WorldWideScience

Sample records for Game engine, interactive virtual environment, visual representation, architecture and urban design study

  1. The Investigation on Using Unity3D Game Engine in Urban Design Study

    Directory of Open Access Journals (Sweden)

    Aswin Indraprastha

    2009-05-01

    Full Text Available Developing a virtual 3D environment by using game engine is a strategy to incorporate various multimedia data into one platform. The characteristic of game engine that is preinstalled with interactive and navigation tools allows users to explore and engage with the game objects. However, most CAD and GIS applications are not equipped with 3D tools and navigation systems intended to the user experience. In particular, 3D game engines provide standard 3D navigation tools as well as any programmable view to create engaging navigation thorough the virtual environment. By using a game engine, it is possible to create other interaction such as object manipulation, non playing character (NPC interaction with player and/or environment. We conducted analysis on previous game engines and experiment on urban design project with Unity3D game engine for visualization and interactivity. At the end, we present the advantages and limitations using game technology as visual representation tool for architecture and urban design studies.

  2. Not Just a Game … When We Play Together, We Learn Together: Interactive Virtual Environments and Gaming Engines for Geospatial Visualization

    Science.gov (United States)

    Shipman, J. S.; Anderson, J. W.

    2017-12-01

    An ideal tool for ecologists and land managers to investigate the impacts of both projected environmental changes and policy alternatives is the creation of immersive, interactive, virtual landscapes. As a new frontier in visualizing and understanding geospatial data, virtual landscapes require a new toolbox for data visualization that includes traditional GIS tools and uncommon tools such as the Unity3d game engine. Game engines provide capabilities to not only explore data but to build and interact with dynamic models collaboratively. These virtual worlds can be used to display and illustrate data that is often more understandable and plausible to both stakeholders and policy makers than is achieved using traditional maps.Within this context we will present funded research that has been developed utilizing virtual landscapes for geographic visualization and decision support among varied stakeholders. We will highlight the challenges and lessons learned when developing interactive virtual environments that require large multidisciplinary team efforts with varied competences. The results will emphasize the importance of visualization and interactive virtual environments and the link with emerging research disciplines within Visual Analytics.

  3. Design and implementation of a 3D ocean virtual reality and visualization engine

    Science.gov (United States)

    Chen, Ge; Li, Bo; Tian, Fenglin; Ji, Pengbo; Li, Wenqing

    2012-12-01

    In this study, a 3D virtual reality and visualization engine for rendering the ocean, named VV-Ocean, is designed for marine applications. The design goals of VV-Ocean aim at high fidelity simulation of ocean environment, visualization of massive and multidimensional marine data, and imitation of marine lives. VV-Ocean is composed of five modules, i.e. memory management module, resources management module, scene management module, rendering process management module and interaction management module. There are three core functions in VV-Ocean: reconstructing vivid virtual ocean scenes, visualizing real data dynamically in real time, imitating and simulating marine lives intuitively. Based on VV-Ocean, we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface. Environment factors such as ocean current and wind field have been considered in this simulation. On this platform oil spilling process can be abstracted as movements of abundant oil particles. The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering. VV-Ocean can be widely used in ocean applications such as demonstrating marine operations, facilitating maritime communications, developing ocean games, reducing marine hazards, forecasting the weather over oceans, serving marine tourism, and so on. Finally, further technological improvements of VV-Ocean are discussed.

  4. Virtual Reality for Architectural or Territorial Representations: Usability Perceptions

    Directory of Open Access Journals (Sweden)

    Atta Idrawani Zaini

    2017-05-01

    Full Text Available Virtual reality (VR is widely being researched within various aspects of real-world applications. As architecture and urban design are very much adhered to evaluating and designing space, physical representations are deemed as incompetent to deliver a full-scale depiction of a space. Similarly, digital models are very much also limited in that sense. VR can deliver a full-scale virtual environment (VE, tricking users to be immersed in the replicated environment. This is an advantage for the aforementioned design disciplines, as more relatable and realistic depiction of a space can be modelled. The notion of its usability has become important to be understood from the perspective of architecture and urban design. This paper measured the respondents’ perceptions of VR’s usability through measuring its quality of use based on several criteria. The criteria established were the ease of use, usefulness, and satisfaction. Different levels of architectural details were decided as a form of control. A total of N=96 randomly selected respondents from various backgrounds participated in the survey as they were divided into four different group of treatments. Each group experienced a different VE with different level of architectural details. The first section of analysis is a one-sample analysis and the second is a group difference analysis. From the first analysis, it was found that the respondents perceived VR as a usable tool for architectural or territorial representation. Using Kruskal-Wallis test, it was found that there was no statistically significant difference between groups, suggesting that the respondents perceived VR as usable regardless of the level of architectural details. As this paper used perception data based on the quality of use alone, the efficiency of VR system was not measured. Thus, this paper recommends further studies to be conducted on the system’s efficiency to reflect its usability in full extent.

  5. A study on haptic collaborative game in shared virtual environment

    Science.gov (United States)

    Lu, Keke; Liu, Guanyang; Liu, Lingzhi

    2013-03-01

    A study on collaborative game in shared virtual environment with haptic feedback over computer networks is introduced in this paper. A collaborative task was used where the players located at remote sites and played the game together. The player can feel visual and haptic feedback in virtual environment compared to traditional networked multiplayer games. The experiment was desired in two conditions: visual feedback only and visual-haptic feedback. The goal of the experiment is to assess the impact of force feedback on collaborative task performance. Results indicate that haptic feedback is beneficial for performance enhancement for collaborative game in shared virtual environment. The outcomes of this research can have a powerful impact on the networked computer games.

  6. Speculations on the representation of architecture in virtual reality

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars; Bundgård, Ture Slot

    2017-01-01

    to the visual field of perception. However, this should not necessarily imply an acceptance of the dominance of vision over the other senses, and the much-criticized retinal architecture with its inherent loss of plasticity. Recent neurology studies indicate that 3D representation models in virtual reality......This paper discusses the present and future possibilities of representation models of architecture in new media such as virtual reality, seen in the broader context of tradition, perception, and neurology. Through comparative studies of real and virtual scenarios using eye tracking, the paper...... are less demanding on the brain’s working memory than 3D models seen on flat two-dimensional screens. This paper suggests that virtual reality representational architectural models can, if used correctly, significantly improve the imaginative role of architectural representation....

  7. Influence of the Perspectives on the Movement of One-Leg Lifting in an Interactive-Visual Virtual Environment: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Chien-Hua Huang

    Full Text Available Numerous studies have confirmed the feasibility of active video games for clinical rehabilitation. To maximize training effectiveness, a personal program is necessary; however, little evidence is available to guide individualized game design for rehabilitation. This study assessed the perspectives and kinematic and temporal parameters of a participant's postural control in an interactive-visual virtual environment.Twenty-four healthy participants performed one-leg standing by leg lifting when a posture frame appeared either in a first- or third-person perspective of a virtual environment. A foot force plate was used to detect the displacement of the center of pressure. A three-way mixed factor design was applied, where the perspective was the between-participant factor, and the leg-lifting times (0.7 and 2.7 seconds and leg-lifting angles (30°and 90° were the within-participant factors. The reaction time, accuracy of the movement, and ability to shift weight were the dependent variables.Regarding the reaction time and accuracy of the movement, there were no significant main effects of the perspective, leg-lifting time, or angle. For the ability to shift weight, however, both the perspective and time exerted significant main effects, F(1,22 = 6.429 and F(1,22 = 13.978, respectively.Participants could shift their weight more effectively in the third-person perspective of the virtual environment. The results can serve as a reference for future designs of interactive-visual virtual environment as applied to rehabilitation.

  8. Speculations on the representation of architecture in virtual reality

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars; Bundgård, Ture Slot

    2017-01-01

    This paper discusses the present and future possibilities of representation models of architecture in new media such as virtual reality, seen in the broader context of tradition, perception, and neurology. Through comparative studies of real and virtual scenarios using eye tracking, the paper...... discusses if the constantly evolving toolset for architectural representation has in itself changed the core values of architecture, or if it is rather the level of skilful application of technology that can inflict on architecture and its quality. It is easy to contemplate virtual reality as an extension...... to the visual field of perception. However, this should not necessarily imply an acceptance of the dominance of vision over the other senses, and the much-criticized retinal architecture with its inherent loss of plasticity. Recent neurology studies indicate that 3D representation models in virtual reality...

  9. DHM simulation in virtual environments: a case-study on control room design.

    Science.gov (United States)

    Zamberlan, M; Santos, V; Streit, P; Oliveira, J; Cury, R; Negri, T; Pastura, F; Guimarães, C; Cid, G

    2012-01-01

    This paper will present the workflow developed for the application of serious games in the design of complex cooperative work settings. The project was based on ergonomic studies and development of a control room among participative design process. Our main concerns were the 3D human virtual representation acquired from 3D scanning, human interaction, workspace layout and equipment designed considering ergonomics standards. Using Unity3D platform to design the virtual environment, the virtual human model can be controlled by users on dynamic scenario in order to evaluate the new work settings and simulate work activities. The results obtained showed that this virtual technology can drastically change the design process by improving the level of interaction between final users and, managers and human factors team.

  10. Speculations on the representation of architecture in virtual reality

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars; Bundgård, Ture Slot

    2017-01-01

    to the visual field of perception. However, this should not necessarily imply an acceptance of the dominance of vision over the other senses, and the much-criticized retinal architecture with its inherent loss of plasticity. Recent neurology studies indicate that 3D representation models in virtual reality...... are less demanding on the brain’s working memory than 3D models seen on flat two-dimensional screens. This paper suggests that virtual reality representational architectural models can, if used correctly, significantly improve the imaginative role of architectural representation....

  11. Multimodality and Design of Interactive Virtual Environments for Creative Collaboration

    DEFF Research Database (Denmark)

    Gürsimsek, Remzi Ates

    . The three-dimensional representation of space and the resources for non-verbal communication enable the users to interact with the digital content in more complex yet engaging ways. However, understanding the communicative resources in virtual spaces with the theoretical tools that are conventionally used...... perspective particularly emphasizes the role of audio-visual resources in co-creating representations for effective collaboration, and the socio-cultural factors in construction of meaningful virtual environments....

  12. Montepulciano 3D virtual models for urban planning and development of the urban environment

    Directory of Open Access Journals (Sweden)

    Stefano Bertocci

    2014-05-01

    Full Text Available The research work carried out by the Department of Architecture of Florence and the Department of Civil Engineering and Architecture of Pavia for the administration of Montepulciano (SI was aimed to study new methods of analysis and promotion of the city. The representation of the street fronts of the historic center, realized in a decade of analysis in which it is carried out the study for the planning, has formed a corpus of documents useful for the realization of a three-dimensional model of the city itself. The model, which allows a dynamic interaction with the urban structure, has been designed to develop tools for valuation of the activities and the historical and cultural heritage. It is possible through the determination of a structure of a visual interface and interactive multimedia which would transform the model in a real emotional space.

  13. An interactive, stereoscopic virtual environment for medical imaging visualization, simulation and training

    Science.gov (United States)

    Krueger, Evan; Messier, Erik; Linte, Cristian A.; Diaz, Gabriel

    2017-03-01

    Recent advances in medical image acquisition allow for the reconstruction of anatomies with 3D, 4D, and 5D renderings. Nevertheless, standard anatomical and medical data visualization still relies heavily on the use of traditional 2D didactic tools (i.e., textbooks and slides), which restrict the presentation of image data to a 2D slice format. While these approaches have their merits beyond being cost effective and easy to disseminate, anatomy is inherently three-dimensional. By using 2D visualizations to illustrate more complex morphologies, important interactions between structures can be missed. In practice, such as in the planning and execution of surgical interventions, professionals require intricate knowledge of anatomical complexities, which can be more clearly communicated and understood through intuitive interaction with 3D volumetric datasets, such as those extracted from high-resolution CT or MRI scans. Open source, high quality, 3D medical imaging datasets are freely available, and with the emerging popularity of 3D display technologies, affordable and consistent 3D anatomical visualizations can be created. In this study we describe the design, implementation, and evaluation of one such interactive, stereoscopic visualization paradigm for human anatomy extracted from 3D medical images. A stereoscopic display was created by projecting the scene onto the lab floor using sequential frame stereo projection and viewed through active shutter glasses. By incorporating a PhaseSpace motion tracking system, a single viewer can navigate an augmented reality environment and directly manipulate virtual objects in 3D. While this paradigm is sufficiently versatile to enable a wide variety of applications in need of 3D visualization, we designed our study to work as an interactive game, which allows users to explore the anatomy of various organs and systems. In this study we describe the design, implementation, and evaluation of an interactive and stereoscopic

  14. Game engines and immersive displays

    Science.gov (United States)

    Chang, Benjamin; Destefano, Marc

    2014-02-01

    While virtual reality and digital games share many core technologies, the programming environments, toolkits, and workflows for developing games and VR environments are often distinct. VR toolkits designed for applications in visualization and simulation often have a different feature set or design philosophy than game engines, while popular game engines often lack support for VR hardware. Extending a game engine to support systems such as the CAVE gives developers a unified development environment and the ability to easily port projects, but involves challenges beyond just adding stereo 3D visuals. In this paper we outline the issues involved in adapting a game engine for use with an immersive display system including stereoscopy, tracking, and clustering, and present example implementation details using Unity3D. We discuss application development and workflow approaches including camera management, rendering synchronization, GUI design, and issues specific to Unity3D, and present examples of projects created for a multi-wall, clustered, stereoscopic display.

  15. Exploring Urban Environments Using Virtual and Augmented Reality

    OpenAIRE

    Stelios Papakonstantinou; Vesna Brujic-Okretic; Fotis Liarokapis

    2007-01-01

    In this paper, we propose the use of specific system architecture, based on mobile device, for navigation in urban environments. The aim of this work is to assess how virtual and augmented reality interface paradigms can provide enhanced location based services using real-time techniques in the context of these two different technologies. The virtual reality interface is based on faithful graphical representation of the localities of interest, coupled with sensory information on the location ...

  16. Measurement Tools for the Immersive Visualization Environment: Steps Toward the Virtual Laboratory.

    Science.gov (United States)

    Hagedorn, John G; Dunkers, Joy P; Satterfield, Steven G; Peskin, Adele P; Kelso, John T; Terrill, Judith E

    2007-01-01

    This paper describes a set of tools for performing measurements of objects in a virtual reality based immersive visualization environment. These tools enable the use of the immersive environment as an instrument for extracting quantitative information from data representations that hitherto had be used solely for qualitative examination. We provide, within the virtual environment, ways for the user to analyze and interact with the quantitative data generated. We describe results generated by these methods to obtain dimensional descriptors of tissue engineered medical products. We regard this toolbox as our first step in the implementation of a virtual measurement laboratory within an immersive visualization environment.

  17. Visual Variables in Physical Environments and Virtual Environments

    DEFF Research Database (Denmark)

    Mullins, Michael

    , then to locate them and identify their shape on scaled drawings.  Results are presented together with statistical analysis. In a discussion of the results, the paper addresses the assertions that depth perception in physical reality and its virtual representations in CAVE and Panorama are quantifiably different......; that differences are attributable to prior contextual experience and spatial ability of the viewer; and that general attributes of virtual environments may be drawn from the experiments findings. The paper discusses implications of spatial ability for virtual environments in architectural education......This study compares aspects of spatial perception in a physical environment and its virtual representations in a CAVE and Panorama, based on the author?s recent empirical research. Participants in an experiment were shown objects identically placed in the virtual and physical environments...

  18. Semi-Immersive Virtual Turbine Engine Simulation System

    Science.gov (United States)

    Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea

    2018-05-01

    The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.

  19. Visualization Design Environment

    Energy Technology Data Exchange (ETDEWEB)

    Pomplun, A.R.; Templet, G.J.; Jortner, J.N.; Friesen, J.A.; Schwegel, J.; Hughes, K.R.

    1999-02-01

    Improvements in the performance and capabilities of computer software and hardware system, combined with advances in Internet technologies, have spurred innovative developments in the area of modeling, simulation and visualization. These developments combine to make it possible to create an environment where engineers can design, prototype, analyze, and visualize components in virtual space, saving the time and expenses incurred during numerous design and prototyping iterations. The Visualization Design Centers located at Sandia National Laboratories are facilities built specifically to promote the ''design by team'' concept. This report focuses on designing, developing and deploying this environment by detailing the design of the facility, software infrastructure and hardware systems that comprise this new visualization design environment and describes case studies that document successful application of this environment.

  20. Reimagining Game Design: Exploring the Design of Constructible Authentic Representations for Science Reasoning

    Science.gov (United States)

    Holbert, Nathan Ryan

    Video games have recently become a popular space for educational design due to their interactive and engaging nature and the ubiquity of the gaming experience among youth. Though many researchers argue video games can provide opportunities for learning, educational game design has focused on the classroom rather than the informal settings where games are typically played. Educational games have been moderately successful at achieving learning gains on standardized items, but have failed to show improvements on related but distal problems. In this dissertation I develop and assess a new design principle, called constructible authentic representations for creating informal gaming experiences that players will actively draw on when reasoning in formal and real world contexts. These games provide players with opportunities to engage in meaningful construction with components that integrate relevant concepts to create in-game representations that visually and epistemologically align with related tools and representations utilized in the target domain. In the first phase of the dissertation, I observed children playing popular video games to better understand what in-game representations children attend to and how interactions with these representations contribute to intuitive ideas of encountered STEM content. Results from this study fed into the iterative design of two prototype video games, FormulaT Racing and Particles!, intending to give players useful knowledge resources for reasoning about kinematics and the particulate nature of matter respectively. Designed games encourage players to utilize and refine intuitive ideas about target content through the construction of domain relevant representations. To assess the effectiveness of these designs I conducted two studies of children ages 7-14 playing prototype games in informal settings. An analysis of pre- and post-game clinical interviews, domain specific tasks, and video and logging data of gameplay suggests

  1. Living in The Matrix: Virtual Reality Systems and Hyperspatial Representation in Architecture

    OpenAIRE

    Kacmaz Erk, Gul

    2016-01-01

    In the digital age, the hyperspace of virtual reality systems stands out as a new spatial concept creating a parallel realm to "real" space. Virtual reality influences one’s experience of and interaction with architectural space. This "otherworld" brings up the criticism of the existing conception of space, time and body. Hyperspaces are relatively new to designers but not to filmmakers. Their cinematic representations help the comprehension of the outcomes of these new spaces. Visualisation ...

  2. A synchronous distributed cloud-based virtual reality meeting system for architectural and urban design

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2014-12-01

    Full Text Available In the spatial design fields such as architectural design and urban design, a consensus-building process among a variety of stakeholders like project executors, architects, residents, users, and general citizens is required. New technological developments such as cloud computing and Virtual Design Studios (VDS enable the creation of virtual meeting systems. This paper proposes an approach towards a synchronous distributed design meeting system. In this paper, in addition to sharing a 3D virtual space for a synchronous distributed type design meeting, we developed a prototype system that enables participants to sketch or make annotations and have discussions as well as add viewpoints to them. We applied these functions to evaluate an architectural design and urban landscape examination. In conclusion, the proposed method was evaluated as being effective and feasible. Yet, it shows a few shortcomings including the fact that simultaneous operation is limited to one client, and more arbitrary shapes should be supported in future versions of the application.

  3. Storyboard as a Representation of Urban Architectural Settings

    Directory of Open Access Journals (Sweden)

    Rahman Wahid Arif

    2018-01-01

    This paper aims to explore the potential of storyboarding practice in Basic Design 2 studio as part of architectural education at University of Indonesia. Adopting a narrative element, storyboard in this studio is used to read urban architectural settings and retell everyday life events; scene by scene, unfold in space and time, through different kinds of creative representations. By doing this exercise, the students ‘sense of spatial arrangement is developed by their understanding of position and orientation of objects settings. They also learned about how the time works; both in compressed or expanded ways. Decision-making in choosing the key events within the storyboard plays a role in making engaging visuals. In conclusion, storyboarding exercise to represent urban architectural settings will enhance the students ‘sensitivity of space, time, and how their ideas are being told by making a rich, multi-layers of narrative.

  4. ESSE: Engineering Super Simulation Emulation for Virtual Reality Systems Environment

    International Nuclear Information System (INIS)

    Suh, Kune Y.; Yeon, Choul W.

    2008-01-01

    The trademark 4 + D Technology TM based Engineering Super Simulation Emulation (ESSE) is introduced. ESSE resorting to three-dimensional (3D) Virtual Reality (VR) technology pledges to provide with an interactive real-time motion, sound and tactile and other forms of feedback in the man machine systems environment. In particular, the 3D Virtual Engineering Neo cybernetic Unit Soft Power (VENUS) adds a physics engine to the VR platform so as to materialize a physical atmosphere. A close cooperation system and prompt information share are crucial, thereby increasing the necessity of centralized information system and electronic cooperation system. VENUS is further deemed to contribute towards public acceptance of nuclear power in general, and safety in particular. For instance, visualization of nuclear systems can familiarize the public in answering their questions and alleviating misunderstandings on nuclear power plants answering their questions and alleviating misunderstandings on nuclear power plants (NPPs) in general, and performance, security and safety in particular. An in-house flagship project Systemic Three-dimensional Engine Platform Prototype Engineering (STEPPE) endeavors to develop the Systemic Three-dimensional Engine Platform (STEP) for a variety of VR applications. STEP is home to a level system providing the whole visible scene of virtual engineering of man machine system environment. The system is linked with video monitoring that provides a 3D Computer Graphics (CG) visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators easy access to visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators to access the virtual systems by using their virtual characters. Virtually Engineered NPP Informative systems by using their virtual characters. Virtually Engineered NPP Informative

  5. Interactive Scientific Visualization in 3D Virtual Reality Model

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2016-11-01

    Full Text Available Scientific visualization in technology of virtual reality is a graphical representation of virtual environment in the form of images or animation that can be displayed with various devices such as Head Mounted Display (HMD or monitors that can view threedimensional world. Research in real time is a desirable capability for scientific visualization and virtual reality in which we are immersed and make the research process easier. In this scientific paper the interaction between the user and objects in the virtual environment аrе in real time which gives a sense of reality to the user. Also, Quest3D VR software package is used and the movement of the user through the virtual environment, the impossibility to walk through solid objects, methods for grabbing objects and their displacement are programmed and all interactions between them will be possible. At the end some critical analysis were made on all of these techniques on various computer systems and excellent results were obtained.

  6. Virtual VMASC: A 3D Game Environment

    Science.gov (United States)

    Manepalli, Suchitra; Shen, Yuzhong; Garcia, Hector M.; Lawsure, Kaleen

    2010-01-01

    The advantages of creating interactive 3D simulations that allow viewing, exploring, and interacting with land improvements, such as buildings, in digital form are manifold and range from allowing individuals from anywhere in the world to explore those virtual land improvements online, to training military personnel in dealing with war-time environments, and to making those land improvements available in virtual worlds such as Second Life. While we haven't fully explored the true potential of such simulations, we have identified a requirement within our organization to use simulations like those to replace our front-desk personnel and allow visitors to query, naVigate, and communicate virtually with various entities within the building. We implemented the Virtual VMASC 3D simulation of the Virginia Modeling Analysis and Simulation Center (VMASC) office building to not only meet our front-desk requirement but also to evaluate the effort required in designing such a simulation and, thereby, leverage the experience we gained in future projects of this kind. This paper describes the goals we set for our implementation, the software approach taken, the modeling contribution made, and the technologies used such as XNA Game Studio, .NET framework, Autodesk software packages, and, finally, the applicability of our implementation on a variety of architectures including Xbox 360 and PC. This paper also summarizes the result of our evaluation and the lessons learned from our effort.

  7. Enhancing the Reuse of Digital Resources for Integrated Systems to Represent, Understand and Dynamize Complex Interactions in Architectural Cultural Heritage Environments

    Science.gov (United States)

    Delgado, F. J.; Martinez, R.; Finat, J.; Martinez, J.; Puche, J. C.; Finat, F. J.

    2013-07-01

    In this work we develop a multiply interconnected system which involves objects, agents and interactions between them from the use of ICT applied to open repositories, users communities and web services. Our approach is applied to Architectural Cultural Heritage Environments (ACHE). It includes components relative to digital accessibility (to augmented ACHE repositories), contents management (ontologies for the semantic web), semiautomatic recognition (to ease the reuse of materials) and serious videogames (for interaction in urban environments). Their combination provides a support for local real/remote virtual tourism (including some tools for low-level RT display of rendering in portable devices), mobile-based smart interactions (with a special regard to monitored environments) and CH related games (as extended web services). Main contributions to AR models on usual GIS applied to architectural environments, concern to an interactive support performed directly on digital files which allows to access to CH contents which are referred to GIS of urban districts (involving facades, historical or preindustrial buildings) and/or CH repositories in a ludic and transversal way to acquire cognitive, medial and social abilities in collaborative environments.

  8. Designing Shared Virtual Reality Gaming Experiences in Local Multi-platform Games

    OpenAIRE

    Liszio , Stefan; Masuch , Maic

    2016-01-01

    Part 4: Short Papers; International audience; Designing multiplayer virtual reality games is a challenging task since immersion is easily destroyed by real world influences. However, providing fun and social virtual reality experiences is inevitable for establishing virtual reality gaming as a convincing new medium. We propose a design approach to integrate social interactions into the game design while retaining immersion, and present design methods to implement this approach. Furthermore, w...

  9. Applying Open Source Game Engine for Building Visual Simulation Training System of Fire Fighting

    Science.gov (United States)

    Yuan, Diping; Jin, Xuesheng; Zhang, Jin; Han, Dong

    There's a growing need for fire departments to adopt a safe and fair method of training to ensure that the firefighting commander is in a position to manage a fire incident. Visual simulation training systems, with their ability to replicate and interact with virtual fire scenarios through the use of computer graphics or VR, become an effective and efficient method for fire ground education. This paper describes the system architecture and functions of a visual simulated training system of fire fighting on oil storage, which adopting Delat3D, a open source game and simulation engine, to provide realistic 3D views. It presents that using open source technology provides not only the commercial-level 3D effects but also a great reduction of cost.

  10. Writing virtual environments for software visualization

    CERN Document Server

    Jeffery, Clinton

    2015-01-01

    This book describes the software for creating networked, 3D multi-user virtual environments that allow users to create and remotely share visualizations of program behavior. The authors cover the major features of collaborative virtual environments and how to program them in a very high level language, and show how visualization can enable important advances in our ability to understand and reduce the costs of maintaining software. The book also examines the application of popular game-like software technologies.   • Discusses the acquisition of program behavior data to be visualized • Demonstrates the integration of multiple 2D and 3D dynamic views within a 3Dscene • Presents the network messaging capabilities to share those visualizations

  11. Integrated Data Visualization and Virtual Reality Tool

    Science.gov (United States)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  12. Architectural Heritage Visualization Using Interactive Technologies

    Science.gov (United States)

    Albourae, A. T.; Armenakis, C.; Kyan, M.

    2017-08-01

    With the increased exposure to tourists, historical monuments are at an ever-growing risk of disappearing. Building Information Modelling (BIM) offers a process of digitally documenting of all the features that are made or incorporated into the building over its life-span, thus affords unique opportunities for information preservation. BIM of historical buildings are called Historical Building Information Models (HBIM). This involves documenting a building in detail throughout its history. Geomatics professionals have the potential to play a major role in this area as they are often the first professionals involved on construction development sites for many Architectural, Engineering, and Construction (AEC) projects. In this work, we discuss how to establish an architectural database of a heritage site, digitally reconstruct, preserve and then interact with it through an immersive environment that leverages BIM for exploring historic buildings. The reconstructed heritage site under investigation was constructed in the early 15th century. In our proposed approach, the site selection was based on many factors such as architectural value, size, and accessibility. The 3D model is extracted from the original collected and integrated data (Image-based, range-based, CAD modelling, and land survey methods), after which the elements of the 3D objects are identified by creating a database using the BIM software platform (Autodesk Revit). The use of modern and widely accessible game engine technology (Unity3D) is explored, allowing the user to fully embed and interact with the scene using handheld devices. The details of implementing an integrated pipeline between HBIM, GIS and augmented and virtual reality (AVR) tools and the findings of the work are presented.

  13. ARCHITECTURAL HERITAGE VISUALIZATION USING INTERACTIVE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    A. T. Albourae

    2017-08-01

    Full Text Available With the increased exposure to tourists, historical monuments are at an ever-growing risk of disappearing. Building Information Modelling (BIM offers a process of digitally documenting of all the features that are made or incorporated into the building over its life-span, thus affords unique opportunities for information preservation. BIM of historical buildings are called Historical Building Information Models (HBIM. This involves documenting a building in detail throughout its history. Geomatics professionals have the potential to play a major role in this area as they are often the first professionals involved on construction development sites for many Architectural, Engineering, and Construction (AEC projects. In this work, we discuss how to establish an architectural database of a heritage site, digitally reconstruct, preserve and then interact with it through an immersive environment that leverages BIM for exploring historic buildings. The reconstructed heritage site under investigation was constructed in the early 15th century. In our proposed approach, the site selection was based on many factors such as architectural value, size, and accessibility. The 3D model is extracted from the original collected and integrated data (Image-based, range-based, CAD modelling, and land survey methods, after which the elements of the 3D objects are identified by creating a database using the BIM software platform (Autodesk Revit. The use of modern and widely accessible game engine technology (Unity3D is explored, allowing the user to fully embed and interact with the scene using handheld devices. The details of implementing an integrated pipeline between HBIM, GIS and augmented and virtual reality (AVR tools and the findings of the work are presented.

  14. Employing 3D Virtual Reality and the Unity Game Engine to Support Nuclear Verification Research

    International Nuclear Information System (INIS)

    Patton, T.

    2015-01-01

    This project centres on the development of a virtual nuclear facility environment to assist non-proliferation and nuclear arms control practitioners - including researchers, negotiators, or inspectors - in developing and refining a verification system and secure chain of custody of material or equipment. The platform for creating the virtual facility environment is the Unity 3D game engine. This advanced platform offers both the robust capability and flexibility necessary to support the design goals of the facility. The project also employs Trimble SketchUp and Blender 3D for constructing the model components. The development goal of this phase of the project was to generate a virtual environment that includes basic physics in which avatars can interact with their environment through actions such as picking up objects, operating vehicles, dismantling a warhead through a spherical representation system, opening/closing doors through a custom security access system, and conducting CCTV surveillance. Initial testing of virtual radiation simulation techniques was also explored in preparation for the next phase of development. Some of the eventual utilities and applications for this platform include: 1. conducting live multi-person exercises of verification activities within a single, shared virtual environment, 2. refining procedures, individual roles, and equipment placement in the contexts of non-proliferation or arms control negotiations 3. hands on training for inspectors, and 4. a portable tool/reference for inspectors to use while carrying out inspections. This project was developed under the Multilateral Verification Project, led by the Verification Research, Training and Information Centre (VERTIC) in the United Kingdom, and financed by the Norwegian Ministry of Foreign Affairs. The environment was constructed at the Vienna Center for Disarmament and Non-Proliferation (VCDNP). (author)

  15. Picturing the city: young people's representations of urban environments

    NARCIS (Netherlands)

    Beneker, T.; Sanders, R.; Tani, S.; Taylor, L.

    2010-01-01

    Urban environments form the setting of everyday life for most Western young people. This article explores visual representations of cities made by young people in a range of environments within four countries. The findings inform a larger study on urban geographies within geography education. We

  16. Influence of Immersive Human Scale Architectural Representation on Design Judgment

    Science.gov (United States)

    Elder, Rebecca L.

    Unrealistic visual representation of architecture within our existing environments have lost all reference to the human senses. As a design tool, visual and auditory stimuli can be utilized to determine human's perception of design. This experiment renders varying building inputs within different sites, simulated with corresponding immersive visual and audio sensory cues. Introducing audio has been proven to influence the way a person perceives a space, yet most inhabitants rely strictly on their sense of vision to make design judgments. Though not as apparent, users prefer spaces that have a better quality of sound and comfort. Through a series of questions, we can begin to analyze whether a design is fit for both an acoustic and visual environment.

  17. Radiation dose assessment in nuclear plants through virtual simulations using a game engine

    International Nuclear Information System (INIS)

    Jorge, Carlos A.F.; Mol, Antonio C. A.; Aghina, Mauricio Alves C.

    2008-01-01

    Full text: This paper reports an R and D which has the purpose of performing dose assessment of workers in nuclear plants, through virtual simulations using a game engine. The main objective of this R and D is to support the planning of operational and maintenance routines in nuclear plants, aiming to reduce the dose received by workers. Game engine is the core of a computer game, that is usually made independent of both the scenarios and the original applications, and thus can be adapted for any other purposes, including scientific or technological ones. Computer games have experienced a great development in the last years, regarding computer graphics, 3D image rendering and the representation of the physics needed for the virtual simulations, such as gravity effect and collision among virtual components within the games. Thus, researchers do not need to develop an entire platform for virtual simulations, what would be a hard work itself, but they can rather take advantage of such well developed platforms, adapting them for their own applications. The game engine used in this R and D is part of a computer game widely used, Unreal, that has its source code partially open, and can be pursued for low cost. A nuclear plant in our Institution, Argonauta research reactor, has been virtually modeled in 3D, and trainees can navigate virtually through it, with realistic walking velocity, and experiencing collision. The modified game engine computes and displays in real-time the dose received by a virtual person, the avatar, as it walks through the plant, from the radiation dose rate distribution assigned to the virtual environment. In the beginning of this R and D, radiation dose rate measurements were previously collected by the radiological protection service, and input off-line to the game engine. Currently, on-line measurements can be also input to it, by taking advantage of the game's networking capabilities. A real radiation monitor has been used to collect real

  18. Live-action Virtual Reality Games

    OpenAIRE

    Valente, Luis; Clua, Esteban; Silva, Alexandre Ribeiro; Feijó, Bruno

    2016-01-01

    This paper proposes the concept of "live-action virtual reality games" as a new genre of digital games based on an innovative combination of live-action, mixed-reality, context-awareness, and interaction paradigms that comprise tangible objects, context-aware input devices, and embedded/embodied interactions. Live-action virtual reality games are "live-action games" because a player physically acts out (using his/her real body and senses) his/her "avatar" (his/her virtual representation) in t...

  19. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.

    Science.gov (United States)

    Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh

    2015-04-01

    We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.

  20. The Uses of Literacy in Studying Computer Games: Comparing Students' Oral and Visual Representations of Games

    Science.gov (United States)

    Pelletier, Caroline

    2005-01-01

    This paper compares the oral and visual representations which 12 to 13-year-old students produced in studying computer games as part of an English and Media course. It presents the arguments for studying multimodal texts as part of a literacy curriculum and then provides an overview of the games course devised by teachers and researchers. The…

  1. Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments

    Science.gov (United States)

    Portalés, Cristina; Lerma, José Luis; Navarro, Santiago

    2010-01-01

    Close-range photogrammetry is based on the acquisition of imagery to make accurate measurements and, eventually, three-dimensional (3D) photo-realistic models. These models are a photogrammetric product per se. They are usually integrated into virtual reality scenarios where additional data such as sound, text or video can be introduced, leading to multimedia virtual environments. These environments allow users both to navigate and interact on different platforms such as desktop PCs, laptops and small hand-held devices (mobile phones or PDAs). In very recent years, a new technology derived from virtual reality has emerged: Augmented Reality (AR), which is based on mixing real and virtual environments to boost human interactions and real-life navigations. The synergy of AR and photogrammetry opens up new possibilities in the field of 3D data visualization, navigation and interaction far beyond the traditional static navigation and interaction in front of a computer screen. In this paper we introduce a low-cost outdoor mobile AR application to integrate buildings of different urban spaces. High-accuracy 3D photo-models derived from close-range photogrammetry are integrated in real (physical) urban worlds. The augmented environment that is presented herein requires for visualization a see-through video head mounted display (HMD), whereas user's movement navigation is achieved in the real world with the help of an inertial navigation sensor. After introducing the basics of AR technology, the paper will deal with real-time orientation and tracking in combined physical and virtual city environments, merging close-range photogrammetry and AR. There are, however, some software and complex issues, which are discussed in the paper.

  2. Developing Historic Building Information Modelling Guidelines and Procedures for Architectural Heritage in Ireland

    Science.gov (United States)

    Murphy, M.; Corns, A.; Cahill, J.; Eliashvili, K.; Chenau, A.; Pybus, C.; Shaw, R.; Devlin, G.; Deevy, A.; Truong-Hong, L.

    2017-08-01

    Cultural heritage researchers have recently begun applying Building Information Modelling (BIM) to historic buildings. The model is comprised of intelligent objects with semantic attributes which represent the elements of a building structure and are organised within a 3D virtual environment. Case studies in Ireland are used to test and develop the suitable systems for (a) data capture/digital surveying/processing (b) developing library of architectural components and (c) mapping these architectural components onto the laser scan or digital survey to relate the intelligent virtual representation of a historic structure (HBIM). While BIM platforms have the potential to create a virtual and intelligent representation of a building, its full exploitation and use is restricted to narrow set of expert users with access to costly hardware, software and skills. The testing of open BIM approaches in particular IFCs and the use of game engine platforms is a fundamental component for developing much wider dissemination. The semantically enriched model can be transferred into a WEB based game engine platform.

  3. Architecture and Design for Virtual Conferences: A Case Study

    Directory of Open Access Journals (Sweden)

    Andrew Sempere

    2011-07-01

    Full Text Available This paper presents a case study of the design issues facing a large multi-format virtual conference. The conference took place twice in two different years, each time using an avatar-based 3D world with spatialized audio including keynote, poster and social sessions. Between year 1 and 2, major adjustments were made to the architecture and design of the space, leading to improvement in the nature of interaction between the participants. While virtual meetings will likely never supplant the effectiveness of face-to-face meetings, this paper seeks to outline a few design principles learned from this experience, which can be applied generally to make computer mediated collaboration more effective.

  4. Game controller modification for fMRI hyperscanning experiments in a cooperative virtual reality environment.

    Science.gov (United States)

    Trees, Jason; Snider, Joseph; Falahpour, Maryam; Guo, Nick; Lu, Kun; Johnson, Douglas C; Poizner, Howard; Liu, Thomas T

    2014-01-01

    Hyperscanning, an emerging technique in which data from multiple interacting subjects' brains are simultaneously recorded, has become an increasingly popular way to address complex topics, such as "theory of mind." However, most previous fMRI hyperscanning experiments have been limited to abstract social interactions (e.g. phone conversations). Our new method utilizes a virtual reality (VR) environment used for military training, Virtual Battlespace 2 (VBS2), to create realistic avatar-avatar interactions and cooperative tasks. To control the virtual avatar, subjects use a MRI compatible Playstation 3 game controller, modified by removing all extraneous metal components and replacing any necessary ones with 3D printed plastic models. Control of both scanners' operation is initiated by a VBS2 plugin to sync scanner time to the known time within the VR environment. Our modifications include:•Modification of game controller to be MRI compatible.•Design of VBS2 virtual environment for cooperative interactions.•Syncing two MRI machines for simultaneous recording.

  5. Measuring user satisfaction for design variations through virtual reality

    NARCIS (Netherlands)

    Orzechowski, M.A.; Timmermans, H.J.P.; Vries, de B.; Timmermans, H.J.P.; Vries, de B.

    2000-01-01

    This paper describes Virtual Reality as an environment to collect information about user satisfaction. Because Virtual Reality (VR) allows visualization with added interactivity, this form of representation bas particular advantages when presenting new designs. The paper reports on the development

  6. A Virtual Hosting Environment for Distributed Online Gaming

    Science.gov (United States)

    Brossard, David; Prieto Martinez, Juan Luis

    With enterprise boundaries becoming fuzzier, it’s become clear that businesses need to share resources, expose services, and interact in many different ways. In order to achieve such a distribution in a dynamic, flexible, and secure way, we have designed and implemented a virtual hosting environment (VHE) which aims at integrating business services across enterprise boundaries and virtualising the ICT environment within which these services operate in order to exploit economies of scale for the businesses as well as achieve shorter concept-to-market time scales. To illustrate the relevance of the VHE, we have applied it to the online gaming world. Online gaming is an early adopter of distributed computing and more than 30% of gaming developer companies, being aware of the shift, are focusing on developing high performance platforms for the new online trend.

  7. Negotiation and Design for the Self-Organizing City. Gaming as a method for Urban Design

    Directory of Open Access Journals (Sweden)

    Ekim Tan

    2014-08-01

    Full Text Available An understanding of cities as open systems whose agents act on them simultaneously from below and above, influencing urban processes by their interaction with them and with each other, is replacing the simplistic debate on urban participation which asks whether cities should be organized bottom-up or top-down. This conceptualization of cities as complex systems calls for new collaborative city-making methods: a combination of collaborative planning (which already embraces various agencies and derives decision-making from negotiations between them and collaborative design (existing methods rely on rule-based iterative processes which control spatial outcomes. While current collaborative planning methods are open and interactive, they fail to simulate realistic power negotiations in the evolution of the physical environments they plan; collaborative design methods fall short in modelling the decision-making mechanisms of the physical environments they control. This research is dedicated to building an open negotiation and design method for cities as self-organizing systems that bridges this gap. Gaming as a tool for knowledge creation and negotiation serves as an interface between the more abstract decision-making and material city-making. Rarely involved in the creation of our environment, it has the unexplored potential of combining the socio-spatial dimensions of self-organizing urban processes. Diverse agents, the collaborations and conflicts within and between interest groups, and the parameters provided by topological data can all be combined in an operational form in gaming: potentially a great unifier of multiple stakeholder negotiations and individual design aspirations through which to generate popularly informed policies or design. The simple language and rules of games will allow jargon-free communication between stakeholders, experts and non-experts alike. The interactive and iterative nature of city gaming encourages the development

  8. Interactive Virtual Cinematography

    DEFF Research Database (Denmark)

    Burelli, Paolo

    is the process of visualising the content of a virtual environment by positioning and animating the virtual camera in the context of interactive applications such as a computer game. Camera placement and animation in games are usually directly controlled by the player or statically predened by designers. Direct...... control of the camera by the player increases the complexity of the interaction and reduces the designer's control on game storytelling. A completely designer-driven camera releases the player from the burden of controlling the point of view, but might generate undesired camera behaviours. Furthermore......, if the content of the game is procedurally generated, the designer might not have the necessary information to dene a priori the camera positions and movements. Automatic camera control aims to dene an abstraction layer that permits to control the camera using high-level and environment-independent rules...

  9. Interactive lighting art installation in virtual environments as a stimulus for public Ownership in urban development – Brighter Brunnshög

    Directory of Open Access Journals (Sweden)

    Kim Boa

    2018-01-01

    Full Text Available Urban development projects are often 1opposed by residents due to a lack of sense of ownership over the project. This study is a methodological approach in creating interactive lighting art installations in virtual environments to stimulate this sense of ownership. The study is part of the Brighter Brunnshög project, which is the initial stage of the urban development plan for new research centres in Brunnshög, Sweden. The main goal of this research is to explore the impact of virtual lighting art installations on residents´ attitudes toward the urban development of their area. The research is based on qualitative field studies and focus group interviews, and was assessed with questionnaires. The design itself is based on the results of the research data and consists of three criteria; awareness, mutuality, and adaptability. The results of the assessment indicate that interactive lighting art installations in virtual environments have the potential to create awareness of areas under urban development, which is a fundamental condition for creating place attachment, and by extension, a sense of ownership over the project.

  10. Mind Games: Game Engines as an Architecture for Intuitive Physics.

    Science.gov (United States)

    Ullman, Tomer D; Spelke, Elizabeth; Battaglia, Peter; Tenenbaum, Joshua B

    2017-09-01

    We explore the hypothesis that many intuitive physical inferences are based on a mental physics engine that is analogous in many ways to the machine physics engines used in building interactive video games. We describe the key features of game physics engines and their parallels in human mental representation, focusing especially on the intuitive physics of young infants where the hypothesis helps to unify many classic and otherwise puzzling phenomena, and may provide the basis for a computational account of how the physical knowledge of infants develops. This hypothesis also explains several 'physics illusions', and helps to inform the development of artificial intelligence (AI) systems with more human-like common sense. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Materials Driven Architectural Design and Representation

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    This paper aims to outline a framework for a deeper connection between experimentally obtained material knowledge and architectural design. While materials and architecture in the process of realisation are tightly connected, architectural design and representation are often distanced from...... another role in relation to architectural production. It is, in this paper, the intention to point at material research as an active initiator in explorative approaches to architectural design methods and architectural representation. This paper will point at the inclusion of tangible and experimental...... material research in the early phases of architectural design and to that of the architectural set of tools and representation. The paper will through use of existing research and the author’s own material research and practice suggest a way of using a combination of digital drawing, digital fabrication...

  12. Building interactive virtual environments for simulated training in medicine using VRML and Java/JavaScript.

    Science.gov (United States)

    Korocsec, D; Holobar, A; Divjak, M; Zazula, D

    2005-12-01

    Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.

  13. Interactive volume exploration of petascale microscopy data streams using a visualization-driven virtual memory approach

    KAUST Repository

    Hadwiger, Markus; Beyer, Johanna; Jeong, Wonki; Pfister, Hanspeter

    2012-01-01

    This paper presents the first volume visualization system that scales to petascale volumes imaged as a continuous stream of high-resolution electron microscopy images. Our architecture scales to dense, anisotropic petascale volumes because it: (1) decouples construction of the 3D multi-resolution representation required for visualization from data acquisition, and (2) decouples sample access time during ray-casting from the size of the multi-resolution hierarchy. Our system is designed around a scalable multi-resolution virtual memory architecture that handles missing data naturally, does not pre-compute any 3D multi-resolution representation such as an octree, and can accept a constant stream of 2D image tiles from the microscopes. A novelty of our system design is that it is visualization-driven: we restrict most computations to the visible volume data. Leveraging the virtual memory architecture, missing data are detected during volume ray-casting as cache misses, which are propagated backwards for on-demand out-of-core processing. 3D blocks of volume data are only constructed from 2D microscope image tiles when they have actually been accessed during ray-casting. We extensively evaluate our system design choices with respect to scalability and performance, compare to previous best-of-breed systems, and illustrate the effectiveness of our system for real microscopy data from neuroscience. © 1995-2012 IEEE.

  14. Interactive volume exploration of petascale microscopy data streams using a visualization-driven virtual memory approach

    KAUST Repository

    Hadwiger, Markus

    2012-12-01

    This paper presents the first volume visualization system that scales to petascale volumes imaged as a continuous stream of high-resolution electron microscopy images. Our architecture scales to dense, anisotropic petascale volumes because it: (1) decouples construction of the 3D multi-resolution representation required for visualization from data acquisition, and (2) decouples sample access time during ray-casting from the size of the multi-resolution hierarchy. Our system is designed around a scalable multi-resolution virtual memory architecture that handles missing data naturally, does not pre-compute any 3D multi-resolution representation such as an octree, and can accept a constant stream of 2D image tiles from the microscopes. A novelty of our system design is that it is visualization-driven: we restrict most computations to the visible volume data. Leveraging the virtual memory architecture, missing data are detected during volume ray-casting as cache misses, which are propagated backwards for on-demand out-of-core processing. 3D blocks of volume data are only constructed from 2D microscope image tiles when they have actually been accessed during ray-casting. We extensively evaluate our system design choices with respect to scalability and performance, compare to previous best-of-breed systems, and illustrate the effectiveness of our system for real microscopy data from neuroscience. © 1995-2012 IEEE.

  15. DHM and serious games: a case-study oil and gas laboratories.

    Science.gov (United States)

    Santos, V; Zamberlan, M; Streit, P; Oliveira, J; Guimarães, C; Pastura, F; Cid, G

    2012-01-01

    The aim in this paper is to present a research on the application of serious games for the design of laboratories in the oil and gas industries. The focus is in human virtual representation acquired from 3D scanning, human interaction, workspace layout and equipment designed considering ergonomics standards. The laboratory studies were simulated in Unity3D platform, which allows the users to control the DHM1 on the dynamic virtual scenario, in order to simulate work activities. This methodology can change the design process by improving the level of interaction between final users, managers and human factor teams. That helps to better visualize future work settings and improve the level of participation between all stakeholders.

  16. Evolution-based Virtual Content Insertion with Visually Virtual Interactions in Videos

    Science.gov (United States)

    Chang, Chia-Hu; Wu, Ja-Ling

    With the development of content-based multimedia analysis, virtual content insertion has been widely used and studied for video enrichment and multimedia advertising. However, how to automatically insert a user-selected virtual content into personal videos in a less-intrusive manner, with an attractive representation, is a challenging problem. In this chapter, we present an evolution-based virtual content insertion system which can insert virtual contents into videos with evolved animations according to predefined behaviors emulating the characteristics of evolutionary biology. The videos are considered not only as carriers of message conveyed by the virtual content but also as the environment in which the lifelike virtual contents live. Thus, the inserted virtual content will be affected by the videos to trigger a series of artificial evolutions and evolve its appearances and behaviors while interacting with video contents. By inserting virtual contents into videos through the system, users can easily create entertaining storylines and turn their personal videos into visually appealing ones. In addition, it would bring a new opportunity to increase the advertising revenue for video assets of the media industry and online video-sharing websites.

  17. Game engine architecture

    CERN Document Server

    Gregory, Jason

    2014-01-01

    ""… this book is the best of its kind, and you're lucky to have found it. It covers the huge field of game engine architecture in a succinct, clear way, and expertly balances the breadth and depth of its coverage, offering enough detail that even a beginner can easily understand the concepts it presents. The author, Jason Gregory, is not only a world expert in his field; he's a working programmer with production-quality knowledge and many shipped game projects under his belt. … Jason is also an experienced educator who has taught in the top-ranked university game program in North America. …

  18. An interactive physics-based unmanned ground vehicle simulator leveraging open source gaming technology: progress in the development and application of the virtual autonomous navigation environment (VANE) desktop

    Science.gov (United States)

    Rohde, Mitchell M.; Crawford, Justin; Toschlog, Matthew; Iagnemma, Karl D.; Kewlani, Guarav; Cummins, Christopher L.; Jones, Randolph A.; Horner, David A.

    2009-05-01

    It is widely recognized that simulation is pivotal to vehicle development, whether manned or unmanned. There are few dedicated choices, however, for those wishing to perform realistic, end-to-end simulations of unmanned ground vehicles (UGVs). The Virtual Autonomous Navigation Environment (VANE), under development by US Army Engineer Research and Development Center (ERDC), provides such capabilities but utilizes a High Performance Computing (HPC) Computational Testbed (CTB) and is not intended for on-line, real-time performance. A product of the VANE HPC research is a real-time desktop simulation application under development by the authors that provides a portal into the HPC environment as well as interaction with wider-scope semi-automated force simulations (e.g. OneSAF). This VANE desktop application, dubbed the Autonomous Navigation Virtual Environment Laboratory (ANVEL), enables analysis and testing of autonomous vehicle dynamics and terrain/obstacle interaction in real-time with the capability to interact within the HPC constructive geo-environmental CTB for high fidelity sensor evaluations. ANVEL leverages rigorous physics-based vehicle and vehicle-terrain interaction models in conjunction with high-quality, multimedia visualization techniques to form an intuitive, accurate engineering tool. The system provides an adaptable and customizable simulation platform that allows developers a controlled, repeatable testbed for advanced simulations. ANVEL leverages several key technologies not common to traditional engineering simulators, including techniques from the commercial video-game industry. These enable ANVEL to run on inexpensive commercial, off-the-shelf (COTS) hardware. In this paper, the authors describe key aspects of ANVEL and its development, as well as several initial applications of the system.

  19. Designing and Inhabiting Virtual Environments: Bridging the gap between physical and virtual

    Directory of Open Access Journals (Sweden)

    Matevž Juvančič

    2012-01-01

    Full Text Available Bringing the trilogy of the Erasmus intensive programme together in 2010, the Faculty of Architecture organised the third workshop in the series “Designing and Inhabiting Virtual Environments - DIVE”, addressing an elusive issue: “Bridging the gap between the physical and virtual” with the reference site of Križanke. During the 10-day intensive workshop, the participants developed a theoretical discussion based on a series of lectures, and afterwards pursued analyses of the reference site and designed spatial interventions with an emphasis on respecting the fragile nature of the site. From the very beginning to the end of their work, the participants analysed the boundaries between physical and virtual reality, examined the pros and cons of each, and sought possible integrations of both entities within a seamless and effective conceptual and actual representation.

  20. On the Architectural Engineering Competences in Architectural Design

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning

    2007-01-01

    In 1997 a new education in Architecture & Design at Department of Architecture and Design, Aalborg University was started with 50 students. During the recent years this number has increased to approximately 100 new students each year, i.e. approximately 500 students are following the 3 years...... bachelor (BSc) and the 2 years master (MSc) programme. The first 5 semesters are common for all students followed by 5 semesters with specialization into Architectural Design, Urban Design, Industrial Design or Digital Design. The present paper gives a short summary of the architectural engineering...

  1. Scaffolding vector representations for student learning inside a physics game

    Science.gov (United States)

    D'Angelo, Cynthia

    Vectors and vector addition are difficult concepts for many introductory physics students and traditional instruction does not usually sufficiently address these difficulties. Vectors play a major role in most topics in introductory physics and without a complete understanding of them many students are unable to make sense of the physics topics covered in their classes. Video games present a unique opportunity to help students develop an intuitive understanding of motion, forces, and vectors while immersed in an enjoyable and interactive environment. This study examines two dimensions of design decisions to help students learn while playing a physics-based game. The representational complexity dimension looked at two ways of presenting dynamic information about the velocity of the game object on the screen. The scaffolding context dimension looked at two different contexts for presenting vector addition problems that were related to the game. While all students made significant learning games from the pre to the post test, there were virtually no differences between students along the representational complexity dimension and small differences between students along the scaffolding context dimension. A context that directly connects to students' game playing experience was in most cases more productive to learning than an abstract context.

  2. The Virtual and the Real in Planning and Urban Design: Perspectives, Practices and Applications

    NARCIS (Netherlands)

    Yamu, Claudia; Poplin, Alenka; Devisch, Oswald; de Roo, Gert

    2018-01-01

    The Virtual and the Real: Perspectives, Practices and Applications for the Built Environment explores the merging relationship between physical and virtual spaces in planning and urban design. Technological advances such as smart sensors, interactive screens, locative media and evolving computation

  3. Construction of Urban Design Support System using Cloud Computing Type Virtual Reality and Case Study

    OpenAIRE

    Zhenhan, Lei; Shunta, Shimizu; Natuska, Ota; Yuji, Ito; Yuesong, Zhang

    2017-01-01

    This paper contributes a design support system based on cloud-computing type virtual reality (cloud-based VR) for urban planning and urban design. A platform for Cloud-based VR technology, i.e. a VR-Cloud server, is used to open a VR dataset to public collaboration over the Internet. The digital attributes representing the design scheme of design concepts includes the land use zone, building regulations, urban design style, and other design details of architectural design, landscape, and traf...

  4. Visual Perspectives within Educational Computer Games: Effects on Presence and Flow within Virtual Immersive Learning Environments

    Science.gov (United States)

    Scoresby, Jon; Shelton, Brett E.

    2011-01-01

    The mis-categorizing of cognitive states involved in learning within virtual environments has complicated instructional technology research. Further, most educational computer game research does not account for how learning activity is influenced by factors of game content and differences in viewing perspectives. This study is a qualitative…

  5. Kinematic/Dynamic Characteristics for Visual and Kinesthetic Virtual Environments

    Science.gov (United States)

    Bortolussi, Michael R. (Compiler); Adelstein, B. D.; Gold, Miriam

    1996-01-01

    Work was carried out on two topics of principal importance to current progress in virtual environment research at NASA Ames and elsewhere. The first topic was directed at maximizing the temporal dynamic response of visually presented Virtual Environments (VEs) through reorganization and optimization of system hardware and software. The final results of this portion of the work was a VE system in the Advanced Display and Spatial Perception Laboratory at NASA Ames capable of updating at 60 Hz (the maximum hardware refresh rate) with latencies approaching 30 msec. In the course of achieving this system performance, specialized hardware and software tools for measurement of VE latency and analytic models correlating update rate and latency for different system configurations were developed. The second area of activity was the preliminary development and analysis of a novel kinematic architecture for three Degree Of Freedom (DOF) haptic interfaces--devices that provide force feedback for manipulative interaction with virtual and remote environments. An invention disclosure was filed on this work and a patent application is being pursued by NASA Ames. Activities in these two areas are expanded upon below.

  6. Virtual Environments for the Transfer of Navigation Skills in the Blind: A Comparison of Directed Instruction Versus Video Game Based Learning Approaches

    Directory of Open Access Journals (Sweden)

    Erin C Connors

    2014-05-01

    Full Text Available For profoundly blind individuals, navigating in an unfamiliar building can represent a significant challenge. We investigated the use of an audio-based, virtual environment called Audio-based Environment Simulator (AbES that can be explored for the purposes of learning the layout of an unfamiliar, complex indoor environment. Furthermore, we compared two modes of interaction with AbES. In one group, blind participants implicitly learned the layout of a target environment while playing an exploratory, goal-directed video game. By comparison, a second group was explicitly taught the same layout following a standard route and instructions provided by a sighted facilitator. As a control, a third group interacted with AbES while playing an exploratory, goal-directed video game however, the explored environment did not correspond to the target layout. Following interaction with AbES, a series of route navigation tasks were carried out in the virtual and physical building represented in the training environment to assess the transfer of acquired spatial information. We found that participants from both modes of interaction were able to transfer the spatial knowledge gained as indexed by their successful route navigation performance. This transfer was not apparent in the control participants. Most notably, the game-based learning strategy was also associated with enhanced performance when participants were required to find alternate routes and short cuts within the target building suggesting that a ludic-based training approach may provide for a more flexible mental representation of the environment. Furthermore, outcome comparisons between early and late blind individuals suggested that greater prior visual experience did not have a significant effect on overall navigation performance following training. Finally, performance did not appear to be associated with other factors of interest such as age, gender, and verbal memory recall. We conclude that the

  7. A Virtual Environment based Serious Game to Support Health Education

    Directory of Open Access Journals (Sweden)

    Tiago Gomes

    2014-03-01

    Full Text Available APEX was developed as a framework for ubiquitous computing (ubicomp prototyping through virtual environments. In this paper the framework is used as a platform for developing a serious game designed to instruct and to inform. The paper describes the Asthma game, a game aimed at raising awareness among children of asthma triggers in the home. It is designed to stimulate a healthier life-style for those with asthma and respiratory problems. The game was developed as the gamification of a checklist for the home environment of asthma patients.

  8. Virtual environments for the transfer of navigation skills in the blind: a comparison of directed instruction vs. video game based learning approaches.

    Science.gov (United States)

    Connors, Erin C; Chrastil, Elizabeth R; Sánchez, Jaime; Merabet, Lotfi B

    2014-01-01

    For profoundly blind individuals, navigating in an unfamiliar building can represent a significant challenge. We investigated the use of an audio-based, virtual environment called Audio-based Environment Simulator (AbES) that can be explored for the purposes of learning the layout of an unfamiliar, complex indoor environment. Furthermore, we compared two modes of interaction with AbES. In one group, blind participants implicitly learned the layout of a target environment while playing an exploratory, goal-directed video game. By comparison, a second group was explicitly taught the same layout following a standard route and instructions provided by a sighted facilitator. As a control, a third group interacted with AbES while playing an exploratory, goal-directed video game however, the explored environment did not correspond to the target layout. Following interaction with AbES, a series of route navigation tasks were carried out in the virtual and physical building represented in the training environment to assess the transfer of acquired spatial information. We found that participants from both modes of interaction were able to transfer the spatial knowledge gained as indexed by their successful route navigation performance. This transfer was not apparent in the control participants. Most notably, the game-based learning strategy was also associated with enhanced performance when participants were required to find alternate routes and short cuts within the target building suggesting that a ludic-based training approach may provide for a more flexible mental representation of the environment. Furthermore, outcome comparisons between early and late blind individuals suggested that greater prior visual experience did not have a significant effect on overall navigation performance following training. Finally, performance did not appear to be associated with other factors of interest such as age, gender, and verbal memory recall. We conclude that the highly interactive

  9. Game play in vocational training and engineering education

    Directory of Open Access Journals (Sweden)

    Bjarne A. Foss

    2007-04-01

    Full Text Available Educational games may create a new and improved learning culture by drawing advantage of the new knowledge and skills of today’s students obtained from extensive use of interactive game software. This paper presents a design basis and online learning resources taking advantage of game-related features like a high degree of interactivity, attractive graphics, a dynamical virtual universe, and an incentive system to promote prolonged and more advanced use. The educational resources, denoted PIDstop, are targeted towards the engineering domain. Feedback from over 2000 users clearly indicates that PIDstop has a positive learning effect. Training packages for vocational training of Automation Technicians is emphasized in this paper. Such learning resources must have a limited mathematical complexity; hence, the representation should be rather descriptive. Evaluation of learning resources to assess the actual learning effect is important, and a two-step procedure based on formative and summative evaluation is proposed for this purpose.

  10. Lunar architecture and urbanism

    Science.gov (United States)

    Sherwood, Brent

    1992-01-01

    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  11. Sensorial Virtualization: Coupling Gaming and Virtual Environment

    NARCIS (Netherlands)

    Garbaya, S.; Miraoui, C.; Wendrich, Robert E.; Lim, T.; Stanescu, I.A.; Hauge, J.B.

    2014-01-01

    Virtual reality and virtualization are currently used to design complex systems and demonstrate that they represent the functionalities of real systems. However, the design refinement of the virtual environment (VE) and distributed virtual environment (DVE) are still time consuming and costly, as it

  12. Tactile Radar: experimenting a computer game with visually disabled.

    Science.gov (United States)

    Kastrup, Virgínia; Cassinelli, Alvaro; Quérette, Paulo; Bergstrom, Niklas; Sampaio, Eliana

    2017-09-18

    Visually disabled people increasingly use computers in everyday life, thanks to novel assistive technologies better tailored to their cognitive functioning. Like sighted people, many are interested in computer games - videogames and audio-games. Tactile-games are beginning to emerge. The Tactile Radar is a device through which a visually disabled person is able to detect distal obstacles. In this study, it is connected to a computer running a tactile-game. The game consists in finding and collecting randomly arranged coins in a virtual room. The study was conducted with nine congenital blind people including both sexes, aged 20-64 years old. Complementary methods of first and third person were used: the debriefing interview and the quasi-experimental design. The results indicate that the Tactile Radar is suitable for the creation of computer games specifically tailored for visually disabled people. Furthermore, the device seems capable of eliciting a powerful immersive experience. Methodologically speaking, this research contributes to the consolidation and development of first and third person complementary methods, particularly useful in disabled people research field, including the evaluation by users of the Tactile Radar effectiveness in a virtual reality context. Implications for rehabilitation Despite the growing interest in virtual games for visually disabled people, they still find barriers to access such games. Through the development of assistive technologies such as the Tactile Radar, applied in virtual games, we can create new opportunities for leisure, socialization and education for visually disabled people. The results of our study indicate that the Tactile Radar is adapted to the creation of video games for visually disabled people, providing a playful interaction with the players.

  13. Visual Realism and Presence in a Virtual Reality Game

    DEFF Research Database (Denmark)

    Hvass, Jonatan Salling; Larsen, Oliver Stevns; Vendelbo, Kasper Bøgelund

    2017-01-01

    Virtual Reality (VR) has finally entered the homes of consumers, and a large number of the available applications are games. This paper presents a between-subjects study (n=50) exploring if vi-sual realism (polygon count and texture resolution) affects pres-ence during a scenario involving gameplay...

  14. Architecture and Urban Studies to offer overseas design course

    OpenAIRE

    Chadwick, Heather Riley

    2006-01-01

    Virginia Tech's College of Architecture and Urban Studies invites professional architects and designers to participate in the 11th annual International Architecture and Design Continuing Education Course in Italy to be held in May. The deadline to register for this course is Saturday, April 15.

  15. Design and Task Analysis for a Game-Based Shiphandling Simulator Using an Open Source Game Engine (DELTA3D)

    Science.gov (United States)

    2011-09-01

    Rodrigues, F. L. D. (2010).Sistema de realidade virtual para simulador visual de passadiço ( Virtual reality system for visual bridge simulator...products/shipsimulatorextremes Souza, I. (2007). Simulador de Realidade Virtual para o Treinamento de Biópsia por Agulha de Nódulos da Glândula de...Games, Shiphandling Simulator, Training, Virtual Environments, Simulation, Open Source, Brazilian Navy 16. PRICE CODE 17. SECURITY CLASSIFICATION OF

  16. 3D multiplayer virtual pets game using Google Card Board

    Science.gov (United States)

    Herumurti, Darlis; Riskahadi, Dimas; Kuswardayan, Imam

    2017-08-01

    Virtual Reality (VR) is a technology which allows user to interact with the virtual environment. This virtual environment is generated and simulated by computer. This technology can make user feel the sensation when they are in the virtual environment. The VR technology provides real virtual environment view for user and it is not viewed from screen. But it needs another additional device to show the view of virtual environment. This device is known as Head Mounted Device (HMD). Oculust Rift and Microsoft Hololens are the most famous HMD devices used in VR. And in 2014, Google Card Board was introduced at Google I/O developers conference. Google Card Board is VR platform which allows user to enjoy the VR with simple and cheap way. In this research, we explore Google Card Board to develop simulation game of raising pet. The Google Card Board is used to create view for the VR environment. The view and control in VR environment is built using Unity game engine. And the simulation process is designed using Finite State Machine (FSM). This FSM can help to design the process clearly. So the simulation process can describe the simulation of raising pet well. Raising pet is fun activity. But sometimes, there are many conditions which cause raising pet become difficult to do, i.e. environment condition, disease, high cost, etc. this research aims to explore and implement Google Card Board in simulation of raising pet.

  17. Virtual Astronaut for Scientific Visualization—A Prototype for Santa Maria Crater on Mars

    Directory of Open Access Journals (Sweden)

    Edward A. Guinness

    2012-12-01

    Full Text Available To support scientific visualization of multiple-mission data from Mars, the Virtual Astronaut (VA creates an interactive virtual 3D environment built on the Unity3D Game Engine. A prototype study was conducted based on orbital and Opportunity Rover data covering Santa Maria Crater in Meridiani Planum on Mars. The VA at Santa Maria provides dynamic visual representations of the imaging, compositional, and mineralogical information. The VA lets one navigate through the scene and provides geomorphic and geologic contexts for the rover operations. User interactions include in-situ observations visualization, feature measurement, and an animation control of rover drives. This paper covers our approach and implementation of the VA system. A brief summary of the prototype system functions and user feedback is also covered. Based on external review and comments by the science community, the prototype at Santa Maria has proven the VA to be an effective tool for virtual geovisual analysis.

  18. An Audio Architecture Integrating Sound and Live Voice for Virtual Environments

    National Research Council Canada - National Science Library

    Krebs, Eric

    2002-01-01

    The purpose behind this thesis was to design and implement audio system architecture, both in hardware and in software, for use in virtual environments The hardware and software design requirements...

  19. Virtual Reality As A Spatial Experience For Architecture Design: A Study of Effectiveness for Architecture Students

    Directory of Open Access Journals (Sweden)

    Sapto Pamungkas Luhur

    2018-01-01

    Full Text Available Studios. This ability gained through visual design thinking. The spatial experience honed by three dimensional thinking from the medium diversity. The spatial experience learned through a room layout, proportion, and composition. This research used an experimental method and the primary data obtained by a “Likert” scale questionnaire. The Respondents are 50 students of the Architectural Design Studio. Moreover, the analysis focuses on the VR for spatial experience. The result was a descriptive explanation of the effectiveness of Virtual Reality for a spatial experience of architecture students at Technology University of Yogyakarta.

  20. A Proposed Treatment for Visual Field Loss caused by Traumatic Brain Injury using Interactive Visuotactile Virtual Environment

    Science.gov (United States)

    Farkas, Attila J.; Hajnal, Alen; Shiratuddin, Mohd F.; Szatmary, Gabriella

    In this paper, we propose a novel approach of using interactive virtual environment technology in Vision Restoration Therapy caused by Traumatic Brain Injury. We called the new system Interactive Visuotactile Virtual Environment and it holds a promise of expanding the scope of already existing rehabilitation techniques. Traditional vision rehabilitation methods are based on passive psychophysical training procedures, and can last up to six months before any modest improvements can be seen in patients. A highly immersive and interactive virtual environment will allow the patient to practice everyday activities such as object identification and object manipulation through the use 3D motion sensoring handheld devices such data glove or the Nintendo Wiimote. Employing both perceptual and action components in the training procedures holds the promise of more efficient sensorimotor rehabilitation. Increased stimulation of visual and sensorimotor areas of the brain should facilitate a comprehensive recovery of visuomotor function by exploiting the plasticity of the central nervous system. Integrated with a motion tracking system and an eye tracking device, the interactive virtual environment allows for the creation and manipulation of a wide variety of stimuli, as well as real-time recording of hand-, eye- and body movements and coordination. The goal of the project is to design a cost-effective and efficient vision restoration system.

  1. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    Science.gov (United States)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  2. Multi-Sensory-Motor Research: Investigating Auditory, Visual, and Motor Interaction in Virtual Reality Environments

    Directory of Open Access Journals (Sweden)

    Thorsten Kluss

    2011-10-01

    Full Text Available Perception in natural environments is inseparably linked to motor action. In fact, we consider action an essential component of perceptual representation. But these representations are inherently difficult to investigate: Traditional experimental setups are limited by the lack of flexibility in manipulating spatial features. To overcome these problems, virtual reality (VR experiments seem to be a feasible alternative, but these setups typically lack ecological realism due to the use of “unnatural” interface-devices (joystick. Thus, we propose an experimental apparatus which combines multisensory perception and action in an ecologically realistic way. The basis is a 10-foot hollow sphere (VirtuSphere placed on a platform that allows free rotation. A subject inside can walk in any direction for any distance immersed into virtual environment. Both the rotation of the sphere and movement of the subject's head are tracked to process the subject's view within the VR-environment presented on a head-mounted display. Moreover, auditory features are dynamically processed taking greatest care of exact alignment of sound-sources and visual objects using ambisonic-encoded audio processed by a HRTF-filterbank. We present empirical data that confirm ecological realism of this setup and discuss its suitability for multi-sensory-motor research.

  3. Speculations on the representation of architecture in virtual reality:How can we (continue to) simulate the unseen?

    OpenAIRE

    Hermund, Anders; Klint, Lars; Bundgård, Ture Slot

    2017-01-01

    This paper discusses the present and future possibilities of representation models of architecture in new media such as virtual reality, seen in the broader context of tradition, perception, and neurology. Through comparative studies of real and virtual scenarios using eye tracking, the paper discusses if the constantly evolving toolset for architectural representation has in itself changed the core values of architecture, or if it is rather the level of skilful application of technology that...

  4. Metaphoric Extension of the Body in Virtual Environments

    DEFF Research Database (Denmark)

    Mullins, Michael

    2005-01-01

    environments and then locate them and identify their shape on scaled drawings. Results are presented together with statistical analysis. In a discussion of the results, the paper addresses the three hypothetical assertions – that depth perception in physical reality and its virtual representations in CAVE...... context. The paper discusses implications of spatial ability for virtual environments in architectural education and participatory design processes, in which the dialogue between real and imagined space takes place.......This study compares aspects of spatial perception in a physical environment and its virtual representations in a CAVE and Panorama, based on the author’s recent research. To measure accuracy of spatial perception, participants in an experiment were asked to look at identical objects in the three...

  5. Game-Like Language Learning in 3-D Virtual Environments

    Science.gov (United States)

    Berns, Anke; Gonzalez-Pardo, Antonio; Camacho, David

    2013-01-01

    This paper presents our recent experiences with the design of game-like applications in 3-D virtual environments as well as its impact on student motivation and learning. Therefore our paper starts with a brief analysis of the motivational aspects of videogames and virtual worlds (VWs). We then go on to explore the possible benefits of both in the…

  6. Interactive Virtual Cinematography

    OpenAIRE

    Burelli, Paolo

    2012-01-01

    A virtual camera represents the point-of-view of the player through which sheperceives the game world and gets feedback on her actions. Thus, the virtualcamera plays a vital role in 3D computer games and aects player experienceand enjoyability in games. Interactive virtual cinematography is the process ofvisualising the content of a virtual environment by positioning and animatingthe virtual camera in the context of interactive applications such as a computergame.Camera placement and animatio...

  7. The Virtual Environment for Reactor Applications (VERA): Design and architecture

    International Nuclear Information System (INIS)

    Turner, John A.; Clarno, Kevin; Sieger, Matt; Bartlett, Roscoe; Collins, Benjamin; Pawlowski, Roger; Schmidt, Rodney; Summers, Randall

    2016-01-01

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL). CASL was established for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both software and numerical perspectives, along with the goals and constraints that drove major design decisions, and their implications. We explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the use of VERA tools for a variety of challenging applications within the nuclear industry.

  8. The Virtual Environment for Reactor Applications (VERA): Design and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Turner, John A., E-mail: turnerja@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Clarno, Kevin; Sieger, Matt; Bartlett, Roscoe; Collins, Benjamin [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pawlowski, Roger; Schmidt, Rodney; Summers, Randall [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2016-12-01

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL). CASL was established for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both software and numerical perspectives, along with the goals and constraints that drove major design decisions, and their implications. We explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the use of VERA tools for a variety of challenging applications within the nuclear industry.

  9. Intelligent Motion and Interaction Within Virtual Environments

    Science.gov (United States)

    Ellis, Stephen R. (Editor); Slater, Mel (Editor); Alexander, Thomas (Editor)

    2007-01-01

    What makes virtual actors and objects in virtual environments seem real? How can the illusion of their reality be supported? What sorts of training or user-interface applications benefit from realistic user-environment interactions? These are some of the central questions that designers of virtual environments face. To be sure simulation realism is not necessarily the major, or even a required goal, of a virtual environment intended to communicate specific information. But for some applications in entertainment, marketing, or aspects of vehicle simulation training, realism is essential. The following chapters will examine how a sense of truly interacting with dynamic, intelligent agents may arise in users of virtual environments. These chapters are based on presentations at the London conference on Intelligent Motion and Interaction within a Virtual Environments which was held at University College, London, U.K., 15-17 September 2003.

  10. A Serious Game for Second Language Acquisition in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    Laura Perez-Beltrachini

    2012-02-01

    Full Text Available In this paper, we present I-FLEG, a 3D language game designed for interactively learning French as a second language. I-FLEG differs from previous computer-aided language learning (CALL approaches in that it combines a situated, language learning environment with advanced artificial intelligence and natural language generation techniques which support user adaptivity and the automatic, context-aware generation of learning material. In addition, because it is integrated in a 3D virtual reality environment, IFLEG naturally supports e-learning and facilitates the collection of test data.

  11. Interactive Space(s) -- the CTSG: bridging the real and virtual

    NARCIS (Netherlands)

    Eliëns, A.P.W.; Mao, W.; Vermeersch, L

    2010-01-01

    In this paper, ideas will be presented how to realize games or playful activities in interactive space(s), having a real (spatial) component as well as a representation in virtual 2D or 3D space, by means of web pages and/or online games. Apart from general design criteria, the paper discusses a

  12. Development of an effective virtual environment in eliciting craving in adolescents and young adults with internet gaming disorder.

    Science.gov (United States)

    Shin, Yu-Bin; Kim, Jae-Jin; Kim, Min-Kyeong; Kyeong, Sunghyon; Jung, Young Hoon; Eom, Hyojung; Kim, Eunjoo

    2018-01-01

    Internet gaming disorder (IGD) is a new disorder that warrants further investigation, as recently noted in the research criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Offering controlled environments that increase cue-induced craving, virtual reality cue-exposure therapy has been shown to be effective for some addiction disorders. To assess the feasibility of virtual reality for patients with IGD, this study aimed to develop virtual environments that represent risk situations for inducing craving, and assess the effect of virtual reality in cue reactivity. A total of 64 male adolescents and young adults (34 with IGD and 30 without) were recruited for participation. We developed a virtual internet café environment and the participants were exposed to four different tasks. As the primary feasibility outcome, cravings were measured with a visual analogue scale measuring current urge to play a game after exposure to each task. The virtual internet café induced significantly greater cravings in patients with IGD compared to controls. Additionally, patients exhibited a significantly higher acceptance rate of an avatar's invitation to play a game together than that of controls. In IGD, craving response to the tasks was positively associated with the symptom severity score as measured by Young's Internet Addiction Test. These findings reveal that virtual reality laden with complex game-related cues could evoke game craving in patients with IGD and could be used in the treatment of IGD as a cue-exposure therapy tool for eliciting craving.

  13. Virtualization of the school and their impact in the urban environment

    International Nuclear Information System (INIS)

    Ramirez C, Luz Arabany

    2002-01-01

    This paper synthesizes the conceptual framework of the research virtualization of the processes and instructional technology: virtualization process of the education in Manizales and its impact on the urban environment. This research was carried out for the environment and development, urban environmental studies, program, of the Universidad Nacional de Colombia - campus Manizales. A vision of the urban environment from the systems theory is established, a review of the characteristics of the education styles is done, the virtualization process concept is explained, and the transformation of Manizales given the virtualization process of the education is described. On the other hand, the impact of the virtualization process of the education on the urban environment is examined, and the consequences of the realization based on the virtual thing

  14. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available This paper proposes a pseudo-haptic feedback method conveying simulated soft surface stiffness information through a visual interface. The method exploits a combination of two feedback techniques, namely visual feedback of soft surface deformation and control of the indenter avatar speed, to convey stiffness information of a simulated surface of a soft object in virtual environments. The proposed method was effective in distinguishing different sizes of virtual hard nodules integrated into the simulated soft bodies. To further improve the interactive experience, the approach was extended creating a multi-point pseudo-haptic feedback system. A comparison with regards to (a nodule detection sensitivity and (b elapsed time as performance indicators in hard nodule detection experiments to a tablet computer incorporating vibration feedback was conducted. The multi-point pseudo-haptic interaction is shown to be more time-efficient than the single-point pseudo-haptic interaction. It is noted that multi-point pseudo-haptic feedback performs similarly well when compared to a vibration-based feedback method based on both performance measures elapsed time and nodule detection sensitivity. This proves that the proposed method can be used to convey detailed haptic information for virtual environmental tasks, even subtle ones, using either a computer mouse or a pressure sensitive device as an input device. This pseudo-haptic feedback method provides an opportunity for low-cost simulation of objects with soft surfaces and hard inclusions, as, for example, occurring in ever more realistic video games with increasing emphasis on interaction with the physical environment and minimally invasive surgery in the form of soft tissue organs with embedded cancer nodules. Hence, the method can be used in many low-budget applications where haptic sensation is required, such as surgeon training or video games, either using desktop computers or portable devices, showing

  15. Visual Development Environment for Semantically Interoperable Smart Cities Applications

    OpenAIRE

    Roukounaki , Aikaterini; Soldatos , John; Petrolo , Riccardo; Loscri , Valeria; Mitton , Nathalie; Serrano , Martin

    2015-01-01

    International audience; This paper presents an IoT architecture for the semantic interoperability of diverse IoT systems and applications in smart cities. The architecture virtualizes diverse IoT systems and ensures their modelling and representation according to common standards-based IoT ontologies. Furthermore, based on this architecture, the paper introduces a first-of-a-kind visual development environment which eases the development of semantically interoperable applications in smart cit...

  16. Hybrid Design Tools in a Social Virtual Reality Using Networked Oculus Rift: A Feasibility Study in Remote Real-Time Interaction

    NARCIS (Netherlands)

    Wendrich, Robert E.; Chambers, Kris-Howard; Al-Halabi, Wadee; Seibel, Eric J.; Grevenstuk, Olaf; Ullman, David; Hoffman, Hunter G.

    2016-01-01

    Hybrid Design Tool Environments (HDTE) allow designers and engineers to use real tangible tools and physical objects and/or artifacts to make and create real-time virtual representations and presentations on-the-fly. Manipulations of the real tangible objects (e.g., real wire mesh, clay, sketches,

  17. Guest Editor's introduction: Special issue on distributed virtual environments

    Science.gov (United States)

    Lea, Rodger

    1998-09-01

    Distributed virtual environments (DVEs) combine technology from 3D graphics, virtual reality and distributed systems to provide an interactive 3D scene that supports multiple participants. Each participant has a representation in the scene, often known as an avatar, and is free to navigate through the scene and interact with both the scene and other viewers of the scene. Changes to the scene, for example, position changes of one avatar as the associated viewer navigates through the scene, or changes to objects in the scene via manipulation, are propagated in real time to all viewers. This ensures that all viewers of a shared scene `see' the same representation of it, allowing sensible reasoning about the scene. Early work on such environments was restricted to their use in simulation, in particular in military simulation. However, over recent years a number of interesting and potentially far-reaching attempts have been made to exploit the technology for a range of other uses, including: Social spaces. Such spaces can be seen as logical extensions of the familiar text chat space. In 3D social spaces avatars, representing participants, can meet in shared 3D scenes and in addition to text chat can use visual cues and even in some cases spatial audio. Collaborative working. A number of recent projects have attempted to explore the use of DVEs to facilitate computer-supported collaborative working (CSCW), where the 3D space provides a context and work space for collaboration. Gaming. The shared 3D space is already familiar, albeit in a constrained manner, to the gaming community. DVEs are a logical superset of existing 3D games and can provide a rich framework for advanced gaming applications. e-commerce. The ability to navigate through a virtual shopping mall and to look at, and even interact with, 3D representations of articles has appealed to the e-commerce community as it searches for the best method of presenting merchandise to electronic consumers. The technology

  18. A hardware and software architecture to deal with multimodal and collaborative interactions in multiuser virtual reality environments

    Science.gov (United States)

    Martin, P.; Tseu, A.; Férey, N.; Touraine, D.; Bourdot, P.

    2014-02-01

    Most advanced immersive devices provide collaborative environment within several users have their distinct head-tracked stereoscopic point of view. Combining with common used interactive features such as voice and gesture recognition, 3D mouse, haptic feedback, and spatialized audio rendering, these environments should faithfully reproduce a real context. However, even if many studies have been carried out on multimodal systems, we are far to definitively solve the issue of multimodal fusion, which consists in merging multimodal events coming from users and devices, into interpretable commands performed by the application. Multimodality and collaboration was often studied separately, despite of the fact that these two aspects share interesting similarities. We discuss how we address this problem, thought the design and implementation of a supervisor that is able to deal with both multimodal fusion and collaborative aspects. The aim of this supervisor is to ensure the merge of user's input from virtual reality devices in order to control immersive multi-user applications. We deal with this problem according to a practical point of view, because the main requirements of this supervisor was defined according to a industrial task proposed by our automotive partner, that as to be performed with multimodal and collaborative interactions in a co-located multi-user environment. In this task, two co-located workers of a virtual assembly chain has to cooperate to insert a seat into the bodywork of a car, using haptic devices to feel collision and to manipulate objects, combining speech recognition and two hands gesture recognition as multimodal instructions. Besides the architectural aspect of this supervisor, we described how we ensure the modularity of our solution that could apply on different virtual reality platforms, interactive contexts and virtual contents. A virtual context observer included in this supervisor in was especially designed to be independent to the

  19. CASES ON COLLABORATION IN VIRTUAL LEARNIONG ENVIRONMENTS: Processes and Interactions

    Directory of Open Access Journals (Sweden)

    Reviewed by Yasin OZARSLAN

    2010-01-01

    Full Text Available Collaboration in Virtual Learning Environment brings meaningful learning interactions between learners in virtual environments. This book collects case studies of collaborative virtual learning environments focusing on the nature of human interactions in virtual spaces and defining the types and qualities of learning processes in these spaces from the perspectives of learners, teachers, designers, and professional and academic developers in various disciplines, learning communities and universities from around the world. This book addresses the research cases on experiences, implementations, and applications of virtual learning environments.The book's broader audience is anyone who is interested in areas such as collaborative virtual learning environments, interactive technologies and virtual communities, social interaction and social competence, distance education and collaborative learning. The book is edited by Donna Russell who is an Assistant Professor at the University of Missouri-Kansas City and co-owner of Arete‘ Consulting, LLC. It is consisted of 358 pages covering 19 articles and provides information about context for characteristics and implications of the varied virtual learning environments. Topics covered in this book are argumentative interactions and learning, collaborative learning and work in digital libraries, collaborative virtual learning environments , digital communities to enhance retention, distance education ,interactive technologies and virtual communities, massively multi-user virtual environments, online graduate community, online training programs, social interaction and social competence and virtual story-worlds.

  20. Development of an effective virtual environment in eliciting craving in adolescents and young adults with internet gaming disorder

    Science.gov (United States)

    Shin, Yu-Bin; Kim, Jae-Jin; Kim, Min-Kyeong; Kyeong, Sunghyon; Jung, Young Hoon; Eom, Hyojung

    2018-01-01

    Internet gaming disorder (IGD) is a new disorder that warrants further investigation, as recently noted in the research criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Offering controlled environments that increase cue-induced craving, virtual reality cue-exposure therapy has been shown to be effective for some addiction disorders. To assess the feasibility of virtual reality for patients with IGD, this study aimed to develop virtual environments that represent risk situations for inducing craving, and assess the effect of virtual reality in cue reactivity. A total of 64 male adolescents and young adults (34 with IGD and 30 without) were recruited for participation. We developed a virtual internet café environment and the participants were exposed to four different tasks. As the primary feasibility outcome, cravings were measured with a visual analogue scale measuring current urge to play a game after exposure to each task. The virtual internet café induced significantly greater cravings in patients with IGD compared to controls. Additionally, patients exhibited a significantly higher acceptance rate of an avatar’s invitation to play a game together than that of controls. In IGD, craving response to the tasks was positively associated with the symptom severity score as measured by Young's Internet Addiction Test. These findings reveal that virtual reality laden with complex game-related cues could evoke game craving in patients with IGD and could be used in the treatment of IGD as a cue-exposure therapy tool for eliciting craving. PMID:29672530

  1. Diabetes City: How Urban Game Design Strategies Can Help Diabetics

    Science.gov (United States)

    Knöll, Martin

    Computer Games are about to leave their “electronic shells” and enter the city. So-called Serious Pervasive Games (SPGs) [1] allow for hybrid - simultaneously physical and virtual - experiences, applying technologies of ubiquitous computing, communication and “intelligent” interfaces. They begin to focus on non-entertaining purposes. The following article a) presents game design strategies as a missing link between pervasive computing, Ambient Intelligence and user’s everyday life. Therefore it spurs a discussion how Pervasive Healthcare focusing on the therapy and prevention of chronic diseases can benefit from urban game design strategies. b) Moreover the article presents the development and work in progress of “DiabetesCity“ - an educational game prototype for young diabetics.

  2. On public space design for Chinese urban residential area based on integrated architectural physics environment evaluation

    Science.gov (United States)

    Dong, J. Y.; Cheng, W.; Ma, C. P.; Tan, Y. T.; Xin, L. S.

    2017-04-01

    The residential public space is an important part in designing the ecological residence, and a proper physics environment of public space is of greater significance to urban residence in China. Actually, the measure to apply computer aided design software into residential design can effectively avoid an inconformity of design intent with actual using condition, and a negative impact on users due to bad architectural physics environment of buildings, etc. The paper largely adopts a design method of analyzing architectural physics environment of residential public space. By analyzing and evaluating various physics environments, a suitability assessment is obtained for residential public space, thereby guiding the space design.

  3. Game design as marketing: How game mechanics create demand for virtual goods

    Directory of Open Access Journals (Sweden)

    Lehdonvirta, V.

    2010-01-01

    Full Text Available Selling virtual goods for real money is an increasingly popular revenue model for massively-multiplayer online games (MMOs, social networking sites (SNSs and other online hangouts. In this paper, we argue that the marketing of virtual goods currently falls short of what it could be. Game developers have long created compelling game designs, but having to market virtual goods to players is a relatively new situation to them. Professional marketers, on the other hand, tend to overlook the internal design of games and hangouts and focus on marketing the services as a whole. To begin bridging the gap, we propose that the design patterns and game mechanics commonly used in games and online hangouts should be viewed as a set of marketing techniques designed to sell virtual goods. Based on a review of a number of MMOs, we describe some of the most common patterns and game mechanics and show how their effects can be explained in terms of analogous techniques from marketing science. The results provide a new perspective to game design with interesting implications to developers. Moreover, they also suggest a radically new perspective to marketers of ordinary goods and services: viewing marketing as a form of game design.

  4. MetaBlast! Virtual Cell: A Pedagogical Convergence between Game Design and Science Education

    Directory of Open Access Journals (Sweden)

    Anson Call

    2007-10-01

    Full Text Available Virtual Cell is a game design solution to a specific scientific and educational problem; expressly, how to make advanced, university level plant biology instruction on molecular and anatomical levels an exciting, efficient learning experience. The advanced technologies of 3D modeling and animation, computer programming and game design are united and tempered with strong, scientific guidance for accuracy and art direction for a powerful visual and audio simulation. The additional strength of intense gaming as a powerful tool aiding memory, logic and problem solving has recently become well recognized. Virtual Cell will provide a unique gaming experience, while transparently teaching scientifically accurate facts and concepts about, in this case, a soybean plant's inner workings and dependant mechanisms on multiple scales and levels of complexity. Virtual Cell (from now on referred to as VC in the future may prove to be a reference for other scientific/education endeavors as scientists battle for a more prominent mind share among average citizens. This paper will discuss the difficulties of developing VC, its structure, intended game and educational goals along with additional benefits to both the sciences and gaming industry.

  5. New directions in virtual environments and gaming to address obesity and diabetes: industry perspective.

    Science.gov (United States)

    Ruppert, Barb

    2011-03-01

    Virtual reality is increasingly used for education and treatment in the fields of health and medicine. What is the health potential of virtual reality technology from the software development industry perspective? This article presents interviews with Ben Sawyer of Games for Health, Dr. Walter Greenleaf of InWorld Solutions, and Dr. Ernie Medina of MedPlay Technologies. Games for Health brings together researchers, medical professionals, and game developers to share information on the impact that game technologies can have on health, health care, and policy. InWorld is an Internet-based virtual environment designed specifically for behavioral health care. MedPlay Technologies develops wellness training programs that include exergaming technology. The interviewees share their views on software development and other issues that must be addressed to advance the field of virtual reality for health applications. © 2011 Diabetes Technology Society.

  6. Foreign language learning in immersive virtual environments

    Science.gov (United States)

    Chang, Benjamin; Sheldon, Lee; Si, Mei; Hand, Anton

    2012-03-01

    Virtual reality has long been used for training simulations in fields from medicine to welding to vehicular operation, but simulations involving more complex cognitive skills present new design challenges. Foreign language learning, for example, is increasingly vital in the global economy, but computer-assisted education is still in its early stages. Immersive virtual reality is a promising avenue for language learning as a way of dynamically creating believable scenes for conversational training and role-play simulation. Visual immersion alone, however, only provides a starting point. We suggest that the addition of social interactions and motivated engagement through narrative gameplay can lead to truly effective language learning in virtual environments. In this paper, we describe the development of a novel application for teaching Mandarin using CAVE-like VR, physical props, human actors and intelligent virtual agents, all within a semester-long multiplayer mystery game. Students travel (virtually) to China on a class field trip, which soon becomes complicated with intrigue and mystery surrounding the lost manuscript of an early Chinese literary classic. Virtual reality environments such as the Forbidden City and a Beijing teahouse provide the setting for learning language, cultural traditions, and social customs, as well as the discovery of clues through conversation in Mandarin with characters in the game.

  7. Contested Urbanism

    DEFF Research Database (Denmark)

    Pløger, John

    2010-01-01

    Iconic architecture plays a crucial role in cities' interurban competition. This is also the case with Copenhagen which has used iconic architecture as part of its boosterism to gain investment, to increase tourism and to attract the creative class. This battle over the symbolic representation of...... intertwined through symbolic, visual and virtual representations of the wrongs of current urban planning...

  8. AudioMUD: a multiuser virtual environment for blind people.

    Science.gov (United States)

    Sánchez, Jaime; Hassler, Tiago

    2007-03-01

    A number of virtual environments have been developed during the last years. Among them there are some applications for blind people based on different type of audio, from simple sounds to 3-D audio. In this study, we pursued a different approach. We designed AudioMUD by using spoken text to describe the environment, navigation, and interaction. We have also introduced some collaborative features into the interaction between blind users. The core of a multiuser MUD game is a networked textual virtual environment. We developed AudioMUD by adding some collaborative features to the basic idea of a MUD and placed a simulated virtual environment inside the human body. This paper presents the design and usability evaluation of AudioMUD. Blind learners were motivated when interacted with AudioMUD and helped to improve the interaction through audio and interface design elements.

  9. Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA).

    Science.gov (United States)

    Lee, Yong-Gu; Lyons, Kevin W; Feng, Shaw C

    2004-01-01

    A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design.

  10. Designing Interactive Storytelling: A Virtual Environment for Personal Experience Narratives

    OpenAIRE

    Ladeira , Ilda; Marsden , Gary; Green , Lesley

    2011-01-01

    Part 1: Long and Short Papers; International audience; We describe an ongoing collaboration with the District Six Museum, in Cape Town, aimed at designing a storytelling prototype for preserving personal experience narratives. We detail the design of an interactive virtual environment (VE) which was inspired by a three month ethnography of real-life oral storytelling. The VE places the user as an audience member in a virtual group listening to two storytelling agents capable of two forms of i...

  11. A LOW-COST AND LIGHTWEIGHT 3D INTERACTIVE REAL ESTATE-PURPOSED INDOOR VIRTUAL REALITY APPLICATION

    Directory of Open Access Journals (Sweden)

    K. Ozacar

    2017-11-01

    Full Text Available Interactive 3D architectural indoor design have been more popular after it benefited from Virtual Reality (VR technologies. VR brings computer-generated 3D content to real life scale and enable users to observe immersive indoor environments so that users can directly modify it. This opportunity enables buyers to purchase a property off-the-plan cheaper through virtual models. Instead of showing property through 2D plan or renders, this visualized interior architecture of an on-sale unbuilt property is demonstrated beforehand so that the investors have an impression as if they were in the physical building. However, current applications either use highly resource consuming software, or are non-interactive, or requires specialist to create such environments. In this study, we have created a real-estate purposed low-cost high quality fully interactive VR application that provides a realistic interior architecture of the property by using free and lightweight software: Sweet Home 3D and Unity. A preliminary study showed that participants generally liked proposed real estate-purposed VR application, and it satisfied the expectation of the property buyers.

  12. a Low-Cost and Lightweight 3d Interactive Real Estate-Purposed Indoor Virtual Reality Application

    Science.gov (United States)

    Ozacar, K.; Ortakci, Y.; Kahraman, I.; Durgut, R.; Karas, I. R.

    2017-11-01

    Interactive 3D architectural indoor design have been more popular after it benefited from Virtual Reality (VR) technologies. VR brings computer-generated 3D content to real life scale and enable users to observe immersive indoor environments so that users can directly modify it. This opportunity enables buyers to purchase a property off-the-plan cheaper through virtual models. Instead of showing property through 2D plan or renders, this visualized interior architecture of an on-sale unbuilt property is demonstrated beforehand so that the investors have an impression as if they were in the physical building. However, current applications either use highly resource consuming software, or are non-interactive, or requires specialist to create such environments. In this study, we have created a real-estate purposed low-cost high quality fully interactive VR application that provides a realistic interior architecture of the property by using free and lightweight software: Sweet Home 3D and Unity. A preliminary study showed that participants generally liked proposed real estate-purposed VR application, and it satisfied the expectation of the property buyers.

  13. An Educational Tool for Creating Distributed Physical Games

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    programming for physical games development. This is done by providing an educational tool that allows a change of representation of the problems related to game designing from a virtual to a physical representation. Indeed, MITS seems to be a valuable system for bringing into education a vast number of issues...... (such as parallel programming, distribution, communication protocols, master dependency, connectivity, topology, island modeling software behavioral models, adaptive interactivity, feedback, user and multi-user game interaction, etc.). This can both improve the education-related issues in computer......The development of physical interactive games demands extensive knowledge in engineering, computer science and gaming. In this paper we describe how the Modular Interactive Tiles System (MITS) can be a valuable tool for introducing students to interactive parallel and distributed processing...

  14. The Virtual GloveboX (VGX: a Semi-immersive Virtual Environment for Training Astronauts in Life Sciences Experiments

    Directory of Open Access Journals (Sweden)

    I. Alexander Twombly

    2004-06-01

    Full Text Available The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The "Virtual GloveboX" (VGX integrates high-fidelity graphics, force-feedback devices and real-time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  15. Design and Decorative Art in Shaping of Architectural Environment Image

    Science.gov (United States)

    Shabalina, N. M.

    2017-11-01

    The relevance of the topic is determined by the dynamic development of the promising branch, i.e. the architectural environment design, which requires, on the one hand, consideration of the morphology and typology of this art form, on the other hand, the specificity of the architectural environment artistic image. The intensive development of innovative computer technologies and materials in modern engineering, improvement of the information communications forms in their totality has led to the application of new methods in design and construction which, in their turn, have required the development of additional methods for content and context analysis in the integrated assessment of socially significant architectural environments. In the modern culture, correlative processes are steadily developing leading us to a new understanding of the interaction of architecture, decorative art and design. Their rapprochement at the morphological level has been noted which makes it possible to reveal a specific method of synthesis and similarity. The architecture of postmodern styles differs in its bionic form becoming an interactive part of the society and approaching its structural qualities with painting, sculpture, and design. In the modern world, these processes acquire multi-valued semantic nuances, expand the importance of associativity and dynamic processuality in the perception of environmental objects and demand the development of new approaches to the assessment of the architectural design environment. Within the framework of the universal paradigm of modern times the concept of the world develops as a set of systems that live according to the self-organization laws.

  16. Simulation of Daylighting Conditions in a Virtual Underground City

    Directory of Open Access Journals (Sweden)

    Cristiano Merli Alcini

    2015-06-01

    Full Text Available From the Piranesi fantastic architectures to the animation movies and video games of the last thirty years, a new design approach has been introduced and developed: the design of the virtual space. Designing the "virtual" means experiencing a multidisciplinary approach where architecture, engineering, and urban planning meet the new horizons of information and communication technology. This study is focused on virtual space, which is an underground city. Mankind have always made and used underground environments: the possibilities of unlimited spaces to potential development, the reduced needs for raw materials for the construction and the protection from outdoor weather are some of the reasons that prompted humans to the realization of underground spaces in the past. These reasons and the availability of innovative technologies could encourage a breakthrough in the realization of new underground environments. A recent example is represented by the Underground City of Montreal (RÉSO. We present the architectural design of a virtual underground city, which is called Arch[ane], and its evaluation. The underground city is modular and the studied module is composed of eight floors with a total depth of 400 m and dimensions of 800 m × 800 m. The study comprises the evaluation of the effect of sunlight on each eight floors of the city. Daylighting simulations were performed considering different cities at different latitudes, days, and hours. The results have shown that the particular design of the underground city with skylights gives significant values of illuminance at a certain depth. Furthermore, the simulation results show how huge can be the potentialities of software to simulate extremely big environments.

  17. Virtual Chemical Engineering: Guidelines for E-Learning in Engineering Education

    Directory of Open Access Journals (Sweden)

    Damian Schofield

    2010-11-01

    Full Text Available Advanced three-dimensional virtual environment technology, similar to that used by the film and computer games industry can allow educational developers to rapidly create realistic three-dimensional, virtual environments. This technology has been used to generate a range of interactive learning environments across a broad spectrum of industries.The paper will discuss the implementation of these systems and extrapolate the lessons learnt into general guidelines to be considered for the development of a range of educational learning resources. These guidelines will then be discussed in the context of the development of ViRILE (Virtual Reality Interactive Learning Environment, software which simulates the configuration and operation of a polymerisation plant. This software package has been developed for use by undergraduate chemical engineers at the University of Nottingham.

  18. Design of virtual three-dimensional instruments for sound control

    Science.gov (United States)

    Mulder, Axel Gezienus Elith

    An environment for designing virtual instruments with 3D geometry has been prototyped and applied to real-time sound control and design. It enables a sound artist, musical performer or composer to design an instrument according to preferred or required gestural and musical constraints instead of constraints based only on physical laws as they apply to an instrument with a particular geometry. Sounds can be created, edited or performed in real-time by changing parameters like position, orientation and shape of a virtual 3D input device. The virtual instrument can only be perceived through a visualization and acoustic representation, or sonification, of the control surface. No haptic representation is available. This environment was implemented using CyberGloves, Polhemus sensors, an SGI Onyx and by extending a real- time, visual programming language called Max/FTS, which was originally designed for sound synthesis. The extension involves software objects that interface the sensors and software objects that compute human movement and virtual object features. Two pilot studies have been performed, involving virtual input devices with the behaviours of a rubber balloon and a rubber sheet for the control of sound spatialization and timbre parameters. Both manipulation and sonification methods affect the naturalness of the interaction. Informal evaluation showed that a sonification inspired by the physical world appears natural and effective. More research is required for a natural sonification of virtual input device features such as shape, taking into account possible co- articulation of these features. While both hands can be used for manipulation, left-hand-only interaction with a virtual instrument may be a useful replacement for and extension of the standard keyboard modulation wheel. More research is needed to identify and apply manipulation pragmatics and movement features, and to investigate how they are co-articulated, in the mapping of virtual object

  19. Fusion interfaces for tactical environments: An application of virtual reality technology

    Science.gov (United States)

    Haas, Michael W.

    1994-01-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and nonvirtual concepts and devices across the visual, auditory, and haptic sensory modalities. A fusion interface is a multisensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion interface concepts. This new facility, the Fusion Interfaces for Tactical Environments (FITE) Facility is a specialized flight simulator enabling efficient concept development through rapid prototyping and direct experience of new fusion concepts. The FITE Facility also supports evaluation of fusion concepts by operation fighter pilots in an air combat environment. The facility is utilized by a multidisciplinary design team composed of human factors engineers, electronics engineers, computer scientists, experimental psychologists, and oeprational pilots. The FITE computational architecture is composed of twenty-five 80486-based microcomputers operating in real-time. The microcomputers generate out-the-window visuals, in-cockpit and head-mounted visuals, localized auditory presentations, haptic displays on the stick and rudder pedals, as well as executing weapons models, aerodynamic models, and threat models.

  20. Virtual Environments for Visualizing Structural Health Monitoring Sensor Networks, Data, and Metadata.

    Science.gov (United States)

    Napolitano, Rebecca; Blyth, Anna; Glisic, Branko

    2018-01-16

    Visualization of sensor networks, data, and metadata is becoming one of the most pivotal aspects of the structural health monitoring (SHM) process. Without the ability to communicate efficiently and effectively between disparate groups working on a project, an SHM system can be underused, misunderstood, or even abandoned. For this reason, this work seeks to evaluate visualization techniques in the field, identify flaws in current practices, and devise a new method for visualizing and accessing SHM data and metadata in 3D. More precisely, the work presented here reflects a method and digital workflow for integrating SHM sensor networks, data, and metadata into a virtual reality environment by combining spherical imaging and informational modeling. Both intuitive and interactive, this method fosters communication on a project enabling diverse practitioners of SHM to efficiently consult and use the sensor networks, data, and metadata. The method is presented through its implementation on a case study, Streicker Bridge at Princeton University campus. To illustrate the efficiency of the new method, the time and data file size were compared to other potential methods used for visualizing and accessing SHM sensor networks, data, and metadata in 3D. Additionally, feedback from civil engineering students familiar with SHM is used for validation. Recommendations on how different groups working together on an SHM project can create SHM virtual environment and convey data to proper audiences, are also included.

  1. Visualizing planetary data by using 3D engines

    Science.gov (United States)

    Elgner, S.; Adeli, S.; Gwinner, K.; Preusker, F.; Kersten, E.; Matz, K.-D.; Roatsch, T.; Jaumann, R.; Oberst, J.

    2017-09-01

    We examined 3D gaming engines for their usefulness in visualizing large planetary image data sets. These tools allow us to include recent developments in the field of computer graphics in our scientific visualization systems and present data products interactively and in higher quality than before. We started to set up the first applications which will take use of virtual reality (VR) equipment.

  2. Theoretical Framework for Interaction Game Design

    Science.gov (United States)

    2016-05-19

    evaluation of a virtual basketball game, investigation of the effect of back imitation, a method for inducing intentional stance in HAI (Human-Agent...Interaction), using physiological indices for discriminating intrinsic and extrinsic stress, and SES (Synthetic Evidential Study). Project had to be...evaluation of a virtual basketball game, investigation of the effect of back imitation, a method for inducing intentional stance in HAI (Human-Agent

  3. ComputerApplications and Virtual Environments (CAVE)

    Science.gov (United States)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  4. Two College of Architecture and Urban Studies faculty members named most admired educators of 2008

    OpenAIRE

    Chadwick, Heather Riley

    2008-01-01

    Two School of Architecture + Design faculty, in Virginia Tech's College of Architecture and Urban Studies, have been named by the Design and Futures Council and the journal DesignIntelligence as two of 28 educators most admired and respected in the fields of interior design, interior architecture, architecture, design, architectural engineering, industrial design, and landscape architecture.

  5. Design study of pyrochemical process operation by using virtual engineering models

    International Nuclear Information System (INIS)

    Kakehi, I.; Tozawa, K.; Matsumoto, T.; Tanaka, K.

    2000-04-01

    This report describes accomplishment of simulations of Pyrochemical Process Operation by using virtual engineering models. The pyrochemical process using molten salt electrorefining would introduce new technologies for new fuels of particle oxide, particle nitride and metallic fuels. This system is a batch treatment system of reprocessing and re-fabrication, which transports products of solid form from a process to next process. As a results, this system needs automated transport system for process operations by robotics. In this study, a simulation code system has been prepared, which provides virtual engineering environment to evaluate the pyrochemical process operation of a batch treatment system using handling robots. And the simulation study has been conducted to evaluate the required system functions, which are the function of handling robots, the interactions between robot and process equipment, and the time schedule of process, in the automated transport system by robotics. As a result of simulation of the process operation, which we have designed, the automated transport system by robotics of the pyrochemical process is realistic. And the issues for the system development have been pointed out. (author)

  6. Software for virtual accelerator designing

    International Nuclear Information System (INIS)

    Kulabukhova, N.; Ivanov, A.; Korkhov, V.; Lazarev, A.

    2012-01-01

    The article discusses appropriate technologies for software implementation of the Virtual Accelerator. The Virtual Accelerator is considered as a set of services and tools enabling transparent execution of computational software for modeling beam dynamics in accelerators on distributed computing resources. Distributed storage and information processing facilities utilized by the Virtual Accelerator make use of the Service-Oriented Architecture (SOA) according to a cloud computing paradigm. Control system tool-kits (such as EPICS, TANGO), computing modules (including high-performance computing), realization of the GUI with existing frameworks and visualization of the data are discussed in the paper. The presented research consists of software analysis for realization of interaction between all levels of the Virtual Accelerator and some samples of middle-ware implementation. A set of the servers and clusters at St.-Petersburg State University form the infrastructure of the computing environment for Virtual Accelerator design. Usage of component-oriented technology for realization of Virtual Accelerator levels interaction is proposed. The article concludes with an overview and substantiation of a choice of technologies that will be used for design and implementation of the Virtual Accelerator. (authors)

  7. The development of a collaborative virtual environment for finite element simulation

    Science.gov (United States)

    Abdul-Jalil, Mohamad Kasim

    Communication between geographically distributed designers has been a major hurdle in traditional engineering design. Conventional methods of communication, such as video conferencing, telephone, and email, are less efficient especially when dealing with complex design models. Complex shapes, intricate features and hidden parts are often difficult to describe verbally or even using traditional 2-D or 3-D visual representations. Virtual Reality (VR) and Internet technologies have provided a substantial potential to bridge the present communication barrier. VR technology allows designers to immerse themselves in a virtual environment to view and manipulate this model just as in real-life. Fast Internet connectivity has enabled fast data transfer between remote locations. Although various collaborative virtual environment (CVE) systems have been developed in the past decade, they are limited to high-end technology that is not accessible to typical designers. The objective of this dissertation is to discover and develop a new approach to increase the efficiency of the design process, particularly for large-scale applications wherein participants are geographically distributed. A multi-platform and easily accessible collaborative virtual environment (CVRoom), is developed to accomplish the stated research objective. Geographically dispersed designers can meet in a single shared virtual environment to discuss issues pertaining to the engineering design process and to make trade-off decisions more quickly than before, thereby speeding the entire process. This 'faster' design process will be achieved through the development of capabilities to better enable the multidisciplinary and modeling the trade-off decisions that are so critical before launching into a formal detailed design. The features of the environment developed as a result of this research include the ability to view design models, use voice interaction, and to link engineering analysis modules (such as Finite

  8. Virtual Education: Guidelines for Using Games Technology

    Science.gov (United States)

    Schofield, Damian

    2014-01-01

    Advanced three-dimensional virtual environment technology, similar to that used by the film and computer games industry, can allow educational developers to rapidly create realistic online virtual environments. This technology has been used to generate a range of interactive Virtual Reality (VR) learning environments across a spectrum of…

  9. Game-Based Virtual Worlds as Decentralized Virtual Activity Systems

    Science.gov (United States)

    Scacchi, Walt

    There is widespread interest in the development and use of decentralized systems and virtual world environments as possible new places for engaging in collaborative work activities. Similarly, there is widespread interest in stimulating new technological innovations that enable people to come together through social networking, file/media sharing, and networked multi-player computer game play. A decentralized virtual activity system (DVAS) is a networked computer supported work/play system whose elements and social activities can be both virtual and decentralized (Scacchi et al. 2008b). Massively multi-player online games (MMOGs) such as World of Warcraft and online virtual worlds such as Second Life are each popular examples of a DVAS. Furthermore, these systems are beginning to be used for research, deve-lopment, and education activities in different science, technology, and engineering domains (Bainbridge 2007, Bohannon et al. 2009; Rieber 2005; Scacchi and Adams 2007; Shaffer 2006), which are also of interest here. This chapter explores two case studies of DVASs developed at the University of California at Irvine that employ game-based virtual worlds to support collaborative work/play activities in different settings. The settings include those that model and simulate practical or imaginative physical worlds in different domains of science, technology, or engineering through alternative virtual worlds where players/workers engage in different kinds of quests or quest-like workflows (Jakobsson 2006).

  10. Designing a Virtual Reality Game for the CAVE

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2006-01-01

    Virtual Reality has for many years been a technology which has stagnated in application and software development for games. What was possible and created ten years ago for games in VR environments is still being developed. The applications available for VR environments have increased...

  11. The semiotics of landscape design communication: towards a critical visual research approach in landscape architecture.

    NARCIS (Netherlands)

    Raaphorst, K.M.C.; Duchhart, I.; Knaap, van der W.G.M.; Roeleveld, Gerda; Brink, van den A.

    2017-01-01

    In landscape architecture, visual representations are the primary means of communication between stakeholders in design processes. Despite the reliance on visual representations, little critical research has been undertaken by landscape architects on how visual communication forms work or their

  12. Designing Interactive and Collaborative Learning Tasks in a 3-D Virtual Environment

    Science.gov (United States)

    Berns, Anke; Palomo-Duarte, Manuel; Fernández, David Camacho

    2012-01-01

    The aim of our study is to explore several possibilities to use virtual worlds (VWs) and game-applications with learners of the A1 level (CEFR) of German as a foreign language. Our interest focuses especially on designing those learning tools which increase firstly, learner motivation towards online-learning and secondly, enhance autonomous…

  13. Evaluating display fidelity and interaction fidelity in a virtual reality game.

    Science.gov (United States)

    McMahan, Ryan P; Bowman, Doug A; Zielinski, David J; Brady, Rachael B

    2012-04-01

    In recent years, consumers have witnessed a technological revolution that has delivered more-realistic experiences in their own homes through high-definition, stereoscopic televisions and natural, gesture-based video game consoles. Although these experiences are more realistic, offering higher levels of fidelity, it is not clear how the increased display and interaction aspects of fidelity impact the user experience. Since immersive virtual reality (VR) allows us to achieve very high levels of fidelity, we designed and conducted a study that used a six-sided CAVE to evaluate display fidelity and interaction fidelity independently, at extremely high and low levels, for a VR first-person shooter (FPS) game. Our goal was to gain a better understanding of the effects of fidelity on the user in a complex, performance-intensive context. The results of our study indicate that both display and interaction fidelity significantly affect strategy and performance, as well as subjective judgments of presence, engagement, and usability. In particular, performance results were strongly in favor of two conditions: low-display, low-interaction fidelity (representative of traditional FPS games) and high-display, high-interaction fidelity (similar to the real world).

  14. A visualization environment for supercomputing-based applications in computational mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pavlakos, C.J.; Schoof, L.A.; Mareda, J.F.

    1993-06-01

    In this paper, we characterize a visualization environment that has been designed and prototyped for a large community of scientists and engineers, with an emphasis in superconducting-based computational mechanics. The proposed environment makes use of a visualization server concept to provide effective, interactive visualization to the user`s desktop. Benefits of using the visualization server approach are discussed. Some thoughts regarding desirable features for visualization server hardware architectures are also addressed. A brief discussion of the software environment is included. The paper concludes by summarizing certain observations which we have made regarding the implementation of such visualization environments.

  15. Virtual environments for nuclear power plant design

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W.

    1996-01-01

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP)

  16. Affective appraisal of virtual environments

    NARCIS (Netherlands)

    Houtkamp, J.M.

    2012-01-01

    Interactive navigable 3D visualisations of built and natural environments have become commonplace in design and planning of urban environments and landscapes, and are regarded as potent prototyping and communication tools. In training applications, for instance for fire fighters, virtual

  17. In absence of intervention. Digital representations of virtual restoration

    Directory of Open Access Journals (Sweden)

    Vincenza Garofalo Garofalo

    2015-01-01

    Full Text Available The simulation of reality through the techniques of digital representation helps restorers today as it allows them to verify the impact of a restoration even before intervening. This can help to avoid restorations too invasive and to contain erroneous practices that sometimes delete irretrievably the original traces. The paper analyzes some researches on lighting in virtual models that are emblematic of a possible approach. The digital 3D analyzed  reconstructions provide not only the spatial and dimensional information but also the chromatic aspects and the characteristics of illumination of an architecture. The development of interactive systems for documentation also allows to visualize the evolution over time of an architecture and to select hypothetical alternatives reconstructions.

  18. Virtual reality in medicine-computer graphics and interaction techniques.

    Science.gov (United States)

    Haubner, M; Krapichler, C; Lösch, A; Englmeier, K H; van Eimeren, W

    1997-03-01

    This paper describes several new visualization and interaction techniques that enable the use of virtual environments for routine medical purposes. A new volume-rendering method supports shaded and transparent visualization of medical image sequences in real-time with an interactive threshold definition. Based on these rendering algorithms two complementary segmentation approaches offer an intuitive assistance for a wide range of requirements in diagnosis and therapy planning. In addition, a hierarchical data representation for geometric surface descriptions guarantees an optimal use of available hardware resources and prevents inaccurate visualization. The combination of the presented techniques empowers the improved human-machine interface of virtual reality to support every interactive task in medical three-dimensional (3-D) image processing, from visualization of unsegmented data volumes up to the simulation of surgical procedures.

  19. Computer classes and games in virtual reality environment to reduce loneliness among students of an elderly reference center: Study protocol for a randomised cross-over design.

    Science.gov (United States)

    Antunes, Thaiany Pedrozo Campos; Oliveira, Acary Souza Bulle de; Crocetta, Tania Brusque; Antão, Jennifer Yohanna Ferreira de Lima; Barbosa, Renata Thais de Almeida; Guarnieri, Regiani; Massetti, Thais; Monteiro, Carlos Bandeira de Mello; Abreu, Luiz Carlos de

    2017-03-01

    Physical and mental changes associated with aging commonly lead to a decrease in communication capacity, reducing social interactions and increasing loneliness. Computer classes for older adults make significant contributions to social and cognitive aspects of aging. Games in a virtual reality (VR) environment stimulate the practice of communicative and cognitive skills and might also bring benefits to older adults. Furthermore, it might help to initiate their contact to the modern technology. The purpose of this study protocol is to evaluate the effects of practicing VR games during computer classes on the level of loneliness of students of an elderly reference center. This study will be a prospective longitudinal study with a randomised cross-over design, with subjects aged 50 years and older, of both genders, spontaneously enrolled in computer classes for beginners. Data collection will be done in 3 moments: moment 0 (T0) - at baseline; moment 1 (T1) - after 8 typical computer classes; and moment 2 (T2) - after 8 computer classes which include 15 minutes for practicing games in VR environment. A characterization questionnaire, the short version of the Short Social and Emotional Loneliness Scale for Adults (SELSA-S) and 3 games with VR (Random, MoviLetrando, and Reaction Time) will be used. For the intervention phase 4 other games will be used: Coincident Timing, Motor Skill Analyser, Labyrinth, and Fitts. The statistical analysis will compare the evolution in loneliness perception, performance, and reaction time during the practice of the games between the 3 moments of data collection. Performance and reaction time during the practice of the games will also be correlated to the loneliness perception. The protocol is approved by the host institution's ethics committee under the number 52305215.3.0000.0082. Results will be disseminated via peer-reviewed journal articles and conferences. This clinical trial is registered at ClinicalTrials.gov identifier: NCT

  20. Representational Thickness

    DEFF Research Database (Denmark)

    Mullins, Michael

    Contemporary communicational and informational processes contribute to the shaping of our physical environment by having a powerful influence on the process of design. Applications of virtual reality (VR) are transforming the way architecture is conceived and produced by introducing dynamic...... elements into the process of design. Through its immersive properties, virtual reality allows access to a spatial experience of a computer model very different to both screen based simulations as well as traditional forms of architectural representation. The dissertation focuses on processes of the current...... representation? How is virtual reality used in public participation and how do virtual environments affect participatory decision making? How does VR thus affect the physical world of built environment? Given the practical collaborative possibilities of immersive technology, how can they best be implemented...

  1. An architectural framework for virtual enterprise engineering

    DEFF Research Database (Denmark)

    Zwegers, Arian; Hannus, Matti; Tølle, Martin

    2001-01-01

    , especially concerning integration issues. This paper aims to lay down an architectural framework to support the set-up and operation of virtual enterprises. It supports virtual enterprise engineering. The framework might also be used to identify and position issues that play a role in the set......-up and operation of virtual enterprises. As such, it is useful to classify research projects on virtual enterprises as well.......Enterprises cooperate more extensively with other enterprises during the entire product life cycle. Temporary alliances between various enterprises emerge such as those in virtual enterprises. However, many enterprises experience difficulties in the formation and operation of virtual enterprises...

  2. Digital Gaming and Sustainable Design

    Directory of Open Access Journals (Sweden)

    Shahin Vassigh

    2012-10-01

    of a simulation softwarepackage in an interactive game format. The project teaches the concepts of “integrated design ”through immersing students in a virtual world that imitates the complexity of the real world of decision-making and material choices in design. The project accomplishes this by harnessingthe capabilities of simulation and dynamic modeling programs as well as powerful game engineswhile creating compelling and rewarding reasons for student’s engagement in the learning process. The project is funded by the US Department of Education for the period of 2007-2010.

  3. RAGE Architecture for Reusable Serious Gaming Technology Components

    Directory of Open Access Journals (Sweden)

    Wim van der Vegt

    2016-01-01

    Full Text Available For seizing the potential of serious games, the RAGE project—funded by the Horizon-2020 Programme of the European Commission—will make available an interoperable set of advanced technology components (software assets that support game studios at serious game development. This paper describes the overall software architecture and design conditions that are needed for the easy integration and reuse of such software assets in existing game platforms. Based on the component-based software engineering paradigm the RAGE architecture takes into account the portability of assets to different operating systems, different programming languages, and different game engines. It avoids dependencies on external software frameworks and minimises code that may hinder integration with game engine code. Furthermore it relies on a limited set of standard software patterns and well-established coding practices. The RAGE architecture has been successfully validated by implementing and testing basic software assets in four major programming languages (C#, C++, Java, and TypeScript/JavaScript, resp.. Demonstrator implementation of asset integration with an existing game engine was created and validated. The presented RAGE architecture paves the way for large scale development and application of cross-engine reusable software assets for enhancing the quality and diversity of serious gaming.

  4. Considerations for Designing Instructional Virtual Environments.

    Science.gov (United States)

    Dennen, Vanessa Paz; Branch, Robert C.

    Virtual reality is an immersive, interactive medium that manipulates the senses in order provide users with simulated experiences in computer-generated worlds. The visual design of virtual reality is an important issue, but literature has tended to stress the medium's instructional potential rather than setting forth a protocol for designing…

  5. Homeowner's Architectural Responses to Crime in Dar Es Salaan : Its impacts and implications to urban architecture, urban design and urban management

    OpenAIRE

    Bulamile, Ludigija Boniface

    2009-01-01

    HTML clipboardThis study is about Homeowner’s architectural responses to crime in Dar es Salaam Tanzania: its impacts and implications to urban architecture, urban design and urban management. The study explores and examines the processes through which homeowners respond to crimes of burglary, home robbery and fear of it using architectural or physical elements. The processes are explored and examined using case study methodology in three cases in Dar es Salaam. The cases are residentia...

  6. Virtual environment simulation as a tool to support evacuation planning

    International Nuclear Information System (INIS)

    Mol, Antonio C.; Grecco, Claudio H.S.; Santos, Isaac J.A.L.; Carvalho, Paulo V.R.; Jorge, Carlos A.F.; Sales, Douglas S.; Couto, Pedro M.; Botelho, Felipe M.; Bastos, Felipe R.

    2007-01-01

    This work is a preliminary study of the use of a free game-engine as a tool to build and to navigate in virtual environments, with a good degree of realism, for virtual simulations of evacuation from building and risk zones. To achieve this goal, some adjustments in the game engine have been implemented. A real building with four floors, consisting of some rooms with furniture and people, has been virtually implemented. Simulations of simple different evacuation scenarios have been performed, measuring the total time spent in each case. The measured times have been compared with their corresponding real evacuation times, measured in the real building. The first results have demonstrated that the virtual environment building with the free game engine is capable to reproduce the real situation with a satisfactory level. However, it is important to emphasize that such virtual simulations serve only as an aid in the planning of real evacuation simulations, and as such must never substitute the later. (author)

  7. Virtual Reality and Interactive Digital Game Technology: New Tools to Address Obesity and Diabetes

    Science.gov (United States)

    “Skip” Rizzo, Albert; Lange, Belinda; Suma, Evan A; Bolas, Mark

    2011-01-01

    The convergence of the exponential advances in virtual reality (VR)-enabling technologies with a growing body of clinical research and experience has fueled the evolution of the discipline of clinical VR. This article begins with a brief overview of methods for producing and delivering VR environments that can be accessed by users for a range of clinical health conditions. Interactive digital games and new forms of natural movement-based interface devices are also discussed in the context of the emerging area of exergaming, along with some of the early results from studies of energy expenditure during the use of these systems. While these results suggest that playing currently available active exergames uses significantly more energy than sedentary activities and is equivalent to a brisk walk, these activities do not reach the level of intensity that would match playing the actual sport, nor do they deliver the recommended daily amount of exercise for children. However, these results provide some support for the use of digital exergames using the current state of technology as a complement to, rather than a replacement, for regular exercise. This may change in the future as new advances in novel full-body interaction systems for providing vigorous interaction with digital games are expected to drive the creation of engaging, low-cost interactive game-based applications designed to increase exercise participation in persons at risk for obesity. PMID:21527091

  8. SIDH: A Game-Based Architecture for a Training Simulator

    Directory of Open Access Journals (Sweden)

    P. Backlund

    2009-01-01

    Full Text Available Game-based simulators, sometimes referred to as “lightweight” simulators, have benefits such as flexible technology and economic feasibility. In this article, we extend the notion of a game-based simulator by introducing multiple screen view and physical interaction. These features are expected to enhance immersion and fidelity. By utilizing these concepts we have constructed a training simulator for breathing apparatus entry. Game hardware and software have been used to produce the application. More important, the application itself is deliberately designed to be a game. Indeed, one important design goal is to create an entertaining and motivating experience combined with learning goals in order to create a serious game. The system has been evaluated in cooperation with the Swedish Rescue Services Agency to see which architectural features contribute to perceived fidelity. The modes of visualization and interaction as well as level design contribute to the usefulness of the system.

  9. Developing games with Magic Playground: a gesture-based game engine

    OpenAIRE

    Dehanov, Juana; Dias, José Miguel Salles; Bastos, Rafael; Cabral, Carolina

    2005-01-01

    ACE 134 This paper presents Magic Playground, a game engine that enables the development of entertainment applications with realtime gesture-based Human-Computer Interaction (HCI). We describe the main architectural elements of our system and provide a guideline on how to program the engine in order to create games. Finally, we present usability evaluation results of a game, which emulates the known Tetris game1.

  10. Mobile Virtual Reality : A Solution for Big Data Visualization

    Science.gov (United States)

    Marshall, E.; Seichter, N. D.; D'sa, A.; Werner, L. A.; Yuen, D. A.

    2015-12-01

    Pursuits in geological sciences and other branches of quantitative sciences often require data visualization frameworks that are in continual need of improvement and new ideas. Virtual reality is a medium of visualization that has large audiences originally designed for gaming purposes; Virtual reality can be captured in Cave-like environment but they are unwieldy and expensive to maintain. Recent efforts by major companies such as Facebook have focussed more on a large market , The Oculus is the first of such kind of mobile devices The operating system Unity makes it possible for us to convert the data files into a mesh of isosurfaces and be rendered into 3D. A user is immersed inside of the virtual reality and is able to move within and around the data using arrow keys and other steering devices, similar to those employed in XBox.. With introductions of products like the Oculus Rift and Holo Lens combined with ever increasing mobile computing strength, mobile virtual reality data visualization can be implemented for better analysis of 3D geological and mineralogical data sets. As more new products like the Surface Pro 4 and other high power yet very mobile computers are introduced to the market, the RAM and graphics card capacity necessary to run these models is more available, opening doors to this new reality. The computing requirements needed to run these models are a mere 8 GB of RAM and 2 GHz of CPU speed, which many mobile computers are starting to exceed. Using Unity 3D software to create a virtual environment containing a visual representation of the data, any data set converted into FBX or OBJ format which can be traversed by wearing the Oculus Rift device. This new method for analysis in conjunction with 3D scanning has potential applications in many fields, including the analysis of precious stones or jewelry. Using hologram technology to capture in high-resolution the 3D shape, color, and imperfections of minerals and stones, detailed review and

  11. Educational virtual environments: A ten-year review of empirical research (1999-2009)

    DEFF Research Database (Denmark)

    Mikropoulos, Tassos; Natsis, Antonios

    2011-01-01

    This study is a ten-year critical review of empirical research on the educational applications of Virtual Reality (VR). Results show that although the majority of the 53 reviewed articles refer to science and mathematics, researchers from social sciences also seem to appreciate the educational...... value of VR and incorporate their learning goals in Educational Virtual Environments (EVEs). Although VR supports multisensory interaction channels, visual representations predominate. Few are the studies that incorporate intuitive interactivity, indicating a research trend in this direction. Few...

  12. The application of diagrams in architectural design

    Directory of Open Access Journals (Sweden)

    Dulić Olivera

    2014-01-01

    Full Text Available Diagrams in architecture represent the visualization of the thinking process, or selective abstraction of concepts or ideas translated into the form of drawings. In addition, they provide insight into the way of thinking about and in architecture, thus creating a balance between the visual and the conceptual. The subject of research presented in this paper are diagrams as a specific kind of architectural representation, and possibilities and importance of their application in the design process. Diagrams are almost old as architecture itself, and they are an element of some of the most important studies of architecture during all periods of history - which results in a large number of different definitions of diagrams, but also very different conceptualizations of their features, functions and applications. The diagrams become part of contemporary architectural discourse during the eighties and nineties of the twentieth century, especially through the work of architects like Bernard Tschumi, Peter Eisenman, Rem Koolhaas, SANAA and others. The use of diagrams in the design process allows unification of some of the essential aspects of the profession: architectural representation and design process, as well as the question of the concept of architectural and urban design at a time of rapid changes at all levels of contemporary society. The aim of the research is the analysis of the diagram as a specific medium for processing large amounts of information that the architect should consider and incorporate into the architectural work. On that basis, it is assumed that an architectural diagram allows the creator the identification and analysis of specific elements or ideas of physical form, thereby constantly maintaining concept of the integrity of the architectural work.

  13. Performative Architecture and Urban Spaces

    DEFF Research Database (Denmark)

    Kiib, Hans

    2008-01-01

      3 Workshops one exibition   Three conceptual architectural workshops took take place in parallel from August 16th - 22nd 2008. Each workshop carried a specific methodology and the goal is to come up with conceptual proposals that could be further developed for selected sites in the city of Aalb...... This workshop focus on temporary architecture and urban catalysts. Informal spaces and the interface between the built and the void are foremost in the development of performative urban environments and cultural interaction. ......  3 Workshops one exibition   Three conceptual architectural workshops took take place in parallel from August 16th - 22nd 2008. Each workshop carried a specific methodology and the goal is to come up with conceptual proposals that could be further developed for selected sites in the city...... The workshop model includes an open workshop where a handful of international architects are invited to spend five days with local architects, engineers and scholars contributing to a work of architectural vision and quality. The workshop includes presentations and discussions and development of projects...

  14. BASIC LAWS OF FORMATION OF INNOVATION HISTORICAL ARCHITECTURE AND TOWN PLANNING FACILITIES IN URBAN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    SMIRNOVA O. V.

    2016-06-01

    Full Text Available Abstract. Formulation of the problem. Innovative buildings and structures are architectural objects, the distinguishing feature of which is the presence of certain levels of their formation - material and functional (provided certain functional purpose object and its material embodiment, art-shaped (the presence of an individual artistic image structural and process (use of new technologies and fundamentally new design; communication and of environmental (harmonious integration of the object in the environment. Absence of analogues - a prerequisite for innovative buildings. Innovative architectural and urban objects created in the development of civilization. Innovations in design and construction of architectural and urban facilities - this is the final result of the creation (design and development (implementation of a fundamentally new or modified facility satisfies human needs. Purpose. Consider the historical features of formation of innovative architectural and urban facilities in the urban environment. The main objectives - to identify the main types of innovative historical objects and identify patterns of their formation. Conclusions. The main historical innovative architectural and urban facilities were buildings and structures formed during two periods of historical development: in the pre-industrial period and during the industrial revolution.

  15. Evolutionary, Unconscious Design Support for the Architectural, Engineering and Construction Industry

    NARCIS (Netherlands)

    Van de Ruitenbeek, H.K.M.

    2012-01-01

    The Architecture, Engineering and Construction (AEC) industry is a complex system in which carpenters, structural designers, architects, modellers, cost estimators, planners, politicians and many others act apart together in project-specific virtual enterprises. There is a large amount of actors, an

  16. Video Games and Software Engineers : Designing a study based on the benefits from Video Games and how they can improve Software Engineers

    OpenAIRE

    Cosic Prica, Srdjan

    2017-01-01

    Context: This is a study about investigating if playing video games can improve any skills and characteristics in a software engineer. Due to lack of resources and time, this study will focus on designing a study that others may use to measure the results and if video games actually can improve software engineers. Objectives: The main objectives are finding the benefits of playing video games and how those benefits are discovered. Meaning what types of games and for how long someone needs to ...

  17. Towards Adaptive Virtual Camera Control In Computer Games

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2011-01-01

    Automatic camera control aims to define a framework to control virtual camera movements in dynamic and unpredictable virtual environments while ensuring a set of desired visual properties. We inves- tigate the relationship between camera placement and playing behaviour in games and build a user...... model of the camera behaviour that can be used to control camera movements based on player preferences. For this purpose, we collect eye gaze, camera and game-play data from subjects playing a 3D platform game, we cluster gaze and camera information to identify camera behaviour profiles and we employ...... camera control in games is discussed....

  18. Fun and Games: The Suppression of Architectural Authoriality and the Rise of the Reader

    Directory of Open Access Journals (Sweden)

    Elizabeth Keslacy

    2015-12-01

    Full Text Available Between the Roarkian caricature of the heroic modernist and the spectre of the contemporary starchitect, there was a period of resistance in which architectural authoriality came under fire. One of the most explicit challenges was issued through the use of gaming and simulation in both architectural education and practice in the 1960s and the 1970s, particularly in the work of Juan Pablo Bonta and Henry Sanoff - both of them architectural scholars, educators, and game enthusiasts.  By tracing the importation of gaming and simulation techniques into architecture, this paper will show how architectural games sought to refigure the architect as a collaborative figure embedded in a network of experts, participants and constituents, and to modulate the architect’s design authority by foregrounding the contributions of viewer-interpreters to the creation of meaning. Situating their work within gaming precedents, from war and business games to urban planning gaming-simulations, I show how architecture games - particularly design games - worked to develop the architectural reader as a creative force, in some quarters going so far as to posit interpretation as the basis of design

  19. Virtual Business Operating Environment in the Cloud: Conceptual Architecture and Challenges

    Science.gov (United States)

    Nezhad, Hamid R. Motahari; Stephenson, Bryan; Singhal, Sharad; Castellanos, Malu

    Advances in service oriented architecture (SOA) have brought us close to the once imaginary vision of establishing and running a virtual business, a business in which most or all of its business functions are outsourced to online services. Cloud computing offers a realization of SOA in which IT resources are offered as services that are more affordable, flexible and attractive to businesses. In this paper, we briefly study advances in cloud computing, and discuss the benefits of using cloud services for businesses and trade-offs that they have to consider. We then present 1) a layered architecture for the virtual business, and 2) a conceptual architecture for a virtual business operating environment. We discuss the opportunities and research challenges that are ahead of us in realizing the technical components of this conceptual architecture. We conclude by giving the outlook and impact of cloud services on both large and small businesses.

  20. Representational Inquiry competences in Science Games

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2009-01-01

    to support work with genuine scientific inquiry and to meet the seventh- to tenth grade curriculum objectives for science and Danish education in Danish schools. This paper comprises a presentation of the results of a long-term empirical study done of four school classes who have played the game. The chapter......This chapter concerns the enactment of competences in a particular science learning game Homicide, which is played in lower secondary schools. Homicide is a forensic investigation game in which pupils play police experts solving criminal cases in the space of one week. The game is designed......, transform and criticize visual representations as an integrated part of conducting an inquiry in the science game...

  1. Virtual reality and interactive digital game technology: new tools to address obesity and diabetes.

    Science.gov (United States)

    Skip Rizzo, Albert; Lange, Belinda; Suma, Evan A; Bolas, Mark

    2011-03-01

    The convergence of the exponential advances in virtual reality (VR)-enabling technologies with a growing body of clinical research and experience has fueled the evolution of the discipline of clinical VR. This article begins with a brief overview of methods for producing and delivering VR environments that can be accessed by users for a range of clinical health conditions. Interactive digital games and new forms of natural movement-based interface devices are also discussed in the context of the emerging area of exergaming, along with some of the early results from studies of energy expenditure during the use of these systems. While these results suggest that playing currently available active exergames uses significantly more energy than sedentary activities and is equivalent to a brisk walk, these activities do not reach the level of intensity that would match playing the actual sport, nor do they deliver the recommended daily amount of exercise for children. However, these results provide some support for the use of digital exergames using the current state of technology as a complement to, rather than a replacement, for regular exercise. This may change in the future as new advances in novel full-body interaction systems for providing vigorous interaction with digital games are expected to drive the creation of engaging, low-cost interactive game-based applications designed to increase exercise participation in persons at risk for obesity. © 2011 Diabetes Technology Society.

  2. Introducing regenerative design and circularity into architectural and engineering curriculum

    OpenAIRE

    Attia, Shady

    2016-01-01

    Looking today to the challenges for planning and design of sustainable built environment including, carbon emissions, climate change, human health, water problems, biodiversity, scarcity of resources, depletion of fossil fuel, population growth and urbanization; sustainable architecture will play a key role for the sustainable development of society as a whole. In the context of an architectural design studio, this paper presents the experience of introducing the concept of regenerative desig...

  3. Gestural interaction in a virtual environment

    Science.gov (United States)

    Jacoby, Richard H.; Ferneau, Mark; Humphries, Jim

    1994-04-01

    This paper discusses the use of hand gestures (i.e., changing finger flexion) within a virtual environment (VE). Many systems now employ static hand postures (i.e., static finger flexion), often coupled with hand translations and rotations, as a method of interacting with a VE. However, few systems are currently using dynamically changing finger flexion for interacting with VEs. In our system, the user wears an electronically instrumented glove. We have developed a simple algorithm for recognizing gestures for use in two applications: automotive design and visualization of atmospheric data. In addition to recognizing the gestures, we also calculate the rate at which the gestures are made and the rate and direction of hand movement while making the gestures. We report on our experiences with the algorithm design and implementation, and the use of the gestures in our applications. We also talk about our background work in user calibration of the glove, as well as learned and innate posture recognition (postures recognized with and without training, respectively).

  4. Self-motivated visual scanning predicts flexible navigation in a virtual environment

    Directory of Open Access Journals (Sweden)

    Elisabeth Jeannette Ploran

    2014-01-01

    Full Text Available The ability to navigate flexibly (e.g., reorienting oneself based on distal landmarks to reach a learned target from a new position may rely on visual scanning during both initial experiences with the environment and subsequent test trials. Reliance on visual scanning during navigation harkens back to the concept of vicarious trial and error, a description of the side-to-side head movements made by rats as they explore previously traversed sections of a maze in an attempt to find a reward. In the current study, we examined if visual scanning predicted the extent to which participants would navigate to a learned location in a virtual environment defined by its position relative to distal landmarks. Our results demonstrated a significant positive relationship between the amount of visual scanning and participant accuracy in identifying the trained target location from a new starting position as long as the landmarks within the environment remain consistent with the period of original learning. Our findings indicate that active visual scanning of the environment is a deliberative attentional strategy that supports the formation of spatial representations for flexible navigation.

  5. Virtual Gaming Simulation in Nursing Education: A Focus Group Study.

    Science.gov (United States)

    Verkuyl, Margaret; Hughes, Michelle; Tsui, Joyce; Betts, Lorraine; St-Amant, Oona; Lapum, Jennifer L

    2017-05-01

    The use of serious gaming in a virtual world is a novel pedagogical approach in nursing education. A virtual gaming simulation was implemented in a health assessment class that focused on mental health and interpersonal violence. The study's purpose was to explore students' experiences of the virtual gaming simulation. Three focus groups were conducted with a convenience sample of 20 first-year nursing students after they completed the virtual gaming simulation. Analysis yielded five themes: (a) Experiential Learning, (b) The Learning Process, (c) Personal Versus Professional, (d) Self-Efficacy, and (e) Knowledge. Virtual gaming simulation can provide experiential learning opportunities that promote engagement and allow learners to acquire and apply new knowledge while practicing skills in a safe and realistic environment. [J Nurs Educ. 2017;56(5):274-280.]. Copyright 2017, SLACK Incorporated.

  6. A Critical Review of the Use of Virtual Reality in Construction Engineering Education and Training.

    Science.gov (United States)

    Wang, Peng; Wu, Peng; Wang, Jun; Chi, Hung-Lin; Wang, Xiangyu

    2018-06-08

    Virtual Reality (VR) has been rapidly recognized and implemented in construction engineering education and training (CEET) in recent years due to its benefits of providing an engaging and immersive environment. The objective of this review is to critically collect and analyze the VR applications in CEET, aiming at all VR-related journal papers published from 1997 to 2017. The review follows a three-stage analysis on VR technologies, applications and future directions through a systematic analysis. It is found that the VR technologies adopted for CEET evolve over time, from desktop-based VR, immersive VR, 3D game-based VR, to Building Information Modelling (BIM)-enabled VR. A sibling technology, Augmented Reality (AR), for CEET adoptions has also emerged in recent years. These technologies have been applied in architecture and design visualization, construction health and safety training, equipment and operational task training, as well as structural analysis. Future research directions, including the integration of VR with emerging education paradigms and visualization technologies, have also been provided. The findings are useful for both researchers and educators to usefully integrate VR in their education and training programs to improve the training performance.

  7. Overcoming the Subject-Object Dichotomy in Urban Modeling: Axial Maps as Geometric Representations of Affordances in the Built Environment

    Directory of Open Access Journals (Sweden)

    Lars Marcus

    2018-04-01

    Full Text Available The world is witnessing unprecedented urbanization, bringing extreme challenges to contemporary practices in urban planning and design. This calls for improved urban models that can generate new knowledge and enhance practical skill. Importantly, any urban model embodies a conception of the relation between humans and the physical environment. In urban modeling this is typically conceived of as a relation between human subjects and an environmental object, thereby reproducing a humans-environment dichotomy. Alternative modeling traditions, such as space syntax that originates in architecture rather than geography, have tried to overcome this dichotomy. Central in this effort is the development of new representations of urban space, such as in the case of space syntax, the axial map. This form of representation aims to integrate both human behavior and the physical environment into one and the same description. Interestingly, models based on these representations have proved to better capture pedestrian movement than regular models. Pedestrian movement, as well as other kinds of human flows in urban space, is essential for urban modeling, since increasingly flows of this kind are understood as the driver in urban processes. Critical for a full understanding of space syntax modeling is the ontology of its' representations, such as the axial map. Space syntax theory here often refers to James Gibson's “Theory of affordances,” where the concept of affordances, in a manner similar to axial maps, aims to bridge the subject-object dichotomy by neither constituting physical properties of the environment or human behavior, but rather what emerges in the meeting between the two. In extension of this, the axial map can be interpreted as a representation of how the physical form of the environment affords human accessibility and visibility in urban space. This paper presents a close examination of the form of representations developed in space syntax

  8. Development and application of visual support module for remote operator in 3D virtual environment

    International Nuclear Information System (INIS)

    Choi, Kyung Hyun; Cho, Soo Jeong; Yang, Kyung Boo; Bae, Chang Hyun

    2006-02-01

    In this research, the 3D graphic environment was developed for remote operation, and included the visual support module. The real operation environment was built by employing a experiment robot, and also the identical virtual model was developed. The well-designed virtual models can be used to retrieve the necessary conditions for developing the devices and processes. The integration of 3D virtual models, the experimental operation environment, and the visual support module was used for evaluating the operation efficiency and accuracy by applying different methods such as only monitor image and with visual support module

  9. Development and application of visual support module for remote operator in 3D virtual environment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyung Hyun; Cho, Soo Jeong; Yang, Kyung Boo [Cheju Nat. Univ., Jeju (Korea, Republic of); Bae, Chang Hyun [Pusan Nat. Univ., Busan (Korea, Republic of)

    2006-02-15

    In this research, the 3D graphic environment was developed for remote operation, and included the visual support module. The real operation environment was built by employing a experiment robot, and also the identical virtual model was developed. The well-designed virtual models can be used to retrieve the necessary conditions for developing the devices and processes. The integration of 3D virtual models, the experimental operation environment, and the visual support module was used for evaluating the operation efficiency and accuracy by applying different methods such as only monitor image and with visual support module.

  10. Designing Virtual Worlds

    DEFF Research Database (Denmark)

    Gürsimsek, Remzi Ates

    2014-01-01

    The online social platforms known as virtual worlds present their users various affordances for avatar based co-presence, social interaction and provide tools for collaborative content creation, including objects, textures and animations. The users of these worlds navigate their avatars as personal...... the audio-visual characteristics of designing in multi-user virtual environments generate experiential, interpersonal and textual meaning potentials....... mediators in 3D virtual space to collaborate and co-design the digital content. These co-designers are also the residents of these worlds, as they socialize by building inworld friendships. This article presents a social semiotic analysis of the three-dimensional virtual places and artifacts in the virtual...

  11. How virtual reality works: illusions of vision in "real" and virtual environments

    Science.gov (United States)

    Stark, Lawrence W.

    1995-04-01

    Visual illusions abound in normal vision--illusions of clarity and completeness, of continuity in time and space, of presence and vivacity--and are part and parcel of the visual world inwhich we live. These illusions are discussed in terms of the human visual system, with its high- resolution fovea, moved from point to point in the visual scene by rapid saccadic eye movements (EMs). This sampling of visual information is supplemented by a low-resolution, wide peripheral field of view, especially sensitive to motion. Cognitive-spatial models controlling perception, imagery, and 'seeing,' also control the EMs that shift the fovea in the Scanpath mode. These illusions provide for presence, the sense off being within an environment. They equally well lead to 'Telepresence,' the sense of being within a virtual display, especially if the operator is intensely interacting within an eye-hand and head-eye human-machine interface that provides for congruent visual and motor frames of reference. Interaction, immersion, and interest compel telepresence; intuitive functioning and engineered information flows can optimize human adaptation to the artificial new world of virtual reality, as virtual reality expands into entertainment, simulation, telerobotics, and scientific visualization and other professional work.

  12. Peripersonal Space: An Index of Multisensory Body–Environment Interactions in Real, Virtual, and Mixed Realities

    Directory of Open Access Journals (Sweden)

    Andrea Serino

    2018-01-01

    Full Text Available Human–environment interactions normally occur in the physical milieu and thus by medium of the body and within the space immediately adjacent to and surrounding the body, the peripersonal space (PPS. However, human interactions increasingly occur with or within virtual environments, and hence novel approaches and metrics must be developed to index human–environment interactions in virtual reality (VR. Here, we present a multisensory task that measures the spatial extent of human PPS in real, virtual, and augmented realities. We validated it in a mixed reality (MR ecosystem in which real environment and virtual objects are blended together in order to administer and control visual, auditory, and tactile stimuli in ecologically valid conditions. Within this mixed-reality environment, participants are asked to respond as fast as possible to tactile stimuli on their body, while task-irrelevant visual or audiovisual stimuli approach their body. Results demonstrate that, in analogy with observations derived from monkey electrophysiology and in real environmental surroundings, tactile detection is enhanced when visual or auditory stimuli are close to the body, and not when far from it. We then calculate the location where this multisensory facilitation occurs as a proxy of the boundary of PPS. We observe that mapping of PPS via audiovisual, as opposed to visual alone, looming stimuli results in sigmoidal fits—allowing for the bifurcation between near and far space—with greater goodness of fit. In sum, our approach is able to capture the boundaries of PPS on a spatial continuum, at the individual-subject level, and within a fully controlled and previously laboratory-validated setup, while maintaining the richness and ecological validity of real-life events. The task can therefore be applied to study the properties of PPS in humans and to index the features governing human–environment interactions in virtual or MR. We propose PPS as an

  13. Nomad devices for interactions in immersive virtual environments

    Science.gov (United States)

    George, Paul; Kemeny, Andras; Merienne, Frédéric; Chardonnet, Jean-Rémy; Thouvenin, Indira Mouttapa; Posselt, Javier; Icart, Emmanuel

    2013-03-01

    Renault is currently setting up a new CAVE™, a 5 rear-projected wall virtual reality room with a combined 3D resolution of 100 Mpixels, distributed over sixteen 4k projectors and two 2k projector as well as an additional 3D HD collaborative powerwall. Renault's CAVE™ aims at answering needs of the various vehicle conception steps [1]. Starting from vehicle Design, through the subsequent Engineering steps, Ergonomic evaluation and perceived quality control, Renault has built up a list of use-cases and carried out an early software evaluation in the four sided CAVE™ of Institute Image, called MOVE. One goal of the project is to study interactions in a CAVE™, especially with nomad devices such as IPhone or IPad to manipulate virtual objects and to develop visualization possibilities. Inspired by nomad devices current uses (multi-touch gestures, IPhone UI look'n'feel and AR applications), we have implemented an early feature set taking advantage of these popular input devices. In this paper, we present its performance through measurement data collected in our test platform, a 4-sided homemade low-cost virtual reality room, powered by ultra-short-range and standard HD home projectors.

  14. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Science.gov (United States)

    Meyer, Georg F; Shao, Fei; White, Mark D; Hopkins, Carl; Robotham, Antony J

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  15. Evaluation for the design of experience in virtual environments: modeling breakdown of interaction and illusion.

    Science.gov (United States)

    Marsh, T; Wright, P; Smith, S

    2001-04-01

    New and emerging media technologies have the potential to induce a variety of experiences in users. In this paper, it is argued that the inducement of experience presupposes that users are absorbed in the illusion created by these media. Looking to another successful visual medium, film, this paper borrows from the techniques used in "shaping experience" to hold spectators' attention in the illusion of film, and identifies what breaks the illusion/experience for spectators. This paper focuses on one medium, virtual reality (VR), and advocates a transparent or "invisible style" of interaction. We argue that transparency keeps users in the "flow" of their activities and consequently enhances experience in users. Breakdown in activities breaks the experience and subsequently provides opportunities to identify and analyze potential causes of usability problems. Adopting activity theory, we devise a model of interaction with VR--through consciousness and activity--and introduce the concept of breakdown in illusion. From this, a model of effective interaction with VR is devised and the occurrence of breakdown in interaction and illusion is identified along a continuum of engagement. Evaluation guidelines for the design of experience are proposed and applied to usability problems detected in an empirical study of a head-mounted display (HMD) VR system. This study shows that the guidelines are effective in the evaluation of VR. Finally, we look at the potential experiences that may be induced in users and propose a way to evaluate user experience in virtual environments (VEs) and other new and emerging media.

  16. Space architecture education for engineers and architects designing and planning beyond earth

    CERN Document Server

    Häuplik-Meusburger, Sandra

    2016-01-01

    This book considers two key educational tools for future generations of professionals with a space architecture background in the 21st century: (1) introducing the discipline of space architecture into the space system engineering curricula; and (2) developing space architecture as a distinct, complete training curriculum.  Professionals educated this way will help shift focus from solely engineering-driven transportation systems and “sortie” missions towards permanent off-world human presence. The architectural training teaches young professionals to operate at all scales from the “overall picture” down to the smallest details, to provide directive intention–not just analysis–to design opportunities, to address the relationship between human behavior and the built environment, and to interact with many diverse fields and disciplines throughout the project lifecycle. This book will benefit individuals and organizations responsible for planning transportation and habitat systems in space, while a...

  17. Artistic and Engineering Design of Platform-Based Production Systems: A Study of Swedish Architectural Practice

    Directory of Open Access Journals (Sweden)

    Gustav Jansson

    2018-02-01

    Full Text Available Research on platform-based production systems for house-building has focused on production and manufacturing issues. The aim of this research is to explore how the architectural design process contributes to the industrialised house-building industry from the perspective of creative design work. It also aims to describe how constraints affect architectural design work in the engineer-to-order context, when using platform-based production systems. Architects with experience in using platform-based building systems with different degrees of constraints were interviewed regarding creative aspects of the design work. The interviews, together with documents relating to platform constraints, were then analysed from the perspective of artistic and engineering design theories. The results show the benefits and issues of using platform constraints, both with prefabrication of volumetric modules, as well as prefabricated slab and wall elements. The study highlights a major research gap by describing how architectural work, from both the creative artistic and engineering design perspectives, is affected by constraints in the building platform: (1 the architectural design work goes through a series of divergent and convergent processes where the divergent processes are explorative and the convergent processes are solution-oriented; and (2, there is a trade-off between creativity and efficiency in the design work. Open parameters for layout design are key to architectural creativity, while predefinition supports efficiency. The results also provide an understanding of the potential for creativity in artistic and engineering work tasks through different phases in design, and how they are related to constraints in the platform. The main limitation of the research is the number of interviewed architects who had different background experiences of working with different types of platform constraints. More studies are needed to confirm the observations and to

  18. The study of ethnic attitudes during interactions with avatars in virtual environments

    Directory of Open Access Journals (Sweden)

    Galina Ya. Menshikova

    2018-03-01

    Full Text Available Background. Modern technologies provide a wide range of opportunities for studying different types of social processes and phenomena. Currently many original social studies have been done with the use of virtual reality technologies. The effectiveness of their application has been shown for the study of verbal and nonverbal communication; the processes of ethno-cultural identity; and for teaching social skills, as well as correcting social anxiety and ethnic attitudes. One of the very real question concerning spatial behavior during communication with partners from other ethnic groups, however, has not been studied very much. Objective. In our study we explored proxemic behavior in subjects’ face-to-face interactions with avatars of in-group and out-group ethnic appearance. Using the CAVE virtual reality system, we studied preferred interpersonal distances in carrying out memory tasks during interaction with the avatars. Design. Three virtual environments with avatars of different ethnic appearance were developed. Each virtual scene represented a room where three avatars of the same ethnicity were standing. Their appearance was associable with one of three ethnic groups– the Slavic, North Caucasian, or the Central Asian. The participants (all of whom identified themselves as Russians were immersed in the virtual scenes with the help of the CAVE virtual reality system. They were instructed to keep in mind as many details of the avatars’ appearance as they could. During the task’s execution the interpersonal distances between the participants and the avatars were registered. After leaving the CAVE, the participants were asked to answer questions about the details of avatars’ appearance, and to fill out a questionnaire assessing the Presence Effect in virtual environments. The identification accuracy of the avatars’ appearance details and the Presence effect were measured. The interpersonal distances were analyzed for the area around

  19. Training and learning for crisis management using a virtual simulation/gaming environment

    NARCIS (Netherlands)

    Walker, W.E.; Giddings, J.; Armstrong, S.

    2011-01-01

    Recent advances in computers, networking, and telecommunications offer new opportunities for using simulation and gaming as methodological tools for improving crisis management. It has become easy to develop virtual environments to support games, to have players at distributed workstations

  20. Real-time tracking of visually attended objects in virtual environments and its application to LOD.

    Science.gov (United States)

    Lee, Sungkil; Kim, Gerard Jounghyun; Choi, Seungmoon

    2009-01-01

    This paper presents a real-time framework for computationally tracking objects visually attended by the user while navigating in interactive virtual environments. In addition to the conventional bottom-up (stimulus-driven) saliency map, the proposed framework uses top-down (goal-directed) contexts inferred from the user's spatial and temporal behaviors, and identifies the most plausibly attended objects among candidates in the object saliency map. The computational framework was implemented using GPU, exhibiting high computational performance adequate for interactive virtual environments. A user experiment was also conducted to evaluate the prediction accuracy of the tracking framework by comparing objects regarded as visually attended by the framework to actual human gaze collected with an eye tracker. The results indicated that the accuracy was in the level well supported by the theory of human cognition for visually identifying single and multiple attentive targets, especially owing to the addition of top-down contextual information. Finally, we demonstrate how the visual attention tracking framework can be applied to managing the level of details in virtual environments, without any hardware for head or eye tracking.

  1. Visualizing Decision Trees in Games to Support Children's Analytic Reasoning: Any Negative Effects on Gameplay?

    Directory of Open Access Journals (Sweden)

    Robert Haworth

    2010-01-01

    Full Text Available The popularity and usage of digital games has increased in recent years, bringing further attention to their design. Some digital games require a significant use of higher order thought processes, such as problem solving and reflective and analytical thinking. Through the use of appropriate and interactive representations, these thought processes could be supported. A visualization of the game's internal structure is an example of this. However, it is unknown whether including these extra representations will have a negative effect on gameplay. To investigate this issue, a digital maze-like game was designed with its underlying structure represented as a decision tree. A qualitative, exploratory study with children was performed to examine whether the tree supported their thought processes and what effects, if any, the tree had on gameplay. This paper reports the findings of this research and discusses the implications for the design of games in general.

  2. Unifying Rigid and Soft Bodies Representation: The Sulfur Physics Engine

    Directory of Open Access Journals (Sweden)

    Dario Maggiorini

    2014-01-01

    Full Text Available Video games are (also real-time interactive graphic simulations: hence, providing a convincing physics simulation for each specific game environment is of paramount importance in the process of achieving a satisfying player experience. While the existing game engines appropriately address many aspects of physics simulation, some others are still in need of improvements. In particular, several specific physics properties of bodies not usually involved in the main game mechanics (e.g., properties useful to represent systems composed by soft bodies, are often poorly rendered by general-purpose engines. This issue may limit game designers when imagining innovative and compelling video games and game mechanics. For this reason, we dug into the problem of appropriately representing soft bodies. Subsequently, we have extended the approach developed for soft bodies to rigid ones, proposing and developing a unified approach in a game engine: Sulfur. To test the engine, we have also designed and developed “Escape from Quaoar,” a prototypal video game whose main game mechanic exploits an elastic rope, and a level editor for the game.

  3. The effect of viewing a virtual environment through a head-mounted display on balance.

    Science.gov (United States)

    Robert, Maxime T; Ballaz, Laurent; Lemay, Martin

    2016-07-01

    In the next few years, several head-mounted displays (HMD) will be publicly released making virtual reality more accessible. HMD are expected to be widely popular at home for gaming but also in clinical settings, notably for training and rehabilitation. HMD can be used in both seated and standing positions; however, presently, the impact of HMD on balance remains largely unknown. It is therefore crucial to examine the impact of viewing a virtual environment through a HMD on standing balance. To compare static and dynamic balance in a virtual environment perceived through a HMD and the physical environment. The visual representation of the virtual environment was based on filmed image of the physical environment and was therefore highly similar. This is an observational study in healthy adults. No significant difference was observed between the two environments for static balance. However, dynamic balance was more perturbed in the virtual environment when compared to that of the physical environment. HMD should be used with caution because of its detrimental impact on dynamic balance. Sensorimotor conflict possibly explains the impact of HMD on balance. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  5. Model based design introduction: modeling game controllers to microprocessor architectures

    Science.gov (United States)

    Jungwirth, Patrick; Badawy, Abdel-Hameed

    2017-04-01

    We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.

  6. Using virtual worlds as collaborative environments for innovation and design

    DEFF Research Database (Denmark)

    Ehsani, Ehsan; Chase, Scott Curland

    2009-01-01

    In this paper we discuss observations and lessons learned in conducting architectural design projects in virtual worlds. By integrating a community of users in virtual worlds into a collaborative architectural design process, organisations can tap the community's creativity and intelligence throu....... Here we propose four modes of collaboration, based on the choices for degree of openness and governance structure, which are illustrated by four case studies....

  7. Modulation of Visually Evoked Postural Responses by Contextual Visual, Haptic and Auditory Information: A ‘Virtual Reality Check’

    Science.gov (United States)

    Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760

  8. Tangible interfaces in virtual environments, case study: Instituto de Engenharia Nuclear Virtual

    Energy Technology Data Exchange (ETDEWEB)

    Santo, Andre Cotelli do E.; Mol, Antonio Carlos A.; Pinto, Emanuele Oliveira; Melo, Joao Victor da C.; Paula, Vanessa Marcia de; Freitas, Victor Goncalves Gloria [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Machado, Daniel Mol [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto Alberto Luiz Coimbra

    2015-07-01

    Virtual Reality (VR) techniques allow the creation of realistic representations of an individual. These technologies are being applied in several fields such as training, simulations, virtual experiments and new applications are constantly being found. This work aims to present an interactive system in virtual environments without the use of peripherals typically found in computers such as mouse and keyboard. Through the movement of head and hands it is possible to control and navigate the virtual character (avatar) in a virtual environment, an improvement in the man-machine integration. The head movements are recognized using a virtual helmet with a tracking system. An infrared camera detects the position of infrared LEDs located in the operator's head and places the vision of the virtual character in accordance with the operator's vision. The avatar control is performed by a system that detects the movement of the hands, using infrared sensors, allowing the user to move it in the virtual environment. This interaction system was implemented in the virtual model of the Instituto de Engenharia Nuclear (IEN), which is located on the Ilha do Fundao - Rio de Janeiro - Brazil. This three-dimensional environment, in which avatars can move and interact according to the user movements, gives a feeling of realism to the operator. The results show an interface that allows a higher degree of immersion of the operator in the virtual environment, promoting a more engaging and dynamic way of working. (author)

  9. Tangible interfaces in virtual environments, case study: Instituto de Engenharia Nuclear Virtual

    International Nuclear Information System (INIS)

    Santo, Andre Cotelli do E.; Mol, Antonio Carlos A.; Pinto, Emanuele Oliveira; Melo, Joao Victor da C.; Paula, Vanessa Marcia de; Freitas, Victor Goncalves Gloria; Machado, Daniel Mol

    2015-01-01

    Virtual Reality (VR) techniques allow the creation of realistic representations of an individual. These technologies are being applied in several fields such as training, simulations, virtual experiments and new applications are constantly being found. This work aims to present an interactive system in virtual environments without the use of peripherals typically found in computers such as mouse and keyboard. Through the movement of head and hands it is possible to control and navigate the virtual character (avatar) in a virtual environment, an improvement in the man-machine integration. The head movements are recognized using a virtual helmet with a tracking system. An infrared camera detects the position of infrared LEDs located in the operator's head and places the vision of the virtual character in accordance with the operator's vision. The avatar control is performed by a system that detects the movement of the hands, using infrared sensors, allowing the user to move it in the virtual environment. This interaction system was implemented in the virtual model of the Instituto de Engenharia Nuclear (IEN), which is located on the Ilha do Fundao - Rio de Janeiro - Brazil. This three-dimensional environment, in which avatars can move and interact according to the user movements, gives a feeling of realism to the operator. The results show an interface that allows a higher degree of immersion of the operator in the virtual environment, promoting a more engaging and dynamic way of working. (author)

  10. Worlds of affect: virtual geographies of video games

    OpenAIRE

    Ian Graham Ronald Shaw; Barney Warf

    2009-01-01

    Video games are virtual worlds, each with its own, distinctive spatiality. This paper suggests that there are two interrelated conceptual dimensions to the study of video games. First, there are the representational issues concerning the worlds depicted in video games, such as those portraying hypersexualized women or Orientalist depictions of Arab enemies. We suggest, however, that these cultural, sexual, and political representations are not the only forces doing work on the player within t...

  11. On improving Urban Environment Representations

    Directory of Open Access Journals (Sweden)

    Xavier ePueyo

    2014-12-01

    Full Text Available Computer Graphics has evolved into a mature and powerful field that offers many opportunities to enhance different disciplines, adapting to the specific needs of each. One of these important fields is the design and analysis of Urban Environments. In this article we try to offer a perspective of one of the sectors identified in Urban Environment studies: Urbanization. More precisely we focus on geometric and appearance modeling, rendering and simulation tools to help stakeholders in key decision stages of the process.

  12. Computer-based Role Playing Game Environment for Analogue Electronics

    Directory of Open Access Journals (Sweden)

    Lachlan M MacKinnon

    2009-02-01

    Full Text Available An implementation of a design for a game based virtual learning environment is described. The game is developed for a course in analogue electronics, and the topic is the design of a power supply. This task can be solved in a number of different ways, with certain constraints, giving the students a certain amount of freedom, although the game is designed not to facilitate trial-and-error approach. The use of storytelling and a virtual gaming environment provides the student with the learning material in a MMORPG environment.

  13. Emotional Engagement, Social Interactions, and the Development of an Afterschool Game Design Curriculum

    Science.gov (United States)

    Kwah, Helen; Milne, Catherine; Tsai, Tzuchi; Goldman, Ricki; Plass, Jan L.

    2016-01-01

    This formative design study examines how a program curriculum and implementation was emergently (re)designed in dynamic relation to the expressed emotions of teachers and students. The context was a yearlong afterschool game design program for STEM learning at an urban and public all-girls middle school. Using Randall Collins' (Interaction ritual…

  14. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available Externally generated visual motion signals can cause the illusion of self-motion in space (vection and corresponding visually evoked postural responses (VEPR. These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1 visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2 real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3 visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  15. Navigation performance in virtual environments varies with fractal dimension of landscape.

    Science.gov (United States)

    Juliani, Arthur W; Bies, Alexander J; Boydston, Cooper R; Taylor, Richard P; Sereno, Margaret E

    2016-09-01

    Fractal geometry has been used to describe natural and built environments, but has yet to be studied in navigational research. In order to establish a relationship between the fractal dimension (D) of a natural environment and humans' ability to navigate such spaces, we conducted two experiments using virtual environments that simulate the fractal properties of nature. In Experiment 1, participants completed a goal-driven search task either with or without a map in landscapes that varied in D. In Experiment 2, participants completed a map-reading and location-judgment task in separate sets of fractal landscapes. In both experiments, task performance was highest at the low-to-mid range of D, which was previously reported as most preferred and discriminable in studies of fractal aesthetics and discrimination, respectively, supporting a theory of visual fluency. The applicability of these findings to architecture, urban planning, and the general design of constructed spaces is discussed.

  16. CasCADe: A Novel 4D Visualization System for Virtual Construction Planning.

    Science.gov (United States)

    Ivson, Paulo; Nascimento, Daniel; Celes, Waldemar; Barbosa, Simone Dj

    2018-01-01

    Building Information Modeling (BIM) provides an integrated 3D environment to manage large-scale engineering projects. The Architecture, Engineering and Construction (AEC) industry explores 4D visualizations over these datasets for virtual construction planning. However, existing solutions lack adequate visual mechanisms to inspect the underlying schedule and make inconsistencies readily apparent. The goal of this paper is to apply best practices of information visualization to improve 4D analysis of construction plans. We first present a review of previous work that identifies common use cases and limitations. We then consulted with AEC professionals to specify the main design requirements for such applications. These guided the development of CasCADe, a novel 4D visualization system where task sequencing and spatio-temporal simultaneity are immediately apparent. This unique framework enables the combination of diverse analytical features to create an information-rich analysis environment. We also describe how engineering collaborators used CasCADe to review the real-world construction plans of an Oil & Gas process plant. The system made evident schedule uncertainties, identified work-space conflicts and helped analyze other constructability issues. The results and contributions of this paper suggest new avenues for future research in information visualization for the AEC industry.

  17. Massivizing Networked Virtual Environments on Clouds

    NARCIS (Netherlands)

    Shen, S.

    2015-01-01

    Networked Virtual Environments (NVEs) are virtual environments where physically distributed, Internet-connected users can interact and socialize with others. The most popular NVEs are online games, which have hundreds of millions of users and a global market of tens of billions Euros per year.

  18. Interpretation of Simulations in Interactive VR Environments: Depth Perception in Cave and Panorama

    DEFF Research Database (Denmark)

    Mullins, Michael

    2006-01-01

     Virtual reality (VR) applications are transforming the way architecture is conceived and produced. By introducing an open and inclusive approach, they encourage a creative dialogue with the users of residential schemes and other buildings and allow competition juries a more thorough understanding...... of architectural concepts. Architects need to heed the dynamics set in motion by these technologies and especially of how laypersons interpret building forms and their simulations in interactive VR environments. The article presents a study which compares aspects of spatial perception in a physical environment...... contextual experience of the viewer, and that spatial ability is an important contributing factor. Results in the two virtual environments tested show consistent differences in how depth and shape are perceived, indicating that VR context is a significant variable in spatial representation. It is asserted...

  19. Interactive tool that empowers structural understanding and enables FEM analysis in a parametric design environment

    DEFF Research Database (Denmark)

    Christensen, Jesper Thøger; Parigi, Dario; Kirkegaard, Poul Henning

    2014-01-01

    This paper introduces an interactive tool developed to integrate structural analysis in the architectural design environment from the early conceptual design stage. The tool improves exchange of data between the design environment of Rhino Grasshopper and the FEM analysis of Autodesk Robot...... Structural Analysis. Further the tool provides intuitive setup and visual aids in order to facilitate the process. Enabling students and professionals to quickly analyze and evaluate multiple design variations. The tool has been developed inside the Performance Aided Design course at the Master...... of Architecture and Design at Aalborg University...

  20. A spatially augmented reality sketching interface for architectural daylighting design.

    Science.gov (United States)

    Sheng, Yu; Yapo, Theodore C; Young, Christopher; Cutler, Barbara

    2011-01-01

    We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the interreflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation. © 2011 IEEE Published by the IEEE Computer Society

  1. Virtual Hand Feedback Reduces Reaction Time in an Interactive Finger Reaching Task.

    Directory of Open Access Journals (Sweden)

    Johannes Brand

    Full Text Available Computer interaction via visually guided hand or finger movements is a ubiquitous part of daily computer usage in work or gaming. Surprisingly, however, little is known about the performance effects of using virtual limb representations versus simpler cursors. In this study 26 healthy right-handed adults performed cued index finger flexion-extension movements towards an on-screen target while wearing a data glove. They received each of four different types of real-time visual feedback: a simple circular cursor, a point light pattern indicating finger joint positions, a cartoon hand and a fully shaded virtual hand. We found that participants initiated the movements faster when receiving feedback in the form of a hand than when receiving circular cursor or point light feedback. This overall difference was robust for three out of four hand versus circle pairwise comparisons. The faster movement initiation for hand feedback was accompanied by a larger movement amplitude and a larger movement error. We suggest that the observed effect may be related to priming of hand information during action perception and execution affecting motor planning and execution. The results may have applications in the use of body representations in virtual reality applications.

  2. Recommendations for Integrating a P300-Based Brain Computer Interface in Virtual Reality Environments for Gaming

    Directory of Open Access Journals (Sweden)

    Grégoire Cattan

    2018-05-01

    Full Text Available The integration of a P300-based brain–computer interface (BCI into virtual reality (VR environments is promising for the video games industry. However, it faces several limitations, mainly due to hardware constraints and constraints engendered by the stimulation needed by the BCI. The main limitation is still the low transfer rate that can be achieved by current BCI technology. The goal of this paper is to review current limitations and to provide application creators with design recommendations in order to overcome them. We also overview current VR and BCI commercial products in relation to the design of video games. An essential recommendation is to use the BCI only for non-complex and non-critical tasks in the game. Also, the BCI should be used to control actions that are naturally integrated into the virtual world. Finally, adventure and simulation games, especially if cooperative (multi-user appear the best candidates for designing an effective VR game enriched by BCI technology.

  3. Interface Design Implications for Recalling the Spatial Configuration of Virtual Auditory Environments

    Science.gov (United States)

    McMullen, Kyla A.

    Although the concept of virtual spatial audio has existed for almost twenty-five years, only in the past fifteen years has modern computing technology enabled the real-time processing needed to deliver high-precision spatial audio. Furthermore, the concept of virtually walking through an auditory environment did not exist. The applications of such an interface have numerous potential uses. Spatial audio has the potential to be used in various manners ranging from enhancing sounds delivered in virtual gaming worlds to conveying spatial locations in real-time emergency response systems. To incorporate this technology in real-world systems, various concerns should be addressed. First, to widely incorporate spatial audio into real-world systems, head-related transfer functions (HRTFs) must be inexpensively created for each user. The present study further investigated an HRTF subjective selection procedure previously developed within our research group. Users discriminated auditory cues to subjectively select their preferred HRTF from a publicly available database. Next, the issue of training to find virtual sources was addressed. Listeners participated in a localization training experiment using their selected HRTFs. The training procedure was created from the characterization of successful search strategies in prior auditory search experiments. Search accuracy significantly improved after listeners performed the training procedure. Next, in the investigation of auditory spatial memory, listeners completed three search and recall tasks with differing recall methods. Recall accuracy significantly decreased in tasks that required the storage of sound source configurations in memory. To assess the impacts of practical scenarios, the present work assessed the performance effects of: signal uncertainty, visual augmentation, and different attenuation modeling. Fortunately, source uncertainty did not affect listeners' ability to recall or identify sound sources. The present

  4. The Selimiye Mosque of Edirne, Turkey - AN Immersive and Interactive Virtual Reality Experience Using Htc Vive

    Science.gov (United States)

    Kersten, T. P.; Büyüksalih, G.; Tschirschwitz, F.; Kan, T.; Deggim, S.; Kaya, Y.; Baskaraca, A. P.

    2017-05-01

    Recent advances in contemporary Virtual Reality (VR) technologies are going to have a significant impact on veryday life. Through VR it is possible to virtually explore a computer-generated environment as a different reality, and to immerse oneself into the past or in a virtual museum without leaving the current real-life situation. For such the ultimate VR experience, the user should only see the virtual world. Currently, the user must wear a VR headset which fits around the head and over the eyes to visually separate themselves from the physical world. Via the headset images are fed to the eyes through two small lenses. Cultural heritage monuments are ideally suited both for thorough multi-dimensional geometric documentation and for realistic interactive visualisation in immersive VR applications. Additionally, the game industry offers tools for interactive visualisation of objects to motivate users to virtually visit objects and places. In this paper the generation of a virtual 3D model of the Selimiye mosque in the city of Edirne, Turkey and its processing for data integration into the game engine Unity is presented. The project has been carried out as a co-operation between BİMTAŞ, a company of the Greater Municipality of Istanbul, Turkey and the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg, Germany to demonstrate an immersive and interactive visualisation using the new VR system HTC Vive. The workflow from data acquisition to VR visualisation, including the necessary programming for navigation, is described. Furthermore, the possible use (including simultaneous multiple users environments) of such a VR visualisation for a CH monument is discussed in this contribution.

  5. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    Science.gov (United States)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars

  6. Virtual reality hardware for use in interactive 3D data fusion and visualization

    Science.gov (United States)

    Gourley, Christopher S.; Abidi, Mongi A.

    1997-09-01

    Virtual reality has become a tool for use in many areas of research. We have designed and built a VR system for use in range data fusion and visualization. One major VR tool is the CAVE. This is the ultimate visualization tool, but comes with a large price tag. Our design uses a unique CAVE whose graphics are powered by a desktop computer instead of a larger rack machine making it much less costly. The system consists of a screen eight feet tall by twenty-seven feet wide giving a variable field-of-view currently set at 160 degrees. A silicon graphics Indigo2 MaxImpact with the impact channel option is used for display. This gives the capability to drive three projectors at a resolution of 640 by 480 for use in displaying the virtual environment and one 640 by 480 display for a user control interface. This machine is also the first desktop package which has built-in hardware texture mapping. This feature allows us to quickly fuse the range and intensity data and other multi-sensory data. The final goal is a complete 3D texture mapped model of the environment. A dataglove, magnetic tracker, and spaceball are to be used for manipulation of the data and navigation through the virtual environment. This system gives several users the ability to interactively create 3D models from multiple range images.

  7. A multimodal architecture for simulating natural interactive walking in virtual environments

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Serafin, Stefania; Turchet, Luca

    2011-01-01

    We describe a multimodal system that exploits the use of footwear-based interaction in virtual environments. We developed a pair of shoes enhanced with pressure sensors, actuators, and markers. These shoes control a multichannel surround sound system and drive a physically based audio...

  8. The visual-landscape analysis during the integration of high-rise buildings within the historic urban environment

    OpenAIRE

    Akristiniy Vera A.; Dikova Elena A.

    2018-01-01

    The article is devoted to one of the types of urban planning studies - the visual-landscape analysis during the integration of high-rise buildings within the historic urban environment for the purposes of providing pre-design and design studies in terms of preserving the historical urban environment and the implementation of the reconstructional resource of the area. In the article formed and systematized the stages and methods of conducting the visual-landscape analysis taking into account t...

  9. Supply Chain Systems Architecture and Engineering Design: Green-field Supply Chain Integration

    OpenAIRE

    Radanliev, P

    2015-01-01

    This paper developed a new theory for supply chain architecture, and engineering design that enables integration of the business and supply chain strategies. The architecture starts with individual supply chain participants and derives insights into the complex and abstract concept of green-field integration design. The paper presented a conceptual system for depicting the interactions between business and supply chain strategy engineering. The system examines the decisions made when engineer...

  10. User-centered virtual environment design for virtual rehabilitation

    Directory of Open Access Journals (Sweden)

    Rizzo Albert A

    2010-02-01

    Full Text Available Abstract Background As physical and cognitive rehabilitation protocols utilizing virtual environments transition from single applications to comprehensive rehabilitation programs there is a need for a new design cycle methodology. Current human-computer interaction designs focus on usability without benchmarking technology within a user-in-the-loop design cycle. The field of virtual rehabilitation is unique in that determining the efficacy of this genre of computer-aided therapies requires prior knowledge of technology issues that may confound patient outcome measures. Benchmarking the technology (e.g., displays or data gloves using healthy controls may provide a means of characterizing the "normal" performance range of the virtual rehabilitation system. This standard not only allows therapists to select appropriate technology for use with their patient populations, it also allows them to account for technology limitations when assessing treatment efficacy. Methods An overview of the proposed user-centered design cycle is given. Comparisons of two optical see-through head-worn displays provide an example of benchmarking techniques. Benchmarks were obtained using a novel vision test capable of measuring a user's stereoacuity while wearing different types of head-worn displays. Results from healthy participants who performed both virtual and real-world versions of the stereoacuity test are discussed with respect to virtual rehabilitation design. Results The user-centered design cycle argues for benchmarking to precede virtual environment construction, especially for therapeutic applications. Results from real-world testing illustrate the general limitations in stereoacuity attained when viewing content using a head-worn display. Further, the stereoacuity vision benchmark test highlights differences in user performance when utilizing a similar style of head-worn display. These results support the need for including benchmarks as a means of better

  11. User-centered virtual environment design for virtual rehabilitation.

    Science.gov (United States)

    Fidopiastis, Cali M; Rizzo, Albert A; Rolland, Jannick P

    2010-02-19

    As physical and cognitive rehabilitation protocols utilizing virtual environments transition from single applications to comprehensive rehabilitation programs there is a need for a new design cycle methodology. Current human-computer interaction designs focus on usability without benchmarking technology within a user-in-the-loop design cycle. The field of virtual rehabilitation is unique in that determining the efficacy of this genre of computer-aided therapies requires prior knowledge of technology issues that may confound patient outcome measures. Benchmarking the technology (e.g., displays or data gloves) using healthy controls may provide a means of characterizing the "normal" performance range of the virtual rehabilitation system. This standard not only allows therapists to select appropriate technology for use with their patient populations, it also allows them to account for technology limitations when assessing treatment efficacy. An overview of the proposed user-centered design cycle is given. Comparisons of two optical see-through head-worn displays provide an example of benchmarking techniques. Benchmarks were obtained using a novel vision test capable of measuring a user's stereoacuity while wearing different types of head-worn displays. Results from healthy participants who performed both virtual and real-world versions of the stereoacuity test are discussed with respect to virtual rehabilitation design. The user-centered design cycle argues for benchmarking to precede virtual environment construction, especially for therapeutic applications. Results from real-world testing illustrate the general limitations in stereoacuity attained when viewing content using a head-worn display. Further, the stereoacuity vision benchmark test highlights differences in user performance when utilizing a similar style of head-worn display. These results support the need for including benchmarks as a means of better understanding user outcomes, especially for patient

  12. Virtual Pinball / Video Arcade games

    NARCIS (Netherlands)

    1997-01-01

    For use in multimedia or other environments, a virtual pinball/video arcade game displays one or more computer-generated runner elements, runner inject elements, and runner interactivity elements. It has a programmed computer for simulating movement of the runner elements. This is interfered with by

  13. Learning strategy preferences, verbal-visual cognitive styles, and multimedia preferences for continuing engineering education instructional design

    Science.gov (United States)

    Baukal, Charles Edward, Jr.

    A literature search revealed very little information on how to teach working engineers, which became the motivation for this research. Effective training is important for many reasons such as preventing accidents, maximizing fuel efficiency, minimizing pollution emissions, and reducing equipment downtime. The conceptual framework for this study included the development of a new instructional design framework called the Multimedia Cone of Abstraction (MCoA). This was developed by combining Dale's Cone of Experience and Mayer's Cognitive Theory of Multimedia Learning. An anonymous survey of 118 engineers from a single Midwestern manufacturer was conducted to determine their demographics, learning strategy preferences, verbal-visual cognitive styles, and multimedia preferences. The learning strategy preference profile and verbal-visual cognitive styles of the sample were statistically significantly different than the general population. The working engineers included more Problem Solvers and were much more visually-oriented than the general population. To study multimedia preferences, five of the seven levels in the MCoA were used. Eight types of multimedia were compared in four categories (types in parantheses): text (text and narration), static graphics (drawing and photograph), non-interactive dynamic graphics (animation and video), and interactive dynamic graphics (simulated virtual reality and real virtual reality). The first phase of the study examined multimedia preferences within a category. Participants compared multimedia types in pairs on dual screens using relative preference, rating, and ranking. Surprisingly, the more abstract multimedia (text, drawing, animation, and simulated virtual reality) were preferred in every category to the more concrete multimedia (narration, photograph, video, and real virtual reality), despite the fact that most participants had relatively little prior subject knowledge. However, the more abstract graphics were only slightly

  14. The CAVE (TM) automatic virtual environment: Characteristics and applications

    Science.gov (United States)

    Kenyon, Robert V.

    1995-01-01

    Virtual reality may best be defined as the wide-field presentation of computer-generated, multi-sensory information that tracks a user in real time. In addition to the more well-known modes of virtual reality -- head-mounted displays and boom-mounted displays -- the Electronic Visualization Laboratory at the University of Illinois at Chicago recently introduced a third mode: a room constructed from large screens on which the graphics are projected on to three walls and the floor. The CAVE is a multi-person, room sized, high resolution, 3D video and audio environment. Graphics are rear projected in stereo onto three walls and the floor, and viewed with stereo glasses. As a viewer wearing a location sensor moves within its display boundaries, the correct perspective and stereo projections of the environment are updated, and the image moves with and surrounds the viewer. The other viewers in the CAVE are like passengers in a bus, along for the ride. 'CAVE,' the name selected for the virtual reality theater, is both a recursive acronym (Cave Automatic Virtual Environment) and a reference to 'The Simile of the Cave' found in Plato's 'Republic,' in which the philosopher explores the ideas of perception, reality, and illusion. Plato used the analogy of a person facing the back of a cave alive with shadows that are his/her only basis for ideas of what real objects are. Rather than having evolved from video games or flight simulation, the CAVE has its motivation rooted in scientific visualization and the SIGGRAPH 92 Showcase effort. The CAVE was designed to be a useful tool for scientific visualization. The Showcase event was an experiment; the Showcase chair and committee advocated an environment for computational scientists to interactively present their research at a major professional conference in a one-to-many format on high-end workstations attached to large projection screens. The CAVE was developed as a 'virtual reality theater' with scientific content and

  15. COLLABORATION AND DIALOGUE IN VIRTUAL REALITY

    Directory of Open Access Journals (Sweden)

    Camilla Gyldendahl Jensen

    2017-01-01

    Full Text Available “Virtual reality” adds a new dimension to constructivist problem-based learning (PBL environments in the architectural and building construction educations, where a realistic and lifelike presence in a building enables students to assess and discuss how the various solutions interact with each other. Combined with “Building Information Models” (BIM, “Virtual Reality” provides an entirely new opportunity to innovate and optimize the architecture and construction in its early stages, which creates and iterative learning process. There are several studies where virtual simulation tools based on predefined tutorials are tested for their ability to facilitate collaborative processes. This study addresses the problem from a new angle by the virtual universe created through the students' own iterative design of a building. The “Virtual reality” system's narrative tale arises spontaneously through the dialogue. The result of this study shows that “Virtual Reality”, as a tool, creates some changes in the dialogue conditions which affect the learning process. The use of “Virtual Reality” requires a very precise framing about the system's ability to facilitate a collaborative learning process. The analysis identifies several clear opportunities about incorporating gamification mechanisms known from e.g. video games software.

  16. Virtual environment display for a 3D audio room simulation

    Science.gov (United States)

    Chapin, William L.; Foster, Scott

    1992-06-01

    Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.

  17. Emotional engagement, social interactions, and the development of an afterschool game design curriculum

    Science.gov (United States)

    Kwah, Helen; Milne, Catherine; Tsai, Tzuchi; Goldman, Ricki; Plass, Jan L.

    2016-09-01

    This formative design study examines how a program curriculum and implementation was emergently (re)designed in dynamic relation to the expressed emotions of teachers and students. The context was a yearlong afterschool game design program for STEM learning at an urban and public all-girls middle school. Using Randall Collins' (Interaction ritual chains, Princeton University Press, Princeton, 2004) sociology of emotions framework, our analysis of field notes and video data reveal how the original intended curriculum hindered the generation of positive emotions, mutual foci of attention, and feelings of group solidarity—factors important in the generation of successful group interactions. In response to teacher and student expressed emotions, we took these factors as a guide for redesigning the program curriculum and implementation in order to foster a more positive emotional climate and redirect students' positive emotions toward engagement in learning goals. This study's implications point to the possibilities for designing curricula and program implementations to engender more emotionally responsive environments for STEM learning.

  18. VirtualTable: a projection augmented reality game

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Olsen, Mikkel Damgaard; Steenstrup, Kasper Hornbak

    2015-01-01

    VirtualTable is a projection augmented reality installation where users are engaged in an interactive tower defense game. The installation runs continuously and is designed to attract people to a table, which the game is projected onto. Any number of players can join the game for an optional period...

  19. Virtual Prototyping and Performance Analysis of Two Memory Architectures

    Directory of Open Access Journals (Sweden)

    Huda S. Muhammad

    2009-01-01

    Full Text Available The gap between CPU and memory speed has always been a critical concern that motivated researchers to study and analyze the performance of memory hierarchical architectures. In the early stages of the design cycle, performance evaluation methodologies can be used to leverage exploration at the architectural level and assist in making early design tradeoffs. In this paper, we use simulation platforms developed using the VisualSim tool to compare the performance of two memory architectures, namely, the Direct Connect architecture of the Opteron, and the Shared Bus of the Xeon multicore processors. Key variations exist between the two memory architectures and both design approaches provide rich platforms that call for the early use of virtual system prototyping and simulation techniques to assess performance at an early stage in the design cycle.

  20. A programmable display-layer architecture for virtual-reality applications

    NARCIS (Netherlands)

    Smit, F.A.

    2009-01-01

    Two important technical objectives of virtual-reality systems are to provide compelling visuals and effective 3D user interaction. In this respect, modern virtual reality system architectures suffer from a number of short-comings. The reduction of end-to-end latency, crosstalk and judder are

  1. Designing flexible engineering systems utilizing embedded architecture options

    Science.gov (United States)

    Pierce, Jeff G.

    This dissertation develops and applies an integrated framework for embedding flexibility in an engineered system architecture. Systems are constantly faced with unpredictability in the operational environment, threats from competing systems, obsolescence of technology, and general uncertainty in future system demands. Current systems engineering and risk management practices have focused almost exclusively on mitigating or preventing the negative consequences of uncertainty. This research recognizes that high uncertainty also presents an opportunity to design systems that can flexibly respond to changing requirements and capture additional value throughout the design life. There does not exist however a formalized approach to designing appropriately flexible systems. This research develops a three stage integrated flexibility framework based on the concept of architecture options embedded in the system design. Stage One defines an eight step systems engineering process to identify candidate architecture options. This process encapsulates the operational uncertainty though scenario development, traces new functional requirements to the affected design variables, and clusters the variables most sensitive to change. The resulting clusters can generate insight into the most promising regions in the architecture to embed flexibility in the form of architecture options. Stage Two develops a quantitative option valuation technique, grounded in real options theory, which is able to value embedded architecture options that exhibit variable expiration behavior. Stage Three proposes a portfolio optimization algorithm, for both discrete and continuous options, to select the optimal subset of architecture options, subject to budget and risk constraints. Finally, the feasibility, extensibility and limitations of the framework are assessed by its application to a reconnaissance satellite system development problem. Detailed technical data, performance models, and cost estimates

  2. On the Design of Virtual Reality Learning Environments in Engineering

    Directory of Open Access Journals (Sweden)

    Diego Vergara

    2017-06-01

    Full Text Available Currently, the use of virtual reality (VR is being widely applied in different fields, especially in computer science, engineering, and medicine. Concretely, the engineering applications based on VR cover approximately one half of the total number of VR resources (considering the research works published up to last year, 2016. In this paper, the capabilities of different computational software for designing VR applications in engineering education are discussed. As a result, a general flowchart is proposed as a guide for designing VR resources in any application. It is worth highlighting that, rather than this study being based on the applications used in the engineering field, the obtained results can be easily extrapolated to other knowledge areas without any loss of generality. This way, this paper can serve as a guide for creating a VR application.

  3. THE SELIMIYE MOSQUE OF EDIRNE, TURKEY – AN IMMERSIVE AND INTERACTIVE VIRTUAL REALITY EXPERIENCE USING HTC VIVE

    Directory of Open Access Journals (Sweden)

    T. P. Kersten

    2017-05-01

    Full Text Available Recent advances in contemporary Virtual Reality (VR technologies are going to have a significant impact on veryday life. Through VR it is possible to virtually explore a computer-generated environment as a different reality, and to immerse oneself into the past or in a virtual museum without leaving the current real-life situation. For such the ultimate VR experience, the user should only see the virtual world. Currently, the user must wear a VR headset which fits around the head and over the eyes to visually separate themselves from the physical world. Via the headset images are fed to the eyes through two small lenses. Cultural heritage monuments are ideally suited both for thorough multi-dimensional geometric documentation and for realistic interactive visualisation in immersive VR applications. Additionally, the game industry offers tools for interactive visualisation of objects to motivate users to virtually visit objects and places. In this paper the generation of a virtual 3D model of the Selimiye mosque in the city of Edirne, Turkey and its processing for data integration into the game engine Unity is presented. The project has been carried out as a co-operation between BİMTAŞ, a company of the Greater Municipality of Istanbul, Turkey and the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg, Germany to demonstrate an immersive and interactive visualisation using the new VR system HTC Vive. The workflow from data acquisition to VR visualisation, including the necessary programming for navigation, is described. Furthermore, the possible use (including simultaneous multiple users environments of such a VR visualisation for a CH monument is discussed in this contribution.

  4. VRML metabolic network visualizer.

    Science.gov (United States)

    Rojdestvenski, Igor

    2003-03-01

    A successful date collection visualization should satisfy a set of many requirements: unification of diverse data formats, support for serendipity research, support of hierarchical structures, algorithmizability, vast information density, Internet-readiness, and other. Recently, virtual reality has made significant progress in engineering, architectural design, entertainment and communication. We experiment with the possibility of using the immersive abstract three-dimensional visualizations of the metabolic networks. We present the trial Metabolic Network Visualizer software, which produces graphical representation of a metabolic network as a VRML world from a formal description written in a simple SGML-type scripting language.

  5. How Do Students Learn to See Concepts in Visualizations? Social Learning Mechanisms with Physical and Virtual Representations

    Science.gov (United States)

    Rau, Martina A.

    2017-01-01

    STEM instruction often uses visual representations. To benefit from these, students need to understand how representations show domain-relevant concepts. Yet, this is difficult for students. Prior research shows that physical representations (objects that students manipulate by hand) and virtual representations (objects on a computer screen that…

  6. Game Design Narrative for Learning: Appropriating Adventure Game Design Narrative Devices and Techniques for the Design of Interactive Learning Environments

    Science.gov (United States)

    Dickey, Michele D.

    2006-01-01

    The purpose of this conceptual analysis is to investigate how contemporary video and computer games might inform instructional design by looking at how narrative devices and techniques support problem solving within complex, multimodal environments. Specifically, this analysis presents a brief overview of game genres and the role of narrative in…

  7. VIRTUAL AND PHYSICAL ARCHITECTURAL ATMOSPHERE

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars

    2016-01-01

    This study, of the similarities between the perception of architectural space experienced in physical space conditions and in Virtual Reality, intents to clarify to what extend subjective and objective attributes of architectural space can be conveyed through a direct use of Building Information...... Models in Virtual Reality. 60 test persons experienced a specific test space as either a physical or a virtual environment, while data from their experiences was collected through a quantitative/qualitative questionnaire. The overall conclusion, from this phase of the study, is that even a simple BIM...... model through HMD VR can convey rather precise information about both subjective and objective experiences of architectural space, ambience and atmosphere. Next phase of the study will include eye-tracking data from the two scenarios....

  8. Perceptual geometry of space and form: visual perception of natural scenes and their virtual representation

    Science.gov (United States)

    Assadi, Amir H.

    2001-11-01

    Perceptual geometry is an emerging field of interdisciplinary research whose objectives focus on study of geometry from the perspective of visual perception, and in turn, apply such geometric findings to the ecological study of vision. Perceptual geometry attempts to answer fundamental questions in perception of form and representation of space through synthesis of cognitive and biological theories of visual perception with geometric theories of the physical world. Perception of form and space are among fundamental problems in vision science. In recent cognitive and computational models of human perception, natural scenes are used systematically as preferred visual stimuli. Among key problems in perception of form and space, we have examined perception of geometry of natural surfaces and curves, e.g. as in the observer's environment. Besides a systematic mathematical foundation for a remarkably general framework, the advantages of the Gestalt theory of natural surfaces include a concrete computational approach to simulate or recreate images whose geometric invariants and quantities might be perceived and estimated by an observer. The latter is at the very foundation of understanding the nature of perception of space and form, and the (computer graphics) problem of rendering scenes to visually invoke virtual presence.

  9. Virtual Solar Energy Center: A Case Study of the Use of Advanced Visualization Techniques for the Comprehension of Complex Engineering Products and Processes

    Science.gov (United States)

    Ritter, Kenneth August, III

    Industry has a continuing need to train its workforce on recent engineering developments, but many engineering products and processes are hard to explain because of limitations of size, visibility, time scale, cost, and safety. The product or process might be difficult to see because it is either very large or very small, because it is enclosed within an opaque container, or because it happens very fast or very slowly. Some engineering products and processes are also costly or unsafe to use for training purposes, and sometimes the domain expert is not physically available at the training location. All these limitations can potentially be addressed using advanced visualization techniques such as virtual reality. This dissertation describes the development of an immersive virtual reality application using the Six Sigma DMADV process to explain the main equipment and processes used in a concentrating solar power plant. The virtual solar energy center (VEC) application was initially developed and tested in a Cave Automatic Virtual Environment (CAVE) during 2013 and 2014. The software programs used for development were SolidWorks, 3ds Max Design, and Unity 3D. Current hardware and software technologies that could complement this research were analyzed. The NVIDA GRID Visual Computing Appliance (VCA) was chosen as the rendering solution for animating complex CAD models in this application. The MiddleVR software toolkit was selected as the toolkit for VR interactions and CAVE display. A non-immersive 3D version of the VEC application was tested and shown to be an effective training tool in late 2015. An immersive networked version of the VEC allows the user to receive live instruction from a trainer being projected via depth camera imagery from a remote location. Four comparative analysis studies were performed. These studies used the average normalized gain from pre-test scores to determine the effectiveness of the various training methods. With the DMADV approach

  10. Virtual environment to evaluate multimodal feedback strategies for augmented navigation of the visually impaired.

    Science.gov (United States)

    Hara, Masayuki; Shokur, Solaiman; Yamamoto, Akio; Higuchi, Toshiro; Gassert, Roger; Bleuler, Hannes

    2010-01-01

    This paper proposes a novel experimental environment to evaluate multimodal feedback strategies for augmented navigation of the visually impaired. The environment consists of virtual obstacles and walls, an optical tracking system and a simple device with audio and vibrotactile feedback that interacts with the virtual environment, and presents many advantages in terms of safety, flexibility, control over experimental parameters and cost. The subject can freely move in an empty room, while the position of head and arm are tracked in real time. A virtual environment (walls, obstacles) is randomly generated, and audio and vibrotactile feedback are given according to the distance from the subjects arm to the virtual walls/objects. We investigate the applicability of our environment using a simple, commercially available feedback device. Experiments with unimpaired subjects show that it is possible to use the setup to "blindly" navigate in an unpredictable virtual environment. This validates the environment as a test platform to investigate navigation and exploration strategies of the visually impaired, and to evaluate novel technologies for augmented navigation.

  11. D Modelling and Visualization Based on the Unity Game Engine - Advantages and Challenges

    Science.gov (United States)

    Buyuksalih, I.; Bayburt, S.; Buyuksalih, G.; Baskaraca, A. P.; Karim, H.; Rahman, A. A.

    2017-11-01

    3D City modelling is increasingly popular and becoming valuable tools in managing big cities. Urban and energy planning, landscape, noise-sewage modelling, underground mapping and navigation are among the applications/fields which really depend on 3D modelling for their effectiveness operations. Several research areas and implementation projects had been carried out to provide the most reliable 3D data format for sharing and functionalities as well as visualization platform and analysis. For instance, BIMTAS company has recently completed a project to estimate potential solar energy on 3D buildings for the whole Istanbul and now focussing on 3D utility underground mapping for a pilot case study. The research and implementation standard on 3D City Model domain (3D data sharing and visualization schema) is based on CityGML schema version 2.0. However, there are some limitations and issues in implementation phase for large dataset. Most of the limitations were due to the visualization, database integration and analysis platform (Unity3D game engine) as highlighted in this paper.

  12. Impact of the virtual reality on the neural representation of an environment.

    Science.gov (United States)

    Mellet, Emmanuel; Laou, Laetitia; Petit, Laurent; Zago, Laure; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie

    2010-07-01

    Despite the increasing use of virtual reality, the impact on cerebral representation of topographical knowledge of learning by virtual reality rather than by actual locomotion has never been investigated. To tackle this challenging issue, we conducted an experiment wherein participants learned an immersive virtual environment using a joystick. The following day, participants' brain activity was monitored by functional magnetic resonance imaging while they mentally estimated distances in this environment. Results were compared with that of participants performing the same task but having learned the real version of the environment by actual walking. We detected a large set of areas shared by both groups including the parieto-frontal areas and the parahippocampal gyrus. More importantly, although participants of both groups performed the same mental task and exhibited similar behavioral performances, they differed at the brain activity level. Unlike real learners, virtual learners activated a left-lateralized network associated with tool manipulation and action semantics. This demonstrated that a neural fingerprint distinguishing virtual from real learning persists when subjects use a mental representation of the learnt environment with equivalent performances. (c) 2009 Wiley-Liss, Inc.

  13. Virtual reality visualization of accelerator magnets

    International Nuclear Information System (INIS)

    Huang, M.; Papka, M.; DeFanti, T.; Kettunen, L.

    1995-01-01

    The authors describe the use of the CAVE virtual reality visualization environment as an aid to the design of accelerator magnets. They have modeled an elliptical multipole wiggler magnet being designed for use at the Advanced Photon Source at Argonne National Laboratory. The CAVE environment allows the authors to explore and interact with the 3-D visualization of the magnet. Capabilities include changing the number of periods the magnet displayed, changing the icons used for displaying the magnetic field, and changing the current in the electromagnet and observing the effect on the magnetic field and particle beam trajectory through the field

  14. MiRTE: Mixed Reality Triage and Evacuation game for Mass Casualty information systems design, testing and training.

    Science.gov (United States)

    Yu, Xunyi; Ganz, Aura

    2011-01-01

    In this paper we introduce a Mixed Reality Triage and Evacuation game, MiRTE, that is used in the development, testing and training of Mass Casualty Incident (MCI) information systems for first responders. Using the Source game engine from Valve software, MiRTE creates immersive virtual environments to simulate various incident scenarios, and enables interactions between multiple players/first responders. What distinguishes it from a pure computer simulation game is that it can interface with external mass casualty incident management systems, such as DIORAMA. The game will enable system developers to specify technical requirements of underlying technology, and test different alternatives of design. After the information system hardware and software are completed, the game can simulate various algorithms such as localization technologies, and interface with an actual user interface on PCs and Smartphones. We implemented and tested the game with the DIORAMA system.

  15. Visual and Computational Modelling of Minority Games

    Directory of Open Access Journals (Sweden)

    Robertas Damaševičius

    2017-02-01

    Full Text Available The paper analyses the Minority Game and focuses on analysis and computational modelling of several variants (variable payoff, coalition-based and ternary voting of Minority Game using UAREI (User-Action-Rule-Entities-Interface model. UAREI is a model for formal specification of software gamification, and the UAREI visual modelling language is a language used for graphical representation of game mechanics. The URAEI model also provides the embedded executable modelling framework to evaluate how the rules of the game will work for the players in practice. We demonstrate flexibility of UAREI model for modelling different variants of Minority Game rules for game design.

  16. Evolutionary, Unconscious Design Support for the Architectural, Engineering and Construction Industry

    OpenAIRE

    Van de Ruitenbeek, H.K.M.

    2012-01-01

    The Architecture, Engineering and Construction (AEC) industry is a complex system in which carpenters, structural designers, architects, modellers, cost estimators, planners, politicians and many others act apart together in project-specific virtual enterprises. There is a large amount of actors, an overwhelming number of ongoing processes, distributed, decentralised organisations and a variety of projects. This complicates efficient communication and supply chain integration which, according...

  17. Virtual Collaborative Simulation Environment for Integrated Product and Process Development

    Science.gov (United States)

    Gulli, Michael A.

    1997-01-01

    Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.

  18. Architectural design and simulation of a virtual memory

    Science.gov (United States)

    Kwok, G.; Chu, Y.

    1971-01-01

    Virtual memory is an imaginary main memory with a very large capacity which the programmer has at his disposal. It greatly contributes to the solution of the dynamic storage allocation problem. The architectural design of a virtual memory is presented which implements by hardware the idea of queuing and scheduling the page requests to a paging drum in such a way that the access of the paging drum is increased many times. With the design, an increase of up to 16 times in page transfer rate is achievable when the virtual memory is heavily loaded. This in turn makes feasible a great increase in the system throughput.

  19. Visualizing Decision Trees in Games to Support Children's Analytic Reasoning: Any Negative Effects on Gameplay?

    OpenAIRE

    Haworth, Robert; Tagh Bostani, Sousan Sheida; Sedig, Kamran

    2010-01-01

    The popularity and usage of digital games has increased in recent years, bringing further attention to their design. Some digital games require a significant use of higher order thought processes, such as problem solving and reflective and analytical thinking. Through the use of appropriate and interactive representations, these thought processes could be supported. A visualization of the game's internal structure is an example of this. However, it is unknown whether including these extra rep...

  20. Social Interaction Development through Immersive Virtual Environments

    Science.gov (United States)

    Beach, Jason; Wendt, Jeremy

    2014-01-01

    The purpose of this pilot study was to determine if participants could improve their social interaction skills by participating in a virtual immersive environment. The participants used a developing virtual reality head-mounted display to engage themselves in a fully-immersive environment. While in the environment, participants had an opportunity…

  1. The Relation between Virtual Presence and Learning Outcomes in Serious Games – The Mediating Effect of Motivation

    Directory of Open Access Journals (Sweden)

    Claudia Schrader

    2014-02-01

    Full Text Available Does the immersive design of a serious game affect learners’ virtual presence? Does virtual presence improve learning? By identifying virtual presence as a variable that may determine learning outcomes, it is argued that computer gaming environments present a new challenge for researchers to investigate. Particularly, the effect of games on virtual presence might help designers to predict which instructional configurations will maximize learning performance. Results indicate that the serious game used as an example in this study leads to a strong form of virtual presence. Virtual presence enhanced retention and comprehension but not transfer. It also significantly increased learners’ motivation. Mediation analyses report that the positive relation between virtual presence, retention and comprehension is mediated through increased motivation. These findings suggest that the relation between all variables should be considered an important factor in the design of virtual worlds for learning.

  2. Nuclear plant's virtual simulation for on-line radioactive environment monitoring and dose assessment for personnel

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos A.; Jorge, Carlos Alexandre F.; Lapa, Celso Marcelo F.

    2009-01-01

    This paper reports the use of nuclear plant's simulation for online dose rate monitoring and dose assessment for personnel, using virtual reality technology. The platform used for virtual simulation was adapted from a low cost game engine, taking advantage of all its image rendering capabilities, as well as the physics for movement and collision, and networking capabilities for multi-user interactive navigation. A real nuclear plant was virtually modeled and simulated, so that a number of users can navigate simultaneously in this virtual environment in first or third person view, each one receiving visual information about both the radiation dose rate in each actual position, and the radiation dose received. Currently, this research and development activity has been extended to consider also on-line measurements collected from radiation monitors installed in the real plant that feed the simulation platform with dose rate data, through a TCP/IP network. Results are shown and commented, and other improvements are discussed, as the execution of a more detailed dose rate mapping campaign.

  3. SciEthics Interactive: Science and Ethics Learning in a Virtual Environment

    Science.gov (United States)

    Nadolny, Larysa; Woolfrey, Joan; Pierlott, Matthew; Kahn, Seth

    2013-01-01

    Learning in immersive 3D environments allows students to collaborate, build, and interact with difficult course concepts. This case study examines the design and development of the TransGen Island within the SciEthics Interactive project, a National Science Foundation-funded, 3D virtual world emphasizing learning science content in the context of…

  4. NECTAR: Simulation and Visualization in a 3D Collaborative Environment

    NARCIS (Netherlands)

    Law, Y.W.; Chan, K.Y.

    For simulation and visualization in a 3D collaborative environment, an architecture called the Nanyang Experimental CollaboraTive ARchitecture (NECTAR) has been developed. The objective is to support multi-user collaboration in a virtual environment with an emphasis on cost-effectiveness and

  5. Illustrative visualization of 3D city models

    Science.gov (United States)

    Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian

    2005-03-01

    This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.

  6. Designing Effective Serious Games: Opportunities and Challenges for Research

    Directory of Open Access Journals (Sweden)

    Francesco Bellotti

    2010-11-01

    Full Text Available Serious Games represent an acknowledged potential for instruction, because they are able to strongly motivate learners. They can also provide immersive environments where advanced users can practice knowledge and skills, also exploiting multimodal interaction. They can combine the effectiveness of computer processing and data storage, with high levels of attractiveness. Our work has investigated the state of the art research on SGs, starting from the cognitive aspects, that are necessary in order to root technological development and applications in sound theoretical foundations. The paper discusses some key aspects about SG design and exploitation: choice of components-off-the-shelf or from-scratch design, tools and methodologies for development or adaptation, intelligent tutoring, virtual coaches and affective learning, living worlds, game mechanics, Human-Computer Interaction. While several SGs have been developed, still the literature stresses a lack of significant, extensive user tests. Further research is necessary to investigate in greater detail the real effectiveness of the various types of SGs. The paper proposes several research questions - that range from requirements elicitation to design and from deployment to use and evaluation - to be answered in order to avoid technology pushing and drive technological research according to the requirements of the end-users and stakeholders. We believe that deepening the analysis about these issues is key to strengthen the foundations of SG research, for which we identify four major directions: definition of metrics and learning progress evaluation tools; methodologies and tools for designing games from various topics and for various users; computing and communication architectures; technologies that can enhance the overall system performance.

  7. ELISA, a demonstrator environment for information systems architecture design

    Science.gov (United States)

    Panem, Chantal

    1994-01-01

    This paper describes an approach of reusability of software engineering technology in the area of ground space system design. System engineers have lots of needs similar to software developers: sharing of a common data base, capitalization of knowledge, definition of a common design process, communication between different technical domains. Moreover system designers need to simulate dynamically their system as early as possible. Software development environments, methods and tools now become operational and widely used. Their architecture is based on a unique object base, a set of common management services and they host a family of tools for each life cycle activity. In late '92, CNES decided to develop a demonstrative software environment supporting some system activities. The design of ground space data processing systems was chosen as the application domain. ELISA (Integrated Software Environment for Architectures Specification) was specified as a 'demonstrator', i.e. a sufficient basis for demonstrations, evaluation and future operational enhancements. A process with three phases was implemented: system requirements definition, design of system architectures models, and selection of physical architectures. Each phase is composed of several activities that can be performed in parallel, with the provision of Commercial Off the Shelves Tools. ELISA has been delivered to CNES in January 94, currently used for demonstrations and evaluations on real projects (e.g. SPOT4 Satellite Control Center). It is on the way of new evolutions.

  8. Visualizing Practices in Project-based Design

    DEFF Research Database (Denmark)

    Whyte, Jennifer; Tryggestad, Kjell; Comi, Alice

    2016-01-01

    Project-based design involves a variety of visual representations, which are evolved to make decisions and accomplish project objectives. Yet, such mediated and distributed ways of working are difficult to capture through ethnographies that examine situated design. A novel approach is developed t...... representations enabled participants in project-based design to develop and share understanding. The complexity of projects and their distributed and mediated nature makes this approach timely and important in addressing new research questions and practical challenges.......Project-based design involves a variety of visual representations, which are evolved to make decisions and accomplish project objectives. Yet, such mediated and distributed ways of working are difficult to capture through ethnographies that examine situated design. A novel approach is developed...... of situated design. This allows the researcher to be nimble, tracing connections across complex engineering projects; reconstructing practices through their visual representations; and observing their effects. Second, it articulates how, in these empirical cases, interaction with a cascade of visual...

  9. Relationship between Process, form and Representation in the Design Environment of 21st Century

    Directory of Open Access Journals (Sweden)

    Bülent Onur TURAN

    2011-10-01

    Full Text Available Research in design and design methodologies began to appear in industrialized societies in the 1950s and 1960s and design, as an act been described in various ways. After this period, examination of, and debates over the contents and components of design, as well as such topics as the thinking process of the designer, gradually increased and in this context new theories and methods emerged. Today, these examinations and debates have gained a new dimension in terms of developments in science and technology, particularly with the involvement of computer environment and computational technologies in the design process. This work is focused on the interactive transformations between the process, form and representation which determine contemporary architectural discourse.

  10. When Video Games Tell Stories: A Model of Video Game Narrative Architectures

    Directory of Open Access Journals (Sweden)

    Marcello Arnaldo Picucci

    2014-11-01

    Full Text Available In the present study a model is proposed offering a comprehensive categorization of video game narrative structures intended as the methods and techniques used by game designers and allowed by the medium to deliver the story content throughout the gameplay in collaboration with the players. A case is first made for the presence of narrative in video games and its growth of importance as a central component in game design. An in-depth analysis ensues focusing on how games tell stories, guided by the criteria of linearity/nonlinearity, interactivity and randomness. Light is shed upon the fundamental architectures through which stories are told as well as the essential boundaries posed by the close link between narrative and game AI.

  11. RAGE Reusable Game Software Components and Their Integration into Serious Game Engines

    NARCIS (Netherlands)

    Van der Vegt, Wim; Nyamsuren, Enkhbold; Westera, Wim

    2016-01-01

    This paper presents and validates a methodology for integrating reusable software components in diverse game engines. While conforming to the RAGE com-ponent-based architecture described elsewhere, the paper explains how the interac-tions and data exchange processes between a reusable software

  12. Performative Urban Environments

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Thomsen, Bo Stjerne

    2008-01-01

    The chapter explores how temporary architectural structures can become media for bottom-up approaches to urban development. Urban interactions in the city developed from the sidewalks were seen as locally bounded neighbourhoods. However, with the advent of contemporary network technologies....... In investigating architectural media-constructions the paper draws on the notion of ‘Capsular Civilization'. Arguing that architectural capsules in the cities' in-between spaces may become the media and places of meaningful interaction by establishing a feedback loop guided by social interaction. Architecture thus......-organizing, communicative environments for an organized complexity between flows of local interactions and network behaviour. The chapter applies the concepts on the case of the Pavilion Project, NoRA, built for the 10th International Architecture Biennale in Venice for the network of Food College Denmark....

  13. Immersive Environments and Virtual Reality: Systematic Review and Advances in Communication, Interaction and Simulation

    Directory of Open Access Journals (Sweden)

    Jose Luis Rubio-Tamayo

    2017-09-01

    Full Text Available Today, virtual reality and immersive environments are lines of research which can be applied to numerous scientific and educational domains. Immersive digital media needs new approaches regarding its interactive and immersive features, which means the design of new narratives and relationships with users. Additionally, ICT (information and communication theory evolves through more immersive and interactive scenarios, it being necessary to design and conceive new forms of representing information and improving users’ interaction with immersive environments. Virtual reality and technologies associated with the virtuality continuum, such as immersive and digital environments, are emerging media. As a medium, this approach may help to build and represent ideas and concepts, as well as developing new languages. This review analyses the cutting-edge expressive, interactive and representative potential of immersive digital technologies. It also considers future possibilities regarding the evolution of these immersive technologies, such as virtual reality, in coming years, in order to apply them to diverse scientific, artistic or informational and educational domains. We conclude that virtual reality is an ensemble of technological innovations, but also a concept, and propose models to link it with the latest in other domains such as UX (user experience, interaction design. This concept can help researchers and developers to design new experiences and conceive new expressive models that can be applied to a wide range of scientific lines of research and educational dynamics.

  14. Visualizing the process of interaction in a 3D environment

    Science.gov (United States)

    Vaidya, Vivek; Suryanarayanan, Srikanth; Krishnan, Kajoli; Mullick, Rakesh

    2007-03-01

    As the imaging modalities used in medicine transition to increasingly three-dimensional data the question of how best to interact with and analyze this data becomes ever more pressing. Immersive virtual reality systems seem to hold promise in tackling this, but how individuals learn and interact in these environments is not fully understood. Here we will attempt to show some methods in which user interaction in a virtual reality environment can be visualized and how this can allow us to gain greater insight into the process of interaction/learning in these systems. Also explored is the possibility of using this method to improve understanding and management of ergonomic issues within an interface.

  15. Game-Based Learning in an OpenSim-Supported Virtual Environment on Perceived Motivational Quality of Learning

    Science.gov (United States)

    Kim, Heesung; Ke, Fengfeng; Paek, Insu

    2017-01-01

    This experimental study was intended to examine whether game-based learning (GBL) that encompasses four particular game characteristics (challenges, a storyline, immediate rewards and the integration of game-play with learning content) in an OpenSimulator-supported virtual reality learning environment can improve perceived motivational quality of…

  16. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    Science.gov (United States)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  17. An action selection architecture for autonomous virtual humans in persistent worlds

    OpenAIRE

    Sevin, Etienne de; Thalmann, Daniel

    2007-01-01

    Nowadays, virtual humans such as non-player characters in computer games need to have a strong autonomy in order to live their own life in persistent virtual worlds. When designing autonomous virtual humans, the action selection problem needs to be considered, as it is responsible for decision making at each moment in time. Indeed action selection architectures for autonomous virtual humans need to be reactive, proactive, motivational, and emotional to obtain a high degree of autonomy and ind...

  18. A Development of Game-Based Learning Environment to Activate Interaction among Learners

    Science.gov (United States)

    Takaoka, Ryo; Shimokawa, Masayuki; Okamoto, Toshio

    Many studies and systems that incorporate elements such as “pleasure” and “fun” in the game to improve a learner's motivation have been developed in the field of learning environments. However, few are the studies of situations where many learners gather at a single computer and participate in a game-based learning environment (GBLE), and where the GBLE designs the learning process by controlling the interactions between learners such as competition, collaboration, and learning by teaching. Therefore, the purpose of this study is to propose a framework of educational control that induces and activates interaction between learners intentionally to create a learning opportunity that is based on the knowledge understanding model of each learner. In this paper, we explain the design philosophy and the framework of our GBLE called “Who becomes the king in the country of mathematics?” from a game viewpoint and describe the method of learning support control in the learning environment. In addition, we report the results of the learning experiment with our GBLE, which we carried out in a junior high school, and include some comments by a principal and a teacher. From the results of the experiment and some comments, we noticed that a game may play a significant role in weakening the learning relationship among students and creating new relationships in the world of the game. Furthermore, we discovered that learning support control of the GBLE has led to activation of the interaction between learners to some extent.

  19. A workout for virtual bodybuilders (design issues for embodiment in multi-actor virtual environments)

    Science.gov (United States)

    Benford, Steve; Bowers, John; Fahlen, Lennart E.; Greenhalgh, Chris; Snowdon, Dave

    1994-01-01

    This paper explores the issue of user embodiment within collaborative virtual environments. By user embodiment we mean the provision of users with appropriate body images so as to represent them to others and also to themselves. By collaborative virtual environments we mean multi-user virtual reality systems which support cooperative work (although we argue that the results of our exploration may also be applied to other kinds of collaborative systems). The main part of the paper identifies a list of embodiment design issues including: presence, location, identity, activity, availability, history of activity, viewpoint, action point, gesture, facial expression, voluntary versus involuntary expression, degree of presence, reflecting capabilities, manipulating the user's view of others, representation across multiple media, autonomous and distributed body parts, truthfulness and efficiency. Following this, we show how these issues are reflected in our own DIVE and MASSIVE prototype collaborative virtual environments.

  20. Design, engineering and utility of biotic games.

    Science.gov (United States)

    Riedel-Kruse, Ingmar H; Chung, Alice M; Dura, Burak; Hamilton, Andrea L; Lee, Byung C

    2011-01-07

    Games are a significant and defining part of human culture, and their utility beyond pure entertainment has been demonstrated with so-called 'serious games'. Biotechnology--despite its recent advancements--has had no impact on gaming yet. Here we propose the concept of 'biotic games', i.e., games that operate on biological processes. Utilizing a variety of biological processes we designed and tested a collection of games: 'Enlightenment', 'Ciliaball', 'PAC-mecium', 'Microbash', 'Biotic Pinball', 'POND PONG', 'PolymerRace', and 'The Prisoner's Smellemma'. We found that biotic games exhibit unique features compared to existing game modalities, such as utilizing biological noise, providing a real-life experience rather than virtual reality, and integrating the chemical senses into play. Analogous to video games, biotic games could have significant conceptual and cost-reducing effects on biotechnology and eventually healthcare; enable volunteers to participate in crowd-sourcing to support medical research; and educate society at large to support personal medical decisions and the public discourse on bio-related issues.

  1. Urban Sustainability through Public Architecture

    Directory of Open Access Journals (Sweden)

    Soomi Kim

    2018-04-01

    Full Text Available As the sustainability of contemporary cities has gained emphasis, interest in architecture has increased, due to its social and public responsibility. Since sustainability is linked to public values, research on sustainable public spaces is an important way to secure sustainability in cities. Based on this, we analyzed the sustainability of European cities by examining the design methods of public architecture according to the region. The aim of the study is to derive architectural methodology corresponding to local characteristics, and to suggest issues to consider in public architecture design to promote urban sustainability based on this. First, regarding the environmental aspect, it can be observed that there is an effort to secure sustainability. Second, in terms of social sustainability, historical value remains as a trace of architectural place, so that it continues in people’s memory. In addition, public architecture provides public places where citizens can gather and enjoy programs, while the architectural methods showed differences influenced by cultural conditions. Third, in economic sustainability, it was shown that energy saving was achieved through cost reduction through recycling of materials, facilities, or environmental factors. In conclusion, the issues to be considered in public architectural design are the voiding of urban space through architectural devices in the construction method. In other words, the intention is to form “ground” that attempts to be part of the city, and thereby create better places. Since skin and material have a deep relationship with the environment, they should have the durability and an outer skin that are suitable for the regional environment. Finally, sustainability is to be utilized through the influx of programs that meet local and environmental characteristics. Design research into public architecture that is oriented towards urban sustainability will be a task to be carried out by the

  2. A Phenomenological Examination of Virtual Game Developers' Experiences Using Jacob's Ladder Pre-Production Design Tactic

    Science.gov (United States)

    Brown-Turner, Jasmine

    2017-01-01

    Edutainment refers to curriculum and instruction designed with a clear educational purpose, including multi-faceted virtual learning game design. Tools such as the Jacob's Ladder pre-production design tactic have been developed to ensure that voices of both engineers and educators are heard. However, it is unclear how development team members…

  3. On line and on paper: Visual representations, visual culture, and computer graphics in design engineering

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, K.

    1991-01-01

    The research presented examines the visual communication practices of engineers and the impact of the implementation of computer graphics on their visual culture. The study is based on participant observation of day-to-day practices in two contemporary industrial settings among engineers engaged in the actual process of designing new pieces of technology. In addition, over thirty interviews were conducted at other industrial sites to confirm that the findings were not an isolated phenomenon. The data show that there is no one best way' to use a computer graphics system, but rather that use is site specific and firms and individuals engage in mixed paper and electronic practices as well as differential use of electronic options to get the job done. This research illustrates that rigid models which assume a linear theory of innovation, projecting a straight-forward process from idea, to drawing, to prototype, to production, are seriously misguided.

  4. CONTROLLING VIRTUAL CLOUDS AND MAKING IT RAIN PARTICLE SYSTEMS IN REAL SPACES USING SITUATED AUGMENTED SIMULATION AND PORTABLE VIRTUAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    N. Hedley

    2012-07-01

    Full Text Available The research described in this paper reports on the design, rationale, development and implementation of a set of new geospatial interfaces that combine multi-touch interaction, portable virtual environments, 'geosimulation gaming', and mobile augmented reality. The result is a set of new ways for us to combine the capabilities of geospatial virtual environments, augmented realitiy and geosimulation. These new hybrid interfaces deliver new geospatial information experiences – new ways of connecting spatial data, simulations, and abstract concepts to real spaces. Their potential to enhance environmental perception and learning must be explored.

  5. Method for operating video game with back-feeding a video image of a player, and a video game arranged for practicing the method.

    NARCIS (Netherlands)

    2006-01-01

    In a video gaming environment, a player is enabled to interact with the environment. Further, a score and/or performance of the player in a particular session is machine detected and fed fed back into the gaming environment and a representation of said score and/or performance is displayed in visual

  6. POTENTIAL USE OF VIRTUAL ENVIRONMENTS IN DESIGN EDUCATION

    OpenAIRE

    SAGUN, Aysu

    2011-01-01

    This paper explores the potential use of Virtual Environments (VE) in design education. Recently, the way the designers form their mental concepts, develop and test their design is enhanced with the new computer technologies. Computer generated VE has a great potential to be used in the design process and collaborative studies because they enable manipulation of simulated products as well as interaction of people with each other and the simulated space for communication and col...

  7. The Usability of a GeoVisual Analytics Environment for the Exploration and Analysis of Different Datasets

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan; van Elzakker, C. P. J. M.

    2017-01-01

    for pattern recognition, decision-making or analytical reasoning. However, the question is whether those visual representations are suitable for visualization of different types of data to perform similar tasks. The limited usability studies that have been done on interactive analytical environments have...... failed to yield a definite answer. Therefore, this paper presents an evaluation experiment on how an interactive GVA environment can be designed that will effectively support similar task execution processes for different use cases. In the GVA environment investigated, four graphic representations...

  8. Software Architecture Design for Spatially-Indexed Media in Smart Environments

    Directory of Open Access Journals (Sweden)

    SCHIPOR, O.-A.

    2017-05-01

    Full Text Available We introduce in this work a new software architecture design, based on well-established web communication protocols and scripting languages, for implementing spatially-indexed media in smart environments. We based our approach on specific design guidelines. Our concept of spatially-indexed media enables users to readily instantiate mappings between digital content and specific regions of the physical space. We present an implementation of the architecture using a motion capture system, a large visualization display, and several smart devices. We also present an experimental evaluation of our new software architecture by reporting response times function of changes in the complexity of physical-digital environment.

  9. Style grammars for interactive visualization of architecture.

    Science.gov (United States)

    Aliaga, Daniel G; Rosen, Paul A; Bekins, Daniel R

    2007-01-01

    Interactive visualization of architecture provides a way to quickly visualize existing or novel buildings and structures. Such applications require both fast rendering and an effortless input regimen for creating and changing architecture using high-level editing operations that automatically fill in the necessary details. Procedural modeling and synthesis is a powerful paradigm that yields high data amplification and can be coupled with fast-rendering techniques to quickly generate plausible details of a scene without much or any user interaction. Previously, forward generating procedural methods have been proposed where a procedure is explicitly created to generate particular content. In this paper, we present our work in inverse procedural modeling of buildings and describe how to use an extracted repertoire of building grammars to facilitate the visualization and quick modification of architectural structures and buildings. We demonstrate an interactive application where the user draws simple building blocks and, using our system, can automatically complete the building "in the style of" other buildings using view-dependent texture mapping or nonphotorealistic rendering techniques. Our system supports an arbitrary number of building grammars created from user subdivided building models and captured photographs. Using only edit, copy, and paste metaphors, the entire building styles can be altered and transferred from one building to another in a few operations, enhancing the ability to modify an existing architectural structure or to visualize a novel building in the style of the others.

  10. Virtual Environmental Enrichment through Video Games Improves Hippocampal-Associated Memory

    Science.gov (United States)

    Clemenson, Gregory D.

    2015-01-01

    The positive effects of environmental enrichment and their neural bases have been studied extensively in the rodent (van Praag et al., 2000). For example, simply modifying an animal's living environment to promote sensory stimulation can lead to (but is not limited to) enhancements in hippocampal cognition and neuroplasticity and can alleviate hippocampal cognitive deficits associated with neurodegenerative diseases and aging. We are interested in whether these manipulations that successfully enhance cognition (or mitigate cognitive decline) have similar influences on humans. Although there are many “enriching” aspects to daily life, we are constantly adapting to new experiences and situations within our own environment on a daily basis. Here, we hypothesize that the exploration of the vast and visually stimulating virtual environments within video games is a human correlate of environmental enrichment. We show that video gamers who specifically favor complex 3D video games performed better on a demanding recognition memory task that assesses participants' ability to discriminate highly similar lure items from repeated items. In addition, after 2 weeks of training on the 3D video game Super Mario 3D World, naive video gamers showed improved mnemonic discrimination ability and improvements on a virtual water maze task. Two control conditions (passive and training in a 2D game, Angry Birds), showed no such improvements. Furthermore, individual performance in both hippocampal-associated behaviors correlated with performance in Super Mario but not Angry Birds, suggesting that how individuals explored the virtual environment may influence hippocampal behavior. SIGNIFICANCE STATEMENT The hippocampus has long been associated with episodic memory and is commonly thought to rely on neuroplasticity to adapt to the ever-changing environment. In animals, it is well understood that exposing animals to a more stimulating environment, known as environmental enrichment, can

  11. Virtual Environmental Enrichment through Video Games Improves Hippocampal-Associated Memory.

    Science.gov (United States)

    Clemenson, Gregory D; Stark, Craig E L

    2015-12-09

    The positive effects of environmental enrichment and their neural bases have been studied extensively in the rodent (van Praag et al., 2000). For example, simply modifying an animal's living environment to promote sensory stimulation can lead to (but is not limited to) enhancements in hippocampal cognition and neuroplasticity and can alleviate hippocampal cognitive deficits associated with neurodegenerative diseases and aging. We are interested in whether these manipulations that successfully enhance cognition (or mitigate cognitive decline) have similar influences on humans. Although there are many "enriching" aspects to daily life, we are constantly adapting to new experiences and situations within our own environment on a daily basis. Here, we hypothesize that the exploration of the vast and visually stimulating virtual environments within video games is a human correlate of environmental enrichment. We show that video gamers who specifically favor complex 3D video games performed better on a demanding recognition memory task that assesses participants' ability to discriminate highly similar lure items from repeated items. In addition, after 2 weeks of training on the 3D video game Super Mario 3D World, naive video gamers showed improved mnemonic discrimination ability and improvements on a virtual water maze task. Two control conditions (passive and training in a 2D game, Angry Birds), showed no such improvements. Furthermore, individual performance in both hippocampal-associated behaviors correlated with performance in Super Mario but not Angry Birds, suggesting that how individuals explored the virtual environment may influence hippocampal behavior. The hippocampus has long been associated with episodic memory and is commonly thought to rely on neuroplasticity to adapt to the ever-changing environment. In animals, it is well understood that exposing animals to a more stimulating environment, known as environmental enrichment, can stimulate neuroplasticity and

  12. Accurate Complex Systems Design: Integrating Serious Games with Petri Nets

    Directory of Open Access Journals (Sweden)

    Kirsten Sinclair

    2016-03-01

    Full Text Available Difficulty understanding the large number of interactions involved in complex systems makes their successful engineering a problem. Petri Nets are one graphical modelling technique used to describe and check proposed designs of complex systems thoroughly. While automatic analysis capabilities of Petri Nets are useful, their visual form is less so, particularly for communicating the design they represent. In engineering projects, this can lead to a gap in communications between people with different areas of expertise, negatively impacting achieving accurate designs.In contrast, although capable of representing a variety of real and imaginary objects effectively, behaviour of serious games can only be analysed manually through interactive simulation. This paper examines combining the complementary strengths of Petri Nets and serious games. The novel contribution of this work is a serious game prototype of a complex system design that has been checked thoroughly. Underpinned by Petri Net analysis, the serious game can be used as a high-level interface to communicate and refine the design.Improvement of a complex system design is demonstrated by applying the integration to a proof-of-concept case study.   

  13. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    Science.gov (United States)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  14. D Modelling and Interactive Web-Based Visualization of Cultural Heritage Objects

    Science.gov (United States)

    Koeva, M. N.

    2016-06-01

    Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interactive visualization, 3D models are highly effective and intuitive for present-day users who have stringent requirements and high expectations. Depending on the complexity of the objects for the specific case, various technological methods can be applied. The selected objects in this particular research are located in Bulgaria - a country with thousands of years of history and cultural heritage dating back to ancient civilizations. This motivates the preservation, visualisation and recreation of undoubtedly valuable historical and architectural objects and places, which has always been a serious challenge for specialists in the field of cultural heritage. In the present research, comparative analyses regarding principles and technological processes needed for 3D modelling and visualization are presented. The recent problems, efforts and developments in interactive representation of precious objects and places in Bulgaria are presented. Three technologies based on real projects are described: (1) image-based modelling using a non-metric hand-held camera; (2) 3D visualization based on spherical panoramic images; (3) and 3D geometric and photorealistic modelling based on architectural CAD drawings. Their suitability for web-based visualization are demonstrated and compared. Moreover the possibilities for integration with additional information such as interactive maps, satellite imagery, sound, video and specific information for the objects are described. This comparative study

  15. Virtual learning environment for interactive engagement with advanced quantum mechanics

    Directory of Open Access Journals (Sweden)

    Mads Kock Pedersen

    2016-04-01

    Full Text Available A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  16. BIM Based Virtual Environment for Fire Emergency Evacuation

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2014-01-01

    Full Text Available Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management.

  17. BIM based virtual environment for fire emergency evacuation.

    Science.gov (United States)

    Wang, Bin; Li, Haijiang; Rezgui, Yacine; Bradley, Alex; Ong, Hoang N

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management.

  18. Human-scale interaction for virtual model displays: a clear case for real tools

    Science.gov (United States)

    Williams, George C.; McDowall, Ian E.; Bolas, Mark T.

    1998-04-01

    We describe a hand-held user interface for interacting with virtual environments displayed on a Virtual Model Display. The tool, constructed entirely of transparent materials, is see-through. We render a graphical counterpart of the tool on the display and map it one-to-one with the real tool. This feature, combined with a capability for touch- sensitive, discrete input, results in a useful spatial input device that is visually versatile. We discuss the tool's design and interaction techniques it supports. Briefly, we look at the human factors issues and engineering challenges presented by this tool and, in general, by the class of hand-held user interfaces that are see-through.

  19. Combining Digital Archives Content with Serious Game Approach to Create a Gamified Learning Experience

    Directory of Open Access Journals (Sweden)

    D.-T. Shih

    2015-08-01

    Full Text Available This paper presents an interdisciplinary to develop content-aware application that combines game with learning on specific categories of digital archives. The employment of content-oriented game enhances the gamification and efficacy of learning in culture education on architectures and history of Hsinchu County, Taiwan. The gamified form of the application is used as a backbone to support and provide a strong stimulation to engage users in learning art and culture, therefore this research is implementing under the goal of “The Digital ARt/ARchitecture Project”. The purpose of the abovementioned project is to develop interactive serious game approaches and applications for Hsinchu County historical archives and architectures. Therefore, we present two applications, “3D AR for Hukou Old ” and “Hsinchu County History Museum AR Tour” which are in form of augmented reality (AR. By using AR imaging techniques to blend real object and virtual content, the users can immerse in virtual exhibitions of Hukou Old Street and Hsinchu County History Museum, and to learn in ubiquitous computing environment. This paper proposes a content system that includes tools and materials used to create representations of digitized cultural archives including historical artifacts, documents, customs, religion, and architectures. The Digital ARt / ARchitecture Project is based on the concept of serious game and consists of three aspects: content creation, target management, and AR presentation. The project focuses on developing a proper approach to serve as an interactive game, and to offer a learning opportunity for appreciating historic architectures by playing AR cards. Furthermore, the card game aims to provide multi-faceted understanding and learning experience to help user learning through 3D objects, hyperlinked web data, and the manipulation of learning mode, and then effectively developing their learning levels on cultural and historical archives in

  20. Combining Digital Archives Content with Serious Game Approach to Create a Gamified Learning Experience

    Science.gov (United States)

    Shih, D.-T.; Lin, C. L.; Tseng, C.-Y.

    2015-08-01

    This paper presents an interdisciplinary to develop content-aware application that combines game with learning on specific categories of digital archives. The employment of content-oriented game enhances the gamification and efficacy of learning in culture education on architectures and history of Hsinchu County, Taiwan. The gamified form of the application is used as a backbone to support and provide a strong stimulation to engage users in learning art and culture, therefore this research is implementing under the goal of "The Digital ARt/ARchitecture Project". The purpose of the abovementioned project is to develop interactive serious game approaches and applications for Hsinchu County historical archives and architectures. Therefore, we present two applications, "3D AR for Hukou Old " and "Hsinchu County History Museum AR Tour" which are in form of augmented reality (AR). By using AR imaging techniques to blend real object and virtual content, the users can immerse in virtual exhibitions of Hukou Old Street and Hsinchu County History Museum, and to learn in ubiquitous computing environment. This paper proposes a content system that includes tools and materials used to create representations of digitized cultural archives including historical artifacts, documents, customs, religion, and architectures. The Digital ARt / ARchitecture Project is based on the concept of serious game and consists of three aspects: content creation, target management, and AR presentation. The project focuses on developing a proper approach to serve as an interactive game, and to offer a learning opportunity for appreciating historic architectures by playing AR cards. Furthermore, the card game aims to provide multi-faceted understanding and learning experience to help user learning through 3D objects, hyperlinked web data, and the manipulation of learning mode, and then effectively developing their learning levels on cultural and historical archives in Hsinchu County.

  1. INVESTIGATING THE EFFECT OF EMPLOYING IMMERSIVE VIRTUAL ENVIRONMENT ON ENHANCING SPATIAL PERCEPTION WITHIN DESIGN PROCESS

    Directory of Open Access Journals (Sweden)

    Rawan Taisser Abu Alatta

    2017-07-01

    Full Text Available The recent developments in Information Technology (IT and digital media have introduced new opportunities to design studio and new dimensions to design and architecture. The current research studies how the immersion of Virtual Reality (VR in architectural design studio affects spatial perception through the design process. The aim of this study is to investigate the effect of using such environments on changing the way how to design for human experience: how it will improve students' spatial understanding of Three Dimensions (3D volumes, and how it will enhance their imagination, enrich their creativity and promote their ability to experience their design's sensations. This study hypothesizes that using an immersive virtual environment in design studio will empower students' imaginations and give them the ability to understand and experience their ideas. It will give them the opportunity to check their design's validity with greater 3D exploration, understanding and comprehension of spatial volumes.  Within a framework of an experimental design research, a series of experiments was conducted to evaluate what had been assumed.  The research used teaching, monitoring, explanatory observation and evaluation methods. The results showed that VR can not only enhance spatial perception and improve the design, but also it can affect the design process and make changes in the architectural design way of thinking. It can help designers to incorporate human experience within the design process.

  2. The Interaction Between Landscape Architecture and Urban Development. Do we Have a Common Goal?

    Directory of Open Access Journals (Sweden)

    Vaiva Deveikienė

    2015-05-01

    Full Text Available The article analyses the problem of the relationship and interaction between urban design and landscape architecture. This refers to the period of the modern city from the late nineteenth century to the present day. There are presented and discussed urbanization processes and examples of solutions with emphasis on problems arising from the relationship between a city and nature as well as those related to urban landscape and sustainability of urban landscaping in the twentieth century.

  3. DEVELOPING VISUAL NOVEL GAME WITH SPEECH-RECOGNITION INTERACTIVITY TO ENHANCE STUDENTS’ MASTERY ON ENGLISH EXPRESSIONS

    Directory of Open Access Journals (Sweden)

    Elizabeth Anggraeni Amalo

    2017-11-01

    Full Text Available The teaching of English-expressions has always been done through conversation samples in form of written texts, audio recordings, and videos. In the meantime, the development of computer-aided learning technology has made autonomous language learning possible. Game, as one of computer-aided learning technology products, can serve as a medium to provide educational contents like that of language teaching and learning. Visual Novel is considered as a conversational game that is suitable to be combined with English-expressions material. Unlike the other click-based interaction Visual Novel Games, the visual novel game in this research implements speech recognition as the interaction trigger. Hence, this paper aims at elaborating how visual novel games are utilized to deliver English-expressions with speech recognition command for the interaction. This research used Research and Development (R&D method with Experimental design through control and experimental groups to measure its effectiveness in enhancing students’ English-expressions mastery. ANOVA was utilized to prove the significant differences between the control and experimental groups. It is expected that the result of this development and experiment can devote benefits to the English teaching and learning, especially on English-expressions.

  4. People with Disabilities Leading the Design of Serious Games and Virtual Worlds.

    Directory of Open Access Journals (Sweden)

    Yurgos Politis

    2017-06-01

    Full Text Available Games and virtual worlds have many potential benefits for people with intellectual disabilities (ID and autism spectrum disorder (ASD, in terms of training, education, and rehabilitation. However, because this population presents a wide range of specific needs and abilities, it can be difficult to design games which are engaging and present optimum levels of challenge to players. By including individuals with ID and ASD in the design phase we can help meet their specific needs and preferences by personalizing an intervention through the exploration of experimental techniques, methods and assistive technologies. By embracing the Responsible Research and Innovation approach, we bring science and society closer together to shape the world for future generations. A number of approaches for achieving such inclusion have been described, such as User Sensitive Inclusive Design, Universal Design, and Design for All. Here we discuss three specific examples of the design of games and virtual worlds for people with ID/ASD and illustrate how they attempt to meet their needs. Namely 1 a blended approach of computerised program and applied behaviour analysis for reading skills 2 immersive gameplay for employment and transferable skills training and 3 virtual reality training to enhance communication skills.

  5. Cellular Automata as a learning process in Architecture and Urban design

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Foged, Isak Worre

    2014-01-01

    . An architectural methodological response to this situation is presented through the development of a conceptual computational design system that allows these dynamics to unfold and to be observed for architectural design decision taking. Reflecting on the development and implementation of a cellular automata based...... design approach on a master level urban design studio this paper will discuss the strategies for dealing with complexity at an urban scale as well as the pedagogical considerations behind applying computational tools and methods to a urban design education....

  6. Augmented Virtuality: A Real-time Process for Presenting Real-world Visual Sensory Information in an Immersive Virtual Environment for Planetary Exploration

    Science.gov (United States)

    McFadden, D.; Tavakkoli, A.; Regenbrecht, J.; Wilson, B.

    2017-12-01

    Virtual Reality (VR) and Augmented Reality (AR) applications have recently seen an impressive growth, thanks to the advent of commercial Head Mounted Displays (HMDs). This new visualization era has opened the possibility of presenting researchers from multiple disciplines with data visualization techniques not possible via traditional 2D screens. In a purely VR environment researchers are presented with the visual data in a virtual environment, whereas in a purely AR application, a piece of virtual object is projected into the real world with which researchers could interact. There are several limitations to the purely VR or AR application when taken within the context of remote planetary exploration. For example, in a purely VR environment, contents of the planet surface (e.g. rocks, terrain, or other features) should be created off-line from a multitude of images using image processing techniques to generate 3D mesh data that will populate the virtual surface of the planet. This process usually takes a tremendous amount of computational resources and cannot be delivered in real-time. As an alternative, video frames may be superimposed on the virtual environment to save processing time. However, such rendered video frames will lack 3D visual information -i.e. depth information. In this paper, we present a technique to utilize a remotely situated robot's stereoscopic cameras to provide a live visual feed from the real world into the virtual environment in which planetary scientists are immersed. Moreover, the proposed technique will blend the virtual environment with the real world in such a way as to preserve both the depth and visual information from the real world while allowing for the sensation of immersion when the entire sequence is viewed via an HMD such as Oculus Rift. The figure shows the virtual environment with an overlay of the real-world stereoscopic video being presented in real-time into the virtual environment. Notice the preservation of the object

  7. Introduction to Chemical Engineering Reactor Analysis: A Web-Based Reactor Design Game

    Science.gov (United States)

    Orbey, Nese; Clay, Molly; Russell, T.W. Fraser

    2014-01-01

    An approach to explain chemical engineering through a Web-based interactive game design was developed and used with college freshman and junior/senior high school students. The goal of this approach was to demonstrate how to model a lab-scale experiment, and use the results to design and operate a chemical reactor. The game incorporates both…

  8. Designing user models in a virtual cave environment

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S. [Argonne National Lab., Idaho Falls, ID (United States); Hudson, R. [Argonne National Lab., IL (United States); Gokhale, N. [Madge Networks, San Jose, CA (United States)

    1995-12-31

    In this paper, the results of a first study into the use of virtual reality for human factor studies and design of simple and complex models of control systems, components, and processes are described. The objective was to design a model in a virtual environment that would reflect more characteristics of the user`s mental model of a system and fewer of the designer`s. The technology of a CAVE{trademark} virtual environment and the methodology of Neuro Linguistic Programming were employed in this study.

  9. The architecture of information architecture, interaction design and the patterning of digital information

    CERN Document Server

    Dade-Robertson, Martyn

    2011-01-01

    This book looks at relationships between the organization of physical objects in space and the organization of ideas. Historical, philosophical, psychological and architectural knowledge are united to develop an understanding of the relationship between information and its representation.Despite its potential to break the mould, digital information has relied on metaphors from a pre-digital era. In particular, architectural ideas have pervaded discussions of digital information, from the urbanization of cyberspace in science fiction, through to the adoption of spatial visualiz

  10. The visual-landscape analysis during the integration of high-rise buildings within the historic urban environment

    Science.gov (United States)

    Akristiniy, Vera A.; Dikova, Elena A.

    2018-03-01

    The article is devoted to one of the types of urban planning studies - the visual-landscape analysis during the integration of high-rise buildings within the historic urban environment for the purposes of providing pre-design and design studies in terms of preserving the historical urban environment and the implementation of the reconstructional resource of the area. In the article formed and systematized the stages and methods of conducting the visual-landscape analysis taking into account the influence of high-rise buildings on objects of cultural heritage and valuable historical buildings of the city. Practical application of the visual-landscape analysis provides an opportunity to assess the influence of hypothetical location of high-rise buildings on the perception of a historically developed environment and optimal building parameters. The contents of the main stages in the conduct of the visual - landscape analysis and their key aspects, concerning the construction of predicted zones of visibility of the significant historically valuable urban development objects and hypothetically planned of the high-rise buildings are revealed. The obtained data are oriented to the successive development of the planning and typological structure of the city territory and preservation of the compositional influence of valuable fragments of the historical environment in the structure of the urban landscape. On their basis, an information database is formed to determine the permissible urban development parameters of the high-rise buildings for the preservation of the compositional integrity of the urban area.

  11. The visual-landscape analysis during the integration of high-rise buildings within the historic urban environment

    Directory of Open Access Journals (Sweden)

    Akristiniy Vera A.

    2018-01-01

    Full Text Available The article is devoted to one of the types of urban planning studies - the visual-landscape analysis during the integration of high-rise buildings within the historic urban environment for the purposes of providing pre-design and design studies in terms of preserving the historical urban environment and the implementation of the reconstructional resource of the area. In the article formed and systematized the stages and methods of conducting the visual-landscape analysis taking into account the influence of high-rise buildings on objects of cultural heritage and valuable historical buildings of the city. Practical application of the visual-landscape analysis provides an opportunity to assess the influence of hypothetical location of high-rise buildings on the perception of a historically developed environment and optimal building parameters. The contents of the main stages in the conduct of the visual - landscape analysis and their key aspects, concerning the construction of predicted zones of visibility of the significant historically valuable urban development objects and hypothetically planned of the high-rise buildings are revealed. The obtained data are oriented to the successive development of the planning and typological structure of the city territory and preservation of the compositional influence of valuable fragments of the historical environment in the structure of the urban landscape. On their basis, an information database is formed to determine the permissible urban development parameters of the high-rise buildings for the preservation of the compositional integrity of the urban area.

  12. Development and Evaluation of the Virtual Prototype of the First Saudi Arabian-Designed Car

    Directory of Open Access Journals (Sweden)

    Mustufa H. Abidi

    2016-10-01

    Full Text Available Prototyping and evaluation are imperative phases of the present product design and development process. Although digital modeling and analysis methods are widely employed at various product development stages, still, building a physical prototype makes the present typical process expensive and time consuming. Therefore, it is necessary to implement new technologies, such as virtual prototyping, which can enable industry to have a rapid and more controlled decision making process. Virtual prototyping has come a long way in recent years, where current environments enable stereoscopic visuals, surround sound and ample interaction with the generated models. It is also important to evaluate how representative the developed virtual prototype is when compared to the real-world counterpart and the sense of presence reported by users of the virtual prototype. This paper describes the systematic procedure to develop a virtual prototype of Gazal-1 (i.e., the first car prototype designed by Saudi engineers in a semi-immersive virtual environment. The steps to develop a virtual prototype from CAD (computer-aided design models are explained in detail. Various issues involved in the different phases for the development of the virtual prototype are also discussed comprehensively. The paper further describes the results of the subjective assessment of a developed virtual prototype of a Saudi Arabian-designed automobile. User’s feedback is recorded using a presence questionnaire. Based on the user-based study, it is revealed that the virtual prototype is representative of the real Saudi Arabian car and offers a flexible environment to analyze design features when compared against its physical prototype. The capabilities of the virtual environment are validated with the application of the car prototype. Finally, vital requirements and directions for future research are also presented.

  13. ARZombie: A Mobile Augmented Reality Game with Multimodal Interaction

    Directory of Open Access Journals (Sweden)

    Diogo Cordeiro

    2015-11-01

    Full Text Available Augmented reality games have the power to extend virtual gaming into real world scenarios with real people, while enhancing the senses of the user. This paper describes the AR- Zombie game developed with the aim of studying and developing mobile augmented reality applications, specifically for tablets, using face recognition interaction techniques. The goal of the ARZombie player is to kill zombies that are detected through the display of the device. Instead of using markers as a mean of tracking the zombies, this game incorporates a facial recognition system, which will enhance the user experience by improving the interaction of players with the real world. As the player moves around the environment, the game will display virtual zombies on the screen if the detected faces are recognized as belonging to the class of the zombies. ARZombie was tested with users to evaluate the interaction proposals and its components were evaluated regarding the performance in order to ensure a better gaming experience.

  14. HyperCell: A Bio-inspired Design Framework for Real-time Interactive Architectures

    Directory of Open Access Journals (Sweden)

    Jia-Rey Chang

    2018-01-01

    eliciting the collective intelligence prevalent in nature and the virtual world of Big Data. Interactive Architecture shall thus embody integrated Information exchange protocols and decision-making systems in order to possess organic body-like qualities.   “Biology”, in this research explores biomimetic principles intended to create purposedriven kinetic and organic architecture. This involves a detailed study/critique of organic architecture, generating organic shapes, performance optimization based digital fabrication techniques and kinetic systems. A holistic bio-inspired architecture embodies multiple performance criteria akin to natural systems, which integrate structural, infrastructure performances throughout the growth of an organic body. Such a natural morphogenesis process of architectural design explores what Janine M. Benyus described as “learning the natural process”. Profoundly influenced by the processes behind morphogenesis, the research further explores Evolutionary Development Biology (Evo-Devo explaining how embryological regulation strongly affect the resulting formations. Evo-Devo in interactive architecture implies the development of architecture based on three fundamental principles: “Simple to Complex”, “Geometric Information Distribution”, and “On/Off Switch and Trigger.” The research seeks to create a relatively intelligent architectural body, and the tactile interactive spatial environment by applying the extracted knowledge from the study of the aforementioned principles of Evo-Devo in the following fashion: • A. Extract a Self-Similar Componential System based approach from the “Simple to Complex” principle of Evo-Devo • B. Extract the idea of “Collective Intelligence” from “Geometric information Distribution” principle of Evo-Devo • C. Extract the principle of “Assembly Regulation” from “On/Off switch and trigger” principle of Evo-Devo The “HyperCell” research, through an elaborate

  15. Photogrammetry and remote sensing for visualization of spatial data in a virtual reality environment

    Science.gov (United States)

    Bhagawati, Dwipen

    2001-07-01

    Researchers in many disciplines have started using the tool of Virtual Reality (VR) to gain new insights into problems in their respective disciplines. Recent advances in computer graphics, software and hardware technologies have created many opportunities for VR systems, advanced scientific and engineering applications being among them. In Geometronics, generally photogrammetry and remote sensing are used for management of spatial data inventory. VR technology can be suitably used for management of spatial data inventory. This research demonstrates usefulness of VR technology for inventory management by taking the roadside features as a case study. Management of roadside feature inventory involves positioning and visualization of the features. This research has developed a methodology to demonstrate how photogrammetric principles can be used to position the features using the video-logging images and GPS camera positioning and how image analysis can help produce appropriate texture for building the VR, which then can be visualized in a Cave Augmented Virtual Environment (CAVE). VR modeling was implemented in two stages to demonstrate the different approaches for modeling the VR scene. A simulated highway scene was implemented with the brute force approach, while modeling software was used to model the real world scene using feature positions produced in this research. The first approach demonstrates an implementation of the scene by writing C++ codes to include a multi-level wand menu for interaction with the scene that enables the user to interact with the scene. The interactions include editing the features inside the CAVE display, navigating inside the scene, and performing limited geographic analysis. The second approach demonstrates creation of a VR scene for a real roadway environment using feature positions determined in this research. The scene looks realistic with textures from the real site mapped on to the geometry of the scene. Remote sensing and

  16. Collaborative virtual gaming worlds in higher education

    Directory of Open Access Journals (Sweden)

    Nicola Whitton

    2008-12-01

    Full Text Available There is growing interest in the use of virtual gaming worlds in education, supported by the increased use of multi-user virtual environments (MUVEs and massively multiplayer online role-playing games (MMORPGs for collaborative learning. However, this paper argues that collaborative gaming worlds have been in use much longer and are much wider in scope; it considers the range of collaborative gaming worlds that exist and discusses their potential for learning, with particular reference to higher education. The paper discusses virtual gaming worlds from a theoretical pedagogic perspective, exploring the educational benefits of gaming environments. Then practical considerations associated with the use of virtual gaming worlds in formal settings in higher education are considered. Finally, the paper considers development options that are open to educators, and discusses the potential of Alternate Reality Games (ARGs for learning in higher education. In all, this paper hopes to provide a balanced overview of the range of virtual gaming worlds that exist, to examine some of the practical considerations associated with their use, and to consider their benefits and challenges in learning and teaching in the higher education context.

  17. THE DEVELOPMENT OF AN INTERACTIVE VIRTUAL ENVIRONMENT FOR HISHAM PALACE IN JERICHO, PALESTINE

    Directory of Open Access Journals (Sweden)

    Shadi Ghadban

    2013-07-01

    Full Text Available This study aims to introduce Virtual Reality (VR techniques as a tool to develop an interactive environment for cultural heritage sites in Palestine; these sites have their own specific problems and challenges, which have significantly affected most of the existing sites and cause their continuous deterioration. The virtual replicas of these sites and landscapes can act as a medium for their preservation, documentation, interpretation and intervention, assisting in education, tourism and an increase in public awareness regarding their significant value. For this purpose, Hisham Palace in Jericho was chosen as a case study. The historical layers of Hisham Palace were studied and visualized using advanced 3D visualization techniques by applying a five-step approach to analyze and model different elements of the palace to assemble them at a later stage. This approach was implemented due to the critical condition of the physical remains and the insufficient literature on the history of the palace. As a result, a initial 3D virtual reality model was obtained, presented and discussed in a 3D immersive  environment at the Virtual Reality Lab (VR Lab at Birzeit University.

  18. Information dynamics in virtual worlds gaming and beyond

    CERN Document Server

    Evans, Woody

    2011-01-01

    Presents a broad examination of the nature of virtual worlds and the potential they provide in managing and expressing information practices through that medium, grounding information professionals and students of new media in the fundamental elements of virtual worlds and online gaming. The book details the practical issues in finding and using information in virtual environments and presents a general theory of librarianship as it relates to virtual gaming worlds. It is encompassed by a set of best practice methods that libraries can effectively execute in their own environments, meeting the

  19. Auditory-visual integration of emotional signals in a virtual environment for cynophobia.

    Science.gov (United States)

    Taffou, Marine; Chapoulie, Emmanuelle; David, Adrien; Guerchouche, Rachid; Drettakis, George; Viaud-Delmon, Isabelle

    2012-01-01

    Cynophobia (dog phobia) has both visual and auditory relevant components. In order to investigate the efficacy of virtual reality (VR) exposure-based treatment for cynophobia, we studied the efficiency of auditory-visual environments in generating presence and emotion. We conducted an evaluation test with healthy participants sensitive to cynophobia in order to assess the capacity of auditory-visual virtual environments (VE) to generate fear reactions. Our application involves both high fidelity visual stimulation displayed in an immersive space and 3D sound. This specificity enables us to present and spatially manipulate fearful stimuli in the auditory modality, the visual modality and both. Our specific presentation of animated dog stimuli creates an environment that is highly arousing, suggesting that VR is a promising tool for cynophobia treatment and that manipulating auditory-visual integration might provide a way to modulate affect.

  20. 3D MODELLING AND INTERACTIVE WEB-BASED VISUALIZATION OF CULTURAL HERITAGE OBJECTS

    Directory of Open Access Journals (Sweden)

    M. N. Koeva

    2016-06-01

    comparative study discusses the advantages and disadvantages of these three approaches and their integration in multiple domains, such as web-based 3D city modelling, tourism and architectural 3D visualization. It was concluded that image-based modelling and panoramic visualisation are simple, fast and effective techniques suitable for simultaneous virtual representation of many objects. However, additional measurements or CAD information will be beneficial for obtaining higher accuracy.

  1. 3D MODELLING AND VISUALIZATION BASED ON THE UNITY GAME ENGINE – ADVANTAGES AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    I. Buyuksalih

    2017-11-01

    Full Text Available 3D City modelling is increasingly popular and becoming valuable tools in managing big cities. Urban and energy planning, landscape, noise-sewage modelling, underground mapping and navigation are among the applications/fields which really depend on 3D modelling for their effectiveness operations. Several research areas and implementation projects had been carried out to provide the most reliable 3D data format for sharing and functionalities as well as visualization platform and analysis. For instance, BIMTAS company has recently completed a project to estimate potential solar energy on 3D buildings for the whole Istanbul and now focussing on 3D utility underground mapping for a pilot case study. The research and implementation standard on 3D City Model domain (3D data sharing and visualization schema is based on CityGML schema version 2.0. However, there are some limitations and issues in implementation phase for large dataset. Most of the limitations were due to the visualization, database integration and analysis platform (Unity3D game engine as highlighted in this paper.

  2. Combining local and global optimisation for virtual camera control

    OpenAIRE

    Burelli, Paolo; Yannakakis, Georgios N.; 2010 IEEE Symposium on Computational Intelligence and Games

    2010-01-01

    Controlling a virtual camera in 3D computer games is a complex task. The camera is required to react to dynamically changing environments and produce high quality visual results and smooth animations. This paper proposes an approach that combines local and global search to solve the virtual camera control problem. The automatic camera control problem is described and it is decomposed into sub-problems; then a hierarchical architecture that solves each sub-problem using the most appropriate op...

  3. Regeneration Through Hidden Historical Landscape of Lecco. Urban Course Design Process

    OpenAIRE

    Colucci, Angela; Kolmogorova, Anna; Kraja, Benida; Ziyaee, Maryam

    2017-01-01

    The article focus on the role of Historical Urban Heritage in Urban Design through the presentation of the integrated learning  path developed for Urban Design and Urban Design Studio classes of Lecco Campus of Politecnico of Milan (school of Architecture Urban Planning Construction Engineering, master degree in Building and Architectural Engineering - BAE and Architectural-Engineering– EDA). The first part of paper presents the general learning process characterizing Urban Design course a...

  4. Human walking in virtual environments perception, technology, and applications

    CERN Document Server

    Visell, Yon; Campos, Jennifer; Lécuyer, Anatole

    2013-01-01

    This book presents a survey of past and recent developments on human walking in virtual environments with an emphasis on human self-motion perception, the multisensory nature of experiences of walking, conceptual design approaches, current technologies, and applications. The use of virtual reality and movement simulation systems is becoming increasingly popular and more accessible to a wide variety of research fields and applications. While, in the past, simulation technologies have focused on developing realistic, interactive visual environments, it is becoming increasingly obvious that our everyday interactions are highly multisensory. Therefore, investigators are beginning to understand the critical importance of developing and validating locomotor interfaces that can allow for realistic, natural behaviours. The book aims to present an overview of what is currently understood about human perception and performance when moving in virtual environments and to situate it relative to the broader scientific and ...

  5. Advances in visual representation of molecular potentials.

    Science.gov (United States)

    Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-06-01

    The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.

  6. A Learning and Interaction design framework, from a study on formulating principles for the design of engaging music learning games

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke; Ørngreen, Rikke

    2012-01-01

    Based on a preliminary action research study investigating the design of digital music games and years of experiences from interaction design processes of learning resources, this extended abstract presents a framework that mixes designs for learning principles and game design with a process view...... using a simple interaction design lifecycle. Though the first outset was to design engaging music games, the resulting framework has a more generic character....

  7. A Mixed Reality Game for Urban Planning

    DEFF Research Database (Denmark)

    Nielsen, Rune; Delman, Thomas Fabian; Løssing, Tobias

    2005-01-01

    This paper presents a case study based on an innovative collaborative, game-based approach to urban planning utilizing mixed and augmented reality techniques. Modern urban planning involves a wide variety of interests and individuals, consequently new methods and tools are needed to assure...... the active involvement of all parties in the planning process. The Harbour Game is a debating game employing visual tracking and pattern recognition to superimpose information, e.g. 3-dimensional models, text, and photos on physical artefacts facilitating the understanding of complex relations in urban...... planning. The paper discusses the Harbour Game as an innovative approach to urban planning and the technology used in the Harbour Game in relation to similar approaches....

  8. Exploring design requirements for repurposing dental virtual patients from the web to second life: a focus group study.

    Science.gov (United States)

    Antoniou, Panagiotis E; Athanasopoulou, Christina A; Dafli, Eleni; Bamidis, Panagiotis D

    2014-06-13

    the MUVE platform from the focus group study were (1) increased case complexity to facilitate the user's gaming preconception in a MUVE, (2) necessity to decrease textual narration and provide the pertinent information in a more immersive sensory way, and (3) requirement to allow the user to actuate the solutions of problems instead of describing them through narration. For a successful systematic repurposing effort of virtual patients to MUVEs such as Second Life, the best practices of experiential and immersive game design should be organically incorporated in the repurposing workflow (automated or not). These findings are pivotal in an era in which open educational content is transferred to and shared among users, learners, and educators of various open repositories/environments.

  9. The DiaCog: A Prototype Tool for Visualizing Online Dialog Games' Interactions

    Science.gov (United States)

    Yengin, Ilker; Lazarevic, Bojan

    2014-01-01

    This paper proposes and explains the design of a prototype learning tool named the DiaCog. The DiaCog visualizes dialog interactions within an online dialog game by using dynamically created cognitive maps. As a purposefully designed tool for enhancing learning effectiveness the DiaCog might be applicable to dialogs at discussion boards within a…

  10. The influence of virtual presence: Effects on experienced cognitive load and learning outcomes in educational computer games

    NARCIS (Netherlands)

    Schrader, Claudia; Bastiaens, Theo

    2018-01-01

    Does the immersive design of an educational gaming environment affect learners’ virtual presence and how much do they learn? Does virtual presence affect learning? This study tries to answer these ques- tions by examining the differences in virtual presence and learning outcomes in two different

  11. Interactivity, Game Creation, Design, Learning, and Innovation

    DEFF Research Database (Denmark)

    This book constitutes the proceedings of two conferences: The 5th International Conference on ArtsIT, Interactivity and Game Creation (ArtsIT 2016) and the First International Conference on Design, Learning and Innovation (DLI 2016). ArtsIT is reflecting trends in the expanding field of digital art......, interactive art, and how game creation is considered an art form. The decision was made to augment the title of ArtsIT to be in future known as “The International Conference on Interactivity, Game Creation, Design, Learning, and Innovation”. The event was hosted in Esbjerg, Denmark in May 2016 and attracted...

  12. Real behavior in virtual environments: psychology experiments in a simple virtual-reality paradigm using video games.

    Science.gov (United States)

    Kozlov, Michail D; Johansen, Mark K

    2010-12-01

    The purpose of this research was to illustrate the broad usefulness of simple video-game-based virtual environments (VEs) for psychological research on real-world behavior. To this end, this research explored several high-level social phenomena in a simple, inexpensive computer-game environment: the reduced likelihood of helping under time pressure and the bystander effect, which is reduced helping in the presence of bystanders. In the first experiment, participants had to find the exit in a virtual labyrinth under either high or low time pressure. They encountered rooms with and without virtual bystanders, and in each room, a virtual person requested assistance. Participants helped significantly less frequently under time pressure but the presence/absence of a small number of bystanders did not significantly moderate helping. The second experiment increased the number of virtual bystanders, and participants were instructed to imagine that these were real people. Participants helped significantly less in rooms with large numbers of bystanders compared to rooms with no bystanders, thus demonstrating a bystander effect. These results indicate that even sophisticated high-level social behaviors can be observed and experimentally manipulated in simple VEs, thus implying the broad usefulness of this paradigm in psychological research as a good compromise between experimental control and ecological validity.

  13. Game Programming Course - Creative Design and Development

    Directory of Open Access Journals (Sweden)

    Jaak Henno

    2008-10-01

    Full Text Available Rapid developments of the Electronic Entertainment - computer and video games, virtual environments, the "Games 3.0" revolution - influences also courses about Games and Virtual Environments. In the following is discussed the course “Games and Virtual Environments” presented in the fall 2007 term in Tallinn University of Technology; the main emphasis of the course was not on programming technology, but on understanding games as a special form of communication and exploring specific features of this form.

  14. Game Mechanics and Bodily Interactions: Designing Interactive Technologies for Sports Training

    DEFF Research Database (Denmark)

    Jensen, Mads Møller

    and enjoyment. Thus, despite being two coexisting research areas, they do not extend or contribute to one another per se. However, bridging this gap by combining skill acquisition knowledge from sports training technologies with motivational game mechanics from bodily games holds great potential for designing...... and developing relevant and engaging training experiences. I term this combination interactive sports training games. This dissertation bridges this gap by exploring how to design and develop bodily interactions that leverage the quality and engagement of sports training by using game mechanics, but also how...... to identify and avoid the pitfalls and challenges that emerge in the process. It further explores how competition can be facilitated in bodily games and how it affects players. These explorations are done by designing, developing and evaluating innovative interactive sports training games. The results...

  15. ARSITEKTUR DVD (Digital Virtual Design

    Directory of Open Access Journals (Sweden)

    Danny Santoso Mintorogo

    2000-01-01

    Full Text Available Soon after the millennium year of 2000 and toward 21th century, the ways of architecture design will be a great change from traditional hand design and drawings to super computer digital virtual design models with tremendous of high-end architectural 3D software domains. Virtual Technology will be a plus to architectural design stage to obtain several "scheme" and observe with real - time feedback of the quality (height, light, furniture, shape, and environment as well as the sequential of the space, site context or massing studies. Abstract in Bahasa Indonesia : Strategi dalam desain arsitektur pada abad 22 atau setelah tahun milinium 2000 ini akan banyak didominasi dengan perangkap teknologi canggih yang tentunya akan mengandalkan pada perangkap keras (komputer dan perangkap lunak (software untuk tujuan desain arsitektur secara digital. Teknologi "Virtual" akan dimanfaatkan untuk bidang arsitektur dalam mengoptimasikan disain arsitektur secara digital maya, untuk mengobservasi/mengkaji kwalitas ruang, model suatu ruang/massa secara maya dalam phase perancangan arsitektur. Kata kunci: arsitektur, desain, digital, maya.

  16. A Layered Component-Based Architecture of a Virtual Learning Environment

    NARCIS (Netherlands)

    Avgeriou, Paris; Retalis, Simos; Skordalakis, Manolis; Psaromiligos, Yiannis

    2001-01-01

    There exists an urgent demand on defining architectures for Virtual Learning Environments (VLEs), so that high-level frameworks for understanding these systems can be discovered, portability, interoperability and reusability can be achieved and adaptability over time can be accomplished. In this

  17. Electroencephalographic Correlates of Sensorimotor Integration and Embodiment during the Appreciation of Virtual Architectural Environments.

    Science.gov (United States)

    Vecchiato, Giovanni; Tieri, Gaetano; Jelic, Andrea; De Matteis, Federico; Maglione, Anton G; Babiloni, Fabio

    2015-01-01

    Nowadays there is the hope that neuroscientific findings will contribute to the improvement of building design in order to create environments which satisfy man's demands. This can be achieved through the understanding of neurophysiological correlates of architectural perception. To this aim, the electroencephalographic (EEG) signals of 12 healthy subjects were recorded during the perception of three immersive virtual reality environments (VEs). Afterwards, participants were asked to describe their experience in terms of Familiarity, Novelty, Comfort, Pleasantness, Arousal, and Presence using a rating scale from 1 to 9. These perceptual dimensions are hypothesized to influence the pattern of cerebral spectral activity, while Presence is used to assess the realism of the virtual stimulation. Hence, the collected scores were used to analyze the Power Spectral Density (PSD) of the EEG for each behavioral dimension in the theta, alpha and mu bands by means of time-frequency analysis and topographic statistical maps. Analysis of Presence resulted in the activation of the frontal-midline theta, indicating the involvement of sensorimotor integration mechanisms when subjects expressed to feel more present in the VEs. Similar patterns also characterized the experience of familiar and comfortable VEs. In addition, pleasant VEs increased the theta power across visuomotor circuits and activated the alpha band in areas devoted to visuospatial exploration and processing of categorical spatial relations. Finally, the de-synchronization of the mu rhythm described the perception of pleasant and comfortable VEs, showing the involvement of left motor areas and embodied mechanisms for environment appreciation. Overall, these results show the possibility to measure EEG correlates of architectural perception involving the cerebral circuits of sensorimotor integration, spatial navigation, and embodiment. These observations can help testing architectural hypotheses in order to design

  18. Scientific Visualization for Atmospheric Data Analysis in Collaborative Virtual Environments

    Science.gov (United States)

    Engelke, Wito; Flatken, Markus; Garcia, Arturo S.; Bar, Christian; Gerndt, Andreas

    2016-04-01

    1 INTRODUCTION The three year European research project CROSS DRIVE (Collaborative Rover Operations and Planetary Science Analysis System based on Distributed Remote and Interactive Virtual Environments) started in January 2014. The research and development within this project is motivated by three use case studies: landing site characterization, atmospheric science and rover target selection [1]. Currently the implementation for the second use case is in its final phase [2]. Here, the requirements were generated based on the domain experts input and lead to development and integration of appropriate methods for visualization and analysis of atmospheric data. The methods range from volume rendering, interactive slicing, iso-surface techniques to interactive probing. All visualization methods are integrated in DLR's Terrain Rendering application. With this, the high resolution surface data visualization can be enriched with additional methods appropriate for atmospheric data sets. This results in an integrated virtual environment where the scientist has the possibility to interactively explore his data sets directly within the correct context. The data sets include volumetric data of the martian atmosphere, precomputed two dimensional maps and vertical profiles. In most cases the surface data as well as the atmospheric data has global coverage and is of time dependent nature. Furthermore, all interaction is synchronized between different connected application instances, allowing for collaborative sessions between distant experts. 2 VISUALIZATION TECHNIQUES Also the application is currently used for visualization of data sets related to Mars the techniques can be used for other data sets as well. Currently the prototype is capable of handling 2 and 2.5D surface data as well as 4D atmospheric data. Specifically, the surface data is presented using an LoD approach which is based on the HEALPix tessellation of a sphere [3, 4, 5] and can handle data sets in the order of

  19. System design in an evolving system-of-systems architecture and concept of operations

    Science.gov (United States)

    Rovekamp, Roger N., Jr.

    Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.

  20. Searching for Concurrent Design Patterns in Video Games

    Science.gov (United States)

    Best, Micah J.; Fedorova, Alexandra; Dickie, Ryan; Tagliasacchi, Andrea; Couture-Beil, Alex; Mustard, Craig; Mottishaw, Shane; Brown, Aron; Huang, Zhi Feng; Xu, Xiaoyuan; Ghazali, Nasser; Brownsword, Andrew

    The transition to multicore architectures has dramatically underscored the necessity for parallelism in software. In particular, while new gaming consoles are by and large multicore, most existing video game engines are essentially sequential and thus cannot easily take advantage of this hardware. In this paper we describe techniques derived from our experience parallelizing an open-source video game Cube 2. We analyze the structure and unique requirements of this complex application domain, drawing conclusions about parallelization tools and techniques applicable therein. Our experience and analysis convinced us that while existing tools and techniques can be used to solve parts of this problem, none of them constitutes a comprehensive solution. As a result we were inspired to design a new parallel programming environment (PPE) targeted specifically at video game engines and other complex soft real-time systems. The initial implementation of this PPE, Cascade, and its performance analysis are also presented.

  1. The effects of virtual reality displays on visual attention and detection of signals performance for main control room training

    International Nuclear Information System (INIS)

    Lin Shiaufeng; Lin Chiuhsiang Joe; Wang Rouwen; Yang Lichen; Yang Chihwei; Cheng Tsungchieh; Wang Jyhgang

    2011-01-01

    The nuclear power plant (NPP) mainly serve the purpose to provide low-cost and stable electricity for the people, but this purpose must be dependent upon the premise of 'safety first.' The reason for this is that the occurrence of nuclear power plant accidents could cause catastrophic damage to the people, property, society, and the environment. Therefore, training in superior and high reliability system is very important in accident prevention. In recent years, the Virtual Reality (VR) technology advances very fast as well as the technology for e-learning environment. VR systems have been applied for education, safety training of NPP and flying simulators. In particular, VR is an interactive and reactive technology; it allows users to interact and navigate with objects in the virtual environment. Development of VR and simulation techniques contributes to an accurate and immersive training environment for NPP operators. Main Control Room (MCR) training simulator based on VR is a more cost effective and efficient alternative to traditional simulator based training methods. The VR simulation for MCR training is a complex task. Since VR not only reinforces the visual presentation of the training materials but also provides ways to interact with the training system, it becomes more flexible and possibly more powerful in the training system. In the VR training system, the MCR operators may use just one display to view the wide range of the real world displays. The field of view (FOV) will be different from the real MCR environment in which many displays exist for the operators to view. Thus operator's immersion and visual attention will be reduced. This is the problem of MCR virtual training compared with the traditional simulator based training systems. Therefore, improving the operator's visual attention and the detection of signals in VR training system is a very important issue. This investigation intends to contribute in assessing benefits of visual attention and

  2. An architecture design and realization of the industrial CT visualization system

    International Nuclear Information System (INIS)

    Gao Long; Li Zheng; Zhang Li; Gao Wenhuan; Kang Kejun

    2003-01-01

    The Industrial Computer Tomography (ICT) is an ideal and powerful technique for inspecting and evaluating the integrity of many large and complex structures. Three dimension visualization system is the main component of ICT inspection. This paper gives an architecture design and the realization of ICT visualization system on the basis of the system analysis. A new adaptive precision algorithm is brought out to solve the main problem of interactive speed. The paper also discussed the future research intention

  3. GRASP/Ada (Graphical Representations of Algorithms, Structures, and Processes for Ada): The development of a program analysis environment for Ada. Reverse engineering tools for Ada, task 1, phase 2

    Science.gov (United States)

    Cross, James H., II

    1990-01-01

    The study, formulation, and generation of structures for Ada (GRASP/Ada) are discussed in this second phase report of a three phase effort. Various graphical representations that can be extracted or generated from source code are described and categorized with focus on reverse engineering. The overall goal is to provide the foundation for a CASE (computer-aided software design) environment in which reverse engineering and forward engineering (development) are tightly coupled. Emphasis is on a subset of architectural diagrams that can be generated automatically from source code with the control structure diagram (CSD) included for completeness.

  4. Multiresolution Algorithms for Processing Giga-Models: Real-time Visualization, Reasoning, and Interaction

    Science.gov (United States)

    2012-04-23

    Interactive Virtual Hair Salon , Presence, (05 2007): 237. doi: 2012/04/17 12:55:26 31 Theodore Kim, Jason Sewall, Avneesh Sud, Ming Lin. Fast...in Games , Utrecht, Netherlands, Nov. 2009. Keynote Speaker, IADIS International Conference on Computer Graphics and Visualization, Portugal, June 2009...Keynote Speaker, ACM Symposium on Virtual Reality Software and Technology, Bordeaux, France, October 2008. Invited Speaker, Motion in Games , Utrecht

  5. Interactive exploration of tokamak turbulence simulations in virtual reality

    International Nuclear Information System (INIS)

    Kerbel, G.D.; Pierce, T.; Milovich, J.L.; Shumaker, D.E.

    1996-01-01

    We have developed an immersive visualization system designed for interactive data exploration as an integral part of our computing environment for studying tokamak turbulence. This system of codes can reproduce the results of simulations visually for scrutiny in real time, interactively and with more realism than ever before. At peak performance, the VR system can present for view some 400 coordinated images per second. The long term vision this approach targets is a open-quote holodeck-like close-quote virtual-reality environment in which one can explore gyrofluid or gyrokinetic plasma simulations interactively and in real time, visually, with concurrent simulations of experimental diagnostic devices. In principle, such a open-quote virtual tokamak close-quote computed environment could be as all encompassing or as focussed as one likes, in terms of the physics involved. The computing framework in one within which a group of researchers can work together to produce a real and identifiable product with easy access to all contributions. This could be our version of NASA's next generation Numerical Wind Tunnel. The principal purpose of this VR capability for Numerical Tokamak simulation is to provide interactive visual experience to help create new ways of understanding aspects of the convective transport processes operating in tokamak fusion experiments. The effectiveness of the visualization method is strongly dependent on the density of frame-to-frame correlation. Below a threshold of this quantity, short term visual memory does not bridge the gap between frames well enough for there to exist a strong visual connection. Above the threshold, evolving structures appear clearly. The visualizations show the 3D structure of vortex evolution and the gyrofluid motion associated with it. We discovered that it was very helpful for visualizing the cross field flows to compress the virtual world in the toroidal angle

  6. Virtual Environments for Training

    National Research Council Canada - National Science Library

    Stiles, R

    1998-01-01

    .... Progress on productization of the VET Training Studio software includes increased robustness for Vista virtual environment display and interaction services, a new capability to use the STEVE visual...

  7. Defining Interactions and Interfaces in Engineering Design

    DEFF Research Database (Denmark)

    Parslov, Jakob Filippson

    documents of legal matter and must therefore be unambiguously and completely described. Following this observation, a comprehensive and systematic literature review has been performed in order to investigate the definition and perception of an interface. The review resulted in a classification revealing 13......This PhD thesis focuses on the understanding and definition of interactions and interfaces during the architectural decomposition of complex, multi-technological products. The Interaction and Interface Framework developed in this PhD project contribute to the field of engineering design research...... the framework, it has been possible to arrive at a classification of interaction mechanism, which is mutually exclusive (no overlap) and collectively exhaustive (no gaps). This contribution changes the existing paradigm of reasoning about interactions and allows for an unambiguous architectural decomposition...

  8. COVE: a visual environment for ocean observatory design

    International Nuclear Information System (INIS)

    Grochow, K; Lazowska, E; Stoermer, M; Kelley, D; Delaney, J

    2008-01-01

    Physical, chemical, and biological ocean processes play a crucial role in determining Earth's environment. Unfortunately, our knowledge of these processes is limited because oceanography is carried out today largely the way it was a century ago: as expeditionary science, going to sea in ships and measuring a relatively small number of parameters (e.g., temperature, salinity, and pressure) as time and budget allow. The NSF Ocean Observatories Initiative is a US$330 million project that will help transform oceanography from a data-poor to a data-rich science. A cornerstone of this project is the deep water Regional Scale Nodes (RSN) that will be installed off the coasts of Washington and Oregon. The RSN will include 1500 km of fiber optic cable providing power and bandwidth to the seafloor and throughout the water column. Thousands of sensors will be deployed to stream data and imagery to shore, where they will be available in real time for ocean scientists and the public at large. The design of the RSN is a complex undertaking, requiring a combination of many different interactive tools and areas of visualization: geographic visualization to see the available seafloor bathymetry, scientific visualization to examine existing geospatially located datasets, layout tools to place the sensors, and collaborative tools to communicate across the team during the design. COVE, the Common Observatory Visualization Environment, is a visualization environment designed to meet all these needs. COVE has been built by computer scientists working closely with the engineering and scientific teams who will build and use the RSN. This paper discusses the data and activities of cabled observatory design, the design of COVE, and results from its use across the team

  9. Virtual reality representations in contemporary media

    CERN Document Server

    Chan, Melanie

    2014-01-01

    The idea of virtual realities has a long and complex historical trajectory, spanning from Plato's concept of the cave and the simulacrum, to artistic styles such as Trompe L'oeil, and more recently developments in 3D film, television and gaming. However, this book will pay particular attention to the time between the 1980s to the 1990s when virtual reality and cyberspace were represented, particularly in fiction, as a wondrous technology that enabled transcendence from the limitations of physical embodiment. The purpose of this critical historical analysis of representations of virtual reality

  10. Realistic terrain visualization based on 3D virtual world technology

    Science.gov (United States)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  11. Usage of a learning virtual environment with interactive virtual reality for helping in reactor engineering teaching

    International Nuclear Information System (INIS)

    Miguel, Lucas de Castro

    2017-01-01

    In the last few decades, several studies have been conducted regarding the effectiveness of the use of virtual reality as a teaching tool. New and complex IT tools (Information and Communication Technologies) have also been developed. One such tool, is the Virtual Learning Environment (VLE). VLEs are internet media that use cyberspace to convey didactic content and can complement the orthodox teaching method, allowing students a new way of understanding complex content through digital interaction. This work aims to teach the operation of the first and second cycles of a pressurized water nuclear reactor through the development and use of a VLE. The VLE will use interactive virtual reality to demonstrate to the student the 'anatomy' of a generating nuclear power plant. There are several possibilities for future work using this VLE. One is the use as a data repository and 'virtual exhibition room' of each component of the nuclear reactor that researchers are modelling and developing. With these virtual objects allocated in a category, teachers could use this VLE in the classroom as a teaching tool while researchers could use the platform as a quick and practical way of viewing their online work and sharing it with other researchers. Thus, this VLE will be an effective tool for spreading knowledge of nuclear power more easily within, as well as outside of the research community. (author)

  12. Calculating Solar Energy Potential of Buildings and Visualization Within Unity 3d Game Engine

    Science.gov (United States)

    Buyuksalih, G.; Bayburt, S.; Baskaraca, A. P.; Karim, H.; Rahman, A. Abdul

    2017-10-01

    Solar energy modelling is increasingly popular, important, and economic significant in solving energy crisis for big cities. It is a clean and renewable resource of energy that can be utilized to accommodate individual or group of buildings electrical power as well as for indoor heating. Implementing photovoltaic system (PV) in urban areas is one of the best options to solve power crisis over expansion of urban and the growth of population. However, as the spaces for solar panel installation in cities are getting limited nowadays, the available strategic options are only at the rooftop and façade of the building. Thus, accurate information and selecting building with the highest potential solar energy amount collected is essential in energy planning, environmental conservation, and sustainable development of the city. Estimating the solar energy/radiation from rooftop and facade are indeed having a limitation - the shadows from other neighbouring buildings. The implementation of this solar estimation project for Istanbul uses CityGML LoD2-LoD3. The model and analyses were carried out using Unity 3D Game engine with development of several customized tools and functionalities. The results show the estimation of potential solar energy received for the whole area per day, week, month and year thus decision for installing the solar panel could be made. We strongly believe the Unity game engine platform could be utilized for near future 3D mapping visualization purposes.

  13. CALCULATING SOLAR ENERGY POTENTIAL OF BUILDINGS AND VISUALIZATION WITHIN UNITY 3D GAME ENGINE

    Directory of Open Access Journals (Sweden)

    G. Buyuksalih

    2017-10-01

    Full Text Available Solar energy modelling is increasingly popular, important, and economic significant in solving energy crisis for big cities. It is a clean and renewable resource of energy that can be utilized to accommodate individual or group of buildings electrical power as well as for indoor heating. Implementing photovoltaic system (PV in urban areas is one of the best options to solve power crisis over expansion of urban and the growth of population. However, as the spaces for solar panel installation in cities are getting limited nowadays, the available strategic options are only at the rooftop and façade of the building. Thus, accurate information and selecting building with the highest potential solar energy amount collected is essential in energy planning, environmental conservation, and sustainable development of the city. Estimating the solar energy/radiation from rooftop and facade are indeed having a limitation - the shadows from other neighbouring buildings. The implementation of this solar estimation project for Istanbul uses CityGML LoD2-LoD3. The model and analyses were carried out using Unity 3D Game engine with development of several customized tools and functionalities. The results show the estimation of potential solar energy received for the whole area per day, week, month and year thus decision for installing the solar panel could be made. We strongly believe the Unity game engine platform could be utilized for near future 3D mapping visualization purposes.

  14. The Virtual Threat Effect: A Test of Competing Explanations for the Effects of Racial Stereotyping in Video Games on Players' Cognitions.

    Science.gov (United States)

    Behm-Morawitz, Elizabeth; Hoffswell, Joseph; Chen, Szu-Wei

    2016-05-01

    Past research provides evidence that embodying a racially stereotyped African American video game character triggers stereotyped thinking among White players. However, the mechanisms through which virtual racial embodiment of a negatively stereotyped character in a video game impacts stereotyped thinking are still unknown. This study expands on past research and utilizes a between-subjects experimental design to test two possible theoretical explanations: the virtual threat effect and presence. On the one hand, embodying a negatively stereotyped African American character may elicit stereotyped thinking among White players due to the mere exposure to the threatening stereotype. According to this explanation, negative affective response to the threatening stimulus predicts stereotyping. On the other hand, the process of embodying, not just observing, the stereotyped African American character suggests that presence in the game may determine how impactful the game imagery is on White players' stereotyping of African Americans. In this case, level of presence would predict stereotyping. The findings of this study advance research by providing evidence of a psychological explanation for the negative effects of embodying a racially stereotyped video game character on players' race-related perceptions. We conceptualize the "virtual threat effect," which may be applied in additional contexts to understand how embodying stereotyped representations of outgroups in virtual environments may negatively affect individuals' perceptions and support of these groups.

  15. Comparative analysis of video processing and 3D rendering for cloud video games using different virtualization technologies

    Science.gov (United States)

    Bada, Adedayo; Alcaraz-Calero, Jose M.; Wang, Qi; Grecos, Christos

    2014-05-01

    This paper describes a comprehensive empirical performance evaluation of 3D video processing employing the physical/virtual architecture implemented in a cloud environment. Different virtualization technologies, virtual video cards and various 3D benchmarks tools have been utilized in order to analyse the optimal performance in the context of 3D online gaming applications. This study highlights 3D video rendering performance under each type of hypervisors, and other factors including network I/O, disk I/O and memory usage. Comparisons of these factors under well-known virtual display technologies such as VNC, Spice and Virtual 3D adaptors reveal the strengths and weaknesses of the various hypervisors with respect to 3D video rendering and streaming.

  16. Effects of Game-Based Learning in an Opensim-Supported Virtual Environment on Mathematical Performance

    Science.gov (United States)

    Kim, Heesung; Ke, Fengfeng

    2017-01-01

    This experimental study was intended to examine whether the integration of game characteristics in the OpenSimulator-supported virtual reality (VR) learning environment can improve mathematical achievement for elementary school students. In this pre- and posttest experimental comparison study, data were collected from 132 fourth graders through an…

  17. A framework for interactive visual analysis of heterogeneous marine data in an integrated problem solving environment

    Science.gov (United States)

    Liu, Shuai; Chen, Ge; Yao, Shifeng; Tian, Fenglin; Liu, Wei

    2017-07-01

    This paper presents a novel integrated marine visualization framework which focuses on processing, analyzing the multi-dimension spatiotemporal marine data in one workflow. Effective marine data visualization is needed in terms of extracting useful patterns, recognizing changes, and understanding physical processes in oceanography researches. However, the multi-source, multi-format, multi-dimension characteristics of marine data pose a challenge for interactive and feasible (timely) marine data analysis and visualization in one workflow. And, global multi-resolution virtual terrain environment is also needed to give oceanographers and the public a real geographic background reference and to help them to identify the geographical variation of ocean phenomena. This paper introduces a data integration and processing method to efficiently visualize and analyze the heterogeneous marine data. Based on the data we processed, several GPU-based visualization methods are explored to interactively demonstrate marine data. GPU-tessellated global terrain rendering using ETOPO1 data is realized and the video memory usage is controlled to ensure high efficiency. A modified ray-casting algorithm for the uneven multi-section Argo volume data is also presented and the transfer function is designed to analyze the 3D structure of ocean phenomena. Based on the framework we designed, an integrated visualization system is realized. The effectiveness and efficiency of the framework is demonstrated. This system is expected to make a significant contribution to the demonstration and understanding of marine physical process in a virtual global environment.

  18. Design sensitivities for interactive sport-training games

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Rasmussen, Majken Kirkegård; Grønbæk, Kaj

    2014-01-01

    and reflected upon. Based on the experiences gained from the design and development process, as well as examples from the existing field and skill acquisition theory, we present three areas of interest to consider for interactive sport-training game designers: Context Characteristics, Movement Patterns...... and Perceptual Reaction. From a discussion of these areas, we derive eight design sensitivities that emphasize issues, challenges and opportunities, important for the design, development and analysis of interactive sport-training games in general.......This paper presents the design and development process of an interactive football-training game that aims to improve players' ball-handling skills, and their ability to simultaneously survey the playing field. A small-scale experiment was conducted to test the game, and the results are presented...

  19. Urban Landscape Architecture in the Reshaping of the Contemporary Cityscape

    Science.gov (United States)

    Ananiadou-Tzimopoulou, Maria; Bourlidou, Anastasia

    2017-10-01

    The contemporary urban landscape is the evolving image of dynamic social, economic and ecological changes and heterogeneity. It constitutes the mirror of history, natural and cultural, urban processes, as well as locations of hybrid character, such as degraded and fragmented spaces within the urban fabric or in the city boundaries -areas in between, infrastructures, post-industrial and waterfront sites, but also potential grounds for urban development. Along with the awakening of the global ecological awareness and the ongoing discussion on sustainability issues, the cityscape with its new attributes, constitutes a challenging field of research and planning for various disciplines, further more than landscape architecture, such as architecture, planning, ecology, environment and engineering. This paper focuses on the role of urban landscape architecture, via its theory and practice, in the reshaping of the city territory. It aspires to broaden the discussion concerning the upgrading of the contemporary cities, aiming firstly at the determination of a wider vocabulary for the urban landscape and its design, and secondly at the highlighting of landscape architecture’s contribution to the sustainable perspective of urban design and planning. The methodology is based on a comparative research implemented both on a theoretical level and on a level of applied work. Urban landscape architecture is described through theory and practice, along with correlative approaches deriving mainly from landscape urbanism and secondarily from the field of architecture. Urban landscape is approached as a socio-ecological and perceptual legible, a territory of culture, process and production; operating as an entity of ecological, infrastructural systems and planning needs, it is also regarded as a precedent for urban development. Furthermore, the research is supported by selected European and International urban landscape projects, presented in a cohesive multiscalar approach, from the

  20. Collaborative Virtual Gaming Worlds in Higher Education

    Science.gov (United States)

    Whitton, Nicola; Hollins, Paul

    2008-01-01

    There is growing interest in the use of virtual gaming worlds in education, supported by the increased use of multi-user virtual environments (MUVEs) and massively multi-player online role-playing games (MMORPGs) for collaborative learning. However, this paper argues that collaborative gaming worlds have been in use much longer and are much wider…

  1. Gamification and Visualization of Sensor Data Analysis in Research Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Jackson A [ORNL; Sanyal, Jibonananda [ORNL; Castello, Charles C [ORNL; New, Joshua Ryan [ORNL

    2015-01-01

    The use of video game elements in non-gaming systems, or gamification , has potential value in transforming data analysis. Our study focused on creating a web-based videogame that models two physical test buildings, each of which contains hundreds of sensors. After the application renders the models, the player can walk through the environments and interact with the virtual representations of the sensors inside. Rather than trudging through a database with textual commands and screens full of data, the user can (virtually) walk up to a sensor and view its data graphically. But these features only scratch the surface of what is possible using our new gamification approach. We anticipate being able to show that recent progress in game design techniques and capacities can contribute to the field of analysis through gamification. The net result could be more stimulating, intuitive, user-friendly interfaces, as well as potentially more informative and insightful applications.

  2. Action video game play and transfer of navigation and spatial cognition skills in adolescents who are blind.

    Science.gov (United States)

    Connors, Erin C; Chrastil, Elizabeth R; Sánchez, Jaime; Merabet, Lotfi B

    2014-01-01

    For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments.

  3. Using Container Structures in Architecture and Urban Design

    Science.gov (United States)

    Grębowski, Karol; Kałdunek, Daniel

    2017-10-01

    The paper presents the use of shipping containers in architecture and urban design. Even today, houses and apartments are still too expensive. Since 1923 architects have been improving the living conditions of citizens by building very simple, repeatable forms. With prefabrication technology it became possible to build quicker, causing house prices to decrease. Apartments in block of flats became affordable to more and more people. Modernism had great impact on the quality of living spaces, despite the detrimental effect of large panel technology on social life. It gave people their own bathrooms, and gifted them with simple solutions we now consider indispensable. The ambition to build cheaply but effectively is still here. The future of housing lies in prefabricated apartment modules. A well optimized creation process is the key, but taking into consideration the mistakes made by past generations should be the second most important factor. Studies show that large panel buildings were too monumental and solid for a housing structure, and offered no public spaces between them. Lack of urban design transformed a great idea into blocks that are considered to be ugly and unfriendly. Diversity is something that large panel structures were missing. While most block of flats were being constructed out of the same module (Model 770), differentiated architecture was difficult to achieve. Nowadays, increasing numbers of shipping containers are being used for housing purposes. These constructions show that it is possible to create astonishing housing with modules. Shipping containers were not designed to be a building material, but in contrast to large panel modules, there are many more possibilities of their transformation. In this paper the authors propose a set of rules that, if followed, would result in cheaper apartments, while keeping in consideration both tremendous architecture and friendly urban design. What is more, the proposed solution is designed to adapt to

  4. Impact of distributed virtual reality on engineering knowledge retention and student engagement

    Science.gov (United States)

    Sulbaran, Tulio Alberto

    Engineering Education is facing many problems, one of which is poor knowledge retention among engineering students. This problem affects the Architecture, Engineering, and Construction (A/E/C) industry, because students are unprepared for many necessary job skills. This problem of poor knowledge retention is caused by many factors, one of which is the mismatch between student learning preferences and the media used to teach engineering. The purpose of this research is to assess the impact of Distributed Virtual Reality (DVR) as an engineering teaching tool. The implementation of DVR addresses the issue of poor knowledge retention by impacting the mismatch between learning and teaching style in the visual versus verbal spectrum. Using as a point of departure three knowledge domain areas (Learning and Instruction, Distributed Virtual Reality and Crane Selection as Part of Crane Lift Planning), a DVR engineering teaching tool is developed, deployed and assessed in engineering classrooms. The statistical analysis of the data indicates that: (1) most engineering students are visual learners; (2) most students would like more classes using DVR; (3) engineering students find DVR more engaging than traditional learning methods; (4) most students find the responsiveness of the DVR environments to be either good or very good; (5) all students are able to interact with DVR and most of the students found it easy or very easy to navigate (without previous formal training in how to use DVR); (6) students' knowledge regarding the subject (crane selection) is higher after the experiment; and, (7) students' using different instructional media do not demonstrate statistical difference in knowledge retained after the experiment. This inter-disciplinary research offers opportunities for direct and immediate application in education, research, and industry, due to the fact that the instructional module developed (on crane selection as part of construction crane lift planning) can be

  5. Utilizing 3D-visualization to apply compulsory ALARA principles in nuclear power plant design and day-to-day operation

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, R. L.; Lake, J. E. [Oak Ridge National Laboratory, Computational Sciences and Engineering Div., Mail Stop 6085, One Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2006-07-01

    The development of an advanced visualization and simulation tool to support both design as well as day-to-day operation is presented. This tool exploits cutting edge computer graphics, physics-based effects modeling, virtual reality, and gaming technologies to establish a system that can eventually be used for the administrative planning and training of plant operators and design engineers. (authors)

  6. Utilizing 3D-visualization to apply compulsory ALARA principles in nuclear power plant design and day-to-day operation

    International Nuclear Information System (INIS)

    Sanders, R. L.; Lake, J. E.

    2006-01-01

    The development of an advanced visualization and simulation tool to support both design as well as day-to-day operation is presented. This tool exploits cutting edge computer graphics, physics-based effects modeling, virtual reality, and gaming technologies to establish a system that can eventually be used for the administrative planning and training of plant operators and design engineers. (authors)

  7. Evaluation of historical museum interior lighting system using fully immersive virtual luminous environment

    Science.gov (United States)

    Navvab, Mojtaba; Bisegna, Fabio; Gugliermetti, Franco

    2013-05-01

    Saint Rocco Museum, a historical building in Venice, Italy is used as a case study to explore the performance of its' lighting system and visible light impact on viewing the large size art works. The transition from threedimensional architectural rendering to the three-dimensional virtual luminance mapping and visualization within a virtual environment is described as an integrated optical method for its application toward preservation of the cultural heritage of the space. Lighting simulation programs represent color as RGB triplets in a devicedependent color space such as ITU-R BT709. Prerequisite for this is a 3D-model which can be created within this computer aided virtual environment. The onsite measured surface luminance, chromaticity and spectral data were used as input to an established real-time indirect illumination and a physically based algorithms to produce the best approximation for RGB to be used as an input to generate the image of the objects. Conversion of RGB to and from spectra has been a major undertaking in order to match the infinite number of spectra to create the same colors that were defined by RGB in the program. The ability to simulate light intensity, candle power and spectral power distributions provide opportunity to examine the impact of color inter-reflections on historical paintings. VR offers an effective technique to quantify the visible light impact on human visual performance under precisely controlled representation of light spectrum that could be experienced in 3D format in a virtual environment as well as historical visual archives. The system can easily be expanded to include other measurements and stimuli.

  8. Impact of the motion and visual complexity of the background on players' performance in video game-like displays.

    Science.gov (United States)

    Caroux, Loïc; Le Bigot, Ludovic; Vibert, Nicolas

    2013-01-01

    The visual interfaces of virtual environments such as video games often show scenes where objects are superimposed on a moving background. Three experiments were designed to better understand the impact of the complexity and/or overall motion of two types of visual backgrounds often used in video games on the detection and use of superimposed, stationary items. The impact of background complexity and motion was assessed during two typical video game tasks: a relatively complex visual search task and a classic, less demanding shooting task. Background motion impaired participants' performance only when they performed the shooting game task, and only when the simplest of the two backgrounds was used. In contrast, and independently of background motion, performance on both tasks was impaired when the complexity of the background increased. Eye movement recordings demonstrated that most of the findings reflected the impact of low-level features of the two backgrounds on gaze control.

  9. Are Spatial Visualization Abilities Relevant to Virtual Reality?

    Science.gov (United States)

    Chen, Chwen Jen

    2006-01-01

    This study aims to investigate the effects of virtual reality (VR)-based learning environment on learners of different spatial visualization abilities. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the Guided VR mode, irrespective of their spatial visualization abilities. This indicates that…

  10. A high-fidelity virtual environment for the study of paranoia.

    Science.gov (United States)

    Broome, Matthew R; Zányi, Eva; Hamborg, Thomas; Selmanovic, Elmedin; Czanner, Silvester; Birchwood, Max; Chalmers, Alan; Singh, Swaran P

    2013-01-01

    Psychotic disorders carry social and economic costs for sufferers and society. Recent evidence highlights the risk posed by urban upbringing and social deprivation in the genesis of paranoia and psychosis. Evidence based psychological interventions are often not offered because of a lack of therapists. Virtual reality (VR) environments have been used to treat mental health problems. VR may be a way of understanding the aetiological processes in psychosis and increasing psychotherapeutic resources for its treatment. We developed a high-fidelity virtual reality scenario of an urban street scene to test the hypothesis that virtual urban exposure is able to generate paranoia to a comparable or greater extent than scenarios using indoor scenes. Participants (n = 32) entered the VR scenario for four minutes, after which time their degree of paranoid ideation was assessed. We demonstrated that the virtual reality scenario was able to elicit paranoia in a nonclinical, healthy group and that an urban scene was more likely to lead to higher levels of paranoia than a virtual indoor environment. We suggest that this study offers evidence to support the role of exposure to factors in the urban environment in the genesis and maintenance of psychotic experiences and symptoms. The realistic high-fidelity street scene scenario may offer a useful tool for therapists.

  11. A High-Fidelity Virtual Environment for the Study of Paranoia

    Directory of Open Access Journals (Sweden)

    Matthew R. Broome

    2013-01-01

    Full Text Available Psychotic disorders carry social and economic costs for sufferers and society. Recent evidence highlights the risk posed by urban upbringing and social deprivation in the genesis of paranoia and psychosis. Evidence based psychological interventions are often not offered because of a lack of therapists. Virtual reality (VR environments have been used to treat mental health problems. VR may be a way of understanding the aetiological processes in psychosis and increasing psychotherapeutic resources for its treatment. We developed a high-fidelity virtual reality scenario of an urban street scene to test the hypothesis that virtual urban exposure is able to generate paranoia to a comparable or greater extent than scenarios using indoor scenes. Participants (n=32 entered the VR scenario for four minutes, after which time their degree of paranoid ideation was assessed. We demonstrated that the virtual reality scenario was able to elicit paranoia in a nonclinical, healthy group and that an urban scene was more likely to lead to higher levels of paranoia than a virtual indoor environment. We suggest that this study offers evidence to support the role of exposure to factors in the urban environment in the genesis and maintenance of psychotic experiences and symptoms. The realistic high-fidelity street scene scenario may offer a useful tool for therapists.

  12. Games and Agents: Designing Intelligent Gameplay

    Directory of Open Access Journals (Sweden)

    F. Dignum

    2009-01-01

    Full Text Available There is an attention shift within the gaming industry toward more natural (long-term behavior of nonplaying characters (NPCs. Multiagent system research offers a promising technology to implement cognitive intelligent NPCs. However, the technologies used in game engines and multiagent platforms are not readily compatible due to some inherent differences of concerns. Where game engines focus on real-time aspects and thus propagate efficiency and central control, multiagent platforms assume autonomy of the agents. Increased autonomy and intelligence may offer benefits for a more compelling gameplay and may even be necessary for serious games. However, it raises problems when current game design techniques are used to incorporate state-of-the-art multiagent system technology. In this paper, we will focus on three specific problem areas that arise from this difference of view: synchronization, information representation, and communication. We argue that the current attempts for integration still fall short on some of these aspects. We show that to fully integrate intelligent agents in games, one should not only use a technical solution, but also a design methodology that is amenable to agents. The game design should be adjusted to incorporate the possibilities of agents early on in the process.

  13. Architectural Engineers

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer

    engineering is addresses from two perspectives – as an educational response and an occupational constellation. Architecture and engineering are two of the traditional design professions and they frequently meet in the occupational setting, but at educational institutions they remain largely estranged....... The paper builds on a multi-sited study of an architectural engineering program at the Technical University of Denmark and an architectural engineering team within an international engineering consultancy based on Denmark. They are both responding to new tendencies within the building industry where...... the role of engineers and architects increasingly overlap during the design process, but their approaches reflect different perceptions of the consequences. The paper discusses some of the challenges that design education, not only within engineering, is facing today: young designers must be equipped...

  14. Visual simulation study of equipment maintenance in dangerous environment

    International Nuclear Information System (INIS)

    Zhu Bo; Yang Yanhua; Li Shiting

    2010-01-01

    The maintenance characteristics in dangerous environments are analyzed, and the application characteristics of visualized maintenance technology are introduced. The interactive method to implement maintenance simulation is presented using EON simulation platform. Then an interacted Virtual Maintenance Training System (VMTS) is further developed, and the composition and function are described in details. The VMTS can be used in extensive array of application scopes, and it is well compatible to the hardware of virtual reality. (author)

  15. Game Channels for Trustless Off-Chain Interactions in Decentralized Virtual Worlds

    Directory of Open Access Journals (Sweden)

    Daniel Kraft

    2016-12-01

    Full Text Available Blockchains can be used to build multi-player online games and virtual worlds that require no central server. This concept is pioneered by Huntercoin, but it leads to large growth of the blockchain and heavy resource requirements. In this paper, we present a new protocol inspired by payment channels and sidechains that allows for trustless off-chain interactions of players in private turn-based games. They are usually performed without requiring space in the public blockchain, but if a dispute arises, the public network can be used to resolve the conflict. We also analyze the resulting security guarantees and describe possible extensions to games with shared turns and for near real-time interaction. Our proposed concept can be used to scale Huntercoin to very large or even infinite worlds and to enable almost real-time interactions between players.

  16. Visualizing the third dimension in virtual training environments for neurologically impaired persons: beneficial or disruptive?

    Directory of Open Access Journals (Sweden)

    van den Hoogen Wouter

    2012-10-01

    Full Text Available Abstract Background Many contemporary systems for neurorehabilitation utilize 3D virtual environments (VEs that allow for training patients’ hand or arm movements. In the current paper we comparatively test the effectiveness of two characteristics of VEs in rehabilitation training when utilizing a 3D haptic interaction device: Stereo Visualization (monoscopic vs stereoscopic image presentation and Graphic Environment (2.5D vs 3D. Method An experimental study was conducted using a factorial within-subjects design. Patients (10 MS, 8 CVA completed three tasks, each including a specific arm-movement along one of three directional axes (left-right, up-down and forward-backward. Results The use of stereoscopy within a virtual training environment for neurorehabilitation of CVA and MS patients is most beneficial when the task itself requires movement in depth. Further, the 2.5D environment yields the highest efficiency and accuracy in terms of patients’ movements. These findings were, however, dependent on participants’ stereoscopic ability. Conclusion Despite the performance benefits of stereoscopy, our findings illustrate the non-triviality of choices of using stereoscopy, and the type of graphic environment implemented. These choices should be made with the task and target group, and even the individual patient in mind.

  17. Reimagining Game Design: Exploring the Design of Constructible Authentic Representations for Science Reasoning

    Science.gov (United States)

    Holbert, Nathan Ryan

    2013-01-01

    Video games have recently become a popular space for educational design due to their interactive and engaging nature and the ubiquity of the gaming experience among youth. Though many researchers argue video games can provide opportunities for learning, educational game design has focused on the classroom rather than the informal settings where…

  18. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  19. On the Usability and Usefulness of 3d (geo)visualizations - a Focus on Virtual Reality Environments

    Science.gov (United States)

    Çöltekin, A.; Lokka, I.; Zahner, M.

    2016-06-01

    Whether and when should we show data in 3D is an on-going debate in communities conducting visualization research. A strong opposition exists in the information visualization (Infovis) community, and seemingly unnecessary/unwarranted use of 3D, e.g., in plots, bar or pie charts, is heavily criticized. The scientific visualization (Scivis) community, on the other hand, is more supportive of the use of 3D as it allows `seeing' invisible phenomena, or designing and printing things that are used in e.g., surgeries, educational settings etc. Geographic visualization (Geovis) stands between the Infovis and Scivis communities. In geographic information science, most visuo-spatial analyses have been sufficiently conducted in 2D or 2.5D, including analyses related to terrain and much of the urban phenomena. On the other hand, there has always been a strong interest in 3D, with similar motivations as in Scivis community. Among many types of 3D visualizations, a popular one that is exploited both for visual analysis and visualization is the highly realistic (geo)virtual environments. Such environments may be engaging and memorable for the viewers because they offer highly immersive experiences. However, it is not yet well-established if we should opt to show the data in 3D; and if yes, a) what type of 3D we should use, b) for what task types, and c) for whom. In this paper, we identify some of the central arguments for and against the use of 3D visualizations around these three considerations in a concise interdisciplinary literature review.

  20. The Study of Reinforcement Learning for Traffic Self-Adaptive Control under Multiagent Markov Game Environment

    Directory of Open Access Journals (Sweden)

    Lun-Hui Xu

    2013-01-01

    Full Text Available Urban traffic self-adaptive control problem is dynamic and uncertain, so the states of traffic environment are hard to be observed. Efficient agent which controls a single intersection can be discovered automatically via multiagent reinforcement learning. However, in the majority of the previous works on this approach, each agent needed perfect observed information when interacting with the environment and learned individually with less efficient coordination. This study casts traffic self-adaptive control as a multiagent Markov game problem. The design employs traffic signal control agent (TSCA for each signalized intersection that coordinates with neighboring TSCAs. A mathematical model for TSCAs’ interaction is built based on nonzero-sum markov game which has been applied to let TSCAs learn how to cooperate. A multiagent Markov game reinforcement learning approach is constructed on the basis of single-agent Q-learning. This method lets each TSCA learn to update its Q-values under the joint actions and imperfect information. The convergence of the proposed algorithm is analyzed theoretically. The simulation results show that the proposed method is convergent and effective in realistic traffic self-adaptive control setting.

  1. Action Video Game Play and Transfer of Navigation and Spatial Cognition Skills in Adolescents who are Blind

    Directory of Open Access Journals (Sweden)

    Erin eConnors

    2014-03-01

    Full Text Available For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired from recent developments in accessible technology and the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. We investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a virtual indoor environment using this ludic approach to learning. Following game play, participants were then assessed on their ability to transfer and mentally manipulate acquired spatial information in a set of navigation tasks carried out in the real environment represented in the game. The transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this novel software and learning by a gaming approach can facilitate the transfer of spatial knowledge and can be used by individuals who are blind for the purposes of navigation in real-world environments.

  2. A "Knowledge Trading Game" for Collaborative Design Learning in an Architectural Design Studio

    Science.gov (United States)

    Wang, Wan-Ling; Shih, Shen-Guan; Chien, Sheng-Fen

    2010-01-01

    Knowledge-sharing and resource exchange are the key to the success of collaborative design learning. In an architectural design studio, design knowledge entails learning efforts that need to accumulate and recombine dispersed and complementary pieces of knowledge. In this research, firstly, "Knowledge Trading Game" is proposed to be a way for…

  3. URBAN COMMUNITY RESPONSES TO VISUAL APPROPRIATE THEMATIC DESIGN, SUPER HERO PARK BANDUNG

    Directory of Open Access Journals (Sweden)

    Dian Duhita

    2017-06-01

    Full Text Available Parks is one of city public area that serves as a communal place for city community. On another perspective, parks is an architectural design that is designed with an aesthetic element to attract. Bandung, since a few years was to make improvements in various sectors, especially in the public space. Through the slogan Creative City, Bandung City Government revived communities part of the citizens by providing place for a activities, creation and production. Thematic Parks became one of the alternative approaches responsive design as part of creative cities development. Object of research study object is Super Hero park. The purpose of research is to analyzing the response of communities to design a thematic park. The study was conducted with a qualitative approach through participation observation method. The scope of the research includes visual appropriate and city community response. The conclussion obtain that visual appropriate are in accordance with the theme. Urban Community was able to respond well the identity of Super Hero park with visual appropriate design.

  4. Conceptual design of the virtual engineering system for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    2000-02-01

    The role of Virtual Engineering System for High Level Radioactive Waste Geological Disposal (hereafter the VES) is to accumulate and unify the results of research and development which JNC had been carried out for the completion of the second progress report on a computer system. The purpose and functions of VES with considering the long-term plan for geological disposal in Japan was studied. The analysis between geological environment assessment, safety performance assessment, and engineering technology had not been integrated mutually in the conventional study. The iterative analysis performed by VES makes it possible to analyze natural barrier and engineering barrier more quantitatively for obtaining safety margin and rationalization of the design of a waste repository. We have examined the system functions to achieve the above purpose of VES. Next, conceptual design for codes, databases, and utilities that consist of VES were performed by examining their purpose and functions. The conceptual design of geological environment assessment system, safety performance assessment system, waste repository element database, economical assessment system, investigation support system, quality assurance system, and visualization system are preformed. The whole system configuration, examination of suitable configuration of hardware and software, examination of system implementation, the confirmation of parallel calculation technology, the conceptual design of platform, the development of demonstration program of platform are performed. Based upon studies stated above, the VES development plan including prototype development during the period of selection of the site candidate was studied. The concept of VES was build based on the examination stated above. (author)

  5. Interactive 3D visualization for theoretical virtual observatories

    Science.gov (United States)

    Dykes, T.; Hassan, A.; Gheller, C.; Croton, D.; Krokos, M.

    2018-06-01

    Virtual observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of data sets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2D or volume rendering in 3D. We analyse the current state of 3D visualization for big theoretical astronomical data sets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3D visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based data sets, allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.

  6. Interactive 3D Visualization for Theoretical Virtual Observatories

    Science.gov (United States)

    Dykes, Tim; Hassan, A.; Gheller, C.; Croton, D.; Krokos, M.

    2018-04-01

    Virtual Observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of datasets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2d or volume rendering in 3d. We analyze the current state of 3d visualization for big theoretical astronomical datasets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3d visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based datasets allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.

  7. iview: an interactive WebGL visualizer for protein-ligand complex.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Nakane, Takanori; Wong, Man-Hon

    2014-02-25

    Visualization of protein-ligand complex plays an important role in elaborating protein-ligand interactions and aiding novel drug design. Most existing web visualizers either rely on slow software rendering, or lack virtual reality support. The vital feature of macromolecular surface construction is also unavailable. We have developed iview, an easy-to-use interactive WebGL visualizer of protein-ligand complex. It exploits hardware acceleration rather than software rendering. It features three special effects in virtual reality settings, namely anaglyph, parallax barrier and oculus rift, resulting in visually appealing identification of intermolecular interactions. It supports four surface representations including Van der Waals surface, solvent excluded surface, solvent accessible surface and molecular surface. Moreover, based on the feature-rich version of iview, we have also developed a neat and tailor-made version specifically for our istar web platform for protein-ligand docking purpose. This demonstrates the excellent portability of iview. Using innovative 3D techniques, we provide a user friendly visualizer that is not intended to compete with professional visualizers, but to enable easy accessibility and platform independence.

  8. A Case Study of Mediated Urban Architecture

    DEFF Research Database (Denmark)

    Poulsen, Esben Skouboe; Andersen, Hans Jørgen; Jensen, Ole B.

    2012-01-01

    Today the city has become the dominant ’scenery’ for everyday life as such it present still greater design challenges for an improved urban spatial performance. To design for more inspiring and stimulating public spaces one must begin by acknowledging that urban spaces are sites of movement...... and interaction that holds unutilized potentials. Public spaces of the city are ’stages’ for interaction and by exploring how such ’stages’ are used in terms of human movement and occupancy we get an idea of what the sites are used for, as well as how they may be enriched by adding program, redirecting flows...... of the face expression of the building. We search for more informed, inspiring and appealing environments that challenge the role of the use of media in public spaces, and facilitate a new reconfigurable design trajectory that holds new social and spatial qualities in a highly mediated interactive urban...

  9. Architecture independent environment for developing engineering software on MIMD computers

    Science.gov (United States)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  10. ) Virtual Reality Environments For The Petroleum Industry

    International Nuclear Information System (INIS)

    Diembacher, F. X.

    2003-01-01

    Large screen immersive visualization has gained enormous momentum in the last few years. The oil industry has quickly appreciate the value virtual reality centers bring to the practising engineer and to asset teams. While early concepts emphasized visualization, people soon realized that virtual reality rooms offer more: they are places where people come together, they are places where people want to collaborate. Subsequently these environments were also called Decisionariums, Collaboration Centers, Visionariums, etc. GeoQuest branded these rooms iCenters, a term which encompasses all the potential usages of this environment. is tands for information, internet, interaction, interpretation, impact, etc. iCenters are used for interpretation and analysis of complex models (e.g. 3D seismic interpretation, viewing of simulation models with hundreds of thousands of cells) and for multi-disciplinary working (e.g. planning of advanced wells typically for (deep) offshore environments currently increases by several hundred percent being built in Nigeria-more are being planned. This concepts for building iCenters, examples of how oil companies around the world and in Nigeria use these environments to foster collaboration and reduce costs, and latest developments in the area of remote collaboration (i.e., connected iCenters)

  11. A 'more-than-representational' mapping study

    DEFF Research Database (Denmark)

    Lanng, Ditte Bendix

    2018-01-01

    through a concrete mapping study of a suburban site of lived mobilities and mundane architectures. From this standpoint the paper elaborates three central attentions of mapping as a creative and reflected more-than-representational tool in urban design: the evocations of eventfulness of sites, intricate...

  12. COMPARISON OF USER PERFORMANCE WITH INTERACTIVE AND STATIC 3D VISUALIZATION – PILOT STUDY

    Directory of Open Access Journals (Sweden)

    L. Herman

    2016-06-01

    Full Text Available Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.

  13. Cognitive evaluation for the diagnosis of Alzheimer's disease based on Turing Test and Virtual Environments.

    Science.gov (United States)

    Fernandez Montenegro, Juan Manuel; Argyriou, Vasileios

    2017-05-01

    Alzheimer's screening tests are commonly used by doctors to diagnose the patient's condition and stage as early as possible. Most of these tests are based on pen-paper interaction and do not embrace the advantages provided by new technologies. This paper proposes novel Alzheimer's screening tests based on virtual environments and game principles using new immersive technologies combined with advanced Human Computer Interaction (HCI) systems. These new tests are focused on the immersion of the patient in a virtual room, in order to mislead and deceive the patient's mind. In addition, we propose two novel variations of Turing Test proposed by Alan Turing as a method to detect dementia. As a result, four tests are introduced demonstrating the wide range of screening mechanisms that could be designed using virtual environments and game concepts. The proposed tests are focused on the evaluation of memory loss related to common objects, recent conversations and events; the diagnosis of problems in expressing and understanding language; the ability to recognize abnormalities; and to differentiate between virtual worlds and reality, or humans and machines. The proposed screening tests were evaluated and tested using both patients and healthy adults in a comparative study with state-of-the-art Alzheimer's screening tests. The results show the capacity of the new tests to distinguish healthy people from Alzheimer's patients. Copyright © 2017. Published by Elsevier Inc.

  14. PLURALITY AND DIVERSITY IN ARCHITECTURAL AND URBAN RESEARCH

    Directory of Open Access Journals (Sweden)

    Ashraf M. Salama

    2017-07-01

    Full Text Available Demonstrating the essence of the journal as a truly international platform that covers issues of interest and concern to the global academic and professional community, this issue of Archnet-IJAR, volume 11, issue # 2, July 2017 includes various topics that manifest plurality and diversity as inherent qualities of architectural and urban research published in the journal.  Topics include architectural education and design studio teaching, urban and rural slums, heritage and historic environments in various contexts, participatory planning and the charrette process, assessment of public spaces and plazas, and human perception of the built environment. These topics are debated and analytically discussed within cities, settlements, and urban environments in Bahrain, Bangladesh, California-USA, Libya, Scotland, and Spain. The issue also includes three papers selected from the Fifth Architectural Jordanian International Conference – 1-3 November 2016, which uniquely speak to the context of Jordan and the wider Middle East. The edition ends with a book review that highlights emerging issues related to border landscapes and social ecologies.

  15. Usability Studies in Virtual and Traditional Computer Aided Design Environments for Fault Identification

    Science.gov (United States)

    2017-08-08

    communicate their subjective opinions. Keywords: Usability Analysis; CAVETM (Cave Automatic Virtual Environments); Human Computer Interface (HCI...the differences in interaction when compared with traditional human computer interfaces. This paper provides analysis via usability study methods

  16. Collaborative virtual gaming worlds in higher education

    OpenAIRE

    Whitton, Nicola; Hollins, Paul

    2008-01-01

    There is growing interest in the use of virtual gaming worlds in education, supported by the increased use of multi-user virtual environments (MUVEs) and massively multiplayer online role-playing games (MMORPGs) for collaborative learning. However, this paper argues that collaborative gaming worlds have been in use much longer and are much wider in scope; it considers the range of collaborative gaming worlds that exist and discusses their potential for learning, with particular reference to h...

  17. Teaching Creative Thinking through Architectural Design

    Science.gov (United States)

    Jeon, Kijeong; Cotner, Teresa L.

    2010-01-01

    Art and art education are open to broader definitions in the twenty-first century. It is time that teachers seriously think about including built environment design in K-12 art education. The term "built environment" includes interior design, architecture, landscape architecture, and urban planning. Due to increased exposure to built environment…

  18. Rocinante, a virtual collaborative visualizer

    International Nuclear Information System (INIS)

    McDonald, M.J.

    1996-01-01

    With the goal of improving the ability of people around the world to share the development and use of intelligent systems, Sandia National Laboratories' Intelligent Systems and Robotics Center is developing new Virtual Collaborative Engineering (VCE) and Virtual Collaborative Control (VCC) technologies. A key area of VCE and VCC research is in shared visualization of virtual environments. This paper describes a Virtual Collaborative Visualizer (VCV), named Rocinante, that Sandia developed for VCE and VCC applications. Rocinante allows multiple participants to simultaneously view dynamic geometrically-defined environments. Each viewer can exclude extraneous detail or include additional information in the scene as desired. Shared information can be saved and later replayed in a stand-alone mode. Rocinante automatically scales visualization requirements with computer system capabilities. Models with 30,000 polygons and 4 Megabytes of texture display at 12 to 15 frames per second (fps) on an SGI Onyx and at 3 to 8 fps (without texture) on Indigo 2 Extreme computers. In its networked mode, Rocinante synchronizes its local geometric model with remote simulators and sensory systems by monitoring data transmitted through UDP packets. Rocinante's scalability and performance make it an ideal VCC tool. Users throughout the country can monitor robot motions and the thinking behind their motion planners and simulators

  19. Rocinante, a virtual collaborative visualizer

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.J. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center; Ice, L.G. [Univ. of New Mexico, Albuquerque, NM (United States)

    1996-12-31

    With the goal of improving the ability of people around the world to share the development and use of intelligent systems, Sandia National Laboratories` Intelligent Systems and Robotics Center is developing new Virtual Collaborative Engineering (VCE) and Virtual Collaborative Control (VCC) technologies. A key area of VCE and VCC research is in shared visualization of virtual environments. This paper describes a Virtual Collaborative Visualizer (VCV), named Rocinante, that Sandia developed for VCE and VCC applications. Rocinante allows multiple participants to simultaneously view dynamic geometrically-defined environments. Each viewer can exclude extraneous detail or include additional information in the scene as desired. Shared information can be saved and later replayed in a stand-alone mode. Rocinante automatically scales visualization requirements with computer system capabilities. Models with 30,000 polygons and 4 Megabytes of texture display at 12 to 15 frames per second (fps) on an SGI Onyx and at 3 to 8 fps (without texture) on Indigo 2 Extreme computers. In its networked mode, Rocinante synchronizes its local geometric model with remote simulators and sensory systems by monitoring data transmitted through UDP packets. Rocinante`s scalability and performance make it an ideal VCC tool. Users throughout the country can monitor robot motions and the thinking behind their motion planners and simulators.

  20. Remote Sensing and GIS Applied to the Landscape for the Environmental Restoration of Urbanizations by Means of 3D Virtual Reconstruction and Visualization (Salamanca, Spain

    Directory of Open Access Journals (Sweden)

    Antonio Miguel Martínez-Graña

    2016-01-01

    Full Text Available The key focus of this paper is to establish a procedure that combines the use of Geographical Information Systems (GIS and remote sensing in order to achieve simulation and modeling of the landscape impact caused by construction. The procedure should be easily and inexpensively developed. With the aid of 3D virtual reconstruction and visualization, this paper proposes that the technologies of remote sensing and GIS can be applied to the landscape for post-urbanization environmental restoration. The goal is to create a rural zone in an urban development sector that integrates the residential areas and local infrastructure into the surrounding natural environment in order to measure the changes to the preliminary urban design. The units of the landscape are determined by means of two cartographic methods: (1 indirect, using the components of the landscape; and (2 direct methods, using the landscape’s elements. The visual basins are calculated for the most transited by the population points, while establishing the zones that present major impacts for the urbanization of their landscape. Based on this, the different construction types are distributed (one-family houses, blocks of houses, etc., selecting the types of plant masses either with ornamentals or integration depending on the zone; integrating water channels, creating a water channel in recirculation and green spaces and leisure time facilities. The techniques of remote sensing and GIS allow for the visualization and modeling of the urbanization in 3D, simulating the virtual reality of the infrastructure as well as the actions that need to be taken for restoration, thereby providing at a low cost an understanding of landscape integration before it takes place.

  1. A Study of Layout, Rendering, and Interaction Methods for Immersive Graph Visualization.

    Science.gov (United States)

    Kwon, Oh-Hyun; Muelder, Chris; Lee, Kyungwon; Ma, Kwan-Liu

    2016-07-01

    Information visualization has traditionally limited itself to 2D representations, primarily due to the prevalence of 2D displays and report formats. However, there has been a recent surge in popularity of consumer grade 3D displays and immersive head-mounted displays (HMDs). The ubiquity of such displays enables the possibility of immersive, stereoscopic visualization environments. While techniques that utilize such immersive environments have been explored extensively for spatial and scientific visualizations, contrastingly very little has been explored for information visualization. In this paper, we present our considerations of layout, rendering, and interaction methods for visualizing graphs in an immersive environment. We conducted a user study to evaluate our techniques compared to traditional 2D graph visualization. The results show that participants answered significantly faster with a fewer number of interactions using our techniques, especially for more difficult tasks. While the overall correctness rates are not significantly different, we found that participants gave significantly more correct answers using our techniques for larger graphs.

  2. Virtual gaming simulation of a mental health assessment: A usability study.

    Science.gov (United States)

    Verkuyl, Margaret; Romaniuk, Daria; Mastrilli, Paula

    2018-05-18

    Providing safe and realistic virtual simulations could be an effective way to facilitate the transition from the classroom to clinical practice. As nursing programs begin to include virtual simulations as a learning strategy; it is critical to first assess the technology for ease of use and usefulness. A virtual gaming simulation was developed, and a usability study was conducted to assess its ease of use and usefulness for students and faculty. The Technology Acceptance Model provided the framework for the study, which included expert review and testing by nursing faculty and nursing students. This study highlighted the importance of assessing ease of use and usefulness in a virtual game simulation and provided feedback for the development of an effective virtual gaming simulation. The study participants said the virtual gaming simulation was engaging, realistic and similar to a clinical experience. Participants found the game easy to use and useful. Testing provided the development team with ideas to improve the user interface. The usability methodology provided is a replicable approach to testing virtual experiences before a research study or before implementing virtual experiences into curriculum. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Google SketchUp for Game Design Beginner's Guide

    CERN Document Server

    de Jongh, Robin

    2011-01-01

    The book takes a clear, step-by-step approach to building a complete game level using SketchUp with many props and textures. This book is designed for anyone who wants to create entire 3D worlds in freely available game engines such as Unity 3D, CryEngine, Ogre, Panda3D, Unreal Engine, and Blender Game Engine. It also targets all those who wish to create new levels and assets to sell in game asset stores or use in visualization or animation.

  4. An urban informatics approach to smart city learning in architecture and urban design education

    Directory of Open Access Journals (Sweden)

    Mirko Guaralda

    2013-08-01

    Full Text Available This study aims to redefine spaces of learning to places of learning through the direct engagement of local communities as a way to examine and learn from real world issues in the city. This paper exemplifies Smart City Learning, where the key goal is to promote the generation and exchange of urban design ideas for the future development of South Bank, in Brisbane, Australia, informing the creation of new design policies responding to the needs of local citizens. Specific to this project was the implementation of urban informatics techniques and approaches to promote innovative engagement strategies. Architecture and Urban Design students were encouraged to review and appropriate real-time, ubiquitous technology, social media, and mobile devices that were used by urban residents to augment and mediate the physical and digital layers of urban infrastructures. Our study’s experience found that urban informatics provide an innovative opportunity to enrich students’ place of learning within the city.

  5. Game-Aided Education for Transportation Engineering: Design, Development, and Assessment

    OpenAIRE

    Wang, Qichao

    2017-01-01

    Transportation engineering is a wide area that covers different topics including traffic planning, highway design, pavement design, traffic safety, and traffic control. Certain concepts in those topics are challenging and are hard to understand based on textbooks and lectures. In this work, we developed five web games targeting the five topics in transportation engineering education to improve students’ understanding of those hard concepts. The games are hosted in a website server. Students c...

  6. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    Science.gov (United States)

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  7. Development of an environment for 3D visualization of riser dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bernardes Junior, Joao Luiz; Martins, Clovis de Arruda [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica]. E-mails: joao.bernardes@poli.usp.br; cmartins@usp.br

    2006-07-01

    This paper describes the merging of Virtual Reality and Scientific Visualization techniques in the development of Riser View, a multi platform 3D environment for real time, interactive visualization of riser dynamics. Its features, architecture, unusual collision detection algorithm and how up was customized for the project are discussed. Using Open GL through VRK, the software is able to make use of the resources available in most modern Graphics. Acceleration Hardware to improve performance. IUP/LED allows for native loo-and-feel in MS-Windows or Linux platform. The paper discusses conflicts that arise between scientific visualization and aspects such as realism and immersion, and how the visualization is prioritized. (author)

  8. Integrating Video-Capture Virtual Reality Technology into a Physically Interactive Learning Environment for English Learning

    Science.gov (United States)

    Yang, Jie Chi; Chen, Chih Hung; Jeng, Ming Chang

    2010-01-01

    The aim of this study is to design and develop a Physically Interactive Learning Environment, the PILE system, by integrating video-capture virtual reality technology into a classroom. The system is designed for elementary school level English classes where students can interact with the system through physical movements. The system is designed to…

  9. Requirements of Integrated Design Teams While Evaluating Advanced Energy Retrofit Design Options in Immersive Virtual Environments

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2015-12-01

    Full Text Available One of the significant ways to save energy use in buildings is to implement advanced energy retrofits in existing buildings. Improving energy performance of buildings through advanced energy retrofitting requires a clear understanding of the cost and energy implications of design alternatives from various engineering disciplines when different retrofit options are considered. The communication of retrofit design alternatives and their energy implications is essential in the decision-making process, as it affects the final retrofit selections and hence the energy efficiency of the retrofitted buildings. The objective of the research presented here was to identify a generic list of information requirements that are needed to be shared and collectively analyzed by integrated design teams during advanced energy retrofit design review meetings held in immersive settings. While identifying such requirements, the authors used an immersive environment based iterative requirements elicitation approach. The technology was used as a means to better identify the information requirements of integrated design teams to be analyzed as a group. This paper provides findings on information requirements of integrated design teams when evaluating retrofit options in immersive virtual environments. The information requirements were identified through interactions with sixteen experts in design and energy modeling domain, and validated with another group of participants consisting of six design experts who were experienced in integrated design processes. Industry practitioners can use the findings in deciding on what information to share with integrated design team members during design review meetings that utilize immersive virtual environments.

  10. A game based virtual campus tour

    Science.gov (United States)

    Razia Sulthana, A.; Arokiaraj Jovith, A.; Saveetha, D.; Jaithunbi, A. K.

    2018-04-01

    The aim of the application is to create a virtual reality game, whose purpose is to showcase the facilities of SRM University, while doing so in an entertaining manner. The virtual prototype of the institution is deployed in a game engine which eases the students to look over the infrastructure, thereby reducing the resources utilization. Time and money are the resources in concern today. The virtual campus application assists the end user even from a remote location. The virtual world simulates the exact location and hence the effect is created. Thus, it virtually transports the user to the university, with the help of a VR Headset. This is a dynamic application wherein the user can move in any direction. The VR headset provides an interface to get gyro input and this is used to start and stop the movement. Virtual Campus is size efficient and occupies minimal space. It is scalable against mobile gadgets. This gaming application helps the end user to explore the campus, while having fun too. It is a user friendly application that supports users worldwide.

  11. Neural codes of seeing architectural styles

    OpenAIRE

    Choo, Heeyoung; Nasar, Jack L.; Nikrahei, Bardia; Walther, Dirk B.

    2017-01-01

    Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people′s visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding sugges...

  12. Designing Playful Interactive Installations for Urban Environments - The SwingScape Experience

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Kortbek, Karen Johanne; Christensen, Claus Møller

    2012-01-01

    . The design issues include: creating playful and collective interaction, making a familiar swing interaction simulate the experience of a music mixing board, providing gentle integration of multimedia (light and sound) in the atmosphere of an urban space, and finally making installations robust and safe...... at an urban playground. The objectives of SwingScape are to encourage physical activity as well as creating a playful and social experience in an urban space. The interaction techniques include movement sensors built into swings, LED lights, and an ambient loudspeaker system covering approx. 180 square meters...

  13. The architecture of Virtual Learning Environments under the conceptions of Bakhtinian studies

    Directory of Open Access Journals (Sweden)

    Adolfo Tanzi Neto

    2014-11-01

    Full Text Available Grounded on the conceptual framework of Bakhtin's architectonic form, we seek to demonstrate that the dimensions of a genre practiced in a virtual learning environment (VLE are directly related to its design (conception, idealization, and form, that is, to its architectonic form as the design of a VLE, which can foster (new multiliteracies, provide flexibility or not for multisemiotic genre practices in the contemporary world. To achieve this aim, we observed the design of two tools from two distinct VLEs; in one of them we found the influence of traditional school relationships of time and space (and power, generating an architectonic form of the traditional school characterized by its genres and literacies. In the other VLE, considering its architectonic form, we concluded that the design tends to favor the use of different modes of language - textual, graphic, sound, with static and dynamic images with easy communication/interaction in the contemporary technological media.

  14. Experiential Learning in Vehicle Dynamics Education via Motion Simulation and Interactive Gaming

    Directory of Open Access Journals (Sweden)

    Kevin Hulme

    2009-01-01

    Full Text Available Creating active, student-centered learning situations in postsecondary education is an ongoing challenge for engineering educators. Contemporary students familiar with visually engaging and fast-paced games can find traditional classroom methods of lecture and guided laboratory experiments limiting. This paper presents a methodology that incorporates driving simulation, motion simulation, and educational practices into an engaging, gaming-inspired simulation framework for a vehicle dynamics curriculum. The approach is designed to promote active student participation in authentic engineering experiences that enhance learning about road vehicle dynamics. The paper presents the student use of physical simulation and large-scale visualization to discover the impact that design decisions have on vehicle design using a gaming interface. The approach is evaluated using two experiments incorporated into a sequence of two upper level mechanical engineering courses.

  15. Virtual and augmented medical imaging environments: enabling technology for minimally invasive cardiac interventional guidance.

    Science.gov (United States)

    Linte, Cristian A; White, James; Eagleson, Roy; Guiraudon, Gérard M; Peters, Terry M

    2010-01-01

    Virtual and augmented reality environments have been adopted in medicine as a means to enhance the clinician's view of the anatomy and facilitate the performance of minimally invasive procedures. Their value is truly appreciated during interventions where the surgeon cannot directly visualize the targets to be treated, such as during cardiac procedures performed on the beating heart. These environments must accurately represent the real surgical field and require seamless integration of pre- and intra-operative imaging, surgical tracking, and visualization technology in a common framework centered around the patient. This review begins with an overview of minimally invasive cardiac interventions, describes the architecture of a typical surgical guidance platform including imaging, tracking, registration and visualization, highlights both clinical and engineering accuracy limitations in cardiac image guidance, and discusses the translation of the work from the laboratory into the operating room together with typically encountered challenges.

  16. Evaluating Motion. Spatial User Behavior in Virtual Environments

    DEFF Research Database (Denmark)

    Drachen, Anders; Canossa, Alessandro

    2011-01-01

    User-behaviour analysis has only recently been adapted to the context of the virtual world domain and remains limited in its application. Behaviour analysis is based on instrumentation data, automated, detailed, quantitative information about user behaviour within the virtual environment (VE......) of digital games. A key advantage of the method in comparison with existing user-research methods, such as usability- and playability-testing is that it permits very large sample sizes. Furthermore, games are in the vast majority of cases based on spatial, VEs within which the players operate and through...... which they experience the games. Therefore, spatial behaviour analyses are useful to game research and design. In this paper, spatial analysis methods are introduced and arguments posed for their use in user-behaviour analysis. Case studies involving data from thousands of players are used to exemplify...

  17. Using software interoperability to achieve a virtual design environment

    Science.gov (United States)

    Gregory, G. Groot; Koshel, R. John

    2005-09-01

    A variety of simulation tools, including optical design and analysis, have benefited by many years of evolution in software functionality and computing power, thus making the notion of virtual design environments a reality. To simulate the optical characteristics of a system, one needs to include optical performance, mechanical design and manufacturing aspects simultaneously. To date, no single software program offers a universal solution. One approach to achieve an integrated environment is to select tools that offer a high degree of interoperability. This allows the selection of the best tools for each aspect of the design working in concert to solve the problem. This paper discusses the issues of how to assemble a design environment and provides an example of a combination of tools for illumination design. We begin by offering a broad definition of interoperability from an optical analysis perspective. This definition includes aspects of file interchange formats, software communications protocols and customized applications. One example solution is proposed by combining SolidWorks1 for computer-aided design (CAD), TracePro2 for optical analysis and MATLAB3 as the mathematical engine for tolerance analysis. The resulting virtual tool will be applied to a lightpipe design task to illustrate how such a system can be used.

  18. Design of a virtual tour for the enhancement of Llíria’s architectural and urban heritage and its surroundings

    Directory of Open Access Journals (Sweden)

    José Miguel Maícas

    2017-07-01

    Full Text Available The Information Technology and Communications (ICT have revolutionized the way to present and promote the heritage sites. These ICT also offer scholars, students and visitors unprecedented access to architectural, historical, geographical, archaeological, iconographical and anthropological data, among other. It is noted also that virtual heritage environments are inherently fascinating and possess essential properties to have a positive effect on supporting heritage conservation and education. This paper is concerned with the potential of these ICT developments for improving the enhancement of the heritage sites of the town of Llíria and its surroundings (Valencia, Spain by mean of a virtual tour (“Edeta 360º” based on 360º panorama photos. The “Edeta 360º” virtual tour is an immersive application that places the viewers inside the image, enabling them to significantly enhance position awareness and providing the highest level of functionality for viewing, capturing and analysing virtual data. It can appropriately and effectively be utilised to facilitate intellectual and physical access to public by bringing knowledge, awareness and appreciation about the heritage of Llíria while, at the same time, authenticity is preserved. The undertaking method to create this interactive virtual tour is based on an easy procedure with off-the-shelf equipment and using both freely available software to address the process of photo stitching that combines multiple photographic images with overlapping fields of view to produce a segmented panorama or high-resolution image. Each panorama contains hotspots that enable the users to further explore the surroundings. The virtual tour provides the user the ability to navigate a scene through the rotation and zoom functions. This application results very appealing and has been adopted as a mean for information, dissemination, education and tourism purposes.

  19. Materiality and Visualization in Hospital Design

    DEFF Research Database (Denmark)

    Harty, Chris; Tryggestad, Kjell

    healthcare systems, single bed rooms are being seen as the preferred alternative to more traditional ward-style accommodation, as it has advantages for privacy and dignity for patients, less disruption to other patients and better control of hospital acquired infections. But fundamentally, single rooms mean...... of different representations and visualizations – economic calculations, drawings, and virtual and physical models. We use these cases to discuss the roles of different sorts of representations and visualizations in design process, in terms of opening up and settling controversies (such as room size), in terms...

  20. Molecular Rift: Virtual Reality for Drug Designers.

    Science.gov (United States)

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub.

  1. Urban environment and well-being: cross-cultural studies on Perceived Residential Environment Quality Indicators (PREQIs).

    Science.gov (United States)

    Bonaiuto, Marino; Fornara, Ferdinando; Alves, Susana; Ferreira, Ines; Mao, Yanhui; Moffat, Eva; Piccinin, Gloria; Rahimi, Leila

    2015-09-01

    Architectural and environmental psychology literature has shown the importance of urban design in provoking stress feelings or enhancing well-being and quality of life. The aim of this contribution is to show the main results of a set of cross-cultural survey studies concerning the perceived quality of urban features at the neighbourhood level. A questionnaire was used including the extended or the short version of the 11 scales measuring Perceived Residential Environment Quality Indicators (PREQIs), which cover architectural, social, functional, and contextual aspects. Both versions of PREQIs showed a similar factorial structure and a good (or at least acceptable) reliability across different geographical contexts, even though some differences emerged in those countries that are more distant from the Western linguistic and cultural milieu. The development of tools like PREQIs should increase a "user-centred" vision on urban issues.

  2. The City at Play: "Second Life" and the Virtual Urban Planning Studio

    Science.gov (United States)

    Thomas, David; Hollander, Justin B.

    2010-01-01

    This study interrogates the idea of using videogames and game-like virtual worlds as a means to advance studio education pedagogy. Looking at a series of case studies of urban planning courses taught using "Second Life," the results describe the potentials, and limits, of this emerging digital media. Key findings are that the virtual worlds…

  3. Urban Design - Architectural Workshop Nova Gorica

    Directory of Open Access Journals (Sweden)

    Anja Planišček

    2012-01-01

    Full Text Available The workshop ran through the 2008-09 academic year. The main themes were a thorough design of Magistrala, the main city street, and research of the spatial and programmatic development alongside it. The research was based on the original urban plan of Nova Gorica designed by architect Edvard Ravnikar in 1949.The workshop was divided into two phases. In the first phase, students researched the possibilities of an overall design for Magistrala (traffic arrangement, relations between built and vacant space, green spaces, public and private domain etc.. In the second phase, they proposed urban architectural interventions in the open spaces along Magistrala (university campus in the northern part of the city, student housing, residential areas, main square, law court, hotel etc..

  4. Biomimetic design processes in architecture: morphogenetic and evolutionary computational design

    International Nuclear Information System (INIS)

    Menges, Achim

    2012-01-01

    Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The paper first explains the fundamental difference between computer-aided and computational design in architecture, as the understanding of this distinction is of critical importance for the research presented. Thereafter, the conceptual relation and possible transfer of principles from natural morphogenesis to design computation are introduced and the related developments of generative, feature-based, constraint-based, process-based and feedback-based computational design methods are presented. This morphogenetic design research is then related to exploratory evolutionary computation, followed by the presentation of two case studies focusing on the exemplary development of spatial envelope morphologies and urban block morphologies. (paper)

  5. Starting research in interaction design with visuals for low-functioning children in the autistic spectrum: a protocol.

    Science.gov (United States)

    Parés, Narcís; Carreras, Anna; Durany, Jaume; Ferrer, Jaume; Freixa, Pere; Gómez, David; Kruglanski, Orit; Parés, Roc; Ribas, J Ignasi; Soler, Miquel; Sanjurjo, Alex

    2006-04-01

    On starting to think about interaction design for low-functioning persons in the autistic spectrum (PAS), especially children, one finds a number of questions that are difficult to answer: Can we typify the PAS user? Can we engage the user in interactive communication without generating frustrating or obsessive situations? What sort of visual stimuli can we provide? Will they prefer representational or abstract visual stimuli? Will they understand three-dimensional (3D) graphic representation? What sort of interfaces will they accept? Can we set ambitious goals such as education or therapy? Unfortunately, most of these questions have no answer yet. Hence, we decided to set an apparently simple goal: to design a "fun application," with no intention to reach the level of education or therapy. The goal was to be attained by giving the users a sense of agency--by providing first a sense of control in the interaction dialogue. Our approach to visual stimuli design has been based on the use of geometric, abstract, two-dimensional (2D), real-time computer graphics in a full-body, non-invasive, interactive space. The results obtained within the European-funded project MultiSensory Environment Design for an Interface between Autistic and Typical Expressiveness (MEDIATE) have been extremely encouraging.

  6. Rapid Auditory System Adaptation Using a Virtual Auditory Environment

    Directory of Open Access Journals (Sweden)

    Gaëtan Parseihian

    2011-10-01

    Full Text Available Various studies have highlighted plasticity of the auditory system from visual stimuli, limiting the trained field of perception. The aim of the present study is to investigate auditory system adaptation using an audio-kinesthetic platform. Participants were placed in a Virtual Auditory Environment allowing the association of the physical position of a virtual sound source with an alternate set of acoustic spectral cues or Head-Related Transfer Function (HRTF through the use of a tracked ball manipulated by the subject. This set-up has the advantage to be not being limited to the visual field while also offering a natural perception-action coupling through the constant awareness of one's hand position. Adaptation process to non-individualized HRTF was realized through a spatial search game application. A total of 25 subjects participated, consisting of subjects presented with modified cues using non-individualized HRTF and a control group using individual measured HRTFs to account for any learning effect due to the game itself. The training game lasted 12 minutes and was repeated over 3 consecutive days. Adaptation effects were measured with repeated localization tests. Results showed a significant performance improvement for vertical localization and a significant reduction in the front/back confusion rate after 3 sessions.

  7. Increasing student engagement and retention using immersive interfaces virtual worlds, gaming and simulation

    CERN Document Server

    Wankel, Charles

    2012-01-01

    Increasing Student Engagement and Retention Using Immersive Interfaces: Virtual Worlds, Gaming, and Simulation uses case studies, surveys, and literature reviews to critically examine how gaming, simulation, and virtualization are being used to improve teamwork and leadership skills in students, create engaging communities of practice, and as experiential learning tools to create inter-cultural, multi-perspective, and global experiences. Chapters include how to increase learner engagement using serious games, using game features for classroom engagement, using client-based peer assessment in multi-role, whole-enterprise simulations, using virtual worlds to develop teacher candidate skills, enhancing leadership skills through virtual simulation, using online video simulation for educational leadership, using augmented reality in education, using open source software in education, using educational robotics laboratories to enhance active learning, and utilizing the virtual learning environment to encourage facu...

  8. Representation of Patients' Hand Modulates Fear Reactions of Patients with Spider Phobia in Virtual Reality.

    Science.gov (United States)

    Peperkorn, Henrik M; Diemer, Julia E; Alpers, Georg W; Mühlberger, Andreas

    2016-01-01

    Embodiment (i.e., the involvement of a bodily representation) is thought to be relevant in emotional experiences. Virtual reality (VR) is a capable means of activating phobic fear in patients. The representation of the patient's body (e.g., the right hand) in VR enhances immersion and increases presence, but its effect on phobic fear is still unknown. We analyzed the influence of the presentation of the participant's hand in VR on presence and fear responses in 32 women with spider phobia and 32 matched controls. Participants sat in front of a table with an acrylic glass container within reaching distance. During the experiment this setup was concealed by a head-mounted display (HMD). The VR scenario presented via HMD showed the same setup, i.e., a table with an acrylic glass container. Participants were randomly assigned to one of two experimental groups. In one group, fear responses were triggered by fear-relevant visual input in VR (virtual spider in the virtual acrylic glass container), while information about a real but unseen neutral control animal (living snake in the acrylic glass container) was given. The second group received fear-relevant information of the real but unseen situation (living spider in the acrylic glass container), but visual input was kept neutral VR (virtual snake in the virtual acrylic glass container). Participants were instructed to touch the acrylic glass container with their right hand in 20 consecutive trials. Visibility of the hand was varied randomly in a within-subjects design. We found for all participants that visibility of the participant's hand increased presence independently of the fear trigger. However, in patients, the influence of the virtual hand on fear depended on the fear trigger. When fear was triggered perceptually, i.e., by a virtual spider, the virtual hand increased fear. When fear was triggered by information about a real spider, the virtual hand had no effect on fear. Our results shed light on the

  9. The analysis and design of urban near-home environments according to psycho-social needs and behavior of human beings

    OpenAIRE

    Serpil, Burçak

    1996-01-01

    Ankara : Department of Interior Architecture and Environmental Design and the Institute of Fine Arts of Bilkent University, 1996. Thesis (Master's) -- Bilkent University, 1996. Includes bibliographical references leaves 129-132. In this study, the design of urban near-home environments is examined considering the social and psychological needs of human beings as well as human spatial behavior. After an introduction to the concepts such as environment, near-home environments, human-e...

  10. Human Factors Virtual Analysis Techniques for NASA's Space Launch System Ground Support using MSFC's Virtual Environments Lab (VEL)

    Science.gov (United States)

    Searcy, Brittani

    2017-01-01

    Using virtual environments to assess complex large scale human tasks provides timely and cost effective results to evaluate designs and to reduce operational risks during assembly and integration of the Space Launch System (SLS). NASA's Marshall Space Flight Center (MSFC) uses a suite of tools to conduct integrated virtual analysis during the design phase of the SLS Program. Siemens Jack is a simulation tool that allows engineers to analyze human interaction with CAD designs by placing a digital human model into the environment to test different scenarios and assess the design's compliance to human factors requirements. Engineers at MSFC are using Jack in conjunction with motion capture and virtual reality systems in MSFC's Virtual Environments Lab (VEL). The VEL provides additional capability beyond standalone Jack to record and analyze a person performing a planned task to assemble the SLS at Kennedy Space Center (KSC). The VEL integrates Vicon Blade motion capture system, Siemens Jack, Oculus Rift, and other virtual tools to perform human factors assessments. By using motion capture and virtual reality, a more accurate breakdown and understanding of how an operator will perform a task can be gained. By virtual analysis, engineers are able to determine if a specific task is capable of being safely performed by both a 5% (approx. 5ft) female and a 95% (approx. 6'1) male. In addition, the analysis will help identify any tools or other accommodations that may to help complete the task. These assessments are critical for the safety of ground support engineers and keeping launch operations on schedule. Motion capture allows engineers to save and examine human movements on a frame by frame basis, while virtual reality gives the actor (person performing a task in the VEL) an immersive view of the task environment. This presentation will discuss the need of human factors for SLS and the benefits of analyzing tasks in NASA MSFC's VEL.

  11. This is Not a Game - Social Virtual Worlds, Fun, and Learning

    Science.gov (United States)

    Bell, Mark W.; Smith-Robbins, Sarah; Withnail, Greg

    This chapter asks a simple question: what is required to make learning fun in social virtual worlds? Several scholars have connected fun with learning but most of these have centered on the function of games in learning. Studies of learning in massive multiplayer online role playing games connect the game mechanics to how learning occurs. However, few have asked whether learning in a virtual world can be fun if there is no game. In a social virtual world, like Second Life (SL) there are no game mechanics (unlike game worlds like World of Warcraft [WoW]). There are no quests, challenges, rewards or other game elements in SL. So can a virtual world that has no game-content provided be a place where fun learning can take place? We define fun and explore how fun has been related to learning. We explore theories of fun from Koster, Crawford, Csíkszentmihályi and others as well as views of the ways fun is explored as related to the learning experience. With these models in mind, we explore how fun is different in a social virtual world. Drawing on definitions of fun from Castronova and others, we see game structures in virtual worlds may not be needed to have fun. These fun activities include game creation, business interactions, and most importantly, identity play and socialization in a social virtual world. Finally, we propose that if learning is to be successful and fun in a social virtual world it should pay close attention to these two activities.

  12. Control over the virtual environment influences the presence and efficacy of a virtual reality intervention on pain.

    Science.gov (United States)

    Gutiérrez-Martínez, Olga; Gutiérrez-Maldonado, José; Loreto-Quijada, Desirée

    2011-01-01

    The main aim of this study is to investigate whether the control the user has over a virtual environment (VE) influences the sense of presence. A secondary purpose is to explore the relationship between Virtual Reality (VR) presence and pain tolerance during a cold-pressor experience. Ninety-four participants underwent two consecutive cold-pressor trials, one without VR exposure and the other providing a VR stereoscopic figure used as a symbolic representation of the sensation of pain. Participants were randomly assigned to an interactive condition in which they could actively manipulate the VR figure to achieve a pleasant, tranquil environment (analogous to no-pain situation) or to a passive intervention, in which they observed the changes in the VR figure. Results showed that the amount of VR presence reported was significantly higher in the interactive condition. Participants had a higher pain tolerance during both VR conditions than in the no-VR trial, with a greater increase in pain tolerance from the non-VR trial in the interactive condition. Presence scores correlated significantly and positively with pain tolerance scores. We discuss the importance of VR interaction and control over the VR environments used in VR pain interventions designed to increase cognitive control over pain.

  13. An investigation into perception-altering lighting concepts for supporting game designers in setting certain atmospheres within a videogame environment

    NARCIS (Netherlands)

    Nieuwdorp, H.J.; Beresford, M.; Khan, J.V.; Aarts, E.; de Ruyter, B.; Markopoulos, P.; van Loenen, E.; Wichert, R.; Schouten, B.

    2014-01-01

    Lighting in video games is used to set moods and atmosphere, or can serve as a gameplay tool. This paper examines the effects lighting concepts can have on a virtual game environment on the players’ navigation within the game. Previously known lighting concepts were tested in a virtual environment

  14. Continued use of an interactive computer game-based visual perception learning system in children with developmental delay.

    Science.gov (United States)

    Lin, Hsien-Cheng; Chiu, Yu-Hsien; Chen, Yenming J; Wuang, Yee-Pay; Chen, Chiu-Ping; Wang, Chih-Chung; Huang, Chien-Ling; Wu, Tang-Meng; Ho, Wen-Hsien

    2017-11-01

    This study developed an interactive computer game-based visual perception learning system for special education children with developmental delay. To investigate whether perceived interactivity affects continued use of the system, this study developed a theoretical model of the process in which learners decide whether to continue using an interactive computer game-based visual perception learning system. The technology acceptance model, which considers perceived ease of use, perceived usefulness, and perceived playfulness, was extended by integrating perceived interaction (i.e., learner-instructor interaction and learner-system interaction) and then analyzing the effects of these perceptions on satisfaction and continued use. Data were collected from 150 participants (rehabilitation therapists, medical paraprofessionals, and parents of children with developmental delay) recruited from a single medical center in Taiwan. Structural equation modeling and partial-least-squares techniques were used to evaluate relationships within the model. The modeling results indicated that both perceived ease of use and perceived usefulness were positively associated with both learner-instructor interaction and learner-system interaction. However, perceived playfulness only had a positive association with learner-system interaction and not with learner-instructor interaction. Moreover, satisfaction was positively affected by perceived ease of use, perceived usefulness, and perceived playfulness. Thus, satisfaction positively affects continued use of the system. The data obtained by this study can be applied by researchers, designers of computer game-based learning systems, special education workers, and medical professionals. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. It's All Part of the Game: Video Game Interaction Design and Business Performance.

    Science.gov (United States)

    Shirinian, Ara

    2001-01-01

    Discusses the importance of positive video game experiences and designs that can create them, including immediacy of feedback, allowing graceful recovery from mistakes, high-quality feedback, and input device mappings. Examines interface complexity. Concludes game designers must treat the interaction between human and video game as a formal…

  16. Teachers’ interactions and mathematics learning within a virtual environment

    Directory of Open Access Journals (Sweden)

    Aline Terra Salles

    2012-09-01

    Full Text Available The use of information and communication technology brings new ways of enrolment and motivation of individuals. These technologies have been an important vehicle for sharing information and constitute various communities. For this reason, it is necessary analysis of learning in virtual environments. The aim of this article focuses on the analysis of teachers interactions in the environment Virtual Math Team (VMT-Chat in addressing one problem of taxicab geometry. We study learning through different forms of participation of individuals within the environment. The results shows that the identification of different types of interlocution (evaluative, interpretative, informative and negociative allows the teacher the creation of strategies to contribute with the continuity of the debate and to promote the development of mathematical ideas emerged from interlocutions. The analysis also illustrates how teachers interacted online with the use of combinatorial analysis on the metric in taxicab geometry.

  17. S3D depth-axis interaction for video games: performance and engagement

    Science.gov (United States)

    Zerebecki, Chris; Stanfield, Brodie; Hogue, Andrew; Kapralos, Bill; Collins, Karen

    2013-03-01

    Game developers have yet to embrace and explore the interactive stereoscopic 3D medium. They typically view stereoscopy as a separate mode that can be disabled throughout the design process and rarely develop game mechanics that take advantage of the stereoscopic 3D medium. What if we designed games to be S3D-specific and viewed traditional 2D viewing as a separate mode that can be disabled? The design choices made throughout such a process may yield interesting and compelling results. Furthermore, we believe that interaction within a stereoscopic 3D environment is more important than the visual experience itself and therefore, further exploration is needed to take into account the interactive affordances presented by stereoscopic 3D displays. Stereoscopic 3D displays allow players to perceive objects at different depths, thus we hypothesize that designing a core mechanic to take advantage of this viewing paradigm will create compelling content. In this paper, we describe Z-Fighter a game that we have developed that requires the player to interact directly along the stereoscopic 3D depth axis. We also outline an experiment conducted to investigate the performance, perception, and enjoyment of this game in stereoscopic 3D vs. traditional 2D viewing.

  18. Collaborative design in virtual environments

    CERN Document Server

    Wang, Xiangyu

    2011-01-01

    Collaborative virtual environments (CVEs) are multi-user virtual realities which actively support communication and co-operation. This book offers a comprehensive reference volume to the state-of-the-art in the area of design studies in CVEs. It is an excellent mix of contributions from over 25 leading researcher/experts in multiple disciplines from academia and industry, providing up-to-date insight into the current research topics in this field as well as the latest technological advancements and the best working examples. Many of these results and ideas are also applicable to other areas su

  19. Objective Measures of Emotion During Virtual Walks through Urban Environments

    Directory of Open Access Journals (Sweden)

    Moritz Geiser

    2011-07-01

    Full Text Available Previous studies were able to demonstrate different verbally stated affective responses to environments. In the present study we used objective measures of emotion. We examined startle reflex modulation as well as changes in heart rate and skin conductance while subjects virtually walked through six different areas of urban Paris using the StreetView tool of Google maps. Unknown to the subjects, these areas were selected based on their median real estate prices. First, we found that price highly correlated with subjective rating of pleasantness. In addition, relative startle amplitude differed significantly between the area with lowest versus highest median real estate price while no differences in heart rate and skin conductance were found across conditions. We conclude that interaction with environmental scenes does elicit emotional responses which can be objectively measured and quantified. Environments activate motivational and emotional brain circuits, which is in line with the notion of an evolutionary developed system of environmental preference. Results are discussed in the frame of environmental psychology and aesthetics.

  20. Touching proteins with virtual bare hands - Visualizing protein-drug complexes and their dynamics in self-made virtual reality using gaming hardware

    Science.gov (United States)

    Ratamero, Erick Martins; Bellini, Dom; Dowson, Christopher G.; Römer, Rudolf A.

    2018-06-01

    The ability to precisely visualize the atomic geometry of the interactions between a drug and its protein target in structural models is critical in predicting the correct modifications in previously identified inhibitors to create more effective next generation drugs. It is currently common practice among medicinal chemists while attempting the above to access the information contained in three-dimensional structures by using two-dimensional projections, which can preclude disclosure of useful features. A more accessible and intuitive visualization of the three-dimensional configuration of the atomic geometry in the models can be achieved through the implementation of immersive virtual reality (VR). While bespoke commercial VR suites are available, in this work, we present a freely available software pipeline for visualising protein structures through VR. New consumer hardware, such as the uc(HTC Vive) and the uc(Oculus Rift) utilized in this study, are available at reasonable prices. As an instructive example, we have combined VR visualization with fast algorithms for simulating intramolecular motions of protein flexibility, in an effort to further improve structure-led drug design by exposing molecular interactions that might be hidden in the less informative static models. This is a paradigmatic test case scenario for many similar applications in computer-aided molecular studies and design.

  1. Virtual Environment Composable Training for Operational Readiness (VECTOR)

    National Research Council Canada - National Science Library

    Barba, Charles; Deaton, John E; Santarelli, Tom; Knerr, Bruce; Singer, Michael; Belanich, Jim

    2006-01-01

    .... This paper describes the cultural-training application, the architectural design, and the associated implementation of the immersive environment and intelligent agent technology to control game non-player characters (NPC...

  2. Architectural and Urban Identity Transformation of Eskisehir - An Anatolian City

    Science.gov (United States)

    Kandemir, Ozlem

    2017-10-01

    City is the arena where we identify ourselves and interact with others and our environment; cities are epicentres of interaction, transition and fusion of different communities and their cultures. Thus, it is important to discuss the elements of change and their consequences in architectural - urban spaces and their products in the context of identity. Urban identity can be defined as the impression invoked on its inhabitants by the environmental, historical, sociocultural and spatial values. Both architectural and urban identity have a dynamic structure, susceptive to every change on both social and administrative structure. Both global and national economic fluctuations in the last decades and industrialisation throughout the 20th century caused dramatic and diverse changes in the conditions of life, consumption forms, the perception of time and space consequently transforming architecture and city. The changes in all the different aspects of the city life and structure with time cause transformation of architecture and urban identity. This dynamism caused by changes and new formations in the cultural life and environmental conditions also leads to transforming customs and the ways we occupy/use/live in a place. Consequently, these changes and new social norms that can transform the way we occupy a space and our demands from a place can be asserted. All new requirements caused by these new conditions of urban life transform the existing architecture and spaces. In this presentation, the transformation of the architectural and urban identity of Eskisehir will be discussed through its dynamics like architectural and urban transformation, industry and politics.

  3. Virtual testing of speed reduction schemes on urban collector roads.

    Science.gov (United States)

    Domenichini, Lorenzo; Branzi, Valentina; Meocci, Monica

    2018-01-01

    Urban collector roads are complex driving environments often encompassing both the mobility and the access road functions. In these conditions motorized traffic and vulnerable road users compete continually. Speed reduction measures may play a relevant role in these contexts, provided that such measures are also designed in compliance with the driver's capabilities and expectations. The paper describes a test procedure using driving simulation experiments, designed to evaluate the reconfiguration project of Via Pistoiese, an urban road collector located in Florence (Italy). The road improvement design consisted of several engineering treatments aimed to reduce and homogenize the driving speed, as well as to manage the co-existence of the different road users and mainly to protect pedestrians. The main focus of the research was to understand if the drivers' behaviour was according to the design hypothesis before the safety treatments are implemented in the real world. Due to the multiple engineering treatments included in the reconfiguration project, the evaluation of the overall safety effectiveness of the project rather than the single treatment safety impact was the main concern of the research study. In addition, the study aimed to assess the usefulness of the considered testing method to understand how to integrate road design with drivers' performances, especially in heterogeneous traffic environments where drivers' behaviour plays a decisive role in the success of the proposed design solutions. Fifty-eight participants drove through two immersive virtual environments, reproducing the existing configuration and the project reconfiguration, while data relating to different driving aspects were collected. Two analyses were performed. The first was focused on the analysis of the mean speed profiles and revealed that the considered engineering treatments are able to control the speeding behaviour without providing a too high discomfort to the drivers. The second

  4. An architectural approach to level design

    CERN Document Server

    Totten, Christopher W

    2014-01-01

    Explore Level Design through the Lens of Architectural and Spatial Experience TheoryWritten by a game developer and professor trained in architecture, An Architectural Approach to Level Design is one of the first books to integrate architectural and spatial design theory with the field of level design. It explores the principles of level design through the context and history of architecture, providing information useful to both academics and game development professionals.Understand Spatial Design Principles for Game Levels in 2D, 3D, and Multiplayer ApplicationsThe book presents architectura

  5. Evaluating the Physical Environment of Design Studios: A Case study in Malaysian Private Architecture Schools

    Directory of Open Access Journals (Sweden)

    Shanthi Muniandy

    2015-09-01

    Full Text Available Understanding the notion of learner’s experiences in the design of physical environment of an architecture design studio is a necessity as it contains certain values of influence. It is due to the unique learning experiences which are accrued particularly in design studio that is continued during professional practice as well. Most architectural campuses in Malaysian Private Higher Education Institutions (MPHEI are devoid of certain important elements and this issue needs to be looked into seriously. Apparently, most architectural design studios today have different physical settings, and have developed their own learning culture based on the typical space that they have. Reviewing the physical environment and how it contributes to the social environ-ment in MPHEI’s architectural context requires certain understanding on the learner’s psycho-logical needs, expectations and in the same time to meet the educational objective which is never an easy task. Hence, this paper reviewed the studies of the possible physical environment approaches in connecting the learner’s connections in architecture studio learning environ-ment. A questionnaire survey with Likert-scale components, and semi-structured interview on learners of five distinguished Private Architectural schools in Malaysia unveiled several signifi-cant findings that can lead entrepreneurs to upgrade the physical environment of these MPHEIs in order to cope with the demands of the stakeholders.

  6. Dissociation of past and present experience in problem solving using a virtual environment.

    Science.gov (United States)

    Sturz, Bradley R; Bodily, Kent D; Katz, Jeffrey S

    2009-02-01

    An interactive 3D desktop virtual environment task was created to investigate learning mechanisms in human problem solving. Participants were assessed for previous video game experience, divided into two groups (Training and Control), and matched for gender and experience. The Training group learned specific skills within the virtual environment before being presented a problem. The Control group was presented the problem only. Completion time was faster for the Training group and was affected by level of previous video game experience. Results indicated problem solving was a function of specific and general experience and demonstrated a method for dissociating these two facets of experience.

  7. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    Science.gov (United States)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  8. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    Science.gov (United States)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  9. Engineering Computer Games: A Parallel Learning Opportunity for Undergraduate Engineering and Primary (K-5 Students

    Directory of Open Access Journals (Sweden)

    Mark Michael Budnik

    2011-04-01

    Full Text Available In this paper, we present how our College of Engineering is developing a growing portfolio of engineering computer games as a parallel learning opportunity for undergraduate engineering and primary (grade K-5 students. Around the world, many schools provide secondary students (grade 6-12 with opportunities to pursue pre-engineering classes. However, by the time students reach this age, many of them have already determined their educational goals and preferred careers. Our College of Engineering is developing resources to provide primary students, still in their educational formative years, with opportunities to learn more about engineering. One of these resources is a library of engineering games targeted to the primary student population. The games are designed by sophomore students in our College of Engineering. During their Introduction to Computational Techniques course, the students use the LabVIEW environment to develop the games. This software provides a wealth of design resources for the novice programmer; using it to develop the games strengthens the undergraduates

  10. A Prototype SSVEP Based Real Time BCI Gaming System.

    Science.gov (United States)

    Martišius, Ignas; Damaševičius, Robertas

    2016-01-01

    Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel.

  11. A Prototype SSVEP Based Real Time BCI Gaming System

    Directory of Open Access Journals (Sweden)

    Ignas Martišius

    2016-01-01

    Full Text Available Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel.

  12. The virtual mirror: a new interaction paradigm for augmented reality environments.

    Science.gov (United States)

    Bichlmeier, Christoph; Heining, Sandro Michael; Feuerstein, Marco; Navab, Nassir

    2009-09-01

    Medical augmented reality (AR) has been widely discussed within the medical imaging as well as computer aided surgery communities. Different systems for exemplary medical applications have been proposed. Some of them produced promising results. One major issue still hindering AR technology to be regularly used in medical applications is the interaction between physician and the superimposed 3-D virtual data. Classical interaction paradigms, for instance with keyboard and mouse, to interact with visualized medical 3-D imaging data are not adequate for an AR environment. This paper introduces the concept of a tangible/controllable Virtual Mirror for medical AR applications. This concept intuitively augments the direct view of the surgeon with all desired views on volumetric medical imaging data registered with the operation site without moving around the operating table or displacing the patient. We selected two medical procedures to demonstrate and evaluate the potentials of the Virtual Mirror for the surgical workflow. Results confirm the intuitiveness of this new paradigm and its perceptive advantages for AR-based computer aided interventions.

  13. Executive control systems in the engineering design environment

    Science.gov (United States)

    Hurst, P. W.; Pratt, T. W.

    1985-01-01

    Executive Control Systems (ECSs) are software structures for the unification of various engineering design application programs into comprehensive systems with a central user interface (uniform access) method and a data management facility. Attention is presently given to the most significant determinations of a research program conducted for 24 ECSs, used in government and industry engineering design environments to integrate CAD/CAE applications programs. Characterizations are given for the systems' major architectural components and the alternative design approaches considered in their development. Attention is given to ECS development prospects in the areas of interdisciplinary usage, standardization, knowledge utilization, and computer science technology transfer.

  14. Interweaving interactions in virtual worlds: a case study.

    Science.gov (United States)

    Cantamesse, Matteo; Galimberti, Carlo; Giacoma, Gianandrea

    2011-01-01

    The aim of this study was to examine the effect of playing the online game World of Warcraft (WoW), both on adolescent's (effective) social interaction and on the competence they developed on it. Social interactions within the game environment have been investigated by integrating qualitative and quantitative methods: conversation analysis and social network analysis (SNA). From a psychosocial point of view, the in-game interactions, and in particular conversational exchanges, turn out to be a collaborative path of the joint definition of identities and social ties, with reflection on in-game processes and out-game relationship.

  15. A Conceptual Framework of Immersive Shared Environments Emphasizing Social Interaction

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2015-11-01

    Full Text Available The effectiveness of visual displays has often been linked to the sense of presence embodied by immersive visualization. However, efforts analyzing how presence is associated with multi-users’ quality of communication, including visualization capabilities to assist in architecture, engineering and construction (AEC, are still unfolding. This research is an exploratory study on social interaction, which aims to improve the presentation and communication of complex data through immersive simulation techniques. This paper reviews key concepts such as presence and immersion to identify factors that influence communication in the representative literature. It then introduces the Hub for Immersive Visualization and eResearch (HIVE with a focus on the technological components. Finally it presents a conceptual framework of immersive shared environment, which enables multi-users to understand how to implement social interaction in a system efficiently or to determine whether a visualization system could support communication effectively. Future studies to validate the proposed framework are discussed, particularly in the context of cognitive factors in a shared environment.

  16. Reflective Subjects in Kant and Architectural Design Education

    Science.gov (United States)

    Rawes, Peg

    2007-01-01

    In architectural design education, students develop drawing, conceptual, and critical skills which are informed by their ability to reflect upon the production of ideas in design processes and in the urban, environmental, social, historical, and cultural context that define architecture and the built environment. Reflective actions and thinking…

  17. Performative Urban Architecture

    DEFF Research Database (Denmark)

    Thomsen, Bo Stjerne; Jensen, Ole B.

    The paper explores how performative urban architecture can enhance community-making and public domain using socio-technical systems and digital technologies to constitute an urban reality. Digital medias developed for the web are now increasingly occupying the urban realm as a tool for navigating...... the physical world e.g. as exemplified by the Google Walk Score and the mobile extension of the Google Maps to the iPhone. At the same time the development in pervasive technologies and situated computing extends the build environment with digital feedback systems that are increasingly embedded and deployed...... using sensor technologies opening up for new access considerations in architecture as well as the ability for a local environment to act as real-time sources of information and facilities. Starting from the NoRA pavilion for the 10th International Architecture Biennale in Venice the paper discusses...

  18. Visualization of decision processes using a cognitive architecture

    Science.gov (United States)

    Livingston, Mark A.; Murugesan, Arthi; Brock, Derek; Frost, Wende K.; Perzanowski, Dennis

    2013-01-01

    Cognitive architectures are computational theories of reasoning the human mind engages in as it processes facts and experiences. A cognitive architecture uses declarative and procedural knowledge to represent mental constructs that are involved in decision making. Employing a model of behavioral and perceptual constraints derived from a set of one or more scenarios, the architecture reasons about the most likely consequence(s) of a sequence of events. Reasoning of any complexity and depth involving computational processes, however, is often opaque and challenging to comprehend. Arguably, for decision makers who may need to evaluate or question the results of autonomous reasoning, it would be useful to be able to inspect the steps involved in an interactive, graphical format. When a chain of evidence and constraint-based decision points can be visualized, it becomes easier to explore both how and why a scenario of interest will likely unfold in a particular way. In initial work on a scheme for visualizing cognitively-based decision processes, we focus on generating graphical representations of models run in the Polyscheme cognitive architecture. Our visualization algorithm operates on a modified version of Polyscheme's output, which is accomplished by augmenting models with a simple set of tags. We provide example visualizations and discuss properties of our technique that pose challenges for our representation goals. We conclude with a summary of feedback solicited from domain experts and practitioners in the field of cognitive modeling.

  19. Enhancements to VTK enabling Scientific Visualization in Immersive Environments

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick; Jhaveri, Sankhesh; Chaudhary, Aashish; Sherman, William; Martin, Ken; Lonie, David; Whiting, Eric; Money, James

    2017-04-01

    Modern scientific, engineering and medical computational sim- ulations, as well as experimental and observational data sens- ing/measuring devices, produce enormous amounts of data. While statistical analysis provides insight into this data, scientific vi- sualization is tactically important for scientific discovery, prod- uct design and data analysis. These benefits are impeded, how- ever, when scientific visualization algorithms are implemented from scratch—a time-consuming and redundant process in im- mersive application development. This process can greatly ben- efit from leveraging the state-of-the-art open-source Visualization Toolkit (VTK) and its community. Over the past two (almost three) decades, integrating VTK with a virtual reality (VR) environment has only been attempted to varying degrees of success. In this pa- per, we demonstrate two new approaches to simplify this amalga- mation of an immersive interface with visualization rendering from VTK. In addition, we cover several enhancements to VTK that pro- vide near real-time updates and efficient interaction. Finally, we demonstrate the combination of VTK with both Vrui and OpenVR immersive environments in example applications.

  20. Neural networks underlying affective states in a multimodal virtual environment: contributions to boredom

    Directory of Open Access Journals (Sweden)

    Krystyna Anna Mathiak

    2013-11-01

    Full Text Available The interaction of low perceptual stimulation or goal-directed behavior with a negative subjective evaluation may lead to boredom. This contribution to boredom may shed light on its neural correlates, which are poorly characterized so far. A video game served as simulation of free interactive behavior without interruption of the game’s narrative. Thirteen male German volunteers played a first-person shooter game (Tactical Ops: Assault on Terror during functional magnetic resonance imaging (fMRI. Two independent coders performed the time-based analysis of the audio-visual game content. Boredom was operationalized as interaction of prolonged absence of goal-directed behavior with lowered affect in the Positive and Negative Affect Schedule (PANAS.A decrease of positive affect correlated with response amplitudes in bilateral insular clusters extending into the amygdala to prolonged inactive phases in a game play and an increase in negative affect was associated with higher responses in bilateral ventromedial prefrontal cortex. Precuneus and hippocampus responses were negatively correlated with changes in negative affect.We describe for the first time neural contributions to boredom, using a video game as complex virtual environment. Further our study confirmed that positive and negative affect are separable constructs, reflected by distinct neural patterns. Positive affect may be associated with afferent limbic activity whereas negative affect with affective control.

  1. D Visibility Analysis in Urban Environment - Cognition Research Based on Vge

    Science.gov (United States)

    Lin, T. P.; Lin, H.; Hu, M. Y.

    2013-09-01

    The author in this research attempts to illustrate a measurable relationship between the physical environment and human's visual perception, including the distance, visual angle impact and visual field (a 3D isovist conception) against human's cognition way, by using a 3D visibility analysis method based on the platform of Virtual Geographic Environment (VGE). The whole project carries out in the CUHK campus (the Chinese University of Hong Kong), by adopting a virtual 3D model of the whole campus and survey in real world. A possible model for the simulation of human cognition in urban spaces is expected to be the output of this research, such as what the human perceive from the environment, how their feelings and behaviours are and how they affect the surrounding world. Kevin Lynch raised 5 elements of urban design in 1960s, which are "vitality, sense, fit, access and control". As the development of urban design, several problems around the human's cognitive and behaviour have come out. Due to the restriction of sensing knowledge in urban spaces, the research among the "sense" and the "fit" of urban design were not quite concerned in recent decades. The geo-spatial cognition field comes into being in 1997 and developed in recent 15 years, which made great effort in way-finding and urban behaviour simulation based on the platform of GIS (geographic information system) or VGE. The platform of VGE is recognized as a proper tool for the analysis of human's perception in urban places, because of its efficient 3D spatial data management and excellent 3D visualization for output result. This article will generally describe the visibility analysis method based on the 3D VGE platform. According to the uncertainty and variety of human perception existed in this research, the author attempts to arrange a survey of observer investigation and validation for the analysis results. Four figures related with space and human's perception will be mainly concerned in this proposal

  2. Virtual Worlds, Simulations, and Games for Education: A Unifying View

    Science.gov (United States)

    Aldrich, Clark

    2009-01-01

    While there is some overlap in the uses and structures of virtual worlds, games, and simulations and the three often look similar, their differences are profound. Clark Aldrich presents a taxonomy of virtual environments that recognizes both the distinctions and the similarities among virtual environments for learning. All three, he suggests, are…

  3. Augmenting a Virtual World Game in a Physical Environment

    NARCIS (Netherlands)

    Offermans, S.A.M.; Hu, J.

    2013-01-01

    Computer games and virtual worlds offer unique possibilities for learning and personal development. Physical world play on the other hand offers its own unique opportunities. To combine these opportunities, we have developed the Augmented Home, a game which combines the qualities of both worlds and

  4. The Effects of Visual Cues and Learners' Field Dependence in Multiple External Representations Environment for Novice Program Comprehension

    Science.gov (United States)

    Wei, Liew Tze; Sazilah, Salam

    2012-01-01

    This study investigated the effects of visual cues in multiple external representations (MER) environment on the learning performance of novices' program comprehension. Program codes and flowchart diagrams were used as dual representations in multimedia environment to deliver lessons on C-Programming. 17 field independent participants and 16 field…

  5. Game mechanics engine

    OpenAIRE

    Magnusson, Lars V

    2011-01-01

    Game logic and game rules exists in all computer games, but they are created di erently for all game engines. This game engine dependency exists because of how the internal object model is implemented in the engine, as a place where game logic data is intermingled with the data needed by the low- level subsystems. This thesis propose a game object model design, based on existing theory, that removes this dependency and establish a general game logic framework. The thesis the...

  6. Visual arts student Bryan Lawson creates award-winning crop circle design

    OpenAIRE

    Chadwick, Heather Riley

    2009-01-01

    Bryan Lawson of Rural Retreat, Va., a senior visual communication design/studio art student in Virginia Tech's School of Visual Arts, College of Architecture and Urban Studies, won third place in the international Red Bull Art of Can design competition.

  7. Virtualized cognitive network architecture for 5G cellular networks

    KAUST Repository

    Elsawy, Hesham

    2015-07-17

    Cellular networks have preserved an application agnostic and base station (BS) centric architecture1 for decades. Network functionalities (e.g. user association) are decided and performed regardless of the underlying application (e.g. automation, tactile Internet, online gaming, multimedia). Such an ossified architecture imposes several hurdles against achieving the ambitious metrics of next generation cellular systems. This article first highlights the features and drawbacks of such architectural ossification. Then the article proposes a virtualized and cognitive network architecture, wherein network functionalities are implemented via software instances in the cloud, and the underlying architecture can adapt to the application of interest as well as to changes in channels and traffic conditions. The adaptation is done in terms of the network topology by manipulating connectivities and steering traffic via different paths, so as to attain the applications\\' requirements and network design objectives. The article presents cognitive strategies to implement some of the classical network functionalities, along with their related implementation challenges. The article further presents a case study illustrating the performance improvement of the proposed architecture as compared to conventional cellular networks, both in terms of outage probability and handover rate.

  8. Website applications in urbanism and architecture

    Directory of Open Access Journals (Sweden)

    Furundžić Danilo S.

    2003-01-01

    Full Text Available In the context of rapid technology development, followed by Internet spreading worldwide, the amount of information related to urbanism and architecture has remarkably increased. This paper lists a website selection with the aim to present the state of Internet based information sources on urbanism and architecture. The idea is to help colleagues cope with numerous available on-line contents. The websites are, according to their contents, classified into following categories: associations and institutions, international documents, urban planning and design, information and communication technologies in urbanism, on-line available magazines and books, civic networks, architectural design, famous architects and best examples.

  9. Collaborative virtual reality environments for computational science and design

    International Nuclear Information System (INIS)

    Papka, M. E.

    1998-01-01

    The authors are developing a networked, multi-user, virtual-reality-based collaborative environment coupled to one or more petaFLOPs computers, enabling the interactive simulation of 10 9 atom systems. The purpose of this work is to explore the requirements for this coupling. Through the design, development, and testing of such systems, they hope to gain knowledge that allows computational scientists to discover and analyze their results more quickly and in a more intuitive manner

  10. Interactions with Virtual People: Do Avatars Dream of Digital Sheep?. Chapter 6

    Science.gov (United States)

    Slater, Mel; Sanchez-Vives, Maria V.

    2007-01-01

    This paper explores another form of artificial entity, ones without physical embodiment. We refer to virtual characters as the name for a type of interactive object that have become familiar in computer games and within virtual reality applications. We refer to these as avatars: three-dimensional graphical objects that are in more-or-less human form which can interact with humans. Sometimes such avatars will be representations of real-humans who are interacting together within a shared networked virtual environment, other times the representations will be of entirely computer generated characters. Unlike other authors, who reserve the term agent for entirely computer generated characters and avatars for virtual embodiments of real people; the same term here is used for both. This is because avatars and agents are on a continuum. The question is where does their behaviour originate? At the extremes the behaviour is either completely computer generated or comes only from tracking of a real person. However, not every aspect of a real person can be tracked every eyebrow move, every blink, every breath rather real tracking data would be supplemented by inferred behaviours which are programmed based on the available information as to what the real human is doing and her/his underlying emotional and psychological state. Hence there is always some programmed behaviour it is only a matter of how much. In any case the same underlying problem remains how can the human character be portrayed in such a manner that its actions are believable and have an impact on the real people with whom it interacts? This paper has three main parts. In the first part we will review some evidence that suggests that humans react with appropriate affect in their interactions with virtual human characters, or with other humans who are represented as avatars. This is so in spite of the fact that the representational fidelity is relatively low. Our evidence will be from the realm of psychotherapy

  11. Towards a gestural 3D interaction for tangible and three-dimensional GIS visualizations

    Science.gov (United States)

    Partsinevelos, Panagiotis; Agadakos, Ioannis; Pattakos, Nikolas; Maragakis, Michail

    2014-05-01

    The last decade has been characterized by a significant increase of spatially dependent applications that require storage, visualization, analysis and exploration of geographic information. GIS analysis of spatiotemporal geographic data is operated by highly trained personnel under an abundance of software and tools, lacking interoperability and friendly user interaction. Towards this end, new forms of querying and interaction are emerging, including gestural interfaces. Three-dimensional GIS representations refer to either tangible surfaces or projected representations. Making a 3D tangible geographic representation touch-sensitive may be a convenient solution, but such an approach raises the cost significantly and complicates the hardware and processing required to combine touch-sensitive material (for pinpointing points) with deformable material (for displaying elevations). In this study, a novel interaction scheme upon a three dimensional visualization of GIS data is proposed. While gesture user interfaces are not yet fully acceptable due to inconsistencies and complexity, a non-tangible GIS system where 3D visualizations are projected, calls for interactions that are based on three-dimensional, non-contact and gestural procedures. Towards these objectives, we use the Microsoft Kinect II system which includes a time of flight camera, allowing for a robust and real time depth map generation, along with the capturing and translation of a variety of predefined gestures from different simultaneous users. By incorporating these features into our system architecture, we attempt to create a natural way for users to operate on GIS data. Apart from the conventional pan and zoom features, the key functions addressed for the 3-D user interface is the ability to pinpoint particular points, lines and areas of interest, such as destinations, waypoints, landmarks, closed areas, etc. The first results shown, concern a projected GIS representation where the user selects points

  12. The percien contribution for an indexal representation of visual images

    Directory of Open Access Journals (Sweden)

    Virginia Bentes Pinto

    2008-04-01

    Full Text Available However, even if along history the visual images have gained a great importance as sources of information, one cannot deny that with the newest information and communication technologies (ICT they drew the attention of experts from the most different fields of knowledge, such as arts, biology, astronomy, archeology, history, health, fashion, decoration, public relations, editing, engineering and architecture, among others. Presents some theoretical reflections concerning representation in Peirce’s perspective based on the context of the new approaches used for the treatment of visual images, using as examples the paradigms of the manual, semiautomatic, automatic and mixed index representation. The results of the experiments show that the difficulties found in the construction of an index representation of that document type originate from the complexity inherent in the process of production and reception of the imagetic sign.

  13. Parametric Design Strategies for Collaborative Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Yıldırım, Miray Baş; Özkar, Mine

    2013-01-01

    to the collaboration between professionals, participation by different non-professional stakeholders, such as residents, local authorities, non-governmental organizations and investors, is another important component of collaborative urban design processes. The involvement of community in decision making process...... implications of planning and design decisions, unless they are presented with relatively detailed architectural models, whether physical or virtual. This however, typically presents steep demands in terms of time and resources. As a foundation for our work with parametric urban design lies the hypothesis...... to solve different scripting challenges. The paper is organized into an introduction, three main sections and closing section with conclusions and perspectives. The first section of the paper gives a theoretical discussion of the notion of collaborative design and the challenges of collaborative urban...

  14. Understanding the visual skills and strategies of train drivers in the urban rail environment.

    Science.gov (United States)

    Naweed, Anjum; Balakrishnan, Ganesh

    2014-01-01

    Due to the growth of information in the urban rail environment, there is a need to better understand the ergonomics profile underpinning the visual behaviours in train drivers. The aim of this study was to examine the tasks and activities of urban/metropolitan passenger train drivers in order to better understand the nature of the visual demands in their task activities. Data were collected from 34 passenger train drivers in four different Australian states. The research approach used a novel participative ergonomics methodology that fused interviews and observations with generative tools. Data analysis was conducted thematically. Results suggested participants did not so much drive their trains, as manage the intensity of visually demanding work held in their environment. The density of this information and the opacity of the task, invoked an ergonomics profile more closely aligned with diagnostic and error detection than actual train regulation. The paper discusses the relative proportion of strategies corresponding with specific tasks, the visual-perceptual load in substantive activities, and the requisite visual skills behoving navigation in the urban rail environment. These findings provide the basis for developing measures of complexity to further specify the visual demands in passenger train driving.

  15. Novel 3D/VR interactive environment for MD simulations, visualization and analysis.

    Science.gov (United States)

    Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P

    2014-12-18

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.

  16. A biotic game design project for integrated life science and engineering education.

    Science.gov (United States)

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  17. Reconfiguring Course Design in Virtual Learning Environments

    DEFF Research Database (Denmark)

    Mullins, Michael; Zupancic, Tadeja

    2007-01-01

    for architectural students offers some innovative insights into experientially oriented educational interfaces. A comparative analysis of VIPA courses and project results are presented in the paper. Special attention in the discussion is devoted to the improvements of e-learning solutions in architecture......Although many administrators and educators are familiar with e-learning programs, learning management systems and portals, fewer may have experience with virtual distributed learning environments and their academic relevance. The blended learning experience of the VIPA e-learning project....... The criterion of the relation between the actual applicability of selected e-learning solutions and elements of collaborative educational interfaces with VR are taken into account. A system of e-learning applicability levels in program and course development and implementation of architectural tectonics...

  18. Realistic Visualization of Virtual Views

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    that can be impractical and sometime impossible. In addition, the artificial nature of data often makes visualized virtual scenarios not realistic enough. Not realistic in the sense that a synthetic scene is easy to discriminate visually from a natural scene. A new field of research has consequently...... developed and received much attention in recent years: Realistic Virtual View Synthesis. The main goal is a high fidelity representation of virtual scenarios while easing modeling and physical phenomena simulation. In particular, realism is achieved by the transfer to the novel view of all the physical...... phenomena captured in the reference photographs, (i.e. the transfer of photographic-realism). An overview of most prominent approaches in realistic virtual view synthesis will be presented and briefly discussed. Applications of proposed methods to visual survey, virtual cinematography, as well as mobile...

  19. Virtual Reconstruction of Lost Architectures: from the Tls Survey to AR Visualization

    Science.gov (United States)

    Quattrini, R.; Pierdicca, R.; Frontoni, E.; Barcaglioni, R.

    2016-06-01

    The exploitation of high quality 3D models for dissemination of archaeological heritage is currently an investigated topic, although Mobile Augmented Reality platforms for historical architecture are not available, allowing to develop low-cost pipelines for effective contents. The paper presents a virtual anastylosis, starting from historical sources and from 3D model based on TLS survey. Several efforts and outputs in augmented or immersive environments, exploiting this reconstruction, are discussed. The work demonstrates the feasibility of a 3D reconstruction approach for complex architectural shapes starting from point clouds and its AR/VR exploitation, allowing the superimposition with archaeological evidences. Major contributions consist in the presentation and the discussion of a pipeline starting from the virtual model, to its simplification showing several outcomes, comparing also the supported data qualities and advantages/disadvantages due to MAR and VR limitations.

  20. VIRTUAL RECONSTRUCTION OF LOST ARCHITECTURES: FROM THE TLS SURVEY TO AR VISUALIZATION

    Directory of Open Access Journals (Sweden)

    R. Quattrini

    2016-06-01

    Full Text Available The exploitation of high quality 3D models for dissemination of archaeological heritage is currently an investigated topic, although Mobile Augmented Reality platforms for historical architecture are not available, allowing to develop low-cost pipelines for effective contents. The paper presents a virtual anastylosis, starting from historical sources and from 3D model based on TLS survey. Several efforts and outputs in augmented or immersive environments, exploiting this reconstruction, are discussed. The work demonstrates the feasibility of a 3D reconstruction approach for complex architectural shapes starting from point clouds and its AR/VR exploitation, allowing the superimposition with archaeological evidences. Major contributions consist in the presentation and the discussion of a pipeline starting from the virtual model, to its simplification showing several outcomes, comparing also the supported data qualities and advantages/disadvantages due to MAR and VR limitations.

  1. Environment and Architecture - a Paradigm Shift

    Science.gov (United States)

    di Battista, Valerio

    The interaction of human cultures and the built environment allows a wide range of interpretations and has been studied inside the domain of many disciplines. This paper discusses three interpretations descending from a systemic approach to the question: - architecture as an "emergence" of the settlement system; - place (and space) as an "accumulator" of time and a "flux" of systems; - landscape as one representation/description of the human settlement. Architecture emerges as a new physical conformation or layout, or as a change in a specific site, arising from actions and representations of political, religious, economical or social powers, being shaped at all times by the material culture belonging to a specific time and place in the course of human evolution. Any inhabited space becomes over time a place as well as a landscape, i.e. a representation of the settlement and a relationship between setting and people. Therefore, any place owns a landscape which, in turn, is a system of physical systems; it could be defined as a system of sites that builds up its own structure stemming from the orographical features and the geometry of land surfaces that set out the basic characters of its space.

  2. Grounded Object and Grasp Representations in a Cognitive Architecture

    DEFF Research Database (Denmark)

    Kraft, Dirk

    developed. This work presents a system that is able to learn autonomously about objects and applicable grasps in an unknown environment through exploratory manipulation and to then use this grounded knowledge in a planning setup to address complex tasks. A set of different subsystems is needed to achieve....... The topics are ordered so that we proceed from the more general integration works towards the works describing the individual components. The first chapter gives an overview over the system that is able to learn a grounded visual object representation and a grounded grasp representation. In the following...... part, we describe how this grounding procedures can be embedded in a three cognitive level architecture. Our initial work to use a tactile sensor to enrichen the object representations as well as allow for more complex actions is presented here as well. Since our system is concerned with learning about...

  3. Generation of large scale urban environments to support advanced sensor and seeker simulation

    Science.gov (United States)

    Giuliani, Joseph; Hershey, Daniel; McKeown, David, Jr.; Willis, Carla; Van, Tan

    2009-05-01

    One of the key aspects for the design of a next generation weapon system is the need to operate in cluttered and complex urban environments. Simulation systems rely on accurate representation of these environments and require automated software tools to construct the underlying 3D geometry and associated spectral and material properties that are then formatted for various objective seeker simulation systems. Under an Air Force Small Business Innovative Research (SBIR) contract, we have developed an automated process to generate 3D urban environments with user defined properties. These environments can be composed from a wide variety of source materials, including vector source data, pre-existing 3D models, and digital elevation models, and rapidly organized into a geo-specific visual simulation database. This intermediate representation can be easily inspected in the visible spectrum for content and organization and interactively queried for accuracy. Once the database contains the required contents, it can then be exported into specific synthetic scene generation runtime formats, preserving the relationship between geometry and material properties. To date an exporter for the Irma simulation system developed and maintained by AFRL/Eglin has been created and a second exporter to Real Time Composite Hardbody and Missile Plume (CHAMP) simulation system for real-time use is currently being developed. This process supports significantly more complex target environments than previous approaches to database generation. In this paper we describe the capabilities for content creation for advanced seeker processing algorithms simulation and sensor stimulation, including the overall database compilation process and sample databases produced and exported for the Irma runtime system. We also discuss the addition of object dynamics and viewer dynamics within the visual simulation into the Irma runtime environment.

  4. Execution Management in the Virtual Ship Architecture Issue 1.00

    National Research Council Canada - National Science Library

    Cramp, Anthony

    2000-01-01

    The Virtual Ship is an application of the High Level Architecture (HLA) in which simulation models that represent the components of a warship are brought together in a distributed manner to create a virtual representation of a warship...

  5. A conceptual framework for the design and analysis of first-person shooter audio and its potential use for game engines

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Schott, Gareth

    2007-01-01

    We introduce and describe a new conceptual framework for the design and analysis of audio for immersive first-person shooter games, and discuss its potential implications for the development of the audio component of game engines. The framework was created in order to illustrate and acknowledge...... the direct role of in-game audio in shaping player-player interactions and in creating a sense of immersion in the game world. Furthermore, it is argued that the relationship between player and sound is best conceptualized theoretically as an acoustic ecology. Current game engines are capable of game world...... spatiality through acoustic shading, but the ideas presented here provide a framework to explore other immersive possibilities for game audio through realtime synthesis....

  6. Urban Interaction Design

    DEFF Research Database (Denmark)

    Brynskov, Martin; Bermúdez, Juan Carlos Carvajal; Fernández, Manu

    This book is an effort to explore the newly emerging field of urban interaction design that addresses these issues. In the first part of the book, 'Foundations', we look into its origins. Where do its practitioners come from? How are they working together? What methodologies do they bring...... to the table? What are the key concepts they are addressing in their work? In the second part of the book named 'Trends', we go into current developments in the networked city and how urban interaction design as a field addresses these. Taken together, these sections will not give the definite definition...

  7. Islamic representation and urban space in Banda Aceh: Linking the social and spatial

    Science.gov (United States)

    Istiqamah; Herlily

    2018-03-01

    Post conflict and tsunami; the city of Banda Aceh is experiencing a massive development as an effort to represent an Islamic city. Some strategic points have been chosen by the municipality to build architectural objects that are considered to represent Islam in the urban space. The issue of such representational practice is the development of neglecting the activities of local communities as users of urban public spaces. The purpose of this design study is to provide an alternative to the urban design of Banda Aceh to represent Islam that is not moving from physical development but by involving community activities. Establish and rediscover the relationship between Islam and urban life in Banda Aceh. This design study uses mental maps of 50 inhabitants of Banda Aceh city of various ages who live in 10 villages around the city center. We use mental maps as a tool to read the daily activities of the community and determine the familiar urban territory with the community. The results of this study will be used to form a Muslim community and present community activities to represent Islam in the urban space.

  8. Aurally Aided Visual Search Performance Comparing Virtual Audio Systems

    DEFF Research Database (Denmark)

    Larsen, Camilla Horne; Lauritsen, David Skødt; Larsen, Jacob Junker

    2014-01-01

    Due to increased computational power, reproducing binaural hearing in real-time applications, through usage of head-related transfer functions (HRTFs), is now possible. This paper addresses the differences in aurally-aided visual search performance between a HRTF enhanced audio system (3D) and an...... with white dots. The results indicate that 3D audio yields faster search latencies than panning audio, especially with larger amounts of distractors. The applications of this research could fit virtual environments such as video games or virtual simulations.......Due to increased computational power, reproducing binaural hearing in real-time applications, through usage of head-related transfer functions (HRTFs), is now possible. This paper addresses the differences in aurally-aided visual search performance between a HRTF enhanced audio system (3D...

  9. Aurally Aided Visual Search Performance Comparing Virtual Audio Systems

    DEFF Research Database (Denmark)

    Larsen, Camilla Horne; Lauritsen, David Skødt; Larsen, Jacob Junker

    2014-01-01

    Due to increased computational power reproducing binaural hearing in real-time applications, through usage of head-related transfer functions (HRTFs), is now possible. This paper addresses the differences in aurally-aided visual search performance between an HRTF enhanced audio system (3D) and an...... with white dots. The results indicate that 3D audio yields faster search latencies than panning audio, especially with larger amounts of distractors. The applications of this research could fit virtual environments such as video games or virtual simulations.......Due to increased computational power reproducing binaural hearing in real-time applications, through usage of head-related transfer functions (HRTFs), is now possible. This paper addresses the differences in aurally-aided visual search performance between an HRTF enhanced audio system (3D...

  10. Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments.

    Science.gov (United States)

    Vecchiato, Giovanni; Jelic, Andrea; Tieri, Gaetano; Maglione, Anton Giulio; De Matteis, Federico; Babiloni, Fabio

    2015-09-01

    The recent efforts aimed at providing neuroscientific explanations of how people perceive and experience architectural environments have largely justified the initial belief in the value of neuroscience for architecture. However, a systematic development of a coherent theoretical and experimental framework is missing. To investigate the neurophysiological reactions related to the appreciation of ambiances, we recorded the electroencephalographic (EEG) signals in an immersive virtual reality during the appreciation of interior designs. Such data have been analyzed according to the working hypothesis that appreciated environments involve embodied simulation mechanisms and circuits mediating approaching stimuli. EEG recordings of 12 healthy subjects have been performed during the perception of three-dimensional interiors that have been simulated in a CAVE system and judged according to dimensions of familiarity, novelty, comfort, pleasantness, arousal and presence. A correlation analysis on personal judgments returned that scores of novelty, pleasantness and comfort are positively correlated, while familiarity and novelty are in negative way. Statistical spectral maps reveal that pleasant, novel and comfortable interiors produce a de-synchronization of the mu rhythm over left sensorimotor areas. Interiors judged more pleasant and less familiar generate an activation of left frontal areas (theta and alpha bands), along an involvement of areas devoted to spatial navigation. An increase in comfort returns an enhancement of the theta frontal midline activity. Cerebral activations underlying appreciation of architecture could involve different mechanisms regulating corporeal, emotional and cognitive reactions. Therefore, it might be suggested that people's experience of architectural environments is intrinsically structured by the possibilities for action.

  11. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    Science.gov (United States)

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and

  12. A Web Centric Architecture for Deploying Multi-Disciplinary Engineering Design Processes

    Science.gov (United States)

    Woyak, Scott; Kim, Hongman; Mullins, James; Sobieszczanski-Sobieski, Jaroslaw

    2004-01-01

    There are continuous needs for engineering organizations to improve their design process. Current state of the art techniques use computational simulations to predict design performance, and optimize it through advanced design methods. These tools have been used mostly by individual engineers. This paper presents an architecture for achieving results at an organization level beyond individual level. The next set of gains in process improvement will come from improving the effective use of computers and software within a whole organization, not just for an individual. The architecture takes advantage of state of the art capabilities to produce a Web based system to carry engineering design into the future. To illustrate deployment of the architecture, a case study for implementing advanced multidisciplinary design optimization processes such as Bi-Level Integrated System Synthesis is discussed. Another example for rolling-out a design process for Design for Six Sigma is also described. Each example explains how an organization can effectively infuse engineering practice with new design methods and retain the knowledge over time.

  13. The Phenomenon of Touch in Architectural Design and a Field Study on Haptic Mapping

    Directory of Open Access Journals (Sweden)

    Pınar ÖKTEM ERKARTAL

    2015-02-01

    Full Text Available Ocular-centrism is the utilitarian-aesthetic perspective which dominates the perception of spatial quality and architectural success in the West. In locating vision as the dominant discourse in architectural design, this perspective has been criticized for ignoring the physical and psychological relation created between subject and space during the spatial experience, sensual memory, movement and time. The phenomenon of touch, which may be defined as the interaction between architecture and subject dependent on physical and cognitive perception, offers another way of thinking and interpreting architecture, and constitutes an alternative starting point for design. The aim of this study was three-fold: to research and describe the phenomenon of touch in design concepts, to present the effects of hapticity in spatial experience on the user, and to present a visualization study for this phenomenon which is quite challenging to express. For the fieldwork, five buildings designed by Peter Zumthor were chosen. Zumthor stresses the importance of sensation, materiality and atmosphere in the architectural design process. Zumthor’s abstract design elements, their use in architectural space and the effect were determined using physical measurement. The findings were represented in “haptic mapping”. This visualization study consisted of a “haptic scatter chart”, “materiality- affect analysis” and “sensation analysis” and revealed that the phenomenon of touch and concepts identified it such as sensations, influence, materiality and mental associations are not abstract and inaccessible assumptions, but tools which can be included in the architectural design process.

  14. Design of Virtual Environments for the Comprehension of Planetary Phenomena Based on Students' Ideas.

    Science.gov (United States)

    Bakas, Christos; Mikropoulos, Tassos A.

    2003-01-01

    Explains the design and development of an educational virtual environment to support the teaching of planetary phenomena, particularly the movements of Earth and the sun, day and night cycle, and change of seasons. Uses an interactive, three-dimensional (3D) virtual environment. Initial results show that the majority of students enthused about…

  15. Using a virtual reality game to assess goal-directed hand movements in children: A pilot feasibility study.

    Science.gov (United States)

    Gabyzon, M Elboim; Engel-Yeger, B; Tresser, S; Springer, S

    2016-01-01

    Virtual reality gaming environments may be used as a supplement to the motor performance assessment tool box by providing clinicians with quantitative information regarding motor performance in terms of movement accuracy and speed, as well as sensory motor integration under different levels of dual tasking. To examine the feasibility of using the virtual reality game `Timocco' as an assessment tool for evaluating goal-directed hand movements among typically developing children. In this pilot study, 47 typically-developing children were divided into two age groups, 4-6 years old and 6-8 years old. Performance was measured using two different virtual environment games (Bubble Bath and Falling Fruit), each with two levels of difficulty. Discriminative validity (age effect) was examined by comparing the performance of the two groups, and by comparing the performance between levels of the games for each group (level effect). Test-retest reliability was examined by reassessing the older children 3-7 days after the first session. The older children performed significantly better in terms of response time, action time, game duration, and efficiency in both games compared to the younger children. Both age groups demonstrated poorer performance at the higher game level in the Bubble Bath game compared to the lower level. A similar level effect was found in the Falling Fruit game for both age groups in response time and efficiency, but not in action time. The performance of the older children was not significantly different between the two sessions at both game levels. The discriminative validity and test-retest reliability indicate the feasibility of using the Timocco virtual reality game as a tool for assessing goal-directed hand movements in children. Further studies should examine its feasibility for use in children with disabilities.

  16. Visual search, visual streams, and visual architectures.

    Science.gov (United States)

    Green, M

    1991-10-01

    Most psychological, physiological, and computational models of early vision suggest that retinal information is divided into a parallel set of feature modules. The dominant theories of visual search assume that these modules form a "blackboard" architecture: a set of independent representations that communicate only through a central processor. A review of research shows that blackboard-based theories, such as feature-integration theory, cannot easily explain the existing data. The experimental evidence is more consistent with a "network" architecture, which stresses that: (1) feature modules are directly connected to one another, (2) features and their locations are represented together, (3) feature detection and integration are not distinct processing stages, and (4) no executive control process, such as focal attention, is needed to integrate features. Attention is not a spotlight that synthesizes objects from raw features. Instead, it is better to conceptualize attention as an aperture which masks irrelevant visual information.

  17. A Study of Interaction Patterns and Awareness Design Elements in a Massively Multiplayer Online Game

    Directory of Open Access Journals (Sweden)

    Tiffany Y. Tang

    2008-01-01

    Full Text Available Massively multiplayer online games (MMOGs have been known to create rich and versatile social worlds for thousands of millions of players to participate. As such, various game elements and advance technologies such as artificial intelligence have been applied to encourage and facilitate social interactions in these online communities, the key to the success of MMOGs. However, there is a lack of studies addressing the usability of these elements in games. In this paper, we look into interaction patterns and awareness design elements that support the awareness in LastWorld and FairyLand. Experimental results obtained through both in-game experiences and player interviews reveal that not all awareness tools (e.g., an in-game map have been fully exploited by players. In addition, those players who are aware of these tools are not satisfied with them. Our findings suggest that awareness-oriented tools/channels should be easy to interpret and rich in conveying “knowledge” so as to reduce players-cognitive overload. These findings of this research recommend considerations of early stage MMOG design.

  18. Interdisciplinary Interactions During R&D and Early Design of Large Engineered Systems

    Science.gov (United States)

    McGowan, Anna-Maria Rivas

    2014-01-01

    Designing Large-Scale Complex Engineered Systems (LaCES) such as aircraft and submarines requires the input of thousands of engineers and scientists whose work is proximate in neither time nor space. Comprehensive knowledge of the system is dispersed among specialists whose expertise is in typically one system component or discipline. This study examined the interactive work practices among such specialists seeking to improve engineering practice through a rigorous and theoretical understanding of current practice. This research explored current interdisciplinary practices and perspectives during R&D and early LaCES design and identified why these practices and perspectives prevail and persist. The research design consisted of a three-fold, integrative approach that combined an open-ended survey, semi-structured interviews, and ethnography. Significant empirical data from experienced engineers and scientists in a large engineering organization were obtained and integrated with theories from organization science and engineering. Qualitative analysis was used to obtain a holistic, contextualized understanding. The over-arching finding is that issues related to cognition, organization, and social interrelations mostly dominate interactions across disciplines. Engineering issues, such as the integration of hardware or physics-based models, are not as significant. For example, organization culture is an important underlying factor that guided researchers more toward individual sovereignty over cross-disciplinarity. The organization structure and the engineered system architecture also serve as constraints to the engineering work. Many differences in work practices were observed, including frequency and depth of interactions, definition or co-construction of requirements, clarity or creation of the system architecture, work group proximity, and cognitive challenges. Practitioners are often unaware of these differences resulting in confusion and incorrect assumptions

  19. A biotic game design project for integrated life science and engineering education.

    Directory of Open Access Journals (Sweden)

    Nate J Cira

    2015-03-01

    Full Text Available Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course. We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  20. Dynamic shared state maintenance in distributed virtual environments

    Science.gov (United States)

    Hamza-Lup, Felix George

    Advances in computer networks and rendering systems facilitate the creation of distributed collaborative environments in which the distribution of information at remote locations allows efficient communication. Particularly challenging are distributed interactive Virtual Environments (VE) that allow knowledge sharing through 3D information. The purpose of this work is to address the problem of latency in distributed interactive VE and to develop a conceptual model for consistency maintenance in these environments based on the participant interaction model. An area that needs to be explored is the relationship between the dynamic shared state and the interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR environments must bring the human participant interaction into the loop through a wide range of electronic motion sensors, and haptic devices. Part of the work presented here defines a novel criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an adaptive synchronization algorithm for consistency maintenance in such environments. As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm implementation details are presented. Currently the testbed is part of several research efforts at the Optical Diagnostics and Applications Laboratory including 3D visualization applications using custom built head-mounted displays (HMDs) with optical motion tracking and a medical training prototype for endotracheal intubation and medical prognostics. An objective method using quaternion calculus is applied for the algorithm assessment. In spite of significant network latency, results show that the dynamic shared state can be maintained consistent at multiple remotely located sites. In further consideration of the latency problems and in the light of the current trends in interactive distributed VE applications, we propose a hybrid distributed system architecture for

  1. Developing a Virtual Rock Deformation Laboratory

    Science.gov (United States)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  2. Motivation for Creativity in Architectural Design and Engineering Design Students: Implications for Design Education

    Science.gov (United States)

    Casakin, Hernan; Kreitler, Shulamith

    2010-01-01

    The investigation reported here dealt with the study of motivation for creativity. The goals were to assess motivation for creativity in architectural design and engineering design students based on the Cognitive Orientation theory which defines motivation as a function of a set of belief types, themes, and groupings identified as relevant for the…

  3. Increasing accessibility to the blind of virtual environments, using a virtual mobility aid based on the "EyeCane": feasibility study.

    Directory of Open Access Journals (Sweden)

    Shachar Maidenbaum

    Full Text Available Virtual worlds and environments are becoming an increasingly central part of our lives, yet they are still far from accessible to the blind. This is especially unfortunate as such environments hold great potential for them for uses such as social interaction, online education and especially for use with familiarizing the visually impaired user with a real environment virtually from the comfort and safety of his own home before visiting it in the real world. We have implemented a simple algorithm to improve this situation using single-point depth information, enabling the blind to use a virtual cane, modeled on the "EyeCane" electronic travel aid, within any virtual environment with minimal pre-processing. Use of the Virtual-EyeCane, enables this experience to potentially be later used in real world environments with identical stimuli to those from the virtual environment. We show the fast-learned practical use of this algorithm for navigation in simple environments.

  4. Towards Gesture-Based Multi-User Interactions in Collaborative Virtual Environments

    Science.gov (United States)

    Pretto, N.; Poiesi, F.

    2017-11-01

    We present a virtual reality (VR) setup that enables multiple users to participate in collaborative virtual environments and interact via gestures. A collaborative VR session is established through a network of users that is composed of a server and a set of clients. The server manages the communication amongst clients and is created by one of the users. Each user's VR setup consists of a Head Mounted Display (HMD) for immersive visualisation, a hand tracking system to interact with virtual objects and a single-hand joypad to move in the virtual environment. We use Google Cardboard as a HMD for the VR experience and a Leap Motion for hand tracking, thus making our solution low cost. We evaluate our VR setup though a forensics use case, where real-world objects pertaining to a simulated crime scene are included in a VR environment, acquired using a smartphone-based 3D reconstruction pipeline. Users can interact using virtual gesture-based tools such as pointers and rulers.

  5. Parasocial interaction with my avatar: effects of interdependent self-construal and the mediating role of self-presence in an avatar-based console game, Wii.

    Science.gov (United States)

    Jin, Seung-A Annie; Park, Namkee

    2009-12-01

    The "self" concept has grown increasingly important in interactive media environments. This study investigated self-related processes in an avatar-based game console, Wii. A key feature of the Wii is its motion-sensing capability that empowers players to manipulate and interact with items on-screen via movement. The present study examined the effects of video game players' self-construal on parasocial interaction with their avatars and feelings of self-presence. In this study, parasocial interaction was operationally defined as the extent of game players' interpersonal involvement with their avatar and the extent to which game players perceive themselves as interacting with the avatar. Self-presence was defined as the degree to which video game players feel as if their avatar on the screen were their real self. Based on an experiment, the study discovered that game players with high interdependent self-construal showed closer parasocial interaction and higher level of self-presence than those with low interdependent self-construal. Results also showed that self-presence mediated the effects of interdependent self-construal on the parasocial relationship with game players' avatars. Thus, the study discovered an important individual difference factor, interdependent self-construal, affecting the degree to which people form a parasocial relationship with their virtual self that is visually manifested in the form of an avatar. In addition, the present study added empirical evidence about the mediating role played by self-presence in avatar-based video games.

  6. New Directions in Virtual Environments and Gaming to Address Obesity and Diabetes: Industry Perspective

    OpenAIRE

    Ruppert, Barb

    2011-01-01

    Virtual reality is increasingly used for education and treatment in the fields of health and medicine. What is the health potential of virtual reality technology from the software development industry perspective? This article presents interviews with Ben Sawyer of Games for Health, Dr. Walter Greenleaf of InWorld Solutions, and Dr. Ernie Medina of MedPlay Technologies. Games for Health brings together researchers, medical professionals, and game developers to share information on the impact ...

  7. Supporting design reviews with pre-meeting virtual reality environments

    NARCIS (Netherlands)

    van den Berg, Marc Casper; Hartmann, Timo; de Graaf, Robin S.

    2017-01-01

    The purpose of this paper is to explore how design reviews can be supported with pre-meeting virtual reality environments. Previous research has not systematically investigated how virtual environments can be used to communicate the design intent (to clients) and to communicate feedback (to design

  8. Enhance Learning on Software Project Management through a Role-Play Game in a Virtual World

    Science.gov (United States)

    Maratou, Vicky; Chatzidaki, Eleni; Xenos, Michalis

    2016-01-01

    This article presents a role-play game for software project management (SPM) in a three-dimensional online multiuser virtual world. The Opensimulator platform is used for the creation of an immersive virtual environment that facilitates students' collaboration and realistic interaction, in order to manage unexpected events occurring during the…

  9. THE NEW URBAN DESIGN – A SOCIAL THEORY OF ARCHITECTURE ?

    Directory of Open Access Journals (Sweden)

    Alexander R. Cuthbert

    2014-07-01

    Full Text Available Abstract Over the last ten years and 1000 pages of text, I outlined a unified field theory which I refer to as The New Urban Design. Possessing the same structure, the three books can be read in series or in parallel, and may best be described as a matrix of possibilities (Cuthbert 2003, 2006, 2011. In this paper I revisit some of the ideas in these texts that need to be more fully developed. Important among them are the undeniable effects of this new field for architecture and urban planning, and an expanded brief on the use of Marxian modes of production to support social analysis in these disciplines. From this perspective we can at least develop some truth as to the historical progress of urban form. In redefining urban design as an independent field, architecture and urban planning subsequently become different regions of thought from what they had previously entertained, namely during the period when they colonised urban design and shared the spoils between them. Extending this argument even further, it is clear that neither discipline, nor the resulting mainstream urban design (i.e. one produced by architects and planners - have had resort to a social theory of their own existence. All so called theories of architecture and urban planning, have failed with good reason. Architecture has relied almost exclusively on aesthetics and technology for its self awareness. Despite the fact that social theory began to penetrate planning theory in the 1970’s, this did not change the idea that planning can have no internally generated theory other than the trivial, since it is an epiphenomenon of the state. It is not an independent factor in urbanisation, and therefore can have no consciousness of its own that is any more than ideological in the Marxist use of the term. In conclusion, the paper suggests that if the weltanshuung of the New Urban Design is persuasive, this has wide ranging implications for education, practice and the development

  10. Parameter assessment for virtual Stackelberg game in aerodynamic shape optimization

    Science.gov (United States)

    Wang, Jing; Xie, Fangfang; Zheng, Yao; Zhang, Jifa

    2018-05-01

    In this paper, parametric studies of virtual Stackelberg game (VSG) are conducted to assess the impact of critical parameters on aerodynamic shape optimization, including design cycle, split of design variables and role assignment. Typical numerical cases, including the inverse design and drag reduction design of airfoil, have been carried out. The numerical results confirm the effectiveness and efficiency of VSG. Furthermore, the most significant parameters are identified, e.g. the increase of design cycle can improve the optimization results but it will also add computational burden. These studies will maximize the productivity of the effort in aerodynamic optimization for more complicated engineering problems, such as the multi-element airfoil and wing-body configurations.

  11. A Core Knowledge Architecture of Visual Working Memory

    Science.gov (United States)

    Wood, Justin N.

    2011-01-01

    Visual working memory (VWM) is widely thought to contain specialized buffers for retaining spatial and object information: a "spatial-object architecture." However, studies of adults, infants, and nonhuman animals show that visual cognition builds on core knowledge systems that retain more specialized representations: (1) spatiotemporal…

  12. Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL

    Science.gov (United States)

    Dumas, Joseph D., II

    2002-01-01

    The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.

  13. A LEGO paradigm for virtual accelerator concept

    International Nuclear Information System (INIS)

    Andrianov, S.; Ivanov, A.; Podzyvalov, E.

    2012-01-01

    The paper considers basic features of a Virtual Accelerator concept based on LEGO paradigm. This concept involves three types of components: different mathematical models for accelerator design problems, integrated beam simulation packages (i. e. COSY, MAD, OptiM and others), and a special class of virtual feedback instruments similar to real control systems (EPICS). All of these components should inter-operate for more complete analysis of control systems and increased fault tolerance. The Virtual Accelerator is an information and computing environment which provides a framework for analysis based on these components that can be combined in different ways. Corresponding distributed computing services establish interaction between mathematical models and low level control system. The general idea of the software implementation is based on the Service-Oriented Architecture (SOA) that allows using cloud computing technology and enables remote access to the information and computing resources. The Virtual Accelerator allows a designer to combine powerful instruments for modeling beam dynamics in a friendly way including both self-developed and well-known packages. In the scope of this concept the following is also proposed: the control system identification, analysis and result verification, visualization as well as virtual feedback for beam line operation. The architecture of the Virtual Accelerator system itself and results of beam dynamics studies are presented. (authors)

  14. Constructing visual representations

    DEFF Research Database (Denmark)

    Huron, Samuel; Jansen, Yvonne; Carpendale, Sheelagh

    2014-01-01

    tangible building blocks. We learned that all participants, most of whom had little experience in visualization authoring, were readily able to create and talk about their own visualizations. Based on our observations, we discuss participants’ actions during the development of their visual representations......The accessibility of infovis authoring tools to a wide audience has been identified as a major research challenge. A key task in the authoring process is the development of visual mappings. While the infovis community has long been deeply interested in finding effective visual mappings......, comparatively little attention has been placed on how people construct visual mappings. In this paper, we present the results of a study designed to shed light on how people transform data into visual representations. We asked people to create, update and explain their own information visualizations using only...

  15. Crime: impacts of urban design and environment

    Directory of Open Access Journals (Sweden)

    Paula Santana

    2013-07-01

    Full Text Available The criminal research has confirmed that there are clear patterns of crime, with concentrations in specific places at specific times. That is to say, incidence of crime are not distributed randomly; rather, there are certain areas in cities that are relatively small, but where crimes occur much more frequently than elsewhere (the so-called “hotspots”, making them highly vulnerable and predictable. Urban design and environment may play a part in the decision of whether or not to commit a crime; for example, the lack of natural vigilance, poor lighting and other variables mean that a small area may easily be transformed into a potential crime hotspot. The relationship between specific aspects of urban design and the formation of “hotspots” is present in the theory of “Crime Prevention through Environmental Design” (CPTED. This paper examines the relationship between the “hotspots” and the characteristics of the environment, in accordance with CPTED Index, in one city from the Lisbon Metropolitan Area (Amadora. The results highlight the need to reassess specific elements of urban design. This fact has drawn attention to the study of localities and urban design.

  16. Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.

    Science.gov (United States)

    O'Neil, Rochelle L; Skeel, Reid L; Ustinova, Ksenia I

    2013-01-01

    Virtual reality games and simulations have been utilized successfully for motor rehabilitation of individuals with traumatic brain injury (TBI). Little is known, however, how TBI-related cognitive decline affects learning of motor tasks in virtual environments. To fill this gap, we examined learning within a virtual reality game involving various reaching motions in 14 patients with TBI and 15 healthy individuals with different cognitive abilities. All participants practiced ten 90-second gaming trials to assess various aspects of motor learning. Cognitive abilities were assessed with a battery of tests including measures of memory, executive functioning, and visuospatial ability. Overall, participants with TBI showed both reduced performance and a slower learning rate in the virtual reality game compared to healthy individuals. Numerous correlations between overall performance and several of the cognitive ability domains were revealed for both the patient and control groups, with the best predictor being overall cognitive ability. The results may provide a starting point for rehabilitation programs regarding which cognitive domains interact with motor learning.

  17. Gestural Interaction for Virtual Reality Environments through Data Gloves

    Directory of Open Access Journals (Sweden)

    G. Rodriguez

    2017-05-01

    Full Text Available In virtual environments, virtual hand interactions play a key role in interactivity and realism allowing to perform fine motions. Data glove is widely used in Virtual Reality (VR and through simulating a human hands natural anatomy (Avatar’s hands in its appearance and motion is possible to interact with the environment and virtual objects. Recently, hand gestures are considered as one of the most meaningful and expressive signals. As consequence, this paper explores the use of hand gestures as a mean of Human-Computer Interaction (HCI for VR applications through data gloves. Using a hand gesture recognition and tracking method, accurate and real-time interactive performance can be obtained. To verify the effectiveness and usability of the system, an experiment of ease learning based on execution’s time was performed. The experimental results demonstrate that this interaction’s approach does not present problems for people more experienced in the use of computer applications. While people with basic knowledge has some problems the system becomes easy to use with practice.

  18. Designing and Developing Game-Like Learning Experience in Virtual Worlds: Challenges and Design Decisions of Novice Instructional Designers

    Science.gov (United States)

    Yilmaz, Turkan Karakus; Cagiltay, Kursat

    2016-01-01

    Many virtual worlds have been adopted for implementation within educational settings because they are potentially useful for building effective learning environments. Since the flexibility of virtual worlds challenges to obtain effective and efficient educational outcomes, the design of such platforms need more attention. In the present study, the…

  19. Multi-modal virtual environment research at Armstrong Laboratory

    Science.gov (United States)

    Eggleston, Robert G.

    1995-01-01

    One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.

  20. Collaboration and dialogue in Virtual reality

    DEFF Research Database (Denmark)

    Gyldendahl Jensen, Camilla

    2017-01-01

    Virtual reality” adds a new dimension to constructivist problem-based learning (PBL) environments in the architectural and building construction educations, where a realistic and lifelike presence in a building enables students to assess and discuss how the various solutions interact with each...... other. Combined with “Building Information Models” (BIM), “Virtual Reality” provides an entirely new opportunity to innovate and optimize the architecture and construction in its early stages, which creates and iterative learning process. There are several studies where virtual simulation tools based...... on predefined tutorials are tested for their ability to facilitate collaborative processes. This study addresses the problem from a new angle by the virtual universe created through the students' own iterative design of a building. The “Virtual reality” system's narrative tale arises spontaneously through...