kobe City, and Hokudan-cho, Hyogo Prefecture, as part of the deep layer boring survey following Hanshin Earthquake Disaster. This effort aims at the elucidation of P-wave and S-wave velocity structures, high-precision identification of data obtained by the surface reflection method, and collection of basic data for active faults investigation in the future. Among the velocity structures obtained for various layers, the S-wave velocity structures in particular agree with the stratigraphy excellently and may be utilized in seismic analyses to be conducted in the future. Reflection from geological boundaries is received with precision, providing accurate information about correlation between reflection and geological cross sections. The records will be useful in formulating plans for reflection surveys for instance of the boundary between the Osaka group and Kobe group. Generally speaking, reflection coefficients are large when the reflection is from a boundary where difference is great in elastic wave impedance (mainly difference in velocity). In the case of the boundary between the Kobe group and granite in Awaji Island, however, no strong reflection is found despite the great difference in velocity. This is attributed to the complicated, sharp inclination of the basement rock and to its weathering. 4 refs., 8 figs.

  18. Analisa Kinerja Pneumatic Wave Energy Converter (WEC Dengan Menggunakan Oscillating Water Column(OWC

    Directory of Open Access Journals (Sweden)

    Rico Ary Sona

    2014-03-01

    Full Text Available Sistem konversi energi gelombang laut merupakan sistem yang menangkap energi gelombang laut untuk dikonversi menjadi energi lain seperti energi listrik. Salah satu jenis wave energy converter (WEC yang banyak digunakan diantaranya yaitu Oscillating Water Columnatau OWC. Prinsip kerja sistem WEC ini ialah mengubah pergerakan naik turunnya gelombang pada silinder kolom udara untuk menghasilkan udara bertekanan yang selanjutnya digunakan untuk menggerakkan turbin dan generator listrik. Penelitian ini ditujukan untuk dapat mengetahui kinerja dari Oscillating Water Column (OWC dalam menangkap energi gelombang laut. Untuk dapat melakukan penelitian ini diperlukan beberapa perlatan yaitu pembuatan konfigurasi peralatan pembuat dan penangkapan gelombang yang terdiri dari pelampung dan silinder Oscillating Water Column (OWC. Percobaan ini dilakukan dengan cara memvariasikan panjang dan tinggi gelombang pada flow water channel dengan mengatur bukaan pada pneumatic speed control. Dari hasil percobaan diperoleh bahwa kinerja paling efektif diperoleh pada panjang gelombang 0.9 m dan tinggi gelombang 0.23m. Pada karakteristik gelombang tersebut diperoleh tekanan, kecepatan dan volume pada silinder Oscillating Water Column (OWC sebesar  1.11 bar, 39.39 m/s dan 0.0057 m3. Dari hasil percobaan juga diperoleh waktu pengisian Pressure Vessel selama 100 menit dengan tekanan 3 Psi.

  19. All-Optical 9.35 Gb/s Wavelength Conversion in an InP Photonic Crystal Nanocavity

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Yu, Yi; Heuck, Mikkel

    2013-01-01

    Wavelength conversion of a 9.35 Gb/s RZ signal is demonstrated using an InP photonic crystal H0 nanocavity. A clear eye is observed for the converted signal showing a pre-FEC bit error ratio down to 10-3.......Wavelength conversion of a 9.35 Gb/s RZ signal is demonstrated using an InP photonic crystal H0 nanocavity. A clear eye is observed for the converted signal showing a pre-FEC bit error ratio down to 10-3....

  20. Asymmetric rogue waves, breather-to-soliton conversion, and nonlinear wave interactions in the Hirota–Maxwell–Bloch system

    International Nuclear Information System (INIS)

    Wang Lei; Zhu Yujie; Wang Ziqi; Xu Tao; Qi Fenghua; Xue Yushan

    2016-01-01

    We study the nonlinear localized waves on constant backgrounds of the Hirota–Maxwell–Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons. (author)

  1. Asymmetric Rogue Waves, Breather-to-Soliton Conversion, and Nonlinear Wave Interactions in the Hirota-Maxwell-Bloch System

    Science.gov (United States)

    Wang, Lei; Zhu, Yu-Jie; Wang, Zi-Qi; Xu, Tao; Qi, Feng-Hua; Xue, Yu-Shan

    2016-02-01

    We study the nonlinear localized waves on constant backgrounds of the Hirota-Maxwell-Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons.

  2. Dynamic Response of Underground Circular Lining Tunnels Subjected to Incident P Waves

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2014-01-01

    Full Text Available Dynamic stress concentration in tunnels and underground structures during earthquakes often leads to serious structural damage. A series solution of wave equation for dynamic response of underground circular lining tunnels subjected to incident plane P waves is presented by Fourier-Bessel series expansion method in this paper. The deformation and stress fields of the whole medium of surrounding rock and tunnel were obtained by solving the equations of seismic wave propagation in an elastic half space. Based on the assumption of a large circular arc, a series of solutions for dynamic stress were deduced by using a wave function expansion approach for a circular lining tunnel in an elastic half space rock medium subjected to incident plane P waves. Then, the dynamic response of the circular lining tunnel was obtained by solving a series of algebraic equations after imposing its boundary conditions for displacement and stress of the circular lining tunnel. The effects of different factors on circular lining rock tunnels, including incident frequency, incident angle, buried depth, rock conditions, and lining stiffness, were derived and several application examples are presented. The results may provide a good reference for studies on the dynamic response and aseismic design of tunnels and underground structures.

  3. Development of the Second-Generation Oscillating Surge Wave Energy Converter with Variable Geometry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Michael [South Dakota School of Mines

    2017-07-25

    This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.

  4. Advanced Direct-Drive Generator for Improved Availability of Oscillating Wave Surge Converter Power Generation Systems Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Englebretson, Steven [ABB Inc., Cary, NC (United States); Ouyang, Wen [ABB Inc., Cary, NC (United States); Tschida, Colin [ABB Inc., Cary, NC (United States); Carr, Joseph [ABB Inc., Cary, NC (United States); Ramanan, V.R. [ABB Inc., Cary, NC (United States); Johnson, Matthew [Texas A& M Univ., College Station, TX (United States); Gardner, Matthew [Texas A& M Univ., College Station, TX (United States); Toliyat, Hamid [Texas A& M Univ., College Station, TX (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Hazra, Samir [ABB Inc., Cary, NC (United States); Bhattacharya, Subhashish [ABB Inc., Cary, NC (United States)

    2017-05-13

    This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability of the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.

  5. Calculations of resonances parameters for the ((2s2) 1Se, (2s2p) 1,3P0) and ((3s2) 1Se, (3s3p) 1,3P0) doubly excited states of helium-like ions with Z≤10 using a complex rotation method implemented in Scilab

    Science.gov (United States)

    Gning, Youssou; Sow, Malick; Traoré, Alassane; Dieng, Matabara; Diakhate, Babacar; Biaye, Mamadi; Wagué, Ahmadou

    2015-01-01

    In the present work a special computational program Scilab (Scientific Laboratory) in the complex rotation method has been used to calculate resonance parameters of ((2s2) 1Se, (2s2p) 1,3P0) and ((3s2) 1Se, (3s3p) 1,3P0) states of helium-like ions with Z≤10. The purpose of this study required a mathematical development of the Hamiltonian applied to Hylleraas wave function for intrashell states, leading to analytical expressions which are carried out under Scilab computational program. Results are in compliance with recent theoretical calculations.

  6. TRACING p -MODE WAVES FROM THE PHOTOSPHERE TO THE CORONA IN ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junwei; Chen, Ruizhu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Felipe, Tobías; Khomenko, Elena [Instituto de Astrofísica de Canarias, E-38025 La Laguna, Tenerife (Spain)

    2016-10-10

    Atmosphere above sunspots is abundant with different types of waves. Among these waves are running penumbral waves in the chromosphere, quasi-periodic oscillations in the lower coronal loops, and recently reported running waves in sunspots’ photosphere, all of which were interpreted as magnetoacoustic waves by some authors. Are these waves in different atmospheric layers related to each other, what is the nature of these waves, and where are the ultimate sources of these waves? Applying a time–distance helioseismic analysis over a suite of multi-wavelength observations above a sunspot, we demonstrate that the helioseismic p -mode waves are able to channel up from the photosphere through the chromosphere and transition region into the corona, and that the magnetoacoustic waves observed in different atmospheric layers are a same wave originating from the photosphere but exhibiting differently under different physical conditions. We also show waves of different frequencies travel along different paths, which can be used to derive the physical properties of the atmosphere above sunspots. Our numerical simulation of traveling of waves from a subphotospheric source qualitatively resembles the observed properties of the waves and offers an interpretation of the shapes of the wavefronts above the photosphere.

  7. Design, optimization and numerical modelling of a novel floating pendulum wave energy converter with tide adaptation

    Science.gov (United States)

    Yang, Jing; Zhang, Da-hai; Chen, Ying; Liang, Hui; Tan, Ming; Li, Wei; Ma, Xian-dong

    2017-10-01

    A novel floating pendulum wave energy converter (WEC) with the ability of tide adaptation is designed and presented in this paper. Aiming to a high efficiency, the buoy's hydrodynamic shape is optimized by enumeration and comparison. Furthermore, in order to keep the buoy's well-designed leading edge always facing the incoming wave straightly, a novel transmission mechanism is then adopted, which is called the tidal adaptation mechanism in this paper. Time domain numerical models of a floating pendulum WEC with or without tide adaptation mechanism are built to compare their performance on various water levels. When comparing these two WECs in terms of their average output based on the linear passive control strategy, the output power of WEC with the tide adaptation mechanism is much steadier with the change of the water level and always larger than that without the tide adaptation mechanism.

  8. Automatic detection of artifacts in converted S3D video

    Science.gov (United States)

    Bokov, Alexander; Vatolin, Dmitriy; Zachesov, Anton; Belous, Alexander; Erofeev, Mikhail

    2014-03-01

    In this paper we present algorithms for automatically detecting issues specific to converted S3D content. When a depth-image-based rendering approach produces a stereoscopic image, the quality of the result depends on both the depth maps and the warping algorithms. The most common problem with converted S3D video is edge-sharpness mismatch. This artifact may appear owing to depth-map blurriness at semitransparent edges: after warping, the object boundary becomes sharper in one view and blurrier in the other, yielding binocular rivalry. To detect this problem we estimate the disparity map, extract boundaries with noticeable differences, and analyze edge-sharpness correspondence between views. We pay additional attention to cases involving a complex background and large occlusions. Another problem is detection of scenes that lack depth volume: we present algorithms for detecting at scenes and scenes with at foreground objects. To identify these problems we analyze the features of the RGB image as well as uniform areas in the depth map. Testing of our algorithms involved examining 10 Blu-ray 3D releases with converted S3D content, including Clash of the Titans, The Avengers, and The Chronicles of Narnia: The Voyage of the Dawn Treader. The algorithms we present enable improved automatic quality assessment during the production stage.

  9. The European programme to develop the Wells air turbine for applications in wave energy

    International Nuclear Information System (INIS)

    White, P.R.S.

    1996-01-01

    The European Wave Energy Pilot Plants currently under construction are utilising Wells air turbines to convert oscillating pneumatic energy within the converters to unidirectional energy of rotation for direct coupling to electrical generators. The Wells turbine has also been proposed for future off shore wave energy converters (eg SEA CLAM). The European research programme was to produce Recommendations for selecting the most appropriate air turbine for a given wave power application. The work concentrated on collating existing work on the Wells turbine, and extending it to examine rotor aerodynamics, the effect and practicality of variable pitch rotor blades, the effect on performance of interaction with the converter, and the preparation of design guide lines. A comparison between the output of a Wells turbine and a conventional air turbine with rectifying valves when subjected to the same random reversing air flow was also conducted. This paper gives a brief outline of the programme of work, and concludes that at this stage of development the Wells turbine is the preferred choice of prime mover for pneumatic wave energy converters. (Author)

  10. Design of a 12-bit 80-MS/s CMOS digital-to-analog converter for PLC-VDSL applications

    Science.gov (United States)

    Ruiz-Amaya, Jesus; Delgado-Restituto, Manuel; Fernandez-Bootello, J. Francisco; de la Rosa, Jose M.

    2005-06-01

    This paper describes the design of a 12-bit 80MS/s Digital-to-Analog converter implemented in 0.13mm CMOS logic technology. The design has been computer-aided by a developed toolbox for the simulation and verification of Nyquist-Rate Analog-to-Digital and Digital-to-Analog converters in MATLAB. The embedded simulator uses SIMULINK C-coded S-functions to model all required subcircuits including their main error mechanisms. This approach allows to drastically speed up the simulation CPU-time and makes the proposed tool an advantageous alternative for fast exploration of requirements and as a design validation tool. The converter is segmented in a unary current-cell matrix for 8 MSB's and a binary-weighted array for 4 LSB's. Current sources of the converter are laid out separately from current-cell switching matrix core block and distribute in double centroid to reduce random errors and transient noise coupling. The linearity errors caused by remaining gradient errors are reduced by a modified Q2 Random-Walk switching sequence. Simulation results show that the Spurious-Free Dynamic-Range is better than 58.5dB up to 80MS/s. The estimated Signal-to-Noise Distortion Ratio yield is 99.7% and it is supposed to be better than 58dB from DC to Nyquist frequency. Multi-Tone Power Ratio is higher 59dB for several DMT test signals. The converter dissipates less than 129mW from a 3.3V supply and occupies less than 1.7mm2 die area. The results have been checked with all process corners from -40° to 85° and power supply from 3V to 3.6V.

  11. Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

    Directory of Open Access Journals (Sweden)

    Kesayoshi Hadano

    2017-05-01

    Full Text Available As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1 setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2 workability in installation and maintenance operations; (3 high energy conversion potential; and (4 low cost. In this system, neither the wall(s of the chambers nor the energy conversion device(s are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s. Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

  12. [P wave dispersion increased in childhood depending on blood pressure, weight, height, and cardiac structure and function].

    Science.gov (United States)

    Chávez-González, Elibet; González-Rodríguez, Emilio; Llanes-Camacho, María Del Carmen; Garí-Llanes, Merlin; García-Nóbrega, Yosvany; García-Sáez, Julieta

    2014-01-01

    Increased P wave dispersion are identified as a predictor of atrial fibrillation. There are associations between hypertension, P wave dispersion, constitutional and echocardiographic variables. These relationships have been scarcely studied in pediatrics. The aim of this study was to determine the relationship between P wave dispersion, blood pressure, echocardiographic and constitutional variables, and determine the most influential variables on P wave dispersion increases in pediatrics. In the frame of the PROCDEC II project, children from 8 to 11 years old, without known heart conditions were studied. Arterial blood pressure was measured in all the children; a 12-lead surface electrocardiogram and an echocardiogram were done as well. Left ventricular mass index mean values for normotensive (25.91±5.96g/m(2.7)) and hypertensive (30.34±8.48g/m(2.7)) showed significant differences P=.000. When we add prehypertensive and hypertensive there are 50.38% with normal left ventricular mass index and P wave dispersion was increased versus 13.36% of normotensive. Multiple regression demonstrated that the mean blood pressure, duration of A wave of mitral inflow, weight and height have a value of r=0.88 as related to P wave dispersion. P wave dispersion is increased in pre- and hypertensive children compared to normotensive. There are pre- and hypertensive patients with normal left ventricular mass index and increased P wave dispersion. Mean arterial pressure, duration of the A wave of mitral inflow, weight and height are the variables with the highest influence on increased P wave dispersion. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  13. Magnetohydrodynamic waves driven by p-modes

    International Nuclear Information System (INIS)

    Khomenko, Elena; Santamaria, Irantzu Calvo

    2013-01-01

    Waves are observed at all layers of the solar atmosphere and the magnetic field plays a key role in their propagation. While deep down in the atmosphere the p-modes are almost entirely of acoustic nature, in the upper layers magnetic forces are dominating, leading to a large variety of new wave modes. Significant advances have been made recently in our understanding of the physics of waves interaction with magnetic structures, with the help of analytical theories, numerical simulations, as well as high-resolution observations. In this contribution, we review recent observational findings and current theoretical ideas in the field, with an emphasis on the following questions: (i) Peculiarities of the observed wave propagation in network, plage and facular regions; (ii) Role of the mode transformation and observational evidences of this process: (iii) Coupling of the photosphere, chromosphere, and above by means of waves propagating in magnetic structures.

  14. Using Co-located Rotational and Translational Ground-Motion Sensors to Characterize Seismic Scattering in the P-Wave Coda

    Science.gov (United States)

    Bartrand, J.; Abbott, R. E.

    2017-12-01

    We present data and analysis of a seismic data collect at the site of a historical underground nuclear explosion at Yucca Flat, a sedimentary basin on the Nevada National Security Site, USA. The data presented here consist of active-source, six degree-of-freedom seismic signals. The translational signals were collected with a Nanometrics Trillium Compact Posthole seismometer and the rotational signals were collected with an ATA Proto-SMHD, a prototype rotational ground motion sensor. The source for the experiment was the Seismic Hammer (a 13,000 kg weight-drop), deployed on two-kilometer, orthogonal arms centered on the site of the nuclear explosion. By leveraging the fact that compressional waves have no rotational component, we generated a map of subsurface scattering and compared the results to known subsurface features. To determine scattering intensity, signals were cut to include only the P-wave and its coda. The ratio of the time-domain signal magnitudes of angular velocity and translational acceleration were sectioned into three time windows within the coda and averaged within each window. Preliminary results indicate an increased rotation/translation ratio in the vicinity of the explosion-generated chimney, suggesting mode conversion of P-wave energy to S-wave energy at that location. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  15. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    Science.gov (United States)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  16. Maximum Power Point Tracking menggunakan Buck Converter dengan Algoritma P & O untuk Turbin Angin

    Directory of Open Access Journals (Sweden)

    Erik Tridianto

    2016-12-01

    Full Text Available Energi terbarukan adalah salah satu energi alternatif sebagai pengganti bahan bakar untuk pembangkit listrik. Dari berbagai energi terbarukan,yang ada energi angin adalah yang paling mudah dicari. Indonesia merupakan negara kepulauan dengan ratusan pantai dan dengan kecepatan angin yang besar dan berfluktuasi 3-5 m / s. Dan solusi dari masalah angin yang berfluktuasi ini adalah dengan menggunakan kontrol MPPT (Maximum Power Point Tracking dengan lm2596 dc-dc buck converter. Ketika daya yang dihasilkan kurang dari yang diharapkan, maka kontrol MPPT akan menurunkan tegangan untuk mendapatkan daya maksimum. Penelitian ini dilakukan dengan menggunakan lm2596 buck dc-dc converter menggunakan kontrol MPPT dengan tujuan mendapatkan daya maksimum pada kondisi kecepatan angin yang bervariasi, dan jenis MPPT yang digunakan adalah Perturb and Observation (P & O. Untuk membaca daya yang dihasilkan menggunakan Voltage dan Current sensor. Hasil tes menunjukkan bahwa, dengan penambahan kontrol MPPT dapat meningkatkan output daya dari generator sebesar 23%-49%.

  17. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    International Nuclear Information System (INIS)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-01-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z 0 ).

  18. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, A.; Jain, R. [Applied Mathematics Department, University of Sheffield, Sheffield S3 7RH (United Kingdom); Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309-0440 (United States)

    2014-07-10

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).

  19. Semileptonic decays of B{sub c} meson to S-wave charmonium states in the perturbative QCD approach

    Energy Technology Data Exchange (ETDEWEB)

    Rui, Zhou; Li, Hong; Wang, Guang-xin [North China University of Science and Technology, College of Sciences, Tangshan (China); Xiao, Ying [North China University of Science and Technology, College of Information Engineering, Tangshan (China)

    2016-10-15

    Inspired by the recent measurement of the ratio of B{sub c} branching fractions to J/ψπ{sup +} and J/ψμ{sup +}ν{sub μ} final states at the LHCb detector, we study the semileptonic decays of B{sub c} meson to the S-wave ground and radially excited 2S and 3S charmonium states with the perturbative QCD approach. After evaluating the form factors for the transitions B{sub c} → P,V, where P and V denote pseudoscalar and vector S-wave charmonia, respectively, we calculate the branching ratios for all these semileptonic decays. The theoretical uncertainty of hadronic input parameters are reduced by utilizing the light-cone wave function for the B{sub c} meson. It is found that the predicted branching ratios range from 10{sup -7} up to 10{sup -2} and could be measured by the future LHCb experiment. Our prediction for the ratio of branching fractions (BR(B{sub c}{sup +}→J/Ψπ{sup +}))/(BR(B{sub c}{sup +}→J/Ψμ{sup +}ν{sub μ})) is in good agreement with the data. For B{sub c} → Vlν{sub l} decays, the relative contributions of the longitudinal and transverse polarization are discussed in different momentum transfer squared regions. These predictions will be tested on the ongoing and forthcoming experiments. (orig.)

  20. S. E. A. Clam. Vol. 3E. Technical appraisal. [Wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-01

    A detailed technical appraisal of the wave energy device known as a 'Celam' is presented by a team of Consultants. The scheme assessed is a 2 GW array based off the coast of Skye. The cost of energy from such an array is assessed both by the Consultants and by the development team and the discrepancies between the two discussed.

  1. Strong CMB constraint on P-wave annihilating dark matter

    Directory of Open Access Journals (Sweden)

    Haipeng An

    2017-10-01

    Full Text Available We consider a dark sector consisting of dark matter that is a Dirac fermion and a scalar mediator. This model has been extensively studied in the past. If the scalar couples to the dark matter in a parity conserving manner then dark matter annihilation to two mediators is dominated by the P-wave channel and hence is suppressed at very low momentum. The indirect detection constraint from the anisotropy of the Cosmic Microwave Background is usually thought to be absent in the model because of this suppression. In this letter we show that dark matter annihilation via bound state formation occurs through the S-wave and hence there is a constraint on the parameter space of the model from the Cosmic Microwave Background.

  2. Nonlinear model predictive control of a wave energy converter based on differential flatness parameterisation

    Science.gov (United States)

    Li, Guang

    2017-01-01

    This paper presents a fast constrained optimization approach, which is tailored for nonlinear model predictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlinear programming problem (NLP) derived from the continuous constrained optimal control of WEC using pseudospectral method. The alleviation of computational burden using this approach helps to promote an economic implementation of nonlinear model predictive control strategy for WEC control problems. The method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints, which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy of this approach.

  3. Three-dimensional S-wave tomography under Axial Seamount

    Science.gov (United States)

    Baillard, C.; Wilcock, W. S. D.; Arnulf, A. F.; Tolstoy, M.; Waldhauser, F.

    2017-12-01

    Axial Seamount is a submarine volcano located at the intersection of the Juande Fuca Ridge and the Cobb-Eickelberg hotspot 500 km off the coast of thenorthwestern United States. The seamount, which rises 1 km above the seafloor, ischaracterized by a shallow caldera that is elongated in the N-S direction, measure 8km by 3 km and sits on top of a 14 km by 3 km magma reservoir. Two eruptive eventsin 1998 and 2011 motivated the deployment in 2014 of a real time cabled observatorywithin the Axial caldera, as part of the Ocean Observatories Initiative (OOI).Theobservatory includes a network of seven seismometers that span the southern half ofthe caldera. Five months after the observatory came on-line in November 2014, thevolcano erupted on April 24, 2015. Well over 100,000 events were located in thevicinity of the caldera, delineating an outward dipping ring fault that extends fromnear the surface to the magma body at 2 km depth and which accommodatesinflation and deflation of the volcano.The initial earthquake locations have beenobtained with a one-dimensional velocity model but the travel time residuals suggeststrong heterogeneities. A three-dimensional P-wave velocity model, obtained bycombining multichannel and ocean bottom seismometer refraction data, is being usedto refine locations but the three-dimensional S-wave structure is presently unknown.In most mid-ocean ridge settings, the distribution of earthquakes is not conducive forjoint inversions for S-wave velocity and hypocentral parameters because there are fewcrossing ray paths but at Axial the presence of a ring fault that is seismically active atall depths on both the east and west side of the caldera, provides a reasonablegeometry for such efforts. We will present the results of joint inversions that assumethe existing three-dimensional P wave velocity model and solve for VP/VS structure andhypocentral parameters using LOTOS, an algorithm that solves the forward problemusing ray bending.The resulting model

  4. Mantle Attenuation Estimated from Regional and Teleseismic P-waves of Deep Earthquakes and Surface Explosions

    Science.gov (United States)

    Ichinose, G.; Woods, M.; Dwyer, J.

    2014-03-01

    We estimated the network-averaged mantle attenuation t*(total) of 0.5 s beneath the North Korea test site (NKTS) by use of P-wave spectra and normalized spectral stacks from the 25 May 2009 declared nuclear test (mb 4.5; IDC). This value was checked using P-waves from seven deep (580-600 km) earthquakes (4.8 test, which confirms the equality with the sum of t*(u) and t*(d). We included constraints on seismic moment, depth, and radiation pattern by using results from a moment tensor analysis and corner frequencies from modeling of P-wave spectra recorded at local distances. We also avoided finite-faulting effects by excluding earthquakes with complex source time functions. We assumed ω2 source models for earthquakes and explosions. The mantle attenuation beneath the NKTS is clearly different when compared with the network-averaged t* of 0.75 s for the western US and is similar to values of approximately 0.5 s for the Semipalatinsk test site within the 0.5-2 Hz range.

  5. Experiment for 3-component S-wave reflection survey. Part 3; Sanseibun S ha hanshaho no kiso jikken. 3

    Energy Technology Data Exchange (ETDEWEB)

    Kano, N; Yamaguchi, K; Yokota, T; Kiguchi, T [Geological Survey of Japan, Tsukuba (Japan)

    1996-10-01

    Anisotropy has been investigated using S-wave as a technique for detecting fractures. In this study, fundamental experiments were carried out with slightly changing the measuring conditions at a place where anisotropy was expected. This paper describes the fundamental data acquisition of anisotropy analysis using S-wave, and a part of the results. The experiments were conducted on the agricultural road in Yamadera district, Matsuyama-machi, Yamagata Prefecture. Two flat unpaved roads meeting at right angles were used as traverse lines. In this place, several reflection surfaces were certainly detected by P-wave, and anisotropy of S-wave was confirmed from the velocity of refracted wave of S-wave. Data were processed for individual traverse lines meeting at right angles. Firstly, signal sweeping, correlation, and vertical superposition were made. Six kinds of data were prepared, i.e., three-component receiving records of data at 0{degree} of generating direction and three-component receiving records of data at 90{degree} of generating direction. Records of T-component at 0{degree} and R-component at 90{degree} were used for processing of the seismic reflection method. These records would be considered to be data of SH-wave and SV-wave, respectively. 4 figs.

  6. Plasma scattering measurement using a submillimeter wave gyrotron as a radiation source

    International Nuclear Information System (INIS)

    Ogawa, I.; Idehara, T.; Itakura, Y.; Myodo, M.; Hori, T.; Hatae, T.

    2004-01-01

    Plasma scattering measurement is an effective technique to observe low frequency density fluctuations excited in plasma. The spatial and wave number resolutions and the S/N ratio of measurement depend on the wavelength range, the size and the intensity of a probe beam. A well-collimated, submillimeter wave beam is suitable for improving the spatial and wave number resolutions. Application of high frequency gyrotron is effective in improving the S/N ratio of the measurement because of its capacity to deliver high power. Unlike the molecular vapor lasers, the gyrotrons generate diverging beam of radiation with TE mn mode structure. It is therefore necessary to convert the output radiation into a Gaussian beam. A quasi-optical antenna is a suitable element for the conversion system under consideration since it is applicable to several TE 0n and TE 1n modes. In order to apply the gyrotron to plasma scattering measurement, we have stabilized the output (P = 110 W, f = 354 GHz) of gyrotron up to the level (ΔP/P < 1 %, Δf< 10 kHz). The gyrotron output can be stabilized by decreasing the fluctuation of the cathode potential. (authors)

  7. P Wave Dispersion is Increased in Pulmonary Stenosis

    Directory of Open Access Journals (Sweden)

    Namik Ozmen

    2006-01-01

    Full Text Available Aim: The right atrium pressure load is increased in pulmonary stenosis (PS that is a congenital anomaly and this changes the electrophysiological characteristics of the atria. However, there is not enough data on the issue of P wave dispersion (PWD in PS. Methods: Forty- two patients diagnosed as having valvular PS with echocardiography and 33 completely healthy individuals as the control group were included in the study. P wave duration, p wave maximum (p max and p minimum (p min were calculated from resting electrocariography (ECG obtained at the rate of 50 mm/sec. P wave dispersion was derived by subtracting p min from p max. The mean pressure gradient (MPG at the pulmonary valve, structure of the valve and diameters of the right and left atria were measured with echocardiography. The data from two groups were compared with the Mann-Whitney U test and correlation analysis was performed with the Pearson correlation technique. Results: There wasn’t any statistically significance in the comparison of age, left atrial diameter and p min between two groups. While the MPG at the pulmonary valve was 43.11 ± 18.8 mmHg in PS patients, it was 8.4 ± 4.5 mmHg in the control group. While p max was 107.1 ± 11.5 in PS group, it was 98.2 ± 5.1 in control group (p=0.01, PWD was 40.4 ± 1.2 in PS group, and 27.2 ± 9.3 in the control group (p=0.01Moreover, while the diameter of the right atrium in PS group was greater than that of the control group, (38.7 ± 3.9 vs 30.2 ± 2.5, p=0.02. We detected a correlation between PWD and pressure gradient in regression analysis. Conclusion: P wave dispersion and p max are increased in PS. While PWD was correlated with the pressure gradient that is the degree of narrowing, it was not correlated with the diameters of the right and left atria.

  8. A method for EIA scoping of wave energy converters-based on classification of the used technology

    Energy Technology Data Exchange (ETDEWEB)

    Margheritini, Lucia, E-mail: lm@civil.aau.dk [Aalborg University, Department of Civil Engineering, Sohngardsholmsvej 57, DK - 9000, Aalborg (Denmark); Hansen, Anne Merrild, E-mail: merrild@plan.aau.dk [Aalborg University, Department of Planning and Development, Fibigerstraede 13, DK - 9220, Aalborg (Denmark); Frigaard, Peter, E-mail: pf@civil.aau.dk [Aalborg University, Department of Civil Engineering, Sohngardsholmsvej 57, DK - 9000, Aalborg (Denmark)

    2012-01-15

    During the first decade of the 21st Century the World faces spread concern for global warming caused by rise of green house gasses produced mainly by combustion of fossil fuels. Under this latest spin all renewable energies run parallel in order to achieve sustainable development. Among them wave energy has an unequivocal potential and technology is ready to enter the market and contribute to the renewable energy sector. Yet, frameworks and regulations for wave energy development are not fully ready, experiencing a setback caused by lack of understanding of the interaction of the technologies and marine environment, lack of coordination from the competent Authorities regulating device deployment and conflicts of maritime areas utilization. The EIA within the consent process is central in the realization of full scale devices and often is the meeting point for technology, politics and public. This paper presents the development of a classification of wave energy converters that is based on the different impact the technologies are expected to have on the environment. This innovative classification can be used in order to simplify the scoping process for developers and authorities.

  9. Methodology to Calculate the ACE and HPQ Metrics Used in the Wave Energy Prize

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Frederick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weber, Jochem W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jenne, Dale S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bull, Dianna [Sandia National Laboratories; Dallman, Ann [Sandia National Laboratories; Gunawan, Budi [Sandia National Laboratories; Ruehl, Kelley [Sandia National Laboratories; Newborn, David [Naval Surface Warfare Center, Carderock Division; Quintero, Miguel [Naval Surface Warfare Center, Carderock Division; LaBonte, Alison [U.S. Department of Energy; Karwat, Darshan [U.S. Department of Energy; Beatty, Scott [Cascadia Coast Research Ltd.

    2018-03-08

    The U.S. Department of Energy's Wave Energy Prize Competition encouraged the development of innovative deep-water wave energy conversion technologies that at least doubled device performance above the 2014 state of the art. Because levelized cost of energy (LCOE) metrics are challenging to apply equitably to new technologies where significant uncertainty exists in design and operation, the prize technical team developed a reduced metric as proxy for LCOE, which provides an equitable comparison of low technology readiness level wave energy converter (WEC) concepts. The metric is called 'ACE' which is short for the ratio of the average climate capture width to the characteristic capital expenditure. The methodology and application of the ACE metric used to evaluate the performance of the technologies that competed in the Wave Energy Prize are explained in this report.

  10. Analytical Study on an Oscillating Buoy Wave Energy Converter Integrated into a Fixed Box-Type Breakwater

    Directory of Open Access Journals (Sweden)

    Xuanlie Zhao

    2017-01-01

    Full Text Available An oscillating buoy wave energy converter (WEC integrated to an existing box-type breakwater is introduced in this study. The buoy is installed on the existing breakwater and designed to be much smaller than the breakwater in scale, aiming to reduce the construction cost of the WEC. The oscillating buoy works as a heave-type WEC in front of the breakwater towards the incident waves. A power take-off (PTO system is installed on the topside of the breakwater to harvest the kinetic energy (in heave mode of the floating buoy. The hydrodynamic performance of this system is studied analytically based on linear potential-flow theory. Effects of the geometrical parameters on the reflection and transmission coefficients and the capture width ratio (CWR of the system are investigated. Results show that the maximum efficiency of the energy extraction can reach 80% or even higher. Compared with the isolated box-type breakwater, the reflection coefficient can be effectively decreased by using this oscillating buoy WEC, with unchanged transmission coefficient. Thus, the possibility of capturing the wave energy with the oscillating buoy WEC integrated into breakwaters is shown.

  11. Balancing Power Absorption and Structural Loading for a Novel Fixed-Bottom Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Alan D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-08

    In this work, the net power delivered to the grid from a nonideal power take-off (PTO) is introduced followed by a review of the pseudo-spectral control theory. A power-to-load ratio, used to evaluate the pseudo-spectral controller performance, is discussed, and the results obtained from optimizing a multiterm objective function are compared against results obtained from maximizing the net output power to the grid. Simulation results are then presented for four different oscillating wave energy converter geometries to highlight the potential of combing both geometry and PTO control to maximize power while minimizing loads.

  12. Upper mantle seismic structure beneath southwest Africa from finite-frequency P- and S-wave tomography

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Yuan, Xiaohui; Tilmann, Frederik

    2015-01-01

    We present a 3D high-resolution seismic model of the southwestern Africa region from teleseismic tomographic inversion of the P- and S- wave data recorded by the amphibious WALPASS network. We used 40 temporary stations in southwestern Africa with records for a period of 2 years (the OBS operated...... for 1 year), between November 2010 and November 2012. The array covers a surface area of approximately 600 by 1200 km and is located at the intersection of the Walvis Ridge, the continental margin of northern Namibia, and extends into the Congo craton. Major questions that need to be understood......, probably related to surficial suture zones and the presence of fertile material. A shallower depth extent of the lithospheric plate of ∼100 km was observed beneath the ocean, consistent with plate-cooling models. In addition to tomographic images, the seismic anisotropy measurements within the upper mantle...

  13. Impact of Generator Stroke Length on Energy Production for a Direct Drive Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Yue Hong

    2016-09-01

    Full Text Available The Lysekil wave energy converter (WEC, developed by the wave energy research group of Uppsala University, has evolved through a variety of mechanical designs since the first prototype was installed in 2006. The hundreds of engineering decisions made throughout the design processes have been based on a combination of theory, know-how from previous experiments, and educated guesses. One key parameter in the design of the WECs linear generator is the stroke length. A long stroke requires a taller WEC with associated economical and mechanical challenges, but a short stroke limits the power production. The 2-m stroke of the current WECs has been an educated guess for the Swedish wave climate, though the consequences of this choice on energy absorption have not been studied. When the WEC technology is considered for international waters, with larger waves and challenges of energy absorption and survivability, the subject of stroke length becomes even more relevant. This paper studies the impact of generator stroke length on energy absorption for three sites off the coasts of Sweden, Chile and Scotland. 2-m, 4-m, and unlimited stroke are considered. Power matrices for the studied WEC prototype are presented for each of the studied stroke lengths. Presented results quantify the losses incurred by a limited stroke. The results indicate that a 2-m stroke length is likely to be a good choice for Sweden, but 4-m is likely to be necessary in more energetic international waters.

  14. A new method for testing pile by single-impact energy and P-S curve

    Science.gov (United States)

    Xu, Zhao-Yong; Duan, Yong-Kang; Wang, Bin; Hu, Yi-Li; Yang, Run-Hai; Xu, Jun; Zhao, Jin-Ming

    2004-11-01

    By studying the pile-formula and stress-wave methods ( e.g., CASE method), the authors propose a new method for testing piles using the single-impact energy and P-S curves. The vibration and wave figures are recorded, and the dynamic and static displacements are measured by different transducers near the top of piles when the pile is impacted by a heavy hammer or micro-rocket. By observing the transformation coefficient of driving energy (total energy), the consumed energy of wave motion and vibration and so on, the vertical bearing capacity for single pile is measured and calculated. Then, using the vibration wave diagram, the dynamic relation curves between the force ( P) and the displacement ( S) is calculated and the yield points are determined. Using the static-loading test, the dynamic results are checked and the relative constants of dynamic-static P-S curves are determined. Then the subsidence quantity corresponding to the bearing capacity is determined. Moreover, the shaped quality of the pile body can be judged from the formation of P-S curves.

  15. Relativistic corrections to the form factors of Bc into P-wave orbitally excited charmonium

    Science.gov (United States)

    Zhu, Ruilin

    2018-06-01

    We investigated the form factors of the Bc meson into P-wave orbitally excited charmonium using the nonrelativistic QCD effective theory. Through the analytic computation, the next-to-leading order relativistic corrections to the form factors were obtained, and the asymptotic expressions were studied in the infinite bottom quark mass limit. Employing the general form factors, we discussed the exclusive decays of the Bc meson into P-wave orbitally excited charmonium and a light meson. We found that the relativistic corrections lead to a large correction for the form factors, which makes the branching ratios of the decay channels B (Bc ± →χcJ (hc) +π± (K±)) larger. These results are useful for the phenomenological analysis of the Bc meson decays into P-wave charmonium, which shall be tested in the LHCb experiments.

  16. Measurements of Mode Converted Ion Cyclotron Wave with Phase Contrast Imaging in Alcator C-Mod and Comparisons with Synthetic PCI Simulations in TORIC

    International Nuclear Information System (INIS)

    Tsujii, N.; Porkolab, M.; Edlund, E. M.; Lin, L.; Lin, Y.; Wright, J. C.; Wukitch, S. J.

    2009-01-01

    Mode converted ion cyclotron wave (ICW) has been observed with phase contrast imaging (PCI) in D- 3 He plasmas in Alcator C-Mod. The measurements were carried out with the optical heterodyne technique using acousto-optic modulators which modulate the CO2 laser beam intensity near the ion cyclotron frequency. With recently improved calibration of the PCI system using a calibrated sound wave source, the measurements have been compared with the full-wave code TORIC, as interpreted by a synthetic diagnostic. Because of the line-integrated nature of the PCI signal, the predictions are sensitive to the exact wave field pattern. The simulations are found to be in qualitative agreement with the measurements.

  17. Attenuation of short-period P, PcP, ScP, and pP waves in the earth's mantle

    International Nuclear Information System (INIS)

    Bock, G.; Clements, J.R.

    1982-01-01

    The parameter t* (ratio of body wave travel time to the average quality factor Q) was estimated under various assumptions of the nature of the earthquake sources for short-period P, PcP, and ScP phases originating from earthquakes in the Fiji-Tonga region and recorded at the Warramunga Seismic Array at Tennant Creek (Northern Territory, Australia). Spectral ratios were calculated for the amplitudes of PcP to P and of pP to P. The data reveal a laterally varying Q structure in the Fiji-Tonga region. The high-Q lithosphere descending beneath the Tonga Island arc is overlain above 350 km depth by a wedgelike zone of high attenuation with an average Q/sub α/ between 120 and 200 at short periods. The upper mantle farther to the west of the Tonga island arc is less attenuating, with Q/sub α/, between 370 and 560. Q/sub α/ is about 500 in the upper mantle on the oceanic side of the subduction zone. The t* estimates of this study are much smaller than estimates from the free oscillation model SL8. This can be partly explained by regional variations of Q in the upper mantle. If no lateral Q variations occur in the lower mantle, a frequency-dependent Q can make the PcP and ScP observations consistent with model SL8. Adopting the absorption band model to describe the frequency dependence of Q, the parameter tau 2 , the cut-off period of the high-frequency end of the absorption band, was determined. For different source models with finite corner frequencies, the average tau 2 for the mantle is between 0.01 and 0.10 s (corresponding to frequencies between 16 and 1.6 Hz) as derived from the PcP data, and between 0.06 and 0.12 s (2.7 and 1.3 Hz), as derived from the ScP data

  18. P-wave duration and the risk of atrial fibrillation

    DEFF Research Database (Denmark)

    Nielsen, Jonas B; Kühl, Jørgen T; Pietersen, Adrian

    2015-01-01

    BACKGROUND: Results on the association between P-wave duration and the risk of atrial fibrillation (AF) are conflicting. OBJECTIVE: The purpose of this study was to obtain a detailed description of the relationship between P-wave duration and the risk of AF. METHODS: Using computerized analysis o...

  19. Geological structure analysis in Central Java using travel time tomography technique of S waves

    International Nuclear Information System (INIS)

    Palupi, I. R.; Raharjo, W.; Nurdian, S. W.; Giamboro, W. S.; Santoso, A.

    2016-01-01

    Java is one of the islands in Indonesia that is prone to the earthquakes, in south of Java, there is the Australian Plate move to the Java island and press with perpendicular direction. This plate movement formed subduction zone and cause earthquakes. The earthquake is the release of energy due to the sudden movement of the plates. When an earthquake occurs, the energy is released and record by seismometers in the waveform. The first wave recorded is called the P waves (primary) and the next wave is called S waves (secondary). Both of these waves have different characteristics in terms of propagation and direction of movement. S wave is composed of waves of Rayleigh and Love waves, with each direction of movement of the vertical and horizontal, subsurface imaging by using S wave tomography technique can describe the type of the S wave through the medium. The variation of wave velocity under Central Java (esearch area) is ranging from -10% to 10% at the depth of 20, 30 and 40 km, the velocity decrease with the depth increase. Moho discontinuity is lies in the depth of 32 km under the crust, it is indicates there is strong heterogenity in Moho. (paper)

  20. Chiral dynamics, S-wave contributions and angular analysis in D → ππl anti ν

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yu-Ji; Wang, Wei; Zhao, Shuai [Shanghai Jiao-Tong University, INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai (China)

    2017-07-15

    We present a theoretical analysis of the D{sup -} → π{sup +}π{sup -}l anti ν and anti D{sup 0} → π{sup +}π{sup 0}l anti ν decays. We construct a general angular distribution which can include arbitrary partial waves of ππ. Retaining the S-wave and P-wave contributions we study the branching ratios, forward-backward asymmetries and a few other observables. The P-wave contribution is dominated by ρ{sup 0} resonance, and the S-wave contribution is analyzed using the unitarized chiral perturbation theory. The obtained branching fraction for D → ρlν, at the order 10{sup -3}, is consistent with the available experimental data. The S-wave contribution has a branching ratio at the order of 10{sup -4}, and this prediction can be tested by experiments like BESIII and LHCb. Future measurements can also be used to examine the π-π scattering phase shift. (orig.)

  1. Travelling wave solutions to the K-P-P equation at supercritical wave speeds: a parallel to Simon Harris' probabilistic analysis

    NARCIS (Netherlands)

    Kyprianou, A.E.

    2000-01-01

    Recently Harris using probabilistic methods alone has given new proofs for the known existence asymptotics and unique ness of travelling wave solutions to the KPP equation Following in this vein we outline alternative probabilistic proofs for wave speeds exceeding the critical minimal wave speed

  2. Closed Loop Control of a Cascaded Multi-Level Converter to Minimize Harmonic Distortion

    National Research Council Canada - National Science Library

    Souhan, Brian E

    2005-01-01

    ...). Ancillary results include a simple technique for extracting the reference sine wave from an independent bulk converter and implementing a synchronization technique that coordinates a space vector...

  3. Development of neutron detector using sensor type surface barrier with (n,p) and (n,α) converters

    International Nuclear Information System (INIS)

    Madi Filho, Tufic

    1999-01-01

    A Si semiconductor detector, surface barrier type, with a slim film of a converter material capable to produce charged particles was used as a sensor of neutrons in an environment of a zero power reactor. Two types of converters were used to improve the detection efficiency: (1) the polyethylene, n(CH 2 ), which produces recoil protons from the (n,p) interaction and, (2) the 10 B which generates a particle from the (n,alpha) reaction. The optimal thickness of those converters was determined experimentally and specifically for the polyethylene a mathematical model R(ips) = ε p · N 0 ·(1-e -Σ·Χ ) ·e -μ ·Χ + ε n · N 0 · -Σ · Χ was used to fit to the experimental data. For the polyethylene converter the thickness was of 0.058 cm (62.64 mg.cm -2 ) while for the 10 B it was equal to 6.55 [μm (1.54 mg.cm -2 ). The converter of polyethylene or 10 B improved the detection efficiency to a factor of 4.7 and 3.0 respectively. The comparison of the spectrum of the background radiation with the spectra of the recoil protons and the a radiation from the 10 B it was concluded that the polyethylene presented better performance than the 10 B converter. (author)

  4. Nonlinear attenuation of S-waves and Love waves within ambient rock

    Science.gov (United States)

    Sleep, Norman H.; Erickson, Brittany A.

    2014-04-01

    obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.

  5. Mode-converted electron Bernstein wave emission research on CDX-U and NSTX

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C; Jones, B.; Munsat, T.; Hosea, J.C; Kaita, R.; Majeski, R.; Spaleta, J.; Wilson, J.R.; Wilgen, J.B.; Bell, G.L.; Rasmussen, D.A.; Ram, A.K.; Bers, A.; Harvey, R.W.; Smirnov, A.P.

    2003-01-01

    Electron Bernstein waves (EBWs) may enable electron temperature profile measurements and local electron heating and current drive in high β overdense (ω pe /ω ce >>1) plasmas. Significant results are presented from the measurement of X-mode radiation, converted from EBWs observed normal to the magnetic field on the mid-plane of overdense plasmas in CDX-U and NSTX. A radially scannable, in-vessel, quad-ridged antenna and Langmuir probe array on CDX-U studied EBW to X-mode conversion. A local limiter optimized the conversion efficiency by modifying the density scale length at the mode conversion layer. The fundamental EBW conversion efficiency increased, by an order of magnitude, to ∼100% when the local limiter and antenna were inserted near the conversion layer. This technique can be extended to large, high temperature devices. Another significant observation was that the EBW emission source was localized near the electron cyclotron resonance. As a result, mode-converted EBW radiometry has measured radial transport in CDX-U. In addition, a threefold increase in conversion efficiency was observed at the L to H transition in NSTX. Measured conversion efficiency agreed well with theoretical predictions. EBW ray tracing and bounce-averaged Fokker-Planck codes are being used to model EBW heating and current drive scenarios for NSTX equilibria with β up to 40%. So far, results show that it is possible to drive localized currents on the high field side of the magnetic axis in NSTX at β ∼ 12% with current drive efficiency which compares favorably with ECCD. (authors)

  6. New results on the Roper resonance and the P{sub 11} partial wave

    Energy Technology Data Exchange (ETDEWEB)

    Sarantsev, A.V. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Fuchs, M. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Kotulla, M. [Physikalisches Institut, Universitaet Basel (Switzerland); II. Physikalisches Institut, Universitaet Giessen (Germany); Thoma, U. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); II. Physikalisches Institut, Universitaet Giessen (Germany); Ahrens, J. [Institut fuer Kernphysik, Universitaet Mainz (Germany); Annand, J.R.M. [Department of Physics and Astronomy, University of Glasgow (United Kingdom); Anisovich, A.V. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Anton, G. [Physikalisches Institut, Universitaet Erlangen (Germany); Bantes, R. [Physikalisches Institut, Universitaet Bonn (Germany); Bartholomy, O. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Beck, R. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Institut fuer Kernphysik, Universitaet Mainz (Germany); Beloglazov, Yu. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Castelijns, R. [KVI, Groningen (Netherlands); Crede, V. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Department of Physics, Florida State University (United States); Ehmanns, A.; Ernst, J.; Fabry, I. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany); Flemming, H. [Physikalisches Institut, Universitaet Bochum (Germany); Foesel, A. [Physikalisches Institut, Universitaet Erlangen (Germany); Funke, Chr. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn (Germany)] (and others)

    2008-01-17

    Properties of the Roper resonance, the first scalar excitation of the nucleon, are determined. Pole positions and residues of the P{sub 11} partial wave are studied in a combined analysis of pion- and photo-induced reactions. We find the Roper pole at {l_brace}(1371{+-}7)-i(92{+-}10){r_brace} MeV and an elasticity of 0.61{+-}0.03. The largest decay coupling is found for the N{sigma} ({sigma}=({pi}{pi})-S-wave). The analysis is based on new data on {gamma}p{yields}p{pi}{sup 0}{pi}{sup 0} for photons in the energy range from the two-pion threshold to 820 MeV from TAPS at Mainz and from 0.4 to 1.3 GeV from Crystal Barrel at Bonn and includes further data from other experiments. The partial wave analysis excludes the possibility that the Roper resonance is split into two states with different partial decay widths.

  7. Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Arthur Pecher

    2014-02-01

    Full Text Available A quasi-static analysis and sensitivity investigation of two different mooring configurations—a single anchor leg mooring (SALM and a three-legged catenary anchor leg system (CALM—is presented. The analysis aims to indicate what can be expected in terms of requirements for the mooring system size and stiffness. The two mooring systems were designed for the same reference load case, corresponding to a horizontal design load at the wave energy converter (WEC of 2000 kN and a water depth of 30 m. This reference scenario seems to be representative for large WECs operating in intermediate water depths, such as Weptos, Wave Dragon and many others, including reasonable design safety factors. Around this reference scenario, the main influential parameters were modified in order to investigate their impact on the specifications of the mooring system, e.g. the water depth, the horizontal design load, and a mooring design parameter.

  8. A microscopic description of the S-wave πN-scattering lengths and the (pπ-)-atom lifetime in the quark confinement model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.; Rusetskij, A.G.

    1989-01-01

    The S-wave πN-scattering lengths and the (pπ - )-atom lifetime are in the quark confinement model. Nucleon is treated as a quark-diquark system. The fulfillment of the Weinberg-Tomozawa relations is checked. The agreement is achieved with the experiment and with the results obtained within other approaches. 32 refs.; 5 figs.; 2 tabs

  9. Determination of elastic anisotropy of rocks from P- and S-wave velocities: numerical modelling and lab measurements

    Czech Academy of Sciences Publication Activity Database

    Svitek, Tomáš; Vavryčuk, Václav; Lokajíček, Tomáš; Petružálek, Matěj

    2014-01-01

    Roč. 199, č. 3 (2014), s. 1682-1697 ISSN 0956-540X R&D Projects: GA MŠk LH13102; GA ČR(CZ) GAP104/12/0915; GA ČR(CZ) GAP210/12/1491; GA ČR GA13-13967S Institutional support: RVO:67985831 ; RVO:67985530 Keywords : geomechanics * microstructures * body waves * seismic anisotropy * wave propagation Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.724, year: 2013

  10. Bandwidth broadening of a graphene-based circular polarization converter by phase compensation.

    Science.gov (United States)

    Gao, Xi; Yang, Wanli; Cao, Weiping; Chen, Ming; Jiang, Yannan; Yu, Xinhua; Li, Haiou

    2017-10-02

    We present a broadband tunable circular polarization converter composed of a single graphene sheet patterned with butterfly-shaped holes, a dielectric spacer, and a 7-layer graphene ground plane. It can convert a linearly polarized wave into a circularly polarized wave in reflection mode. The polarization converter can be dynamically tuned by varying the Fermi energy of the single graphene sheet. Furthermore, the 7-layer graphene acting as a ground plane can modulate the phase of its reflected wave by controlling the Femi energy, which provides constructive interference condition at the surface of the single graphene sheet in a broad bandwidth and therefore significantly broadens the tunable bandwidth of the proposed polarization converter.

  11. Numerical Analysis of a Large Floating Wave Energy Converter with Adjustable Structural Geometry

    DEFF Research Database (Denmark)

    Ferri, Francesco; Pecher, Arthur Francois Serge; Kofoed, Jens Peter

    2015-01-01

    by the structural loads in extreme conditions. TheWeptos is a large floating WEC, with multiple absorbers, which has proven to be a serious candidate for the renewable energy market, due to both relevant power performance and reduced cost if compared with other WECs. The scope of this article is to compare two......The current cost of energy (CoE) from wave energy converters (WECs) is still significantly higher than other renewable energy resources, thus the sector has not yet reached a competitive level. WECs have a relative small turnover compared to the high capital cost, which to a large extent is driven...... different configurations of the Weptos machine, using the cost of energy (CoE) as a base of comparison. The numerical results are obtained via a multi-body analysis carried out in frequency domain....

  12. The effects of core-reflected waves on finite fault inversions with teleseismic body wave data

    Science.gov (United States)

    Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han

    2017-11-01

    Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases

  13. A partial wave analysis of world data for the reaction π-p → K0Λ from threshold to 2350 MeV/c

    International Nuclear Information System (INIS)

    Baker, R.D.; Blissett, J.A.; Bloodworth, I.J.

    1977-06-01

    All available world data for the reaction π - p → K 0 Λ up to 2350 MeV/c incident momentum have been analysed using both the Barrelet (Nuovo Cimento; 8A:331 (1972)) zero technique and a conventional energy-dependent fit. The results of the two methods are in good agreement. Resonances are required in the S 11 , P 11 , P 13 and D 13 partial waves. There is also an enhancement in the D 15 wave around 1900 MeV. No other resonances are required. (author)

  14. Cascaded resonant bridge converters

    Science.gov (United States)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  15. Third-order non-Coulomb correction to the S-wave quarkonium wave functions at the origin

    International Nuclear Information System (INIS)

    Beneke, M.; Kiyo, Y.; Schuller, K.

    2008-01-01

    We compute the third-order correction to the S-wave quarkonium wave functions |ψ n (0)| 2 at the origin from non-Coulomb potentials in the effective non-relativistic Lagrangian. Together with previous results on the Coulomb correction and the ultrasoft correction computed in a companion paper, this completes the third-order calculation up to a few unknown matching coefficients. Numerical estimates of the new correction for bottomonium and toponium are given

  16. Lifshitz effects on holographic p-wave superfluid

    Directory of Open Access Journals (Sweden)

    Ya-Bo Wu

    2015-02-01

    Full Text Available In the probe limit, we numerically build a holographic p-wave superfluid model in the four-dimensional Lifshitz black hole coupled to a Maxwell-complex vector field. We observe the rich phase structure and find that the Lifshitz dynamical exponent z contributes evidently to the effective mass of the matter field and dimension of the gravitational background. Concretely, we obtain that the Cave of Winds appeared only in the five-dimensional anti-de Sitter (AdS spacetime, and the increasing z hinders not only the condensate but also the appearance of the first-order phase transition. Furthermore, our results agree with the Ginzburg–Landau results near the critical temperature. In addition, the previous AdS superfluid model is generalized to the Lifshitz spacetime. Keywords: Gauge/gravity duality, Holographic superconductor, Lifshitz black hole, Maxwell-complex vector field

  17. S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission

    Czech Academy of Sciences Publication Activity Database

    Bougeret, J. L.; Goetz, K.; Kaiser, M. L.; Bale, S. D.; Kellogg, P. J.; Maksimovic, M.; Monge, N.; Monson, S. J.; Astier, P. L.; Davy, S.; Dekkali, M.; Hinze, J. J.; Manning, R. E.; Aguilar-Rodriguez, E.; Bonnin, X.; Briand, C.; Cairns, I. H.; Cattell, C. A.; Cecconi, B.; Eastwood, J.; Ergun, R. E.; Fainberg, J.; Hoang, S.; Huttunen, K. E. J.; Krucker, S.; Lecacheux, A.; MacDowall, R. J.; Macher, W.; Mangeney, A.; Meetre, C. A.; Moussas, X.; Nguyen, Q. N.; Oswald, T. H.; Pulupa, M.; Reiner, M. J.; Robinson, P. A.; Rucker, H.; Salem, c.; Santolík, Ondřej; Silvis, J. M.; Ullrich, R.; Zarka, P.; Zouganelis, I.

    2008-01-01

    Roč. 136, 1-4 (2008), s. 487-528 ISSN 0038-6308 Grant - others: NASA (US) NAS5-03076 Institutional research plan: CEZ:AV0Z30420517 Keywords : S/WAVES * STEREO * plasma waves * radio waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.372, year: 2008

  18. Dynamics of skyrmions and edge states in the resistive regime of mesoscopic p-wave superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Fernández Becerra, V., E-mail: VictorLeonardo.FernandezBecerra@uantwerpen.be; Milošević, M.V., E-mail: milorad.milosevic@uantwerpen.be

    2017-02-15

    Highlights: • Voltage–current characterization of a mesoscopic p-wave superconducting sample. • Skyrmions and edge states are stabilized with an out-of-plane applied magnetic field. • In the resistive regime, moving skyrmions and the edge state behave distinctly different from the conventional kinematic vortices. - Abstract: In a mesoscopic sample of a chiral p-wave superconductor, novel states comprising skyrmions and edge states have been stabilized in out-of-plane applied magnetic field. Using the time-dependent Ginzburg–Landau equations we shed light on the dynamic response of such states to an external applied current. Three different regimes are obtained, namely, the superconducting (stationary), resistive (non-stationary) and normal regime, similarly to conventional s-wave superconductors. However, in the resistive regime and depending on the external current, we found that moving skyrmions and the edge state behave distinctly different from the conventional kinematic vortex, thereby providing new fingerprints for identification of p-wave superconductivity.

  19. Extrapolation of extreme response for different mooring line systems of floating wave energy converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sterndorff, Martin; Sørensen, John Dalsgaard

    2014-01-01

    Mooring systems for floating wave energy converters (WECs) are a major cost driver. Failure of mooring systems often occurs due to extreme loads. This paper introduces an extrapolation method for extreme response which accounts for the control system of a WEC that controls the loads onto...... measurements from lab-scaled WEPTOS WEC are taken. Different catenary anchor leg mooring (CALM) systems as well as single anchor legmooring (SALM)mooring systemsare implemented for a dynamic simulation with different number of mooring lines. Extreme tension loads with a return period of 50 years are assessed...... for the hawser as well as at the different mooring lines. Furthermore, the extreme load impact given failure of one mooring line is assessed and compared with extreme loads given no system failure....

  20. Calculations of resonances parameters for the ((2s2) 1Se, (2s2p) 1,3P0) and ((3s2) 1Se, (3s3p) 1,3P0) doubly excited states of helium-like ions with Z≤10 using a complex rotation method implemented in Scilab

    International Nuclear Information System (INIS)

    Gning, Youssou; Sow, Malick; Traoré, Alassane; Dieng, Matabara; Diakhate, Babacar; Biaye, Mamadi; Wagué, Ahmadou

    2015-01-01

    In the present work a special computational program Scilab (Scientific Laboratory) in the complex rotation method has been used to calculate resonance parameters of ((2s 2 ) 1 S e , (2s2p) 1,3 P 0 ) and ((3s 2 ) 1 S e , (3s3p) 1,3 P 0 ) states of helium-like ions with Z≤10. The purpose of this study required a mathematical development of the Hamiltonian applied to Hylleraas wave function for intrashell states, leading to analytical expressions which are carried out under Scilab computational program. Results are in compliance with recent theoretical calculations. - Highlights: • Resonance energy and widths computed for doubly excited states of helium-like ions. • Well-comparable results to the theoretical literature values up to Z=10. • Satisfactory agreements with theoretical calculations for widths

  1. Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Haluk Denizli; James Mueller; Steven Dytman; M.L. Leber; R.D. Levine; J. Miles; Kui Kim; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Marco Anghinolfi; Burin Asavapibhop; G. Asryan; Harutyun Avakian; Hovhannes Baghdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; Steve Barrow; V. Batourine; Marco Battaglieri; Kevin Beard; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Nicola Bianchi; Angela Biselli; Billy Bonner; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Catalina Cetina; Shifeng Chen; Philip Cole; Alan Coleman; Patrick Collins; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Volker Crede; John Cummings; Natalya Dashyan; Raffaella De Vita; Enzo De Sanctis; Pavel Degtiarenko; Lawrence Dennis; Alexandre Deur; Kalvir Dhuga; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; P. Dragovitsch; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Lamiaa Elfassi; Latifa Elouadrhiri; A. Empl; Paul Eugenio; Laurent Farhi; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; Tony Forest; Valera Frolov; Herbert Funsten; Sally Gaff; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Pascal Girard; Francois-Xavier Girod; John Goetz; Atilla Gonenc; Ralf Gothe; Keith Griffioen; Michel Guidal; Matthieu Guillo; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Kawtar Hafidi; Hayk Hakobyan; Rafael Hakobyan; John Hardie; David Heddle; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; Jingliang Hu; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; J.H. Kelley; James Kellie; Mahbubul Khandaker; K. Kim; Wooyoung Kim; Andreas Klein; Franz Klein; Mike Klusman; Mikhail Kossov; Laird Kramer; V. Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Kenneth Livingston; Haiyun Lu; K. Lukashin; Marion MacCormick; Joseph Manak; Nikolai Markov; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; M. Moteabbed; Valeria Muccifora; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Steve Nelson; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O' Rielly; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Gerald Peterson; Sasha Philips; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; Ermanno Polli; S. Pozdniakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Liming Qin; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; David Rowntree; Philip Rubin; Franck Sabatie; Konstantin Sabourov; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Aziz Shafi; Youri Sharabian; Jeremiah Shaw; Nikolay Shvedunov; Sebastio Simionatto; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; Daria Sokhan; M. Spraker; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; I.I. Strakovsky; Steffen Strauch; Mauro Taiuti; Simon Taylor; David Tedeschi; Ulrike Thoma; R. Thompson; Avtandil Tkabladze; Svyatoslav Tkachenko; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Kebin Wang; Daniel Watts; Lawrence Weinstein; Henry Weller; Dennis Weygand; M. Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Junho Yun; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao

    2007-07-01

    New cross sections for the reaction $ep \\to e'\\eta p$ are reported for total center of mass energy $W$=1.5--2.3 GeV and invariant squared momentum transfer $Q^2$=0.13--3.3 GeV$^2$. This large kinematic range allows extraction of new information about response functions, photocouplings, and $\\eta N$ coupling strengths of baryon resonances. A sharp structure is seen at $W\\sim$ 1.7 GeV. The shape of the differential cross section is indicative of the presence of a $P$-wave resonance that persists to high $Q^2$. Improved values are derived for the photon coupling amplitude for the $S_{11}$(1535) resonance. The new data greatly expands the $Q^2$ range covered and an interpretation of all data with a consistent parameterization is provided.

  2. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nielsen, Kim [Ramboll, Copenhagen (Denmark); Ruehl, Kelley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bunnik, Tim [MARIN (Netherlands); Touzon, Imanol [Tecnalia (Spain); Nam, Bo Woo [KRISO (Korea, Rep. of); Kim, Jeong Seok [KRISO (Korea, Rep. of); Janson, Carl Erik [Chalmers University (Sweden); Jakobsen, Ken-Robert [EDRMedeso (Norway); Crowley, Sarah [WavEC (Portugal); Vega, Luis [Hawaii Natural Energy Institute (United States); Rajagopalan, Krishnakimar [Hawaii Natural Energy Institute (United States); Mathai, Thomas [Glosten (United States); Greaves, Deborah [Plymouth University (United Kingdom); Ransley, Edward [Plymouth University (United Kingdom); Lamont-Kane, Paul [Queen' s University Belfast (United Kingdom); Sheng, Wanan [University College Cork (Ireland); Costello, Ronan [Wave Venture (United Kingdom); Kennedy, Ben [Wave Venture (United Kingdom); Thomas, Sarah [Floating Power Plant (Denmark); Heras, Pilar [Floating Power Plant (Denmark); Bingham, Harry [Technical University of Denmark (Denmark); Kurniawan, Adi [Aalborg University (Denmark); Kramer, Morten Mejlhede [Aalborg University (Denmark); Ogden, David [INNOSEA (France); Girardin, Samuel [INNOSEA (France); Babarit, Aurelien [EC Nantes (France); Wuillaume, Pierre-Yves [EC Nantes (France); Steinke, Dean [Dynamic Systems Analysis (Canada); Roy, Andre [Dynamic Systems Analysis (Canada); Beatty, Scott [Cascadia Coast Research (Canada); Schofield, Paul [ANSYS (United States); Kim, Kyong-Hwan [KRISO (Korea, Rep. of); Jansson, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden); BCAM (Spain); Hoffman, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2017-10-16

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 was proposed by Bob Thresher (National Renewable Energy Laboratory) in 2015 and approved by the OES Executive Committee EXCO in 2016. The kickoff workshop took place in September 2016, wherein the initial baseline task was defined. Experience from similar offshore wind validation/verification projects (OC3-OC5 conducted within the International Energy Agency Wind Task 30) [1], [2] showed that a simple test case would help the initial cooperation to present results in a comparable way. A heaving sphere was chosen as the first test case. The team of project participants simulated different numerical experiments, such as heave decay tests and regular and irregular wave cases. The simulation results are presented and discussed in this paper.

  3. On/off multi-poppet valve for switching manifold in discrete fluid power force system PTO in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Fluid power systems are the leading technology for power take off systems in ocean wave energy converters. However, fluid power systems often suffer from poor efficiency, especially in part loads. This degrades the PTO system efficiency and therefore lowers the energy production. To overcome......, the choice of pilot valve, structural mechanical issues and modelling and simulation of various valve configurations. Hence, a mechatronic design process is utilised to choose the best valve configuration....

  4. Estimation of Downtime and of Missed Energy Associated with a Wave Energy Converter by the Equivalent Power Storm Model

    Directory of Open Access Journals (Sweden)

    Felice Arena

    2015-10-01

    Full Text Available The design of any wave energy converter involves the determination of relevant statistical data on the wave energy resource oriented to the evaluation of the structural reliability and energy performance of the device. Currently, limited discussions concern the estimation of parameters connected to the energy performance of a device. Thus, this paper proposes a methodology for determining average downtime and average missed energy, which is the energy that is not harvested because of device deactivations during severe sea storms. These quantities are fundamental for evaluating the expected inactivity of a device during a year or during its lifetime and are relevant for assessing the effectiveness of a device working at a certain site. For this purpose, the equivalent power storm method is used for their derivation, starting from concepts pertaining to long-term statistical analysis. The paper shows that the proposed solutions provide reliable estimations via comparison with results obtained by processing long wave data.

  5. Cross sections for electron-impact excitation of krypton from the levels of 4p6, 4p55s, and 4p55p configurations

    International Nuclear Information System (INIS)

    Zeng Jiaolong; Yuan Jianmin; Wu Jianhua; Jin Fengtao; Zhao Gang

    2005-01-01

    The electron-impact excitation cross sections at low electron energies have been calculated using a fully relativistic R-matrix method for transitions between levels of 4p 6 , 4p 5 5s, and 4p 5 5p configurations. To ensure the convergence of results, we have paid special attention to the factors that may affect the convergence of cross sections. For examples, we have included extensive configuration interactions in the wave-function expansion of the target states. A large enough R-matrix boundary has been taken to ensure the convergence of atomic wave functions. Contributions to cross sections from a large number of partial waves (up to J=39.5) have been explicitly calculated. The final results are in good agreement with recent experimental data by Jung et al. [Phys. Rev. Lett. 94, 163202 (2005)] after shifting the position of electron energy. The relative difference is about 10% for four transitions out of the metastable levels. The results eliminated the significant discrepancies between theory and experimental work on excitation cross sections out of the metastable levels reported in the literature

  6. BCVEGPY2.0: An upgraded version of the generator BCVEGPY with the addition of hadroproduction of the P-wave B states

    Science.gov (United States)

    Chang, Chao-Hsi; Wang, Jian-Xiong; Wu, Xing-Gang

    2006-02-01

    The generator BCVEGPY is upgraded by improving some of its features and by adding the hadroproduction of the P-wave excited B states (denoted by BcJ,L=1∗ or by hB_c and χB_c). In order to make the generator more efficient, we manipulate the amplitude as compact as possible with special effort. The correctness of the program is tested by various checks. We denote it as BCVEGPY2.0. As for the added part of the P-wave production, only the dominant gluon-gluon fusion mechanism ( gg→BcJ,L=1∗+c¯+b) is taken into account. Moreover, in the program, not only the ability to compute the contributions from the color-singlet components ( to the P-wave production but also the ability to compute the contributions from the color-octet components ( are available. With BCVEGPY2.0 the contributions from the two 'color components' to the production of each of the P-wave states may be computed separately by an option, furthermore, besides individually the event samples of the S-wave and P-wave ( cb¯)-heavy-quarkonium in various correct (realistic) mixtures can be generated by relevant options too. Program summaryTitle of program: BCVEGPY Version: 2.0 (December, 2004) Catalogue identifier: ADWQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWQ Program obtained from: CPC Program Library, Queen's University of Belfast, N. Ireland Reference to original program: ADTJ (BCVEGPY1.0) Reference in CPC: Comput. Phys. Comm. 159 (2004) 192 Does the new version supersede the old program: yes Computer: Any computer with FORTRAN 77 or 90 compiler. The program has been tested on HP-SC45 Sigma-X parallel computer, Linux PCs and Windows PCs with Visual Fortran Operating systems: UNIX, Linux and Windows Programming language used: FORTRAN 77/90 Memory required to execute with typical data: About 2.0 MB No. of lines in distributed program, including test data, etc.: 124 297 No. of bytes in distributed program, including test data, etc.: 1 137 177 Distribution format: tar.g2 Nature of

  7. P- and S-wave models and statistical characterization of scatterers at the Solfatara Volcano using active seismic data from RICEN experiment

    Science.gov (United States)

    Serra, Marcello; Festa, Gaetano; Roux, Philippe; Vandemeulebrouck, Jean; Gresse, Marceau; Zollo, Aldo

    2017-04-01

    RICEN (Repeated and InduCed Earthquakes and Noise) is an active and passive experiment organized at the Solfatara volcano, in the framework of the European project MEDSUV. It was aimed to reveal and track the variations in the elastic properties of the medium at small scale through repeated observations over time. It covered an area of 90m x 115m by a regular grid of 240 receivers and 100 shotpoints at the center of the volcano. A Vibroseis truck was used as seismic source . We cross-correlated the seismograms by the source time function to obtain the Green's functions filtered in the frequency band excited by the source. To estimate the phase and the group velocities of the Rayleigh-waves we used the coherence of the signal along the seismic sections. In subgrids of 40m x 40m we realigned the waveforms or their envelope in different frequency bands, to maximize the amplitude of the stack function, the phase or the group velocities being those speeds proving this maximum. We jointly inverted the dispersion curves to obtain a locally layered 1-D medium in term of S-waves. Finally the collection of all the models provides us with a 3-D image of the investigated area. The S-wave velocity decreases toward the "Fangaia", due to the water saturation of the medium, as confirmed by geoelectric results. Since the Solfatara is a strongly heterogeneous medium, it is not possible to localize the velocity anomalies at different scales and a description of the medium through statistical parameters, such as the mean free path (MFP) and the transport mean free path (TMFP) was provided. The MFP was recovered from the ratio between coherent and incoherent intensities of the surface waves measured in different frequency bands. It decreases with frequency from about 40m at 8.5 Hz to 10m at 21.5 Hz, this behavior being typical of volcanic areas. The TMFP was measured fitting the decay of the coda of the energy at different distances. As expected it is larger than the MFP and strongly

  8. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    Science.gov (United States)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  9. p-wave pion production from nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Baru, V.; Epelbaum, E.; Haidenbauer, J.; Hanhart, C.; Kudryavtsev, A. E.; Lensky, V.; Meissner, U.-G.

    2009-01-01

    We investigate p-wave pion production in nucleon-nucleon collisions up to next-to-next-to-leading order in chiral effective field theory. In particular, we show that it is possible to describe simultaneously the p-wave amplitudes in the pn→ppπ - , pp→pnπ + , pp→dπ + channels by adjusting a single low-energy constant accompanying the short-range operator that is available at this order. This study provides a nontrivial test of the applicability of chiral effective field theory to reactions of the type NN→NNπ.

  10. Study of NΣ cusp in p+pp+K{sup +}+Λ with partial wave analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S.; Muenzer, R.; Epple, E.; Fabbietti, L. [Excellenz Cluster Universe, Technische Universitaet Muenchen (Germany); Ritman, J.; Roderburg, E.; Hauenstein, F. [FZ Juelich (Germany); Collaboration: Hades and FOPI Collaboration

    2016-07-01

    In the last years, an analysis of exclusive reaction of p+pp+K{sup +}+Λ has been carried out using Bonn-Gatchina Partial Wave Analysis. In a combined analysis of data from Hades, Fopi, Disto and Cosy-TOF, an energy dependent production process is determined. This analysis has shown that a sufficient description of the p+pp+K{sup +}+Λ is quite challenging due to the presence of resonances N* and interference, which requires Partial Wave Analysis. A pronounced narrow structure is observed in its projection on the pΛ-invariant mass. This peak structure, which appears around the NΣ threshold, has a strongly asymmetric structure and is interpreted a NΣ cusp effect. In this talk, the results from a combined analysis will be shown, with a special focus on the NΣ cusp structure and a description using Flatte parametrization.

  11. High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensation

    Directory of Open Access Journals (Sweden)

    Vojko Matko

    2014-10-01

    Full Text Available This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal’s natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 µH to 2–560 kHz.

  12. Comparison of Wave Energy Transport at the Comets p/Halley and p/Giacobini-Zinner

    Science.gov (United States)

    Sding, A.; Glassmeir, K. H.; Fuselier, S. A.; Neubauer, Fritz M.; Tsurutani, B. T.

    1995-01-01

    Using magnetic field, plasma density and flow observations from spacecraft flybys of two comets, Eler variables are determined in order to study wave propogation directions. We investigate the inbound path of the Giotto spacecraft flyby of comet p/Halley outside the bow shock, and the inbound and outbound path of the ICE spacecraft flyby of comet p/Giacobini-Zinner outsinde of the bow wave.

  13. Waveform inversion for orthorhombic anisotropy with P-waves: feasibility & resolution

    KAUST Repository

    Kazei, Vladimir

    2018-01-27

    Various parameterizations have been suggested to simplify inversions of first arrivals, or Pwaves, in orthorhombic anisotropic media, but the number and type of retrievable parameters have not been decisively determined. We show that only six parameters can be retrieved from the dynamic linearized inversion of Pwaves. These parameters are different from the six parameters needed to describe the kinematics of Pwaves. Reflection-based radiation patterns from the PP scattered waves are remapped into the spectral domain to allow for our resolution analysis based on the effective angle of illumination concept. Singular value decomposition of the spectral sensitivities from various azimuths, offset coverage scenarios, and data bandwidths allows us to quantify the resolution of different parameterizations, taking into account the signal-to-noise ratio in a given experiment. According to our singular value analysis, when the primary goal of inversion is determining the velocity of the Pwaves, gradually adding anisotropy of lower orders (isotropic, vertically transversally isotropic, orthorhombic) in hierarchical parameterization is the best choice. Hierarchical parametrization reduces the tradeoff between the parameters and makes gradual introduction of lower anisotropy orders straightforward. When all the anisotropic parameters affecting Pwave propagation need to be retrieved simultaneously, the classic parameterization of orthorhombic medium with elastic stiffness matrix coefficients and density is a better choice for inversion. We provide estimates of the number and set of parameters that can be retrieved from surface seismic data in different acquisition scenarios. To set up an inversion process, the singular values determine the number of parameters that can be inverted and the resolution matrices from the parameterizations can be used to ascertain the set of parameters that can be resolved.

  14. The Wave Energy Device

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William

    2006-01-01

    's first offshore wave energy converter. During this period an extensive measuring program has established the background for optimal design of the structure and regulation of the power take off system. Planning for full scale deployment of a 7 MW unit within the next 2 years is in progress. The prototype...

  15. Temperature effect on microstructure and P-wave propagation in Linyi sandstone

    International Nuclear Information System (INIS)

    Sun, Hui; Sun, Qiang; Deng, Wenni; Zhang, Weiqiang; Lü, Chao

    2017-01-01

    Highlights: • Mass loss rate, P-wave velocity change rate and damage factor increase exponentially as temperatures rise. • The damage threshold temperature of sandstone samples is 300 °C and limit temperature is 900 °C. • P-wave velocity change rate of sandstone exhibits excellent linearity with mass loss rate. • Damage factor can be well expressed by mass loss rate. - Abstract: In order to study the effect of high temperature on the sandstone, scanning electron microscope (SEM) experiments and primary wave (P-wave) velocity tests have been carried out on sandstone specimens heated to different temperature. The results showed that: (1) the mass loss rate increases exponentially with the increase of temperature and reaches 2.97% at 900 °C; (2) the P-wave velocity change rate increases exponentially with the increase of temperature while there is some fluctuation before 500 °C; (3) the damage threshold temperature of sandstone samples is 300 °C and the limit temperature is 900 °C; (4) there is a good linear relationship between the mass loss rate and the P-wave velocity change rate, and the correlation coefficient (R) of the fitting line is 0.989; (5) the damage caused by high temperature can be reflected better by the mass loss rate than P-wave velocity change rate. The results obtained in this paper will be good for predicting the properties of sandstone when exposed to high temperature.

  16. Terahertz broadband polarization converter based on metamaterials

    Science.gov (United States)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  17. Quantification of Wave Model Uncertainties Used for Probabilistic Reliability Assessments of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2015-01-01

    Wave models used for site assessments are subjected to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Four different wave models are considered, and validation...... data are collected from published scientific research. The bias and the root-mean-square error, as well as the scatter index, are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example, this paper presents how the quantified...... uncertainties can be implemented in probabilistic reliability assessments....

  18. Constraining dark matter late-time energy injection: decays and p-wave annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Diamanti, Roberta; Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C. [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Lopez-Honorez, Laura, E-mail: R.Diamanti@uva.nl, E-mail: llopezho@vub.ac.be, E-mail: omena@ific.uv.es, E-mail: sergio.palomares.ruiz@ific.uv.es, E-mail: vincent@ific.uv.es [Theoretische Natuurkunde Vrije Universiteit Brussel and The International Solvay Institutes Pleinlaan 2, B-1050 Brussels (Belgium)

    2014-02-01

    We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts (z∼<50) when structure began to form, and thus manifest at lower multipoles in the CMB power spectrum. We use data from Planck, WMAP9, SPT and ACT, as well as Lyman–α measurements of the matter temperature at z ∼ 4 to set a 95% confidence level lower bound on the dark matter lifetime of ∼ 4 × 10{sup 25} s for m{sub χ} = 100 MeV. This bound becomes lower by an order of magnitude at m{sub χ} = 1 TeV due to inefficient energy deposition into the intergalactic medium. We also show that structure formation can enhance the effect of p-wave suppressed annihilation cross sections by many orders of magnitude with respect to the background cosmological rate, although even with this enhancement, CMB constraints are not yet strong enough to reach the thermal relic value of the cross section.

  19. Short term wave forecasting, using digital filters, for improved control of Wave Energy Converters

    DEFF Research Database (Denmark)

    Tedd, James; Frigaard, Peter

    2007-01-01

    This paper presents a Digital Filter method for real time prediction of waves incident upon a Wave Energy device. The method transforms waves measured at a point ahead of the device, to expected waves incident on the device. The relationship between these incident waves and power capture is derived...... experimentally. Results are shown form measurements taken on the Wave Dragon prototype device, a floating overtopping device situated in Northern Denmark. In this case the method is able to accurately predict the surface elevation at the device 11.2 seconds before the measurement is made. This is sufficient...... to allow advanced control systems to be developed using this knowledge to significantly improve power capture....

  20. Short term wave forecasting, using digital filters, for improved control of Wave Energy Converters

    Energy Technology Data Exchange (ETDEWEB)

    Tedd, J.; Frigaard, P. [Department of Civil Engineering, Aalborg University, Aalborg (Denmark)

    2007-07-01

    This paper presents a Digital Filter method for real time prediction of waves incident upon a Wave Energy device. The method transforms waves measured at a point ahead of the device, to expected waves incident on the device. The relationship between these incident waves and power capture is derived experimentally. Results are shown form measurements taken on the Wave Dragon prototype device, a floating overtopping device situated in Northern Denmark. In this case the method is able to accurately predict the surface elevation at the device 11.2 seconds before the measurement is made. This is sufficient to allow advanced control systems to be developed using this knowledge to significantly improve power capture.