WorldWideScience

Sample records for ozone-induced pulmonary inflammation

  1. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    Science.gov (United States)

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  2. Adrenergic and steroid hormone modulation of ozone-induced pulmonary injury and inflammation

    Science.gov (United States)

    Rationale: We have shown that acute ozone inhalation promotes activation of the sympathetic and hypothalamic-pituitary-adrenal (HPA) axis leading to release of cortisol and epinephrine from the adrenals. Adrenalectomy (ADREX) inhibits ozone-induced pulmonary vascular leakage and ...

  3. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    International Nuclear Information System (INIS)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J.

    2016-01-01

    Ozone (O 3 )-related cardiorespiratory effects are a growing public health concern. Ground level O 3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O 3 -induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O 3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O 3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O 2 ) or hypoxia (10.0% O 2 ), followed by a 4-h exposure to either 1 ppm O 3 or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O 3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O 3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O 3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O 3 -induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive pulmonary disease (COPD). • It is unknown if comorbid

  4. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J., E-mail: mcampen@salud.unm.edu

    2016-08-15

    Ozone (O{sub 3})-related cardiorespiratory effects are a growing public health concern. Ground level O{sub 3} can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O{sub 3}-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O{sub 3} pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O{sub 3} exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O{sub 2}) or hypoxia (10.0% O{sub 2}), followed by a 4-h exposure to either 1 ppm O{sub 3} or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O{sub 3} exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O{sub 3} exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O{sub 3} exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O{sub 3}-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive

  5. Ozone-Induced Vascular Contractility and Pulmonary Injury Are Differentially Impacted by Diets Enriched With Coconut Oil, Fish Oil, and Olive Oil.

    Science.gov (United States)

    Snow, Samantha J; Cheng, Wan-Yun; Henriquez, Andres; Hodge, Myles; Bass, Virgina; Nelson, Gail M; Carswell, Gleta; Richards, Judy E; Schladweiler, Mette C; Ledbetter, Allen D; Chorley, Brian; Gowdy, Kymberly M; Tong, Haiyan; Kodavanti, Urmila P

    2018-05-01

    Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.

  6. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice.

    Science.gov (United States)

    Hansen, Jitka S; Nørgaard, Asger W; Koponen, Ismo K; Sørli, Jorid B; Paidi, Maya D; Hansen, Søren W K; Clausen, Per Axel; Nielsen, Gunnar D; Wolkoff, Peder; Larsen, Søren Thor

    2016-11-01

    Inhalation of indoor air pollutants may cause airway irritation and inflammation and is suspected to worsen allergic reactions. Inflammation may be due to mucosal damage, upper (sensory) and lower (pulmonary) airway irritation due to activation of the trigeminal and vagal nerves, respectively, and to neurogenic inflammation. The terpene, d-limonene, is used as a fragrance in numerous consumer products. When limonene reacts with the pulmonary irritant ozone, a complex mixture of gas and particle phase products is formed, which causes sensory irritation. This study investigated whether limonene, ozone or the reaction mixture can exacerbate allergic lung inflammation and whether airway irritation is enhanced in allergic BALB/cJ mice. Naïve and allergic (ovalbumin sensitized) mice were exposed via inhalation for three consecutive days to clean air, ozone, limonene or an ozone-limonene reaction mixture. Sensory and pulmonary irritation was investigated in addition to ovalbumin-specific antibodies, inflammatory cells, total protein and surfactant protein D in bronchoalveolar lavage fluid and hemeoxygenase-1 and cytokines in lung tissue. Overall, airway allergy was not exacerbated by any of the exposures. In contrast, it was found that limonene and the ozone-limonene reaction mixture reduced allergic inflammation possibly due to antioxidant properties. Ozone induced sensory irritation in both naïve and allergic mice. However, allergic but not naïve mice were protected from pulmonary irritation induced by ozone. This study showed that irritation responses might be modulated by airway allergy. However, aggravation of allergic symptoms was observed by neither exposure to ozone nor exposure to ozone-initiated limonene reaction products. In contrast, anti-inflammatory properties of the tested limonene-containing pollutants might attenuate airway allergy.

  7. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Buglak, Nicholas; Li, Ning; White, Kaylin; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2017-08-01

    Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2 -/- mice (devoid of T and B cells), and ILC-deficient Rag2 -/- Il2rg -/- mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.

  8. Ozone-induced changes in the pulmonary clearance of (99m)Tc-DTPA in man

    International Nuclear Information System (INIS)

    Kehrl, H.R.; Vincent, L.M.; Kowalsky, R.J.; Horstman, D.H.; O'Neil, J.J.

    1988-05-01

    Ozone is a respiratory irritant that has been shown in animals to increase the premeability of the respiratory epithelium. In the study the authors have recently reported that respiratory epithelial permeability was similarly affected in eight healthy non-smoking young men exposed to ozone (ARRD, 135 (1987) 1124-8). Permeability was evaluated by determining the pulmonary clearance of inhaled aerosolized 99mTc-DTPA with sequential posterior lung imaging by a computer-assisted gamma camera. In a randomized crossover design, 16 young men were exposed for 2 h to purified air and 0.4 ppm ozone while performing intermittent high intensity treadmill exercise; forced vital capacity (FVC) was measured before and at the end of exposures. The results demonstrate that ozone exposure increased respiratory epithelial permeability. Such an increase may be a manifestation of direct ozone-induced epithelial-cell injury, lung inflammation, or both

  9. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation

    Science.gov (United States)

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adre...

  10. Adrenal-derived stress hormones modulate ozone-induced ...

    Science.gov (United States)

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM)prior to their exposure to air or ozone (1 ppm),4 h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and Pl3K-AKT.Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced Increases in lung 116 in SHAM rats coincided with neutrophilic Inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of lfny and 11-4, the IL-4 protein and ratio of IL-4 to IFNy (IL-4/IFNy) proteins increased suggesting a tendency for a Th2 response. This did not occur

  11. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-01-01

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1α protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1α hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1α degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1α protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation

  12. Ozone-induced systemic and pulmonary effects are diminished in adrenalectomized rats

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set is an excel file pertaining to the study that examined ozone-induced systemic and pulmonary effects in rats that underwent SHAM surgery (control),...

  13. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats

    International Nuclear Information System (INIS)

    Miller, Desinia B.; Snow, Samantha J.; Henriquez, Andres; Schladweiler, Mette C.; Ledbetter, Allen D.; Richards, Judy E.; Andrews, Debora L.; Kodavanti, Urmila P.

    2016-01-01

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25 ppm or 1.00 ppm ozone, 5 h/day, 3 consecutive days/week (wk) for 13 wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13 wk or following a 1 wk recovery period (13 wk + 1 wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13 wk, however, these responses were largely reversible following a 1 wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. - Highlights: • Subchronic episodic ozone exposure caused pulmonary and metabolic effects. • These

  14. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Desinia B. [Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina (United States); Snow, Samantha J. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Henriquez, Andres [Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina (United States); Schladweiler, Mette C.; Ledbetter, Allen D.; Richards, Judy E.; Andrews, Debora L. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2016-09-01

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25 ppm or 1.00 ppm ozone, 5 h/day, 3 consecutive days/week (wk) for 13 wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13 wk or following a 1 wk recovery period (13 wk + 1 wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13 wk, however, these responses were largely reversible following a 1 wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. - Highlights: • Subchronic episodic ozone exposure caused pulmonary and metabolic effects. • These

  15. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats.

    Science.gov (United States)

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs.

  16. Gender differences in ozone-induced pulmonary and metabolic health effects

    Science.gov (United States)

    SOT 2015 abstractGender differences in ozone-induced pulmonary and metabolic health effectsU.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema3, P. Phillips3, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triangle ...

  17. γδ T cells are required for pulmonary IL-17A expression after ozone exposure in mice: role of TNFα.

    Directory of Open Access Journals (Sweden)

    Joel A Mathews

    Full Text Available Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24-72 h. We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ-/- to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ-/- mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ-/- mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ-/- versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung.

  18. Docosahexaenoic acid inhibits monocrotaline-induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation.

    Science.gov (United States)

    Chen, Rui; Zhong, Wei; Shao, Chen; Liu, Peijing; Wang, Cuiping; Wang, Zhongqun; Jiang, Meiping; Lu, Yi; Yan, Jinchuan

    2018-02-01

    Endoplasmic reticulum (ER) stress and inflammation contribute to pulmonary hypertension (PH) pathogenesis. Previously, we confirmed that docosahexaenoic acid (DHA) could improve hypoxia-induced PH. However, little is known about the link between DHA and monocrotaline (MCT)-induced PH. Our aims were, therefore, to evaluate the effects and molecular mechanisms of DHA on MCT-induced PH in rats. Rat PH was induced by MCT. Rats were treated with DHA daily in the prevention group (following MCT injection) and the reversal group (after MCT injection for 2 wk) by gavage. After 4 wk, mean pulmonary arterial pressure (mPAP), right ventricular (RV) hypertrophy index, and morphological and immunohistochemical analyses were evaluated. Rat pulmonary artery smooth muscle cells (PASMCs) were used to investigate the effects of DHA on cell proliferation stimulated by platelet-derived growth factor (PDGF)-BB. DHA decreased mPAP and attenuated pulmonary vascular remodeling and RV hypertrophy, which were associated with suppressed ER stress. DHA blocked the mitogenic effect of PDGF-BB on PASMCs and arrested the cell cycle via inhibiting nuclear factor of activated T cells-1 (NFATc1) expression and activation and regulating cell cycle-related proteins. Moreover, DHA ameliorated inflammation in lung and suppressed macrophage and T lymphocyte accumulation in lung and adventitia of resistance pulmonary arteries. These findings suggest that DHA could protect against MCT-induced PH by reducing ER stress, suppressing cell proliferation and inflammation.

  19. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis.

    Science.gov (United States)

    Kida, Taiki; Ayabe, Shinya; Omori, Keisuke; Nakamura, Tatsuro; Maehara, Toko; Aritake, Kosuke; Urade, Yoshihiro; Murata, Takahisa

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis.

  20. Bufei Huoxue Capsule Attenuates PM2.5-Induced Pulmonary Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Yue Jing

    2017-01-01

    Full Text Available Atmospheric fine particulate matter 2.5 (PM 2.5 may carry many toxic substances on its surface and this may pose a public health threat. Epidemiological research indicates that cumulative ambient PM2.5 is correlated to morbidity and mortality due to pulmonary and cardiovascular diseases and cancer. Mitigating the toxic effects of PM2.5 is therefore highly desired. Bufei Huoxue (BFHX capsules have been used in China to treat pulmonary heart disease (cor pulmonale. Thus, we assessed the effects of BFHX capsules on PM2.5-induced pulmonary inflammation and the underlying mechanisms of action. Using Polysearch and Cytoscape 3.2.1 software, pharmacological targets of BFHX capsules in atmospheric PM2.5-related respiratory disorders were predicted and found to be related to biological pathways of inflammation and immune function. In a mouse model of PM2.5-induced inflammation established with intranasal instillation of PM2.5 suspension, BFHX significantly reduced pathological response and inflammatory mediators including IL-4, IL-6, IL-10, IL-8, TNF-α, and IL-1β. BFHX also reduced keratinocyte growth factor (KGF, secretory immunoglobulin A (sIgA, and collagen fibers deposition in lung and improved lung function. Thus, BFHX reduced pathological responses induced by PM2.5, possibly via regulation of inflammatory mediators in mouse lungs.

  1. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.

  2. Inhalation of activated protein C inhibits endotoxin-induced pulmonary inflammation in mice independent of neutrophil recruitment

    NARCIS (Netherlands)

    Slofstra, S. H.; Groot, A. P.; Maris, N. A.; Reitsma, P. H.; Cate, H. Ten; Spek, C. A.

    2006-01-01

    BACKGROUND AND PURPOSE: Intravenous administration of recombinant human activated protein C (rhAPC) is known to reduce lipopolysaccharide (LPS)-induced pulmonary inflammation by attenuating neutrophil chemotaxis towards the alveolar compartment. Ideally, one would administer rhAPC in pulmonary

  3. Aggravating Impact of Nanoparticles on Immune-Mediated Pulmonary Inflammation

    Directory of Open Access Journals (Sweden)

    Ken-Ichiro Inoue

    2011-01-01

    Full Text Available Although the adverse health effects of nanoparticles have been proposed and are being clarified, their aggravating effects on pre-existing pathological conditions have not been fully investigated. In this review, we provide insights into the immunotoxicity of both airborne and engineered nanoparticles as an exacerbating factor on hypersusceptible subjects, especially those with immune-mediated pulmonary inflammation, using our in vivo experimental model. First, we exhibit the effects of nanoparticles on pulmonary inflammation induced by bacterial endotoxin (lipopolysaccharide: LPS as a disease model in innate immunity, and demonstrate that nanoparticles instilled through both an intratracheal tube and an inhalation system can exacerbate the lung inflammation. Second, we introduce the effects of nanoparticles on allergic pulmonary inflammation as a disease model in adaptive immunity, and show that repetitive pulmonary exposure to nanoparticles has aggravating effects on allergic inflammation, including adjuvant effects on Th2-milieu. Third, we show that very small nanoparticle exposure exacerbates emphysematous pulmonary inflammation, which is concomitant with enhanced lung expression of proinflammatory molecules (including those that are innate immunity related. Taken together, nanoparticle exposure may synergistically facilitate pathological pulmonary inflammation via both innate and adaptive immunological impairment.

  4. Acute secondhand smoke-induced pulmonary inflammation is diminished in RAGE knockout mice.

    Science.gov (United States)

    Wood, Tyler T; Winden, Duane R; Marlor, Derek R; Wright, Alex J; Jones, Cameron M; Chavarria, Michael; Rogers, Geraldine D; Reynolds, Paul R

    2014-11-15

    The receptor for advanced glycation end-products (RAGE) has increasingly been demonstrated to be an important modulator of inflammation in cases of pulmonary disease. Published reports involving tobacco smoke exposure have demonstrated increased expression of RAGE, its participation in proinflammatory signaling, and its role in irreversible pulmonary remodeling. The current research evaluated the in vivo effects of short-term secondhand smoke (SHS) exposure in RAGE knockout and control mice compared with identical animals exposed to room air only. Quantitative PCR, immunoblotting, and immunohistochemistry revealed elevated RAGE expression in controls after 4 wk of SHS exposure and an anticipated absence of RAGE expression in RAGE knockout mice regardless of smoke exposure. Ras activation, NF-κB activity, and cytokine elaboration were assessed to characterize the molecular basis of SHS-induced inflammation in the mouse lung. Furthermore, bronchoalveolar lavage fluid was procured from RAGE knockout and control animals for the assessment of inflammatory cells and molecules. As a general theme, inflammation coincident with leukocyte recruitment was induced by SHS exposure and significantly influenced by the availability of RAGE. These data reveal captivating information suggesting a role for RAGE signaling in lungs exposed to SHS. However, ongoing research is still warranted to fully explain roles for RAGE and other receptors in cells coping with involuntary smoke exposure for prolonged periods of time. Copyright © 2014 the American Physiological Society.

  5. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms

    Directory of Open Access Journals (Sweden)

    Spyridon Loridas

    2013-08-01

    Full Text Available Reactive oxygen or nitrogen species (ROS, RNS and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.. Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM, at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc. play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM10 and PM2.5 are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.

  6. SRC-mediated EGF Receptor Activation Regulates Ozone-induced Interleukin 8 Expression in Human Bronchial Epithelial Cells

    Science.gov (United States)

    BACKGROUND: Human exposure to ozone (03) results in pulmonary function decrements and airway inflammation. The mechanisms underlying these adverse effects remain unclear. Epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of lung inflammation. ...

  7. Bilirubin treatment suppresses pulmonary inflammation in a rat model of smoke-induced emphysema.

    Science.gov (United States)

    Wei, Jingjing; Zhao, Hui; Fan, Guoquan; Li, Jianqiang

    2015-09-18

    Cigarette smoking is a significant risk factor for emphysema, which is characterized by airway inflammation and oxidative damage. To assess the capacity of bilirubin to protect against smoke-induced emphysema. Smoking status and bilirubin levels were recorded in 58 patients with chronic obstructive pulmonary diseases (COPD) and 71 non-COPD participants. The impact of smoking on serum bilirubin levels and exogenous bilirubin (20 mg/kg/day) on pulmonary injury was assessed in a rat model of smoking-induced emphysema. At sacrifice lung histology, airway leukocyte accumulation and cytokine and chemokine levels in serum, bronchoalveolar lavage fluid (BALF) and lung were analyzed. Oxidative lipid damage and anti-oxidative components was assessed by measuring malondialdehyde, superoxide dismutase (SOD) activity and glutathione. Total serum bilirubin levels were lower in smokers with or without COPD than non-smoking patients without COPD (P pulmonary injury by suppressing inflammatory cell recruitment and pro-inflammatory cytokine secretion, increasing anti-inflammatory cytokine levels, and anti-oxidant SOD activity in a rat model of smoke-induced emphysema. Copyright © 2015. Published by Elsevier Inc.

  8. Asthma causes inflammation of human pulmonary arteries and decreases vasodilatation induced by prostaglandin I2 analogs.

    Science.gov (United States)

    Foudi, Nabil; Badi, Aouatef; Amrane, Mounira; Hodroj, Wassim

    2017-12-01

    Asthma is a chronic inflammatory disease associated with increased cardiovascular events. This study assesses the presence of inflammation and the vascular reactivity of pulmonary arteries in patients with acute asthma. Rings of human pulmonary arteries obtained from non-asthmatic and asthmatic patients were set up in organ bath for vascular tone monitoring. Reactivity was induced by vasoconstrictor and vasodilator agents. Protein expression of inflammatory markers was detected by western blot. Prostanoid releases and cyclic adenosine monophosphate (cAMP) levels were quantified using specific enzymatic kits. Protein expression of cluster of differentiation 68, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and cyclooxygenase-2 was significantly increased in arteries obtained from asthmatic patients. These effects were accompanied by an alteration of vasodilatation induced by iloprost and treprostinil, a decrease in cAMP levels and an increase in prostaglandin (PG) E 2 and PGI 2 synthesis. The use of forskolin (50 µmol/L) has restored the vasodilatation and cAMP release. No difference was observed between the two groups in reactivity induced by norepinephrine, angiotensin II, PGE 2 , KCl, sodium nitroprusside, and acetylcholine. Acute asthma causes inflammation of pulmonary arteries and decreases vasodilation induced by PGI 2 analogs through the impairment of cAMP pathway.

  9. Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development.

    Directory of Open Access Journals (Sweden)

    P Padmini S J Khedoe

    Full Text Available COPD is a pulmonary disorder often accompanied by cardiovascular disease (CVD, and current treatment of this comorbidity is suboptimal. Systemic inflammation in COPD triggered by smoke and microbial exposure is suggested to link COPD and CVD. Mesenchymal stromal cells (MSC possess anti-inflammatory capacities and MSC treatment is considered an attractive treatment option for various chronic inflammatory diseases. Therefore, we investigated the immunomodulatory properties of MSC in an acute and chronic model of lipopolysaccharide (LPS-induced inflammation, emphysema and atherosclerosis development in APOE*3-Leiden (E3L mice.Hyperlipidemic E3L mice were intranasally instilled with 10 μg LPS or vehicle twice in an acute 4-day study, or twice weekly during 20 weeks Western-type diet feeding in a chronic study. Mice received 0.5x106 MSC or vehicle intravenously twice after the first LPS instillation (acute study or in week 14, 16, 18 and 20 (chronic study. Inflammatory parameters were measured in bronchoalveolar lavage (BAL and lung tissue. Emphysema, pulmonary inflammation and atherosclerosis were assessed in the chronic study.In the acute study, intranasal LPS administration induced a marked systemic IL-6 response on day 3, which was inhibited after MSC treatment. Furthermore, MSC treatment reduced LPS-induced total cell count in BAL due to reduced neutrophil numbers. In the chronic study, LPS increased emphysema but did not aggravate atherosclerosis. Emphysema and atherosclerosis development were unaffected after MSC treatment.These data show that MSC inhibit LPS-induced pulmonary and systemic inflammation in the acute study, whereas MSC treatment had no effect on inflammation, emphysema and atherosclerosis development in the chronic study.

  10. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Patel-Vayas, Kinal; Shen, Jianliang [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-09-01

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h and 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are activated

  11. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice

    Directory of Open Access Journals (Sweden)

    Izziki Mohamed

    2009-01-01

    Full Text Available Abstract Background Inflammation may contribute to the pathogenesis of various forms of pulmonary hypertension (PH. Recent studies in patients with idiopathic PH or PH associated with underlying diseases suggest a role for interleukin-6 (IL-6. Methods To determine whether endogenous IL-6 contributes to mediate hypoxic PH and lung inflammation, we studied IL-6-deficient (IL-6-/- and wild-type (IL-6+/+ mice exposed to hypoxia for 2 weeks. Results Right ventricular systolic pressure, right ventricle hypertrophy, and the number and media thickness of muscular pulmonary vessels were decreased in IL-6-/- mice compared to wild-type controls after 2 weeks' hypoxia, although the pressure response to acute hypoxia was similar in IL-6+/+ and IL-6-/- mice. Hypoxia exposure of IL-6+/+ mice led to marked increases in IL-6 mRNA and protein levels within the first week, with positive IL-6 immunostaining in the pulmonary vessel walls. Lung IL-6 receptor and gp 130 (the IL-6 signal transducer mRNA levels increased after 1 and 2 weeks' hypoxia. In vitro studies of cultured human pulmonary-artery smooth-muscle-cells (PA-SMCs and microvascular endothelial cells revealed prominent synthesis of IL-6 by PA-SMCs, with further stimulation by hypoxia. IL-6 also markedly stimulated PA-SMC migration without affecting proliferation. Hypoxic IL-6-/- mice showed less inflammatory cell recruitment in the lungs, compared to hypoxic wild-type mice, as assessed by lung protein levels and immunostaining for the specific macrophage marker F4/80, with no difference in lung expression of adhesion molecules or cytokines. Conclusion These data suggest that IL-6 may be actively involved in hypoxia-induced lung inflammation and pulmonary vascular remodeling in mice.

  12. Modeling mechanisms of susceptibility in vitro: Differential activation of the MAP kinase ERK, but not p38, mediates variability and adaptation in the pro-inflammatory response to ozone

    Science.gov (United States)

    Ozone is a ubiquitous ambient air pollutant that causes pulmonary inflammation upon exposure. The ozone-induced inflammatory response varies by orders of magnitude and the range of variation in “healthy” individuals extends beyond that of “susceptible” po...

  13. Ozone exposure and pulmonary effects in panel and human clinical studies: Considerations for design and interpretation.

    Science.gov (United States)

    Rohr, Annette C

    2018-04-01

    A wealth of literature exists regarding the pulmonary effects of ozone, a photochemical pollutant produced by the reaction of nitrogen oxide and volatile organic precursors in the presence of sunlight. This paper focuses on epidemiological panel studies and human clinical studies of ozone exposure, and discusses issues specific to this pollutant that may influence study design and interpretation as well as other, broader considerations relevant to ozone-health research. The issues are discussed using examples drawn from the wider literature. The recent panel and clinical literature is also reviewed. Health outcomes considered include lung function, symptoms, and pulmonary inflammation. Issues discussed include adversity, reversibility, adaptation, variability in ozone exposure metric used and health outcomes evaluated, co-pollutants in panel studies, influence of temperature in panel studies, and multiple comparisons. Improvements in and standardization of panel study approaches are recommended to facilitate comparisons between studies as well as meta-analyses. Additional clinical studies at or near the current National Ambient Air Quality Standard (NAAQS) of 70 ppb are recommended, as are clinical studies in sensitive subpopulations such as asthmatics. The pulmonary health impacts of ozone exposure have been well documented using both epidemiological and chamber study designs. However, there are a number of specific methodological and related issues that should be considered when interpreting the results of these studies and planning additional research, including the standardization of exposure and health metrics to facilitate comparisons among studies.

  14. Inhalation of ozone induces DNA strand breaks and inflammation in mice

    DEFF Research Database (Denmark)

    Bornholdt, J.; Dybdahl, M.; Vogel, Ulla Birgitte

    2002-01-01

    200 min there was no effect. It could be ruled out that the effect during the first 200 min was due to major infiltration of lymphocytes or neutrophils. Unexpectedly, ozone had no effect on the content of 8-oxo-deoxyguanosine (8-oxo-dG) in nuclear DNA or on oxidised amino acids in the lung tissue....... The mRNA level of the repair enzyme ERCC I was not increased in the lung tissue. Inflammation was measured by the cytokine mRNA level in lung homogenates. An up to 150-fold induction of interleukin-6 (IL-6) m was detected in the animals exposed to 2 ppm ozone compared to the air-exposed control mice...

  15. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation.

    Science.gov (United States)

    Li, Qian; Guo, Zhenhong; Xu, Xiongfei; Xia, Sheng; Cao, Xuetao

    2008-10-01

    The tissue microenvironment may affect the development and function of immune cells such as DC. Whether and how the pulmonary stromal microenvironment can affect the development and function of lung DC need to be investigated. Regulatory DC (DCreg) can regulate T-cell response. We wondered whether such regulatory DC exist in the lung and what is the effect of the pulmonary stromal microenvironment on the generation of DCreg. Here we demonstrate that murine pulmonary stromal cells can drive immature DC, which are regarded as being widely distributed in the lung, to proliferate and differentiate into a distinct subset of DCreg, which express high levels of CD11b but low levels of MHC class II (I-A), CD11c, secrete high amounts of IL-10, NO and prostaglandin E2 (PGE2) and suppress T-cell proliferation. The natural counterpart of DCreg in the lung with similar phenotype and regulatory function has been identified. Pulmonary stroma-derived TGF-beta is responsible for the differentiation of immature DC to DCreg, and DCreg-derived PGE2 contributes to their suppression of T-cell proliferation. Moreover, DCreg can induce the generation of CD4+CD25+Foxp3+ Treg. Importantly, infusion with DCreg attenuates T-cell-mediated eosinophilic airway inflammation in vivo. Therefore, the pulmonary microenvironment may drive the generation of DCreg, thus contributing to the maintenance of immune homoeostasis and the control of inflammation in the lung.

  16. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    NARCIS (Netherlands)

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-01-01

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in

  17. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  18. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats.

    Science.gov (United States)

    Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong

    2017-09-01

    Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats

  19. Regulation of pulmonary inflammation by mesenchymal cells

    NARCIS (Netherlands)

    Alkhouri, Hatem; Poppinga, Wilfred Jelco; Tania, Navessa Padma; Ammit, Alaina; Schuliga, Michael

    2014-01-01

    Pulmonary inflammation and tissue remodelling are common elements of chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and pulmonary hypertension (PH). In disease, pulmonary mesenchymal cells not only contribute to tissue

  20. Comparison of acute ozone-induced nasal and pulmonary inflammatory responses

    International Nuclear Information System (INIS)

    Hotchkiss, J.A.; Harkema, J.R.; Sun, J.D.; Henderson, R.F.

    1988-01-01

    The present study was designed to compare the effects of acute ozone exposure in the nose and lungs of rats. Rats were exposed to 0.0, 0.12, 0.80, or 1.5 ppm O 3 for 6 h and were sacrificed immediately, 3,18, 42, or 66 h after exposure. Cellular inflammatory responses were assessed by quantitating polymorphonuclear neutrophils (PMN) recovered by nasal lavage (NL) and bronchoalveolar lavage (BAL) and morphometric quantitation of PMN within the nasal mucosa and pulmonary centriacinar region. Rats exposed to 0.12 ppm O 3 had a transient nasal PMN response 18 h after exposure but no increase in pulmonary PMN. Rats exposed to 0.8 ppm O 3 had a marked increase in nasal PMN immediately after exposure but the number of PMN within the nasal cavity decreased as the number of pulmonary PMN increased with time after exposure. Rats exposed to 1.5 ppm O 3 had an increase in pulmonary PMN beginning 3 h post-exposure, but no increase in nasal PMN at any time. Our results suggest that at high O 3 concentrations, the acute nasal inflammatory response is attenuated by a simultaneous, competing, inflammatory response within the lung. (author)

  1. Comparison of acute ozone-induced nasal and pulmonary inflammatory responses

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkiss, J A; Harkema, J R; Sun, J D; Henderson, R F

    1988-12-01

    The present study was designed to compare the effects of acute ozone exposure in the nose and lungs of rats. Rats were exposed to 0.0, 0.12, 0.80, or 1.5 ppm O{sub 3} for 6 h and were sacrificed immediately, 3,18, 42, or 66 h after exposure. Cellular inflammatory responses were assessed by quantitating polymorphonuclear neutrophils (PMN) recovered by nasal lavage (NL) and bronchoalveolar lavage (BAL) and morphometric quantitation of PMN within the nasal mucosa and pulmonary centriacinar region. Rats exposed to 0.12 ppm O{sub 3} had a transient nasal PMN response 18 h after exposure but no increase in pulmonary PMN. Rats exposed to 0.8 ppm O{sub 3} had a marked increase in nasal PMN immediately after exposure but the number of PMN within the nasal cavity decreased as the number of pulmonary PMN increased with time after exposure. Rats exposed to 1.5 ppm O{sub 3} had an increase in pulmonary PMN beginning 3 h post-exposure, but no increase in nasal PMN at any time. Our results suggest that at high O{sub 3} concentrations, the acute nasal inflammatory response is attenuated by a simultaneous, competing, inflammatory response within the lung. (author)

  2. Aspirin reduces lipopolysaccharide-induced pulmonary inflammation in human models of ARDS.

    Science.gov (United States)

    Hamid, U; Krasnodembskaya, A; Fitzgerald, M; Shyamsundar, M; Kissenpfennig, A; Scott, C; Lefrancais, E; Looney, M R; Verghis, R; Scott, J; Simpson, A J; McNamee, J; McAuley, D F; O'Kane, C M

    2017-11-01

    Platelets play an active role in the pathogenesis of acute respiratory distress syndrome (ARDS). Animal and observational studies have shown aspirin's antiplatelet and immunomodulatory effects may be beneficial in ARDS. To test the hypothesis that aspirin reduces inflammation in clinically relevant human models that recapitulate pathophysiological mechanisms implicated in the development of ARDS. Healthy volunteers were randomised to receive placebo or aspirin 75  or 1200 mg (1:1:1) for seven days prior to lipopolysaccharide (LPS) inhalation, in a double-blind, placebo-controlled, allocation-concealed study. Bronchoalveolar lavage (BAL) was performed 6 hours after inhaling 50 µg of LPS. The primary outcome measure was BAL IL-8. Secondary outcome measures included markers of alveolar inflammation (BAL neutrophils, cytokines, neutrophil proteases), alveolar epithelial cell injury, systemic inflammation (neutrophils and plasma C-reactive protein (CRP)) and platelet activation (thromboxane B2, TXB2). Human lungs, perfused and ventilated ex vivo (EVLP) were randomised to placebo or 24 mg aspirin and injured with LPS. BAL was carried out 4 hours later. Inflammation was assessed by BAL differential cell counts and histological changes. In the healthy volunteer (n=33) model, data for the aspirin groups were combined. Aspirin did not reduce BAL IL-8. However, aspirin reduced pulmonary neutrophilia and tissue damaging neutrophil proteases (Matrix Metalloproteinase (MMP)-8/-9), reduced BAL concentrations of tumour necrosis factor α and reduced systemic and pulmonary TXB2. There was no difference between high-dose and low-dose aspirin. In the EVLP model, aspirin reduced BAL neutrophilia and alveolar injury as measured by histological damage. These are the first prospective human data indicating that aspirin inhibits pulmonary neutrophilic inflammation, at both low and high doses. Further clinical studies are indicated to assess the role of aspirin in the

  3. Oleanolic acid acetate attenuates polyhexamethylene guanidine phosphate-induced pulmonary inflammation and fibrosis in mice.

    Science.gov (United States)

    Kim, Min-Seok; Han, Jin-Young; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Lee, Seung Woong; Rho, Mun-Chual; Lee, Kyuhong

    2018-06-01

    Oleanolic acid acetate (OAA), triterpenoid compound isolated from Vigna angularis (azuki bean), has been revealed anti-inflammatory in several studies. We investigated the effects of OAA against polyhexamethylene guanidine phosphate (PHMG-P)-induced pulmonary inflammation and fibrosis in mice. OAA treatment effectively alleviated PHMG-P-induced lung injury, including the number of total and differential cell in BAL fluid, histopathological lesions and hydroxyproline content in a dose dependent manner. Moreover, OAA treatment significantly decreased the elevations of IL-1β, IL-6, TNF-α, TGF-β1, and fibronectin, and the activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in the lungs of PHMG-P-treated mice. Cytokines are known to be key modulators in the inflammatory responses that drive progression of fibrosis in injured tissues. The activation of NLRP3 inflammasome has been reported to be involved in induction of inflammatory cytokines. These results indicate that OAA may mitigate the inflammatory response and development of pulmonary fibrosis in the lungs of mice treated with PHMG-P. Copyright © 2018. Published by Elsevier B.V.

  4. Efficacy and safety of inhaled carbon monoxide during pulmonary inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Michael R Wilson

    2010-07-01

    Full Text Available Pulmonary inflammation is a major contributor to morbidity in a variety of respiratory disorders, but treatment options are limited. Here we investigate the efficacy, safety and mechanism of action of low dose inhaled carbon monoxide (CO using a mouse model of lipopolysaccharide (LPS-induced pulmonary inflammation.Mice were exposed to 0-500 ppm inhaled CO for periods of up to 24 hours prior to and following intratracheal instillation of 10 ng LPS. Animals were sacrificed and assessed for intraalveolar neutrophil influx and cytokine levels, flow cytometric determination of neutrophil number and activation in blood, lung and lavage fluid samples, or neutrophil mobilisation from bone marrow.When administered for 24 hours both before and after LPS, inhaled CO of 100 ppm or more reduced intraalveolar neutrophil infiltration by 40-50%, although doses above 100 ppm were associated with either high carboxyhemoglobin, weight loss or reduced physical activity. This anti-inflammatory effect of CO did not require pre-exposure before induction of injury. 100 ppm CO exposure attenuated neutrophil sequestration within the pulmonary vasculature as well as LPS-induced neutrophilia at 6 hours after LPS, likely due to abrogation of neutrophil mobilisation from bone marrow. In contrast to such apparently beneficial effects, 100 ppm inhaled CO induced an increase in pulmonary barrier permeability as determined by lavage fluid protein content and translocation of labelled albumin from blood to the alveolar space.Overall, these data confirm some protective role for inhaled CO during pulmonary inflammation, although this required a dose that produced carboxyhemoglobin values close to potentially toxic levels for humans, and increased lung permeability.

  5. Endothelial Semaphorin 7A promotes inflammation in seawater aspiration-induced acute lung injury.

    Science.gov (United States)

    Zhang, Minlong; Wang, Li; Dong, Mingqing; Li, Zhichao; Jin, Faguang

    2014-10-28

    Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have shown that Semaphorin 7A (SEMA7A) promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague-Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs) were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF)-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  6. IL-23 Is Essential for the Development of Elastase-Induced Pulmonary Inflammation and Emphysema.

    Science.gov (United States)

    Fujii, Utako; Miyahara, Nobuaki; Taniguchi, Akihiko; Waseda, Koichi; Morichika, Daisuke; Kurimoto, Etsuko; Koga, Hikari; Kataoka, Mikio; Gelfand, Erwin W; Cua, Daniel J; Yoshimura, Akihiko; Tanimoto, Mitsune; Kanehiro, Arihiko

    2016-11-01

    We recently reported that IL-17A plays a critical role in the development of porcine pancreatic elastase (PPE)-induced emphysema. The proliferation of T-helper type 17 (Th17) cells was induced by IL-23. To determine the contribution of IL-23 to the development of pulmonary emphysema, a mouse model of PPE-induced emphysema was used in which responses of IL-23p19-deficient (IL-23 -/- ) and wild-type (WT) mice were compared. Intratracheal instillation of PPE induced emphysematous changes in the lungs and was associated with increased levels of IL-23 in lung homogenates. Compared with WT mice, IL-23 -/- mice developed significantly lower static compliance values and markedly reduced emphysematous changes on histological analyses after PPE instillation. These changes were associated with lower levels of IL-17A and fewer Th17 cells in the lung. The neutrophilia seen in bronchoalveolar lavage fluid of WT mice was attenuated in IL-23 -/- mice, and the reduction was associated with decreased levels of keratinocyte-derived cytokine and macrophage inflammatory protein-2 in bronchoalveolar lavage fluid. Treatment with anti-IL-23p40 monoclonal antibody significantly attenuated PPE-induced emphysematous changes in the lungs of WT mice. These data identify the important contributions of IL-23 to the development of elastase-induced pulmonary inflammation and emphysema, mediated through an IL-23/IL-17 pathway. Targeting IL-23 in emphysema is a potential therapeutic strategy for delaying disease progression.

  7. Stressed lungs: unveiling the role of circulating stress hormones in ozone-induced lung injury and inflammation

    Science.gov (United States)

    Our recent work demonstrated that circulating stress hormones, epinephrine and corticosterone/cortisol, are involved in mediating ozone pulmonary effects through the activation of hypothalamus-pituitary-adrenal (HPA) axis. Adrenalectomy in Wistar Kyoto (WKY) rats diminished circu...

  8. Differential effects of airway anesthesia on ozone-induced pulmonary responses in human subjects.

    Science.gov (United States)

    Schelegle, E S; Eldridge, M W; Cross, C E; Walby, W F; Adams, W C

    2001-04-01

    We examined the effect of tetracaine aerosol inhalation, a local anesthetic, on lung volume decrements, rapid shallow breathing, and subjective symptoms of breathing discomfort induced by the acute inhalation of 0.30 ppm ozone for 65 min in 22 ozone-sensitive healthy human subjects. After 50 min of ozone inhalation FEV(1) was reduced 24%, breathing frequency was increased 40%, tidal volume was decreased 31%, and total subjective symptom score was increased (71.2, compared with 3.8 for filtered air exposure). Inhalation of tetracaine aerosol resulted in marked reductions in ozone-induced subjective symptoms of throat tickle and/or irritation (92.1%), cough (78.5%), shortness of breath (72.5%), and pain on deep inspiration (69.4%). In contrast, inhalation of tetracaine aerosol (mass median aerodynamic diameter of 3.52 microm with a geometric standard deviation of 1.92) resulted in only minor and inconsistent rectification of FEV(1) decrements (5.0%) and breathing frequency (-3.8%) that was not significantly different from that produced by saline aerosol alone (FEV(1), 5.1% and breathing frequency, -2.7%). Our data are consistent with afferent endings located within the large conducting airways of the tracheobronchial tree being primarily responsible for ozone-induced subjective symptoms and provides strong evidence that ozone-induced inhibition of maximal inspiratory effort is not dependent on conscious sensations of inspiratory discomfort.

  9. Pulmonary inflammation and crystalline silica in respirable coal ...

    Indian Academy of Sciences (India)

    Unknown

    This study demonstrates dose-response relationships between respirable crystalline silica in coal mine dust and pulmonary inflammation, antioxidant production, and radiographic small opacities. [Kuempel E D, Attfield M D, Vallyathan V, Lapp N L, Hale J M, Smith R J and Castranova V 2003 Pulmonary inflammation and ...

  10. Agmatine attenuates silica-induced pulmonary fibrosis.

    Science.gov (United States)

    El-Agamy, D S; Sharawy, M H; Ammar, E M

    2014-06-01

    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.

  11. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set shows high throughput gene expression assessment using RNAseq to examine how ozone-induced transcriptional changes in the lung are influenced by...

  12. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-γ-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Zeidler, Patti C.; Millecchia, Lyndell M.; Castranova, Vincent

    2004-01-01

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-γ were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-γ (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-γ were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-α, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-α, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-γ is anti-inflammatory, and this becomes evident over time

  13. Effects of vagus nerve stimulation and vagotomy on systemic and pulmonary inflammation in a two-hit model in rats.

    Directory of Open Access Journals (Sweden)

    Matthijs Kox

    Full Text Available Pulmonary inflammation contributes to ventilator-induced lung injury. Sepsis-induced pulmonary inflammation (first hit may be potentiated by mechanical ventilation (MV, second hit. Electrical stimulation of the vagus nerve has been shown to attenuate inflammation in various animal models through the cholinergic anti-inflammatory pathway. We determined the effects of vagotomy (VGX and vagus nerve stimulation (VNS on systemic and pulmonary inflammation in a two-hit model. Male Sprague-Dawley rats were i.v. administered lipopolysaccharide (LPS and subsequently underwent VGX, VNS or a sham operation. 1 hour following LPS, MV with low (8 mL/kg or moderate (15 mL/kg tidal volumes was initiated, or animals were left breathing spontaneously (SP. After 4 hours of MV or SP, rats were sacrificed. Cytokine and blood gas analysis was performed. MV with 15, but not 8 mL/kg, potentiated the LPS-induced pulmonary pro-inflammatory cytokine response (TNF-α, IL-6, KC: p<0.05 compared to LPS-SP, but did not affect systemic inflammation or impair oxygenation. VGX enhanced the LPS-induced pulmonary, but not systemic pro-inflammatory cytokine response in spontaneously breathing, but not in MV animals (TNF-α, IL-6, KC: p<0.05 compared to SHAM, and resulted in decreased pO(2 (p<0.05 compared to sham-operated animals. VNS did not affect any of the studied parameters in both SP and MV animals. In conclusion, MV with moderate tidal volumes potentiates the pulmonary inflammatory response elicited by systemic LPS administration. No beneficial effects of vagus nerve stimulation performed following LPS administration were found. These results questions the clinical applicability of stimulation of the cholinergic anti-inflammatory pathway in systemically inflamed patients admitted to the ICU where MV is initiated.

  14. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung.

    Science.gov (United States)

    Hwang, Ji Young; Randall, Troy D; Silva-Sanchez, Aaron

    2016-01-01

    Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, specialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT is formed, it participates in immune responses to pulmonary antigens, including those that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of disease. However, the mechanisms that govern immune responses in iBALT and determine how iBALT impacts local and systemic immunity are poorly understood. Here, we review our current understanding of iBALT formation and discuss how iBALT participates in pulmonary immunity.

  15. The effect of PPE-induced emphysema and chronic LPS-induced pulmonary inflammation on atherosclerosis development in APOE*3-LEIDEN mice

    NARCIS (Netherlands)

    Khedoe, P.P.S.J.; Wong, M.C.; Wagenaar, G.T.M.; Plomp, J.J.; Eck, M. van; Havekes, L.M.; Rensen, P.C.N.; Hiemstra, P.S.; Berbée, J.F.P.

    2013-01-01

    Background: Chronic obstructive pulmonary disease (COPD) is characterized by pulmonary inflammation, airways obstruction and emphysema, and is a risk factor for cardiovascular disease (CVD). However, the contribution of these individual COPD components to this increased risk is unknown. Therefore,

  16. Haemophilus influenzae from Patients with Chronic Obstructive Pulmonary Disease Exacerbation Induce More Inflammation than Colonizers

    Science.gov (United States)

    Chin, Cecilia L.; Manzel, Lori J.; Lehman, Erin E.; Humlicek, Alicia L.; Shi, Lei; Starner, Timothy D.; Denning, Gerene M.; Murphy, Timothy F.; Sethi, Sanjay; Look, Dwight C.

    2005-01-01

    Rationale: Airway infection with Haemophilus influenzae causes airway inflammation, and isolation of new strains of this bacteria is associated with increased risk of exacerbations in patients with chronic obstructive pulmonary disease (COPD). Objective: To determine whether strains of H. influenzae associated with exacerbations cause more inflammation than strains that colonize the airways of patients with COPD. Methods: Exacerbation strains of H. influenzae were isolated from patients during exacerbation of clinical symptoms with subsequent development of a homologous serum antibody response and were compared with colonization strains that were not associated with symptom worsening or an antibody response. Bacterial strains were compared using an in vivo mouse model of airway infection and in vitro cell culture model of bacterial adherence and defense gene and signaling pathway activation in primary human airway epithelial cells. Results: H. influenzae associated with exacerbations caused more airway neutrophil recruitment compared with colonization strains in the mouse model of airway bacterial infection. Furthermore, exacerbation strains adhered to epithelial cells in significantly higher numbers and induced more interleukin-8 release after interaction with airway epithelial cells. This effect was likely mediated by increased activation of the nuclear factor-κB and p38 mitogen-activated protein kinase signaling pathways. Conclusions: The results indicate that H. influenzae strains isolated from patients during COPD exacerbations often induce more airway inflammation and likely have differences in virulence compared with colonizing strains. These findings support the concept that bacteria infecting the airway during COPD exacerbations mediate increased airway inflammation and contribute to decreased airway function. PMID:15805181

  17. Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis.

    Science.gov (United States)

    Chen, Yunan; Yang, Yi; Xu, Bolong; Wang, Shunhao; Li, Bin; Ma, Juan; Gao, Jie; Zuo, Yi Y; Liu, Sijin

    2017-12-01

    Environmental exposure and health risk upon engineered nanomaterials are increasingly concerned. The family of mesoporous carbon nanomaterials (MCNs) is a rising star in nanotechnology for multidisciplinary research with versatile applications in electronics, energy and gas storage, and biomedicine. Meanwhile, there is mounting concern on their environmental health risks due to the growing production and usage of MCNs. The lung is the primary site for particle invasion under environmental exposure to nanomaterials. Here, we studied the comprehensive toxicological profile of MCNs in the lung under the scenario of moderate environmental exposure. It was found that at a low concentration of 10μg/mL MCNs induced biophysical inhibition of natural pulmonary surfactant. Moreover, MCNs at similar concentrations reduced viability of J774A.1 macrophages and lung epithelial A549 cells. Incubating with nature pulmonary surfactant effectively reduced the cytotoxicity of MCNs. Regarding the pro-inflammatory responses, MCNs activated macrophages in vitro, and stimulated lung inflammation in mice after inhalation exposure, associated with lung fibrosis. Moreover, we found that the size of MCNs played a significant role in regulating cytotoxicity and pro-inflammatory potential of this nanomaterial. In general, larger MCNs induced more pronounced cytotoxic and pro-inflammatory effects than their smaller counterparts. Our results provided valuable information on the toxicological profile and environmental health risks of MCNs, and suggested that fine-tuning the size of MCNs could be a practical precautionary design strategy to increase safety and biocompatibility of this nanomaterial. Copyright © 2017. Published by Elsevier B.V.

  18. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats

    Directory of Open Access Journals (Sweden)

    Lili eGao

    2015-10-01

    Full Text Available Idiopathic pulmonary fibrosis is a progressive and lethal form of interstitial lung disease that lacks effective therapies at present. Glycyrrhizic acid (GA, a natural compound extracted from a traditional Chinese herbal medicine Glycyrrhiza glabra, was recently reported to benefit lung injury and liver fibrosis in animal models, yet whether GA has a therapeutic effect on pulmonary fibrosis is unknown. In this study, we investigated the potential therapeutic effect of GA on pulmonary fibrosis in a rat model with bleomycin (BLM-induced pulmonary fibrosis. The results indicated that GA treatment remarkably ameliorated BLM-induced pulmonary fibrosis and attenuated BLM-induced inflammation, oxidative stress, epithelial-mesenchymal transition and activation of tansforming growth factor-beta signaling pathway in the lungs. Further, we demonstrated that GA treatment inhibited proliferation of 3T6 fibroblast cells, induced cell cycle arrest and promoted apoptosis in vitro, implying that GA-mediated suppression of fibroproliferation may contribute to the anti-fibrotic effect against BLM-induced pulmonary fibrosis. In summary, our study suggests a therapeutic potential of GA in the treatment of pulmonary fibrosis.

  19. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes

    Science.gov (United States)

    Poth, Jens M.; Fini, Mehdi A.; Olschewski, Andrea; El Kasmi, Karim C.; Stenmark, Kurt R.

    2014-01-01

    Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop “out-of-proportion” severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines (“second hit”) antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease. PMID:25416383

  20. Familial idiopathic pulmonary fibrosis. Evidence of lung inflammation in unaffected family members

    International Nuclear Information System (INIS)

    Bitterman, P.B.; Rennard, S.I.; Keogh, B.A.; Wewers, M.D.; Adelberg, S.; Crystal, R.G.

    1986-01-01

    We evaluated 17 clinically unaffected members of three families with an autosomal dominant form of idiopathic pulmonary fibrosis for evidence of alveolar inflammation. Each person in the study was examined by gallium-67 scanning for a general estimate of pulmonary inflammation, and by bronchoalveolar lavage for characterization of the types of recovered cells and their state of activation. Eight of the 17 subjects had evidence of alveolar inflammation on the lavage studies. Supporting data included increased numbers of neutrophils and activated macrophages that released one or more neutrophil chemoattractants, and growth factors for lung fibroblasts--findings similar to those observed in patients with overt idiopathic pulmonary fibrosis. Four of these eight also had a positive gallium scan; in all the other clinically unaffected subjects the scan was normal. During a follow-up of two to four years in seven of the eight subjects who had evidence of inflammation, no clinical evidence of pulmonary fibrosis has appeared. These results indicate that alveolar inflammation occurs in approximately half the clinically unaffected family members at risk of inheriting autosomal dominant idiopathic pulmonary fibrosis. Whether these persons with evidence of pulmonary inflammation but no fibrosis will proceed to have clinically evident pulmonary fibrosis is not yet known

  1. Effects of age, socioeconomic status, and menstrual cycle on pulmonary response to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Seal, E. Jr.; McDonnell, W.F.; House, D.E. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1996-03-01

    The purpose of this study was to investigate the effects of age, socioeconomic status, and menstrual cycle phase on the pulmonary response to ozone exposure. Three hundred seventy-two healthy white and black young adults, between the ages of 18 and 35 y, were exposed only once to 0.0, 0.12, 0.18, 0.24, 0.30, or 0.40 ppm ozone for 2.3 h. Prior to and after exposure, pulmonary function tests were obtained. Prior to exposure, each subject completed a personal and family-history questionnaire. The response to this questionnaire were used to investigate age, socioeconomic status, and menstrual cycle phase effects on pulmonary responsiveness to ozone. We concluded that the ages of subjects, within the age range studied, had an effect on responsiveness (i.e., decrements in forced expiratory volume in 1 s decreased as the subjects` ages decreased). Socioeconomic status, as reflected by education of fathers, also appeared to affect forced expiratory volume in 1-s responsiveness to ozone, with the middle socioeconomic group being the most responsive. The phase of menstrual cycle did not have an impact on individual responsiveness to ozone. 14 refs., 4 figs.

  2. Grouping nanomaterials to predict their potential to induce pulmonary inflammation.

    Science.gov (United States)

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Pulmonary effects of inhaled limonene ozone reaction products in elderly rats.

    Science.gov (United States)

    Sunil, Vasanthi R; Laumbach, Robert J; Patel, Kinal J; Turpin, Barbara J; Lim, Ho-Jin; Kipen, Howard M; Laskin, Jeffrey D; Laskin, Debra L

    2007-07-15

    d-Limonene is an unsaturated volatile organic chemical found in cleaning products, air fresheners and soaps. It is oxidized by ozone to secondary organic aerosols consisting of aldehydes, acids, oxidants and fine and ultra fine particles. The lung irritant effects of these limonene ozone reaction products (LOP) were investigated. Female F344 rats (2- and 18-month-old) were exposed for 3 h to air or LOP formed by reacting 6 ppm d-limonene and 0.8 ppm ozone. BAL fluid, lung tissue and cells were analyzed 0 h and 20 h later. Inhalation of LOP increased TNF-alpha, cyclooxygenase-2, and superoxide dismutase in alveolar macrophages (AM) and Type II cells. Responses of older animals were attenuated when compared to younger animals. LOP also decreased p38 MAP kinase in AM from both younger and older animals. In contrast, while LOP increased p44/42 MAP kinase in AM from younger rats, expression decreased in AM and Type II cells from older animals. NF-kappaB and C/EBP activity also increased in AM from younger animals following LOP exposure but decreased or was unaffected in Type II cells. Whereas in younger animals LOP caused endothelial cell hypertrophy, perivascular and pleural edema and thickening of alveolar septal walls, in lungs from older animals, patchy accumulation of fluid within septal walls in alveolar sacs and subtle pleural edema were noted. LOP are pulmonary irritants inducing distinct inflammatory responses in younger and older animals. This may contribute to the differential sensitivity of these populations to pulmonary irritants.

  4. Pulmonary effects of inhaled limonene ozone reaction products in elderly rats

    International Nuclear Information System (INIS)

    Sunil, Vasanthi R.; Laumbach, Robert J.; Patel, Kinal J.; Turpin, Barbara J.; Lim, Ho-Jin; Kipen, Howard M.; Laskin, Jeffrey D.; Laskin, Debra L.

    2007-01-01

    d-Limonene is an unsaturated volatile organic chemical found in cleaning products, air fresheners and soaps. It is oxidized by ozone to secondary organic aerosols consisting of aldehydes, acids, oxidants and fine and ultra fine particles. The lung irritant effects of these limonene ozone reaction products (LOP) were investigated. Female F344 rats (2- and 18-month-old) were exposed for 3 h to air or LOP formed by reacting 6 ppm d-limonene and 0.8 ppm ozone. BAL fluid, lung tissue and cells were analyzed 0 h and 20 h later. Inhalation of LOP increased TNF-α, cyclooxygenase-2, and superoxide dismutase in alveolar macrophages (AM) and Type II cells. Responses of older animals were attenuated when compared to younger animals. LOP also decreased p38 MAP kinase in AM from both younger and older animals. In contrast, while LOP increased p44/42 MAP kinase in AM from younger rats, expression decreased in AM and Type II cells from older animals. NF-κB and C/EBP activity also increased in AM from younger animals following LOP exposure but decreased or was unaffected in Type II cells. Whereas in younger animals LOP caused endothelial cell hypertrophy, perivascular and pleural edema and thickening of alveolar septal walls, in lungs from older animals, patchy accumulation of fluid within septal walls in alveolar sacs and subtle pleural edema were noted. LOP are pulmonary irritants inducing distinct inflammatory responses in younger and older animals. This may contribute to the differential sensitivity of these populations to pulmonary irritants

  5. Hyaluronan signaling during ozone-induced lung injury requires TLR4, MyD88, and TIRAP.

    Directory of Open Access Journals (Sweden)

    Zhuowei Li

    Full Text Available Ozone exposure is associated with exacerbation of reactive airways disease. We have previously reported that the damage-associated molecular pattern, hyaluronan, is required for the complete biological response to ambient ozone and that hyaluronan fragments signal through toll-like receptor 4 (TLR4. In this study, we further investigated the role of TLR4 adaptors in ozone-induced airway hyperresponsiveness (AHR and the direct response to hyaluronan fragments (HA. Using a murine model of AHR, C57BL/6J, TLR4-/-, MyD88-/-, and TIRAP-/- mice were characterized for AHR after exposure to either ozone (1 ppm × 3 h or HA fragments. Animals were characterized for AHR with methacholine challenge, cellular inflammation, lung injury, and production of pro-inflammatory cytokines. Ozone-exposed C57BL/6J mice developed cellular inflammation, lung injury, pro-inflammatory cytokines, and AHR, while mice deficient in TLR4, MyD88 or TIRAP demonstrated both reduced AHR and reduced levels of pro-inflammatory cytokines including TNFα, IL-1β, MCP-1, IL-6 and KC. The level of hyaluronan was increased after inhalation of ozone in each strain of mice. Direct challenge of mice to hyaluronan resulted in AHR in C57BL/6J mice, but not in TLR4-/-, MyD88-/-, or TIRAP-/- mice. HA-induced cytokine production in wild-type mice was significantly reduced in TLR4-/-, MyD88-/-, or TIRAP-/- mice. In conclusion, our findings support that ozone-induced airway hyperresponsiveness is dependent on the HA-TLR4-MyD88-TIRAP signaling pathway.

  6. Interleukin-22 Inhibits Bleomycin-Induced Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Minrui Liang

    2013-01-01

    Full Text Available Pulmonary fibrosis is a progressive and fatal fibrotic disease of the lungs with unclear etiology. Recent insight has suggested that early injury/inflammation of alveolar epithelial cells could lead to dysregulation of tissue repair driven by multiple cytokines. Although dysregulation of interleukin- (IL- 22 is involved in various pulmonary pathophysiological processes, the role of IL-22 in fibrotic lung diseases is still unclear and needs to be further addressed. Here we investigated the effect of IL-22 on alveolar epithelial cells in the bleomycin- (BLM- induced pulmonary fibrosis. BLM-treated mice showed significantly decreased level of IL-22 in the lung. IL-22 produced γδT cells were also decreased significantly both in the tissues of lungs and spleens. Administration of recombinant human IL-22 to alveolar epithelial cell line A549 cells ameliorated epithelial to mesenchymal transition (EMT and partially reversed the impaired cell viability induced by BLM. Furthermore, blockage of IL-22 deteriorated pulmonary fibrosis, with elevated EMT marker (α-smooth muscle actin (α-SMA and overactivated Smad2. Our results indicate that IL-22 may play a protective role in the development of BLM-induced pulmonary fibrosis and may suggest IL-22 as a novel immunotherapy tool in treating pulmonary fibrosis.

  7. Ozone-Induced Pulmonary Injury and Vascular Contractility are Differentially Impacted by Coconut, Fish, and Olive Oil-Rich Diets

    Science.gov (United States)

    Pulmonary and systemic effects of ozone (O3) are mediated by hypothalamus pituitary adrenal (HPA)-axis activation. Fish oil (FO) and olive oil (OO) dietary supplementation have several cardioprotective benefits, but it is not established if these supplements can protect against t...

  8. Proteome analysis of Radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Song, Jie Young; Lim, Hee Soon; Kim, Hyung Doo; Shim, Ji Young; Han, Young Soo; Son, Hyeog Jin Son; Yun, Yeon Sook

    2005-01-01

    Pulmonary fibrosis is perhaps the most universal late effect of organ damage after both chemical insult and irradiation in the treatment of lung cancer. The use chemotherapy and radiation therapy, alone or combined, can be associated with clinically significant pulmonary toxicity, which leads to pneumonia and pulmonary fibrosis. It is also reported that about 100,000 people in the United States are suffered from pulmonary fibrosis. Therefore, pulmonary fibrosis will be more focused by medicinal researchers. Because current therapies, aimed at inhibiting pulmonary inflammation that often precedes fibrosis, are effective only in a minority of suffered patients, novel therapeutic methods are highly needed. Some researchers have used bleomycininduced pulmonary fibrosis as a basis for looking at the molecular mechanisms of fibrosis, and total gene expression was monitored using genomics method. However, radiation-induced pulmonary fibrosis has not been fully focused and investigated. Here, we have analyzed changes in gene expression in response to γ- irradiation by using proteomic analysis

  9. Icam-1 targeted nanogels loaded with dexamethasone alleviate pulmonary inflammation.

    Directory of Open Access Journals (Sweden)

    M Carme Coll Ferrer

    Full Text Available Lysozyme dextran nanogels (NG have great potential in vitro as a drug delivery platform, combining simple chemistry with rapid uptake and cargo release in target cells with "stealth" properties and low toxicity. In this work, we study for the first time the potential of targeted NG as a drug delivery platform in vivo to alleviate acute pulmonary inflammation in animal model of LPS-induced lung injury. NG are targeted to the endothelium via conjugation with an antibody (Ab directed to Intercellular Adhesion Molecule-1(ICAM-NG, whereas IgG conjugated NG (IgG-NG are used for control formulations. The amount of Ab conjugated to the NG and distribution in the body after intravenous (IV injection have been quantitatively analyzed using a tracer isotope-labeled [125I]IgG. As a proof of concept, Ab-NG are loaded with dexamethasone, an anti-inflammatory therapeutic, and the drug uptake and release kinetics are measured by HPLC. In vivo studies in mice showed that: i ICAM-NG accumulates in mouse lungs (∼120% ID/g vs ∼15% ID/g of IgG-NG; and, ii DEX encapsulated in ICAM-NG, but not in IgG-NG practically blocks LPS-induced overexpression of pro-inflammatory cell adhesion molecules including ICAM-1 in the pulmonary inflammation.

  10. Protective role of andrographolide in bleomycin-induced pulmonary fibrosis in mice.

    Science.gov (United States)

    Zhu, Tao; Zhang, Wei; Xiao, Min; Chen, Hongying; Jin, Hong

    2013-12-03

    Idiopathic pulmonary fibrosis (IPF) is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT), apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB) is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF) were measured. HE staining and Masson's trichrome (MT) staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA). On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  11. Protective Role of Andrographolide in Bleomycin-Induced Pulmonary Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    2013-12-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT, apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF were measured. HE staining and Masson’s trichrome (MT staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA. On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  12. Intermittent hypoxia simulating obstructive sleep apnea causes pulmonary inflammation and activates the Nrf2/HO-1 pathway.

    Science.gov (United States)

    Wang, Yeying; Chai, Yanling; He, Xiaojie; Ai, Li; Sun, Xia; Huang, Yiling; Li, Yongxia

    2017-10-01

    Obstructive sleep apnea (OSA) is a disorder with high morbidity in adults. OSA damages multiple organs and tissues, including the cardiovascular and cerebrovascular systems, the metabolism system, the lungs, liver and heart. OSA-induced damage is earliest and greatest to the pulmonary tissue. The present study established a rat OSA model of differing severity by inducing intermittent hypoxia with different concentrations of O 2 and it was determined that OSA caused a severe oxidative stress response and pulmonary inflammation in a dose-dependent manner. OSA increased serum levels of C-reactive protein and 8-isoprostane and elevated the expression of malondialdehyde, tumor necrosis factor α, interleukin (IL)-1β and IL-6 in the pulmonary tissue. Furthermore, the expression of two important antioxidants, superoxide dismutase and glutathione, was downregulated following intermittent hypoxia. By contrast, levels of cylooxygenase 2 and inducible nitric oxide synthase, which are crucial in the antioxidative response, increased. In addition, OSA activates the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase (OH)-1 antioxidative signaling pathway. Finally, all increases and decreases in levels of inflammatory and antioxidative substances were dependent on oxygen concentrations. Therefore, the present study demonstrated that OSA, simulated by intermittent hypoxia, caused an oxidative stress response and pulmonary inflammation, and activated the canonical antioxidative Nrf2/HO-1 signaling pathway in a dose-dependent manner. These results may facilitate the development of clinical therapies to treat pulmonary diseases caused by OSA.

  13. Therapeutic Benefits of Induced Pluripotent Stem Cells in Monocrotaline-Induced Pulmonary Arterial Hypertension.

    Directory of Open Access Journals (Sweden)

    Wei-Chun Huang

    Full Text Available Pulmonary arterial hypertension (PAH is characterized by progressive increases in vascular resistance and the remodeling of pulmonary arteries. The accumulation of inflammatory cells in the lung and elevated levels of inflammatory cytokines in the bloodstream suggest that inflammation may play a role in PAH. In this study, the benefits of induced pluripotent stem cells (iPSCs and iPSC-conditioned medium (iPSC CM were explored in monocrotaline (MCT-induced PAH rats. We demonstrated that both iPSCs and iPSC CM significantly reduced the right ventricular systolic pressure and ameliorated the hypertrophy of the right ventricle in MCT-induced PAH rats in models of both disease prevention and disease reversal. In the prevention of MCT-induced PAH, iPSC-based therapy led to the decreased accumulation of inflammatory cells and down-regulated the expression of the IL-1β, IL-6, IL-12α, IL-12β, IL-23 and IFNγ genes in lung specimens, which implied that iPSC-based therapy may be involved in the regulation of inflammation. NF-κB signaling is essential to the inflammatory cascade, which is activated via the phosphorylation of the NF-κB molecule. Using the chemical inhibitor specifically blocked the phosphorylation of NF-κB, and in vitro assays of cultured human M1 macrophages implied that the anti-inflammation effect of iPSC-based therapy may contribute to the disturbance of NF-κB activation. Here, we showed that iPSC-based therapy could restore the hemodynamic function of right ventricle with benefits for preventing the ongoing inflammation in the lungs of MCT-induced PAH rats by regulating NF-κB phosphorylation.

  14. Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Anne T.; Bornholdt, Jette; Dybdahl, Marianne; Sharma, Anoop K.; Vogel, Ulla; Wallin, Haakan [National Institute of Occupational Health, Copenhagen (Denmark); Loft, Steffen [Copenhagen University, Institute of Public Health, Copenhagen (Denmark)

    2005-03-01

    Particle-induced carcinogenicity is not well understood, but might involve inflammation. The proinflammatory cytokine tumor necrosis factor (TNF) is considered to be an important mediator in inflammation. We investigated its role in particle-induced inflammation and DNA damage in mice with and without TNF signaling. TNF-/- mice and TNF+/+ mice were exposed by inhalation to 20 mg m{sup -3} carbon black (CB), 20 mg m{sup -3} diesel exhaust particles (DEP), or filtered air for 90 min on each of four consecutive days. DEP, but not CB particles, induced infiltration of neutrophilic granulocutes into the lung lining fluid (by the cellular fraction in the bronchoalveolar lavage fluid), and both particle types induced interleukin-6 mRNA in the lung tissue. Surprisingly, TNF-/- mice were intact in these inflammatory responses. There were more DNA strand breaks in the BAL cells of DEP-exposed TNF-/- mice and CB-exposed mice compared with the air-exposed mice. Thus, the CB-induced DNA damage in BAL-cells was independent of neutrophil infiltration. The data indicate that an inflammatory response was not a prerequisite for DNA damage, and TNF was not required for the induction of inflammation by DEP and CB particles. (orig.)

  15. Ozone-induced airway hyperresponsiveness in patients with asthma: role of neutrophil-derived serine proteinases.

    Science.gov (United States)

    Hiltermann, T J; Peters, E A; Alberts, B; Kwikkers, K; Borggreven, P A; Hiemstra, P S; Dijkman, J H; van Bree, L A; Stolk, J

    1998-04-01

    Proteinase inhibitors may be of potential therapeutic value in the treatment of respiratory diseases such as chronic obstructive pulmonary disease (COPD) or asthma. Our aim was to study the role of neutrophils, and neutrophil-derived serine proteinases in an acute model in patients with asthma. Exposure to ozone induces an acute neutrophilic inflammatory reaction accompanied by an increase in airway hyperresponsiveness. It is thought that these two effects of ozone are linked, and that neutrophil-derived serine proteinases (i.e. elastase) may play a role in the ozone-induced airway hyperresponsiveness. Therefore, we examined the effect of recombinant antileukoprotease (rALP), one of the major serine proteinase inhibitors in the lung, on ozone-induced changes in airway hyperresponsiveness in this model. We observed that 16 h after exposure to ozone, airway hyperresponsiveness to methacholine was increased both following placebo and rALP treatment. There was no significant difference between placebo and rALP treatment (change in area under the dose-response curve to methacholine: 117.3+/-59.0 vs 193.6+/-59.6 % fall x DD; p=.12). Moreover, the immediate decrease in FEV1 after ozone exposure was not significantly different between the two groups (placebo: -29.6+/-6.7%; rALP: -20.9+/-3.8%; p=.11). In addition, no significant differences were observed in plasma levels of fibrinogen degradation products generated by neutrophil serine proteinases before and after exposure to ozone. We conclude that neutrophil-derived serine proteinases are not important mediators for ozone-induced hyperresponsiveness.

  16. P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis

    Science.gov (United States)

    Müller, Tobias; Fay, Susanne; Vieira, Rodolfo Paula; Karmouty-Quintana, Harry; Cicko, Sanja; Ayata, Cemil Korcan; Zissel, Gernot; Goldmann, Torsten; Lungarella, Giuseppe; Ferrari, Davide; Di Virgilio, Francesco; Robaye, Bernard; Boeynaems, Jean-Marie; Lazarowski, Eduardo R.; Blackburn, Michael R.; Idzko, Marco

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL) cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5′-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF. PMID:28878780

  17. P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Tobias Müller

    2017-08-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5′-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF.

  18. Caffeine Mitigates Lung Inflammation Induced by Ischemia-Reperfusion of Lower Limbs in Rats

    Directory of Open Access Journals (Sweden)

    Wei-Chi Chou

    2015-01-01

    Full Text Available Reperfusion of ischemic limbs can induce inflammation and subsequently cause acute lung injury. Caffeine, a widely used psychostimulant, possesses potent anti-inflammatory capacity. We elucidated whether caffeine can mitigate lung inflammation caused by ischemia-reperfusion (IR of the lower limbs. Adult male Sprague-Dawley rats were randomly allocated to receive IR, IR plus caffeine (IR + Caf group, sham-operation (Sham, or sham plus caffeine (n=12 in each group. To induce IR, lower limbs were bilaterally tied by rubber bands high around each thigh for 3 hours followed by reperfusion for 3 hours. Caffeine (50 mg/kg, intraperitoneal injection was administered immediately after reperfusion. Our histological assay data revealed characteristics of severe lung inflammation in the IR group and mild to moderate characteristic of lung inflammation in the IR + Caf group. Total cells number and protein concentration in bronchoalveolar lavage fluid of the IR group were significantly higher than those of the IR + Caf group (P<0.001 and P=0.008, resp.. Similarly, pulmonary concentrations of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2 and pulmonary myeloperoxidase activity of the IR group were significantly higher than those of the IR + Caf group (all P<0.05. These data clearly demonstrate that caffeine could mitigate lung inflammation induced by ischemia-reperfusion of the lower limbs.

  19. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Braakhuis, Hedwig M., E-mail: hedwig.braakhuis@rivm.nl [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht (Netherlands); Oomen, Agnes G. [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Cassee, Flemming R. [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Institute of Risk Assessment Sciences, Utrecht University, PO Box 80.163, 3508 TD Utrecht (Netherlands)

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. - Highlights: • Grouping of nanomaterials helps to gather information in an efficient way with the aim to aid risk assessment. • Different ways of grouping nanomaterials for their risk assessment after inhalation are

  20. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    International Nuclear Information System (INIS)

    Braakhuis, Hedwig M.; Oomen, Agnes G.; Cassee, Flemming R.

    2016-01-01

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. - Highlights: • Grouping of nanomaterials helps to gather information in an efficient way with the aim to aid risk assessment. • Different ways of grouping nanomaterials for their risk assessment after inhalation are

  1. Acrolein exposure suppresses antigen-induced pulmonary inflammation

    Science.gov (United States)

    2013-01-01

    Background Adverse health effects of tobacco smoke arise partly from its influence on innate and adaptive immune responses, leading to impaired innate immunity and host defense. The impact of smoking on allergic asthma remains unclear, with various reports demonstrating that cigarette smoke enhances asthma development but can also suppress allergic airway inflammation. Based on our previous findings that immunosuppressive effects of smoking may be largely attributed to one of its main reactive electrophiles, acrolein, we explored the impact of acrolein exposure in a mouse model of ovalbumin (OVA)-induced allergic asthma. Methods C57BL/6 mice were sensitized to ovalbumin (OVA) by intraperitoneal injection with the adjuvant aluminum hydroxide on days 0 and 7, and challenged with aerosolized OVA on days 14–16. In some cases, mice were also exposed to 5 ppm acrolein vapor for 6 hrs/day on days 14–17. Lung tissues or brochoalveolar lavage fluids (BALF) were collected either 6 hrs after a single initial OVA challenge and/or acrolein exposure on day 14 or 48 hrs after the last OVA challenge, on day 18. Inflammatory cells and Th1/Th2 cytokine levels were measured in BALF, and lung tissue samples were collected for analysis of mucus and Th1/Th2 cytokine expression, determination of protein alkylation, cellular thiol status and transcription factor activity. Results Exposure to acrolein following OVA challenge of OVA-sensitized mice resulted in markedly attenuated allergic airway inflammation, demonstrated by decreased inflammatory cell infiltrates, mucus hyperplasia and Th2 cytokines. Acrolein exposure rapidly depleted lung tissue glutathione (GSH) levels, and induced activation of the Nrf2 pathway, indicated by accumulation of Nrf2, increased alkylation of Keap1, and induction of Nrf2-target genes such as HO-1. Additionally, analysis of inflammatory signaling pathways showed suppressed activation of NF-κB and marginally reduced activation of JNK in acrolein

  2. Enhanced response to ozone exposure during the follicular phase of the menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fox, S.D.; Adams, W.C.; Brookes, K.A.; Lasley, B.L. (Univ. of Calfornia, Davis (United States))

    1993-08-01

    Exposure to ozone (O[sub 3]), a toxic component of photochemical smog, results in significant airway inflammation, respiratory discomfort, and pulmonary function impairment. These effects can be reduced via pretreatment with anti-inflammatory agents. Progesterone, a gonadal steroid, is known to reduce general inflammation in the uterine endometrium. However, it is not known whether fluctuation in blood levels of progesterone, which are experienced during the normal female menstrual cycle, could alter O[sub 3] inflammatory-induced pulmonary responses. In this study, we tested the hypothesis that young, adult females are more responsive to O[sub 3] inhalation with respect to pulmonary function impairment during their follicular (F) menstrual phase when progesterone levels are lowest that during their mid-luteal (ML) phase when progesterone levels are highest. Nine subjects with normal ovarian function were exposed in random order for 1 hour each to filtered air and to 0.30 ppm O[sub 3] in their F and ML menstrual phases. Ozone responsiveness was measured by percent change in pulmonary function from pre- to postexposure. Significant gas concentration effects (filtered air versus O[sub 3]) were observed for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV[sub 1]), and forced expiratory flow between 25 and 75% of FVC (FEF[sub 25-75]), showed a significant menstrual phase and gas concentration interaction effect, with larger decrements observed in the F menstrual phase when progesterone concentrations were significantly lower. We conclude that young, adult females appear to be more responsive to acute O[sub 3] exposure during the F phase than during the ML phase of their menstrual cycles. This difference in pulmonary function response could be related to the anti-inflammatory effects of increased progesterone concentrations during the luteal phase.

  3. Pulmonary and symptom threshold effects of ozone in airline passenger and cockpit crew surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Lategola, M.T.; Melton, C.E.; Higgins, E.A.

    1980-09-01

    Previous studies showed that the ozone concentration for pulmonary and symptom threshold effects in flight attendant surrogates lies between 0.20 and 0.30 ppMv for a 3-h exposure with intermittent treadmill exercise at 1829 m (MSL) stimulated cabin altitude. In the present study of sedentary occupants of the in-flight airline cabin, the same protocol was used except for omitting all treadmill exercise. Symptoms were assessed with a standardized questionnaire. Pulmonary function was assessed using standardized quantitative spirometry. Male smoker and nonsmoker airline passenger and cockpit crew surrogates 40 to 59 years of age were used. Small but statistically significant displacements occurred in symptoms and in some spirometry parameters. In general, the younger subjects appeared more sensitive to ozone than the older subjects. No significant differences appeared between smokers' and nonsmokers' responses to ozone exposure. It is concluded that the ozone threshold of these sedentary surrogates under these experimental conditions is right at 0.30 ppMv.

  4. Pulmonary sensitivity to ozone exposure in sedentary versus chronically trained, female rats

    Data.gov (United States)

    U.S. Environmental Protection Agency — Pulmonary effects to ozone with rats that have chronically exercised or have been continuously sedentary. Also includes body composition of both groups throughout...

  5. Rac1 signaling regulates cigarette smoke-induced inflammation in the lung via the Erk1/2 MAPK and STAT3 pathways.

    Science.gov (United States)

    Jiang, Jun-Xia; Zhang, Shui-Juan; Shen, Hui-Juan; Guan, Yan; Liu, Qi; Zhao, Wei; Jia, Yong-Liang; Shen, Jian; Yan, Xiao-Feng; Xie, Qiang-Min

    2017-07-01

    Cigarette smoke (CS) is a major risk factor for the development of chronic obstructive pulmonary disease (COPD). Our previous studies have indicated that Rac1 is involved in lipopolysaccharide-induced pulmonary injury and CS-mediated epithelial-mesenchymal transition. However, the contribution of Rac1 activity to CS-induced lung inflammation remains not fully clear. In this study, we investigated the regulation of Rac1 in CS-induced pulmonary inflammation. Mice or 16HBE cells were exposed to CS or cigarette smoke extract (CSE) to induce acute inflammation. The lungs of mice exposed to CS showed an increase in the release of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC), as well as an accumulation of inflammatory cells, indicating high Rac1 activity. The exposure of 16HBE cells to CSE resulted in elevated Rac1 levels, as well as increased release of IL-6 and interleukin-8 (IL-8). Selective inhibition of Rac1 ameliorated the release of IL-6 and KC as well as inflammation in the lungs of CS-exposed mice. Histological assessment showed that treatment with a Rac1 inhibitor, NSC23766, led to a decrease in CD68 and CD11b positive cells and the infiltration of neutrophils and macrophages into the alveolar spaces. Selective inhibition or knockdown of Rac1 decreased IL-6 and IL-8 release in 16HBE cells induced by CSE, which correlated with CSE-induced Rac1-regulated Erk1/2 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription-3 (STAT3) signaling. Our data suggest an important role for Rac1 in the pathological alterations associated with CS-mediated inflammation. Rac1 may be a promising therapeutic target for the treatment of CS-induced pulmonary inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Home-based pulmonary rehabilitation improves clinical features and systemic inflammation in chronic obstructive pulmonary disease patients

    Directory of Open Access Journals (Sweden)

    Nascimento ESP

    2015-03-01

    Full Text Available Eloisa Sanches Pereira do Nascimento,1 Luciana Maria Malosá Sampaio,1 Fabiana Sobral Peixoto-Souza,1 Fernanda Dultra Dias,1 Evelim Leal Freitas Dantas Gomes,1 Flavia Regina Greiffo,2 Ana Paula Ligeiro de Oliveira,2 Roberto Stirbulov,3 Rodolfo Paula Vieira,2 Dirceu Costa11Laboratory of Functional Respiratory Evaluation (LARESP, 2Laboratory of Pulmonary and Exercise Immunology (LABPEI, Nove de Julho University (UNINOVE, São Paulo, SP, Brazil; 3Department of Pneumology, Santa Casa University Hospital, São Paulo, SP, BrazilAbstract: Chronic obstructive pulmonary disease (COPD is a respiratory disease characterized by chronic airflow limitation that leads beyond the pulmonary changes to important systemic effects. COPD is characterized by pulmonary and systemic inflammation. However, increases in the levels of inflammatory cytokines in plasma are found even when the disease is stable. Pulmonary rehabilitation improves physical exercise capacity and quality of life and decreases dyspnea. The aim of this study was to evaluate whether a home-based pulmonary rehabilitation (HBPR program improves exercise tolerance in COPD patients, as well as health-related quality of life and systemic inflammation. This prospective study was conducted at the Laboratory of Functional Respiratory Evaluation, Nove de Julho University, São Paulo, Brazil. After anamnesis, patients were subjected to evaluations of health-related quality of life and dyspnea, spirometry, respiratory muscle strength, upper limbs incremental test, incremental shuttle walk test, and blood test for quantification of systemic inflammatory markers (interleukin [IL]-6 and IL-8. At the end of the evaluations, patients received a booklet containing the physical exercises to be performed at home, three times per week for 8 consecutive weeks. Around 25 patients were enrolled, and 14 completed the pre- and post-HBPR ratings. There was a significant increase in the walked distance and the maximal

  7. Acrolein induced both pulmonary inflammation and the death of lung epithelial cells.

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-Ichi

    2014-09-02

    Acrolein, a compound found in cigarette smoke, is a major risk factor for respiratory diseases. Previous research determined that both acrolein and cigarette smoke produced reactive oxygen species (ROS). As many types of pulmonary injuries are associated with inflammation, this study sought to ascertain the extent to which exposure to acrolein advanced inflammatory state in the lungs. Our results showed that intranasal exposure of mice to acrolein increased CD11c(+)F4/80(high) macrophages in the lungs and increased ROS formation via induction of NF-κB signaling. Treatment with acrolein activated macrophages and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. In in vitro studies, acrolein treatment of bone marrow-derived GM-CSF-dependent immature macrophages (GM-IMs), activated the cells and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. Acrolein treatment of macrophages induced apoptosis of lung epithelial cells. Inclusion of an inhibitor of ROS formation markedly decreased acrolein-mediated macrophage activation and reduced the extent of epithelial cell death. These results indicate that acrolein can cause lung damage, in great part by mediating the increased release of pro-inflammatory cytokines/factors by macrophages. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice.

    Science.gov (United States)

    Jacobsen, E A; Doyle, A D; Colbert, D C; Zellner, K R; Protheroe, C A; LeSuer, W E; Lee, N A; Lee, J J

    2015-09-01

    Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Wild-type or cytokine-deficient (IL-13(-/-) or IL-4(-/-) ) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophil deficient mice, which induced no immune/inflammatory changes either in the lung or in the lung draining lymph nodes (LDLN), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLN. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4(+) T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4, and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4(+) T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13, whereas IL-4 expression by eosinophils had no significant role. The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Differential Activation of Airway Eosinophils Induces IL-13 Mediated Allergic Th2 Pulmonary Responses in Mice

    Science.gov (United States)

    Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ

    2015-01-01

    Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788

  10. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-01-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  11. Pulmonary sensitivity to ozone exposure in sedentary versus chronically trained, female rats.

    Science.gov (United States)

    Gordon, Christopher J; Phillips, Pamela M; Beasley, Tracey E; Ledbetter, A; Aydin, Cenk; Snow, Samantha J; Kodavanti, Urmila P; Johnstone, Andrew F

    2016-06-01

    Epidemiological data suggest that a sedentary lifestyle may contribute to increased susceptibility for some environmental toxicants. We developed an animal model of active versus sedentary life style by providing female Sprague-Dawley rats with continuous access to running wheels. Sedentary rats were housed in standard cages without wheels. After training for 12 wks, rats were exposed to 0, 0.25, 0.5 or 1.0 ppm ozone [O3 for 5 h/d, 1 d/wk, for 6 wk (N = 10 per group)]. Body composition (%fat, lean and fluid) was monitored noninvasively over the course of the study. Ventilatory parameters [tidal volume, minute ventilation, frequency and enhanced pause (Penh)] were assessed using whole-body plethysmography prior to O3 and 24 h after the 5th O3 exposure. Trained rats lost ∼2% body fat after 12 wk of access to running wheels. Peak wheel activity was reduced by 40% after exposure to 1.0 ppm O3. After the 5th O3 exposure, body weight and %fat were reduced in sedentary but not trained rats. Penh was significantly elevated in sedentary but not trained rats the day after exposure to 1.0 ppm O3. However, lung lavage cell counts and biomarkers of pulmonary inflammation measured 1 day after the final exposure were inconsistently affected by training. Wheel running led to marked physiological responses along with some indication of improved pulmonary recovery from O3 exposure. However, wheel running with O3 exposure may also be a detriment for some pulmonary endpoints. Overall, a sedentary lifestyle may increase susceptibility to O3, but additional studies are needed.

  12. Secretoglobin Superfamily Protein SCGB3A2 Deficiency Potentiates Ovalbumin-Induced Allergic Pulmonary Inflammation

    Directory of Open Access Journals (Sweden)

    Taketomo Kido

    2014-01-01

    Full Text Available Secretoglobin (SCGB 3A2, a cytokine-like secretory protein of small molecular weight, which may play a role in lung inflammation, is predominantly expressed in airway epithelial cells. In order to understand the physiological role of SCGB3A2, Scgb3a2−/− mice were generated and characterized. Scgb3a2−/− mice did not exhibit any overt phenotypes. In ovalbumin- (OVA- induced airway allergy inflammation model, Scgb3a2−/− mice in mixed background showed a decreased OVA-induced airway inflammation, while six times C57BL/6NCr backcrossed congenic Scgb3a2−/− mice showed a slight exacerbation of OVA-induced airway inflammation as compared to wild-type littermates. These results indicate that the loss of SCGB3A2 function was influenced by a modifier gene(s in mixed genetic background and suggest that SCGB3A2 has anti-inflammatory property. The results further suggest the possible use of recombinant human SCGB3A2 as an anti-inflammatory agent.

  13. Time course of polyhexamethyleneguanidine phosphate-induced lung inflammation and fibrosis in mice.

    Science.gov (United States)

    Song, Jeongah; Kim, Woojin; Kim, Yong-Bum; Kim, Bumseok; Lee, Kyuhong

    2018-04-15

    Pulmonary fibrosis is a chronic progressive disease with unknown etiology and has poor prognosis. Polyhexamethyleneguanidine phosphate (PHMG-P) causes acute interstitial pneumonia and pulmonary fibrosis in humans when it exposed to the lung. In a previous study, when rats were exposed to PHMG-P through inhalation for 3 weeks, lung inflammation and fibrosis was observed even after 3 weeks of recovery. In this study, we aimed to determine the time course of PHMG-P-induced lung inflammation and fibrosis. We compared pathological action of PHMG-P with that of bleomycin (BLM) and investigated the mechanism underlying PHMG-P-induced lung inflammation and fibrosis. PHMG-P (0.9 mg/kg) or BLM (1.5 mg/kg) was intratracheally administered to mice. At weeks 1, 2, 4 and 10 after instillation, the levels of inflammatory and fibrotic markers and the expression of inflammasome proteins were measured. The inflammatory and fibrotic responses were upregulated until 10 and 4 weeks in the PHMG-P and BLM groups, respectively. Immune cell infiltration and considerable collagen deposition in the peribronchiolar and interstitial areas of the lungs, fibroblast proliferation, and hyperplasia of type II epithelial cells were observed. NALP3 inflammasome activation was detected in the PHMG-P group until 4 weeks, which is suspected to be the main reason for the persistent inflammatory response and exacerbation of fibrotic changes. Most importantly, the pathological changes in the PHMG-P group were similar to those observed in humidifier disinfectant-associated patients. A single exposure of PHMG-P led to persistent pulmonary inflammation and fibrosis for at least 10 weeks. Copyright © 2018. Published by Elsevier Inc.

  14. Reproducibility of a novel model of murine asthma-like pulmonary inflammation.

    Science.gov (United States)

    McKinley, L; Kim, J; Bolgos, G L; Siddiqui, J; Remick, D G

    2004-05-01

    Sensitization to cockroach allergens (CRA) has been implicated as a major cause of asthma, especially among inner-city populations. Endotoxin from Gram-negative bacteria has also been investigated for its role in attenuating or exacerbating the asthmatic response. We have created a novel model utilizing house dust extract (HDE) containing high levels of both CRA and endotoxin to induce pulmonary inflammation (PI) and airway hyperresponsiveness (AHR). A potential drawback of this model is that the HDE is in limited supply and preparation of new HDE will not contain the exact components of the HDE used to define our model system. The present study involved testing HDEs collected from various homes for their ability to cause PI and AHR. Dust collected from five homes was extracted in phosphate buffered saline overnight. The levels of CRA and endotoxin in the supernatants varied from 7.1 to 49.5 mg/ml of CRA and 1.7-6 micro g/ml of endotoxin in the HDEs. Following immunization and two pulmonary exposures to HDE all five HDEs induced AHR, PI and plasma IgE levels substantially higher than normal mice. This study shows that HDE containing high levels of cockroach allergens and endotoxin collected from different sources can induce an asthma-like response in our murine model.

  15. Grape seed extract ameliorates bleomycin-induced mouse pulmonary fibrosis.

    Science.gov (United States)

    Liu, Qi; Jiang, Jun-Xia; Liu, Ya-Nan; Ge, Ling-Tian; Guan, Yan; Zhao, Wei; Jia, Yong-Liang; Dong, Xin-Wei; Sun, Yun; Xie, Qiang-Min

    2017-05-05

    Pulmonary fibrosis is common in a variety of inflammatory lung diseases, such as interstitial pneumonia, chronic obstructive pulmonary disease, and silicosis. There is currently no effective clinical drug treatment. It has been reported that grape seed extracts (GSE) has extensive pharmacological effects with minimal toxicity. Although it has been found that GSE can improve the lung collagen deposition and fibrosis pathology induced by bleomycin in rat, its effects on pulmonary function, inflammation, growth factors, matrix metalloproteinases and epithelial-mesenchymal transition remain to be researched. In the present study, we studied whether GSE provided protection against bleomycin (BLM)-induced mouse pulmonary fibrosis. ICR strain mice were treated with BLM in order to establish pulmonary fibrosis models. GSE was given daily via intragastric administration for three weeks starting at one day after intratracheal instillation. GSE at 50 or 100mg/kg significantly reduced BLM-induced inflammatory cells infiltration, proinflammatory factor protein expression, and hydroxyproline in lung tissues, and improved pulmonary function in mice. Additionally, treatment with GSE also significantly impaired BLM-induced increases in lung fibrotic marker expression (collagen type I alpha 1 and fibronectin 1) and decreases in an anti-fibrotic marker (E-cadherin). Further investigation indicated that the possible molecular targets of GSE are matrix metalloproteinases-9 (MMP-9) and TGF-β1, given that treatment with GSE significantly prevented BLM-induced increases in MMP-9 and TGF-β1 expression in the lungs. Together, these results suggest that supplementation with GSE may improve the quality of life of lung fibrosis patients by inhibiting MMP-9 and TGF-β1 expression in the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Regulation of ozone-induced lung inflammation and injury by the β-galactoside-binding lectin galectin-3

    International Nuclear Information System (INIS)

    Sunil, Vasanthi R.; Francis, Mary; Vayas, Kinal N.; Cervelli, Jessica A.; Choi, Hyejeong; Laskin, Jeffrey D.; Laskin, Debra L.

    2015-01-01

    Macrophages play a dual role in ozone toxicity, contributing to both pro- and anti-inflammatory processes. Galectin-3 (Gal-3) is a lectin known to regulate macrophage activity. Herein, we analyzed the role of Gal-3 in the response of lung macrophages to ozone. Bronchoalveolar lavage (BAL) and lung tissue were collected 24–72 h after exposure (3 h) of WT and Gal-3 -/- mice to air or 0.8 ppm ozone. In WT mice, ozone inhalation resulted in increased numbers of proinflammatory (Gal-3 + , iNOS + ) and anti-inflammatory (MR-1 + ) macrophages in the lungs. While accumulation of iNOS + macrophages was attenuated in Gal-3 -/- mice, increased numbers of enlarged MR-1 + macrophages were noted. This correlated with increased numbers of macrophages in BAL. Flow cytometric analysis showed that these cells were CD11b + and consisted mainly (> 97%) of mature (F4/80 + CD11c + ) proinflammatory (Ly6GLy6C hi ) and anti-inflammatory (Ly6GLy6C lo ) macrophages. Increases in both macrophage subpopulations were observed following ozone inhalation. Loss of Gal-3 resulted in a decrease in Ly6C hi macrophages, with no effect on Ly6C lo macrophages. CD11b + Ly6G + Ly6C + granulocytic (G) and monocytic (M) myeloid derived suppressor cells (MDSC) were also identified in the lung after ozone. In Gal-3 -/- mice, the response of G-MDSC to ozone was attenuated, while the response of M-MDSC was heightened. Changes in inflammatory cell populations in the lung of ozone treated Gal-3 -/- mice were correlated with reduced tissue injury as measured by cytochrome b5 expression. These data demonstrate that Gal-3 plays a role in promoting proinflammatory macrophage accumulation and toxicity in the lung following ozone exposure. - Highlights: • Multiple monocytic-macrophage subpopulations accumulate in the lung after ozone inhalation. • Galectin-3 plays a proinflammatory role in ozone-induced lung injury. • In the absence of gal-3, inflammatory cells with a myeloid derived suppressor cell phenotype

  17. Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation.

    Science.gov (United States)

    Maillet, Isabelle; Perche, Olivier; Pâris, Arnaud; Richard, Olivier; Gombault, Aurélie; Herzine, Ameziane; Pichon, Jacques; Huaux, Francois; Mortaud, Stéphane; Ryffel, Bernhard; Quesniaux, Valérie F J; Montécot-Dubourg, Céline

    2016-11-01

    Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1β (IL-1β) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  18. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis.

    Directory of Open Access Journals (Sweden)

    Paméla Gasse

    Full Text Available BACKGROUND: Idiopathic pulmonary fibrosis is a devastating as yet untreatable disease. We demonstrated recently the predominant role of the NLRP3 inflammasome activation and IL-1β expression in the establishment of pulmonary inflammation and fibrosis in mice. METHODS: The contribution of IL-23 or IL-17 in pulmonary inflammation and fibrosis was assessed using the bleomycin model in deficient mice. RESULTS: We show that bleomycin or IL-1β-induced lung injury leads to increased expression of early IL-23p19, and IL-17A or IL-17F expression. Early IL-23p19 and IL-17A, but not IL-17F, and IL-17RA signaling are required for inflammatory response to BLM as shown with gene deficient mice or mice treated with neutralizing antibodies. Using FACS analysis, we show a very early IL-17A and IL-17F expression by RORγt(+ γδ T cells and to a lesser extent by CD4αβ(+ T cells, but not by iNKT cells, 24 hrs after BLM administration. Moreover, IL-23p19 and IL-17A expressions or IL-17RA signaling are necessary to pulmonary TGF-β1 production, collagen deposition and evolution to fibrosis. CONCLUSIONS: Our findings demonstrate the existence of an early IL-1β-IL-23-IL-17A axis leading to pulmonary inflammation and fibrosis and identify innate IL-23 and IL-17A as interesting drug targets for IL-1β driven lung pathology.

  19. Regulation of ozone-induced lung inflammation and injury by the β-galactoside-binding lectin galectin-3

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Francis, Mary, E-mail: maryfranrutgers@gmail.com [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Vayas, Kinal N., E-mail: kinalv5@gmail.com [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Cervelli, Jessica A., E-mail: j.cervelli@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Choi, Hyejeong, E-mail: choi@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ (United States)

    2015-04-15

    Macrophages play a dual role in ozone toxicity, contributing to both pro- and anti-inflammatory processes. Galectin-3 (Gal-3) is a lectin known to regulate macrophage activity. Herein, we analyzed the role of Gal-3 in the response of lung macrophages to ozone. Bronchoalveolar lavage (BAL) and lung tissue were collected 24–72 h after exposure (3 h) of WT and Gal-3{sup -/-} mice to air or 0.8 ppm ozone. In WT mice, ozone inhalation resulted in increased numbers of proinflammatory (Gal-3{sup +}, iNOS{sup +}) and anti-inflammatory (MR-1{sup +}) macrophages in the lungs. While accumulation of iNOS{sup +} macrophages was attenuated in Gal-3{sup -/-} mice, increased numbers of enlarged MR-1{sup +} macrophages were noted. This correlated with increased numbers of macrophages in BAL. Flow cytometric analysis showed that these cells were CD11b{sup +} and consisted mainly (> 97%) of mature (F4/80{sup +}CD11c{sup +}) proinflammatory (Ly6GLy6C{sup hi}) and anti-inflammatory (Ly6GLy6C{sup lo}) macrophages. Increases in both macrophage subpopulations were observed following ozone inhalation. Loss of Gal-3 resulted in a decrease in Ly6C{sup hi} macrophages, with no effect on Ly6C{sup lo} macrophages. CD11b{sup +}Ly6G{sup +}Ly6C{sup +} granulocytic (G) and monocytic (M) myeloid derived suppressor cells (MDSC) were also identified in the lung after ozone. In Gal-3{sup -/-} mice, the response of G-MDSC to ozone was attenuated, while the response of M-MDSC was heightened. Changes in inflammatory cell populations in the lung of ozone treated Gal-3{sup -/-} mice were correlated with reduced tissue injury as measured by cytochrome b5 expression. These data demonstrate that Gal-3 plays a role in promoting proinflammatory macrophage accumulation and toxicity in the lung following ozone exposure. - Highlights: • Multiple monocytic-macrophage subpopulations accumulate in the lung after ozone inhalation. • Galectin-3 plays a proinflammatory role in ozone-induced lung injury. • In the

  20. Pulmonary response to ozone: Reaction of bronchus-associated lymphoid tissue and lymph node lymphocytes in the rat

    International Nuclear Information System (INIS)

    Dziedzic, D.; Wright, E.S.; Sargent, N.E.

    1990-01-01

    The purpose of this work is to assess the effect of ozone, a reactive product of environmental photochemical oxidation, on lymphocytes of the lung. We exposed male Fischer rats to ozone at a concentration of 0.5 ppm for 20 hr/day for 1-14 days. Animals were treated with radioactive thymidine and were sacrificed at Day 1, 2, 3, 7, or 14 of exposure. Lungs and mediastinal lymph nodes were removed and prepared for histologic examination, evaluation of labeling indexes, and morphometric measurement. We examined two components of the lymphocyte response of the lung: the airway-related response, represented by the reaction of the bronchus-associated lymphoid tissue (BALT), and the deep lung-related response, represented by reaction of the mediastinal lymph node. Lymphocytes of both the BALT and the mediastinal lymph node showed elevated radioactive thymidine uptake; however, no evidence of cell death was observed at either site. The cells of the specialized epithelium covering the BALT (lymphoepithelium) showed increased vacuolization, indicating altered cellular function. The average size of BALTs was unchanged by ozone exposure. Under experimental conditions ozone can affect a variety of cells in the lung including bronchial epithelial cells, macrophages, and Type 1 cells. We have shown for the first time that in addition to these cells, the rat BALT also proliferates in response to ozone. In addition we confirm previous work in the mouse which shows that the mediastinal lymph node reacts as well. The airways can be affected by inflammation, can be targets of infection, and can respond to chemical irritants with bronchoconstrictive responses. They are an important target organ for hypersensitivity responses and are a primary site for pulmonary cancer formation. A role for lymphocytes has been implicated in each of these processes

  1. Ozone Induced Premature Mortality and Crop Yield Loss in China

    Science.gov (United States)

    Lin, Y.; Jiang, F.; Wang, H.

    2017-12-01

    Exposure to ambient ozone is a major risk factor for health impacts such as chronic obstructive pulmonary disease (COPD) and cause damage to plant and agricultural crops. But these impacts were usually evaluated separately in earlier studies. We apply Community Multi-scale Air Quality model to simulate the ambient O3 concentration at a resolution of 36 km×36 km across China. Then, we follow Global Burden of Diseases approach and AOT40 (i.e., above a threshold of 40 ppb) metric to estimate the premature mortalities and yield losses of major grain crops (i.e., winter wheat, rice and corn) across China due to surface ozone exposure, respectively. Our results show that ozone exposure leads to nearly 67,700 premature mortalities and 145 billion USD losses in 2014. The ozone induced yield losses of all crop production totaled 78 (49.9-112.6)million metric tons, worth 5.3 (3.4-7.6)billion USD, in China. The relative yield losses ranged from 8.5-14% for winter wheat, 3.9-15% for rice, and 2.2-5.5% for maize. We can see that the top four health affected provinces (Sichuan, Henan, Shandong, Jiangsu) are also ranking on the winter wheat and rice crop yield loss. Our results provide further evidence that surface ozone pollution is becoming urgent air pollution in China, and have important policy implications for China to alleviate the impacts of air pollution.

  2. The translational repressor T-cell intracellular antigen-1 (TIA-1) is a key modulator of Th2 and Th17 responses driving pulmonary inflammation induced by exposure to house dust mite.

    Science.gov (United States)

    Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L; Orduña, Antonio; Boyce, Joshua A; Anderson, Paul J

    2012-08-30

    T-cell intracellular antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1(-/-)) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1(-/-) mice also had higher levels of Df-specific IgE and IgG(1) in serum and ex vivo restimulated Tia-1(-/-) lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Central role of T helper 17 cells in chronic hypoxia-induced pulmonary hypertension.

    Science.gov (United States)

    Maston, Levi D; Jones, David T; Giermakowska, Wieslawa; Howard, Tamara A; Cannon, Judy L; Wang, Wei; Wei, Yongyi; Xuan, Weimin; Resta, Thomas C; Gonzalez Bosc, Laura V

    2017-05-01

    Inflammation is a prominent pathological feature in pulmonary arterial hypertension, as demonstrated by pulmonary vascular infiltration of inflammatory cells, including T and B lymphocytes. However, the contribution of the adaptive immune system is not well characterized in pulmonary hypertension caused by chronic hypoxia. CD4 + T cells are required for initiating and maintaining inflammation, suggesting that these cells could play an important role in the pathogenesis of hypoxic pulmonary hypertension. Our objective was to test the hypothesis that CD4 + T cells, specifically the T helper 17 subset, contribute to chronic hypoxia-induced pulmonary hypertension. We compared indices of pulmonary hypertension resulting from chronic hypoxia (3 wk) in wild-type mice and recombination-activating gene 1 knockout mice (RAG1 -/- , lacking mature T and B cells). Separate sets of mice were adoptively transferred with CD4 + , CD8 + , or T helper 17 cells before normoxic or chronic hypoxic exposure to evaluate the involvement of specific T cell subsets. RAG1 -/- mice had diminished right ventricular systolic pressure and arterial remodeling compared with wild-type mice exposed to chronic hypoxia. Adoptive transfer of CD4 + but not CD8 + T cells restored the hypertensive phenotype in RAG1 -/- mice. Interestingly, RAG1 -/- mice receiving T helper 17 cells displayed evidence of pulmonary hypertension independent of chronic hypoxia. Supporting our hypothesis, depletion of CD4 + cells or treatment with SR1001, an inhibitor of T helper 17 cell development, prevented increased pressure and remodeling responses to chronic hypoxia. We conclude that T helper 17 cells play a key role in the development of chronic hypoxia-induced pulmonary hypertension. Copyright © 2017 the American Physiological Society.

  4. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    Science.gov (United States)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  5. Cardiopulmonary Mortalities and Chronic Obstructive Pulmonary Disease Attributed to Ozone Air Pollution

    Directory of Open Access Journals (Sweden)

    Gholamreza Goudarzi

    2013-07-01

    Full Text Available Background & Aims of the Study: Ozone is a summer pollutant which can cause respiratory complications, eye burning sensation and failure of immune defense against infectious diseases. Ahvaz city (southwestern Iran is one of the seven polluted Iranian metropolises. In this study we examined the health impacts of ozone pollution in Ahvaz city during years 2010 and 2011. Materials & Methods: The health effects of ozone pollution in Ahvaz estimated by determining mortality and morbidity, and incidence of diseases attributed to the ozone, i.e., cardiopulmonary mortalities and chronic obstructive pulmonary disease (COPD using Air Quality Model. Ozone data were taken from Ahvaz Department of Environment (ADoE. Conversion between volumetric and gravimetric units (correction of temperature and pressure, coding, processing (averaging and filtering were implemented. Results: Sum of accumulative cases of mortalities attributed to ozone was 358 cases in 2010 and 276 cases in 2011. Cardiovascular and respiratory mortality attributed to ozone were 118 and 31 persons, respectively; which revealed a considerable reduction compared to those values in 2010. Number of cases for hospital admissions due to COPD was 35 in 2011, while it was 45 cases in 2010. The concentration of ozone in 2011 was lower than that of 2010 and this is why both mortalities and morbidities of 2011 attributed to ozone pollutant had decreased when compared to those values of 2010. Conclusions: Mortality and morbidity attributed to ozone concentrations in 2011 were lower than those of 2010. The most important reason was less concentration in ground level ozone of 2011 than that of 2010 in Ahvaz city air.

  6. Spred-2 deficiency exacerbates lipopolysaccharide-induced acute lung inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Yang Xu

    Full Text Available BACKGROUND: Acute respiratory distress syndrome (ARDS is a severe and life-threatening acute lung injury (ALI that is caused by noxious stimuli and pathogens. ALI is characterized by marked acute inflammation with elevated alveolar cytokine levels. Mitogen-activated protein kinase (MAPK pathways are involved in cytokine production, but the mechanisms that regulate these pathways remain poorly characterized. Here, we focused on the role of Sprouty-related EVH1-domain-containing protein (Spred-2, a negative regulator of the Ras-Raf-extracellular signal-regulated kinase (ERK-MAPK pathway, in lipopolysaccharide (LPS-induced acute lung inflammation. METHODS: Wild-type (WT mice and Spred-2(-/- mice were exposed to intratracheal LPS (50 µg in 50 µL PBS to induce pulmonary inflammation. After LPS-injection, the lungs were harvested to assess leukocyte infiltration, cytokine and chemokine production, ERK-MAPK activation and immunopathology. For ex vivo experiments, alveolar macrophages were harvested from untreated WT and Spred-2(-/- mice and stimulated with LPS. In in vitro experiments, specific knock down of Spred-2 by siRNA or overexpression of Spred-2 by transfection with a plasmid encoding the Spred-2 sense sequence was introduced into murine RAW264.7 macrophage cells or MLE-12 lung epithelial cells. RESULTS: LPS-induced acute lung inflammation was significantly exacerbated in Spred-2(-/- mice compared with WT mice, as indicated by the numbers of infiltrating leukocytes, levels of alveolar TNF-α, CXCL2 and CCL2 in a later phase, and lung pathology. U0126, a selective MEK/ERK inhibitor, reduced the augmented LPS-induced inflammation in Spred-2(-/- mice. Specific knock down of Spred-2 augmented LPS-induced cytokine and chemokine responses in RAW264.7 cells and MLE-12 cells, whereas Spred-2 overexpression decreased this response in RAW264.7 cells. CONCLUSIONS: The ERK-MAPK pathway is involved in LPS-induced acute lung inflammation. Spred-2 controls

  7. Acute respiratory changes and pulmonary inflammation involving a pathway of TGF-β1 induction in a rat model of chlorine-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Wigenstam, Elisabeth; Elfsmark, Linda; Koch, Bo [Swedish Defence Research Agency, CBRN Defence and Security, Umeå (Sweden); Bucht, Anders [Swedish Defence Research Agency, CBRN Defence and Security, Umeå (Sweden); Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå (Sweden); Jonasson, Sofia, E-mail: sofia.jonasson@foi.se [Swedish Defence Research Agency, CBRN Defence and Security, Umeå (Sweden)

    2016-10-15

    We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl{sub 2}) with the aim to understand the pathogenesis of the long-term sequelae of Cl{sub 2}-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5 h up to 90 days after a single inhalation of Cl{sub 2}. A single dose of dexamethasone (10 mg/kg) was administered 1 h following Cl{sub 2}-exposure. A 15-min inhalation of 200 ppm Cl{sub 2} was non-lethal in Sprague-Dawley rats. At 24 h post exposure, Cl{sub 2}-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24 h, the inflammasome-associated cytokines IL-1β and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-β expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24 h but did not influence the AHR. Inhalation of Cl{sub 2} in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-β1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl{sub 2}-induced respiratory dysfunction. - Highlights: • Inhalation of Cl{sub 2} leads to acute lung inflammation and airway hyperreactivity. • Cl{sub 2} activates an inflammasome pathway of TGF-β induction. • Cl{sub 2} leads to a fibrotic respiratory disease. • Treatment

  8. Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention

    Energy Technology Data Exchange (ETDEWEB)

    Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Thomas, Ronald F.; Ledbetter, Allen D.; Schladweiler, Mette C.; Bass, Virginia; Krantz, Q. Todd; King, Charly [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Nyska, Abraham [Tel Aviv University, Tel Aviv (Israel); Richards, Judy E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Andrews, Debora [Research Core Unit, NHEERL, ORD, U.S. EPA, Research Triangle Park, NC 27711 (United States); Gilmour, M. Ian [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States)

    2013-04-15

    Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 μg/m{sup 3}), 4 h/day for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and γ-glutamyl transferase (γ-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-α, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF γ-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-α, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ► Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ► In hypertensive rats diesel exhaust effects are seen only after long term exposure. ► Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ► Normalizing blood pressure reverses

  9. Hypoxia-Induced Mitogenic Factor (HIMF/FIZZ1/RELM?) Recruits Bone Marrow-Derived Cells to the Murine Pulmonary Vasculature

    OpenAIRE

    Angelini, Daniel J.; Su, Qingning; Kolosova, Irina A.; Fan, Chunling; Skinner, John T.; Yamaji-Kegan, Kazuyo; Collector, Michael; Sharkis, Saul J.; Johns, Roger A.

    2010-01-01

    Background Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM?) is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling ...

  10. Stressed lungs: unveiling the role of circulating stress ...

    Science.gov (United States)

    Ozone, a major component of smog generated through the interaction of light and anthropogenic emissions, induces adverse pulmonary, cardiovascular, and systemic health effects upon inhalation. It is generally accepted that ozone-induced lung injury is mediated by its interaction with lung lining components causing local oxidative changes, which then leads to cell damage and recruitment of inflammatory cells. It is postulated that the spillover of reactive intermediates and pro-inflammatory molecules from lung to systemic circulation mediates extra-pulmonary effects. However, recent work from our laboratory supports an alternative hypothesis that circulating stress hormones, such as epinephrine and corticosterone/cortisol, are involved in mediating ozone pulmonary effects. We have shown in rats and humans that ozone increases the levels of circulating stress hormones through activation of the hypothalamus- pituitary-adrenal (HPA) axis before any measurable effects are observed in the lung. The surgical removal of adrenals diminishes circulating stress hormones and at the same time, the pulmonary effects of ozone suggesting a significant contribution of these hormones in ozone-induced lung injury and inflammation. While ozone effects in the lung have been extensively studied, the contribution of central nervous system -mediated hormonal stress response has not been examined. In order to understand the signaling pathways that might be involved in ozone-induced lun

  11. Polyhexamethyleneguanidine phosphate induces severe lung inflammation, fibrosis, and thymic atrophy.

    Science.gov (United States)

    Song, Jeong Ah; Park, Hyun-Ju; Yang, Mi-Jin; Jung, Kyung Jin; Yang, Hyo-Seon; Song, Chang-Woo; Lee, Kyuhong

    2014-07-01

    Polyhexamethyleneguanidine phosphate (PHMG-P) has been widely used as a disinfectant because of its strong bactericidal activity and low toxicity. However, in 2011, the Korea Centers for Disease Control and Prevention and the Ministry of Health and Welfare reported that a suspicious outbreak of pulmonary disease might have originated from humidifier disinfectants. The purpose of this study was to assess the toxicity of PHMG-P following direct exposure to the lung. PHMG-P (0.3, 0.9, or 1.5 mg/kg) was instilled into the lungs of mice. The levels of proinflammatory markers and fibrotic markers were quantified in lung tissues and flow cytometry was used to evaluate T cell distribution in the thymus. Administration of PHMG-P induced proinflammatory cytokines elevation and infiltration of immune cells into the lungs. Histopathological analysis revealed a dose-dependent exacerbation of both inflammation and pulmonary fibrosis on day 14. PHMG-P also decreased the total cell number and the CD4(+)/CD8(+) cell ratio in the thymus, with the histopathological examination indicating severe reduction of cortex and medulla. The mRNA levels of biomarkers associated with T cell development also decreased markedly. These findings suggest that exposure of lung tissue to PHMG-P leads to pulmonary inflammation and fibrosis as well as thymic atrophy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts.

    Science.gov (United States)

    Kim, Gun-Dong; Lee, Seung Eun; Kim, Tae-Ho; Jin, Young-Ho; Park, Yong Seek; Park, Cheung-Seog

    2012-04-01

    Cigarette smoke (CS) causes harmful alterations in the lungs and airway structures and functions that characterize chronic obstructive pulmonary disease (COPD). In addition to COPD, active cigarette smoking causes other respiratory diseases and diminishes health status. Furthermore, recent studies show that, α, β-unsaturated aldehyde acrolein in CS induces the production of interleukin (IL)-8, which is known to be related to bronchitis, rhinitis, pulmonary fibrosis, and asthma. In addition, lung and pulmonary fibroblasts secrete IL-8, which has a chemotactic effect on leukocytes, and which in turn, play a critical role in lung inflammation. On the other hand, melatonin regulates circadian rhythm homeostasis in humans and has many other effects, which include antioxidant and anti-inflammatory effects, as demonstrated by the reduced expressions of iNOS, IL-1β, and IL-6 and increased glutathione (GSH) and superoxide dismutase activities. In this study, we investigated whether melatonin suppresses acrolein-induced IL-8 secretion in human pulmonary fibroblasts (HPFs). It was found that acrolein-induced IL-8 production was accompanied by increased levels of phosphorylation of Akt and extracellular signal-regulated kinases (ERK1/2) in HPFs, and that melatonin suppressed IL-8 production in HPFs. These results suggest that melatonin suppresses acrolein-induced IL-8 production via ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signal inhibition in HPFs. © 2011 John Wiley & Sons A/S.

  13. Mechanisms of pollution-induced airway disease: in vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Peden, D.B. [Univ. of North Carolina School of Medicine, Center for Environmental Medicine and Lung Biology, North Carolina (United States)

    1997-12-31

    Several studies have investigated the effects of ozone, sulphur dioxide (SO{sub 2}), and nitrogen dioxide (NO{sub 2}) on lung function in normal and asthmatic subjects. Decreased lung function has been observed with ozone levels as low as 0.15 ppm - this effect is concentration dependent and is exacerbated by exercise. A number of lines of evidence suggest that the effect on lung function is mediated, at lest in part, by neural mechanisms. In both normals and asthmatics, ozone has been shown to induce neutrophilic inflammation, with increased levels of several inflammatory mediators, including prostaglandin E{sub 2}. However, in normal subjects, none of the markers of inflammation correlate with changes in lung function. The lung function changes in asthmatics may be associated with inflammatory effects; alternatively, ozone may prime the airways for an increased response to subsequently inhaled allergen. Indeed, an influx of both polymorphonucleocytes and eosinophils has been observed in asthmatic patients after ozone exposure. It has been suggested that the effect of ozone on classic allergen-induced bronchoconstriction may be more significant than any direct effect of this pollutant in asthmatics. SO{sub 2} does not appear to affect lung function in normal subjects, but may induce bronchoconstriction in asthmatics. Nasal breathing, which is often impaired in asthmatics, reduces the pulmonary effects of SO{sub 2}, since this water-soluble gas is absorbed by the nasal mucosa. NO{sub 2} may also influence lung function in asthmatics, but further research is warranted. SO{sub 2} and NO{sub 2} alone do not seem to have a priming effect in asthmatics, but a combination of these two gases has resulted in a heightened sensitivity to subsequently inhaled allergen. (au)

  14. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice

    Directory of Open Access Journals (Sweden)

    Ladefoged Ole

    2009-01-01

    Full Text Available Abstract Background The toxic and inflammatory potential of 5 different types of nanoparticles were studied in a sensitive model for pulmonary effects in apolipoprotein E knockout mice (ApoE-/-. We studied the effects instillation or inhalation Printex 90 of carbon black (CB and compared CB instillation in ApoE-/- and C57 mice. Three and 24 h after pulmonary exposure, inflammation was assessed by mRNA levels of cytokines in lung tissue, cell composition, genotoxicity, protein and lactate dehydrogenase activity in broncho-alveolar lavage (BAL fluid. Results Firstly, we found that intratracheal instillation of CB caused far more pulmonary toxicity in ApoE-/- mice than in C57 mice. Secondly, we showed that instillation of CB was more toxic than inhalation of a presumed similar dose with respect to inflammation in the lungs of ApoE-/- mice. Thirdly, we compared effects of instillation in ApoE-/- mice of three carbonaceous particles; CB, fullerenes C60 (C60 and single walled carbon nanotubes (SWCNT as well as gold particles and quantum dots (QDs. Characterization of the instillation media revealed that all particles were delivered as agglomerates and aggregates. Significant increases in Il-6, Mip-2 and Mcp-1 mRNA were detected in lung tissue, 3 h and 24 h following instillation of SWCNT, CB and QDs. DNA damage in BAL cells, the fraction of neutrophils in BAL cells and protein in BAL fluid increased statistically significantly. Gold and C60 particles caused much weaker inflammatory responses. Conclusion Our data suggest that ApoE-/- model is sensitive for evaluating particle induced inflammation. Overall QDs had greatest effects followed by CB and SWCNT with C60 and gold being least inflammatory and DNA-damaging. However the gold was used at a much lower mass dose than the other particles. The strong effects of QDs were likely due to Cd release. The surface area of the instilled dose correlated well the inflammatory response for low toxicity particles.

  15. Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease

    DEFF Research Database (Denmark)

    Saber, Anne T.; Jacobsen, Nicklas R.; Jackson, Petra

    2014-01-01

    Inhalation of ambient and workplace particulate air pollution is associated with increased risk of cardiovascular disease. One proposed mechanism for this association is that pulmonary inflammation induces a hepatic acute phase response, which increases risk of cardiovascular disease. Induction...... epidemiological studies. In this review, we present and review emerging evidence that inhalation of particles (e.g., air diesel exhaust particles and nanoparticles) induces a pulmonary acute phase response, and propose that this induction constitutes the causal link between particle inhalation and risk...

  16. Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis

    Science.gov (United States)

    Monin, Leticia; Griffiths, Kristin L.; Lam, Wing Y.; Gopal, Radha; Kang, Dongwan D.; Ahmed, Mushtaq; Rajamanickam, Anuradha; Cruz-Lagunas, Alfredo; Zúñiga, Joaquín; Babu, Subash; Kolls, Jay K.; Mitreva, Makedonka; Rosa, Bruce A.; Ramos-Payan, Rosalio; Morrison, Thomas E.; Murray, Peter J.; Rangel-Moreno, Javier; Pearce, Edward J.; Khader, Shabaana A.

    2015-01-01

    Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1–expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1–expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB. PMID:26571397

  17. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    Science.gov (United States)

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of

  18. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    Directory of Open Access Journals (Sweden)

    Sagai Masaru

    2011-12-01

    Full Text Available Abstract The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not. Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB, resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2. Nrf2 then induces the transcription of antioxidant response elements (ARE. Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr, catalase (CAT, heme-oxygenase-1 (HO-1, NADPH-quinone-oxidoreductase (NQO-1, phase II enzymes of drug metabolism and heat shock proteins (HSP. Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT and activated protein-1 (AP-1. Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a, which is also induced via

  19. Inflammation-induced preterm lung maturation: lessons from animal experimentation.

    Science.gov (United States)

    Moss, Timothy J M; Westover, Alana J

    2017-06-01

    Intrauterine inflammation, or chorioamnionitis, is a major contributor to preterm birth. Prematurity per se is associated with considerable morbidity and mortality resulting from lung immaturity but exposure to chorioamnionitis reduces the risk of neonatal respiratory distress syndrome (RDS) in preterm infants. Animal experiments have identified that an increase in pulmonary surfactant production by the preterm lungs likely underlies this decreased risk of RDS in infants exposed to chorioamnionitis. Further animal experimentation has shown that infectious or inflammatory agents in amniotic fluid exert their effects on lung development by direct effects within the developing respiratory tract, and probably not by systemic pathways. Differences in the effects of intrauterine inflammation and glucocorticoids demonstrate that canonical glucocorticoid-mediated lung maturation is not responsible for inflammation-induced changes in lung development. Animal experimentation is identifying alternative lung maturational pathways, and transgenic animals and cell culture techniques will allow identification of novel mechanisms of lung maturation that may lead to new treatments for the prevention of RDS. Copyright © 2016. Published by Elsevier Ltd.

  20. Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling.

    Science.gov (United States)

    Grimmig, Bernhard; Gonzalez-Perez, Maria N; Leubner-Metzger, Gerhard; Vögeli-Lange, Regina; Meins, Fred; Hain, Rüdiger; Penuelas, Josep; Heidenreich, Bernd; Langebartels, Christian; Ernst, Dieter; Sandermann, Heinrich

    2003-03-01

    Recent studies suggest that ethylene is involved in signalling ozone-induced gene expression. We show here that application of ozone increased glucuronidase (GUS) expression of chimeric reporter genes regulated by the promoters of the tobacco class I beta-1,3-glucanases (GLB and Gln2) and the grapevine resveratrol synthase (Vst1) genes in transgenic tobacco leaves. 5'-deletion analysis of the class I beta-1,3-glucanase promoter revealed that ozone-induced gene regulation is mainly mediated by the distal enhancer region containing the positively acting ethylene-responsive element (ERE). In addition, application of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, blocked ozone-induced class I beta-1,3-glucanase promoter activity. Enhancer activity and ethylene-responsiveness depended on the integrity of the GCC boxes, cis-acting elements present in the ERE of the class I beta-1,3-glucanase and the basic-type pathogenesis-related PR-1 protein (PRB-1b) gene promoters. The minimal PRB-1b promoter containing only the ERE with intact GCC boxes, was sufficient to confer 10-fold ozone inducibility to a GUS-reporter gene, while a substitution mutation in the GCC box abolished ozone responsiveness. The ERE region of the class I beta-1,3-glucanase promoter containing two intact GCC boxes confered strong ozone inducibility to a minimal cauliflower mosaic virus (CaMV) 35S RNA promoter, whereas two single-base substitution in the GCC boxes resulted in a complete loss of ozone inducibility. Taken together, these datastrongly suggest that ethylene is signalling ozone-induced expression of class I beta-l,3-glucanase and PRB-1b genes. Promoter analysis of the stilbene synthase Vst1 gene unravelled different regions for ozone and ethylene-responsiveness. Application of 1-MCP blocked ethylene-induced Vst1 induction, but ozone induction was not affected. This shows that ozone-induced gene expression occurs via at least two different signalling mechanisms and suggests an

  1. Immune-regulating effects of exercise on cigarette smoke-induced inflammation

    Science.gov (United States)

    Madani, Ashkan; Alack, Katharina; Richter, Manuel Jonas; Krüger, Karsten

    2018-01-01

    Long-term cigarette smoking (LTCS) represents an important risk factor for cardiac infarction and stroke and the central risk factor for the development of a bronchial carcinoma, smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The pathophysiologic development of these diseases is suggested to be promoted by chronic and progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed by a chronic and progressive activation of the immune system. In the pulmonary system of cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recognition receptors are described which are followed by the translocation of the NF-kB, the release of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated molecular patterns. In parallel, smoke pollutants cross directly through the alveolus–capillary interface and spread through the systemic bloodstream targeting different organs. Consequently, LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular system. In blood, these processes promote an increased coagulation and endothelial dysfunction. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were described. Regular exercise training has been shown to be an effective nonpharmacological treatment strategy in smoke-induced pulmonary diseases. It is well established that exercise training exerts immune-regulating effects by activating anti-inflammatory signaling pathways. In this regard, the release of myokines from contracting skeletal muscle, the elevations of cortisol and adrenalin, the reduced expression of Toll-like receptors, and the increased mobilization of immune-regulating leukocyte subtypes might be of vital importance. Exercise training also increases the local and systemic

  2. Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs.

    Science.gov (United States)

    Wicher, Sarah A; Jacoby, David B; Fryer, Allison D

    2017-06-01

    Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals. Copyright

  3. Role of Cardiovascular Disease-associated iron overload in Libby amphibole-induced acute pulmonary injury and inflammation

    Science.gov (United States)

    Pulmonary toxicity induced by asbestos is thought to be mediated through redox-cycling of fiber-bound and bioavailable iron (Fe). We hypothesized that Libby amphibole (LA)-induced cute lung injury will be exacerbated in rat models of cardiovascular disease (CVD)-associated Fe-ove...

  4. Ozone Induces a Proinflammatory Response in Primary Human Bronchial Epithelial Cells Through Mitogen-Activated Protein Kinase Activation Without Nuclear Factor-kB Activation

    Science.gov (United States)

    Ground-level ozone (O3) is a ubiquitous environmental air pollutant that is a potent inducer of airway inflammation and has been linked with both respiratory and cardiovascular morbidity and mortality. Some studies using transformed or immortalized cells have attributed O3-medi...

  5. Ozone pollution and ozone biomonitoring in European cities Part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution

    DEFF Research Database (Denmark)

    Klumpp, A.; Ansel, W.; Klumpp, G.

    2006-01-01

    within local networks were relatively small, but seasonal and inter-annual differences were strong due to the variability of meteorological conditions and related ozone concentrations. The 2001 data revealed a significant relationship between foliar injury degree and various descriptors of ozone...... pollution such as mean value, AOT20 and AOT40. Examining individual sites of the local monitoring networks separately, however, yielded noticeable differences. Some sites showed no association between ozone pollution and ozone-induced effects, whereas others featured almost linear relationships...

  6. Pulmonary exposure to carbonaceous nanomaterials and sperm quality

    DEFF Research Database (Denmark)

    Skovmand, Astrid; Lauvas, Anna Jacobsen; Christensen, Preben

    2018-01-01

    Background: Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung...... inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model.Methods: Effects on sperm quality after pulmonary inflammation induced by carbonaceous...... nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 mu g/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks...

  7. Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver

    Science.gov (United States)

    Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver D.B. Johnson, 1 W.O. Ward, 2 V.L. Bass, 2 M.C.J. Schladweiler, 2A.D. Ledbetter, 2 D. Andrews, and U.P. Kodavanti 2 1 Curriculum in Toxicology, UNC School of Medicine, Cha...

  8. GSTM1 modulation of IL-8 expression in human epithelial cells exposed to ozone

    Science.gov (United States)

    Exposure to the major air pollutant ozone can aggravate asthma and other lung diseases. Our recent study in humanvolunteers hasshown that the glutathione S-transferase Mu 1(GSTMI)-null genotype is associated with increased airway neutrophilic inflammation induced by inhaled ozone...

  9. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice.

    Science.gov (United States)

    Shi, Keyun; Jiang, Jianzhong; Ma, Tieliang; Xie, Jing; Duan, Lirong; Chen, Ruhua; Song, Ping; Yu, Zhixin; Liu, Chao; Zhu, Qin; Zheng, Jinxu

    2014-01-01

    Our objective was to investigate the pathogenesis pathways of idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) induced animal models of experimental lung fibrosis were used. CHIP assay was executed to find the link between Smad3 and IL-31, and the expressions of TGF-β1, Smad3, IL-31 and STAT1 were detected to find whether they were similar with each other. We found that in the early injury or inflammation of the animal model, BLM promoted the development of inflammation, leading to severe pulmonary fibrosis. Then the expression of TGF-β1 and Smad3 increased. Activated Smad3 bound to the IL-31 promoter region, followed by the activation of JAK-STAT pathways. The inhibitor of TGF-β1 receptor decreased the IL-31 expression and knocking-down of IL-31 also decreased the STAT1 expression. We conclude that there is a pathway of pathogenesis in BLM-induced mouse model that involves the TGF-β, IL-31 and JAKs/STATs pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Pulmonary allergic reactions impair systemic vascular relaxation in ragweed sensitive mice.

    Science.gov (United States)

    Hazarika, Surovi; Van Scott, Michael R; Lust, Robert M; Wingard, Christopher J

    2010-01-01

    Asthma is often associated with cardiovascular complications, and recent observations in animal models indicate that induction of pulmonary allergic inflammation increases susceptibility of the myocardium to ischemia and reperfusion injury. In this study, we used a murine model of allergen sensitization in which aspiration of allergen induces pulmonary and systemic inflammation, to test the hypothesis that pulmonary exposure to allergen alters vascular relaxation responses. BALB/C mice were sensitized by intraperitoneal injection of ragweed and challenged by intratracheal instillation of allergen. Airway hyperreactivity and pulmonary inflammation were confirmed, and endothelium-dependent and -independent reactivity of thoracic aorta rings were evaluated. Ragweed sensitization and challenge induced airway hyperreactivity to methacholine and pulmonary inflammation, but did not affect constrictor responses of the aortic rings to phenylephrine and K+ depolarization. In contrast, maximal relaxation of aortic rings to acetylcholine and sodium nitroprusside decreased from 87.6±3.9% and 97.7±1.2% to 32±4% and 51±6%, respectively (p<0.05). The sensitivity to acetylcholine was likewise reduced (EC₅₀=0.26±0.05 μM vs. 1.09±0.16 μM, p<0.001). The results demonstrate that induction of allergic pulmonary inflammation in mice depresses endothelium-dependent and -independent vascular relaxation, which can contribute to cardiovascular complications associated with allergic inflammation. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Titanium Dioxide Exposure Induces Acute Eosinophilic Lung Inflammation in Rabbits

    Science.gov (United States)

    CHOI, Gil Soon; OAK, Chulho; CHUN, Bong-Kwon; WILSON, Donald; JANG, Tae Won; KIM, Hee-Kyoo; JUNG, Mannhong; TUTKUN, Engin; PARK, Eun-Kee

    2014-01-01

    Titanium dioxide (TiO2) is increasingly widely used in industrial, commercial and home products. TiO2 aggravates respiratory symptoms by induction of pulmonary inflammation although the mechanisms have not been well investigated. We aimed to investigate lung inflammation in rabbits after intratracheal instillation of P25 TiO2. One ml of 10, 50 and 250 µg of P25 TiO2 was instilled into one of the lungs of rabbits, chest computed-tomography was performed, and bronchoalveolar lavage (BAL) fluid was collected before, at 1 and 24 h after P25 TiO2 exposure. Changes in inflammatory cells in the BAL fluids were measured. Lung pathological assay was also carried out at 24 h after P25 TiO2 exposure. Ground glass opacities were noted in both lungs 1 h after P25 TiO2 and saline (control) instillation. Although the control lung showed complete resolution at 24 h, the lung exposed to P25 TiO2 showed persistent ground glass opacities at 24 h. The eosinophil counts in BAL fluid were significantly increased after P25 TiO2 exposure. P25 TiO2 induced a dose dependent increase of eosinophils in BAL fluid but no significant differences in neutrophil and lymphocyte cell counts were detected. The present findings suggest that P25 TiO2 induces lung inflammation in rabbits which is associated with eosinophilic inflammation. PMID:24705802

  12. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    International Nuclear Information System (INIS)

    Ma, Jane; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M.; Demokritou, Philip; Castranova, Vincent

    2015-01-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO 2 ) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO 2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO 2 or CeO 2 coated with a nano layer of amorphous SiO 2 (aSiO 2 /CeO 2 ) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO 2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO 2 but not aSiO 2 /CeO 2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO 2 (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO 2 coating significantly reduced CeO 2 -induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO 2 /CeO 2 -exposed lungs up to 3 days after exposure, suggesting that aSiO 2 dissolved off the CeO 2 core, and some of the CeO 2 was transformed to CePO 4 with time. These results demonstrate that aSiO 2 coating reduce CeO 2 -induced inflammation, phospholipidosis and fibrosis. - Highlights: • Both CeO 2 and aSiO 2 /CeO 2 particles were detected in the respective particle-exposed lungs. • The

  13. Fluoxetine protects against methamphetamine‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.

    Science.gov (United States)

    Wang, Yun; Gu, Yu-Han; Liu, Ming; Bai, Yang; Wang, Huai-Liang

    2017-02-01

    Methamphetamine (MA) abuse is a major public health and safety concern throughout the world and a growing burden on healthcare costs. The purpose of the present study was to investigate the protective effect of fluoxetine against MA‑induced chronic pulmonary inflammation and to evaluate the potential role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidative stress. Wistar rats were divided into control, MA and two fluoxetine‑treated groups. Rats in the MA and the two fluoxetine‑treated groups were treated daily with intraperitoneal injection of 10 mg/kg MA twice daily. Rats in the two fluoxetine‑treated groups were injected intragastrically with fluoxetine (2 and 10 mg/kg) once daily, respectively. After 5 weeks, the rats were euthanized and hematoxylin and eosin staining, immunohistochemistry, western blot analysis and redox assay were performed. It was demonstrated that chronic exposure to MA can induce pulmonary inflammation in rats, with the symptoms of inflammatory cell infiltration, crowded lung parenchyma, thickened septum and a reduced number of alveolar sacs. Fluoxetine attenuated pulmonary inflammation and the expression of interleukin‑6 and tumor necrosis factor‑α in rat lungs. Fluoxetine inhibited MA‑induced increases in the expression levels of serotonin transporter (SERT) and p‑p38 mitogen‑activated protein kinase (MAPK), and reversed the MA‑induced decrease in nuclear Nrf2 and human heme oxygenase‑1 in lungs. Fluoxetine at 10 mg/kg significantly reversed the reduced glutathione (GSH) level, the ratio of GSH/oxidized glutathione, and the reactive oxygen species level in rat lungs from the MA group. These findings suggested that fluoxetine, a SERT inhibitor, has a protective effect against MA‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.

  14. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  15. Effect of high-fructose and high-fat diets on pulmonary sensitivity, motor activity, and body composition of brown Norway rats exposed to ozone

    Science.gov (United States)

    pulmonary parameters, BALF biomarkers, body composition, motor activity data collected from rats exposed to ozone after high fructose or high fat diets.This dataset is associated with the following publication:Gordon , C., P. Phillips , A. Johnstone , T. Beasley , A. Ledbetter , M. Schladweiler , S. Snow, and U. Kodavanti. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone. INHALATION TOXICOLOGY. Taylor & Francis, Inc., Philadelphia, PA, USA, 28(5): 203-15, (2016).

  16. Ozone-Induced Vascular Contractility and Pulmonary Injury Are Differently Impacted by Coconut, Fish and Olive Oil-Rich diets

    Science.gov (United States)

    The omega-3 polyunsaturated fatty acids present in fish oil supplements are proposed to offer cardioprotective benefits, but it is not established if these supplements can protect against the adverse health effects induced by exposure to air pollution. Ozone, an ubiquitous air p...

  17. SiO2-induced release of sVEGFRs from pulmonary macrophages.

    Science.gov (United States)

    Chao, Jie; Lv, Yan; Chen, Jin; Wang, Jing; Yao, Honghong

    2018-01-01

    The inhalation of silicon dioxide (SiO 2 ) particles causes silicosis, a stubborn pulmonary disease that is characterized by alveolar inflammation during the early stage. Soluble cytokine receptors (SCRs) play important roles in regulating inflammation by either attenuating or promoting cytokine signaling. However, the role of SCRs in silicosis remains unknown. Luminex assays revealed increased soluble vascular endothelial growth factor receptor (sVEGFR) family levels in the plasma of silicosis patients. In an enzyme-linked immunosorbent assay (ELISA), cells from the differentiated human monocytic cell line U937 released sVEGFR family proteins after exposure to SiO 2 (50μg/cm 2 ). Further Western blot experiments revealed that VEGFR expression was also elevated in U937 cells. In contrast, levels of sVEGFR family members did not change in the supernatants of human umbilical vein endothelial cells (HUVECs) after exposure to SiO 2 (50μg/cm 2 ). Interestingly, VEGFR expression in HUVECs decreased after SiO 2 treatment. In a scratch assay, HUVECs exhibited cell migration ability, indicating the acquisition of mesenchymal properties. Our findings highlight the important role of sVEGFRs in both inflammation and fibrosis induced by SiO 2 , suggesting a possible mechanism for the fibrogenic effects observed in pulmonary diseases associated with fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A dual role for the immune response in a mouse model of inflammation-associated lung cancer

    OpenAIRE

    Dougan, Michael; Li, Danan; Neuberg, Donna; Mihm, Martin; Googe, Paul; Wong, Kwok-Kin; Dranoff, Glenn

    2011-01-01

    Lung cancer is the leading cause of cancer death worldwide. Both principal factors known to cause lung cancer, cigarette smoke and asbestos, induce pulmonary inflammation, and pulmonary inflammation has recently been implicated in several murine models of lung cancer. To further investigate the role of inflammation in the development of lung cancer, we generated mice with combined loss of IFN-γ and the β-common cytokines GM-CSF and IL-3. These immunodeficient mice develop chronic pulmonary in...

  19. Apocynin and ebselen reduce influenza A virus-induced lung inflammation in cigarette smoke-exposed mice.

    Science.gov (United States)

    Oostwoud, L C; Gunasinghe, P; Seow, H J; Ye, J M; Selemidis, S; Bozinovski, S; Vlahos, R

    2016-02-15

    Influenza A virus (IAV) infections are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Oxidative stress is increased in COPD, IAV-induced lung inflammation and AECOPD. Therefore, we investigated whether targeting oxidative stress with the Nox2 oxidase inhibitors and ROS scavengers, apocynin and ebselen could ameliorate lung inflammation in a mouse model of AECOPD. Male BALB/c mice were exposed to cigarette smoke (CS) generated from 9 cigarettes per day for 4 days. On day 5, mice were infected with 1 × 10(4.5) PFUs of the IAV Mem71 (H3N1). BALF inflammation, viral titers, superoxide production and whole lung cytokine, chemokine and protease mRNA expression were assessed 3 and 7 days post infection. IAV infection resulted in a greater increase in BALF inflammation in mice that had been exposed to CS compared to non-smoking mice. This increase in BALF inflammation in CS-exposed mice caused by IAV infection was associated with elevated gene expression of pro-inflammatory cytokines, chemokines and proteases, compared to CS alone mice. Apocynin and ebselen significantly reduced the exacerbated BALF inflammation and pro-inflammatory cytokine, chemokine and protease expression caused by IAV infection in CS mice. Targeting oxidative stress using apocynin and ebselen reduces IAV-induced lung inflammation in CS-exposed mice and may be therapeutically exploited to alleviate AECOPD.

  20. Ozone-Induced Hypertussive Responses in Rabbits and Guinea Pigs

    Science.gov (United States)

    Clay, Emlyn; Patacchini, Riccardo; Trevisani, Marcello; Preti, Delia; Branà, Maria Pia; Spina, Domenico

    2016-01-01

    Cough remains a major unmet clinical need, and preclinical animal models are not predictive for new antitussive agents. We have investigated the mechanisms and pharmacological sensitivity of ozone-induced hypertussive responses in rabbits and guinea pigs. Ozone induced a significant increase in cough frequency and a decrease in time to first cough to inhaled citric acid in both conscious guinea pigs and rabbits. This response was inhibited by the established antitussive drugs codeine and levodropropizine. In contrast to the guinea pig, hypertussive responses in the rabbit were not inhibited by bronchodilator drugs (β2 agonists or muscarinic receptor antagonists), suggesting that the observed hypertussive state was not secondary to bronchoconstriction in this species. The ozone-induced hypertussive response in the rabbit was inhibited by chronic pretreatment with capsaicin, suggestive of a sensitization of airway sensory nerve fibers. However, we could find no evidence for a role of TRPA1 in this response, suggesting that ozone was not sensitizing airway sensory nerves via activation of this receptor. Whereas the ozone-induced hypertussive response was accompanied by a significant influx of neutrophils into the airway, the hypertussive response was not inhibited by the anti-inflammatory phosphodiesterase 4 inhibitor roflumilast at a dose that clearly exhibited anti-inflammatory activity. In summary, our results suggest that ozone-induced hypertussive responses to citric acid may provide a useful model for the investigation of novel drugs for the treatment of cough, but some important differences were noted between the two species with respect to sensitivity to bronchodilator drugs. PMID:26837703

  1. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Williamson, James D; Sadofsky, Laura R; Hart, Simon P

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.

  2. Cytokine–Ion Channel Interactions in Pulmonary Inflammation

    Science.gov (United States)

    Hamacher, Jürg; Hadizamani, Yalda; Borgmann, Michèle; Mohaupt, Markus; Männel, Daniela Narcissa; Moehrlen, Ueli; Lucas, Rudolf; Stammberger, Uz

    2018-01-01

    The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research. PMID:29354115

  3. 4-Hydroxyphenylacetic Acid Attenuated Inflammation and Edema via Suppressing HIF-1α in Seawater Aspiration-Induced Lung Injury in Rats

    Science.gov (United States)

    Liu, Zhongyang; Xi, Ronggang; Zhang, Zhiran; Li, Wangping; Liu, Yan; Jin, Faguang; Wang, Xiaobo

    2014-01-01

    4-Hydroxyphenylacetic acid (4-HPA) is an active component of Chinese herb Aster tataricus which had been widely used in China for the treatment of pulmonary diseases. The aim of this study is to investigate the effect of 4-HPA on seawater aspiration-induced lung injury. Pulmonary inflammation and edema were assessed by enzyme-linked immunosorbent assay (ELISA), bronchoalveolar lavage fluid (BALF) white cell count, Evans blue dye analysis, wet to dry weight ratios, and histology study. Hypoxia-inducible factor-1α (HIF-1α) siRNA and permeability assay were used to study the effect of 4-HPA on the production of inflammatory cytokines and monolayer permeability in vitro. The results showed that 4-HPA reduced seawater instillation-induced mortality in rats. In lung tissues, 4-HPA attenuated hypoxia, inflammation, vascular leak, and edema, and decreased HIF-1α protein level. In primary rat alveolar epithelial cells (AEC), 4-HPA decreased hypertonicity- and hypoxia-induced HIF-1α protein levels through inhibiting the activations of protein translational regulators and via promoting HIF-1α protein degradation. In addition, 4-HPA lowered inflammatory cytokines levels through suppressing hypertonicity- and hypoxia-induced HIF-1α in NR8383 macrophages. Moreover, 4-HPA decreased monolayer permeability through suppressing hypertonicity and hypoxia-induced HIF-1α, which was mediated by inhibiting vascular endothelial growth factor (VEGF) in rat lung microvascular endothelial cell line (RLMVEC). In conclusion, 4-HPA attenuated inflammation and edema through suppressing hypertonic and hypoxic induction of HIF-1α in seawater aspiration-induced lung injury in rats. PMID:25050781

  4. Immune-regulating effects of exercise on cigarette smoke-induced inflammation

    Directory of Open Access Journals (Sweden)

    Madani A

    2018-04-01

    Full Text Available Ashkan Madani,1 Katharina Alack,2 Manuel Jonas Richter,3,4 Karsten Krüger1 1Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Germany; 2Department of Sports Medicine, University of Giessen, Germany; 3Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC, Germany; 4German Center for Lung Research (DZL, Giessen, Germany Abstract: Long-term cigarette smoking (LTCS represents an important risk factor for cardiac infarction and stroke and the central risk factor for the development of a bronchial carcinoma, smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The pathophysiologic development of these diseases is suggested to be promoted by chronic and progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed by a chronic and progressive activation of the immune system. In the pulmonary system of cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recognition receptors are described which are followed by the translocation of the NF-kB, the release of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated molecular patterns. In parallel, smoke pollutants cross directly through the alveolus–capillary interface and spread through the systemic bloodstream targeting different organs. Consequently, LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular system. In blood, these processes promote an increased coagulation and endothelial dysfunction. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were described. Regular exercise training has been shown to be an effective nonpharmacological treatment strategy in smoke-induced pulmonary diseases

  5. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane, E-mail: jym1@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Cohen, Joel M.; Demokritou, Philip [Harvard TH Chan School of Public Health, Harvard University, Boston, MA (United States); Castranova, Vincent [School of Pharmacy, West Virginia University, Morgantown, WV (United States)

    2015-10-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO{sub 2}) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO{sub 2} by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO{sub 2} or CeO{sub 2} coated with a nano layer of amorphous SiO{sub 2} (aSiO{sub 2}/CeO{sub 2}) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO{sub 2} coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO{sub 2} but not aSiO{sub 2}/CeO{sub 2} exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO{sub 2} (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO{sub 2} coating significantly reduced CeO{sub 2}-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO{sub 2}/CeO{sub 2}-exposed lungs up to 3 days after exposure, suggesting that aSiO{sub 2} dissolved off the CeO{sub 2} core, and some of the CeO{sub 2} was transformed to CePO{sub 4} with time. These results demonstrate that aSiO{sub 2} coating reduce CeO{sub 2}-induced inflammation, phospholipidosis and fibrosis. - Highlights: • Both

  6. Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Torsethaugen, Gro

    1998-09-01

    The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.

  7. Differential role of the Fas/Fas ligand apoptotic pathway in inflammation and lung fibrosis associated with reovirus 1/L-induced bronchiolitis obliterans organizing pneumonia and acute respiratory distress syndrome.

    Science.gov (United States)

    Lopez, Andrea D; Avasarala, Sreedevi; Grewal, Suman; Murali, Anuradha K; London, Lucille

    2009-12-15

    Bronchiolitis obliterans organizing pneumonia (BOOP) and acute respiratory distress syndrome (ARDS) are two clinically and histologically distinct syndromes sharing the presence of an inflammatory and fibrotic component. Apoptosis via the Fas/Fas ligand (FasL) pathway plays an important role in the development of acute lung injury and fibrosis characteristic of these and other pulmonary inflammatory and fibrotic syndromes. We evaluated the role of apoptosis via the Fas/FasL pathway in the development of pulmonary inflammation and fibrosis in reovirus 1/L-induced BOOP and ARDS. CBA/J mice were intranasally inoculated with saline, 1 x 10(6) (BOOP), or 1 x 10(7) (ARDS) PFU reovirus 1/L, and evaluated at various days postinoculation for in situ apoptosis by TUNEL analysis and Fas/FasL expression. Our results demonstrate the presence of apoptotic cells and up-regulation of Fas/FasL expression in alveolar epithelium and in infiltrating cells during the inflammatory and fibrotic stages of both reovirus 1/L-induced ARDS and BOOP. Treatment of mice with the caspase 8 inhibitor, zIETD-fmk, inhibited apoptosis, inflammation, and fibrotic lesion development in reovirus 1/L-induced BOOP and ARDS. However, CBA/KlJms-Fas(lpr-cg)/J mice, which carry a point mutation in the Fas cytoplasmic region that abolishes the ability of Fas to transduce an apoptotic signal, do not develop pulmonary inflammation and fibrotic lesions associated with reovirus 1/L-induced BOOP, but still develop inflammation and fibrotic lesions associated with reovirus 1/L-induced ARDS. These results suggest a differential role for the Fas/FasL apoptotic pathway in the development of inflammation and fibrotic lesions associated with BOOP and ARDS.

  8. Coconut, Fish, and Olive Oil-Rich Diets Modify Ozone-Induced Metabolic Effects

    Science.gov (United States)

    Pulmonary health effects of ozone (O3) exposure are well known; however, the cardiovascular and metabolic consequences are still under investigation. Fish oil (FO) and olive oil (OO) dietary supplementation have several cardioprotective benefits, but it is not established if thes...

  9. Breath condensate levels of 8-isoprostane and leukotriene B4 after ozone inhalation are greater in sensitive versus nonsensitive subjects.

    Science.gov (United States)

    Alfaro, Mario F; Walby, William F; Adams, William C; Schelegle, Edward S

    2007-01-01

    Ozone (O3) inhalation induces pulmonary function decrements and inflammation. The present study was designed to determine if a relationship exists between O3 induced pulmonary function changes and the presence of inflammatory markers as measured in exhaled breath condensates (EBCs) obtained from O3-sensitive and nonsensitive human subjects. Eight healthy adult volunteers (4 males/4 females, age 18 to 30 years) were studied, characterized as to their ozone sensitivity and placed into 2 groups (sensitive and nonsensitive) with each group having 2 males and 2 females. Subjects completed a 20-minute EBC collection and pulmonary function test (PFT) prior to a single 60-minute bout of cycle ergometer exercise (V(E) = 50-55 L/min) while breathing filtered air (FA) or 0.35 ppm O3. Subjective symptom scores (SSSs) were collected at 6, 20, 40, and 60 minutes during exposure. An immediate postexposure PFT was performed followed by an EBC collection. Subjective symptom scores, EBCs, and PFTs were collected at 1, 4 and 8 hours post exposure. EBCs were analyzed for prostaglandin E2 (PGE2), leukotriene B4 (LTB4), 8-isoprostane, and total nitric oxide (NO) metabolites (nitrate + nitrite content). Sensitive subjects, breathing O3, had significantly greater functional decrements in PFTs, increased SSSs, and increased rapid shallow breathing as well as elevated levels of 8-isoprostane and LTB4 in EBCs compared to those breathing FA. In addition, there were significant increases in nitrate + nitrite content in both sensitive and nonsensitive subjects breathing O3 compared to FA. These results indicate that sensitive subjects have elevated arachidonic acid metabolites in EBCs compared to nonsensitive subjects after O3 inhalation.

  10. Pulmonary exposure to carbonaceous nanomaterials and sperm quality

    DEFF Research Database (Denmark)

    Skovmand, Astrid; Lauvas, Anna Jacobsen; Christensen, Preben

    2018-01-01

    . Pulmonary inflammation was determined by differential cell count in bronchoalveolar lavage fluid. Epididymal sperm concentration and motility were measured by computer-assisted sperm analysis. Epididymal sperm viability and morphological abnormalities were assessed manually using Hoechst 33,342/PI...... inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model.Methods: Effects on sperm quality after pulmonary inflammation induced by carbonaceous...... flourescent and Spermac staining, respectively. Epididymal sperm were assessed with regard to sperm DNA integrity (damage). Daily sperm production was measured in the testis, and testosterone levels were measured in blood plasma by ELISA.Results: Neutrophil numbers in the bronchoalveolar fluid showed...

  11. Differential Role of the Fas/Fas Ligand Apoptotic Pathway in Inflammation and Lung Fibrosis Associated with Reovirus 1/L-Induced Bronchiolitis Obliterans Organizing Pneumonia and Acute Respiratory Distress Syndrome1

    Science.gov (United States)

    Lopez, Andrea D.; Avasarala, Sreedevi; Grewal, Suman; Murali, Anuradha K.; London, Lucille

    2010-01-01

    Bronchiolitis obliterans organizing pneumonia (BOOP) and acute respiratory distress syndrome (ARDS) are two clinically and histologically distinct syndromes sharing the presence of an inflammatory and fibrotic component. Apoptosis via the Fas/Fas ligand (FasL) pathway plays an important role in the development of acute lung injury and fibrosis characteristic of these and other pulmonary inflammatory and fibrotic syndromes. We evaluated the role of apoptosis via the Fas/FasL pathway in the development of pulmonary inflammation and fibrosis in reovirus 1/L-induced BOOP and ARDS. CBA/J mice were intranasally inoculated with saline, 1 × 106 (BOOP), or 1 × 107 (ARDS) PFU reovirus 1/L, and evaluated at various days postinoculation for in situ apoptosis by TUNEL analysis and Fas/FasL expression. Our results demonstrate the presence of apoptotic cells and up-regulation of Fas/FasL expression in alveolar epithelium and in infiltrating cells during the inflammatory and fibrotic stages of both reovirus 1/L-induced ARDS and BOOP. Treatment of mice with the caspase 8 inhibitor, zIETD-fmk, inhibited apoptosis, inflammation, and fibrotic lesion development in reovirus 1/L-induced BOOP and ARDS. However, CBA/KlJms-Faslpr-cg/J mice, which carry a point mutation in the Fas cytoplasmic region that abolishes the ability of Fas to transduce an apoptotic signal, do not develop pulmonary inflammation and fibrotic lesions associated with reovirus 1/L-induced BOOP, but still develop inflammation and fibrotic lesions associated with reovirus 1/L-induced ARDS. These results suggest a differential role for the Fas/FasL apoptotic pathway in the development of inflammation and fibrotic lesions associated with BOOP and ARDS. PMID:20007588

  12. Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice.

    Science.gov (United States)

    Yamada, Yosuke; Tomaru, Utano; Ishizu, Akihiro; Ito, Tomoki; Kiuchi, Takayuki; Ono, Ayako; Miyajima, Syota; Nagai, Katsura; Higashi, Tsunehito; Matsuno, Yoshihiro; Dosaka-Akita, Hirotoshi; Nishimura, Masaharu; Miwa, Soichi; Kasahara, Masanori

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly.

  13. Pulmonary oxidative stress, inflammation and dysregulated iron homeostatis in rat models of cardiovascular disease

    Science.gov (United States)

    Underlying cardiovascular disease (CVD) is considered a risk factor for the exacerbation of air pollution health effects. Therefore, rodent models of CVD are increasingly used to examine mechanisms ofvariation in susceptibility. Pulmonary oxidative stress, inflammation and altere...

  14. A Zinc Chelator TPEN Attenuates Airway Hyperresponsiveness Airway Inflammation in Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Satoru Fukuyama

    2011-01-01

    Conclusions: In pulmonary allergic inflammation induced in mice immunized with antigen without alum, zinc chelator inhibits airway inflammation and hyperresponsiveness. These findings suggest that zinc may be a therapeutic target of allergic asthma.

  15. Reversal of reflex pulmonary vasoconstriction induced by main pulmonary arterial distension.

    Science.gov (United States)

    Juratsch, C E; Grover, R F; Rose, C E; Reeves, J T; Walby, W F; Laks, M M

    1985-04-01

    Distension of the main pulmonary artery (MPA) induces pulmonary hypertension, most probably by neurogenic reflex pulmonary vasoconstriction, although constriction of the pulmonary vessels has not actually been demonstrated. In previous studies in dogs with increased pulmonary vascular resistance produced by airway hypoxia, exogenous arachidonic acid has led to the production of pulmonary vasodilator prostaglandins. Hence, in the present study, we investigated the effect of arachidonic acid in seven intact anesthetized dogs after pulmonary vascular resistance was increased by MPA distention. After steady-state pulmonary hypertension was established, arachidonic acid (1.0 mg/min) was infused into the right ventricle for 16 min; 15-20 min later a 16-mg bolus of arachidonic acid was injected. MPA distension was maintained throughout the study. Although the infusion of arachidonic acid significantly lowered the elevated pulmonary vascular resistance induced by MPA distension, the pulmonary vascular resistance returned to control levels only after the bolus injection of arachidonic acid. Notably, the bolus injection caused a biphasic response which first increased the pulmonary vascular resistance transiently before lowering it to control levels. In dogs with resting levels of pulmonary vascular resistance, administration of arachidonic acid in the same manner did not alter the pulmonary vascular resistance. It is concluded that MPA distension does indeed cause reflex pulmonary vasoconstriction which can be reversed by vasodilator metabolites of arachidonic acid. Even though this reflex may help maintain high pulmonary vascular resistance in the fetus, its function in the adult is obscure.

  16. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice.

    Science.gov (United States)

    Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou

    2004-06-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.

  17. Inflammatory Response Mechanisms Exacerbating Hypoxemia in Coexistent Pulmonary Fibrosis and Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Ayodeji Adegunsoye

    2015-01-01

    Full Text Available Mediators of inflammation, oxidative stress, and chemoattractants drive the hypoxemic mechanisms that accompany pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis commonly have obstructive sleep apnea, which potentiates the hypoxic stimuli for oxidative stress, culminating in systemic inflammation and generalized vascular endothelial damage. Comorbidities like pulmonary hypertension, obesity, gastroesophageal reflux disease, and hypoxic pulmonary vasoconstriction contribute to chronic hypoxemia leading to the release of proinflammatory cytokines that may propagate clinical deterioration and alter the pulmonary fibrotic pathway. Tissue inhibitor of metalloproteinase (TIMP-1, interleukin- (IL- 1α, cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β, lipopolysaccharide induced CXC chemokine (LIX, monokine induced by gamma interferon (MIG-1, macrophage inflammatory protein- (MIP- 1α, MIP-3α, and nuclear factor- (NF- κB appear to mediate disease progression. Adipocytes may induce hypoxia inducible factor (HIF 1α production; GERD is associated with increased levels of lactate dehydrogenase (LDH, alkaline phosphatase (ALP, and tumor necrosis factor alpha (TNF-α; pulmonary artery myocytes often exhibit increased cytosolic free Ca2+. Protein kinase C (PKC mediated upregulation of TNF-α and IL-1β also occurs in the pulmonary arteries. Increased understanding of the inflammatory mechanisms driving hypoxemia in pulmonary fibrosis and obstructive sleep apnea may potentiate the identification of appropriate therapeutic targets for developing effective therapies.

  18. Cyclophosphamide-induced pulmonary toxicity

    International Nuclear Information System (INIS)

    Siemann, D.W.; Macler, L.; Penney, D.P.

    1986-01-01

    Unlike radiation effects, pulmonary toxicity following drug treatments may develop soon after exposure. The dose-response relationship between Cyclophosphamide and lung toxicity was investigated using increased breathing frequency assays used successfully for radiation induced injury. The data indicate that release of protein into the alveolus may play a significant role in Cy induced pulmonary toxicity. Although the mechanism responsible for the increased alveolar protein is as yet not identified, the present findings suggest that therapeutic intervention to inhibit protein release may be an approach to protect the lungs from toxic effects. (UK)

  19. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    International Nuclear Information System (INIS)

    Novak, K.; Schaub, M.; Fuhrer, J.; Skelly, J.M.; Hug, C.; Landolt, W.; Bleuler, P.; Kraeuchi, N.

    2005-01-01

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures

  20. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)]. E-mail: kristopher.novak@wsl.ch; Schaub, M. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Fuhrer, J. [Swiss Federal Research Station for Agroecology and Agriculture FAL, 8046 Zurich (Switzerland); Skelly, J.M. [Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802 (United States); Hug, C. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Landolt, W. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bleuler, P. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2005-07-15

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures.

  1. Abscisic acid protects bean leaves from ozone-induced phytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, R.A.; Adedipe, N.O.; Ormrod, D.P.

    1972-01-01

    Abscisic acid treatment of primary bean leaves caused a partial closure of stomates and thus considerably reduced the phytotoxicity of ozone. The symptoms of ozone-induced phytotoxicity in the water-treated leaves are a marked decrease in chlorophyll and slight decreases in the levels of protein and RNA. The evidence indicates that ozone injury to leaves is not metabolically related to normal leaf senescence.

  2. Exposure to ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Bader Michael

    2008-12-01

    Full Text Available Abstract Background Exposure to particulate matter is a risk factor for cardiopulmonary disease but the underlying molecular mechanisms remain poorly understood. In the present study we sought to investigate the cardiopulmonary responses on spontaneously hypertensive rats (SHRs following inhalation of UfCPs (24 h, 172 μg·m-3, to assess whether compromised animals (SHR exhibit a different response pattern compared to the previously studied healthy rats (WKY. Methods Cardiophysiological response in SHRs was analyzed using radiotelemetry. Blood pressure (BP and its biomarkers plasma renin-angiotensin system were also assessed. Lung and cardiac mRNA expressions for markers of oxidative stress (hemeoxygenase-1, blood coagulation (tissue factor, plasminogen activator inhibitor-1, and endothelial function (endothelin-1, and endothelin receptors A and B were analyzed following UfCPs exposure in SHRs. UfCPs-mediated inflammatory responses were assessed from broncho-alveolar-lavage fluid (BALF. Results Increased BP and heart rate (HR by about 5% with a lag of 1–3 days were detected in UfCPs exposed SHRs. Inflammatory markers of BALF, lung (pulmonary and blood (systemic were not affected. However, mRNA expression of hemeoxygenase-1, endothelin-1, endothelin receptors A and B, tissue factor, and plasminogen activator inhibitor showed a significant induction (~2.5-fold; p Conclusion Our finding shows that UfCPs exposure at levels which does not induce detectable pulmonary neutrophilic inflammation, triggers distinct effects in the lung and also at the systemic level in compromised SHRs. These effects are characterized by increased activity of plasma renin-angiotensin system and circulating white blood cells together with moderate increases in the BP, HR and decreases in heart rate variability. This systemic effect is associated with pulmonary, but not cardiac, mRNA induction of biomarkers reflective of oxidative stress; activation of vasoconstriction

  3. Milano summer particulate matter (PM10 triggers lung inflammation and extra pulmonary adverse events in mice.

    Directory of Open Access Journals (Sweden)

    Francesca Farina

    Full Text Available Recent studies have suggested a link between particulate matter (PM exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS, cytotoxicity (LDH, ALP, Hsp70, Caspase8-p18, Caspase3-p17 for a putative pro-carcinogenic marker (Cyp1B1 and for TLR4 pathway activation. Brain was also investigated for CD68, TNF-α, GFAP. In blood, cell counts were performed while plasma was screened for endothelial activation (sP-selectin, ET-1 and for inflammation markers (TNF-α, MIP-2, IL-1β, MPO. Genes up-regulation (HMOX1, Cyp1B1, IL-1β, MIP-2, MPO and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover, PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators, ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction, mainly involving heart and brain. Our results provided additional insight into the toxicity

  4. Ozone-induced changes in the chloroplast structure of conifer needles, and their use in ozone diagnostics

    International Nuclear Information System (INIS)

    Kivimaeenpaeae, M.; Sellden, G.; Sutinen, S.

    2005-01-01

    Ozone induces characteristic symptoms in the chloroplasts of the needles of several coniferous species. Chloroplasts are (1) reduced in size and (2) the stroma is electron dense. Moreover (3) these chloroplast alterations are more pronounced in the outer mesophyll cell layers and in the upper side of the needle compared to the inner layers and lower side. The syndrome, including the three symptoms (1)-(3), is found in the green needles of Scots pine and Norway spruce not only in the experimental fumigations, but also in mature trees in the field, and has potential for diagnosis of ozone stress. For sound ozone diagnostics all three symptoms must be present in the samples studied. The symptoms in relation to needle anatomy and physiology is discussed, and recommendations for sampling and analysis are given. - Ozone-induced alterations in chloroplast structure of conifer needles are reviewed, and recommendations for field monitoring given

  5. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox.

    Science.gov (United States)

    Eapen, Mathew Suji; Myers, Stephen; Walters, Eugene Haydn; Sohal, Sukhwinder Singh

    2017-10-01

    Chronic obstructive pulmonary disease (COPD) is primarily an airway condition, which mainly affects cigarette smokers and presents with shortness of breath that is progressive and poorly reversible. In COPD research, there has been a long held belief that airway disease progression is due to inflammation. Although this may be true in the airway lumen with innate immunity activated by the effect of smoke or secondary to infection, the accurate picture of inflammatory cells in the airway wall, where the pathophysiological COPD remodeling occurs, is uncertain and debatable. Areas covered: The current review provides a comprehensive literature survey of the changes in the main inflammatory cells in human COPD patients and focuses on contrarian views that affect the prevailing dogma on inflammation. The review also delves into the role of oxidative stress and inflammasomes in modulating the immune response in COPD. Further, the effects of inflammation in affecting the epithelium, fibroblasts, and airway remodeling are discussed. Expert commentary: Inflammation as a driving force for airway wall damage and remodelling in early COPD is at the very least 'oversimplified' and is likely to be misleading. This has serious implications for rational thinking about the illness, including pathogenesis and designing therapy.

  6. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane Y.C., E-mail: jym1@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Young, Shih-Houng; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Ma, Joseph K. [School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); Castranova, Vincent [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States)

    2014-07-15

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO{sub 2}) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO{sub 2} on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats were exposed to CeO{sub 2} and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO{sub 2} induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO{sub 2} and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ, respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO{sub 2}, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP + CeO{sub 2} were significantly larger than CeO{sub 2} or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP + CeO{sub 2} reflects the combination of DEP-exposure plus CeO{sub 2}-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO{sub 2} induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO{sub 2} in the combined exposure. Using CeO{sub 2} as diesel fuel catalyst may cause health concerns. - Highlights: • DEP induced acute lung inflammation and switched immune response from Th1 to Th2. • DEP induced lung granulomas were not affected by the presence of CeO{sub 2}. • CeO{sub 2} induced sustained lung

  7. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity

    DEFF Research Database (Denmark)

    Poulsen, Sarah S.; Jackson, Petra; Kling, Kirsten

    2016-01-01

    Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commerci...... diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects....

  8. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bakkal, B.H. [Department of Radiation Oncology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Gultekin, F.A. [Department of General Surgery, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Guven, B. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Turkcu, U.O. [Mugla School of Health Sciences, Mugla Sitki Kocman University, Mugla (Turkey); Bektas, S. [Department of Pathology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Can, M. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey)

    2013-09-27

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  9. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    International Nuclear Information System (INIS)

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage

  10. Cardiopulmonary protective effects of the selective FXR agonist obeticholic acid in the rat model of monocrotaline-induced pulmonary hypertension.

    Science.gov (United States)

    Vignozzi, Linda; Morelli, Annamaria; Cellai, Ilaria; Filippi, Sandra; Comeglio, Paolo; Sarchielli, Erica; Maneschi, Elena; Vannelli, Gabriella Barbara; Adorini, Luciano; Maggi, Mario

    2017-01-01

    Farnesoid X receptor (FXR) activation by obeticholic acid (OCA) has been demonstrated to inhibit inflammation and fibrosis development and even induce fibrosis regression in liver, kidney and intestine in multiple disease models. OCA also inhibits liver fibrosis in nonalcoholic steatohepatitis patients. FXR activation has also been demonstrated to suppress the inflammatory response and to promote lung repair after lung injury. This study investigated the effects of OCA treatment (3, 10 or 30mg/kg, daily for 5days a week, for 7 and/or 28 days) on inflammation, tissue remodeling and fibrosis in the monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) rat model. Treatment with OCA attenuated MCT-induced increased pulmonary arterial wall thickness and right ventricular hypertrophy, by i) blunting pathogenic inflammatory mechanisms (downregulation of interleukin 6, IL-6, and monocyte chemoattractant protein-1, MCP-1) and ii) enhancing protective mechanisms counteracting fibrosis and endothelial/mesenchymal transition. MCT-injected rats also showed a marked decrease of pulmonary artery responsiveness to both endothelium-dependent and independent relaxant stimuli, such as acetylcholine and a nitric oxide donor, sodium nitroprusside. Administration of OCA (30mg/kg) normalized this decreased responsiveness. Accordingly, OCA treatment induced profound beneficial effects on lung histology. In particular, both OCA doses markedly reduced the MCT-induced medial wall thickness increase in small pulmonary arteries. To evaluate the objective functional improvement by OCA treatment of MCT-induced PAH, we performed a treadmill test and measured duration of exercise. MCT significantly reduced, and OCA normalized treadmill endurance. Results with OCA were similar, or even superior, to those obtained with tadalafil, a well-established treatment of PAH. In conclusion, OCA treatment demonstrates cardiopulmonary protective effects, modulating lung vascular remodeling, reducing

  11. Inflammation and airway microbiota during cystic fibrosis pulmonary exacerbations.

    Directory of Open Access Journals (Sweden)

    Edith T Zemanick

    Full Text Available Pulmonary exacerbations (PEx, frequently associated with airway infection and inflammation, are the leading cause of morbidity in cystic fibrosis (CF. Molecular microbiologic approaches detect complex microbiota from CF airway samples taken during PEx. The relationship between airway microbiota, inflammation, and lung function during CF PEx is not well understood.To determine the relationships between airway microbiota, inflammation, and lung function in CF subjects treated for PEx.Expectorated sputum and blood were collected and lung function testing performed in CF subjects during early (0-3d. and late treatment (>7d. for PEx. Sputum was analyzed by culture, pyrosequencing of 16S rRNA amplicons, and quantitative PCR for total and specific bacteria. Sputum IL-8 and neutrophil elastase (NE; and circulating C-reactive protein (CRP were measured.Thirty-seven sputum samples were collected from 21 CF subjects. At early treatment, lower diversity was associated with high relative abundance (RA of Pseudomonas (r = -0.67, p<0.001, decreased FEV(1% predicted (r = 0.49, p = 0.03 and increased CRP (r = -0.58, p = 0.01. In contrast to Pseudomonas, obligate and facultative anaerobic genera were associated with less inflammation and higher FEV₁. With treatment, Pseudomonas RA and P. aeruginosa by qPCR decreased while anaerobic genera showed marked variability in response. Change in RA of Prevotella was associated with more variability in FEV₁ response to treatment than Pseudomonas or Staphylococcus.Anaerobes identified from sputum by sequencing are associated with less inflammation and higher lung function compared to Pseudomonas at early exacerbation. CF PEx treatment results in variable changes of anaerobic genera suggesting the need for larger studies particularly of patients without traditional CF pathogens.

  12. The novel cytokine interleukin-33 activates acinar cell proinflammatory pathways and induces acute pancreatic inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    Full Text Available Acute pancreatitis is potentially fatal but treatment options are limited as disease pathogenesis is poorly understood. IL-33, a novel IL-1 cytokine family member, plays a role in various inflammatory conditions but its role in acute pancreatitis is not well understood. Specifically, whether pancreatic acinar cells produce IL-33 when stressed or respond to IL-33 stimulation, and whether IL-33 exacerbates acute pancreatic inflammation is unknown.In duct ligation-induced acute pancreatitis in mice and rats, we found that (a IL-33 concentration was increased in the pancreas; (b mast cells, which secrete and also respond to IL-33, showed degranulation in the pancreas and lung; (c plasma histamine and pancreatic substance P concentrations were increased; and (d pancreatic and pulmonary proinflammatory cytokine concentrations were increased. In isolated mouse pancreatic acinar cells, TNF-α stimulation increased IL-33 release while IL-33 stimulation increased proinflammatory cytokine release, both involving the ERK MAP kinase pathway; the flavonoid luteolin inhibited IL-33-stimulated IL-6 and CCL2/MCP-1 release. In mice without duct ligation, exogenous IL-33 administration induced pancreatic inflammation without mast cell degranulation or jejunal inflammation; pancreatic changes included multifocal edema and perivascular infiltration by neutrophils and some macrophages. ERK MAP kinase (but not p38 or JNK and NF-kB subunit p65 were activated in the pancreas of mice receiving exogenous IL-33, and acinar cells isolated from the pancreas of these mice showed increased spontaneous cytokine release (IL-6, CXCL2/MIP-2α. Also, IL-33 activated ERK in human pancreatic tissue.As exogenous IL-33 does not induce jejunal inflammation in the same mice in which it induces pancreatic inflammation, we have discovered a potential role for an IL-33/acinar cell axis in the recruitment of neutrophils and macrophages and the exacerbation of acute pancreatic inflammation

  13. Hepatic Warm Ischemia-Reperfusion-Induced Increase in Pulmonary Capillary Filtration Is Ameliorated by Administration of a Multidrug Resistance-Associated Protein 1 Inhibitor and Leukotriene D4 Antagonist (MK-571) Through Reducing Neutrophil Infiltration and Pulmonary Inflammation and Oxidative Stress in Rats.

    Science.gov (United States)

    Yeh, D Y-W; Yang, Y-C; Wang, J-J

    2015-05-01

    Hepatopulmonary syndrome (HPS) is the major complication subsequent to liver ischemia and reperfusion (I/R) injury after resection or transplantation of liver. Hallmarks of HPS include increases in pulmonary leukotrienes and neutrophil recruitment and infiltrating across capillaries. We aimed to investigate the protective efficacy of MK-571, a multidrug resistance-associated protein 1 inhibitor and leukotriene D4 agonist, against hepatic I/R injury-associated change in capillary filtration. Eighteen Sprague-Dawley male rats were evenly divided into a sham-operated group, a hepatic I/R group, and an MK-571-treated I/R group. MK-571 was administered intraperitoneally 15 min before hepatic ischemia and every 12 hours during reperfusion. Ischemia was conducted by occluding the hepatic artery and portal vein for 30 min, followed by removing the clamps and closing the incision. Forty-eight hours after hepatic ischemia, we assessed the pulmonary capillary filtration coefficient (Kfc) through the use of in vitro-isolated, perfused rat lung preparation. We also measured the lung wet-to-dry weight ratio (W/D) and protein concentration in broncho-alveolar lavage fluid (PCBAL). Lung inflammation and oxidative stress were evaluated by use of tissue tumor necrosis factor (TNF)-α and malondialdehyde levels and lavage differential macrophage and neutrophil cell count. Hepatic I/R injury markedly increased Kfc, W/D, PCBAL, tissue TNF-α level, and differential neutrophil cell count (P < .05). MK-571 treatment reduced neutrophil infiltration and lung inflammation and improved pulmonary capillary filtration, collectively suggesting lung protection. Treatment with MK-571 before and during hepatic ischemia and reperfusion protects lung against pulmonary capillary barrier function impairment through decreasing pulmonary lung inflammation and lavage neutrophils. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Knock out of S1P3 receptor signaling attenuates inflammation and fibrosis in bleomycin-induced lung injury mice model.

    Directory of Open Access Journals (Sweden)

    Ken Murakami

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive sphingolipid metabolite involved in many critical cellular processes, including proliferation, migration, and angiogenesis, through interaction with a family of five G protein-coupled receptors (S1P1-5. Some reports have implicated S1P as an important inflammatory mediator of the pathogenesis of airway inflammation, but the role of S1P3 in the pathogenesis of lung diseases is not completely understood. We used S1P3-deficient (knockout (KO mice to clarify the role of S1P3 receptor signaling in the pathogenesis of pulmonary inflammation and fibrosis using a bleomycin-induced model of lung injury. On the seventh day after bleomycin administration, S1P3 KO mice exhibited significantly less body weight loss and pulmonary inflammation than wild-type (WT mice. On the 28th day, there was less pulmonary fibrosis in S1P3 KO mice than in WT mice. S1P3 KO mice demonstrated a 56% reduction in total cell count in bronchoalveolar lavage fluid (BALF collected on the seventh day compared with WT mice; however, the differential white blood cell profiles were similar. BALF analysis on the seventh day showed that connective tissue growth factor (CTGF levels were significantly decreased in S1P3 KO mice compared with WT mice, although no differences were observed in monocyte chemotactic protein-1 (MCP-1 or transforming growth factor β1 (TGF-β1 levels. Finally, S1P levels in BALF collected on the 7th day after treatment were not significantly different between WT and S1P3 KO mice. Our results indicate that S1P3 receptor signaling plays an important role in pulmonary inflammation and fibrosis and that this signaling occurs via CTGF expression. This suggests that this pathway might be a therapeutic target for pulmonary fibrosis.

  15. Role of LTB4 in the pathogenesis of elastase-induced murine pulmonary emphysema

    Science.gov (United States)

    Paige, Mikell; Hanna, Halim; Kim, Su H.; Burdick, Marie D.; Strieter, Robert M.

    2010-01-01

    Exaggerated levels of the leukotriene B4 (LTB4) frequently coexist at sites of inflammation and tissue remodeling. Therefore, we hypothesize that the LTB4 pathway plays an important role in the pathogenesis of neutrophilic inflammation that contributes to pulmonary emphysema. In this study, significant levels of LTB4 were detected in human lung tissues with emphysema compared with lungs without emphysema (9,497 ± 2,839 vs. 4,142 ± 1,173 pg/ml, n = 9 vs. 10, P = 0.04). To further determine the biological role of LTB4 in the pathogenesis of emphysema, we compared the lungs of wild-type (WT) and LTA4 hydrolase−/− mice (LTB4 deficient, LTA4H−/−) exposed to intranasal elastase or vehicle control. We found that intranasal elastase induced accumulation of LTB4 in the lungs and caused progressively worsening emphysema between 14 and 28 days after elastase exposure in WT mice but not in LTA4H−/− mice. Premortem physiology documented increased lung compliance in elastase-exposed WT mice compared with elastase-exposed LTA4H−/− mice as measured by Flexivent (0.058 ± 0.005 vs. 0.041 ± 0.002 ml/cmH2O pressure). Postmortem morphometry documented increased total lung volume and alveolar sizes in elastase-exposed WT mice compared with elastase-exposed LTA4H−/− mice as measured by volume displacement and alveolar chord length assessment. Furthermore, elastase-exposed LTA4H−/− mice were found to have significantly delayed influx of the CD45highCD11bhighLy6Ghigh leukocytes compatible with neutrophils compared with elastase-exposed WT mice. Mechanistic insights to these phenotypes were provided by demonstrating protection from elastase-induced murine emphysema with neutrophil depletion in the elastase-exposed WT mice and by demonstrating time-dependent modulation of cysteinyl leukotriene biosynthesis in the elastase-exposed LTA4H−/− mice compared with elastase-exposed WT mice. Together, these findings demonstrated that LTB4 played an important role in

  16. Lack of bcr and abr promotes hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Min Yu

    Full Text Available Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined.Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr-/- and abr-/- macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia.Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells.

  17. Effect of high-fructose and high-fat diets on pulmonary sensitivity, motor activity, and body composition of brown Norway rats exposed to ozone

    Data.gov (United States)

    U.S. Environmental Protection Agency — pulmonary parameters, BALF biomarkers, body composition, motor activity data collected from rats exposed to ozone after high fructose or high fat diets. This dataset...

  18. Pulmonary exposure to carbonaceous nanomaterials and sperm quality.

    Science.gov (United States)

    Skovmand, Astrid; Jacobsen Lauvås, Anna; Christensen, Preben; Vogel, Ulla; Sørig Hougaard, Karin; Goericke-Pesch, Sandra

    2018-01-31

    Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung capillaries, enter the systemic circulation and ultimately reach the testes. Both the inflammatory response and the particles may induce oxidative stress which can directly affect spermatogenesis. Furthermore, spermatogenesis may be indirectly affected by changes in the hormonal milieu as systemic inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model. Effects on sperm quality after pulmonary inflammation induced by carbonaceous nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 μg/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks. Pulmonary inflammation was determined by differential cell count in bronchoalveolar lavage fluid. Epididymal sperm concentration and motility were measured by computer-assisted sperm analysis. Epididymal sperm viability and morphological abnormalities were assessed manually using Hoechst 33,342/PI flourescent and Spermac staining, respectively. Epididymal sperm were assessed with regard to sperm DNA integrity (damage). Daily sperm production was measured in the testis, and testosterone levels were measured in blood plasma by ELISA. Neutrophil numbers in the bronchoalveolar fluid showed sustained inflammatory response in the nanoparticle-exposed groups one week after the last instillation. No significant changes in epididymal sperm parameters, daily sperm production or plasma testosterone levels

  19. Prolonged Pulmonary Exposure to Diesel Exhaust Particles Exacerbates Renal Oxidative Stress, Inflammation and DNA Damage in Mice with Adenine-Induced Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2016-05-01

    Full Text Available Background/Aims: Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. Methods: Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks, which is known to involve inflammation and oxidative stress. DEP (0.5m/kg was intratracheally (i.t. instilled every 4th day for 4 weeks (7 i.t. instillation. Four days following the last exposure to either DEP or saline (control, various renal endpoints were measured. Results: While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. Conclusion: Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic

  20. Dietary Anthocyanins against Obesity and Inflammation.

    Science.gov (United States)

    Lee, Yoon-Mi; Yoon, Young; Yoon, Haelim; Park, Hyun-Min; Song, Sooji; Yeum, Kyung-Jin

    2017-10-01

    Chronic low-grade inflammation plays a pivotal role in the pathogenesis of obesity, due to its associated chronic diseases such as type II diabetes, cardiovascular diseases, pulmonary diseases and cancer. Thus, targeting inflammation is an attractive strategy to counter the burden of obesity-induced health problems. Recently, food-derived bioactive compounds have been spotlighted as a regulator against various chronic diseases due to their low toxicity, as opposed to drugs that induce severe side effects. Here we describe the beneficial effects of dietary anthocyanins on obesity-induced metabolic disorders and inflammation. Red cabbage microgreen, blueberry, blackcurrant, mulberry, cherry, black elderberry, black soybean, chokeberry and jaboticaba peel contain a variety of anthocyanins including cyanidins, delphinidins, malvidins, pelargonidins, peonidins and petunidins, and have been reported to alter both metabolic markers and inflammatory markers in cells, animals, and humans. This review discusses the interplay between inflammation and obesity, and their subsequent regulation via the use of dietary anthocyanins, suggesting an alternative dietary strategy to ameliorate obesity and obesity associated chronic diseases.

  1. Pulmonary arachidonic acid metabolism following acute exposures to ozone and nitrogen dioxide

    International Nuclear Information System (INIS)

    Schlesinger, R.B.; Driscoll, K.E.; Gunnison, A.F.; Zelikoff, J.T.

    1990-01-01

    Ozone (O 3 ) and nitrogen dioxide (NO 2 ) are common air pollutants, and exposure to these gases has been shown to affect pulmonary physiology, biochemistry, and structure. This study examined their ability to modulate arachidonic acid metabolites (eicosanoids) in the lungs. Rabbits were exposed for 2 h to O 3 at 0.1, 0.3, or 1 ppm; NO 2 at 1, 3, or 10 ppm; or to a mixture of 0.3 ppm O 3 and 3 ppm NO 2 . Groups of animals sacrificed either immediately or 24 h after each exposure underwent broncho-pulmonary lavage. Selected eicosanoids were assessed in lavage fluid by radioimmunoassay. Increases in prostaglandins E2 (PGE2) and F2 alpha (PGF2 alpha) were found immediately after exposure to 1 ppm O 3 . Exposure to 10 ppm NO 2 resulted in a depression of 6-keto-PGF1 alpha, while thromboxane B2 (TxB2) was elevated after exposure to 1 ppm NO 2 and depressed following 3 and 10 ppm. The O 3 /NO 2 mixture resulted in synergistic increases in PGE2 and PGF2 alpha, with the response appearing to be driven by O 3 . This study has demonstrated that acute exposure to either O 3 or NO 2 can alter pulmonary arachidonic acid metabolism and that the responses to these oxidants differ, both quantitatively and qualitatively

  2. Does the acute pulmonary response to ozone depend on the cumulative exposure?

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    In experimental conditions, repeated ozone exposure induces adaptive phenomena that attenuate lung function and inflammatory responses. But this study did not find that lifetime cumulative exposure had a protective effect; indeed, it found the contrary. (author)

  3. Angiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Menk M

    2018-05-01

    Full Text Available Mario Menk, Jan Adriaan Graw, Clarissa von Haefen, Hendrik Steinkraus, Burkhard Lachmann, Claudia D Spies, David Schwaiberger Department of Anesthesiology and Operative Intensive Care Medicine, Charité – University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany Purpose: Although the role of the angiotensin II type 2 (AT2 receptor in acute lung injury is not yet completely understood, a protective role of this receptor subtype has been suggested. We hypothesized that, in a rodent model of acute lung injury, stimulation of the AT2 receptor with the direct agonist Compound 21 (C21 might have a beneficial effect on pulmonary inflammation and might improve pulmonary gas exchange. Materials and methods: Male adult rats were divided into a treatment group that received pulmonary lavage followed by mechanical ventilation (LAV, n=9, a group receiving pulmonary lavage, mechanical ventilation, and direct stimulation of the AT2 receptor with C21 (LAV+C21, n=9, and a control group that received mechanical ventilation only (control, n=9. Arterial blood gas analysis was performed every 30 min throughout the 240-min observation period. Lung tissue and plasma samples were obtained at 240 min after the start of mechanical ventilation. Protein content and surface activity of bronchoalveolar lavage fluid were assessed and the wet/dry-weight ratio of lungs was determined. Transcriptional and translational regulation of pro- and antiinflammatory cytokines IL-1β, tumor necrosis factor-alpha, IL-6, IL-10, and IL-4 was determined in lungs and in plasma. Results: Pulmonary lavage led to a significant impairment of gas exchange, the formation of lung edema, and the induction of pulmonary inflammation. Protein content of lavage fluid was increased and contained washed-out surfactant. Direct AT2 receptor stimulation with C21 led to a significant inhibition of tumor necrosis factor-alpha and IL-6

  4. Differential pulmonary and cardiac effects of pulmonary exposure to a panel of particulate matter-associated metals

    International Nuclear Information System (INIS)

    Wallenborn, J. Grace; Schladweiler, Mette J.; Richards, Judy H.; Kodavanti, Urmila P.

    2009-01-01

    Biological mechanisms underlying the association between particulate matter (PM) exposure and increased cardiovascular health effects are under investigation. Water-soluble metals reaching systemic circulation following pulmonary exposure are likely exerting a direct effect. However, it is unclear whether specific PM-associated metals may be driving this. We hypothesized that exposure to equimolar amounts of five individual PM-associated metals would cause differential pulmonary and cardiac effects. We exposed male WKY rats (14 weeks old) via a single intratracheal instillation (IT) to saline or 1 μmol/kg body weight of zinc, nickel, vanadium, copper, or iron in sulfate form. Responses were analyzed 4, 24, 48, or 96 h after exposure. Pulmonary effects were assessed by bronchoalveolar lavage fluid levels of total cells, macrophages, neutrophils, protein, albumin, and activities of lactate dehydrogenase, γ-glutamyl transferase, and n-acetyl glucosaminidase. Copper induced earlier pulmonary injury/inflammation, while zinc and nickel produced later effects. Vanadium or iron exposure induced minimal pulmonary injury/inflammation. Zinc, nickel, or copper increased serum cholesterol, red blood cells, and white blood cells at different time points. IT of nickel and copper increased expression of metallothionein-1 (MT-1) in the lung. Zinc, nickel, vanadium, and iron increased hepatic MT-1 expression. No significant changes in zinc transporter-1 (ZnT-1) expression were noted in the lung or liver; however, zinc increased cardiac ZnT-1 at 24 h, indicating a possible zinc-specific cardiac effect. Nickel exposure induced an increase in cardiac ferritin 96 h after IT. This data set demonstrating metal-specific cardiotoxicity is important in linking metal-enriched anthropogenic PM sources with adverse health effects.

  5. Ozone uptake (flux) as it relates to ozone-induced foliar symptoms of Prunus serotina and Populus maximowizii x trichocarpa

    International Nuclear Information System (INIS)

    Orendovici-Best, T.; Skelly, J.M.; Davis, D.D.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.

    2008-01-01

    Field studies were conducted during 2003 and 2004 from early June to the end of August, at 20 sites of lower or higher elevation within north-central Pennsylvania, using seedlings of black cherry (Prunus serotina, Ehrh.) and ramets of hybrid poplar (Populus maximowizii x trichocarpa). A linear model was developed to estimate the influence of local environmental conditions on stomatal conductance. The most significant factors explaining stomatal variance were tree species, air temperature, leaf vapor pressure deficit, elevation, and time of day. Overall, environmental factors explained less than 35% of the variation in stomatal conductance. Ozone did not affect gas exchange rates in either poplar or cherry. Ozone-induced foliar injury was positively correlated with cumulative ozone exposures, expressed as SUM40. Overall, the amount of foliar injury was better correlated to a flux-based approach rather than to an exposure-based approach. More severe foliar injuries were observed on plants growing at higher elevations. - Within heterogeneous environments, ozone flux does not completely explain the variation observed in ozone-induced visible injury

  6. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K

    2004-09-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-{beta}-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation.

  7. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    International Nuclear Information System (INIS)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K.

    2004-01-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-β-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation

  8. Lodenafil treatment in the monocrotaline model of pulmonary hypertension in rats.

    Science.gov (United States)

    Polonio, Igor Bastos; Acencio, Milena Marques Pagliareli; Pazetti, Rogério; Almeida, Francine Maria de; Silva, Bárbara Soares da; Pereira, Karina Aparecida Bonifácio; Souza, Rogério

    2014-01-01

    We assessed the effects of lodenafil on hemodynamics and inflammation in the rat model of monocrotaline-induced pulmonary hypertension (PH). Thirty male Sprague-Dawley rats were randomly divided into three groups: control; monocrotaline (experimental model); and lodenafil (experimental model followed by lodenafil treatment, p.o., 5 mg/kg daily for 28 days) Mean pulmonary artery pressure (mPAP) was obtained by right heart catheterization. We investigated right ventricular hypertrophy (RVH) and IL-1 levels in lung fragments. The number of cases of RVH was significantly higher in the monocrotaline group than in the lodenafil and control groups, as were mPAP and IL-1 levels. We conclude that lodenafil can prevent monocrotaline-induced PH, RVH, and inflammation.

  9. Lodenafil treatment in the monocrotaline model of pulmonary hypertension in rats*

    Science.gov (United States)

    Polonio, Igor Bastos; Acencio, Milena Marques Pagliareli; Pazetti, Rogério; de Almeida, Francine Maria; da Silva, Bárbara Soares; Pereira, Karina Aparecida Bonifácio; Souza, Rogério

    2014-01-01

    We assessed the effects of lodenafil on hemodynamics and inflammation in the rat model of monocrotaline-induced pulmonary hypertension (PH). Thirty male Sprague-Dawley rats were randomly divided into three groups: control; monocrotaline (experimental model); and lodenafil (experimental model followed by lodenafil treatment, p.o., 5 mg/kg daily for 28 days) Mean pulmonary artery pressure (mPAP) was obtained by right heart catheterization. We investigated right ventricular hypertrophy (RVH) and IL-1 levels in lung fragments. The number of cases of RVH was significantly higher in the monocrotaline group than in the lodenafil and control groups, as were mPAP and IL-1 levels. We conclude that lodenafil can prevent monocrotaline-induced PH, RVH, and inflammation. PMID:25210965

  10. Pulmonary biomarkers in chronic obstructive pulmonary disease

    NARCIS (Netherlands)

    Barnes, Peter J.; Chowdhury, Badrul; Kharitonov, Sergei A.; Magnussen, Helgo; Page, Clive P.; Postma, Dirkje; Saetta, Marina

    2006-01-01

    There has been increasing interest in using pulmonary biomarkers to understand and monitor the inflammation in the respiratory tract of patients with chronic obstructive pulmonary disease (COPD). In this Pulmonary Perspective we discuss the merits of the various approaches by reviewing the current

  11. ATLa, an aspirin-triggered lipoxin A4 synthetic analog, prevents the inflammatory and fibrotic effects of bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Martins, Vanessa; Valença, Samuel S; Farias-Filho, Francisco A; Molinaro, Raphael; Simões, Rafael L; Ferreira, Tatiana P T; e Silva, Patrícia M R; Hogaboam, Cory M; Kunkel, Steven L; Fierro, Iolanda M; Canetti, Claudio; Benjamim, Claudia F

    2009-05-01

    Despite an increase in the knowledge of mechanisms and mediators involved in pulmonary fibrosis, there are no successful therapeutics available. Lipoxins (LX) and their 15-epimers, aspirin-triggered LX (ATL), are endogenously produced eicosanoids with potent anti-inflammatory and proresolution effects. To date, few studies have been performed regarding their effect on pulmonary fibrosis. In the present study, using C57BL/6 mice, we report that bleomycin (BLM)-induced lung fibrosis was prevented by the concomitant treatment with an ATL synthetic analog, ATLa, which reduced inflammation and matrix deposition. ATLa inhibited BLM-induced leukocyte accumulation and alveolar collapse as evaluated by histology and morphometrical analysis. Moreover, Sirius red staining and lung hydroxyproline content showed an increased collagen deposition in mice receiving BLM alone that was decreased upon treatment with the analog. These effects resulted in benefits to pulmonary mechanics, as ATLa brought to normal levels both lung resistance and compliance. Furthermore, the analog improved mouse survival, suggesting an important role for the LX pathway in the control of disease establishment and progression. One possible mechanism by which ATLa restrained fibrosis was suggested by the finding that BLM-induced myofibroblast accumulation/differentiation in the lung parenchyma was also reduced by both simultaneous and posttreatment with the analog (alpha-actin immunohistochemistry). Interestingly, ATLa posttreatment (4 days after BLM) showed similar inhibitory effects on inflammation and matrix deposition, besides the TGF-beta level reduction in the lung, reinforcing an antifibrotic effect. In conclusion, our findings show that LX and ATL can be considered as promising therapeutic approaches to lung fibrotic diseases.

  12. Breaks induced in the deoxyribonucleic acid of aerosolized Escherichia coli by ozonized cyclohexene.

    Science.gov (United States)

    De Mik, G; De Groot, I

    1978-01-01

    The inactivation of aerosolized Escherichia coli by ozone, cyclohexene, and ozonized cyclohexene was studied. The parameters for damage were loss of reproduction and introduction of breaks in the deoxyribonucleic acid (DNA). Aerosolization of E. coli in clean air at 80 percent relative humidity or in air containing either ozone or cyclohexene hardly affected survival; however, some breaks per DNA molecule were induced, as shown by sucrose gradient sedimentation of the DNA. Aerosolization of E. coli in air containing ozonized cyclohexene at 80 percent relative humidity decreased the survival by a factor of 10(3) or more after 1 h of exposure and induced many breaks in the DNA. PMID:341811

  13. Innate immune activation by inhaled lipopolysaccharide, independent of oxidative stress, exacerbates silica-induced pulmonary fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    David M Brass

    Full Text Available Acute exacerbations of pulmonary fibrosis are characterized by rapid decrements in lung function. Environmental factors that may contribute to acute exacerbations remain poorly understood. We have previously demonstrated that exposure to inhaled lipopolysaccharide (LPS induces expression of genes associated with fibrosis. To address whether exposure to LPS could exacerbate fibrosis, we exposed male C57BL/6 mice to crystalline silica, or vehicle, followed 28 days later by LPS or saline inhalation. We observed that mice receiving both silica and LPS had significantly more total inflammatory cells, more whole lung lavage MCP-1, MIP-2, KC and IL-1β, more evidence of oxidative stress and more total lung hydroxyproline than mice receiving either LPS alone, or silica alone. Blocking oxidative stress with N-acetylcysteine attenuated whole lung inflammation but had no effect on total lung hydroxyproline. These observations suggest that exposure to innate immune stimuli, such as LPS in the environment, may exacerbate stable pulmonary fibrosis via mechanisms that are independent of inflammation and oxidative stress.

  14. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats

    International Nuclear Information System (INIS)

    Gultekin, Fatma Ayca; Bakkal, Bekir Hakan; Guven, Berrak; Tasdoven, Ilhan; Bektas, Sibel; Can, Murat; Comert, Mustafa

    2013-01-01

    Because radiation-induced cellular damage is attributed primarily to harmful effects of free radicals, molecules with direct free radical scavenging properties are particularly promising as radioprotectors. It has been demonstrated that controlled ozone administration may promote an adaptation to oxidative stress, preventing the damage induced by reactive oxygen species. Thus, we hypothesized that ozone would ameliorate oxidative damage caused by total body irradiation (TBI) with a single dose of 6 Gy in rat liver and ileum tissues. Rats were randomly divided into groups as follows: control group; saline-treated and irradiated (IR) groups; and ozone oxidative preconditioning (OOP) and IR groups. Animals were exposed to TBI after a 5-day intraperitoneal pretreatment with either saline or ozone (1 mg/kg/day). They were decapitated at either 6 h or 72 h after TBI. Plasma, liver and ileum samples were obtained. Serum AST, ALT and TNF-α levels were elevated in the IR groups compared with the control group and were decreased after treatment with OOP. TBI resulted in a significant increase in the levels of MDA in the liver and ileal tissues and a decrease of SOD activities. The results demonstrated that the levels of MDA liver and ileal tissues in irradiated rats that were pretreated with ozone were significantly decreased, while SOD activities were significantly increased. OOP reversed all histopathological alterations induced by irradiation. In conclusion, data obtained from this study indicated that ozone could increase the endogenous antioxidant defense mechanism in rats and there by protect the animals from radiation-induced organ toxicity. (author)

  15. Cocaine-induced pulmonary changes: HRCT findings

    Directory of Open Access Journals (Sweden)

    Renata Rocha de Almeida

    2015-08-01

    Full Text Available AbstractObjective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease.Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors.Results:In 8 patients (36.4%, the clinical and tomographic findings were consistent with "crack lung", those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%, barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each.Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings.

  16. Cocaine-induced pulmonary changes: HRCT findings

    International Nuclear Information System (INIS)

    Almeida, Renata Rocha de; Zanetti, Glaucia; Marchiori, Edson; Souza, Luciana Soares de; Silva, Jorge Luiz Pereira e; Mancano, Alexandre Dias; Nobre, Luiz Felipe; Hochhegger, Bruno; Marchiori, Edson

    2015-01-01

    Objective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease. Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors. Results: In 8 patients (36.4%), the clinical and tomographic findings were consistent with 'crack lung', those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%), barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each. Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings. (author)

  17. Cocaine-induced pulmonary changes: HRCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Renata Rocha de; Zanetti, Glaucia; Marchiori, Edson, E-mail: edmarchiori@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Pos-Graduacao em Radiologia; Souza Junior, Arthur Soares [Faculdade de Medicina de Petropolis, Petropolis, RJ (Brazil); Souza, Luciana Soares de [Ultra-X, Sao Jose do Rio Preto, SP (Brazil); Silva, Jorge Luiz Pereira e [Universidade Federal da Bahia (UFBA), Salvador (Brazil). Dep. de Medicina e Apoio Diagnostico; Escuissato, Dante Luiz [Universidade Federal do Parana (UFPR), Curitiba (Brazil). Dept. de Clinica Medica; Irion, Klaus Loureiro [Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool (United Kingdom); Mancano, Alexandre Dias [Hospital Anchieta, Taguatinga, DF (Brazil); Nobre, Luiz Felipe [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Hochhegger, Bruno [Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS (Brazil); Marchiori, Edson [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2015-07-15

    Objective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease. Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors. Results: In 8 patients (36.4%), the clinical and tomographic findings were consistent with 'crack lung', those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%), barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each. Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings. (author)

  18. The effect of vitamin D prophylaxis on radiation induced pulmonary damage

    International Nuclear Information System (INIS)

    Yazici, G.; Yildiz, F.; Iskit, A.; Surucu, S.; Firat, P.; Hayran, M.; Ozyigit, G.; Cengiz, M.; Erdemli, E.

    2011-01-01

    Vitamin D has a selective radio and chemosensitizing effect on tumor cells. In vitro and in vivo studies have shown that vitamin D inhibits collagen gel construction, induces type II pneumocyte proliferation and surfactant synthesis in the lungs, and decreases vascular permeability caused by radiation. The aim of this experimental study was to determine if vitamin D has a protective effect against radiation-induced pulmonary damage. Adult Wistar rats were divided into 4 groups. Group 1 was comprised of control animals. Group 2, which was administered 0.25 μg/kg/day of vitamin D3 for 8 weeks, was the vitamin D control group. Rats in groups 3 and 4 were given 20 Gy right hemithorax radiotherapy, and in addition group 4 was given vitamin D3 treatment, which began the day before the radiotherapy and continued for 8 weeks. At the 8 th and the 12 th weeks of the study 4 rats from each group were sacrificed. Right lungs were dissected for light and electron microscopic study. The electron microscopy examinations revealed statistically significant differences between group 3 and 4, and in group 4 there was less interstitial inflammation and collagen deposition, and the alveolar structure and the cells lining the alveolar walls were protected. These results confirm that vitamin D has a protective effect against radiation-induced pulmonary toxicity. These findings should be evaluated with further clinical studies. (author)

  19. Role of macrophage migration inhibitory factor (MIF in allergic and endotoxin-induced airway inflammation in mice

    Directory of Open Access Journals (Sweden)

    M. Korsgren

    2000-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF has recently been forwarded as a critical regulator of inflammatory conditions, and it has been hypothesized that MIF may have a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD. Hence, we examined effects of MIF immunoneutralization on the development of allergen-induced eosinophilic inflammation as well as on lipopolysaccaride (LPS-induced neutrophilic inflammation in lungs of mice. Anti-MIF serum validated with respect to MIF neutralizing capacity or normal rabbit serum (NRS was administered i.p. repeatedly during allergen aerosol exposure of ovalbumin (OVA-immunized mice in an established model of allergic asthma, or once before instillation of a minimal dose of LPS into the airways of mice, a tentative model of COPD. Anti-MIF treatment did not affect the induced lung tissue eosinophilia or the cellular composition of bronchoalveolar lavage fluid (BALF in the asthma model. Likewise, anti-MIF treatment did not affect the LPS-induced neutrophilia in lung tissue, BALF, or blood, nor did it reduce BALF levels of tumor necrosis factor-α (TNF-α and macrophage inflammatory protein–1 α (MIP–1 α. The present data suggest that MIF is not critically important for allergen-induced eosinophilic, and LPS-induced neutrophilic responses in lungs of mice. These findings do not support a role of MIF inhibition in the treatment of inflammatory respiratory diseases.

  20. Different profiles of notch signaling in cigarette smoke-induced pulmonary emphysema and bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Li, Shi; Hu, Xiaofei; Wang, Zheng; Wu, Meng; Zhang, Jinnong

    2015-05-01

    Different profiles of Notch signaling mediate naive T cell differentiation which might be involved in pulmonary emphysema and fibrosis. C57BL/6 mice were randomized into cigarette smoke (CS) exposure, bleomycin (BLM) exposure, and two separate groups of control for sham exposure to CS or BLM. The paratracheal lymph nodes of the animals were analyzed by real-time PCR and immunohistochemistry. Morphometry of the lung parenchyma, measurement of the cytokines, and cytometry of the bronchoalveolar lavage fluid (BALF) were also done accordingly. In comparison with controls, all Notch receptors and ligands were upregulated by chronic CS exposure, especially Notch3 and DLL1 (P emphysema-like morphology and Th1-biased inflammation. While Notch3 and DLL1 were downregulated by BLM exposure (P pulmonary emphysema. Unable to initiate the Th1 response or inhibit it may lead to Th2 polarization and aberrant repair.

  1. Roles of inflammation and apoptosis in experimental brain death-induced right ventricular failure.

    Science.gov (United States)

    Belhaj, Asmae; Dewachter, Laurence; Rorive, Sandrine; Remmelink, Myriam; Weynand, Birgit; Melot, Christian; Galanti, Laurence; Hupkens, Emeline; Sprockeels, Thomas; Dewachter, Céline; Creteur, Jacques; McEntee, Kathleen; Naeije, Robert; Rondelet, Benoît

    2016-12-01

    Right ventricular (RV) dysfunction remains the leading cause of early death after cardiac transplantation. Methylprednisolone is used to improve graft quality; however, evidence for that remains empirical. We sought to determine whether methylprednisolone, acting on inflammation and apoptosis, might prevent brain death-induced RV dysfunction. After randomization to placebo (n = 11) or to methylprednisolone (n = 8; 15 mg/kg), 19 pigs were assigned to a brain-death procedure. The animals underwent hemodynamic evaluation at 1 and 5 hours after Cushing reflex (i.e., hypertension and bradycardia). The animals euthanized, and myocardial tissue was sampled. This was repeated in a control group (n = 8). At 5 hours after the Cushing reflex, brain death resulted in increased pulmonary artery pressure (27 ± 2 vs 18 ± 1 mm Hg) and in a 30% decreased ratio of end-systolic to pulmonary arterial elastances (Ees/Ea). Cardiac output and right atrial pressure did not change. This was prevented by methylprednisolone. Brain death-induced RV dysfunction was associated with increased RV expression of heme oxygenase-1, interleukin (IL)-6, IL-10, IL-1β, tumor necrosis factor (TNF)-α, IL-1 receptor-like (ST)-2, signal transducer and activator of transcription-3, intercellular adhesion molecules-1 and -2, vascular cell adhesion molecule-1, and neutrophil infiltration, whereas IL-33 expression decreased. RV apoptosis was confirmed by terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling staining. Methylprednisolone pre-treatment prevented RV-arterial uncoupling and decreased RV expression of TNF-α, IL-1 receptor-like-2, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and neutrophil infiltration. RV Ees/Ea was inversely correlated to RV TNF-α and IL-6 expression. Brain death-induced RV dysfunction is associated with RV activation of inflammation and apoptosis and is partly limited by methylprednisolone. Copyright © 2016

  2. Protective Roles for RGS2 in a Mouse Model of House Dust Mite-Induced Airway Inflammation.

    Directory of Open Access Journals (Sweden)

    Tresa George

    Full Text Available The GTPase-accelerating protein, regulator of G-protein signalling 2 (RGS2 reduces signalling from G-protein-coupled receptors (GPCRs that signal via Gαq. In humans, RGS2 expression is up-regulated by inhaled corticosteroids (ICSs and long-acting β2-adrenoceptor agonists (LABAs such that synergy is produced in combination. This may contribute to the superior clinical efficacy of ICS/LABA therapy in asthma relative to ICS alone. In a murine model of house dust mite (HDM-induced airways inflammation, three weeks of intranasal HDM (25 μg, 3×/week reduced lung function and induced granulocytic airways inflammation. Compared to wild type animals, Rgs2-/- mice showed airways hyperresponsiveness (increased airways resistance and reduced compliance. While HDM increased pulmonary inflammation observed on hematoxylin and eosin-stained sections, there was no difference between wild type and Rgs2-/- animals. HDM-induced mucus hypersecretion was also unaffected by RGS2 deficiency. However, inflammatory cell counts in the bronchoalveolar lavage fluid of Rgs2-/- animals were significantly increased (57% compared to wild type animals and this correlated with increased granulocyte (neutrophil and eosinophil numbers. Likewise, cytokine and chemokine (IL4, IL17, IL5, LIF, IL6, CSF3, CXCLl, CXCL10 and CXCL11 release was increased by HDM exposure. Compared to wild type, Rgs2-/- animals showed a trend towards increased expression for many cytokines/chemokines, with CCL3, CCL11, CXCL9 and CXCL10 being significantly enhanced. As RGS2 expression was unaffected by HDM exposure, these data indicate that RGS2 exerts tonic bronchoprotection in HDM-induced airways inflammation. Modest anti-inflammatory and anti-remodelling roles for RGS2 are also suggested. If translatable to humans, therapies that maximize RGS2 expression may prove advantageous.

  3. Exercise-Induced Pulmonary Edema in a Triathlon

    Directory of Open Access Journals (Sweden)

    Hirotomo Yamanashi

    2015-01-01

    Full Text Available Introduction. Family physicians have more opportunities to attend athletic competitions as medical staff at first-aid centers because of the increasing popularity of endurance sports. Case. A 38-year-old man who participated in a triathlon race experienced difficulty in breathing after swimming and was moved to a first-aid center. His initial oxygen saturation was 82% and a thoracic computed tomography scan showed bilateral ground glass opacity in the peripheral lungs. His diagnosis was noncardiogenic pulmonary edema associated with exercise or swimming: exercise-induced pulmonary edema (EIPE or swimming-induced pulmonary edema (SIPE. Treatment with furosemide and corticosteroid relieved his symptoms of pulmonary edema. Discussion. Noncardiogenic pulmonary edema associated with endurance sports is not common, but knowledge about EIPE/SIPE or neurogenic pulmonary edema associated with hyponatremia, which is called Ayus-Arieff syndrome, is crucial. Knowledge and caution for possible risk factors, such as exposure to cold water or overhydration, are essential for both medical staff and endurance athletes. Conclusion. To determine the presence of pulmonary edema associated with strenuous exercise, oxygen saturation should be used as a screening tool at a first-aid center. To avoid risks for EIPE/SIPE, knowledge about these diseases is essential for medical staff and for athletes who perform extreme exercise.

  4. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Tashkin DP

    2018-01-01

    Full Text Available Donald P Tashkin,1 Michael E Wechsler2 1Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; 2Department of Medicine, National Jewish Health, Denver, CO, USA Abstract: COPD is a significant cause of morbidity and mortality. In some patients with COPD, eosinophils contribute to inflammation that promotes airway obstruction; approximately a third of stable COPD patients have evidence of eosinophilic inflammation. Although the eosinophil threshold associated with clinical relevance in patients with COPD is currently subject to debate, eosinophil counts hold potential as biomarkers to guide therapy. In particular, eosinophil counts may be useful in assessing which patients may benefit from inhaled corticosteroid therapy, particularly regarding exacerbation prevention. In addition, several therapies targeting eosinophilic inflammation are available or in development, including monoclonal antibodies targeting the IL5 ligand, the IL5 receptor, IL4, and IL13. The goal of this review was to describe the biologic characteristics of eosinophils, their role in COPD during exacerbations and stable disease, and their use as biomarkers to aid treatment decisions. We also propose an algorithm for inhaled corticosteroid use, taking into consideration eosinophil counts and pneumonia history, and emerging eosinophil-targeted therapies in COPD. Keywords: lung disease, pulmonary diseases, corticosteroids, asthma, pneumonia

  5. Physalis peruviana L. inhibits airway inflammation induced by cigarette smoke and lipopolysaccharide through inhibition of extracellular signal-regulated kinase and induction of heme oxygenase-1.

    Science.gov (United States)

    Park, Hyun Ah; Lee, Jae-Won; Kwon, Ok-Kyoung; Lee, Gilhye; Lim, Yourim; Kim, Jung Hee; Paik, Jin-Hyub; Choi, Sangho; Paryanto, Imam; Yuniato, Prasetyawan; Kim, Doo-Young; Ryu, Hyung Won; Oh, Sei-Ryang; Lee, Seung Jin; Ahn, Kyung-Seop

    2017-11-01

    Physalis peruviana L. (PP) is a medicinal herb that has been confirmed to have several biological activities, including anticancer, antioxidant and anti-inflammatory properties. The aim of the present study was to evaluate the protective effect of PP on cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced pulmonary inflammation. Treatment with PP significantly reduced the influx of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and lung of mice with CS- and LPS-induced pulmonary inflammation. PP also decreased the levels of reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the BALF. PP effectively attenuated the expression of monocyte chemoattractant protein-1 (MCP-1) and the activation of extracellular signal-regulated kinase (ERK) in the lung. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) activation and heme oxygenase-1 (HO-1) expression were increased by PP treatment. In an in vitro experiment, PP reduced the mRNA expression of TNF-α and MCP-1, and the activation of ERK in CS extract-stimulated A549 epithelial cells. Furthermore, PP increased the activation of Nrf2 and the expression of HO-1 in A549 cells. These findings suggest that PP has a therapeutic potential for the treatment of pulmonary inflammatory diseases, such as chronic obstructive pulmonary disease.

  6. Lodenafil treatment in the monocrotaline model of pulmonary hypertension in rats

    Directory of Open Access Journals (Sweden)

    Igor Bastos Polonio

    2014-08-01

    Full Text Available We assessed the effects of lodenafil on hemodynamics and inflammation in the rat model of monocrotaline-induced pulmonary hypertension (PH. Thirty male Sprague-Dawley rats were randomly divided into three groups: control; monocrotaline (experimental model; and lodenafil (experimental model followed by lodenafil treatment, p.o., 5 mg/kg daily for 28 days Mean pulmonary artery pressure (mPAP was obtained by right heart catheterization. We investigated right ventricular hypertrophy (RVH and IL-1 levels in lung fragments. The number of cases of RVH was significantly higher in the monocrotaline group than in the lodenafil and control groups, as were mPAP and IL-1 levels. We conclude that lodenafil can prevent monocrotaline-induced PH, RVH, and inflammation.

  7. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats.

    Directory of Open Access Journals (Sweden)

    Shoichiro Otsuki

    Full Text Available We tested the hypothesis that phenotypically modulated smooth muscle cells (SMCs and related inflammation are associated with the progression of experimental occlusive pulmonary vascular disease (PVD. Occlusive PVD was induced by combined exposure to a vascular endothelial growth factor receptor tyrosine kinase inhibitor Sugen 5416 and hypobaric hypoxia for 3 weeks in rats, which were then returned to ambient air. Hemodynamic, morphometric, and immunohistochemical studies, as well as gene expression analyses, were performed at 3, 5, 8, and 13 weeks after the initial treatment (n = 78. Experimental animals developed pulmonary hypertension and right ventricular hypertrophy, and exhibited a progressive increase in indices of PVD, including cellular intimal thickening and intimal fibrosis. Cellular intimal lesions comprised α smooth muscle actin (α SMA+, SM1+, SM2+/-, vimentin+ immature SMCs that were covered by endothelial monolayers, while fibrous intimal lesions typically included α SMA+, SM1+, SM2+, vimentin+/- mature SMCs. Plexiform lesions comprised α SMA+, vimentin+, SM1-, SM2- myofibroblasts covered by endothelial monolayers. Immature SMC-rich intimal and plexiform lesions were proliferative and were infiltrated by macrophages, while fibrous intimal lesions were characterized by lower proliferative abilities and were infiltrated by few macrophages. Compared with controls, the number of perivascular macrophages was already higher at 3 weeks and progressively increased during the experimental period; gene expression of pulmonary hypertension-related inflammatory molecules, including IL6, MCP1, MMP9, cathepsin-S, and RANTES, was persistently or progressively up-regulated in lungs of experimental animals. We concluded that phenotypically modulated SMCs and related inflammation are potentially associated with the progression of experimental obstructive PVD.

  8. Upregulated copper transporters in hypoxia-induced pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Adriana M Zimnicka

    Full Text Available Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX, a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2 also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC. In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.

  9. Prolonged Pulmonary Exposure to Diesel Exhaust Particles Exacerbates Renal Oxidative Stress, Inflammation and DNA Damage in Mice with Adenine-Induced Chronic Renal Failure.

    Science.gov (United States)

    Nemmar, Abderrahim; Karaca, Turan; Beegam, Sumaya; Yuvaraju, Priya; Yasin, Javed; Hamadi, Naserddine Kamel; Ali, Badreldin H

    2016-01-01

    Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP) on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks), which is known to involve inflammation and oxidative stress. DEP (0.5m/kg) was intratracheally (i.t.) instilled every 4th day for 4 weeks (7 i.t. instillation). Four days following the last exposure to either DEP or saline (control), various renal endpoints were measured. While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic renal failure. Our data provide biological plausibility that air

  10. Significance of Intratracheal Instillation Tests for the Screening of Pulmonary Toxicity of Nanomaterials.

    Science.gov (United States)

    Morimoto, Yasuo; Izumi, Hiroto; Yoshiura, Yukiko; Fujisawa, Yuri; Fujita, Katsuhide

    Inhalation tests are the gold standard test for the estimation of the pulmonary toxicity of respirable materials. Intratracheal instillation tests have been used widely, but they yield limited evidence of the harmful effects of respirable materials. We reviewed the effectiveness of intratracheal instillation tests for estimating the hazards of nanomaterials, mainly using research papers featuring intratracheal instillation and inhalation tests centered on a Japanese national project. Compared to inhalation tests, intratracheal instillation tests induced more acute inflammatory responses in the animal lung due to a bolus effect regardless of the toxicity of the nanomaterials. However, nanomaterials with high toxicity induced persistent inflammation in the chronic phase, and nanomaterials with low toxicity induced only transient inflammation. Therefore, in order to estimate the harmful effects of a nanomaterial, an observation period of 3 months or 6 months following intratracheal instillation is necessary. Among the endpoints of pulmonary toxicity, cell count and percentage of neutrophil, chemokines for neutrophils and macrophages, and oxidative stress markers are considered most important. These markers show persistent and transient responses in the lung from nanomaterials with high and low toxicity, respectively. If the evaluation of the pulmonary toxicity of nanomaterials is performed in not only the acute but also the chronic phase in order to avoid the bolus effect of intratracheal instillation and inflammatory-related factors that are used as endpoints of pulmonary toxicity, we speculate that intratracheal instillation tests can be useful for screening for the identification of the hazard of nanomaterials through pulmonary inflammation.

  11. Pulmonary toxicity of well-dispersed titanium dioxide nanoparticles following intratracheal instillation

    International Nuclear Information System (INIS)

    Yoshiura, Yukiko; Izumi, Hiroto; Oyabu, Takako; Hashiba, Masayoshi; Kambara, Tatsunori; Mizuguchi, Yohei; Lee, Byeong Woo; Okada, Takami; Tomonaga, Taisuke; Myojo, Toshihiko; Yamamoto, Kazuhiro; Kitajima, Shinichi; Horie, Masanori; Kuroda, Etsushi; Morimoto, Yasuo

    2015-01-01

    In order to investigate the pulmonary toxicity of titanium dioxide (TiO 2 ) nanoparticles, we performed an intratracheal instillation study with rats of well-dispersed TiO 2 nanoparticles and examined the pulmonary inflammation and histopathological changes in the lung. Wistar Hannover rats were intratracheally administered 0.2 mg (0.66 mg/kg) and 1.0 mg (3.3 mg/kg) of well-dispersed TiO 2 nanoparticles (P90; diameter of agglomerates: 25 nm), then the pulmonary inflammation responses were examined from 3 days to 6 months after the instillation, and the pathological features were examined up to 24 months. Transient inflammation and the upregulation of chemokines in the broncho-alveolar lavage fluid were observed for 1 month. No respiratory tumors or severe fibrosis were observed during the recovery time. These data suggest that transient inflammation induced by TiO 2 may not lead to chronic, irreversible legions in the lung, and that TiO 2 nanoparticles may not have a high potential for lung disorder

  12. Pulmonary toxicity of well-dispersed titanium dioxide nanoparticles following intratracheal instillation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiura, Yukiko, E-mail: y-yoshiura@med.uoeh-u.ac.jp; Izumi, Hiroto [University of Occupational and Environmental Health, Department of Occupational Pneumology, Institute of Industrial Ecological Science (Japan); Oyabu, Takako [University of Occupational and Environmental Health, Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences (Japan); Hashiba, Masayoshi; Kambara, Tatsunori [University of Occupational and Environmental Health, Department of Occupational Pneumology, Institute of Industrial Ecological Science (Japan); Mizuguchi, Yohei; Lee, Byeong Woo; Okada, Takami [University of Occupational and Environmental Health, Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences (Japan); Tomonaga, Taisuke [University of Occupational and Environmental Health, Department of Occupational Pneumology, Institute of Industrial Ecological Science (Japan); Myojo, Toshihiko [University of Occupational and Environmental Health, Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences (Japan); Yamamoto, Kazuhiro [National Institute of Advanced Industrial Science and Technology (AIST) (Japan); Kitajima, Shinichi [National Sanatorium Hoshizuka Keiaien (Japan); Horie, Masanori [National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute (HRI) (Japan); Kuroda, Etsushi [Osaka University, Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (Japan); Morimoto, Yasuo [University of Occupational and Environmental Health, Department of Occupational Pneumology, Institute of Industrial Ecological Science (Japan)

    2015-06-15

    In order to investigate the pulmonary toxicity of titanium dioxide (TiO{sub 2}) nanoparticles, we performed an intratracheal instillation study with rats of well-dispersed TiO{sub 2} nanoparticles and examined the pulmonary inflammation and histopathological changes in the lung. Wistar Hannover rats were intratracheally administered 0.2 mg (0.66 mg/kg) and 1.0 mg (3.3 mg/kg) of well-dispersed TiO{sub 2} nanoparticles (P90; diameter of agglomerates: 25 nm), then the pulmonary inflammation responses were examined from 3 days to 6 months after the instillation, and the pathological features were examined up to 24 months. Transient inflammation and the upregulation of chemokines in the broncho-alveolar lavage fluid were observed for 1 month. No respiratory tumors or severe fibrosis were observed during the recovery time. These data suggest that transient inflammation induced by TiO{sub 2} may not lead to chronic, irreversible legions in the lung, and that TiO{sub 2} nanoparticles may not have a high potential for lung disorder.

  13. Dasatinib-induced pulmonary arterial hypertension - A rare late complication.

    Science.gov (United States)

    Ibrahim, Uroosa; Saqib, Amina; Dhar, Vidhya; Odaimi, Marcel

    2018-01-01

    Dasatinib is a dual Src/Abl tyrosine kinase inhibitor approved for frontline and second line treatment of chronic phase chronic myelogenous leukemia. Pulmonary arterial hypertension is defined by an increase in mean pulmonary arterial pressure >25 mmHg at rest. Dasatinib-induced pulmonary hypertension has been reported in less than 1% of patients on chronic dasatinib treatment for chronic myelogenous leukemia. The pulmonary arterial hypertension from dasatinib may be categorized as either group 1 (drug-induced) or group 5 based on various mechanisms that may be involved including the pathogenesis of the disease process of chronic myelogenous leukemia. There have been reports of dasatinib-induced pulmonary arterial hypertension being reversible. We report a case of pulmonary arterial hypertension in a 46-year-old female patient with chronic phase chronic myelogenous leukemia on dasatinib treatment for over 10 years. She had significant improvement in symptoms after discontinuation of dasatinib and initiation of vasodilators. Several clinical questions arise once patients experience significant adverse effects as discussed in our case.

  14. Interleukin 13– and interleukin 17A–induced pulmonary hypertension phenotype due to inhalation of antigen and fine particles from air pollution

    Science.gov (United States)

    Park, Sung-Hyun; Chen, Wen-Chi; Esmaeil, Nafiseh; Lucas, Benjamin; Marsh, Leigh M.; Reibman, Joan

    2014-01-01

    Abstract Pulmonary hypertension has a marked detrimental effect on quality of life and life expectancy. In a mouse model of antigen-induced pulmonary arterial remodeling, we have recently shown that coexposure to urban ambient particulate matter (PM) significantly increased the thickening of the pulmonary arteries and also resulted in significantly increased right ventricular systolic pressures. Here we interrogate the mechanism and show that combined neutralization of interleukin 13 (IL-13) and IL-17A significantly ameliorated the increase in right ventricular systolic pressure, the circumferential muscularization of pulmonary arteries, and the molecular change in the right ventricle. Surprisingly, our data revealed a protective role of IL-17A for the antigen- and PM-induced severe thickening of pulmonary arteries. This protection was due to the inhibition of the effects of IL-13, which drove this response, and the expression of metalloelastase and resistin-like molecule α. However, the latter was redundant for the arterial thickening response. Anti-IL-13 exacerbated airway neutrophilia, which was due to a resulting excess effect of IL-17A, confirming concurrent cross inhibition of IL-13- and IL-17A-dependent responses in the lungs of animals exposed to antigen and PM. Our experiments also identified IL-13/IL-17A-independent molecular reprogramming in the lungs induced by exposure to antigen and PM, which indicates a risk for arterial remodeling and protection from arterial constriction. Our study points to IL-13- and IL-17A-coinduced inflammation as a new template for biomarkers and therapeutic targeting for the management of immune response–induced pulmonary hypertension. PMID:25610601

  15. Protective Effects of Surfactant Protein D (SP-D) Treatment in 1,3-β-glucan-modulated Allergic Inflammation

    DEFF Research Database (Denmark)

    Fakih, Dalia; Pilecki, Bartosz; Schlosser, Anders

    2015-01-01

    SP-D is a pulmonary collectin important in lung immunity. SP-D-deficient mice (Sftpd(-/-)) are reported to be susceptible to ovalbumin (OVA)- and fungal allergen-induced pulmonary inflammation, while treatment with exogenous SP-D has therapeutic effects in such disease models. β-glucans are a div...

  16. Chronic obstructive pulmonary disease and obstructive sleep apnea: overlaps in pathophysiology, systemic inflammation, and cardiovascular disease.

    LENUS (Irish Health Repository)

    McNicholas, Walter T

    2012-02-01

    Chronic obstructive pulmonary disease (COPD) and obstructive sleep apnea syndrome represent two of the most prevalent chronic respiratory disorders in clinical practice, and cardiovascular diseases represent a major comorbidity in each disorder. The two disorders coexist (overlap syndrome) in approximately 1% of adults but asymptomatic lower airway obstruction together with sleep-disordered breathing is more prevalent. Although obstructive sleep apnea syndrome has similar prevalence in COPD as the general population, and vice versa, factors such as body mass index and smoking influence relationships. Nocturnal oxygen desaturation develops in COPD, independent of apnea\\/hypopnea, and is more severe in the overlap syndrome, thus predisposing to pulmonary hypertension. Furthermore, upper airway flow limitation contributes to nocturnal desaturation in COPD without apnea\\/hypopnea. Evidence of systemic inflammation in COPD and sleep apnea, involving C-reactive protein and IL-6, in addition to nuclear factor-kappaB-dependent pathways involving tumor necrosis factor-alpha and IL-8, provides insight into potential basic interactions between both disorders. Furthermore, oxidative stress develops in each disorder, in addition to activation and\\/or dysfunction of circulating leukocytes. These findings are clinically relevant because systemic inflammation may contribute to the pathogenesis of cardiovascular diseases and the cell\\/molecular pathways involved are similar to those identified in COPD and sleep apnea. However, the pathophysiological and clinical significance of systemic inflammation in COPD and sleep apnea is not proven, and thus, studies of patients with the overlap syndrome should provide insight into the mechanisms of systemic inflammation in COPD and sleep apnea, in addition to potential relationships with cardiovascular disease.

  17. Influence of high carbohydrate versus high fat diet in ozone induced pulmonary injury and systemic metabolic impairment in a Brown Norway (BN) rat model of healthy aging

    Science.gov (United States)

    Rationale: Air pollution has been recently linked to the increased prevalence of metabolic syndrome. It has been postulated that dietary risk factors might exacerbate air pollution-induced metabolic impairment. We have recently reported that ozone exposure induces acute systemic ...

  18. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury.

    Science.gov (United States)

    Puntorieri, Valeria; Hiansen, Josh Qua; McCaig, Lynda A; Yao, Li-Juan; Veldhuizen, Ruud A W; Lewis, James F

    2013-11-20

    Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.

  19. Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice

    International Nuclear Information System (INIS)

    Haque, Rizwanul; Umstead, Todd M.; Ponnuru, Padmavathi; Guo Xiaoxuan; Hawgood, Samuel; Phelps, David S.; Floros, Joanna

    2007-01-01

    Millions are exposed to ozone levels above recommended limits, impairing lung function, causing epithelial damage and inflammation, and predisposing some individuals to pneumonia, asthma, and other lung conditions. Surfactant protein-A (SP-A) plays a role in host defense, the regulation of inflammation, and repair of tissue damage. We tested the hypothesis that the lungs of SP-A(-/-) (KO) mice are more susceptible to ozone-induced damage. We compared the effects of ozone on KO and wild type (WT) mice on the C57BL/6 genetic background by exposing them to 2 parts/million of ozone for 3 or 6 h and sacrificing them 0, 4, and 24 h later. Lungs were subject to bronchoalveolar lavage (BAL) or used to measure endpoints of oxidative stress and inflammation. Despite more total protein in BAL of KO mice after a 3 h ozone exposure, WT mice had increased oxidation of protein and had oxidized SP-A dimers. In KO mice there was epithelial damage as assessed by increased LDH activity and there was increased phospholipid content. In WT mice there were more BAL PMNs and elevated macrophage inflammatory protein (MIP)-2 and monocyte chemoattractant protein (MCP)-1. Changes in MIP-2 and MCP-1 were observed in both KO and WT, however mRNA levels differed. In KO mice MIP-2 mRNA levels changed little with ozone, but in WT levels they were significantly increased. In summary, several aspects of the inflammatory response differ between WT and KO mice. These in vivo findings appear to implicate SP-A in regulating inflammation and limiting epithelial damage in response to ozone exposure

  20. The exhibition to ozone diminishes the adherence and increases the membrane permeability of macrophages alveolar of rate

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    Ozone gas is generated photochemically in areas with high levels of automotive or industrial emissions, and causes irritation and inflammation of the airways if inhaled. Rat alveolar macrophages were obtained by lung lavage from male Sprague Dawley rats and used as a model to assess ozone induced cell damage (0,594 ppm for up to 60 minutes). Ozone exposure caused loss of cell adherence to a polystyrene substrate and increased membrane permeability, as noted by increases in specific 51 Cr release and citoplasmic calcium levels. The results indicate that the cell membrane is a target for ozone damage. Elevations of cytoplasmic calcium could mediate other macrophage responses to ozone , including eicosanoid and nitric oxide production, with concomitant decreases in phagocytic ability and superoxide production. (Author) [es

  1. Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xingqi; Ouyang, Zijun; You, Qian; He, Shuai; Meng, Qianqian; Hu, Chunhui; Wu, Xudong; Shen, Yan; Sun, Yang, E-mail: yangsun@nju.edu.cn; Wu, Xuefeng, E-mail: wuxf@nju.edu.cn; Xu, Qiang, E-mail: molpharm@163.com

    2016-07-15

    Idiopathic pulmonary fibrosis is a progressive, degenerative and almost irreversible disease. There is hardly an effective cure for lung damage due to pulmonary fibrosis. The purpose of this study was to evaluate the role of obaculactone in an already-assessed model of idiopathic pulmonary fibrosis induced by bleomycin administration. Mice were subjected to intratracheal instillation of bleomycin, and obaculactone was given orally after bleomycin instillation daily for 23 days. Treatment with obaculactone ameliorated body weight loss, lung histopathology abnormalities and pulmonary collagen deposition, with a decrease of the inflammatory cell number and the cytokine level in bronchoalveolar lavage fluid. Moreover, obaculactone inhibited the expression of icam1, vcam1, inos and cox2, and attenuated oxidative stress in bleomycin-treated lungs. Importantly, the production of collagen I and α-SMA in lung tissues as well as the levels of TGF-β1, ALK5, p-Smad2 and p-Smad3 in lung homogenates was also reduced after obaculactone treatment. Finally, the TGF-β1-induced epithelial-mesenchymal transition via Smad-dependent and Smad-independent pathways was reversed by obaculactone. Collectively, these data suggest that obaculactone may be a promising drug candidate for the treatment of idiopathic pulmonary fibrosis. - Highlights: • Obaculactone ameliorates bleomycin-induced pulmonary fibrosis in mice. • Obaculactone mitigates bleomycin-induced inflammatory response in lungs. • Obaculactone exerts inhibitory effects on TGF-β1 signaling and TGF-β1-induced EMT progress.

  2. Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice

    International Nuclear Information System (INIS)

    Wang, Xingqi; Ouyang, Zijun; You, Qian; He, Shuai; Meng, Qianqian; Hu, Chunhui; Wu, Xudong; Shen, Yan; Sun, Yang; Wu, Xuefeng; Xu, Qiang

    2016-01-01

    Idiopathic pulmonary fibrosis is a progressive, degenerative and almost irreversible disease. There is hardly an effective cure for lung damage due to pulmonary fibrosis. The purpose of this study was to evaluate the role of obaculactone in an already-assessed model of idiopathic pulmonary fibrosis induced by bleomycin administration. Mice were subjected to intratracheal instillation of bleomycin, and obaculactone was given orally after bleomycin instillation daily for 23 days. Treatment with obaculactone ameliorated body weight loss, lung histopathology abnormalities and pulmonary collagen deposition, with a decrease of the inflammatory cell number and the cytokine level in bronchoalveolar lavage fluid. Moreover, obaculactone inhibited the expression of icam1, vcam1, inos and cox2, and attenuated oxidative stress in bleomycin-treated lungs. Importantly, the production of collagen I and α-SMA in lung tissues as well as the levels of TGF-β1, ALK5, p-Smad2 and p-Smad3 in lung homogenates was also reduced after obaculactone treatment. Finally, the TGF-β1-induced epithelial-mesenchymal transition via Smad-dependent and Smad-independent pathways was reversed by obaculactone. Collectively, these data suggest that obaculactone may be a promising drug candidate for the treatment of idiopathic pulmonary fibrosis. - Highlights: • Obaculactone ameliorates bleomycin-induced pulmonary fibrosis in mice. • Obaculactone mitigates bleomycin-induced inflammatory response in lungs. • Obaculactone exerts inhibitory effects on TGF-β1 signaling and TGF-β1-induced EMT progress.

  3. Differential expression of ozone-induced gene during exposures to ...

    African Journals Online (AJOL)

    Differential expression of ozone-induced gene during exposures to salt stress in Polygonum sibiricum Laxm leaves, stem and underground stem. ... PcOZI-1 mRNA in untreated plants was detected at low levels in underground stem, leaves and at higher levels in stem. PcOZI-1 mRNA accumulation was transiently induced ...

  4. Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline.

    Directory of Open Access Journals (Sweden)

    Francesca Seta

    Full Text Available The aim of this study was to examine the role of cyclooxygenase-2 (COX-2 and downstream signaling of prostanoids in the pathogenesis of pulmonary hypertension (PH using mice with genetically manipulated COX-2 expression. COX-2 knockdown (KD mice, characterized by 80-90% suppression of COX-2, and wild-type (WT control mice were treated weekly with monocrotaline (MCT over 10 weeks. Mice were examined for cardiac hypertrophy/function and right ventricular pressure. Lung histopathological analysis was performed and various assays were carried out to examine oxidative stress, as well as gene, protein, cytokine and prostanoid expression. We found that MCT increased right ventricular systolic and pulmonary arterial pressures in comparison to saline-treated mice, with no evidence of cardiac remodeling. Gene expression of endothelin receptor A and thromboxane synthesis, regulators of vasoconstriction, were increased in MCT-treated lungs. Bronchoalveolar lavage fluid and lung sections demonstrated mild inflammation and perivascular edema but activation of inflammatory cells was not predominant under the experimental conditions. Heme oxygenase-1 (HO-1 expression and indicators of oxidative stress in lungs were significantly increased, especially in COX-2 KD MCT-treated mice. Gene expression of NOX-4, but not NOX-2, two NADPH oxidase subunits crucial for superoxide generation, was induced by ∼4-fold in both groups of mice by MCT. Vasodilatory and anti-aggregatory prostacyclin was reduced by ∼85% only in MCT-treated COX-2 KD mice. This study suggests that increased oxidative stress-derived endothelial dysfunction, vasoconstriction and mild inflammation, exacerbated by the lack of COX-2, contribute to the pathogenesis of early stages of PH when mild hemodynamic changes are evident and not yet accompanied by vascular and cardiac remodeling.

  5. Amifostine Analog, DRDE-30, Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Aastha Arora

    2018-04-01

    Full Text Available Bleomycin (BLM is an effective curative option in the management of several malignancies including pleural effusions; but pulmonary toxicity, comprising of pneumonitis and fibrosis, poses challenge in its use as a front-line chemotherapeutic. Although Amifostine has been found to protect lungs from the toxic effects of radiation and BLM, its application is limited due to associated toxicity and unfavorable route of administration. Therefore, there is a need for selective, potent, and safe anti-fibrotic drugs. The current study was undertaken to assess the protective effects of DRDE-30, an analog of Amifostine, on BLM-induced lung injury in C57BL/6 mice. Whole body micro- computed tomography (CT was used to non-invasively observe tissue damage, while broncheo-alveolar lavage fluid (BALF and lung tissues were assessed for oxidative damage, inflammation and fibrosis. Changes in the lung density revealed by micro-CT suggested protection against BLM-induced lung injury by DRDE-30, which correlated well with changes in lung morphology and histopathology. DRDE-30 significantly blunted BLM-induced oxidative stress, inflammation and fibrosis in the lungs evidenced by reduced oxidative damage, endothelial barrier dysfunction, Myeloperoxidase (MPO activity, pro-inflammatory cytokine release and protection of tissue architecture, that could be linked to enhanced anti-oxidant defense system and suppression of redox-sensitive pro-inflammatory signaling cascades. DRDE-30 decreased the BLM-induced augmentation in BALF TGF-β and lung hydroxyproline levels, as well as reduced the expression of the mesenchymal marker α-smooth muscle actin (α-SMA, suggesting the suppression of epithelial to mesenchymal transition (EMT as one of its anti-fibrotic effects. The results demonstrate that the Amifostine analog, DRDE-30, ameliorates the oxidative injury and lung fibrosis induced by BLM and strengthen its potential use as an adjuvant in alleviating the side effects of

  6. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    International Nuclear Information System (INIS)

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-01-01

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α 2 -macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone metabolic

  7. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    Energy Technology Data Exchange (ETDEWEB)

    Bass, V. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Gordon, C.J.; Jarema, K.A.; MacPhail, R.C. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Cascio, W.E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Phillips, P.M. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Ledbetter, A.D.; Schladweiler, M.C. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Andrews, D. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Miller, D. [Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC (United States); Doerfler, D.L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, U.P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  8. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  9. Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats

    NARCIS (Netherlands)

    B.K. Dahal (Bhola); D. Kosanovic (Djuro); C. Kaulen (Christina); T. Cornitescu (Teodora); R. Savai (Rajkumar); J. Hoffmann (Julia); I.K.M. Reiss (Irwin); H.A. Ghofrani; N. Weissmann; W.M. Kuebler (Wolfgang); W. Seeger (Werner); F. Grimminger (Friedrich); R.T. Schermuly (Ralph Theo)

    2011-01-01

    textabstractBackground: Mast cells (MCs) are implicated in inflammation and tissue remodeling. Accumulation of lung MCs is described in pulmonary hypertension (PH); however, whether MC degranulation and c-kit, a tyrosine kinase receptor critically involved in MC biology, contribute to the

  10. Dietary Modulation of Inflammation-Induced Colorectal Cancer through PPARγ

    Directory of Open Access Journals (Sweden)

    Ashlee B. Carter

    2009-01-01

    Full Text Available Mounting evidence suggests that the risk of developing colorectal cancer (CRC is dramatically increased for patients with chronic inflammatory diseases. For instance, patients with Crohn's Disease (CD or Ulcerative Colitis (UC have a 12–20% increased risk for developing CRC. Preventive strategies utilizing nontoxic natural compounds that modulate immune responses could be successful in the suppression of inflammation-driven colorectal cancer in high-risk groups. The increase of peroxisome proliferator-activated receptor-γ (PPAR-γ expression and its transcriptional activity has been identified as a target for anti-inflammatory efforts, and the suppression of inflammation-driven colon cancer. PPARγ down-modulates inflammation and elicits antiproliferative and proapoptotic actions in epithelial cells. All of which may decrease the risk for inflammation-induced CRC. This review will focus on the use of orally active, naturally occurring chemopreventive approaches against inflammation-induced CRC that target PPARγ and therefore down-modulate inflammation.

  11. Diclofenac inhibits 27-hydroxycholesterol-induced inflammation.

    Science.gov (United States)

    Kim, Bo-Young; Son, Yonghae; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2016-09-23

    27-Hydroxycholesterol (27OHChol) is a cholesterol oxidation product that induces inflammation. In the current study we investigated the effects of diclofenac on inflammatory responses caused by 27OHChol using human monocyte/macrophage (THP-1) cells. Transcription and secretion of CCL2, CCL3, and CCL4 chemokines enhanced by 27OHChol were significantly attenuated by diclofenac in a concentration dependent manner. Migrations of monocytic cells and CCR5-positive Jurkat T cells were reduced proportionally to the concentrations of diclofenac. Superproduction of CCL2 and monocytic cell migration induced by 27OHChol plus LPS were significantly attenuated by diclofenac. Diclofenac also attenuated transcription of MMP-9 and release of its active gene product. These results indicate that diclofenac inhibits 27OHChol-induced inflammatory responses, thereby suppressing inflammation in a milieu rich in cholesterol oxidation products. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Ozone health effects

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Ozone is a principal component of photochemical air pollution endogenous to numerous metropolitan areas. It is primarily formed by the oxidation of NOx in the presence of sunlight and reactive organic compounds. Ozone is a highly active oxidizing agent capable of causing injury to the lung. Lung injury may take the form of irritant effects on the respiratory tract that impair pulmonary function and result in subjective symptoms of respiratory discomfort. These symptoms include, but are not limited to, cough and shortness of breath, and they can limit exercise performance. The effects of ozone observed in humans have been primarily limited to alterations in respiratory function, and a range of respiratory physiological parameters have been measured as a function of ozone exposure in adults and children. These affects have been observed under widely varying (clinical experimental and environmental settings) conditions

  13. Ozone-induced changes in oxidative stress parameters in brains of adult, middle-age, and senescent Brown Norway rats

    Science.gov (United States)

    Understanding life-stage susceptibility is a critical part of community based human health risk assessment following chemical exposure. Recently there is growing concern over a common air pollutant, ozone (03), and adverse health effects including dysfunction of the pulmonary, ca...

  14. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    Science.gov (United States)

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses.

    Directory of Open Access Journals (Sweden)

    Kathie-Anne Walters

    Full Text Available Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4. Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.

  16. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha recruits bone marrow-derived cells to the murine pulmonary vasculature.

    Directory of Open Access Journals (Sweden)

    Daniel J Angelini

    2010-06-01

    Full Text Available Pulmonary hypertension (PH is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling in vivo.We used a mouse bone marrow transplant model in which lethally irradiated mice were rescued with bone marrow transplanted from green fluorescent protein (GFP(+ transgenic mice to determine the role of HIMF in recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary vasculature; in several neomuscularized small (approximately 20 microm capillary-like vessels, an entirely new medial wall was made up of these cells. We found these GFP(+ BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of the GFP(+ cells that localized to the pulmonary vasculature were alpha-smooth muscle actin(+ and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs. The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner.These results demonstrate HIMF-dependent recruitment of BMD

  17. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice

    NARCIS (Netherlands)

    Jurk, Diana; Wilson, Caroline; Passos, Joao F.; Oakley, Fiona; Correia-Melo, Clara; Greaves, Laura; Saretzki, Gabriele; Fox, Chris; Lawless, Conor; Anderson, Rhys; Hewitt, Graeme; Pender, Sylvia L. F.; Fullard, Nicola; Nelson, Glyn; Mann, Jelena; van de Sluis, Bart; Mann, Derek A.; von Zglinicki, Thomas

    Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-kappa B induces premature ageing in mice. We also show that these mice have reduced

  18. Sphingosine 1-Phosphate-Induced ICAM-1 Expression via NADPH Oxidase/ROS-Dependent NF-κB Cascade on Human Pulmonary Alveolar Epithelial Cells

    Science.gov (United States)

    Lin, Chih-Chung; Yang, Chien-Chung; Cho, Rou-Ling; Wang, Chen-Yu; Hsiao, Li-Der; Yang, Chuen-Mao

    2016-01-01

    The intercellular adhesion molecule-1 (ICAM-1) expression is frequently correlated with the lung inflammation. In lung injury, sphingosine-1-phosphate (S1P, bioactive sphingolipid metabolite), participate gene regulation of adhesion molecule in inflammation progression and aggravate tissue damage. To investigate the transduction mechanisms of the S1P in pulmonary epithelium, we demonstrated that exposure of HPAEpiCs (human pulmonary alveolar epithelial cells) to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCδ), PF431396 (PYK2), diphenyleneiodonium chloride (DPI), apocynin (NADPH oxidase), Edaravone (ROS), and Bay11-7082 (NF-κB). Consistently, knockdown with siRNA transfection of PKCδ, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A) and Gi/o-coupled receptor antagonist (GPA2) also blocked the upregulation of ICAM-1 protein and mRNA induced by S1P. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCδ-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-κB p65 phosphorylation and nuclear translocation in HPAEpiCs. Activated NF-κB was blocked by Rottlerin, PF431396, APO, DPI, or Edaravone. Besides, the results of monocyte adhesion assay indicated that S1P-induced ICAM-1 expression on HPAEpiCs can enhance the monocyte attachments. In the S1P-treated mice, we found that the levels of ICAM-1 protein and mRNA in the lung fractions, the pulmonary hematoma and leukocyte count in bronchoalveolar lavage fluid were enhanced through a PKCδ/PYK2/NADPH oxidase/ROS/NF-κB signaling pathway. We concluded that S1P-accelerated lung damage is due to the ICAM-1 induction associated with

  19. Upfront triple combination therapy-induced pulmonary edema in a case of pulmonary arterial hypertension associated with Sjogren's syndrome

    Directory of Open Access Journals (Sweden)

    Kimikazu Takeuchi

    Full Text Available Clinical efficacy of combination therapy using vasodilators for pulmonary arterial hypertension (PAH is well established. However, information on its safety are limited. We experienced a case of primary Sjogren's syndrome associated with PAH where the patient developed pulmonary edema immediately after the introduction of upfront triple combination therapy. Although the combination therapy successfully stabilized her pre-shock state, multiple ground glass opacities (GGO emerged. We aborted the dose escalation of epoprostenol and initiated continuous furosemide infusion and noninvasive positive pressure ventilation (NPPV, but this did not prevent an exacerbation of pulmonary edema. Chest computed tomography showing diffuse alveolar infiltrates without inter-lobular septal thickening suggests the pulmonary edema was unlikely due to cardiogenic pulmonary edema and pulmonary venous occlusive disease. Acute respiratory distress syndrome was also denied from no remarkable inflammatory sign and negative results of drug-induced lymphocyte stimulation tests (DLST. We diagnosed the etiological mechanism as pulmonary vasodilator-induced trans-capillary fluid leakage. Following steroid pulse therapy dramatically improved GGO. We realized that overmuch dose escalation of epoprostenol on the top of dual upfront combination poses the risk of pulmonary edema. Steroid pulse therapy might be effective in cases of vasodilator-induced pulmonary edema in Sjogren's syndrome associated with PAH. Keywords: Steroid therapy, Ground glass opacity, Inter-lobular septal thickening, Epoprostenol, Acute respiratory distress syndrome, Trans-capillary fluid leakage

  20. The Curious Question of Exercise-Induced Pulmonary Edema

    Directory of Open Access Journals (Sweden)

    Melissa L. Bates

    2011-01-01

    Full Text Available The question of whether pulmonary edema develops during exercise on land is controversial. Yet, the development of pulmonary edema during swimming and diving is well established. This paper addresses the current controversies that exist in the field of exercise-induced pulmonary edema on land and with water immersion. It also discusses the mechanisms by which pulmonary edema can develop during land exercise, swimming, and diving and the current gaps in knowledge that exist. Finally, this paper discusses how these fields can continue to advance and the areas where clinical knowledge is lacking.

  1. Lodenafil treatment in the monocrotaline model of pulmonary hypertension in rats

    OpenAIRE

    Polonio, Igor Bastos; Acencio, Milena Marques Pagliareli; Pazetti, Rogério; Almeida, Francine Maria de; Silva, Bárbara Soares da; Pereira, Karina Aparecida Bonifácio; Souza, Rogério

    2014-01-01

    We assessed the effects of lodenafil on hemodynamics and inflammation in the rat model of monocrotaline-induced pulmonary hypertension (PH). Thirty male Sprague-Dawley rats were randomly divided into three groups: control; monocrotaline (experimental model); and lodenafil (experimental model followed by lodenafil treatment, p.o., 5 mg/kg daily for 28 days) Mean pulmonary artery pressure (mPAP) was obtained by right heart catheterization. We investigated right ventricular hypertrophy (RVH) and...

  2. Comparative study of two models of combined pulmonary fibrosis and emphysema in mice.

    Science.gov (United States)

    Zhang, Wan-Guang; Wu, Si-Si; He, Li; Yang, Qun; Feng, Yi-Kuan; Chen, Yue-Tao; Zhen, Guo-Hua; Xu, Yong-Jian; Zhang, Zhen-Xiang; Zhao, Jian-Ping; Zhang, Hui-Lan

    2017-04-01

    Combined pulmonary fibrosis and emphysema (CPFE) is an "umbrella term" encompassing emphysema and pulmonary fibrosis, but its pathogenesis is not known. We established two models of CPFE in mice using tracheal instillation with bleomycin (BLM) or murine gammaherpesvirus 68 (MHV-68). Experimental mice were divided randomly into four groups: A (normal control, n=6), B (emphysema, n=6), C (emphysema+MHV-68, n=24), D (emphysema+BLM, n=6). Group C was subdivided into four groups: C1 (sacrificed on day 367, 7 days after tracheal instillation of MHV-68); C2 (day 374; 14days); C3 (day 381; 21days); C4 (day 388; 28days). Conspicuous emphysema and interstitial fibrosis were observed in BLM and MHV-68 CPFE mouse models. However, BLM induced diffuse pulmonary interstitial fibrosis with severely diffuse pulmonary inflammation; MHV-68 induced relatively modest inflammation and fibrosis, and the inflammation and fibrosis were not diffuse, but instead around bronchioles. Inflammation and fibrosis were detectable in the day-7 subgroup and reached a peak in the day-28 subgroup in the emphysema + MHV-68 group. Levels of macrophage chemoattractant protein-1, macrophage inflammatory protein-1α, interleukin-13, and transforming growth factor-β1 in bronchoalveolar lavage fluid were increased significantly in both models. Percentage of apoptotic type-2 lung epithelial cells was significantly higher; however, all four types of cytokine and number of macrophages were significantly lower in the emphysema+MHV-68 group compared with the emphysema +BLM group. The different changes in pathology between BLM and MHV-68 mice models demonstrated different pathology subtypes of CPFE: macrophage infiltration and apoptosis of type-II lung epithelial cells increased with increasing pathology score for pulmonary fibrosis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Pulmonary langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Suri Harpreet S

    2012-03-01

    Full Text Available Abstract Pulmonary Langerhans Cell Histiocytosis (PLCH is a relatively uncommon lung disease that generally, but not invariably, occurs in cigarette smokers. The pathologic hallmark of PLCH is the accumulation of Langerhans and other inflammatory cells in small airways, resulting in the formation of nodular inflammatory lesions. While the overwhelming majority of patients are smokers, mechanisms by which smoking induces this disease are not known, but likely involve a combination of events resulting in enhanced recruitment and activation of Langerhans cells in small airways. Bronchiolar inflammation may be accompanied by variable lung interstitial and vascular involvement. While cellular inflammation is prominent in early disease, more advanced stages are characterized by cystic lung destruction, cicatricial scarring of airways, and pulmonary vascular remodeling. Pulmonary function is frequently abnormal at presentation. Imaging of the chest with high resolution chest CT scanning may show characteristic nodular and cystic abnormalities. Lung biopsy is necessary for a definitive diagnosis, although may not be required in instances were imaging findings are highly characteristic. There is no general consensus regarding the role of immunosuppressive therapy in smokers with PLCH. All smokers must be counseled on the importance of smoking cessation, which may result in regression of disease and obviate the need for systemic immunosuppressive therapy. The prognosis for most patients is relatively good, particularly if longitudinal lung function testing shows stability. Complications like pneumothoraces and secondary pulmonary hypertension may shorten life expectancy. Patients with progressive disease may require lung transplantation.

  4. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    Directory of Open Access Journals (Sweden)

    Ozkan Onal

    2015-01-01

    prevented intestine from ischemia reperfusion injury. It is thought that the therapeutic effect of ozone is associated with increase in antioxidant enzymes and protection of cells from oxidation and inflammation.

  5. Vaccine-induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Bosch, J.A.; Drayson, M.T.; Aldred, S.; Veldhuijzen van Zanten, J.J.C.S.

    2014-01-01

    Inflammation is associated with poorer vascular function, with evidence to suggest that inflammation can also impair the vascular responses to mental stress. This study examined the effects of vaccine-induced inflammation on vascular responses to mental stress in healthy participants. Eighteen male

  6. Alveolar Macrophages Play a Key Role in Cockroach-Induced Allergic Inflammation via TNF-α Pathway

    Science.gov (United States)

    Kim, Joo Young; Sohn, Jung Ho; Choi, Je-Min; Lee, Jae-Hyun; Hong, Chein-Soo; Lee, Joo-Shil; Park, Jung-Won

    2012-01-01

    The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR)-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF)-α. We determined whether the serine protease in German cockroach extract (GCE) enhances TNF-α production by alveolar macrophages through the PAR-2 pathway and whether the TNF-α production affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNF-α production were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR), inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL)-5, IL-13 and TNF-α production in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model. PMID:23094102

  7. Sphingosine 1-phosphate-induced ICAM-1 expression via NADPH oxidase/ROS-dependent NF-kappaB cascade on human pulmonary alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Chin-Chung eLin

    2016-03-01

    Full Text Available The intercellular adhesion molecule-1 (ICAM-1 expression is frequently correlated with the lung inflammation. A bioactive sphingolipid metabolite, sphingosine-1-phosphate (S1P, was involved in inflammation through the adhesion molecules induction, and then caused lung injury. However, the transduction mechanisms of the S1P stimulation to induce ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs remain unclear. Here, we demonstrated that exposure of HPAEpiCs to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCdelta, PF431396 (PYK2, diphenyleneiodonium chloride (DPI, apocynin (NADPH oxidase, Edaravone (ROS, and Bay11-7082 (NF-kappaB. Consistently, knockdown with siRNA transfection of PKCdelta, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A and Gi/o-coupled receptor antagonist (GPA2 also blocked S1P-induced ICAM-1 protein and mRNA expression. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCdelta-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-kappaB p65 phosphorylation and translocation from the cytosol to the nucleus in HPAEpiCs, which was inhibited by Rottlerin, PF431396, APO, DPI, or Edaravone. In the in vitro study, we established that S1P induced monocyte adhesion via an ICAM-1-dependent pathway. In the in vivo study, we found that S1P induced ICAM-1 protein and mRNA levels in the lung fractions, pulmonary hematoma, and leukocyte (mainly eosinophils and neutrophils count in bronchoalveolar lavage (BAL fluid in mice via a PKCdelta/PYK2/NADPH oxidase/ROS/NF-kappaB signaling pathway. We concluded that S1P may induce lung

  8. Ozone Therapy in the Management of Persistent Radiation-Induced Rectal Bleeding in Prostate Cancer Patients

    Directory of Open Access Journals (Sweden)

    Bernardino Clavo

    2015-01-01

    Full Text Available Introduction. Persistent radiation-induced proctitis and rectal bleeding are debilitating complications with limited therapeutic options. We present our experience with ozone therapy in the management of such refractory rectal bleeding. Methods. Patients (n=12 previously irradiated for prostate cancer with persistent or severe rectal bleeding without response to conventional treatment were enrolled to receive ozone therapy via rectal insufflations and/or topical application of ozonized-oil. Ten (83% patients had Grade 3 or Grade 4 toxicity. Median follow-up after ozone therapy was 104 months (range: 52–119. Results. Following ozone therapy, the median grade of toxicity improved from 3 to 1 (p<0.001 and the number of endoscopy treatments from 37 to 4 (p=0.032. Hemoglobin levels changed from 11.1 (7–14 g/dL to 13 (10–15 g/dL, before and after ozone therapy, respectively (p=0.008. Ozone therapy was well tolerated and no adverse effects were noted, except soft and temporary flatulence for some hours after each session. Conclusions. Ozone therapy was effective in radiation-induced rectal bleeding in prostate cancer patients without serious adverse events. It proved useful in the management of rectal bleeding and merits further evaluation.

  9. Molecular Mechanisms of Nanosized Titanium Dioxide–Induced Pulmonary Injury in Mice

    Science.gov (United States)

    Sang, Xuezi; Cui, Yaling; Wang, Xiaochun; Gui, Suxin; Tan, Danlin; Zhu, Min; Zhao, Xiaoyang; Sheng, Lei; Wang, Ling; Hong, Fashui; Tang, Meng

    2013-01-01

    The pulmonary damage induced by nanosized titanium dioxide (nano-TiO2) is of great concern, but the mechanism of how this damage may be incurred has yet to be elucidated. Here, we examined how multiple genes may be affected by nano-TiO2 exposure to contribute to the observed damage. The results suggest that long-term exposure to nano-TiO2 led to significant increases in inflammatory cells, and levels of lactate dehydrogenase, alkaline phosphate, and total protein, and promoted production of reactive oxygen species and peroxidation of lipid, protein and DNA in mouse lung tissue. We also observed nano-TiO2 deposition in lung tissue via light and confocal Raman microscopy, which in turn led to severe pulmonary inflammation and pneumonocytic apoptosis in mice. Specifically, microarray analysis showed significant alterations in the expression of 847 genes in the nano-TiO2-exposed lung tissues. Of 521 genes with known functions, 361 were up-regulated and 160 down-regulated, which were associated with the immune/inflammatory responses, apoptosis, oxidative stress, the cell cycle, stress responses, cell proliferation, the cytoskeleton, signal transduction, and metabolic processes. Therefore, the application of nano-TiO2 should be carried out cautiously, especially in humans. PMID:23409001

  10. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia

    Science.gov (United States)

    Minamino, Tohru; Christou, Helen; Hsieh, Chung-Ming; Liu, Yuxiang; Dhawan, Vijender; Abraham, Nader G.; Perrella, Mark A.; Mitsialis, S. Alex; Kourembanas, Stella

    2001-07-01

    Chronic hypoxia causes pulmonary hypertension with smooth muscle cell proliferation and matrix deposition in the wall of the pulmonary arterioles. We demonstrate here that hypoxia also induces a pronounced inflammation in the lung before the structural changes of the vessel wall. The proinflammatory action of hypoxia is mediated by the induction of distinct cytokines and chemokines and is independent of tumor necrosis factor- signaling. We have previously proposed a crucial role for heme oxygenase-1 (HO-1) in protecting cardiomyocytes from hypoxic stress, and potent anti-inflammatory properties of HO-1 have been reported in models of tissue injury. We thus established transgenic mice that constitutively express HO-1 in the lung and exposed them to chronic hypoxia. HO-1 transgenic mice were protected from the development of both pulmonary inflammation as well as hypertension and vessel wall hypertrophy induced by hypoxia. Significantly, the hypoxic induction of proinflammatory cytokines and chemokines was suppressed in HO-1 transgenic mice. Our findings suggest an important protective function of enzymatic products of HO-1 activity as inhibitors of hypoxia-induced vasoconstrictive and proinflammatory pathways.

  11. Maternal PUFA omega-3 supplementation prevents hyperoxia-induced pulmonary hypertension in the offspring.

    Science.gov (United States)

    Zhong, Ying; Catheline, Daniel; Houeijeh, Ali; Sharma, Dyuti; Du, Li-Zhong; Besengez, Capucine; Deruelle, Philippe; Legrand, Philippe; Storme, Laurent

    2018-03-29

    Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 16-25% of premature infants with bronchopulmonary dysplasia (BPD), contributing significantly to perinatal morbidity and mortality. Polyunsaturated fatty acids ω-3 (PUFA ω-3) can improve vascular remodeling, angiogenesis, and inflammation under pathophysiological conditions. However, the effects of PUFA ω-3 supplementation in BPD-associated PH are unknown. The present study aimed to evaluate the effects of PUFA ω-3 on pulmonary vascular remodeling, angiogenesis, and inflammatory response in a hyperoxia-induced rat model of PH. From embryonic day 15, pregnant Spague-Dawley rats were supplemented daily with PUFA ω-3, PUFA ω-6, or normal saline (0.2 ml/day). After birth, pups were pooled, assigned as 12 per litter, and randomly to either in air or continuous oxygen exposure (FiO2 = 85%) for 20 days, then sacrificed for pulmonary hemodynamic and morphometric analysis. We found that PUFA ω-3 supplementation improved survival, decreased right ventricular systolic pressure and RVH caused by hyperoxia, and significantly improved alveolarization, vascular remodeling, and vascular density. PUFA ω-3 supplementation produced a higher level of total ω-3 in lung tissue and breast milk, and was found reversing the reduced levels of VEGFA, VEGFR-2, ANGPT-1, TIE-2, eNOS, and NO concentrations in lung tissue, and the increased ANGPT-2 levels in hyperoxia-exposed rats. The beneficial effects of PUFA ω-3 in improving lung injuries were also associated with an inhibition of leukocyte infiltration, and reduced expression of proinflammatory cytokines IL-1β, IL-6 and TNF-α. These data indicated that maternal PUFA ω-3 supplementation strategies could effectively protect against infant PH induced by hyperoxia.

  12. Chronic bronchiolitis in non-human primates after prolonged ozone exposure

    International Nuclear Information System (INIS)

    Eustis, S.L.

    1979-01-01

    Bonnet monkeys (Macaca radiata) were exposed to 0.0, 0.5, and 0.8 ppM ozone for 7, 28, or 90 consecutive d, eight h per d. Changes in the lung evoked by prolonged oxidant exposure were evaluated by light microscopy, scanning electron microscopy, transmission electron microscopy, autoradiography, and morphometry. Morphological changes were principally characterized as a low-grade chronic respiratory bronchiolitis. Proximal generations of respiratory bronchioles were the most consistently affected region of the pulmonary acinus. Major features of the bronchiolitis were intraluminal accumulations of macrophages and hypertrophy and hyperplasia of cuboidal bronchiolar epithelial cells. The degree of inflammation was greatest at the 0.8 ppM ozone concentration at each exposure period. The number of inflammatory cells observed at 90 d, however, was about one-half that observed at 7 d. Tritiated thymidine labeling and differential cell counts of respiratory bronchiolar epithelium demonstrated a proliferative response and an increase in the proportion of cubiodal bronchiolar cells which presumably function as the progenitor cell during cell renewal and repair of the epithelium. The labeling index remained elevated above control values through 90 d of ozone exposure despite a reduction below 7 d values at both 28 and 90 d. The epithelial hyperplasia persisted through 90 d at a level similar to but slightly above that present at 7 d. Since cell differentials remained shifted at 28 and 90 d, it appears that persistent ozone exposure delayed maturation and transformation of cubiodal bronchiolar cells to their mature phenotype

  13. Beyond corticosteroids: future prospects in the management of inflammation in COPD

    Directory of Open Access Journals (Sweden)

    N. Roche

    2011-09-01

    Full Text Available Inflammation plays a central role in the pathophysiology of chronic obstructive pulmonary disease (COPD. Exposure to cigarette smoke induces the recruitment of inflammatory cells in the airways and stimulates innate and adaptive immune mechanisms. Airway inflammation is involved in increased bronchial wall thickness, increased bronchial smooth muscle tone, mucus hypersecretion and loss of parenchymal elastic structures. Oxidative stress impairs tissue integrity, accelerates lung ageing and reduces the efficacy of corticosteroids by decreasing levels of histone deacetylase-2. Protease–antiprotease imbalance impairs tissues and is involved in inflammatory processes. Inflammation is also present in the pulmonary artery wall and at the systemic level in COPD patients, and may be involved in COPD-associated comorbidities. Proximal airways inflammation contributes to symptoms of chronic bronchitis while distal and parenchymal inflammation relates to airflow obstruction, emphysema and hyperinflation. Basal levels of airways and systemic inflammation are increased in frequent exacerbators. Inhaled corticosteroids are much less effective in COPD than in asthma, which relates to the intrinsically poor reversibility of COPD-related airflow obstruction and to molecular mechanisms of resistance relating to oxidative stress. Ongoing research aims at developing new drugs targeting more intimately COPD-specific mechanisms of inflammation, hypersecretion and tissue destruction and repair. Among new anti-inflammatory agents, phosphodiesterase-4 inhibitors have been the first to emerge.

  14. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Rusu, Mirabela, E-mail: mirabela.rusu@gmail.com; Wang, Haibo; Madabhushi, Anant [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Golden, Thea; Gow, Andrew [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-08-15

    Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic

  15. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model

    International Nuclear Information System (INIS)

    Rusu, Mirabela; Wang, Haibo; Madabhushi, Anant; Golden, Thea; Gow, Andrew

    2015-01-01

    Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic

  16. Ozone Enhances Diesel Exhaust Particles (DEP-Induced Interleukin-8 (IL-8 Gene Expression in Human Airway Epithelial Cells through Activation of Nuclear Factors- κB (NF-κB and IL-6 (NF-IL6

    Directory of Open Access Journals (Sweden)

    James Kelley

    2005-12-01

    Full Text Available Ozone, a highly reactive oxidant gas is a major component of photochemical smog. As an inhaled toxicant, ozone induces its adverse effects mainly on the lung. Inhalation of particulate matter has been reported to cause airway inflammation in humans and animals. Furthermore, epidemiological evidence has indicated that exposure to particulate matter (PM2.5-10, including diesel exhaust particles (DEP has been correlated with increased acute and chronic respiratory morbidity and exacerbation of asthma. Previously, exposure to ozone or particulate matter and their effect on the lung have been addressed as separate environmental problems. Ozone and particulate matter may be chemically coupled in the ambient air. In the present study we determined whether ozone exposure enhances DEP effect on interleukin-8 (IL-8 gene expression in human airway epithelial cells. We report that ozone exposure (0.5 ppm x 1 hr significantly increased DEP-induced IL-8 gene expression in A549 cells (117 ± 19 pg/ml, n = 6, p < 0.05 as compared to cultures treated with DEP (100 μg/ml x 4 hr alone (31 ± 3 pg/ml, n = 6, or cultures exposed to purified air (24 ± 6 pg/ml, n = 6. The increased DEP-induced IL-8 gene expression following ozone exposure was attributed to ozone-induced increase in the activity of the transcription factors NF-κB and NF-IL6. The results of the present study indicate that ozone exposure enhances the toxicity of DEP in human airway epithelial cells by augmenting IL-8 gene expression, a potent chemoattractant of neutrophils in the lung.

  17. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  18. TRP channels and traffic-related environmental pollution-induced pulmonary disease.

    Science.gov (United States)

    Akopian, Armen N; Fanick, E Robert; Brooks, Edward G

    2016-05-01

    Environmental pollutant exposures are major risk factors for adverse health outcomes, with increased morbidity and mortality in humans. Diesel exhaust (DE) is one of the major harmful components of traffic-related air pollution. Exposure to DE affects several physiological systems, including the airways, and pulmonary diseases are increased in highly populated urban areas. Hence, there are urgent needs to (1) create newer and lesser polluting fuels, (2) improve exhaust aftertreatments and reduce emissions, and (3) understand mechanisms of actions for toxic effects of both conventional and cleaner diesel fuels on the lungs. These steps could aid the development of diagnostics and interventions to prevent the negative impact of traffic-related air pollution on the pulmonary system. Exhaust from conventional, and to a lesser extent, clean fuels, contains particulate matter (PM) and more than 400 additional chemical constituents. The major toxic constituents are nitrogen oxides (NOx) and polycyclic aromatic hydrocarbons (PAHs). PM and PAHs could potentially act via transient receptor potential (TRP) channels. In this review, we will first discuss the associations between DE from conventional as well as clean fuel technologies and acute and chronic airway inflammation. We will then review possible activation and/or potentiation of TRP vanilloid type 1 (TRPV1) and ankyrin 1 (TRPA1) channels by PM and PAHs. Finally, we will discuss and summarize recent findings on the mechanisms whereby TRPs could control the link between DE and airway inflammation, which is a primary determinant leading to pulmonary disease.

  19. Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    M. Ian Gilmour; Silvia O' Connor; Colin A.J. Dick; C. Andrew Miller; William P. Linak [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). National Health and Environmental Effects Research Laboratory

    2004-03-01

    Exposure to airborne particulate matter (PM) has been associated with adverse health effects in humans. Pulmonary inflammatory responses were examined in CD1 mice after intratracheal instillation of 25 or 100 {mu}g of ultrafine ({lt}0.2 {mu}m), fine ({lt}2.5 {mu}m), and coarse ({gt}2.5 {mu}m) coal fly ash from a combusted Montana subbituminous coal, and of fine and coarse fractions from a combusted western Kentucky bituminous coal. After 18 hr, the lungs were lavaged and the bronchoalveolar fluid was assessed for cellular influx, biochemical markers, and pro-inflammatory cytokines. The responses were compared with saline and endotoxin as negative and positive controls, respectively. On an equal mass basis, the ultrafine particles from combusted Montana coal induced a higher degree of neutrophil inflammation and cytokine levels than did the fine or coarse PM. The western Kentucky fine PM caused a moderate degree of inflammation and protein levels in bronchoalveolar fluid that were higher than the Montana fine PM. Coarse PM did not produce any significant effects. In vitro experiments with rat alveolar macrophages showed that of the particles tested, only the Montana ultrafine displayed significant cytotoxicity. It is concluded that fly ash toxicity is inversely related with particle size and is associated with increased sulfur and trace element content. 42 refs., 5 figs., 3 tabs.

  20. Bleomycin-Induced Pulmonary Changes on Restaging Computed Tomography Scans in Two Thirds of Testicular Cancer Patients Show No Correlation With Fibrosis Markers.

    Science.gov (United States)

    den Hollander, Martha W; Westerink, Nico-Derk L; Lubberts, Sjoukje; Bongaerts, Alfons H H; Wolf, Rienhart F E; Altena, Renska; Nuver, Janine; Oosting, Sjoukje F; de Vries, Elisabeth G E; Walenkamp, Anna M E; Meijer, Coby; Gietema, Jourik A

    2016-08-01

    preferable. This study found that bleomycin-induced pulmonary changes are common on restaging computed tomography scans and mostly resolve. No correlation was seen between these changes and fibrosis or inflammation markers (transforming growth factor-β1, growth differentiation factor-15, and high-sensitivity C-reactive protein). ©AlphaMed Press.

  1. Dexamethasone attenuates VEGF expression and inflammation but not barrier dysfunction in a murine model of ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Maria A Hegeman

    Full Text Available BACKGROUND: Ventilator-induced lung injury (VILI is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar-capillary barrier dysfunction in an established murine model of VILI. METHODS: Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O ("lower" tidal volumes of ∼7.5 ml/kg; LVT or 18 cmH2O ("higher" tidal volumes of ∼15 ml/kg; HVT. Dexamethasone was intravenously administered at the initiation of HVT-ventilation. Non-ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios. RESULTS: Particularly HVT-ventilation led to alveolar-capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro-inflammatory response in lungs of HVT-ventilated mice, without improving alveolar-capillary permeability, gas exchange and pulmonary edema formation. CONCLUSIONS: Dexamethasone treatment completely abolishes ventilator-induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar-capillary barrier dysfunction in an established murine model of VILI.

  2. Obesity-induced vascular inflammation involves elevated arginase activity.

    Science.gov (United States)

    Yao, Lin; Bhatta, Anil; Xu, Zhimin; Chen, Jijun; Toque, Haroldo A; Chen, Yongjun; Xu, Yimin; Bagi, Zsolt; Lucas, Rudolf; Huo, Yuqing; Caldwell, Ruth B; Caldwell, R William

    2017-11-01

    Obesity-induced vascular dysfunction involves pathological remodeling of the visceral adipose tissue (VAT) and increased inflammation. Our previous studies showed that arginase 1 (A1) in endothelial cells (ECs) is critically involved in obesity-induced vascular dysfunction. We tested the hypothesis that EC-A1 activity also drives obesity-related VAT remodeling and inflammation. Our studies utilized wild-type and EC-A1 knockout (KO) mice made obese by high-fat/high-sucrose (HFHS) diet. HFHS diet induced increases in body weight, fasting blood glucose, and VAT expansion. This was accompanied by increased arginase activity and A1 expression in vascular ECs and increased expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-10 (IL-10), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) mRNA and protein in both VAT and ECs. HFHS also markedly increased circulating inflammatory monocytes and VAT infiltration by inflammatory macrophages, while reducing reparative macrophages. Additionally, adipocyte size and fibrosis increased and capillary density decreased in VAT. These effects of HFHS, except for weight gain and hyperglycemia, were prevented or reduced in mice lacking EC-A1 or treated with the arginase inhibitor 2-( S )-amino-6-boronohexanoic acid (ABH). In mouse aortic ECs, exposure to high glucose (25 mM) and Na palmitate (200 μM) reduced nitric oxide production and increased A1, TNF-α, VCAM-1, ICAM-1, and MCP-1 mRNA, and monocyte adhesion. Knockout of EC-A1 or ABH prevented these effects. HFHS diet-induced VAT inflammation is mediated by EC-A1 expression/activity. Limiting arginase activity is a possible therapeutic means of controlling obesity-induced vascular and VAT inflammation.

  3. Arterial Carboxyhemoglobin Measurement Is Useful for Evaluating Pulmonary Inflammation in Subjects with Interstitial Lung Disease.

    Science.gov (United States)

    Hara, Yu; Shinkai, Masaharu; Kanoh, Soichiro; Fujikura, Yuji; K Rubin, Bruce; Kawana, Akihiko; Kaneko, Takeshi

    2017-01-01

    Objective The arterial concentration of carboxyhemoglobin (CO-Hb) in subjects with inflammatory pulmonary disease is higher than that in healthy individuals. We retrospectively analyzed the relationship between the CO-Hb concentration and established markers of disease severity in subjects with interstitial lung disease (ILD). Methods The CO-Hb concentration was measured in subjects with newly diagnosed or untreated ILD and the relationships between the CO-Hb concentration and the serum biomarker levels, lung function, high-resolution CT (HRCT) findings, and the uptake in gallium-67 ( 67 Ga) scintigraphy were evaluated. Results Eighty-one non-smoking subjects were studied (mean age, 67 years). Among these subjects, (A) 17 had stable idiopathic pulmonary fibrosis (IPF), (B) 9 had an acute exacerbation of IPF, (C) 44 had stable non-IPF, and (D) 11 had an exacerbation of non-IPF. The CO-Hb concentrations of these subjects were (A) 1.5±0.5%, (B) 2.1±0.5%, (C) 1.2±0.4%, and (D) 1.7±0.5%. The CO-Hb concentration was positively correlated with the serum levels of surfactant protein (SP)-A (r=0.38), SP-D (r=0.39), and the inflammation index (calculated from HRCT; r=0.57) and was negatively correlated with the partial pressure of oxygen in the arterial blood (r=-0.56) and the predicted diffusion capacity of carbon monoxide (r=-0.61). The CO-Hb concentrations in subjects with a negative heart sign on 67 Ga scintigraphy were higher than those in subjects without a negative heart sign (1.4±0.5% vs. 1.1±0.3%, p=0.018). Conclusion The CO-Hb levels of subjects with ILD were increased, particularly during an exacerbation, and were correlated with the parameters that reflect pulmonary inflammation.

  4. Characterization and pharmacological modulation of intestinal inflammation induced by ionizing radiation

    International Nuclear Information System (INIS)

    Gremy, O.

    2006-12-01

    The use of radiation therapy to treat abdominal and pelvic malignancies inevitably involves exposure of healthy intestinal tissues which are very radiosensitive. As a result, most patients experience symptoms such as abdominal pain, nausea and diarrhea. Such symptoms are associated with acute damage to intestine mucosa including radio-induced inflammatory processes. With a rat model of colorectal fractionated radiation, we have shown a gradual development of a colonic inflammation during radiation planning, without evident tissue injury. This radio-induced inflammation is characterized not only by the sur expressions of pro-inflammatory cytokines and chemokines, a NF-kB activation, but also by a repression of anti-inflammatory cytokines and the nuclear receptors PPARa and RXRa, both involved in inflammation control. This early inflammation is associated with a discreet neutrophil recruitment and a macrophage accumulation. Macrophages are still abnormally numerous in tissue 27 weeks after the last day of irradiation. Inflammatory process is the most often related to a specific immune profile, either a type Th1 leading to a cellular immune response, or a type Th2 for humoral immunity. According to our studies, a unique abdominal radiation in the rat induces an ileum inflammation and an immune imbalance resulting in a Th2-type profile. Inhibiting this profile is important as its persistence promotes chronic inflammation, predisposition to bacterial infections and fibrosis which is the main delayed side-effect of radiotherapy. The treatment of rats with an immuno-modulator compound, the caffeic acid phenethyl ester (C.A.P.E.), have the potential to both reduce ileal mucosal inflammation and inhibit the radio-induced Th2 status. In order to search new therapeutic molecular target, we has been interested in the PPARg nuclear receptor involved in the maintenance of colon mucosal integrity. In our abdominal irradiation model, we have demonstrated that the prophylactic

  5. Endothelium-dependent relaxation induced by cathepsin G in porcine pulmonary arteries

    Science.gov (United States)

    Glusa, Erika; Adam, Christine

    2001-01-01

    Serine proteinases elicit profound cellular effects in various tissues mediated by activation of proteinase-activated receptors (PAR). In the present study, we investigated the vascular effects of cathepsin G, a serine proteinase that is present in the azurophil granules of leukocytes and is known to activate several cells that express PARs. In prostaglandin F2α (3 μM)-precontracted rings from porcine pulmonary arteries with intact endothelium, cathepsin G caused concentration-dependent relaxant responses (pEC50=9.64±0.12). The endothelium-dependent relaxant effect of cathepsin G could also be demonstrated in porcine coronary arteries (pEC50=9.23±0.07). In pulmonary arteries the cathepsin G-induced relaxation was inhibited after blockade of nitric oxide synthesis by L-NAME (200 μM) and was absent in endothelium-denuded vessels. Bradykinin- and cathepsin G-induced relaxant effects were associated with a 5.7 fold and 2.4 fold increase in the concentration of cyclic GMP, respectively. Compared with thrombin and trypsin, which also produced an endothelium-dependent relaxation in pulmonary arteries, cathepsin G was 2.5 and four times more potent, respectively. Cathepsin G caused only small homologous desensitization. In cathepsin G-challenged vessels, thrombin was still able to elicit a relaxant effect. The effects of cathepsin G were blocked by soybean trypsin inhibitor (IC50=0.043 μg ml−1), suggesting that proteolytic activity is essential for induction of relaxation. Recombinant acetyl-eglin C proved to be a potent inhibitor (IC50=0.14 μg ml−1) of the cathepsin G effect, whereas neither indomethacin (3 μM) nor the thrombin inhibitor hirudin (5 ATU ml−1) elicited any inhibitory activity. Due to their polyanionic structure defibrotide (IC50=0.11 μg ml−1), heparin (IC50=0.48 μg ml−1) and suramin (IC50=1.85 μg ml−1) diminished significantly the relaxation in response to the basic protein cathepsin G. In conclusion, like

  6. Eleutheroside E inhibits doxorubicin-induced inflammation and ...

    African Journals Online (AJOL)

    Purpose: To identify the effects of eleutheroside E (EE) on apoptosis and inflammation induced by doxorubicin (DOX) in H9c2 cells and to investigate the underlying mechanisms. Methods: The effect of EE on H9c2 cell viability was determined using Cell Counting Kit-8 (CCK8). EE effect on DOX-induced apoptosis and ...

  7. Skin condition and its relationship to systemic inflammation in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Majewski, Sebastian; Pietrzak, Anna; Tworek, Damian; Szewczyk, Karolina; Kumor-Kisielewska, Anna; Kurmanowska, Zofia; Górski, Paweł; Zalewska-Janowska, Anna; Piotrowski, Wojciech Jerzy

    2017-01-01

    The systemic (extrapulmonary) effects and comorbidities of chronic obstructive pulmonary disease (COPD) contribute substantially to its burden. The supposed link between COPD and its systemic effects on distal organs could be due to the low-grade systemic inflammation. The aim of this study was to investigate whether the systemic inflammation may influence the skin condition in COPD patients. Forty patients with confirmed diagnosis of COPD and a control group consisting of 30 healthy smokers and 20 healthy never-smokers were studied. Transepidermal water loss, stratum corneum hydration, skin sebum content, melanin index, erythema index, and skin temperature were measured with worldwide-acknowledged biophysical measuring methods at the volar forearm of all participants using a multifunctional skin physiology monitor. Biomarkers of systemic inflammation, including high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), were measured in serum using commercially available enzyme-linked immunosorbent assays. There were significant differences between COPD patients and healthy never-smokers in skin temperature, melanin index, sebum content, and hydration level ( P skin measured. The mean levels of hsCRP and IL-6 in serum were significantly higher in COPD patients and healthy smokers in comparison with healthy never-smokers. There were significant correlations between skin temperature and serum hsCRP ( R =0.40; P =0.02) as well as skin temperature and serum IL-6 ( R =0.49; P =0.005) in smokers. Stratum corneum hydration correlated significantly with serum TNF-α ( R =0.37; P =0.01) in COPD patients. Differences noted in several skin biophysical properties and biomarkers of systemic inflammation between COPD patients, smokers, and healthy never-smokers may suggest a possible link between smoking-driven, low-grade systemic inflammation, and the overall skin condition.

  8. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  9. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  10. Antioxidant mechanism of Rutin on hypoxia-induced pulmonary arterial cell proliferation.

    Science.gov (United States)

    Li, Qian; Qiu, Yanli; Mao, Min; Lv, Jinying; Zhang, Lixin; Li, Shuzhen; Li, Xia; Zheng, Xiaodong

    2014-11-18

    Reactive oxygen species (ROS) are involved in the pathologic process of pulmonary arterial hypertension as either mediators or inducers. Rutin is a type of flavonoid which exhibits significant scavenging properties on oxygen radicals both in vitro and in vivo. In this study, we proposed that rutin attenuated hypoxia-induced pulmonary artery smooth muscle cell (PASMC) proliferation by scavenging ROS. Immunofluorescence data showed that rutin decreased the production of ROS, which was mainly generated through mitochondria and NADPH oxidase 4 (Nox4) in pulmonary artery endothelial cells (PAECs). Western blot results provided further evidence on rutin increasing expression of Nox4 and hypoxia-inducible factor-1α (HIF-1α). Moreover, cell cycle analysis by flow cytometry indicated that proliferation of PASMCs triggered by hypoxia was also repressed by rutin. However, N-acetyl-L-cysteine (NAC), a scavenger of ROS, abolished or diminished the capability of rutin in repressing hypoxia-induced cell proliferation. These data suggest that rutin shows a potential benefit against the development of hypoxic pulmonary arterial hypertension by inhibiting ROS, subsequently preventing hypoxia-induced PASMC proliferation.

  11. Antioxidant Mechanism of Rutin on Hypoxia-Induced Pulmonary Arterial Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Qian Li

    2014-11-01

    Full Text Available Reactive oxygen species (ROS are involved in the pathologic process of pulmonary arterial hypertension as either mediators or inducers. Rutin is a type of flavonoid which exhibits significant scavenging properties on oxygen radicals both in vitro and in vivo. In this study, we proposed that rutin attenuated hypoxia-induced pulmonary artery smooth muscle cell (PASMC proliferation by scavenging ROS. Immunofluorescence data showed that rutin decreased the production of ROS, which was mainly generated through mitochondria and NADPH oxidase 4 (Nox4 in pulmonary artery endothelial cells (PAECs. Western blot results provided further evidence on rutin increasing expression of Nox4 and hypoxia-inducible factor-1α (HIF-1α. Moreover, cell cycle analysis by flow cytometry indicated that proliferation of PASMCs triggered by hypoxia was also repressed by rutin. However, N-acetyl-L-cysteine (NAC, a scavenger of ROS, abolished or diminished the capability of rutin in repressing hypoxia-induced cell proliferation. These data suggest that rutin shows a potential benefit against the development of hypoxic pulmonary arterial hypertension by inhibiting ROS, subsequently preventing hypoxia-induced PASMC proliferation.

  12. Glyphosate–rich air samples induce IL–33, TSLP and generate IL–13 dependent airway inflammation

    Science.gov (United States)

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M.; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A.; Adhikari, Atin

    2014-01-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4−/−, and IL-13−/− mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease. PMID:25172162

  13. [Airway oxidative stress and inflammation markers in chronic obstructive pulmonary diseases(COPD) patients are linked with exposure to traffic-related air pollution: a panel study].

    Science.gov (United States)

    Chen, J; Zhao, Q; Liu, B B; Wang, J; Xu, H B; Zhang, Y; Song, X M; He, B; Huang, W

    2016-05-01

    To investigate the effects of short-term exposure to traffic-related air pollution on airway oxidative stress and inflammation in chronic obstructive pulmonary diseases (COPD) patients. A panel of forty-five diagnosed COPD patients were recruited and followed with repeated measurements of biomarkers reflecting airway oxidative stress and inflammation in exhaled breath condensate (EBC), including nitrate and nitrite, 8-isoprostane, interleukin-8 and acidity of EBC (pH), between 5(th) September in 2014 and 26(th) May in 2015. The associations between air pollution and biomarkers were analyzed with mixed-effects models, controlling for confounding covariates. The concentration of PM2.5, black carbon, NO2 and number concentration of particles with diameter less than 100 nm (PNC100), and particles in size ranges between 100 nm to 200 nm (PNC100-200) during the first follow-up were (156.5±117.7), (10.7±0.7), (165.9±66.0)μg/m(3) and 397 521±96 712, 79 421±44 090 per cubic meter, respectively; the concentration were (67.9±29.6), (3.4±1.3), (126.1±10.9) μg/m(3) and (295 682±39 430), (24 693±12 369) per cubic meter, respectively during the second follow-up. The differences were of significance, with t value being 3.10, 4.42, 2.61, 4.02, 5.12, respectively and P value being 0.005,stress. For an IQR increase in PM2.5, black carbon and PNC100-200, respective increases of 0.17 ng/ml (95% CI: 0.02-0.33), 0.12 ng/ml (95% CI: 0.01-0.24) and 0.13 ng/ml (95% CI:0.02-0.24) in interleukin-8 in EBC reflecting airway inflammation were also observed. An IQR increase in ozone was also associated with a 0.24 (95%CI: 0.05-0.42) decrease in pH of EBC reflecting increased airway inflammation. No significant association observed between air pollution and 8-isoprostane in EBC in COPD patients. Our results suggested that short-term exposure to traffic-related air pollution was responsible for exacerbation of airway oxidative stress and inflammation in COPD patients.

  14. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation.

    Directory of Open Access Journals (Sweden)

    Jason E Shoemaker

    2015-06-01

    Full Text Available Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.

  15. Illicium verum Extract and Trans-Anethole Attenuate Ovalbumin-Induced Airway Inflammation via Enhancement of Foxp3+ Regulatory T Cells and Inhibition of Th2 Cytokines in Mice

    Directory of Open Access Journals (Sweden)

    Yoon-Young Sung

    2017-01-01

    Full Text Available Illicium verum is used in traditional medicine to treat inflammation. The study investigates the effects of IVE and its component, trans-anethole (AET, on airway inflammation in ovalbumin- (OVA- induced asthmatic mice. Asthma was induced in BALB/c mice by systemic sensitization to OVA, followed by intratracheal, intraperitoneal, and aerosol allergen challenges. IVE and AET were orally administered for four weeks. We investigated the effects of treatment on airway hyperresponsiveness, IgE production, pulmonary eosinophilic infiltration, immune cell phenotypes, Th2 cytokine production in bronchoalveolar lavage, Th1/Th2 cytokine production in splenocytes, forkhead box protein 3 (Foxp3 expression, and lung histology. IVE and AET ameliorated OVA-driven airway hyperresponsiveness (p<0.01, pulmonary eosinophilic infiltration (p<0.05, mucus hypersecretion (p<0.01, and IL-4, IL-5, IL-13, and CCR3 production (p<0.05, as well as IgE levels (p<0.01. IVE and AET increased Foxp3 expression in lungs (p<0.05. IVE and AET reduced IL-4 and increased IFN-γ production in the supernatant of splenocyte cultures (p<0.05. Histological studies showed that IVE and AET inhibited eosinophilia and lymphocyte infiltration in lungs (p<0.01. These results indicate that IVE and AET exert antiasthmatic effects through upregulation of Foxp3+ regulatory T cells and inhibition of Th2 cytokines, suggesting that IVE may be a potential therapeutic agent for allergic lung inflammation.

  16. Bosutinib induced pleural effusions: Case report and review of tyrosine kinase inhibitors induced pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Natalia I. Moguillansky, MD

    2017-01-01

    Full Text Available Tyrosine kinase inhibitors are known to cause pulmonary complications. We report a case of bosutinib related bilateral pleural effusions in a patient with chronic myeloid leukemia. Characteristics of the pleural fluid are presented. We also discuss other tyrosine kinase inhibitors induced pulmonary toxicities, including pulmonary hypertension and interstitial lung disease.

  17. Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats

    International Nuclear Information System (INIS)

    Lei, Y.-C.; Chan, C.-C.; Wang, P.-Y.; Lee, C.-T.; Cheng, T.-J.

    2004-01-01

    The health impact of dust events from China has become a concern within China and in its neighboring countries. Previous epidemiological studies have demonstrated an association between particulate matter exposure and cardiopulmonary mortality. Here, we use pulmonary hypertensive rat models to examine inflammation markers in the lung and in peripheral blood after exposure to Asian dust storm particles. Using a nose-only inhalation system, eight pulmonary hypertensive rats were exposed to concentrated ambient particles (CAPs) from an actual Asian dust storm that took place between March 18 and 19, 2002; four control rats were also exposed to room air. Four rats exposed to CAPs of 315.6 μg/m 3 for 6 h were classified as the low-exposure group, and another four rats exposed to CAPs of 684.5 μg/m 3 for 4.5 h were classified as the high-exposure group. The animals were sacrificed 36 h after exposure. Inflammation markers in the peripheral blood and in the bronchoalveolar lavage (BAL) were analyzed, and IL-6 in BAL was also determined using ELISA. White blood cell counts in peripheral blood increased with increased CAP exposure levels (P<0.001, test for trend). In BAL analysis, total cell numbers and the proportion of neutrophil also increased with increased CAP levels (P<0.001, test for trend for both markers). Positive dose-response relationships between CAP exposure and total protein (P<0.05) and between CAPs and LDH activity (P<0.05) were also observed. Moreover, IL-6 protein in BAL increasing with CAP levels (P<0.05, test for trend) was demonstrated. Our results revealed that exposure to particulate matters during an Asian dust storm could increase lung inflammation and injury in pulmonary hypertensive rats. Further studies are needed to determine the components of dust storm particles that may contribute to the particle toxicity

  18. Lung-specific loss of α3 laminin worsens bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Morales-Nebreda, Luisa I; Rogel, Micah R; Eisenberg, Jessica L; Hamill, Kevin J; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A; Ridge, Karen M; Misharin, Alexander V; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M; Pardo, Annie; Selman, Moises; Jones, Jonathan C R; Budinger, G R Scott

    2015-04-01

    Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3(fl/fl)). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression.

  19. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    International Nuclear Information System (INIS)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2015-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O 3 ) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O 3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O 3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O 3 , 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O 3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O 3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O 3 . In conclusion, short-term O 3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia, hyperglycemia, and glucose intolerance

  20. Drug-induced pulmonary arterial hypertension: a recent outbreak

    Directory of Open Access Journals (Sweden)

    Gérald Simonneau

    2013-09-01

    Full Text Available Pulmonary arterial hypertension (PAH is a rare disorder characterised by progressive obliteration of the pulmonary microvasculature resulting in elevated pulmonary vascular resistance and premature death. According to the current classification PAH can be associated with exposure to certain drugs or toxins, particularly to appetite suppressant intake drugs, such as aminorex, fenfluramine derivatives and benfluorex. These drugs have been confirmed to be risk factors for PAH and were withdrawn from the market. The supposed mechanism is an increase in serotonin levels, which was demonstrated to act as a growth factor for the pulmonary artery smooth muscle cells. Amphetamines, phentermine and mazindol were less frequently used, but are considered possible risk factors, for PAH. Dasatinib, dual Src/Abl kinase inhibitor, used in the treatment of chronic myelogenous leukaemia was associated with cases of severe PAH, potentially in part reversible after dasatinib withdrawal. Recently, several studies have raised the issue of potential endothelial dysfunction that could be induced by interferon, and a few cases of PAH have been reported with interferon therapy. PAH remains a rare complication of these drugs, suggesting possible individual susceptibility, and further studies are needed to identify patients at risk of drug-induced PAH.

  1. Role of secretory phospholipase A(2) in rhythmic contraction of pulmonary arteries of rats with monocrotaline-induced pulmonary arterial hypertension.

    Science.gov (United States)

    Tanabe, Yoshiyuki; Saito-Tanji, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Nakayama, Koichi

    2012-01-01

    Excessive stretching of the vascular wall in accordance with pulmonary arterial hypertension (PAH) induces a variety of pathogenic cellular events in the pulmonary arteries. We previously reported that indoxam, a selective inhibitor for secretory phospholipase A(2) (sPLA(2)), blocked the stretch-induced contraction of rabbit pulmonary arteries by inhibition of untransformed prostaglandin H(2) (PGH(2)) production. The present study was undertaken to investigate involvement of sPLA(2) and untransformed PGH(2) in the enhanced contractility of pulmonary arteries of experimental PAH in rats. Among all the known isoforms of sPLA(2), sPLA(2)-X transcript was most significantly augmented in the pulmonary arteries of rats with monocrotaline-induced pulmonary hypertension (MCT-PHR). The pulmonary arteries of MCT-PHR frequently showed two types of spontaneous contraction in response to stretch; 27% showed rhythmic contraction, which was sensitive to indoxam and SC-560 (selective COX-1 inhibitor), but less sensitive to NS-398 (selective COX-2 inhibitor); and 47% showed sustained incremental tension (tonic contraction), which was insensitive to indoxam and SC-560, but sensitive to NS-398 and was attenuated to 45% of the control. Only the rhythmically contracting pulmonary arteries of MCT-PHR produced a substantial amount of untransformed PGH(2), which was abolished by indoxam. These results suggest that sPLA(2)-mediated PGH(2) synthesis plays an important role in the rhythmic contraction of pulmonary arteries of MCT-PHR.

  2. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    1997-01-01

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  3. The cancer theory of pulmonary arterial hypertension

    Science.gov (United States)

    Boucherat, Olivier; Vitry, Geraldine; Trinh, Isabelle; Paulin, Roxane; Provencher, Steeve; Bonnet, Sebastien

    2017-01-01

    Pulmonary arterial hypertension (PAH) remains a mysterious killer that, like cancer, is characterized by tremendous complexity. PAH development occurs under sustained and persistent environmental stress, such as inflammation, shear stress, pseudo-hypoxia, and more. After inducing an initial death of the endothelial cells, these environmental stresses contribute with time to the development of hyper-proliferative and apoptotic resistant clone of cells including pulmonary artery smooth muscle cells, fibroblasts, and even pulmonary artery endothelial cells allowing vascular remodeling and PAH development. Molecularly, these cells exhibit many features common to cancer cells offering the opportunity to exploit therapeutic strategies used in cancer to treat PAH. In this review, we outline the signaling pathways and mechanisms described in cancer that drive PAH cells’ survival and proliferation and discuss the therapeutic potential of antineoplastic drugs in PAH. PMID:28597757

  4. STING-IRF3 Triggers Endothelial Inflammation in Response to Free Fatty Acid-Induced Mitochondrial Damage in Diet-Induced Obesity

    Science.gov (United States)

    Mao, Yun; Luo, Wei; Zhang, Lin; Wu, Weiwei; Yuan, Liangshuai; Xu, Hao; Song, Juhee; Fujiwara, Keigi; Abe, Jun-ichi; LeMaire, Scott A.; Wang, Xing Li; Shen, Ying. H.

    2017-01-01

    Objective Metabolic stress in obesity induces endothelial inflammation and activation, which initiates adipose tissue inflammation, insulin resistance, and cardiovascular diseases. However, the mechanisms underlying endothelial inflammation induction are not completely understood. Stimulator of interferon genes (STING) is an important molecule in immunity and inflammation. In the present study, we sought to determine the role of STING in palmitic acid (PA)-induced endothelial activation/inflammation. Approach and Results In cultured endothelial cells, PA treatment activated STING, as indicated by its perinuclear translocation and binding to interferon regulatory factor 3 (IRF3), leading to IRF3 phosphorylation and nuclear translocation. The activated IRF3 bound to the promoter of intercellular adhesion molecule 1 (ICAM-1) and induced ICAM-1 expression and monocyte–endothelial cell adhesion. When analyzing the upstream signaling, we found that PA activated STING by inducing mitochondrial damage. PA treatment caused mitochondrial damage and leakage of mitochondrial DNA (mtDNA) into the cytosol. Through the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), the mitochondrial damage and leaked cytosolic mtDNA activated the STING-IRF3 pathway and increased ICAM-1 expression. In mice with diet-induced obesity, the STING-IRF3 pathway was activated in adipose tissue. However, STING deficiency (Stinggt/gt) partially prevented diet-induced adipose tissue inflammation, obesity, insulin resistance, and glucose intolerance. Conclusions The mitochondrial damage-cGAS-STING-IRF3 pathway is critically involved in metabolic stress-induced endothelial inflammation. STING may be a potential therapeutic target for preventing cardiovascular diseases and insulin resistance in obese individuals. PMID:28302626

  5. Progesterone attenuates airway remodeling and glucocorticoid resistance in a murine model of exposing to ozone.

    Science.gov (United States)

    Zhang, Xue; Bao, Wuping; Fei, Xia; Zhang, Yingying; Zhang, Guoqing; Zhou, Xin; Zhang, Min

    2018-04-01

    Airway remodeling is a vital component of chronic obstructive pulmonary disease (COPD). Despite the broad anti-inflammation effects of glucocorticoids, they exhibit relatively little therapeutic benefit in COPD, indicating the accelerating demands of new agents for COPD. We aim to explore the effect of progesterone on airway remodeling in a murine modeling of exposing to ozone and to further examine the potential effect of progesterone on glucocorticoid insensitivity. C57/BL6 mice were exposed to ozone for 12 times over 6 weeks, and were administered with progesterone alone or combined with budesonide (BUD) after each exposure until the 10th week. The peribronchial collagen deposition was measured. The protein levels of MMP8 and MMP9 in bronchoalveolar lavage fluid (BALF) and lungs were assessed. Western blot analysis was used to detect the levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), a-smooth muscle actin (α-SMA), glycogen synthase kinase-3β (GSK-3β). The expression of VEGF and histone deacetylase 2 (HDAC2) in the lung were determined by Immunohistochemical analyses. We observe that progesterone attenuates the peribronchial collagen deposition, as well as the expression of MMP8, MMP9, HIF-1α, VEGF, α-SMA, and GSK-3β in BALF or lung tissues. Progesterone or BUD monotherapy has no effect on HDAC2 production. Progesterone combines with BUD induce dramatically enhanced effects. Thus, these results demonstrate novel roles of progesterone for the pathogenesis and airway remodeling in COPD. Progesterone plus BUD administration exerts more significant inhibition on airway remodeling with dose-independent. Additionally, progesterone may, to some extent, improve the glucocorticoid insensitivity. Copyright © 2018. Published by Elsevier Ltd.

  6. Pulmonary Remodeling in Equine Asthma: What Do We Know about Mediators of Inflammation in the Horse?

    Science.gov (United States)

    Gehlen, Heidrun

    2016-01-01

    Equine inflammatory airway disease (IAD) and recurrent airway obstruction (RAO) represent a spectrum of chronic inflammatory disease of the airways in horses resembling human asthma in many aspects. Therefore, both are now described as severity grades of equine asthma. Increasing evidence in horses and humans suggests that local pulmonary inflammation is influenced by systemic inflammatory processes and the other way around. Inflammation, coagulation, and fibrinolysis as well as extracellular remodeling show close interactions. Cytology of bronchoalveolar lavage fluid and tracheal wash is commonly used to evaluate the severity of local inflammation in the lung. Other mediators of inflammation, like interleukins involved in the chemotaxis of neutrophils, have been studied. Chronic obstructive pneumopathies lead to remodeling of bronchial walls and lung parenchyma, ultimately causing fibrosis. Matrix metalloproteinases (MMPs) are discussed as the most important proteolytic enzymes during remodeling in human medicine and increasing evidence exists for the horse as well. A systemic involvement has been shown for severe equine asthma by increased acute phase proteins like serum amyloid A and haptoglobin in peripheral blood during exacerbation. Studies focusing on these and further possible inflammatory markers for chronic respiratory disease in the horse are discussed in this review of the literature. PMID:28053371

  7. Repeated episodes of ozone inhalation attenuates airway injury/repair and release of substance P, but not adaptation.

    Science.gov (United States)

    Schelegle, Edward S; Walby, William F; Alfaro, Mario F; Wong, Viviana J; Putney, Lei; Stovall, Mary Y; Sterner-Kock, Anja; Hyde, Dallas M; Plopper, Charles G

    2003-02-01

    To determine the impact of repeated episodes of ozone exposure on physiologic adaptation, epithelial injury/repair, and tracheal substance P levels, adult rats were subjected to episodes of ozone (5 days, 1 ppm, 8 h/day) followed by 9 days of filtered air for four cycles. Rats were sampled on days 1 and 5 of each episode and 9 days after day 5 of episodes 1, 2, and 4. One hour before being euthanized each rat was injected with 5-bromo-2'-deoxyuridine to label proliferating cells. Each 5-day episode showed a characteristic pattern of rapid shallow breathing (days 1 and 2), epithelial injury, and interstitial and intraluminal inflammation. In contrast, the neutrophil component of inflammation, tracheal substance P release, and cell proliferation became attenuated with each consecutive episode of exposure. Concurrent with this cyclic and attenuated response there was progressive hypercellularity and hyperplasia in all airways studied and a progressive remodeling present in the terminal bronchioles. Our findings are consistent with the notion that the cumulative distal airway lesion is at least in part the result of a depressed cell proliferative response to injury in these airways. This depressed cell proliferative response may be in part the result of diminished neutrophil inflammation and/or release of mitogenic neuropeptides in response to ozone-induced injury.

  8. Modulation of Brain Dead Induced Inflammation by Vagus Nerve Stimulation

    NARCIS (Netherlands)

    Hoeger, S.; Bergstraesser, C.; Selhorst, J.; Fontana, J.; Birck, R.; Waldherr, R.; Beck, G.; Sticht, C.; Seelen, M. A.; van Son, W. J.; Leuvenink, H.; Ploeg, R.; Schnuelle, P.; Yard, B. A.

    Because the vagus nerve is implicated in control of inflammation, we investigated if brain death (BD) causes impairment of the parasympathetic nervous system, thereby contributing to inflammation. BD was induced in rats. Anaesthetised ventilated rats (NBD) served as control. Heart rate variability

  9. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling

    Science.gov (United States)

    Bajrami, Besnik; Zhu, Haiyan; Zhang, Yu C.

    2016-01-01

    Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation. PMID:27551153

  10. Ozone exposure increases respiratory epithelial permeability in humans

    International Nuclear Information System (INIS)

    Kehrl, H.R.; Vincent, L.M.; Kowalsky, R.J.; Horstman, D.H.; O'Neil, J.J.; McCartney, W.H.; Bromberg, P.A.

    1987-01-01

    Ozone is a respiratory irritant that has been shown to cause an increase in the permeability of the respiratory epithelium in animals. We used inhaled aerosolized /sup 99m/Tc-labeled diethylene triamine pentacetic acid (/sup 99m/Tc-DTPA) to investigate whether human respiratory epithelial permeability is similarly affected by exposure to ozone. In a randomized, crossover double-blinded study, 8 healthy, nonsmoking young men were exposed for 2 h to purified air and 0.4 ppm ozone while performing intermittent high intensity treadmill exercise (minute ventilation = 66.8 L/min). SRaw and FVC were measured before and at the end of exposures. Seventy-five minutes after the exposures, the pulmonary clearance of /sup 99m/Tc-DTPA was measured by sequential posterior lung imaging with a computer-assisted gamma camera. Ozone exposure caused respiratory symptoms in all 8 subjects and was associated with a 14 +/- 2.8% (mean +/- SEM) decrement in FVC (p less than 0.001) and a 71 +/- 22% increase in SRaw (p = 0.04). Compared with the air exposure day, 7 of the 8 subjects showed increased /sup 99m/Tc-DTPA clearance after the ozone exposure, with the mean value increasing from 0.59 +/- 0.08 to 1.75 +/- 0.43%/min (p = 0.03). These data show that ozone exposure sufficient to produce decrements in the pulmonary function of human subjects also causes an increase in /sup 99m/Tc-DTPA clearance

  11. Ultramicronized palmitoylethanolamide (PEA-um(®)) in the treatment of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Di Paola, Rosanna; Impellizzeri, Daniela; Fusco, Roberta; Cordaro, Marika; Siracusa, Rosalba; Crupi, Rosalia; Esposito, Emanuela; Cuzzocrea, Salvatore

    2016-09-01

    Pulmonary fibrosis is a chronic condition characterized by progressive scarring of lung parenchyma. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (PEA-um(®)), an endogenous fatty acid amide, in mice subjected to idiopathic pulmonary fibrosis. Idiopathic pulmonary fibrosis was induced in male mice by a single intratracheal administration of saline with bleomycin sulphate (1mg/kg body weight) in a volume of 100μL. PEA-um(®) was injected intraperitoneally at 1, 3 or 10mg/kg 1h after bleomycin instillation and daily thereafter. Animals were sacrificed after 7 and 21days by pentobarbitone overdose. One cohort of mice was sacrificed after seven days of bleomycin administration, followed by bronchoalveloar lavage and determination of myeloperoxidase activity, lung edema and histopathology features. In the 21-day cohort, mortality was assessed daily, and surviving mice were sacrificed followed by the above analyses together with immunohistochemical localization of CD8, tumor necrosis factor-α, CD4, interleukin-1β, transforming growth factor-β, inducible nitric oxide synthase and basic fibroblast growth factor. Compared to bleomycin-treated mice, animals that received also PEA-um(®) (3 or 10mg/kg) had significantly decreased weight loss, mortality, inflammation, lung damage at the histological level, and lung fibrosis at 7 and 21days. PEA-um(®) (1mg/kg) did not significantly inhibit the inflammation response and lung fibrosis. This study demonstrates that PEA-um(®) (3 and 10mg/kg) reduces the extent of lung inflammation in a mouse model of idiopathic pulmonary fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Steady-state ozone concentration in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O 2 and noble gas-O 2 -SF 6 mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10 15 eV.cm -3 .s -1 . The experimental apparatus and proceedure were previously described. The experimentally observed stead-state ozone concentrations in noble gas-O 2 discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O 2 -SF 6 mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF 6 addition. This observation was contrary to only a small increase observed after SF 6 addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O 2 discharges

  13. Drug-induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Daba, Mohammad H.; Al-Arifi, Mohammad N; Gubar, Othman A.; El-Tahir, Kamal E.

    2004-01-01

    Pulmonary fibrosis is characterized by the accumulation of excessive connective tissue in the lungs. Its causes include chronic administration of some drugs for example bleomycin, cyclophosphamide, amiodarone, procainamide, penicillamine, gold and nitrofurantoin; exposure to certain environmental factors such as gases, asbestos and silica and bacterial or fungal infections. Some systemic diseases also predispose to the disease for example rheumatoid arthritis and systemic lupus erythematosus. The disease is associated with release of oxygen radicals and some mediators such as tumor necrosis factor-alpha TNF-alpha, transforming growth factor-beta Tbgf-beta, PDGF, If-I, Et-I and interleukins 1, 4, 8 and 13. The symptoms of the disease include dyspne a, non-productive cough, fever and damage to the lung cells. It is diagnosed with the aid of chest radiography, high resolution computed tomographic scanning and the result of pulmonary function tests. Drug-induced pulmonary fibrosis may involve release of free oxygen radicals and various cytokines for example Il-I beta and TNF-alpha via activation of nuclear transcription factor Nf-beta as in the case of bleomycin and mitomycin or via release of TGF-beta as in case of tamoxifen or via inhibition of macrophages and lymphocytes phospholipases as in the case of amiodarone with the resultant accumulation of phospholipids and reduction of the immune system. (author)

  14. Inflammation and Vascular Effects after Repeated Intratracheal Instillations of Carbon Black and Lipopolysaccharide

    DEFF Research Database (Denmark)

    Christophersen, Daniel Vest; Jacobsen, Nicklas Raun; Jensen, Ditte Marie

    2016-01-01

    Inflammation and oxidative stress are considered the main drivers of vasomotor dysfunction and progression of atherosclerosis after inhalation of particulate matter. In addition, new studies have shown that particle exposure can induce the level of bioactive mediators in serum, driving vascular.......5% plasma extracted from CB-exposed ApoE-/- mice caused vasoconstriction in aorta rings isolated from naive mice; this effect was abolished by the treatment with the serotonin receptor antagonist Ketanserin. In conclusion, repeated pulmonary exposure to nanosized CB and LPS caused lung inflammation without...

  15. Adipose Tissue Inflammation Induces B Cell Inflammation and Decreases B Cell Function in Aging

    Directory of Open Access Journals (Sweden)

    Daniela Frasca

    2017-08-01

    Full Text Available Aging is the greatest risk factor for developing chronic diseases. Inflamm-aging, the age-related increase in low-grade chronic inflammation, may be a common link in age-related diseases. This review summarizes recent published data on potential cellular and molecular mechanisms of the age-related increase in inflammation, and how these contribute to decreased humoral immune responses in aged mice and humans. Briefly, we cover how aging and related inflammation decrease antibody responses in mice and humans, and how obesity contributes to the mechanisms for aging through increased inflammation. We also report data in the literature showing adipose tissue infiltration with immune cells and how these cells are recruited and contribute to local and systemic inflammation. We show that several types of immune cells infiltrate the adipose tissue and these include macrophages, neutrophils, NK cells, innate lymphoid cells, eosinophils, T cells, B1, and B2 cells. Our main focus is how the adipose tissue affects immune responses, in particular B cell responses and antibody production. The role of leptin in generating inflammation and decreased B cell responses is also discussed. We report data published by us and by other groups showing that the adipose tissue generates pro-inflammatory B cell subsets which induce pro-inflammatory T cells, promote insulin resistance, and secrete pathogenic autoimmune antibodies.

  16. Balance impairment and systemic inflammation in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Tudorache E

    2015-09-01

    Full Text Available Emanuela Tudorache,1 Cristian Oancea,1 Claudiu Avram,2 Ovidiu Fira-Mladinescu,1 Lucian Petrescu,3 Bogdan Timar4 1Department of Pulmonology, University of Medicine and Pharmacy “Victor Babes”, 2Physical Education and Sport Faculty, West University of Timisoara, 3Department of Cardiology, University of Medicine and Pharmacy “Victor Babes”, 4Department of Biostatistics and Medical Informatics, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania Background/purpose: Chronic obstructive pulmonary disease (COPD, especially in severe forms, is commonly associated with systemic inflammation and balance impairment. The aim of our study was to evaluate the impact on equilibrium of stable and exacerbation (acute exacerbation of COPD [AECOPD] phases of COPD and to investigate if there is a connection between lower extremity muscle weakness and systemic inflammation.Methods: We enrolled 41 patients with COPD (22 stable and 19 in AECOPD and 20 healthy subjects (control group, having no significant differences regarding the anthropometric data. We analyzed the differences in balance tests scores: Falls Efficacy Scale-International (FES-I questionnaire, Berg Balance Scale (BBS, Timed Up and Go (TUG test, Single Leg Stance (SLS, 6-minute walking distance (6MWD, isometric knee extension (IKE between these groups, and also the correlation between these scores and inflammatory biomarkers.Results: The presence and severity of COPD was associated with significantly decreased score in IKE (P<0.001, 6MWD (P<0.001, SLS (P<0.001, and BBS (P<0.001, at the same time noting a significant increase in median TUG score across the studied groups (P<0.001. The AECOPD group vs stable group presented a significant increase in high-sensitive C-reactive protein (hs-CRP levels (10.60 vs 4.01; P=0.003 and decrease in PaO2 (70.1 vs 59.1; P<0.001. We observed that both IKE scores were significantly and positive correlated with all the respiratory volumes

  17. Loss of Syndecan-1 Abrogates the Pulmonary Protective Phenotype Induced by Plasma After Hemorrhagic Shock.

    Science.gov (United States)

    Wu, Feng; Peng, Zhanglong; Park, Pyong Woo; Kozar, Rosemary A

    2017-09-01

    Syndecan-1 (Sdc1) is considered a biomarker of injury to the endothelial glycocalyx following hemorrhagic shock, with shedding of Sdc1 deleterious. Resuscitation with fresh frozen plasma (FFP) has been correlated with restitution of pulmonary Sdc1 and reduction of lung injury, but the precise contribution of Sdc1 to FFPs protection in the lung remains unclear. Human lung endothelial cells were used to assess the time and dose-dependent effect of FFP on Sdc1 expression and the effect of Sdc1 silencing on in vitro endothelial cell permeability and actin stress fiber formation. Wild-type and Sdc1 mice were subjected to hemorrhagic shock followed by resuscitation with lactated Ringers (LR) or FFP and compared with shock alone and shams. Lungs were harvested after 3 h for analysis of permeability, histology, and inflammation and for measurement of syndecan- 2 and 4 expression. In vitro, FFP enhanced pulmonary endothelial Sdc1 expression in time- and dose-dependent manners and loss of Sdc1 in pulmonary endothelial cells worsened permeability and stress fiber formation by FFP. Loss of Sdc1 in vivo led to equivalency between LR and FFP in restoring pulmonary injury, inflammation, and permeability after shock. Lastly, Sdc1 mice demonstrated a significant increase in pulmonary syndecan 4 expression after hemorrhagic shock and FFP-based resuscitation. Taken together, our findings support a key role for Sdc1 in modulating pulmonary protection by FFP after hemorrhagic shock. Our results also suggest that other members of the syndecan family may at least be contributing to FFP's effects on the endothelium, an area that warrants further investigation.

  18. Effect of acute moderate exercise on induced inflammation and arterial function in older adults.

    Science.gov (United States)

    Ranadive, Sushant Mohan; Kappus, Rebecca Marie; Cook, Marc D; Yan, Huimin; Lane, Abbi Danielle; Woods, Jeffrey A; Wilund, Kenneth R; Iwamoto, Gary; Vanar, Vishwas; Tandon, Rudhir; Fernhall, Bo

    2014-04-01

    Acute inflammation reduces flow-mediated vasodilatation and increases arterial stiffness in young healthy individuals. However, this response has not been studied in older adults. The aim of this study, therefore, was to evaluate the effect of acute induced systemic inflammation on endothelial function and wave reflection in older adults. Furthermore, an acute bout of moderate-intensity aerobic exercise can be anti-inflammatory. Taken together, we tested the hypothesis that acute moderate-intensity endurance exercise, immediately preceding induced inflammation, would be protective against the negative effects of acute systemic inflammation on vascular function. Fifty-nine healthy volunteers between 55 and 75 years of age were randomized to an exercise or a control group. Both groups received a vaccine (induced inflammation) and sham (saline) injection in a counterbalanced crossover design. Inflammatory markers, endothelial function (flow-mediated vasodilatation) and measures of wave reflection and arterial stiffness were evaluated at baseline and at 24 and 48 h after injections. There were no significant differences in endothelial function and arterial stiffness between the exercise and control group after induced inflammation. The groups were then analysed together, and we found significant differences in the inflammatory markers 24 and 48 h after induction of acute inflammation compared with sham injection. However, flow-mediated vasodilatation, augmentation index normalized for heart rate (AIx75) and β-stiffness did not change significantly. Our results suggest that acute inflammation induced by influenza vaccination did not affect endothelial function in older adults.

  19. Creatine kinase activity in dogs with experimentally induced acute inflammation

    Directory of Open Access Journals (Sweden)

    Dimitrinka Zapryanova

    2013-01-01

    Full Text Available The main purpose of this study was to investigate the effect of acute inflammation on total creatine kinase (CK activity in dogs. In these animals, CK is an enzyme found predominantly in skeletal muscle and significantly elevated serum activity is largely associated with muscle damage. Plasma increases in dogs are associated with cell membrane leakage and will therefore be seen in any condition associated with muscular inflammation. The study was induced in 15 mongrel male dogs (n=9 in experimental group and n=6 in control group at the age of two years and body weight 12-15 kg. The inflammation was reproduced by inoculation of 2 ml turpentine oil subcutaneously in lumbar region. The plasma activity of creatine kinase was evaluated at 0, 6, 24, 48, 72 hours after inoculation and on days 7, 14 and 21 by a kit from Hospitex Diagnostics. In the experimental group, the plasma concentrations of the CK-activity were increased at the 48th hour (97.48±6.92 U/L and remained significantly higher (p<0.05 at the 72 hour (97.43±2.93 U/L compared to the control group (77.08±5.27 U/L. The results of this study suggest that the evaluation of creatine kinase in dogs with experimentally induced acute inflammation has a limited diagnostic value. It was observed that the creatine kinase activity is slightly affected by the experimentally induced acute inflammation in dogs.

  20. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms.

    Science.gov (United States)

    Stenmark, Kurt R; Fagan, Karen A; Frid, Maria G

    2006-09-29

    Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.

  1. Inhaled ozone (O{sub 3})-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Desinia B. [Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, NC (United States); Karoly, Edward D.; Jones, Jan C. [Metabolon Incorporation, Durham, NC (United States); Ward, William O.; Vallanat, Beena D.; Andrews, Debora L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Schladweiler, Mette C.; Snow, Samantha J. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Bass, Virginia L. [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC (United States); Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2015-07-15

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O{sub 3}) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O{sub 3} exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O{sub 3} at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O{sub 3}, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O{sub 3} increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O{sub 3} increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O{sub 3}. In conclusion, short-term O{sub 3} exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia

  2. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R; Feneberg, B; Ponater, M [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  3. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Feneberg, B.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  4. Protective role of NKT cells and macrophage M2-driven phenotype in bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Grabarz, Felipe; Aguiar, Cristhiane Favero; Correa-Costa, Matheus; Braga, Tárcio Teodoro; Hyane, Meire I; Andrade-Oliveira, Vinícius; Landgraf, Maristella Almeida; Câmara, Niels Olsen Saraiva

    2018-04-01

    Pulmonary fibrosis is a result of an abnormal wound healing in lung tissue triggered by an excessive accumulation of extracellular matrix proteins, loss of tissue elasticity, and debit of ventilatory function. NKT cells are a major source of Th1 and Th2 cytokines and may be crucial in the polarization of M1/M2 macrophages in pulmonary fibrogenesis. Although there appears to be constant scientific progress in that field, pulmonary fibrosis still exhibits no current cure. From these facts, we hypothesized that NKT cells could influence the development of pulmonary fibrosis via modulation of macrophage activation. Wild type (WT) and NKT type I cell-deficient mice (Jα18 -/- ) were subjected to the protocol of bleomycin-induced pulmonary fibrosis with or without treatment with NKT cell agonists α-galactosylceramide and sulfatide. The participation of different cell populations, collagen deposition, and protein levels of different cytokines involved in inflammation and fibrosis was evaluated. The results indicate a benign role of NKT cells in Jα18 -/- mice and in wild-type α-galactosylceramide-sulfatide-treated groups. These animals presented lower levels of collagen deposition, fibrogenic molecules such as TGF-β and vimentin and improved survival rates. In contrast, WT mice developed a Th2-driven response augmenting IL-4, 5, and 13 protein synthesis and increased collagen deposition. Furthermore, the arginase-1 metabolic pathway was downregulated in wild-type NKT-activated and knockout mice indicating lower activity of M2 macrophages in lung tissue. Hence, our data suggest that NKT cells play a protective role in this experimental model by down modulating the Th2 milieu, inhibiting M2 polarization and finally preventing fibrosis.

  5. Receptor Interacting Protein 3-Mediated Necroptosis Promotes Lipopolysaccharide-Induced Inflammation and Acute Respiratory Distress Syndrome in Mice.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS. Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3. However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP, mixed lineage kinase domain-like protein (MLKL, total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI staining. Levels of TNF-a, Interleukin (IL-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in

  6. Interleukin-6 overexpression induces pulmonary hypertension.

    Science.gov (United States)

    Steiner, M Kathryn; Syrkina, Olga L; Kolliputi, Narasaish; Mark, Eugene J; Hales, Charles A; Waxman, Aaron B

    2009-01-30

    Inflammatory cytokine interleukin (IL)-6 is elevated in the serum and lungs of patients with pulmonary artery hypertension (PAH). Several animal models of PAH cite the potential role of inflammatory mediators. We investigated role of IL-6 in the pathogenesis of pulmonary vascular disease. Indices of pulmonary vascular remodeling were measured in lung-specific IL-6-overexpressing transgenic mice (Tg(+)) and compared to wild-type (Tg(-)) controls in both normoxic and chronic hypoxic conditions. The Tg(+) mice exhibited elevated right ventricular systolic pressures and right ventricular hypertrophy with corresponding pulmonary vasculopathic changes, all of which were exacerbated by chronic hypoxia. IL-6 overexpression increased muscularization of the proximal arterial tree, and hypoxia enhanced this effect. It also reproduced the muscularization and proliferative arteriopathy seen in the distal arteriolar vessels of PAH patients. The latter was characterized by the formation of occlusive neointimal angioproliferative lesions that worsened with hypoxia and were composed of endothelial cells and T-lymphocytes. IL-6-induced arteriopathic changes were accompanied by activation of proangiogenic factor, vascular endothelial growth factor, the proproliferative kinase extracellular signal-regulated kinase, proproliferative transcription factors c-MYC and MAX, and the antiapoptotic proteins survivin and Bcl-2 and downregulation of the growth inhibitor transforming growth factor-beta and proapoptotic kinases JNK and p38. These findings suggest that IL-6 promotes the development and progression of pulmonary vascular remodeling and PAH through proproliferative antiapoptotic mechanisms.

  7. Steady-state ozone concentrations in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O/sub 2/ and noble gas-o/sub 2/-SF/sub 6/ mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10/sup 15/ eV . cm/sup -3/ . s/sup -1/. The experimental apparatus and procedure were previously described. The experimentally observed steady-state ozone concentrations in noble gas-O/sub 2/ discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O/sub 2/-SF/sub 6/ mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF/sub 6/ addition. This observation was contrary to only a small increase observed after SF/sub 6/ addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O/sub 2/ discharges

  8. Low grade inflammation inhibits VEGF induced HUVECs migration in p53 dependent manner

    International Nuclear Information System (INIS)

    Panta, Sushil; Yamakuchi, Munekazu; Shimizu, Toshiaki; Takenouchi, Kazunori; Oyama, Yoko; Koriyama, Toyoyasu; Kojo, Tsuyoshi; Hashiguchi, Teruto

    2017-01-01

    In the course of studying crosstalk between inflammation and angiogenesis, high doses of pro-inflammatory factors have been reported to induce apoptosis in cells. Under normal circumstances also the pro-inflammatory cytokines are being released in low doses and are actively involved in cell signaling pathways. We studied the effects of low grade inflammation in growth factor induced angiogenesis using tumor necrosis factor alfa (TNFα) and vascular endothelial growth factor A (VEGF) respectively. We found that low dose of TNFα can inhibit VEGF induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Low dose of TNFα induces mild upregulation and moreover nuclear localization of tumor suppressor protein 53 (P53) which causes decrease in inhibitor of DNA binding-1 (Id1) expression and shuttling to the cytoplasm. In absence of Id1, HUVECs fail to upregulate β 3 -integrin and cell migration is decreased. Connecting low dose of TNFα induced p53 to β 3 -integrin through Id1, we present additional link in cross talk between inflammation and angiogenesis. - Highlights: • Low grade inflammation (low dose of TNF alfa) inhibits VEGF induced endothelial cells migration. • The low grade inflammation with VEGF treatment upregulates P53 to a nonlethal level. • P53 activation inhibits Id1 shuttling to the cytoplasm in endothelial cells. • Inhibition of Id1 resulted in downregulation of β 3 -integrin which cause decrease in cell migration. • Inflammation and angiogenesis might cross-talk by P53 – Id1 – β 3 -integrin pathway in endothelial cells.

  9. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats

    Directory of Open Access Journals (Sweden)

    Li Jianjun

    2012-09-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs possess potent immunomodulatory properties and simultaneously lack the ability to illicit immune responses. Hence, MSCs have emerged as a promising candidate for cellular therapeutics for inflammatory diseases. Within the context of this study, we investigated whether human umbilical cord-derived mesenchymal stem cells (UC-MSCs could ameliorate lipopolysaccharide- (LPS- induced acute lung injury (ALI in a rat model. Methods ALI was induced via injection of LPS. Rats were divided into three groups: (1 saline group(control, (2 LPS group, and (3 MSC + LPS group. The rats were sacrificed at 6, 24, and 48 hours after injection. Serum, bronchoalveolar lavage fluid (BALF, and lungs were collected for cytokine concentration measurements, assessment of lung injury, and histology. Results UC-MSCs increased survival rate and suppressed LPS-induced increase of serum concentrations of pro-inflammatory mediators TNF-α, IL-1β, and IL-6 without decreasing the level of anti-inflammatory cytokine IL-10. The MSC + LPS group exhibited significant improvements in lung inflammation, injury, edema, lung wet/dry ratio, protein concentration, and neutrophil counts in the BALF, as well as improved myeloperoxidase (MPO activity in the lung tissue. Furthermore, UC-MSCs decreased malondialdehyde (MDA production and increased Heme Oxygenase-1 (HO-1 protein production and activity in the lung tissue. Conclusion UC-MSCs noticeably increased the survival rate of rats suffering from LPS-induced lung injury and significantly reduced systemic and pulmonary inflammation. Promoting anti-inflammatory homeostasis and reducing oxidative stress might be the therapeutic basis of UC-MSCs.

  10. Lung radiology and pulmonary function of children chronically exposed to air pollution.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Fordham, Lynn A; Chung, Charles J; Valencia-Salazar, Gildardo; Flores-Gómez, Silvia; Solt, Anna C; Gomez-del Campo, Alberto; Jardón-Torres, Ricardo; Henríquez-Roldán, Carlos; Hazucha, Milan J; Reed, William

    2006-09-01

    We analyzed the chest radiographs (CXRs) of 249 clinically healthy children, 230 from southwest Mexico City and 19 from Tlaxcala. In contrast to children from Tlaxcala, children from southwest Mexico City were chronically exposed to ozone levels exceeding the U.S. National Ambient Air Quality Standards for an average of 4.7 hr/day and to concentrations of particulate matter (PM) with aerodynamic diameters pulmonary nodules in 2 of 21. Only 7.8% of Mexico City children had abnormal lung function tests based on predicted values. These findings are consistent with bronchiolar, peribronchiolar, and/or alveolar duct inflammation, possibly caused by ozone, PM, and lipopolysaccharide exposure. The epidemiologic implications of these findings are important for children residing in polluted environments, because bronchiolar disease could lead to chronic pulmonary disease later in life.

  11. HMGB1 promotes the development of pulmonary arterial hypertension in rats.

    Directory of Open Access Journals (Sweden)

    Yukari Sadamura-Takenaka

    Full Text Available Pulmonary arterial hypertension (PAH is characterized by increased pulmonary vascular resistance leading to right ventricular failure and death. Recent studies have suggested that chronic inflammatory processes are involved in the pathogenesis of PAH. However, the molecular and cellular mechanisms driving inflammation have not been fully elucidated.To elucidate the roles of high mobility group box 1 protein (HMGB1, a ubiquitous DNA-binding protein with extracellular pro-inflammatory activity, in a rat model of PAH.Male Sprague-Dawley rats were administered monocrotaline (MCT. Concentrations of HMGB1 in bronchoalveolar lavage fluid (BALF and serum, and localization of HMGB1 in the lung were examined over time. The protective effects of anti-HMGB1 neutralizing antibody against MCT-induced PAH were tested.HMGB1 levels in BALF were elevated 1 week after MCT injection, and this elevation preceded increases of other pro-inflammatory cytokines, such as TNF-α, and the development of PAH. In contrast, serum HMGB1 levels were elevated 4 weeks after MCT injection, at which time the rats began to die. Immunohistochemical analyses indicated that HMGB1 was translocated to the extranuclear space in periarterial infiltrating cells, alveolar macrophages, and bronchial epithelial cells of MCT-injected rats. Anti-HMGB1 neutralizing antibody protected rats against MCT-induced lung inflammation, thickening of the pulmonary artery wall, and elevation of right ventricular systolic pressure, and significantly improved the survival of the MCT-induced PAH rats.Our results identify extracellular HMGB1 as a promoting factor for MCT-induced PAH. The blockade of HMGB1 activity improved survival of MCT-induced PAH rats, and thus might be a promising therapy for the treatment of PAH.

  12. Combined prednisolone and pirfenidone in bleomycin-induced lung disease

    Directory of Open Access Journals (Sweden)

    Preyas J Vaidya

    2016-01-01

    Full Text Available Bleomycin is a cytostatic drug commonly employed in the treatment of Hodgkin's disease, seminomas, and choriocarcinoma. Bleomycin may induce a chronic pulmonary inflammation that may progress to fibrosis. So far, only corticosteroids have been used in the treatment of bleomycin-induced lung disease with variable results. Pirfenidone is an antifibrotic drug that has been approved for the treatment of idiopathic pulmonary fibrosis. We report two cases of bleomycin-induced lung disease treated successfully with pirfenidone and oral corticosteroids.

  13. Inflammatory biomarkers and comorbidities in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Thomsen, Mette; Dahl, Morten; Lange, Peter

    2012-01-01

    Patients with chronic obstructive pulmonary disease (COPD) have evidence of systemic inflammation that may be implicated in the development of comorbidities.......Patients with chronic obstructive pulmonary disease (COPD) have evidence of systemic inflammation that may be implicated in the development of comorbidities....

  14. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    International Nuclear Information System (INIS)

    Yanamala, Naveena; Hatfield, Meghan K.; Farcas, Mariana T.; Schwegler-Berry, Diane; Hummer, Jon A.; Shurin, Michael R.; Birch, M. Eileen; Gutkin, Dmitriy W.; Kisin, Elena; Kagan, Valerian E.; Bugarski, Aleksandar D.; Shvedova, Anna A.

    2013-01-01

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure

  15. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Yanamala, Naveena, E-mail: wqu1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hatfield, Meghan K., E-mail: wla4@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Farcas, Mariana T., E-mail: woe7@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Schwegler-Berry, Diane [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hummer, Jon A., E-mail: qzh3@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shurin, Michael R., E-mail: shurinmr@upmc.edu [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Birch, M. Eileen, E-mail: mib2@cdc.gov [NIOSH/CDC, 4676 Columbia Parkway, Cincinnati, OH 45226 (United States); Gutkin, Dmitriy W., E-mail: dwgutkin@hotmail.com [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Kisin, Elena, E-mail: edk8@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, University of Pittsburgh, PA (United States); Bugarski, Aleksandar D., E-mail: zjl1@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Department Physiology and Pharmacology, WVU, Morgantown, WV 26505 (United States)

    2013-10-15

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.

  16. The common parasite Toxoplasma gondii induces prostatic inflammation and microglandular hyperplasia in a mouse model.

    Science.gov (United States)

    Colinot, Darrelle L; Garbuz, Tamila; Bosland, Maarten C; Wang, Liang; Rice, Susan E; Sullivan, William J; Arrizabalaga, Gustavo; Jerde, Travis J

    2017-07-01

    Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia. © 2017 Wiley Periodicals, Inc.

  17. Dose-dependent pulmonary response of well-dispersed titanium dioxide nanoparticles following intratracheal instillation

    International Nuclear Information System (INIS)

    Oyabu, Takako; Morimoto, Yasuo; Hirohashi, Masami; Horie, Masanori; Kambara, Tatsunori; Lee, Byeong Woo; Hashiba, Masayoshi; Mizuguchi, Yohei; Myojo, Toshihiko; Kuroda, Etsushi

    2013-01-01

    In order to investigate the relationship between pulmonary inflammation and particle clearance of nanoparticles, and also their dose dependency, we performed an instillation study of well-dispersed TiO 2 nanoparticles and examined the pulmonary inflammations, the particle clearance rate and histopathological changes. Wistar rats were intratracheally administered 0.1 mg (0.33 mg/kg), 0.2 mg (0.66 mg/kg), 1 mg (3.3 mg/kg), and 3 mg (10 mg/kg) of well-dispersed TiO 2 nanoparticles (diameter of agglomerates: 25 nm), and the pulmonary inflammation response and the amount of TiO 2 in the lung were determined from 3 days up to 12 months sequentially after the instillation. There were no increases of total cell or neutrophil counts in bronchoalveolar lavage fluid (BALF) in the 0.1 and the 0.2 mg-administered groups. On the other hand, mild infiltration of neutrophils was observed in the 1 and 3 mg-administered groups. Histopathological findings showed infiltration of neutrophils in the 1 and 3 mg-administered groups. Of special note, a granulomatous lesion including a local accumulation of TiO 2 was observed in the bronchioli-alveolar space in the 3 mg-administered group. The biological half times of the TiO 2 in the lung were 4.2, 4.4, 6.7, and 10.8 months in the 0.1, 0.2, 1, and 3 mg-administered groups, respectively. Neutrophil infiltration was observed as the particle clearance was delayed, suggesting that an excessive dose of TiO 2 nanoparticles may induce pulmonary inflammation and clearance delay.

  18. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    Science.gov (United States)

    Snow, Samantha J.; McGee, John; Miller, Desinia B.; Bass, Virginia; Schladweiler, Mette C.; Thomas, Ronald F.; Krantz, Todd; King, Charly; Ledbetter, Allen D.; Richards, Judy; Weinstein, Jason P.; Conner, Teri; Willis, Robert; Linak, William P.; Nash, David; Wood, Charles E.; Elmore, Susan A.; Morrison, James P.; Johnson, Crystal L.; Gilmour, Matthew Ian; Kodavanti, Urmila P.

    2014-01-01

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe. PMID:25239632

  19. Aspiration, Localized Pulmonary Inflammation, and Predictors of Early-Onset Bronchiolitis Obliterans Syndrome after Lung Transplantation

    Science.gov (United States)

    Fisichella, P Marco; Davis, Christopher S; Lowery, Erin; Ramirez, Luis; Gamelli, Richard L; Kovacs, Elizabeth J

    2014-01-01

    BACKGROUND We hypothesized that immune mediator concentrations in the bronchoalveolar fluid (BALF) are predictive of bronchiolitis obliterans syndrome (BOS) and demonstrate specific patterns of dysregulation, depending on the presence of acute cellular rejection, BOS, aspiration, and timing of lung transplantation. STUDY DESIGN We prospectively collected 257 BALF samples from 105 lung transplant recipients. The BALF samples were assessed for absolute and differential white blood cell counts and 34 proteins implicated in pulmonary immunity, inflammation, fibrosis, and aspiration. RESULTS There were elevated BALF concentrations of interleukin (IL)-15, IL-17, basic fibroblast growth factor, tumor necrosis factor–α, and myeloperoxidase, and reduced concentrations of α1-antitrypsin, which were predictive of early-onset BOS. Patients with BOS had an increased percentage of BALF lymphocytes and neutrophils, with a reduced percentage of macrophages (p < 0.05). The BALF concentrations of IL-1β; IL-8; interferon-γ–induced protein 10; regulated upon activation, normal T-cell expressed and secreted; neutrophil elastase; and pepsin were higher in patients with BOS (p < 0.05). Among those with BOS, BALF concentrations of IL-1RA; IL-8; eotaxin; interferon-γ–induced protein 10; regulated upon activation, normal T-cell expressed and secreted; myeloperoxidase; and neutrophil elastase were positively correlated with time since transplantation (p < 0.01). Those with worse grades of acute cellular rejection had an increased percentage of lymphocytes in their BALF (p < 0.0001) and reduced BALF concentrations of IL-1β, IL-7, IL-9, IL-12, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, interferon-γ, and vascular endothelial growth factor (p ≤ 0.001). Patients with aspiration based on detectable pepsin had increased percentage of neutrophils (p < 0.001) and reduced BALF concentrations of IL-12 (p < 0.001). CONCLUSIONS The BALF levels

  20. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation.

    Science.gov (United States)

    Liang, Wen; Lindeman, Jan H; Menke, Aswin L; Koonen, Debby P; Morrison, Martine; Havekes, Louis M; van den Hoek, Anita M; Kleemann, Robert

    2014-05-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β (IL-1β), administered by slow-release minipumps) and metabolic dietary triggers (carbohydrate, cholesterol) of inflammation on the progression of bland liver steatosis (BS) to NASH. Transgenic APOE3*Leiden.huCETP (APOE3L.CETP) mice fed a high-fat diet (HFD) developed BS after 10 weeks. Then, inflammatory triggers were superimposed or not (control) for six more weeks. Mouse livers were analyzed with particular emphasis on hallmarks of inflammation which were defined in human liver biopsies with and without NASH. Livers of HFD-treated control mice remained steatotic and did not progress to NASH. All four inflammatory triggers activated hepatic nuclear factor-κB (NF-κB) significantly and comparably (≥5-fold). However, HFD+LPS or HFD+IL-1β did not induce a NASH-like phenotype and caused intrahepatic accumulation of almost exclusively mononuclear cells. By contrast, mice treated with metabolic triggers developed NASH, characterized by enhanced steatosis, hepatocellular hypertrophy, and formation of mixed-type inflammatory foci containing myeloperoxidase-positive granulocytes (neutrophils) as well as mononuclear cells, essentially as observed in human NASH. Specific for the metabolic inducers was an activation of the proinflammatory transcription factor activator protein-1 (AP-1), neutrophil infiltration, and induction of risk factors associated with human NASH, that is, dyslipidemia (by cholesterol) and insulin resistance (by carbohydrate). In conclusion, HFD feeding followed by NF-κB activation per se (LPS, IL-1β) does not promote the transition from BS to NASH. HFD feeding followed by metabolically evoked inflammation induces additional inflammatory components

  1. Critical role of aldehydes in cigarette smoke-induced acute airway inflammation

    NARCIS (Netherlands)

    van der Toorn, Marco; Slebos, Dirk-Jan; de Bruin, Harold G.; Gras, Renee; Rezayat, Delaram; Jorge, Lucie; Sandra, Koen; van Oosterhout, Antoon J. M.

    2013-01-01

    Background: Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation. Methods: BALB/c mice were exposed to CS, water

  2. A new model of progressive pulmonary fibrosis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Last, J.A.; Gelzleichter, T.R.; Pinkerton, K.E.; Walker, R.M.; Witschi, H. (Univ. of California, Davis (United States))

    1993-08-01

    Sprague-Dawley rats were exposed for 6 h daily to 0.8 ppm of ozone and 14.4 ppm of nitrogen dioxide. Approximately 7 to 10 wk after the initiation of exposure, animals began to demonstrate respiratory insufficiency and severe weight loss. About half of the rats died between Days 55 and 78 of exposure; no overt ill effects were observed in animals exposed to filtered air, to ozone alone, or to nitrogen dioxide. Biochemical findings in animals exposed to ozone and nitrogen dioxide included increased lung content of DNA, protein, collagen, and elastin, which was about 300% higher than the control values. The collagen-specific crosslink hydroxy-pyridinium, a biomarker for mature collagen in the lung, was decreased by about 40%. These results are consistent with extensive breakdown and remodeling of the lung parenchyma and its associated vasculature. Histopathologic evaluation showed severe fibrosis, alveolar collapse, honeycombing, macrophage and mast cell accumulation, vascular smooth muscle hypertrophy, and other indications of severe progressive interstitial pulmonary fibrosis and end-stage lung disease. This unique animal model of progressive pulmonary fibrosis resembles the final stages of human idiopathic pulmonary fibrosis and should facilitate studying underlying mechanisms and potential therapy of progressive pulmonary fibrosis.

  3. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling

    Directory of Open Access Journals (Sweden)

    Yuan Ma

    2016-01-01

    Full Text Available Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA- sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs were challenged by tumor necrosis factor alpha (TNF-α. The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS/mitogen-activated protein kinase (MAPK evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL- 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2′,7′-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were

  4. Increased hypothalamic serotonin turnover in inflammation-induced anorexia.

    Science.gov (United States)

    Dwarkasing, J T; Witkamp, R F; Boekschoten, M V; Ter Laak, M C; Heins, M S; van Norren, K

    2016-05-20

    Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.

  5. Acrolein effects in pulmonary cells: relevance to chronic obstructive pulmonary disease.

    Science.gov (United States)

    Moretto, Nadia; Volpi, Giorgia; Pastore, Fiorella; Facchinetti, Fabrizio

    2012-07-01

    Acrolein (2-propenal) is a highly reactive α,β-unsaturated aldehyde and a respiratory irritant that is ubiquitously present in the environment but that can also be generated endogenously at sites of inflammation. Acrolein is abundant in tobacco smoke, which is the major environmental risk factor for chronic obstructive pulmonary disease (COPD), and elevated levels of acrolein are found in the lung fluids of COPD patients. Its high electrophilicity makes acrolein notorious for its facile reaction with biological nucleophiles, leading to the modification of proteins and DNA and depletion of antioxidant defenses. As a consequence, acrolein results in oxidative stress as well as altered intracellular signaling and gene transcription/translation. In pulmonary cells, acrolein, at subtoxic concentrations, can activate intracellular stress kinases, alter the production of inflammatory mediators and proteases, modify innate immune response, induce mucus hypersecretion, and damage airway epithelium. A better comprehension of the mechanisms underlying acrolein effects in the airways may suggest novel treatment strategies in COPD. © 2012 New York Academy of Sciences.

  6. [Bronchial inflammation during chronic bronchitis, importance of fenspiride].

    Science.gov (United States)

    Melloni, B

    2002-09-01

    PATHOPHYSIOLOGY OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD): Chronic inflammation of the upper airways, pulmonary parenchyma and pulmonary vasculature is the characteristic feature of COPD. Two mechanisms besides inflammation are also involved: oxidative stress and imbalance between proteinases and antiproteinases. Cellular infiltration of the upper airways involved neutrophils, macrophages, T lymphocytes and eosinophils. Inflammatory mediators appear to play a crucial role in the interaction between inflammation and obstruction. PROPERTIES OF FENSPIRIDE: A nonsteroidal drug, fenspiride, exhibits interesting properties documented in vitro: anti-bronchoconstriction activity, anti-secretory activity, and anti-inflammatory activity (reduction in the activity of phospholipase A2 and release of proinflammatory leukotriens). Two french clinical trials have studied the efficacy of fenspiride in patients with acute excerbation or stable COPD and have demonstrated an improvement in the group treated with fenspiride compared with the placebo group.

  7. Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations.

    Science.gov (United States)

    Niu, Xinyi; Ho, Steven Sai Hang; Ho, Kin Fai; Huang, Yu; Cao, Junji; Shen, Zhenxing; Sun, Jian; Wang, Xiumei; Wang, Yu; Lee, Shuncheng; Huang, Rujin

    2017-02-01

    Monoterpene is one class of biogenic volatile organic compounds (BVOCs) which widely presents in household cleaning products and air fresheners. It plays reactive role in secondary organic aerosols (SOAs) formation with ozone (O 3 ) in indoor environments. Such ozonolysis can be influenced by the presence of gaseous pollutants such as ammonia (NH 3 ). This study focuses on investigations of ozone-initiated formation of indoor SOAs with d-limonene, one of the most abundant indoor monoterpenes, in a large environmental chamber. The maximum total particle number concentration from the ozonolysis in the presence of NH 3 was 60% higher than that in the absence of NH 3 . Both of the nuclei coagulation and condensation involve in the SOAs growth. The potential risks of pulmonary injury for the exposure to the secondary particles formed were presented with the indexes of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10) expression levels in bronchoalveolar lavage fluid (BALF) upon intratracheal instillation in mice lung for 6 and 12h. The results indicated that there was 22-39% stronger pulmonary inflammatory effect on the particles generated with NH 3 . This is a pilot study which demonstrates the toxicities of the indoor SOAs formed from the ozonolysis of a monoterpene. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Hong-Xia Zhang

    2016-12-01

    Full Text Available Background: Hydrogen sulfide (H2S, known as the third endogenous gaseous transmitter, has received increasing attention because of its diverse effects, including angiogenesis, vascular relaxation and myocardial protection.We aimed to investigate the role of H2S in oxidative/nitrative stress and inflammation in acute lung injury (ALI induced by endotoxemia. Methods: Male ICR mice were divided in six groups: (1 Control group; (2 GYY4137treatment group; (3 L-NAME treatment group; (4 lipopolysaccharide (LPS treatment group; (5 LPS with GYY4137 treatment group; and (6 LPS with L-NAME treatment group. The lungs were analysed by histology, NO production in the mouse lungs determined by modified Griess (Sigma-Aldrich reaction, cytokine levels utilizing commercialkits, and protein abundance by Western blotting. Results: GYY4137, a slowly-releasing H2S donor, improved the histopathological changes in the lungs of endotoxemic mice. Treatment with NG-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase (NOS inhibitor, increased anti-oxidant biomarkers such as thetotal antioxidant capacity (T-AOC and theactivities of catalase (CAT and superoxide dismutase (SOD but decreased a marker of peroxynitrite (ONOO- action and 3-nitrotyrosine (3-NT in endotoxemic lung. L-NAME administration also suppressed inflammation in endotoxemic lung, as evidenced by the decreased pulmonary levels of interleukin (IL-6, IL-8, and myeloperoxidase (MPO and the increased level of anti-inflammatory cytokine IL-10. GYY4137 treatment reversed endotoxin-induced oxidative/nitrative stress, as evidenced by a decrease in malondialdehyde (MDA, hydrogenperoxide (H2O2 and 3-NT and an increase in the antioxidant biomarker ratio of reduced/oxidized glutathione(GSH/GSSG ratio and T-AOC, CAT and SOD activity. GYY4137 also attenuated endotoxin-induced lung inflammation. Moreover, treatment with GYY4137 inhibited inducible NOS (iNOS expression and nitric oxide (NO production in the

  9. Proinflammatory and anti-inflammatory cytokine balance in gasoline exhaust induced pulmonary injury in mice.

    Science.gov (United States)

    Sureshkumar, Veerapandian; Paul, Bholanath; Uthirappan, Mani; Pandey, Renu; Sahu, Anand Prakash; Lal, Kewal; Prasad, Arun Kumar; Srivastava, Suresh; Saxena, Ashok; Mathur, Neeraj; Gupta, Yogendra Kumar

    2005-03-01

    Proinflammatory and anti-inflammatory cytokine balance and associated changes in pulmonary bronchoalveolar lavage fluid (BALF) of unleaded gasoline exhaust (GE) exposed mice were investigated. Animals were exposed to GE (1 L/min of GE mixed with 14 L/min of compressed air) using a flow-past, nose-only, dynamic inhalation exposure chamber for different durations (7, 14, and 21 days). The particulate content of the GE was found to be 0.635, +/-0.10 mg PM/m3. Elevated levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) were observed in BALF of GE-exposed mice, but interleukin 1beta(IL-1beta) and the anti-inflammatory cytokine interleukin-10 (IL-10) remained unaffected. GE induced higher activities of alkaline phosphatase (ALP), gamma-glutamyl transferase (gammaGT), and lactate dehydrogenase (LDH) in the BALF, indicating Type II alveolar epithelial cell injury, Clara-cell injury, and general toxicity, respectively. Total protein in the BALF increased after 14 and 21 days of exposure, indicating enhanced alveolar-capillary permeability. However, the difference in the mean was found statistically insignificant in comparison to the compressed air control. Total cell count in the BALF of GE-exposed mice ranged between 0.898 and 0.813x10(6) cells/ml, whereas the compressed air control showed 0.65x10(6) cells/mL. The histopathological changes in GE-exposed lung includes perivascular, and peribronchiolar cuffing of mononuclear cells, migration of polymorphonuclear cells in the alveolar septa, alveolar thickening, and mild alveolar edematous changes indicating inflammation. The shift in pro- and anti-inflammatory cytokine balance and elevation of the pulmonary marker enzymes indicate toxic insult of GE. This study will help in our understanding of the mechanism of pulmonary injury by GE in the light of cytokine profiles, pulmonary marker enzymes, and lung architecture.

  10. Enhancement of the acrolein-induced production of reactive oxygen species and lung injury by GADD34.

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Liu, Lintao; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS). Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury.

  11. Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: implication in pulmonary hypertension

    Science.gov (United States)

    Chettimada, Sukrutha; Gupte, Rakhee; Rawat, Dhwajbahadur; Gebb, Sarah A.; McMurtry, Ivan F.

    2014-01-01

    Severe pulmonary hypertension is a debilitating disease with an alarmingly low 5-yr life expectancy. Hypoxia, one of the causes of pulmonary hypertension, elicits constriction and remodeling of the pulmonary arteries. We now know that pulmonary arterial remodeling is a consequence of hyperplasia and hypertrophy of pulmonary artery smooth muscle (PASM), endothelial, myofibroblast, and stem cells. However, our knowledge about the mechanisms that cause these cells to proliferate and hypertrophy in response to hypoxic stimuli is still incomplete, and, hence, the treatment for severe pulmonary arterial hypertension is inadequate. Here we demonstrate that the activity and expression of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, are increased in hypoxic PASM cells and in lungs of chronic hypoxic rats. G6PD overexpression and -activation is stimulated by H2O2. Increased G6PD activity contributes to PASM cell proliferation by increasing Sp1 and hypoxia-inducible factor 1α (HIF-1α), which directs the cells to synthesize less contractile (myocardin and SM22α) and more proliferative (cyclin A and phospho-histone H3) proteins. G6PD inhibition with dehydroepiandrosterone increased myocardin expression in remodeled pulmonary arteries of moderate and severe pulmonary hypertensive rats. These observations suggest that altered glucose metabolism and G6PD overactivation play a key role in switching the PASM cells from the contractile to synthetic phenotype by increasing Sp1 and HIF-1α, which suppresses myocardin, a key cofactor that maintains smooth muscle cell in contractile state, and increasing hypoxia-induced PASM cell growth, and hence contribute to pulmonary arterial remodeling and pathogenesis of pulmonary hypertension. PMID:25480333

  12. Effects of inhaled corticosteroids on airway inflammation in chronic obstructive pulmonary disease: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Jen R

    2012-09-01

    Full Text Available Rachel Jen,1 Stephen,1 Rennard,2 Don D Sin1,31Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, BC, Canada; 2Internal Medicine Section of Pulmonary and Critical Care, Nebraska Medical Center, Omaha, NE, USA; 3Institute of Heart and Lung Health and the UBC James Hogg Research Center, St Paul's Hospital, Vancouver, BC, CanadaBackground: Chronic obstructive pulmonary disease (COPD is characterized by chronic inflammation in the small airways. The effect of inhaled corticosteroids (ICS on lung inflammation in COPD remains uncertain. We sought to determine the effects of ICS on inflammatory indices in bronchial biopsies and bronchoalveolar lavage fluid of patients with COPD.Methods: We searched Medline, Embase, Cinahl, and the Cochrane database for randomized, controlled clinical trials that used bronchial biopsies and bronchoalveolar lavage to evaluate the effects of ICS in stable COPD. For each chosen study, we calculated the mean differences in the concentrations of inflammatory cells before and after treatment in both intervention and control groups. These values were then converted into standardized mean differences (SMD to accommodate the differences in patient selection, clinical treatment, and biochemical procedures that were employed across the original studies. If significant heterogeneity was present (P < 0.1, then a random effects model was used to pool the original data; otherwise, a fixed effects model was used.Results: We identified eight original studies that met the inclusion criteria. Four studies used bronchial biopsies (n = 102 participants and showed that ICS were effective in reducing CD4 and CD8 cell counts (SMD, −0.52 units and −0.66 units, 95% confidence interval. The five studies used bronchoalveolar lavage fluid (n = 309, which together showed that ICS reduced neutrophil and lymphocyte counts (SMD, −0.64 units and −0.64 units, 95% confidence interval. ICS on the other hand

  13. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells

    International Nuclear Information System (INIS)

    Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo; Koya, Daisuke

    2012-01-01

    Highlights: ► SIRT1 inactivation decreases autophagy in THP-1 cell. ► Inhibition of autophagy induces inflammation. ► SIRT1 inactivation induces inflammation through NF-κB activation. ► The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-κB activation. ► SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD + -dependent histone deacetylase, which is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 through nuclear factor (NF)-κB signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-κB activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-κB activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and is implicated in decreased 5′-AMP activated kinase (AMPK) activation, leading to the impairment of autophagy. The mTOR inhibitor, rapamycin, abolishes

  14. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Koya, Daisuke, E-mail: koya0516@kanazawa-med.ac.jp [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer SIRT1 inactivation decreases autophagy in THP-1 cell. Black-Right-Pointing-Pointer Inhibition of autophagy induces inflammation. Black-Right-Pointing-Pointer SIRT1 inactivation induces inflammation through NF-{kappa}B activation. Black-Right-Pointing-Pointer The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-{kappa}B activation. Black-Right-Pointing-Pointer SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD{sup +}-dependent histone deacetylase, which is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-6 through nuclear factor (NF)-{kappa}B signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-{kappa}B activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-{kappa}B activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and

  15. Rho-Kinase Inhibition Ameliorates Dasatinib-Induced Endothelial Dysfunction and Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Csilla Fazakas

    2018-05-01

    Full Text Available The multi-kinase inhibitor dasatinib is used for treatment of imatinib-resistant chronic myeloid leukemia, but is prone to induce microvascular dysfunction. In lung this can manifest as capillary leakage with pleural effusion, pulmonary edema or even pulmonary arterial hypertension. To understand how dasatinib causes endothelial dysfunction we examined the effects of clinically relevant concentrations of dasatinib on both human pulmonary arterial macro- and microvascular endothelial cells (ECs. The effects of dasatinib was compared to imatinib and nilotinib, two other clinically used BCR/Abl kinase inhibitors that do not inhibit Src. Real three-dimensional morphology and high resolution stiffness mapping revealed softening of both macro- and microvascular ECs upon dasatinib treatment, which was not observed in response to imatinib. In a dose-dependent manner, dasatinib decreased transendothelial electrical resistance/impedance and caused a permeability increase as well as disruption of tight adherens junctions in both cell types. In isolated perfused and ventilated rat lungs, dasatinib increased mean pulmonary arterial pressure, which was accompanied by a gain in lung weight. The Rho-kinase inhibitor Y27632 partly reversed the dasatinib-induced changes in vitro and ex vivo, presumably by acting downstream of Src. Co-administration of the Rho-kinase inhibitor Y27632 completely blunted the increased pulmonary pressure in response to dasatinib. In conclusion, a dasatinib-induced permeability increase in human pulmonary arterial macro- and microvascular ECs might explain many of the adverse effects of dasatinib in patients. Rho-kinase inhibition might be suitable to ameliorate these effects.

  16. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension.

    Science.gov (United States)

    El Kasmi, Karim C; Pugliese, Steven C; Riddle, Suzette R; Poth, Jens M; Anderson, Aimee L; Frid, Maria G; Li, Min; Pullamsetti, Soni S; Savai, Rajkumar; Nagel, Maria A; Fini, Mehdi A; Graham, Brian B; Tuder, Rubin M; Friedman, Jacob E; Eltzschig, Holger K; Sokol, Ronald J; Stenmark, Kurt R

    2014-07-15

    Macrophage accumulation is not only a characteristic hallmark but is also a critical component of pulmonary artery remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Using multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, and primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive pulmonary arteries (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL-6 and STAT3, HIF1, and C/EBPβ signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL-4/IL-13-STAT6 and TLR-MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation, complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, and deficiency in C/EBPβ or HIF1 attenuated fibroblast-driven macrophage activation. These findings challenge the current paradigm of IL-4/IL-13-STAT6-mediated alternative macrophage activation as the sole driver of vascular remodeling in PH, and uncover a cross-talk between adventitial fibroblasts and macrophages in which paracrine IL-6-activated STAT3, HIF1α, and C/EBPβ signaling are critical for macrophage activation and polarization. Thus, targeting IL-6 signaling in macrophages by completely inhibiting C/EBPβ or HIF1α or by partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL-6 and absent IL-4/IL-13 signaling. Copyright © 2014 by The American Association of Immunologists

  17. Effect of carbon dioxide inhalation on pulmonary hypertension induced by increased blood flow and hypoxia

    Directory of Open Access Journals (Sweden)

    I-Chun Chuang

    2011-08-01

    Full Text Available There is now increasing evidence from the experimental and clinical setting that therapeutic hypercapnia from intentionally inspired carbon dioxide (CO2 or lower tidal volume might be a beneficial adjunct to the strategies of mechanical ventilation in critical illness. Although previous reports indicate that CO2 exerts a beneficial effect in the lungs, the pulmonary vascular response to hypercapnia under various conditions remains to be clarified. The purpose of the present study is to characterize the pulmonary vascular response to CO2 under the different conditions of pulmonary hypertension secondary to increased pulmonary blood flow and secondary to hypoxic pulmonary vasoconstriction. Isolated rat lung (n = 32 was used to study (1 the vasoactive action of 5% CO2 in either N2 (hypoxic-hypercapnia or air (normoxic-hypercapnia at different pulmonary arterial pressure levels induced by graded speed of perfusion flow and (2 the role of nitric oxide (NO in mediating the pulmonary vascular response to hypercapnia, hypoxia, and flow-associated pulmonary hypertension. The results indicated that inhaled CO2 reversed pulmonary hypertension induced by hypoxia but not by flow alteration. Endogenous NO attenuates hypoxic pulmonary vasoconstriction but does not augment the CO2-induced vasodilatation. Acute change in blood flow does not alter the endogenous NO production.

  18. Supplemental oxygen prevents exercise-induced oxidative stress in muscle-wasted patients with chronic obstructive pulmonary disease.

    NARCIS (Netherlands)

    Helvoort, H.A.C. van; Heijdra, Y.F.; Heunks, L.M.A.; Meijer, P.L.; Ruitenbeek, W.; Thijs, H.M.; Dekhuijzen, P.N.R.

    2006-01-01

    RATIONALE: Although oxygen therapy is of clear benefit in patients with severe chronic obstructive pulmonary disease (COPD), recent studies have shown that short-term supplementary oxygen may increase oxidative stress and inflammation within the airways. OBJECTIVE: We investigated whether systemic

  19. Does ozone enhance the remineralizing potential of nanohydroxyapatite on artificially demineralized enamel? A laser induced fluorescence study

    Science.gov (United States)

    Srinivasan, Samuelraj; Prabhu, Vijendra; Chandra, Subhash; Koshy, Shalini; Acharya, Shashidhar; Mahato, Krishna K.

    2014-02-01

    The present era of minimal invasive dentistry emphasizes the early detection and remineralization of initial enamel caries. Ozone has been shown to reverse the initial demineralization before the integrity of the enamel surface is lost. Nano-hydroxyapatite is a proven remineralizing agent for early enamel caries. In the present study, the effect of ozone in enhancing the remineralizing potential of nano-hydroxyapatite on artificially demineralized enamel was investigated using laser induced fluorescence. Thirty five sound human premolars were collected from healthy subjects undergoing orthodontic treatment. Fluorescence was recorded by exciting the mesial surfaces using 325 nm He-Cd laser with 2 mW power. Tooth specimens were subjected to demineralization to create initial enamel caries. Following which the specimens were divided into three groups, i.e ozone (ozonated water for 2 min), without ozone and artificial saliva. Remineralization regimen was followed for 3 weeks. The fluorescence spectra of the specimens were recorded from all the three experimental groups at baseline, after demineralization and remineralization. The average spectrum for each experimental group was used for statistical analysis. Fluorescence intensities of Ozone treated specimens following remineralization were higher than that of artificial saliva, and this difference was found to be statistically significant (P<0.0001). In a nutshell, ozone enhanced the remineralizing potential of nanohydroxyapatite, and laser induced fluorescence was found to be effective in assessing the surface mineral changes in enamel. Ozone can be considered an effective agent in reversing the initial enamel caries there by preventing the tooth from entering into the repetitive restorative cycle.

  20. Nonredundant functions of alphabeta and gammadelta T cells in acrolein-induced pulmonary pathology.

    Science.gov (United States)

    Borchers, Michael T; Wesselkamper, Scott C; Eppert, Bryan L; Motz, Gregory T; Sartor, Maureen A; Tomlinson, Craig R; Medvedovic, Mario; Tichelaar, Jay W

    2008-09-01

    Acrolein exposure represents a significant human health hazard. Repeated acrolein exposure causes the accumulation of monocytes/macrophages and lymphocytes, mucous cell metaplasia, and epithelial injury. Currently, the mechanisms that control these events are unclear, and the relative contribution of T-cell subsets to pulmonary pathologies following repeated exposures to irritants is unknown. To examine whether lymphocyte subpopulations regulate inflammation and epithelial cell pathology, we utilized a mouse model of pulmonary pathology induced by repeated acrolein exposures. The role of lymphocyte subsets was examined by utilizing transgenic mice genetically deficient in either alphabeta T cells or gammadelta T cells, and changes in cellular, molecular, and pathologic outcomes associated with repeated inhalation exposure to 2.0 and 0.5 ppm acrolein were measured. To examine the potential functions of lymphocyte subsets, we purified these cells from the lungs of mice repeatedly exposed to 2.0 ppm acrolein, isolated and amplified messenger RNA, and performed microarray analysis. Our data demonstrate that alphabeta T cells are required for macrophage accumulation, whereas gammadelta T cells are critical regulators of epithelial cell homeostasis, as identified by epithelial cell injury and apoptosis, following repeated acrolein exposure. This is supported by microarray analyses that indicated the T-cell subsets are unique in their gene expression profiles following acrolein exposures. Microarray analyses identified several genes that may contribute to phenotypes mediated by T-cell subpopulations including those involved in cytokine receptor signaling, chemotaxis, growth factor production, lymphocyte activation, and apoptosis. These data provide strong evidence that T-cell subpopulations in the lung are major determinants of pulmonary pathology and highlight the advantages of dissecting their effector functions in response to toxicant exposures.

  1. Ginsenoside Rb1 Attenuates Agonist-Induced Contractile Response via Inhibition of Store-Operated Calcium Entry in Pulmonary Arteries of Normal and Pulmonary Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Rui-Xing Wang

    2015-03-01

    Full Text Available Background: Pulmonary hypertension (PH is characterized by sustained vasoconstriction, enhanced vasoreactivity and vascular remodeling, which leads to right heart failure and death. Despite several treatments are available, many forms of PH are still incurable. Ginsenoside Rb1, a principle active ingredient of Panax ginseng, exhibits multiple pharmacological effects on cardiovascular system, and suppresses monocrotaline (MCT-induced right heart hypertrophy. However, its effect on the pulmonary vascular functions related to PH is unknown. Methods: We examined the vasorelaxing effects of ginsenoside Rb1 on endothelin-1 (ET-1 induced contraction of pulmonary arteries (PAs and store-operated Ca2+ entry (SOCE in pulmonary arterial smooth muscle cells (PASMCs from chronic hypoxia (CH and MCT-induced PH. Results: Ginsenoside Rb1 elicited concentration-dependent relaxation of ET-1-induced PA contraction. The vasorelaxing effect was unaffected by nifedipine, but abolished by the SOCE blocker Gd3+. Ginsenoside Rb1 suppressed cyclopiazonic acid (CPA-induced PA contraction, and CPA-activated cation entry and Ca2+ transient in PASMCs. ET-1 and CPA-induced contraction, and CPA-activated cation entry and Ca2+ transients were enhanced in PA and PASMCs of CH and MCT-treated rats; the enhanced responses were abolished by ginsenoside Rb1. Conclusion: Ginsenoside Rb1 attenuates ET-1-induced contractile response via inhibition of SOCE, and it can effectively antagonize the enhanced pulmonary vasoreactivity in PH.

  2. Association of air pollution sources and aldehydes with biomarkers of blood coagulation, pulmonary inflammation, and systemic oxidative stress.

    Science.gov (United States)

    Altemose, Brent; Robson, Mark G; Kipen, Howard M; Ohman Strickland, Pamela; Meng, Qingyu; Gong, Jicheng; Huang, Wei; Wang, Guangfa; Rich, David Q; Zhu, Tong; Zhang, Junfeng

    2017-05-01

    Using data collected before, during, and after the 2008 Summer Olympic Games in Beijing, this study examines associations between biomarkers of blood coagulation (vWF, sCD62P and sCD40L), pulmonary inflammation (EBC pH, EBC nitrite, and eNO), and systemic oxidative stress (urinary 8-OHdG) with sources of air pollution identified utilizing principal component analysis and with concentrations of three aldehydes of health concern. Associations between the biomarkers and the air pollution source types and aldehydes were examined using a linear mixed effects model, regressing through seven lag days and controlling for ambient temperature, relative humidity, gender, and day of week for the biomarker measurements. The biomarkers for pulmonary inflammation, particularly EBC pH and eNO, were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The biomarkers for blood coagulation, particularly vWF and sCD62p, were most consistently associated with oil combustion. Systemic oxidative stress biomarker (8-OHdG) was most consistently associated with vehicle and industrial combustion. The associations of the biomarkers were generally not significant or consistent with secondary formation of pollutants and with the aldehydes. The findings support policies to control anthropogenic pollution sources rather than natural soil or road dust from a cardio-respiratory health standpoint.

  3. Hydrogen-rich pure water prevents cigarette smoke-induced pulmonary emphysema in SMP30 knockout mice.

    Science.gov (United States)

    Suzuki, Yohei; Sato, Tadashi; Sugimoto, Masataka; Baskoro, Hario; Karasutani, Keiko; Mitsui, Aki; Nurwidya, Fariz; Arano, Naoko; Kodama, Yuzo; Hirano, Shin-Ichi; Ishigami, Akihito; Seyama, Kuniaki; Takahashi, Kazuhisa

    2017-10-07

    Chronic obstructive pulmonary disease (COPD) is predominantly a cigarette smoke (CS)-triggered disease with features of chronic systemic inflammation. Oxidants derived from CS can induce DNA damage and stress-induced premature cellular senescence in the respiratory system, which play significant roles in COPD. Therefore, antioxidants should provide benefits for the treatment of COPD; however, their therapeutic potential remains limited owing to the complexity of this disease. Recently, molecular hydrogen (H 2 ) has been reported as a preventive and therapeutic antioxidant. Molecular H 2 can selectively reduce hydroxyl radical accumulation with no known side effects, showing potential applications in managing oxidative stress, inflammation, apoptosis, and lipid metabolism. However, there have been no reports on the efficacy of molecular H 2 in COPD patients. In the present study, we used a mouse model of COPD to investigate whether CS-induced histological damage in the lungs could be attenuated by administration of molecular H 2 . We administered H 2 -rich pure water to senescence marker protein 30 knockout (SMP30-KO) mice exposed to CS for 8 weeks. Administration of H 2 -rich water attenuated the CS-induced lung damage in the SMP30-KO mice and reduced the mean linear intercept and destructive index of the lungs. Moreover, H 2 -rich water significantly restored the static lung compliance in the CS-exposed mice compared with that in the CS-exposed H 2 -untreated mice. Moreover, treatment with H 2 -rich water decreased the levels of oxidative DNA damage markers such as phosphorylated histone H2AX and 8-hydroxy-2'-deoxyguanosine, and senescence markers such as cyclin-dependent kinase inhibitor 2A, cyclin-dependent kinase inhibitor 1, and β-galactosidase in the CS-exposed mice. These results demonstrated that H 2 -rich pure water attenuated CS-induced emphysema in SMP30-KO mice by reducing CS-induced oxidative DNA damage and premature cell senescence in the lungs. Our

  4. Dose-dependent pulmonary response of well-dispersed titanium dioxide nanoparticles following intratracheal instillation

    Energy Technology Data Exchange (ETDEWEB)

    Oyabu, Takako [Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Department of Environmental Health Engineering (Japan); Morimoto, Yasuo, E-mail: yasuom@med.uoeh-u.ac.jp; Hirohashi, Masami; Horie, Masanori; Kambara, Tatsunori [Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Department of Occupational Pneumology (Japan); Lee, Byeong Woo [Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Department of Environmental Health Engineering (Japan); Hashiba, Masayoshi [Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Department of Occupational Pneumology (Japan); Mizuguchi, Yohei; Myojo, Toshihiko [Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Department of Environmental Health Engineering (Japan); Kuroda, Etsushi [Osaka University, Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (Japan)

    2013-04-15

    In order to investigate the relationship between pulmonary inflammation and particle clearance of nanoparticles, and also their dose dependency, we performed an instillation study of well-dispersed TiO{sub 2} nanoparticles and examined the pulmonary inflammations, the particle clearance rate and histopathological changes. Wistar rats were intratracheally administered 0.1 mg (0.33 mg/kg), 0.2 mg (0.66 mg/kg), 1 mg (3.3 mg/kg), and 3 mg (10 mg/kg) of well-dispersed TiO{sub 2} nanoparticles (diameter of agglomerates: 25 nm), and the pulmonary inflammation response and the amount of TiO{sub 2} in the lung were determined from 3 days up to 12 months sequentially after the instillation. There were no increases of total cell or neutrophil counts in bronchoalveolar lavage fluid (BALF) in the 0.1 and the 0.2 mg-administered groups. On the other hand, mild infiltration of neutrophils was observed in the 1 and 3 mg-administered groups. Histopathological findings showed infiltration of neutrophils in the 1 and 3 mg-administered groups. Of special note, a granulomatous lesion including a local accumulation of TiO{sub 2} was observed in the bronchioli-alveolar space in the 3 mg-administered group. The biological half times of the TiO{sub 2} in the lung were 4.2, 4.4, 6.7, and 10.8 months in the 0.1, 0.2, 1, and 3 mg-administered groups, respectively. Neutrophil infiltration was observed as the particle clearance was delayed, suggesting that an excessive dose of TiO{sub 2} nanoparticles may induce pulmonary inflammation and clearance delay.

  5. Naja naja atra venom ameliorates pulmonary fibrosis by inhibiting inflammatory response and oxidative stress.

    Science.gov (United States)

    Cui, Kui; Kou, Jian-Qun; Gu, Jin-Hua; Han, Rong; Wang, Guanghui; Zhen, Xuechu; Qin, Zheng-Hong

    2014-12-02

    Naja naja atra venom (NNAV) displays diverse pharmacological actions including analgesia, anti-inflammation and immune regulation.In this study, we investigated the effects of NNAV on pulmonary fibrosis and its mechanisms of action. To determine if Naja naja atra venom (NNAV) can produce beneficial effects on pulmonary fibrosis, two marine models of pulmonary fibrosis were produced with bleomycin (BLM) and lipopolysaccharide (LPS). NNAV (30, 90, 270 μg/kg) was orally administered once a day started five days before BLM and LPS until to the end of experiment. The effects of NNAV treatment on pulmonary injury were evaluated with arterial blood gas analysis, hydroxyproline (HYP) content assessment and HE/Masson staining. The effects of NNAV treatment on inflammatory related cytokines, fibrosis related TGF-β/Smad signaling pathway and oxidative stress were examined. The results showed that NNAV improved the lung gas-exchange function and attenuated the fibrotic lesions in lung. NNAV decreased IL-1β and TNF-α levels in serum in both pulmonary fibrosis models. NNAV inhibited the activation of NF-κB in LPS-induced and TGF-β/Smad pathway in BLM-induced pulmonary fibrosis. Additionally, NNAV also increased the levels of SOD and GSH and reduced the levels of MDA in BLM-induced pulmonary fibrosis model. The present study indicates that NNAV attenuates LPS- and BLM-induced lung fibrosis. Its mechanisms of action are associated with inhibiting inflammatory response and oxidative stress. The study suggests that NNAV might be a potential therapeutic drug for treatment of pulmonary fibrosis.

  6. Inhomogeneous ozone doping and heat induced defects in graphene studied by infrared near-field microscopy

    Science.gov (United States)

    Wang, Wenjie; Zhang, Jiawei; Deng, Haiming; Liu, Megnkun; Xu, Du

    With the potential use of surface plasmon such as transfer data many orders faster than traditional wires, it has been very popular in research. The fact is that the wavelength of of plasmon is much shorter than the one of free space radiation. The UV ozone doping level can be fine controlled in room temperature creating selected plasmon circuit. We study inhomogeneous graphene plasmonics in ozone doped graphene using scattering-type scanning near-field infrared microscopy and spectroscopy. The single layer and bilayer graphene are doped with different dosage of ozone under UV exposure, which lead to surface inhomogeneity and inhomogeneous graphene plasmon polarition excitation under tip. After annealing the ozone doped graphene in air, the inhomogeneous doping induced plasmons disappear, together with the occurrence of local defects after high temperature annealing.

  7. Effect of anxiety and depression on pulmonary function as well as airway inflammation and remodeling in patients with bronchial asthma

    Institute of Scientific and Technical Information of China (English)

    Qin Yang

    2017-01-01

    Objective:To study the effect of anxiety and depression on pulmonary function as well as airway inflammation and remodeling in patients with bronchial asthma.Methods: A total of 118 adult patients with bronchial asthma who were treated in our hospital between September 2015 and January 2017 were divided into pure depression group (n=30), pure anxiety group (n=47), depression + anxiety group (n=19) and mental health group (n=22) according to the Self-Rating Depression Scale (SDS) and Self-rating Anxiety Scale (SAS) score. The differences in the levels of pulmonary function parameters as well as the contents of serum inflammatory factors and airway remodeling indexes were compared among the four groups. Results: FEV1, PEF and FVC levels as well as serum TIMP-1 contents of pure depression group, pure anxiety group and depression + anxiety group were lower than those of mental health group while serum IL-2, IL-4, IL-8, IL-33, VEGF, OPN, TGF-β1 and MMP-9 contents were higher than those of mental health group, and FEV1, PEF and FVC levels as well as serum TIMP-1 content of depression + anxiety group were lower than those of pure depression group and pure anxiety group while serum IL-2, IL-4, IL-8, IL-33, VEGF, OPN, TGF-β1 and MMP-9 contents were higher than those of pure depression group and pure anxiety group. Conclusion: Anxiety and depression can aggravate the pulmonary function injury, increase airway inflammation and promote airway remodeling process in patients with bronchial asthma.

  8. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus

    NARCIS (Netherlands)

    The, F. O.; Bennink, R. J.; Ankum, W. M.; Buist, M. R.; Busch, O. R. C.; Gouma, D. J.; van der Heide, S.; van den Wijngaard, R. M.; de Jonge, W. J.; Boeckxstaens, G. E.

    2008-01-01

    Background: Murine postoperative ileus results from intestinal inflammation triggered by manipulation-induced mast cell activation. As its extent depends on the degree of handling and subsequent inflammation, it is hypothesised that the faster recovery after minimal invasive surgery results from

  9. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus

    NARCIS (Netherlands)

    The, F. O.; Bennink, R. J.; Ankum, W. M.; Buist, M. R.; Busch, O. R. C.; Gouma, D. J.; Van der Heide, S.; van den Wijngaard, R. M.; Boeckxstaens, G. E.; de Jonge, Wouter J.

    Background: Murine postoperative ileus results from intestinal inflammation triggered by manipulation-induced mast cell activation. As its extent depends on the degree of handling and subsequent inflammation, it is hypothesised that the faster recovery after minimal invasive surgery results from

  10. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS). Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury. PMID:25821552

  11. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2015-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS. Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury.

  12. Characterization and pharmacological modulation of intestinal inflammation induced by ionizing radiation; Caracterisation et modulation pharmacologique de l'inflammation intestinale induite par les rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Gremy, O

    2006-12-15

    The use of radiation therapy to treat abdominal and pelvic malignancies inevitably involves exposure of healthy intestinal tissues which are very radiosensitive. As a result, most patients experience symptoms such as abdominal pain, nausea and diarrhea. Such symptoms are associated with acute damage to intestine mucosa including radio-induced inflammatory processes. With a rat model of colorectal fractionated radiation, we have shown a gradual development of a colonic inflammation during radiation planning, without evident tissue injury. This radio-induced inflammation is characterized not only by the sur expressions of pro-inflammatory cytokines and chemokines, a NF-kB activation, but also by a repression of anti-inflammatory cytokines and the nuclear receptors PPARa and RXRa, both involved in inflammation control. This early inflammation is associated with a discreet neutrophil recruitment and a macrophage accumulation. Macrophages are still abnormally numerous in tissue 27 weeks after the last day of irradiation. Inflammatory process is the most often related to a specific immune profile, either a type Th1 leading to a cellular immune response, or a type Th2 for humoral immunity. According to our studies, a unique abdominal radiation in the rat induces an ileum inflammation and an immune imbalance resulting in a Th2-type profile. Inhibiting this profile is important as its persistence promotes chronic inflammation, predisposition to bacterial infections and fibrosis which is the main delayed side-effect of radiotherapy. The treatment of rats with an immuno-modulator compound, the caffeic acid phenethyl ester (C.A.P.E.), have the potential to both reduce ileal mucosal inflammation and inhibit the radio-induced Th2 status. In order to search new therapeutic molecular target, we has been interested in the PPARg nuclear receptor involved in the maintenance of colon mucosal integrity. In our abdominal irradiation model, we have demonstrated that the prophylactic

  13. Inhibition of Inflammation-Associated Olfactory Loss by Etanercept in an Inducible Olfactory Inflammation Mouse Model.

    Science.gov (United States)

    Jung, Yong Gi; Lane, Andrew P

    2016-06-01

    To determine the effect of a soluble human tumor necrosis factor alpha (TNF-α) receptor blocker (etanercept) on an inducible olfactory inflammation (IOI) mouse model. An in vivo study using a transgenic mouse model. Research laboratory. To study the impact of chronic inflammation on the olfactory system, a transgenic mouse model of chronic rhinosinusitis-associated olfactory loss was utilized (IOI mouse), expressing TNF-α in a temporally controlled fashion within the olfactory epithelium. In one group of mice (n = 4), etanercept was injected intraperitoneally (100 μg/dose, 3 times/week) concurrent with a 2-week period of TNF-α expression. A second group of mice (n = 2) underwent induction of TNF-α expression for 8 weeks, with etanercept treatment administered during the final 2 weeks of inflammation. Olfactory function was assayed by elecro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. Each group was compared with an equal-number control group. Compared with nontreated IOI mice, etanercept-treated IOI mice showed significantly improved EOG responses after 2 weeks (P loss of olfactory epithelium and no EOG response in nontreated IOI mice. However, in etanercept-treated mice, regeneration of olfactory epithelium was observed. Concomitant administration of etanercept in IOI mice results in interruption of TNF-α-induced olfactory loss and induction of neuroepithelial regeneration. This demonstrates that etanercept has potential utility as a tool for elucidating the role of TNF-α in other olfactory inflammation models. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  14. The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice

    Directory of Open Access Journals (Sweden)

    Nemmar A

    2017-04-01

    Full Text Available Abderrahim Nemmar,1 Suhail Al-Salam,2 Sumaya Beegam,1 Priya Yuvaraju,2 Badreldin H Ali3 1Department of Physiology, 2Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE; 3Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Al-Khod, Sultanate of Oman Abstract: Cerium oxide nanoparticles (CeO2 NPs, used as a diesel fuel catalyst, can be emitted into the ambient air, resulting in exposure to humans by inhalation. Recent studies have reported the development of lung toxicity after pulmonary exposure to CeO2 NPs. However, little is known about the possible thrombotic effects of these NPs. The present study investigated the acute (24 hours effect of intratracheal (IT instillation of either CeO2 NPs (0.1 or 0.5 mg/kg or saline (control on pulmonary and systemic inflammation and oxidative stress and thrombosis in mice. CeO2 NPs induced a significant increase of neutrophils into the bronchoalveolar lavage (BAL fluid with an elevation of tumor necrosis factor α (TNFα and a decrease in the activity of the antioxidant catalase. Lung sections of mice exposed to CeO2 NPs showed a dose-dependent infiltration of inflammatory cells consisting of macrophages and neutrophils. Similarly, the plasma levels of C-reactive protein and TNFα were significantly increased, whereas the activities of catalase and total antioxidant were significantly decreased. Interestingly, CeO2 NPs significantly and dose dependently induced a shortening of the thrombotic occlusion time in pial arterioles and venules. Moreover, the plasma concentrations of fibrinogen and plasminogen activator inhibitor-1 were significantly elevated by CeO2 NPs. The direct addition of CeO2 NPs (1, 5, or 25 µg/mL to mouse whole blood, collected from the inferior vena cava, in vitro neither caused significant platelet aggregation nor affected prothrombin time or partial

  15. Perinatal programming of metabolic dysfunction and obesity-induced inflammation

    DEFF Research Database (Denmark)

    Ingvorsen, Camilla; Hellgren, Lars; Pedersen, Susanne Brix

    The number of obese women in the childbearing age is drastically increasing globally. As a consequence, more children are born by obese mothers. Unfortunately, maternal obesity and/ or high fat intake during pregnancy increase the risk of developing obesity, type-2 diabetes, cardiovascular disease...... and non-alcoholic fatty liver disease in the children, which passes obesity and metabolic dysfunction on from generation to generation. Several studies try to elucidate causative effects of maternal metabolic markers on the metabolic imprinting in the children; however diet induced obesity is also...... associated with chronic low grade inflammation. Nobody have yet investigated the role of this inflammatory phenotype, but here we demonst rate that obesity induced inflammation is reversed during pregnancy in mice, and is therefore less likely to affect the fetal programming of metabolic dysfunction. Instead...

  16. Respiratory Effects and Systemic Stress Response Following ...

    Science.gov (United States)

    Previous studies have demonstrated that exposure to the pulmonary irritant ozone causes myriad systemic metabolic and pulmonary effects attributed to sympathetic and hypothalamus-pituitary-adrenal (HPA) axis activation, which are exacerbated in metabolically impaired models. We examined respiratory and systemic effects following exposure to a sensory irritant acrolein to elucidate the systemic and pulmonary consequences in healthy and diabetic rat models. Male Wistar and Goto Kakizaki (GK) rats, a nonobese type II diabetic Wistar-derived model, were exposed by inhalation to 0, 2, or 4 ppm acrolein, 4 h/d for 1 or 2 days. Exposure at 4 ppm significantly increased pulmonary and nasal inflammation in both strains with vascular protein leakage occurring only in the nose. Acrolein exposure (4 ppm) also caused metabolic impairment by inducing hyperglycemia and glucose intolerance (GK > Wistar). Serum total cholesterol (GKs only), low-density lipoprotein (LDL) cholesterol (both strains), and free fatty acids (GK > Wistar) levels increased; however, no acrolein-induced changes were noted in branched-chain amino acid or insulin levels. These responses corresponded with a significant increase in corticosterone and modest but insignificant increases in adrenaline in both strains, suggesting activation of the HPA axis. Collectively, these data demonstrate that acrolein exposure has a profound effect on nasal and pulmonary inflammation, as well as glucose and lipid metabolis

  17. Development of an experimental model of neutrophilic pulmonary response induction in mice

    Directory of Open Access Journals (Sweden)

    Leonardo Araújo Pinto

    2003-08-01

    Full Text Available BACKGROUND: Several lung diseases are characterized by a predominantly neutrophilic inflammation. A better understanding of the mechanisms of action of some drugs on the airway inflammation of such diseases may bring advances to the treatment. OBJECTIVE: To develop a method to induce pulmonary neutrophilic response in mice, without active infection. METHODS: Eight adult Swiss mice were used. The study group (n = 4 received an intranasal challenge with 1 x 10(12 CFU/ml of Pseudomonas aeruginosa (Psa, frozen to death. The control group (n = 4 received an intranasal challenge with saline solution. Two days after the intranasal challenge, a bron­choalveolar lavage (BAL was performed with total cell and differential cellularity counts. RESULTS: The total cell count was significantly higher in the group with Psa, as compared to the control group (median of 1.17 x 10(6 and 0.08 x 10(6, respectively, p = 0.029. In addition to this, an absolute predominance of neutrophils was found in the differential cellularity of the mice that had received the Psa challenge. CONCLUSIONS: The model of inducing a neutrophilic pulmonary disease using frost-dead bacteria was successfully developed. This neutrophilic inflammatory response induction model in Swiss mice lungs may be an important tool for testing the anti-inflammatory effect of some antimicrobial drugs on the inflammation of the lower airways.

  18. Radioiodine uptake in inactive pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Bakheet, S.M.; Powe, J.; Al Suhaibani, H.; Hammami, M.M.; Bazarbashi, M.

    1999-01-01

    Radioiodine may accumulate at sites of inflammation or infection. We have seen such accumulation in six thyroid cancer patients with a history of previously treated pulmonary tuberculosis. We also review the causes of false-positive radioiodine uptake in lung infection/inflammation. Eight foci of radioiodine uptake were seen on six iodine-123 diagnostic scans. In three foci, the uptake was focal and indistinguishable from thyroid cancer pulmonary metastases from thyroid cancer. In the remaining foci, the uptake appeared nonsegmental, linear or lobar, suggesting a false-positive finding. The uptake was unchanged, variable in appearance or non-persistent on follow-up scans and less extensive than the fibrocystic changes seen on chest radiographs. In the two patients studied, thyroid hormone level did not affect the radioiodine lung uptake and there was congruent gallium-67 uptake. None of the patients had any evidence of thyroid cancer recurrence or of reactivation of tuberculosis and only two patients had chronic intermittent chest symptoms. Severe bronchiectasis, active tuberculosis, acute bronchitis, respiratory bronchiolitis, rheumatoid arthritis-associated lung disease and fungal infection such as Allescheria boydii and aspergillosis can lead to different patterns of radioiodine chest uptake mimicking pulmonary metastases. Pulmonary scarring secondary to tuberculosis may predispose to localized radioiodine accumulation even in the absence of clinically evident active infection. False-positive radioiodine uptake due to pulmonary infection/inflammation should be considered in thyroid cancer patients prior to the diagnosis of pulmonary metastases. (orig.)

  19. Picfeltarraenin IA inhibits lipopolysaccharide-induced inflammatory cytokine production by the nuclear factor-κB pathway in human pulmonary epithelial A549 cells.

    Science.gov (United States)

    Shi, Rong; Wang, Qing; Ouyang, Yang; Wang, Qian; Xiong, Xudong

    2016-02-01

    The present study aimed to investigate the effect of picfeltarraenin IA (IA) on respiratory inflammation by analyzing its effect on interleukin (IL)-8 and prostaglandin E2 (PGE2) production. The expression of cyclooxygenase 2 (COX2) in human pulmonary adenocarcinoma epithelial A549 cells in culture was also examined. Human pulmonary epithelial A549 cells and the human monocytic leukemia THP-1 cell line were used in the current study. Cell viability was measured using a methylthiazol tetrazolium assay. The production of IL-8 and PGE2 was investigated using an enzyme-linked immunosorbent assay. The expression of COX2 and nuclear factor-κB (NF-κB)-p65 was examined using western blot analysis. Treatment with lipopolysaccharide (LPS; 10 µg/ml) resulted in the increased production of IL-8 and PGE2, and the increased expression of COX2 in the A549 cells. Furthermore, IA (0.1-10 µmol/l) significantly inhibited PGE2 production and COX2 expression in cells with LPS-induced IL-8, in a concentration-dependent manner. The results suggested that IA downregulates LPS-induced COX2 expression, and inhibits IL-8 and PGE2 production in pulmonary epithelial cells. Additionally, IA was observed to suppress the expression of COX2 in THP-1 cells, and also to regulate the expression of COX2 via the NF-κB pathway in the A549 cells, but not in the THP-1 cells. These results indicate that IA regulates LPS-induced cytokine release in A549 cells via the NF-κB pathway.

  20. Infection, inflammation and exercise in cystic fibrosis

    Science.gov (United States)

    2013-01-01

    Regular exercise is positively associated with health. It has also been suggested to exert anti-inflammatory effects. In healthy subjects, a single exercise session results in immune cell activation, which is characterized by production of immune modulatory peptides (e.g. IL-6, IL-8), a leukocytosis and enhanced immune cell functions. Upon cessation of exercise, immune activation is followed by a tolerizing phase, characterized by a reduced responsiveness of immune cells. Regular exercise of moderate intensity and duration has been shown to exert anti-inflammatory effects and is associated with a reduced disease incidence and viral infection susceptibility. Specific exercise programs may therefore be used to modify the course of chronic inflammatory and infectious diseases such as cystic fibrosis (CF). Patients with CF suffer from severe and chronic pulmonary infections and inflammation, leading to obstructive and restrictive pulmonary disease, exercise intolerance and muscle cachexia. Inflammation is characterized by a hyper-inflammatory phenotype. Patients are encouraged to engage in exercise programs to maintain physical fitness, quality of life, pulmonary function and health. In this review, we present an overview of available literature describing the association between regular exercise, inflammation and infection susceptibility and discuss the implications of these observations for prevention and treatment of inflammation and infection susceptibility in patients with CF. PMID:23497303

  1. [Association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α, endothelin-1 and inducible nitric oxide synthase in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension].

    Science.gov (United States)

    Wang, Jian-Rong; Zhou, Ying; Sang, Kui; Li, Ming-Xia

    2013-02-01

    To investigate the association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α (HIF-1α), endothelin-1 (ET-1) and inducible nitric oxide synthase (iNOS) in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension (HPH). A neonatal rat model of HPH was established as an HPH group, and normal neonatal rats were enrolled as a control group. The mean pulmonary arterial pressure (mPAP) was measured. The percentage of medial thickness to outer diameter of the small pulmonary arteries (MT%) and the percentage of medial cross-section area to total cross-section area of the pulmonary small arteries (MA%) were measured as the indicators for pulmonary vascular remodeling. The immunohistochemical reaction intensities for HIF-1α, ET-1 and iNOS and their mRNA expression in lung tissues of neonatal rats were measured. Correlation analysis was performed to determine the relationship between pulmonary vascular remodeling and mRNA expression of HIF-1α, ET-1 and iNOS. The mPAP of the HPH group kept increasing on days 3, 5, 7, 10, 14, and 21 of hypoxia, with a significant difference compared with the control group (P<0.05). The HPH group had significantly higher MT% and MA% than the control group from day 7 of hypoxia (P<0.05). HIF-1α protein expression increased significantly on days 3, 5, 7 and 10 days of hypoxia, and HIF-1α mRNA expression increased significantly on days 3, 5 and 7 days of hypoxia in the HPH group compared with the control group (P<0.05). ET-1 protein expression increased significantly on days 3, 5 and 7 days of hypoxia and ET-1 mRNA expression increased significantly on day 3 of hypoxia in the HPH group compared with the control group (P<0.05). Both iNOS protein and mRNA expression were significantly higher on days 3, 5 and 7 days of hypoxia than the control group (P<0.05). Both MT% and MA% were positively correlated with HIF-1α mRNA expression (r=0.835 and 0.850 respectively; P<0.05). Pulmonary vascular

  2. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  3. Resolution of PMA-Induced Skin Inflammation Involves Interaction of IFN-γ and ALOX15

    Directory of Open Access Journals (Sweden)

    Guojun Zhang

    2013-01-01

    Full Text Available Background. Acute inflammation and its timely resolution play important roles in the body’s responses to the environmental stimulation. Although IFN-γ is well known for the induction of inflammation, its role in the inflammation resolution is still poorly understood. Methodology and Principal Findings. In this study, we investigated the function of interferon gamma (IFN-γ during the resolution of PMA-induced skin inflammation in vivo. The results revealed that the expression levels of IL-6, TNF-α, and monocyte chemoattractant protein 1 (MCP-1 in skin decreased during the resolution stage of PMA-induced inflammation, while IFN-γ is still maintained at a relatively high level. Neutralization of endogenous IFN-γ led to accelerated reduction of epidermal thickness and decreased epithelial cell proliferation. Similarly, decreased infiltration of inflammatory cells (Gr1+ or CD11b+ cells and a significant reduction of proinflammatory cytokines were also observed upon the blockade of IFN-γ. Furthermore, neutralization of IFN-γ boosted ALOX15 expression of the skin during inflammation resolution. In accordance, application of lipoxin A4 (LXA4, a product of ALOX15 obtained a proresolution effect similar to neutralization of IFN-γ. These results demonstrated that through upregulating ALOX15-LXA4 pathway, blockage of IFN-γ can promote the resolution of PMA-induced skin inflammation.

  4. The combination of Bifidobacterium breve with non-digestible oligosaccharides suppresses airway inflammation in a murine model for chronic asthma.

    Science.gov (United States)

    Sagar, Seil; Vos, Arjan P; Morgan, Mary E; Garssen, Johan; Georgiou, Niki A; Boon, Louis; Kraneveld, Aletta D; Folkerts, Gert

    2014-04-01

    Over the last decade, there has been a growing interest in the use of interventions that target the intestinal microbiota as a treatment approach for asthma. This study is aimed at exploring the therapeutic effects of long-term treatment with a combination of Bifidobacterium breve with non-digestible oligosaccharides on airway inflammation and remodeling. A murine ovalbumin-induced chronic asthma model was used. Pulmonary airway inflammation; mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; expression of Foxp3 in blood Th cells; in vitro T cell activation; mast cell degranulation; and airway remodeling were examined. The combination of B. breve with non-digestible oligosaccharides suppressed pulmonary airway inflammation; reduced T cell activation and mast cell degranulation; modulated expression of pattern recognition receptors, cytokines and transcription factors; and reduced airway remodeling. The treatment induced regulatory T cell responses, as shown by increased Il10 and Foxp3 transcription in lung tissue, and augmented Foxp3 protein expression in blood CD4+CD25+Foxp3+ T cells. This specific combination of beneficial bacteria with non-digestible oligosaccharides has strong anti-inflammatory properties, possibly via the induction of a regulatory T cell response, resulting in reduced airway remodeling and, therefore, may be beneficial in the treatment of chronic inflammation in allergic asthma. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Pulmonary hypertension and vascular remodeling in mice exposed to crystalline silica.

    Science.gov (United States)

    Zelko, Igor N; Zhu, Jianxin; Ritzenthaler, Jeffrey D; Roman, Jesse

    2016-11-28

    Occupational and environmental exposure to crystalline silica may lead to the development of silicosis, which is characterized by inflammation and progressive fibrosis. A substantial number of patients diagnosed with silicosis develop pulmonary hypertension. Pulmonary hypertension associated with silicosis and with related restrictive lung diseases significantly reduces survival in affected subjects. An animal model of silicosis has been described previously however, the magnitude of vascular remodeling and hemodynamic effects of inhaled silica are largely unknown. Considering the importance of such information, this study investigated whether mice exposed to silica develop pulmonary hypertension and vascular remodeling. C57BL6 mice were intratracheally injected with either saline or crystalline silica at doses 0.2 g/kg, 0.3 g/kg and 0.4 g/kg and then studied at day 28 post-exposure. Pulmonary hypertension was characterized by changes in right ventricular systolic pressure and lung histopathology. Mice exposed to saline showed normal lung histology and hemodynamic parameters while mice exposed to silica showed increased right ventricular systolic pressure and marked lung pathology characterized by a granulomatous inflammatory reaction and increased collagen deposition. Silica-exposed mice also showed signs of vascular remodeling with pulmonary artery muscularization, vascular occlusion, and medial thickening. The expression of pro-inflammatory genes such as TNF-α and MCP-1 was significantly upregulated as well as the expression of the pro-remodeling genes collagen type I, fibronectin and the metalloproteinases MMP-2 and TIMP-1. On the other hand, the expression of several vasculature specific genes involved in the regulation of endothelial function was significantly attenuated. We characterized a new animal model of pulmonary hypertension secondary to pulmonary fibrosis induced by crystalline silica. Our data suggest that silica promotes the damage of the

  6. Nebulized anticoagulants limit pulmonary coagulopathy, but not inflammation, in a model of experimental lung injury

    NARCIS (Netherlands)

    Hofstra, Jorrit J; Vlaar, Alexander P; Cornet, Alexander D; Dixon, Barry; Roelofs, Joris J; Choi, Goda; van der Poll, Tom; Levi, Marcel; Schultz, Marcus J

    BACKGROUND: Pulmonary coagulopathy may contribute to an adverse outcome in lung injury. We assessed the effects of local anticoagulant therapy on bronchoalveolar and systemic haemostasis in a rat model of endotoxemia-induced lung injury. METHODS: Male Sprague-Dawley rats were intravenously

  7. Characterization and pharmacological modulation of intestinal inflammation induced by ionizing radiation; Caracterisation et modulation pharmacologique de l'inflammation intestinale induite par les rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Gremy, O

    2006-12-15

    The use of radiation therapy to treat abdominal and pelvic malignancies inevitably involves exposure of healthy intestinal tissues which are very radiosensitive. As a result, most patients experience symptoms such as abdominal pain, nausea and diarrhea. Such symptoms are associated with acute damage to intestine mucosa including radio-induced inflammatory processes. With a rat model of colorectal fractionated radiation, we have shown a gradual development of a colonic inflammation during radiation planning, without evident tissue injury. This radio-induced inflammation is characterized not only by the sur expressions of pro-inflammatory cytokines and chemokines, a NF-kB activation, but also by a repression of anti-inflammatory cytokines and the nuclear receptors PPARa and RXRa, both involved in inflammation control. This early inflammation is associated with a discreet neutrophil recruitment and a macrophage accumulation. Macrophages are still abnormally numerous in tissue 27 weeks after the last day of irradiation. Inflammatory process is the most often related to a specific immune profile, either a type Th1 leading to a cellular immune response, or a type Th2 for humoral immunity. According to our studies, a unique abdominal radiation in the rat induces an ileum inflammation and an immune imbalance resulting in a Th2-type profile. Inhibiting this profile is important as its persistence promotes chronic inflammation, predisposition to bacterial infections and fibrosis which is the main delayed side-effect of radiotherapy. The treatment of rats with an immuno-modulator compound, the caffeic acid phenethyl ester (C.A.P.E.), have the potential to both reduce ileal mucosal inflammation and inhibit the radio-induced Th2 status. In order to search new therapeutic molecular target, we has been interested in the PPARg nuclear receptor involved in the maintenance of colon mucosal integrity. In our abdominal irradiation model, we have demonstrated that the prophylactic

  8. EXERCISE-INDUCED PULMONARY HEMORRHAGE AFTER RUNNING A MARATHON

    Science.gov (United States)

    We report on a healthy 26-year-old male who had an exercise-induced pulmonary hemorrhage (EIPH) within 24 hours of running a marathon. There were no symptoms, abnormalities on exam, or radiographic infiltrates. He routinely participated in bronchoscopy research and the EIPH was e...

  9. Astrocyte IKKβ/NF-κB signaling is required for diet-induced obesity and hypothalamic inflammation

    Directory of Open Access Journals (Sweden)

    J.D. Douglass

    2017-04-01

    Full Text Available Objective: Obesity and high fat diet (HFD consumption in rodents is associated with hypothalamic inflammation and reactive gliosis. While neuronal inflammation promotes HFD-induced metabolic dysfunction, the role of astrocyte activation in susceptibility to hypothalamic inflammation and diet-induced obesity (DIO remains uncertain. Methods: Metabolic phenotyping, immunohistochemical analyses, and biochemical analyses were performed on HFD-fed mice with a tamoxifen-inducible astrocyte-specific knockout of IKKβ (GfapCreERIkbkbfl/fl, IKKβ-AKO, an essential cofactor of NF-κB-mediated inflammation. Results: IKKβ-AKO mice with tamoxifen-induced IKKβ deletion prior to HFD exposure showed equivalent HFD-induced weight gain and glucose intolerance as Ikbkbfl/fl littermate controls. In GfapCreERTdTomato marker mice treated using the same protocol, minimal Cre-mediated recombination was observed in the mediobasal hypothalamus (MBH. By contrast, mice pretreated with 6 weeks of HFD exposure prior to tamoxifen administration showed substantially increased recombination throughout the MBH. Remarkably, this treatment approach protected IKKβ-AKO mice from further weight gain through an immediate reduction of food intake and increase of energy expenditure. Astrocyte IKKβ deletion after HFD exposure—but not before—also reduced glucose intolerance and insulin resistance, likely as a consequence of lower adiposity. Finally, both hypothalamic inflammation and astrocytosis were reduced in HFD-fed IKKβ-AKO mice. Conclusions: These data support a requirement for astrocytic inflammatory signaling in HFD-induced hyperphagia and DIO susceptibility that may provide a novel target for obesity therapeutics. Keywords: Obesity, Astrocytes, Inflammation, Metabolism, Hypothalamus, Energy homeostasis

  10. Suppression of the expression of hypoxia-inducible factor-1α by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats.

    Science.gov (United States)

    Li, Ying; Shi, Bo; Huang, Liping; Wang, Xin; Yu, Xiaona; Guo, Baosheng; Ren, Weidong

    2016-12-01

    Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the pathogenesis of hypoxic pulmonary hypertension (PH). However, the potential clinical value of HIF-1α as a therapeutic target in the treatment of PH has not yet been evaluated. In this study, an animal model of hypoxia-induced PH was established by exposing adult rats to 10% O2 for 3 weeks, and the effects of the lentivirus-mediated delivery of HIF-1α short hairpin RNA (shRNA) by intratracheal instillation prior to exposure to hypoxia on the manifestations of hypoxia-induced PH were assessed. The successful delivery of HIF-1α shRNA into the pulmonary arteries effectively suppressed the hypoxia-induced upregulation of HIF-1α, accompanied by the prominent attenuation the symptoms associated with hypoxia-induced PH, including the elevation of pulmonary arterial pressure, hypertrophy and hyperplasia of pulmonary artery smooth muscle cells (PASMCs), as well as the muscularization of pulmonary arterioles. In addition, the knockdown of HIF-1α in cultured rat primary PASMCs significantly inhibited the hypoxia-induced acceleration of the cell cycle and the proliferation of the PASMCs, suggesting that HIF-1α may be a direct mediator of PASMC hyperplasia in hypoxia-induced PH. In conclusion, this study demonstrates the potent suppressive effects of HIF-1α shRNA on hypoxia-induced PH and PASMC hyperplasia, providing evidence for the potential application of HIF-1α shRNA in the treatment of hypoxic PH.

  11. Preventive Intra Oral Treatment of Sea Cucumber Ameliorate OVA-Induced Allergic Airway Inflammation.

    Science.gov (United States)

    Lee, Da-In; Park, Mi-Kyung; Kang, Shin Ae; Choi, Jun-Ho; Kang, Seok-Jung; Lee, Jeong-Yeol; Yu, Hak Sun

    2016-01-01

    Sea cucumber extracts have potent biological effects, including anti-viral, anti-cancer, antibacterial, anti-oxidant, and anti-inflammation effects. To understand their anti-asthma effects, we induced allergic airway inflammation in mice after 7 oral administrations of the extract. The hyper-responsiveness value in mice with ovalbumin (OVA)-alum-induced asthma after oral injection of sea cucumber extracts was significantly lower than that in the OVA-alum-induced asthma group. In addition, the number of eosinophils in the lungs of asthma-induced mice pre-treated with sea cucumber extract was significantly decreased compared to that of PBS pre-treated mice. Additionally, CD4[Formula: see text]CD25[Formula: see text]Foxp3[Formula: see text]T (regulatory T; Treg) cells significantly increased in mesenteric lymph nodes after 7 administrations of the extract. These results suggest that sea cucumber extract can ameliorate allergic airway inflammation via Treg cell activation and recruitment to the lung.

  12. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    International Nuclear Information System (INIS)

    Chen, Ying; Li, Cuiying; Weng, Dong; Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei; Chen, Jie

    2014-01-01

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  13. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying; Li, Cuiying [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Weng, Dong [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai (China); Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China)

    2014-02-15

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  14. Up-Regulation of Claudin-6 in the Distal Lung Impacts Secondhand Smoke-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Joshua B. Lewis

    2016-10-01

    Full Text Available It has long been understood that increased epithelial permeability contributes to inflammation observed in many respiratory diseases. Recently, evidence has revealed that environmental exposure to noxious material such as cigarette smoke reduces tight junction barrier integrity, thus enhancing inflammatory conditions. Claudin-6 (Cldn6 is a tetraspanin transmembrane protein found within the tight junctional complex and is implicated in maintaining lung epithelial barriers. To test the hypothesis that increased Cldn6 ameliorates inflammation at the respiratory barrier, we utilized the Tet-On inducible transgenic system to conditionally over-express Clnd6 in the distal lung. Cldn6 transgenic (TG and control mice were continuously provided doxycycline from postnatal day (PN 30 until euthanasia date at PN90. A subset of Cldn6 TG and control mice were also subjected to daily secondhand tobacco smoke (SHS via a nose only inhalation system from PN30-90 and compared to room air (RA controls. Animals were euthanized on PN90 and lungs were harvested for histological and molecular characterization. Bronchoalveolar lavage fluid (BALF was procured for the assessment of inflammatory cells and molecules. Quantitative RT-PCR and immunoblotting revealed increased Cldn6 expression in TG vs. control animals and SHS decreased Cldn6 expression regardless of genetic up-regulation. Histological evaluations revealed no adverse pulmonary remodeling via Hematoxylin and Eosin (H&E staining or any qualitative alterations in the abundance of type II pneumocytes or proximal non-ciliated epithelial cells via staining for cell specific propeptide of Surfactant Protein-C (proSP-C or Club Cell Secretory Protein (CCSP, respectively. Immunoblotting and qRT-PCR confirmed the differential expression of Cldn6 and the pro-inflammatory cytokines TNF-α and IL-1β. As a general theme, inflammation induced by SHS exposure was influenced by the availability of Cldn6. These data reveal

  15. Exercise protects against high-fat diet-induced hypothalamic inflammation

    NARCIS (Netherlands)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D.; Woods, Stephen C.; Hofmann, Susanna M.

    2012-01-01

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing

  16. Instantaneous imaging of ozone in a gliding arc discharge using photofragmentation laser-induced fluorescence

    Science.gov (United States)

    Larsson, Kajsa; Hot, Dina; Gao, Jinlong; Kong, Chengdong; Li, Zhongshan; Aldén, Marcus; Bood, Joakim; Ehn, Andreas

    2018-04-01

    Ozone vapor, O3, is here visualized in a gliding arc discharge using photofragmentation laser-induced fluorescence. Ozone is imaged by first photodissociating the O3 molecule into an O radical and a vibrationally hot O2 fragment by a pump photon. Thereafter, the vibrationally excited O2 molecule absorbs a second (probe) photon that further transits the O2-molecule to an excited electronic state, and hence, fluorescence from the deexcitation process in the molecule can be detected. Both the photodissociation and excitation processes are achieved within one 248 nm KrF excimer laser pulse that is formed into a laser sheet and the fluorescence is imaged using an intensified CCD camera. The laser-induced signal in the vicinity of the plasma column formed by the gliding arc is confirmed to stem from O3 rather than plasma produced vibrationally hot O2. While both these products can be produced in plasmas a second laser pulse at 266 nm was utilized to separate the pump- from the probe-processes. Such arrangement allowed lifetime studies of vibrationally hot O2, which under these conditions were several orders of magnitude shorter than the lifetime of plasma-produced ozone.

  17. Hemolysis-induced Lung Vascular Leakage Contributes to the Development of Pulmonary Hypertension.

    Science.gov (United States)

    Rafikova, Olga; Williams, Elissa R; McBride, Matthew L; Zemskova, Marina; Srivastava, Anup; Nair, Vineet; Desai, Ankit A; Langlais, Paul R; Zemskov, Evgeny; Simon, Marc; Mandarino, Lawrence J; Rafikov, Ruslan

    2018-04-13

    While hemolytic anemia-associated pulmonary hypertension (PH) and pulmonary arterial hypertension (PAH) are more common than the prevalence of idiopathic PAH alone, the role of hemolysis in the development of PAH is poorly characterized. We hypothesized that hemolysis independently contributes to PAH pathogenesis via endothelial barrier dysfunction with resulting perivascular edema and inflammation. Plasma samples from patients with and without PAH (both confirmed by right heart catheterization) were used to measure free hemoglobin (Hb) and its correlation with PAH severity. A sugen(50mg/kg)/hypoxia(3wks)/normoxia(2wks) rat model was used to elucidate the role of free Hb/heme pathways in PAH. Human lung microvascular endothelial cells (HLMVECs) were utilized to study heme-mediated endothelial barrier effects. Our data indicate that PAH patients have increased levels of free Hb in plasma that correlate with PAH severity. There is also a significant accumulation of free Hb and depletion of haptoglobin in the rat model. In rats, perivascular edema was observed at early time points concomitant with increased infiltration of inflammatory cells. Heme-induced endothelial permeability in HLMVECs involved activation of the p38/HSP27 pathway. Indeed, the rat model also exhibited increased activation of p38/HSP27 during the initial phase of PH. Surprisingly, despite the increased levels of hemolysis and heme-mediated signaling, there was no heme oxygenase-1 activation. This can be explained by observed destabilization of HIF1a during the first two weeks of PH regardless of hypoxic conditions. Our data suggest that hemolysis may play a significant role in PAH pathobiology.

  18. Alveolar recruitment of ficolin-3 in response to acute pulmonary inflammation in humans

    DEFF Research Database (Denmark)

    Plovsing, Ronni R; Berg, Ronan M G; Munthe-Fog, Lea

    2016-01-01

    acute lung and systemic inflammation induce recruitment of lectins in humans. METHODS: Fifteen healthy volunteers received LPS intravenously (IV) or in a lung subsegment on two different occasions. Volunteers were evaluated by consecutive blood samples and by bronchoalveolar lavage 2, 4, 6, 8, or 24h...... acute phase response with an increase in CRP (precruitment...

  19. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability

    Directory of Open Access Journals (Sweden)

    Karin ede Punder

    2015-05-01

    Full Text Available Chronic non-communicable diseases (NCDs are the leading causes of work absence, disability and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here we hypothesize that stresses (defined as homeostatic disturbances can induce low-grade inflammation by increasing the availability of water, sodium and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases.

  20. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    Science.gov (United States)

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  1. Airborne Particulate Matter Induces Nonallergic Eosinophilic Sinonasal Inflammation in Mice.

    Science.gov (United States)

    Ramanathan, Murugappan; London, Nyall R; Tharakan, Anuj; Surya, Nitya; Sussan, Thomas E; Rao, Xiaoquan; Lin, Sandra Y; Toskala, Elina; Rajagopalan, Sanjay; Biswal, Shyam

    2017-07-01

    Exposure to airborne particulate matter (PM) has been linked to aggravation of respiratory symptoms, increased risk of cardiovascular disease, and all-cause mortality. Although the health effects of PM on the lower pulmonary airway have been extensively studied, little is known regarding the impact of chronic PM exposure on the upper sinonasal airway. We sought to test the impact of chronic airborne PM exposure on the upper respiratory system in vivo. Mice were subjected, by inhalation, to concentrated fine (2.5 μm) PM 6 h/d, 5 d/wk, for 16 weeks. Mean airborne fine PM concentration was 60.92 μm/m 3 , a concentration of fine PM lower than that reported in some major global cities. Mice were then killed and analyzed for evidence of inflammation and barrier breakdown compared with control mice. Evidence of the destructive effects of chronic airborne PM on sinonasal health in vivo, including proinflammatory cytokine release, and macrophage and neutrophil inflammatory cell accumulation was observed. A significant increase in epithelial barrier dysfunction was observed, as assessed by serum albumin accumulation in nasal airway lavage fluid, as well as decreased expression of adhesion molecules, including claudin-1 and epithelial cadherin. A significant increase in eosinophilic inflammation, including increased IL-13, eotaxin-1, and eosinophil accumulation, was also observed. Collectively, although largely observational, these studies demonstrate the destructive effects of chronic airborne PM exposure on the sinonasal airway barrier disruption and nonallergic eosinophilic inflammation in mice.

  2. Relative Tissue Factor Deficiency Attenuates Ventilator-Induced Coagulopathy but Does Not Protect against Ventilator-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Esther K. Wolthuis

    2012-01-01

    Full Text Available Preventing tissue-factor-(TF- mediated systemic coagulopathy improves outcome in models of sepsis. Preventing TF-mediated pulmonary coagulopathy could attenuate ventilator-induced lung injury (VILI. We investigated the effect of relative TF deficiency on pulmonary coagulopathy and inflammation in a murine model of VILI. Heterozygous TF knockout (TF+/− mice and their wild-type (TF+/+ littermates were sedated (controls or sedated, tracheotomized, and mechanically ventilated with either low or high tidal volumes for 5 hours. Mechanical ventilation resulted in pulmonary coagulopathy and inflammation, with more injury after mechanical ventilation with higher tidal volumes. Compared with TF+/+ mice, TF+/− mice demonstrated significantly lower pulmonary thrombin-antithrombin complex levels in both ventilation groups. There were, however, no differences in lung wet-to-dry ratio, BALF total protein levels, neutrophil influx, and lung histopathology scores between TF+/− and TF+/+ mice. Notably, pulmonary levels of cytokines were significantly higher in TF+/− as compared to TF+/+ mice. Systemic levels of cytokines were not altered by the relative absence of TF. TF deficiency is associated with decreased pulmonary coagulation independent of the ventilation strategy. However, relative TF deficiency does not reduce VILI and actually results in higher pulmonary levels of inflammatory mediators.

  3. Inflammation Induces TDP-43 Mislocalization and Aggregation.

    Directory of Open Access Journals (Sweden)

    Ana Sofia Correia

    Full Text Available TAR DNA-binding protein 43 (TDP-43 is a major component in aggregates of ubiquitinated proteins in amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration (FTLD. Here we report that lipopolysaccharide (LPS-induced inflammation can promote TDP-43 mislocalization and aggregation. In culture, microglia and astrocytes exhibited TDP-43 mislocalization after exposure to LPS. Likewise, treatment of the motoneuron-like NSC-34 cells with TNF-alpha (TNF-α increased the cytoplasmic levels of TDP-43. In addition, the chronic intraperitoneal injection of LPS at a dose of 1mg/kg in TDP-43(A315T transgenic mice exacerbated the pathological TDP-43 accumulation in the cytoplasm of spinal motor neurons and it enhanced the levels of TDP-43 aggregation. These results suggest that inflammation may contribute to development or exacerbation of TDP-43 proteinopathies in neurodegenerative disorders.

  4. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-01-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4 + CD25 + FoxP3 + regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis

  5. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua [Beijing Institute of Radiation Medicine, Beijing (China); Guo, Renfeng [Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (United States); Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun [Beijing Institute of Radiation Medicine, Beijing (China); Zhu, Maoxiang, E-mail: zhumx@nic.bmi.ac.cn [Beijing Institute of Radiation Medicine, Beijing (China)

    2015-10-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.

  6. Hypercapnic acidosis modulates inflammation, lung mechanics, and edema in the isolated perfused lung.

    Science.gov (United States)

    De Smet, Hilde R; Bersten, Andrew D; Barr, Heather A; Doyle, Ian R

    2007-12-01

    Low tidal volume (V(T)) ventilation strategies may be associated with permissive hypercapnia, which has been shown by ex vivo and in vivo studies to have protective effects. We hypothesized that hypercapnic acidosis may be synergistic with low V(T) ventilation; therefore, we studied the effects of hypercapnia and V(T) on unstimulated and lipopolysaccharide-stimulated isolated perfused lungs. Isolated perfused rat lungs were ventilated for 2 hours with low (7 mL/kg) or moderately high (20 mL/kg) V(T) and 5% or 20% CO(2), with lipopolysaccharide or saline added to the perfusate. Hypercapnia resulted in reduced pulmonary edema, lung stiffness, tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) in the lavage and perfusate. The moderately high V(T) did not cause lung injury but increased lavage IL-6 and perfusate IL-6 as well as TNF-alpha. Pulmonary edema and respiratory mechanics improved, possibly as a result of a stretch-induced increase in surfactant turnover. Lipopolysaccharide did not induce significant lung injury. We conclude that hypercapnia exerts a protective effect by modulating inflammation, lung mechanics, and edema. The moderately high V(T) used in this study stimulated inflammation but paradoxically improved edema and lung mechanics with an associated increase in surfactant release.

  7. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory.

    Science.gov (United States)

    Heisler, Jillian M; O'Connor, Jason C

    2015-11-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. Published by Elsevier Inc.

  8. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory

    Science.gov (United States)

    Heisler, Jillian M.; O’Connor, Jason C.

    2015-01-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. PMID:26130057

  9. Ozone acts alone and synergistically with ionizing radiation to induce in vitro neoplastic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Borek, C; Zaider, M; Ong, A; Mason, H; Witz, G

    1986-09-01

    Ozone, a major chemical oxidant in the atmosphere, is an environmental air pollutant whose ability to act as a direct carcinogen is unclear. Using in vitro transformation, a technique which permits the study of oncogenesis in the absence of host specific effects, it is reported for the first time that ozone (5 p.p.m. for 5 min) induces neoplastic transformation in vitro in both primary hamster embryo cells and mouse fibroblast cultures (C3H/10-1/2). Exposure of the hamster and mouse cells to ozone also results in enhanced levels of free radical-mediated lipid peroxidation products. The carcinogenic interaction between ozone and ionizing radiation is also reported. Exposure of the cells to 3 or 4 Gy of ..gamma..-rays, 2 h prior to O/sub 3/ treatment, results in markedly enhanced rates of transformation, statistically consistent with a synergistic interaction between the agents. The results demonstrate that O/sub 3/ acts as a direct carcinogen and co-carcinogen on susceptible cells, therefore having important consequences for public health.

  10. TIM-3 is not essential for development of airway inflammation induced by house dust mite antigens

    Directory of Open Access Journals (Sweden)

    Yoshihisa Hiraishi

    2016-10-01

    Conclusions: Our findings indicate that, in mice, TIM-3 is not essential for development of HDM-induced acute or chronic allergic airway inflammation, although it appears to be involved in reduced lymphocyte recruitment during HDM-induced chronic allergic airway inflammation.

  11. Protective Role of Eosinophils and TNFa after Ozone Inhalation.

    Science.gov (United States)

    Fryer, Allison D; Jacoby, David B; Wicher, Sarah A

    2017-03-01

    Exposure to ozone induces deleterious responses in the airways that include shortness of breath, inflammation, and bronchoconstriction. People with asthma have increased airway sensitivity to ozone and other irritants. Dr. Allison Fryer and colleagues addressed how exposure to ozone affects the immune and physiological responses in guinea pigs. Guinea pigs are considered a useful animal model for studies of respiratory and physiological responses in humans; their response to airborne allergens is similar to that in humans and shares some features of allergic asthma. Fryer and colleagues had previously observed that within 24 hours of exposure, ozone not only induced bronchoconstriction but also stimulated the production of new cells in the bone marrow, where all white blood cells develop. As a result of ozone exposure, increased numbers of newly synthesized white blood cells, particularly eosinophils, moved into the blood and lungs. The central hypothesis of the current study was that newly synthesized eosinophils recruited to the lungs 3 days after ozone exposure were beneficial to the animals because they reduced ozoneinduced bronchoconstriction. The investigators also hypothesized that the beneficial effect seen in normal (nonsensitized) animals was lost in animals that had been injected with an allergen, ovalbumin (sensitized). They also planned to explore the effects of inhibitors of certain cytokines (cellsignaling molecules). Immune responses in sensitized animals are dominated by a Th2 pattern, which is characterized by the synthesis of cytokines (interleukin [IL]-4, IL-5, and IL-13) and the Th2 subset of CD4+ T lymphocytes and the cells they activate (predominantly eosinophils, and B lymphocytes that switch to making immunoglobulin E [IgE]). Thus, sensitized animals were used as a model of allergic humans, whose immune responses tend to be dominated by IgE. Fryer and colleagues exposed normal and sensitized (allergic) guinea pigs to 2 ppm ozone or filtered

  12. Induced pluripotent stem cells inhibit bleomycin-induced pulmonary fibrosis in mice through suppressing TGF-β1/Smad-mediated epithelial to mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2016-11-01

    Full Text Available Pulmonary fibrosis is a progressive and irreversible fibrotic lung disorder with high mortality and few treatment options. Recently, induced pluripotent stem (iPS cells have been considered as an ideal resource for stem cell-based therapy. Although an earlier study demonstrated the therapeutic effect of iPS cells on pulmonary fibrosis, the exact mechanisms remain obscure. The present study investigated the effects of iPS cells on inflammatory responses, transforming growth factor (TGF-β1 signaling pathway, and epithelial to mesenchymal transition (EMT during bleomycin (BLM-induced lung fibrosis. A single intratracheal instillation of BLM (5 mg/kg was performed to induce pulmonary fibrosis in C57BL/6 mice. Then, iPS cells (c-Myc-free were administrated intravenously at 24 h following BLM instillation. Three weeks after BLM administration, pulmonary fibrosis was evaluated. As expected, treatment with iPS cells significantly limited the pathological changes, edema, and collagen deposition in lung tissues of BLM-induced mice. Mechanically, treatment with iPS cells obviously repressed the expression ratios of matrix metalloproteinase-2 (MMP-2 to its tissue inhibitor -2 (TIMP-2 and MMP-9/TIMP-1 in BLM-induced pulmonary tissues. In addition, iPS cell administration remarkably suppressed BLM-induced up-regulation of pulmonary inflammatory mediators, including tumor necrosis factor-α, interleukin (IL-1β, IL-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and prostaglandin E2. We further demonstrated that transplantation of iPS cells markedly inhibited BLM-mediated activation of TGF-β1/Mothers against decapentaplegic homolog 2/3 (Smad2/3 and EMT in lung tissues through up-regulating epithelial marker E-cadherin and down-regulating mesenchymal markers including fibronectin, vimentin and α-smooth muscle actin. Moreover, in vitro, iPS cell-conditioned medium (iPSC-CM profoundly inhibited TGF-β1-induced EMT signaling pathway in mouse

  13. Low-dose cadmium exposure exacerbates polyhexamethylene guanidine-induced lung fibrosis in mice.

    Science.gov (United States)

    Kim, Min-Seok; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Han, Jin-Young; Kim, Bumseok; Lee, Kyuhong

    2018-01-01

    Cadmium (Cd) is a toxic metal present in tobacco smoke, air, food, and water. Inhalation is an important route of Cd exposure, and lungs are one of the main target organs for metal-induced toxicity. Cd inhalation is associated with an increased risk of pulmonary diseases. The present study aimed to assess the effects of repeated exposure to low-dose Cd in a mouse model of polyhexamethylene guanidine (PHMG)-induced lung fibrosis. Mice were grouped into the following groups: vehicle control (VC), PHMG, cadmium chloride (CdCl 2 ), and PHMG + CdCl 2 . Animals in the PHMG group exhibited increased numbers of total cells and inflammatory cells in the bronchoalveolar lavage fluid (BALF) accompanied by inflammation and fibrosis in lung tissues. These parameters were exacerbated in mice in the PHMG + CdCl 2 group. In contrast, mice in the CdCl 2 group alone displayed only minimal inflammation in pulmonary tissue. Expression of inflammatory cytokines and fibrogenic mediators was significantly elevated in lungs of mice in the PHMG group compared with that VC. Further, expression of these cytokines and mediators was enhanced in pulmonary tissue in mice administered PHMG + CdCl 2 . Data demonstrate that repeated exposure to low-dose Cd may enhance the development of PHMG-induced pulmonary fibrosis.

  14. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    Science.gov (United States)

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  15. Thymosin Beta 4 protects mice from monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Pulmonary hypertension (PH is a progressive vascular disease of pulmonary arteries that impedes ejection of blood by the right ventricle. As a result there is an increase in pulmonary vascular resistance and pulmonary arterial pressure causing right ventricular hypertrophy (RVH and RV failure. The pathology of PAH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC dysfunction and pulmonary arterial smooth muscle cell (PASMC proliferation. Current therapies are limited to reverse the vascular remodeling. Investigating a key molecule is required for development of new therapeutic intervention. Thymosin beta-4 (Tβ4 is a ubiquitous G-actin sequestering protein with diverse biological function and promotes wound healing and modulates inflammatory responses. However, it remains unknown whether Tβ4 has any protective role in PH. The purpose of this study is to evaluate the whether Tβ4 can be used as a vascular-protective agent. In monocrotaline (MCT-induced PH mouse model, we showed that mice treated with Tβ4 significantly attenuated the systolic pressure and RVH, compared to the MCT treated mice. Our data revealed for the first time that Tβ4 selectively targets Notch3-Col 3A-CTGF gene axis in preventing MCT-induced PH and RVH. Our study may provide pre-clinical evidence for Tβ4 and may consider as vasculo-protective agent for the treatment of PH induced RVH.

  16. Cell therapy with bone marrow mononuclear cells in elastase-induced pulmonary emphysema.

    Science.gov (United States)

    Longhini-Dos-Santos, Nathalia; Barbosa-de-Oliveira, Valter Abraão; Kozma, Rodrigo Heras; Faria, Carolina Arruda de; Stessuk, Talita; Frei, Fernando; Ribeiro-Paes, João Tadeu

    2013-04-01

    Emphysema is characterized by destruction of alveolar walls with loss of gas exchange surface and consequent progressive dyspnea. This study aimed to evaluate the efficiency of cell therapy with bone marrow mononuclear cells (BMMC) in an animal model of elastase-induced pulmonary emphysema. Emphysema was induced in C57Bl/J6 female mice by intranasal instillation of elastase. After 21 days, the mice received bone marrow mononuclear cells from EGFP male mice with C57Bl/J6 background. The groups were assessed by comparison and statistically significant differences (p pulmonary emphysema.

  17. Seasonal development of ozone-induced foliar injury on tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park

    International Nuclear Information System (INIS)

    Souza, Lara; Neufeld, Howard S.; Chappelka, Arthur H.; Burkey, Kent O.; Davison, Alan W.

    2006-01-01

    The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants. - Leaf loss was not necessarily accompanied by symptoms of foliar ozone injury

  18. Seasonal development of ozone-induced foliar injury on tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Lara [Department of Biology, 572 Rivers Street, Appalachian State University, Boone, NC 28608 (United States)]. E-mail: lsouza@utk.edu; Neufeld, Howard S. [Department of Biology, 572 Rivers Street, Appalachian State University, Boone, NC 28608 (United States); Chappelka, Arthur H. [School of Forestry and Wildlife Sciences, 108 M White-Smith Hall, Auburn University, Auburn, AL 36849 (United States); Burkey, Kent O. [US Department of Agriculture, Agricultural Research Service, Plant Science Research Unit and Department of Crop Science, North Carolina State University, 3908 Inwood Road, Raleigh, NC 26703 (United States); Davison, Alan W. [School of Biology, Ridley Building, University of Newcastle, Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2006-05-15

    The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants. - Leaf loss was not necessarily accompanied by symptoms of foliar ozone injury.

  19. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model

    Directory of Open Access Journals (Sweden)

    O'Shaughnessy Patrick T

    2011-01-01

    Full Text Available Abstract Background There is increasing interest in the environmental and health consequences of silver nanoparticles as the use of this material becomes widespread. Although human exposure to nanosilver is increasing, only a few studies address possible toxic effect of inhaled nanosilver. The objective of this study was to determine whether very small commercially available nanosilver induces pulmonary toxicity in mice following inhalation exposure. Results In this study, mice were exposed sub-acutely by inhalation to well-characterized nanosilver (3.3 mg/m3, 4 hours/day, 10 days, 5 ± 2 nm primary size. Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage fluid. Lungs were evaluated for histopathologic changes and the presence of silver. In contrast to published in vitro studies, minimal inflammatory response or toxicity was found following exposure to nanosilver in our in vivo study. The median retained dose of nanosilver in the lungs measured by inductively coupled plasma - optical emission spectroscopy (ICP-OES was 31 μg/g lung (dry weight immediately after the final exposure, 10 μg/g following exposure and a 3-wk rest period and zero in sham-exposed controls. Dissolution studies showed that nanosilver did not dissolve in solutions mimicking the intracellular or extracellular milieu. Conclusions Mice exposed to nanosilver showed minimal pulmonary inflammation or cytotoxicity following sub-acute exposures. However, longer term exposures with higher lung burdens of nanosilver are needed to ensure that there are no chronic effects and to evaluate possible translocation to other organs.

  20. Ozone and sulphur dioxide effects on leaf water potential of Petunia

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1979-01-01

    Three cultivars of Petunia hydrida Vilm., of differing ozone visible injury sensitivity, were exposed to 40 parts per hundred million (pphm) ozone and/or 80 pphm SO/sub 2/ for 4 h to study the relationships of leaf water potential, pollutant exposure, and cultivar sensitivity. Ozone substantially decreased leaf water potential in cv White Cascade but not in cv Capri or White Magic. Sulphur dioxide did not affect leaf water potential but delayed ozone-induced changes. Cultivar sensitivity to ozone-induced changes in leaf water potential was not related to cultivar sensitivity to ozone-induced visible injury.

  1. OZONE CONCENTRATION ATTRIBUTABLE PREMATURE DEATH IN POLAND

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2010-03-01

    Full Text Available Ozone in the lower part of the atmosphere (troposphere, strong photochemical oxidant, is not directly emitted to the atmosphere but formed through a series of complex reactions. Ozone concentrations depends on ozone precursors air contamination (mainly nitrogen dioxide and non-methane volatile organic compounds and meteorological conditions (temperature and solar radiation. The main sectors emitted ozone precursors are road transport, power and heat generation plants, household (heating, industry, and petrol storage and distribution. Ozone and some of its precursors are also transported long distances in the atmosphere and are therefore considered a transboundary problem. As a result, the ozone concentrations are often low in busy urban areas and higher in suburban and rural areas. Nowadays, instead of particulate matter, ozone is one of the most widespread global air pollution problems. In and around urban areas, relatively large gradients of ozone can be observed. Because of its high reactivity in elevated concentrations ozone causes serious health problems and damage to ecosystems, agricultural crops and materials. Main ill-health endpoints as a results of ozone concentrations can be characterised as an effect of pulmonary and cardiovascular system, time morbidity and mortality series, development of atherosclerosis and asthma and finally reduction in life expectancy. The associations with increased daily mortality due to ozone concentrations are confirmed by many researches and epidemiological studies. Estimation of the level selected ill-health endpoints (mortality in total and due to cardiovascular and respiratory causes as a result of the short-term ozone exposure in Poland was the main aim of the project. Final results have been done based on estimation method elaborated by WHO, ozone measurements from National Air Quality Monitoring System and statistical information such as mortality rate and populations. All analysis have been done in

  2. Sex differences in diet and inhaled ozone (O3) induced metabolic impairment

    Science.gov (United States)

    APS 2015 abstract Sex differences in diet and inhaled ozone (O3) induced metabolic impairment U.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema1, P. Phillips1, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triang...

  3. Dichotomy in response to indomethacin in uv-C and uv-B induced ultraviolet light inflammation

    International Nuclear Information System (INIS)

    Eaglstein, W.H.; Marsico, A.R.

    1975-01-01

    In subjects irradiated with both UV-C and UV-B ultraviolet light (UVL), 10 μg of intradermal indomethacin decreased the redness in all 13 of the UV-B irradiated areas but in only 2 of 13 of the UV-C irradiated areas. Higher doses of intradermal indomethacin (50 μg and 100 μg) decreased the redness produced by UV-C irradiation in 6 subjects. It is suggested that the failure of 10 μg of indomethacin to decrease the redness of the UV-C induced inflammation, while decreasing the redness in the UV-B induced inflammation, is consistent with the possibility that prostaglandins participate in UV-B but not UV-C induced inflammation

  4. Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation.

    Science.gov (United States)

    Bailey-Downs, Lora C; Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2013-07-01

    Obesity in the elderly individuals is increasing at alarming rates and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging and obesity interact to promote the development of cardiovascular disease remain unclear. The present study was designed to test the hypothesis that aging exacerbates obesity-induced inflammation in perivascular adipose tissue, which contributes to increased vascular oxidative stress and inflammation in a paracrine manner. To test this hypothesis, we assessed changes in the secretome, reactive oxygen species production, and macrophage infiltration in periaortic adipose tissue of young (7 month old) and aged (24 month old) high-fat diet-fed obese C57BL/6 mice. High-fat diet-induced vascular reactive oxygen species generation significantly increased in aged mice, which was associated with exacerbation of endothelial dysfunction and vascular inflammation. In young animals, high-fat diet-induced obesity promoted oxidative stress in the perivascular adipose tissue, which was associated with a marked proinflammatory shift in the profile of secreted cytokines and chemokines. Aging exacerbated obesity-induced oxidative stress and inflammation and significantly increased macrophage infiltration in periaortic adipose tissue. Using cultured arteries isolated from young control mice, we found that inflammatory factors secreted from the perivascular fat tissue of obese aged mice promote significant prooxidative and proinflammatory phenotypic alterations in the vascular wall, mimicking the aging phenotype. Overall, our findings support an important role for localized perivascular adipose tissue inflammation in exacerbation of vascular oxidative stress and inflammation in aging, an effect that likely enhances the risk for development of cardiovascular diseases from obesity in the elderly individuals.

  5. Effect of sonically induced deflocculation on the efficiency of ozone mediated partial sludge disintegration for improved production of biogas.

    Science.gov (United States)

    Sowmya Packyam, G; Kavitha, S; Adish Kumar, S; Kaliappan, S; Yeom, Ick Tae; Rajesh Banu, J

    2015-09-01

    In this study, ultrasonication was used for sludge deflocculation, followed by cell disintegration using ozone. The effect of this phase separated sono-ozone pretreatment is evaluated based on extra polymeric substances release, deoxyribonucleic acid (DNA) in the medium, solubilization of intra cellular components and suspended solids (SS) reduction. Ultrasonically induced deflocculation was optimized at an energy dosage of 76.4(log 1.88)kJ/kg TS. During cell disintegration (ozone dosage 0.0011 mgO3/mgSS), chemical oxygen demand solubilization (COD) and SS reduction of sonic mediated ozone pretreated sludge were 25.4% and 17.8% comparatively higher than ozone pretreated sludge, respectively. Further, biogas production potential of control (raw), flocculated (ozone pretreated), and deflocculated (sonic mediated ozone pretreated) sludges were observed to be 0.202, 0.535 and 0.637 L/(gVS), respectively. Thus, the phase separated pretreatment at lower ultrasonic specific energy and low dose ozone proved to enhance the anaerobic biodegradability efficiently. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Distinct lipid a moieties contribute to pathogen-induced site-specific vascular inflammation.

    Directory of Open Access Journals (Sweden)

    Connie Slocum

    2014-07-01

    Full Text Available Several successful pathogens have evolved mechanisms to evade host defense, resulting in the establishment of persistent and chronic infections. One such pathogen, Porphyromonas gingivalis, induces chronic low-grade inflammation associated with local inflammatory bone loss and systemic inflammation manifested as atherosclerosis. P. gingivalis expresses an atypical lipopolysaccharide (LPS structure containing heterogeneous lipid A species, that exhibit Toll-like receptor-4 (TLR4 agonist or antagonist activity, or are non-activating at TLR4. In this study, we utilized a series of P. gingivalis lipid A mutants to demonstrate that antagonistic lipid A structures enable the pathogen to evade TLR4-mediated bactericidal activity in macrophages resulting in systemic inflammation. Production of antagonistic lipid A was associated with the induction of low levels of TLR4-dependent proinflammatory mediators, failed activation of the inflammasome and increased bacterial survival in macrophages. Oral infection of ApoE(-/- mice with the P. gingivalis strain expressing antagonistic lipid A resulted in vascular inflammation, macrophage accumulation and atherosclerosis progression. In contrast, a P. gingivalis strain producing exclusively agonistic lipid A augmented levels of proinflammatory mediators and activated the inflammasome in a caspase-11-dependent manner, resulting in host cell lysis and decreased bacterial survival. ApoE(-/- mice infected with this strain exhibited diminished vascular inflammation, macrophage accumulation, and atherosclerosis progression. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A expression, indicative of distinct mechanisms for induction of local versus systemic inflammation by this pathogen. Collectively, our results point to a pivotal role for activation of the non-canonical inflammasome in P. gingivalis infection and demonstrate that P. gingivalis evades immune

  7. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4 Induced Hepatic Fibrosis in Mice.

    Directory of Open Access Journals (Sweden)

    Leola N Chow

    Full Text Available Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM-induced pulmonary fibrosis and carbon tetrachloride (CCl4-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC, the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis.

  8. Important role of platelets in modulating endotoxin-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    Full Text Available Mutation of CFTR (cystic fibrosis transmembrane conductance regulator leads to cystic fibrosis (CF. Patients with CF develop abnormalities of blood platelets and recurrent lung inflammation. However, whether CFTR-mutated platelets play a role in the development of lung inflammation is elusive. Therefore, we intratracheally challenged wildtype and F508del (a common type of CFTR mutation mice with LPS to observe changes of F508del platelets in the peripheral blood and indexes of lung inflammation (BAL neutrophils and protein levels. Furthermore, we investigated whether or not and how F508del platelets modulate the LPS-induced acute lung inflammation by targeting anti-platelet aggregation, depletion of neutrophils, reconstitution of bone marrow or neutrophils, blockade of P-selectin glycoprotein ligand-1 (PSGL-1, platelet activating factor (PAF, and correction of mutated CFTR trafficking. We found that LPS-challenged F508del mice developed severe thrombocytopenia and had higher levels of plasma TXB2 coincided with neutrophilic lung inflammation relative to wildtype control. Inhibition of F508del platelet aggregation or depletion of F508del neutrophils diminished the LPS-induced lung inflammation in the F508del mice. Moreover, wildtype mice reconstituted with either F508del bone marrow or neutrophils developed worse thrombocytopenia. Blocking PSGL-1, platelet activating factor (PAF, or rectifying trafficking of mutated CFTR in F508del mice diminished and alveolar neutrophil transmigration in the LPS-challenged F508del mice. These findings suggest that F508del platelets and their interaction with neutrophils are requisite for the development of LPS-induced lung inflammation and injury. As such, targeting platelets might be an emerging strategy for dampening recurrent lung inflammation in cystic fibrosis patients.

  9. Transient infection of the zebrafish notochord with E. coli induces chronic inflammation

    Directory of Open Access Journals (Sweden)

    Mai Nguyen-Chi

    2014-07-01

    Full Text Available Zebrafish embryos and larvae are now well-established models in which to study infectious diseases. Infections with non-pathogenic Gram-negative Escherichia coli induce a strong and reproducible inflammatory response. Here, we study the cellular response of zebrafish larvae when E. coli bacteria are injected into the notochord and describe the effects. First, we provide direct evidence that the notochord is a unique organ that is inaccessible to leukocytes (macrophages and neutrophils during the early stages of inflammation. Second, we show that notochord infection induces a host response that is characterised by rapid clearance of the bacteria, strong leukocyte recruitment around the notochord and prolonged inflammation that lasts several days after bacteria clearance. During this inflammatory response, il1b is first expressed in macrophages and subsequently at high levels in neutrophils. Moreover, knock down of il1b alters the recruitment of neutrophils to the notochord, demonstrating the important role of this cytokine in the maintenance of inflammation in the notochord. Eventually, infection of the notochord induces severe defects of the notochord that correlate with neutrophil degranulation occurring around this tissue. This is the first in vivo evidence that neutrophils can degranulate in the absence of a direct encounter with a pathogen. Persistent inflammation, neutrophil infiltration and restructuring of the extracellular matrix are defects that resemble those seen in bone infection and in some chondropathies. As the notochord is a transient embryonic structure that is closely related to cartilage and bone and that contributes to vertebral column formation, we propose infection of the notochord in zebrafish larvae as a new model to study the cellular and molecular mechanisms underlying cartilage and bone inflammation.

  10. Analgesic effect of Minocycline in rat model of inflammation-induced visceral pain

    Science.gov (United States)

    Kannampalli, Pradeep; Pochiraju, Soumya; Bruckert, Mitchell; Shaker, Reza; Banerjee, Banani; Sengupta, Jyoti N.

    2014-01-01

    The present study investigates the analgesic effect of minocycline, a semi-synthetic tetracycline antibiotic, in a rat model of inflammation-induced visceral pain. Inflammation was induced in male rats by intracolonic administration of tri-nitrobenzenesulphonic acid (TNBS). Visceral hyperalgesia was assessed by comparing the viscero-motor response (VMR) to graded colorectal distension (CRD) prior and post 7 days after TNBS treatment. Electrophysiology recordings from CRD-sensitive pelvic nerve afferents (PNA) and lumbo-sacral (LS) spinal neurons were performed in naïve and inflamed rats. Colonic inflammation produced visceral hyperalgesia characterized by increase in the VMRs to CRD accompanied with simultaneous activation of microglia in the spinal cord and satellite glial cells (SGCs) in the dorsal root ganglions (DRGs). Selectively inhibiting the glial activation following inflammation by araC (Arabinofuranosyl Cytidine) prevented the development of visceral hyperalgesia. Intrathecal minocycline significantly attenuated the VMR to CRD in inflamed rats, whereas systemic minocycline produced a delayed effect. In electrophysiology experiments, minocycline significantly attenuated the mechanotransduction of CRD-sensitive PNAs and the responses of CRD-sensitive LS spinal neurons in TNBS-treated rats. While the spinal effect of minocycline was observed within 5 min of administration, systemic injection of the drug produced a delayed effect (60 min) in inflamed rats. Interestingly, minocycline did not exhibit analgesic effect in naïve, non-inflamed rats. The results demonstrate that intrathecal injection of minocycline can effectively attenuate inflammation-induced visceral hyperalgesia. Minocycline might as well act on neuronal targets in the spinal cord of inflamed rats, in addition to the widely reported glial inhibitory action to produce analgesia. PMID:24485889

  11. The Mitochondrial Cardiolipin Remodeling Enzyme Lysocardiolipin Acyltransferase Is a Novel Target in Pulmonary Fibrosis

    Science.gov (United States)

    Huang, Long Shuang; Mathew, Biji; Zhao, Yutong; Noth, Imre; Reddy, Sekhar P.; Harijith, Anantha; Usatyuk, Peter V.; Berdyshev, Evgeny V.; Kaminski, Naftali; Zhou, Tong; Zhang, Wei; Zhang, Yanmin; Rehman, Jalees; Kotha, Sainath R.; Gurney, Travis O.; Parinandi, Narasimham L.; Lussier, Yves A.; Garcia, Joe G. N.

    2014-01-01

    Rationale: Lysocardiolipin acyltransferase (LYCAT), a cardiolipin-remodeling enzyme regulating the 18:2 linoleic acid pattern of mammalian mitochondrial cardiolipin, is necessary for maintaining normal mitochondrial function and vascular development. We hypothesized that modulation of LYCAT expression in lung epithelium regulates development of pulmonary fibrosis. Objectives: To define a role for LYCAT in human and murine models of pulmonary fibrosis. Methods: We analyzed the correlation of LYCAT expression in peripheral blood mononuclear cells (PBMCs) with the outcomes of pulmonary functions and overall survival, and used the murine models to establish the role of LYCAT in fibrogenesis. We studied the LYCAT action on cardiolipin remodeling, mitochondrial reactive oxygen species generation, and apoptosis of alveolar epithelial cells under bleomycin challenge. Measurements and Main Results: LYCAT expression was significantly altered in PBMCs and lung tissues from patients with idiopathic pulmonary fibrosis (IPF), which was confirmed in two preclinical murine models of IPF, bleomycin- and radiation-induced pulmonary fibrosis. LYCAT mRNA expression in PBMCs directly and significantly correlated with carbon monoxide diffusion capacity, pulmonary function outcomes, and overall survival. In both bleomycin- and radiation-induced pulmonary fibrosis murine models, hLYCAT overexpression reduced several indices of lung fibrosis, whereas down-regulation of native LYCAT expression by siRNA accentuated fibrogenesis. In vitro studies demonstrated that LYCAT modulated bleomycin-induced cardiolipin remodeling, mitochondrial membrane potential, reactive oxygen species generation, and apoptosis of alveolar epithelial cells, potential mechanisms of LYCAT-mediated lung protection. Conclusions: This study is the first to identify modulation of LYCAT expression in fibrotic lungs and offers a novel therapeutic approach for ameliorating lung inflammation and pulmonary fibrosis. PMID

  12. Role of xanthine oxidase and reactive oxygen intermediates in LPS- and TNF-induced pulmonary edema.

    Science.gov (United States)

    Faggioni, R; Gatti, S; Demitri, M T; Delgado, R; Echtenacher, B; Gnocchi, P; Heremans, H; Ghezzi, P

    1994-03-01

    We studied the role of reactive oxygen intermediates (ROI) in lipopolysaccharide (LPS)-induced pulmonary edema. LPS treatment (600 micrograms/mouse, IP) was associated with a marked induction of the superoxide-generating enzyme xanthine oxidase (XO) in serum and lung. Pretreatment with the antioxidant N-acetylcysteine (NAC)--1 gm/kg orally, 45 minutes before LPS--or with the XO inhibitor allopurinol (AP)--50 mg/kg orally at -1 hour and +3 hours--was protective. On the other hand nonsteroidal antiinflammatory drugs (ibuprofen, indomethacin, and nordihydroguaiaretic acid) were ineffective. These data suggested that XO might be involved in the induction of pulmonary damage by LPS. However, treatment with the interferon inducer polyriboinosylic-polyribocytidylic acid, although inducing XO to the same extent as LPS, did not cause any pulmonary edema, indicating that XO is not sufficient for this toxicity of LPS. To define the possible role of cytokines, we studied the effect of direct administration of LPS (600 micrograms/mouse, IP), tumor necrosis factor (TNF, 2.5 or 50 micrograms/mouse, IV), interleukin-1 (IL-1 beta, 2.5 micrograms/mouse, IV), interferon-gamma (IFN-gamma, 2.5 micrograms/mouse, IV), or their combination at 2.5 micrograms each. In addition to LPS, only TNF at the highest dose induced pulmonary edema 24 hours later. LPS-induced pulmonary edema was partially inhibited by anti-IFN-gamma antibodies but not by anti-TNF antibodies, anti-IL-1 beta antibodies, or IL-1 receptor antagonist (IL-1Ra).

  13. The role of heparanase in pulmonary cell recruitment in response to an allergic but not non-allergic stimulus.

    Directory of Open Access Journals (Sweden)

    Abigail Morris

    Full Text Available Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/- mice as a model. Following local delivery of LPS or zymosan, no significant difference was found in the recruitment of neutrophils to the lung between Hpa-/- and wild type (WT control. Similarly neutrophil recruitment was not inhibited in WT mice treated with a heparanase inhibitor. However, in allergic inflammatory models, Hpa-/- mice displayed a significantly reduced eosinophil (but not neutrophil recruitment to the airways and this was also associated with a reduction in allergen-induced bronchial hyperresponsiveness, indicating that heparanase expression is associated with allergic reactions. This was further demonstrated by pharmacological treatment with a heparanase inhibitor in the WT allergic mice. Examination of lung specimens from patients with different severity of chronic obstructive pulmonary disease (COPD found increased heparanase expression. Thus, it is established that heparanase contributes to allergen-induced eosinophil recruitment to the lung and could provide a novel therapeutic target for the development of anti-inflammatory drugs for the treatment of asthma and other allergic diseases.

  14. Overexpression of IL-38 protein in anticancer drug-induced lung injury and acute exacerbation of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Tominaga, Masaki; Okamoto, Masaki; Kawayama, Tomotaka; Matsuoka, Masanobu; Kaieda, Shinjiro; Sakazaki, Yuki; Kinoshita, Takashi; Mori, Daisuke; Inoue, Akira; Hoshino, Tomoaki

    2017-09-01

    Interleukin (IL)-38, a member of the IL-1 family, shows high homology to IL-1 receptor antagonist (IL-1Ra) and IL-36 receptor antagonist (IL-36Ra). Its function in interstitial lung disease (ILD) is still unknown. To determine the expression pattern of IL-38 mRNA, a panel of cDNAs derived from various tissues was analyzed by quantitative real-time PCR. Immunohistochemical reactivity with anti-human IL-38 monoclonal antibody (clone H127C) was evaluated semi-quantitatively in lung tissue samples from 12 patients with idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP), 5 with acute exacerbation of IPF, and 10 with anticancer drug-induced ILD (bleomycin in 5 and epidermal growth factor receptor-tyrosine kinase inhibitor in 5). Control lung tissues were obtained from areas of normal lung in 22 lung cancer patients who underwent extirpation surgery. IL-38 transcripts were strongly expressed in the lung, spleen, synoviocytes, and peripheral blood mononuclear cells, and at a lower level in pancreas and muscle. IL-38 protein was not strongly expressed in normal pulmonary alveolar tissues in all 22 control lungs. In contrast, IL-38 was overexpressed in the lungs of 4 of 5 (80%) patients with acute IPF exacerbation and 100% (10/10) of the patients with drug-induced ILD. IL-38 overexpression was limited to hyperplastic type II pneumocytes, which are considered to reflect regenerative change following diffuse alveolar damage in ILD. IL-38 may play an important role in acute and/or chronic inflammation in anticancer drug-induced lung injury and acute exacerbation of IPF. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  15. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes.

    NARCIS (Netherlands)

    Diepen, van Janna A.; Hooiveld, Guido; Stienstra, Rinke; Deen, Peter M.

    2017-01-01

    Obesity induces macrophages to drive inflammation in adipose tissue, a crucial step towards the development of type 2 diabetes. The tricarboxylic acid (TCA) cycle intermediate succinate is released from cells under metabolic stress and has recently emerged as a metabolic signal induced by

  16. Prevention of Pulmonary Fibrosis via Trichostatin A (TSA) in Bleomycin Induced Rats.

    Science.gov (United States)

    Ye, Qing; Li, Yanqin; Jiang, Handong; Xiong, Jianfei; Xu, Jiabo; Qin, Hui; Liu, Bin

    2014-10-20

    To investigate the effects of non selective histone deacetylase inhibitors Trichostatin A (TSA)on bleomycin-induced pulmonary fibrosis. To investigate the effects of non selective histone deacetylase inhibitors Trichostatin A ( TSA ) on HDAC2, p-SMAD2, HDAC2 mRNA, SMAD2mRNA in pulmonary fibrosis rats and investigate impossible mechanism. 46 SPF level male SD rats were randomly divided into four groups: ten for normal control group, fourteen for model control group I, twelve for model control group II and ten for treatment group. Rat pulmonary fibrosis was induced by bleomycin(5mg/kg) via single intratracheal perfusion in the two model control groups and treatment group. Normal control mice were instilled with a corresponding volume of 0.9% saline intratracheally. Treatment group was treated by the dilution of TSA 2mg/kg DMSO 60ul and0.9% saline 1.2ml intraperitoneal injection from the next day ,once a day for three days. Model control group II was treated by the dilution of DMSO 60ul and0.9% saline 1.2ml intraperitoneal injection from the next day once a day for three days. Model control group I and normal control group were treated by 0.9% saline 1.2ml intraperitoneal injection from the next day once a day for three days. All the animals were sacrificed on the 21 day after modeling. The pathological changes were observed by hematoxylin and eosin(HE)stain and masson trichrome stain. The expression of HDAC2 mRNA,SMAD2 mRNA were measured by real-time PCR. The protein level of HDAC2 and p-SMAD2 in serum was measured by Western blot. The pulmonary fibrosis in treatment group were significantly alleviated compared to the two model control groups (P0.05). Western blot indicated that the protein level of HDAC2 and p-SMAD2 in serum increased in the two model control groups compared with normal control group(P0.05). Non selective histone deacetylase inhibitors of Trichostatin A (TSA) can reduce the bleomycin induced pulmonary fibrosis in rats. TSA attenuates pulmonary

  17. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury

    Directory of Open Access Journals (Sweden)

    Boersma Hester

    2009-04-01

    Full Text Available Abstract Background Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD, a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome. Methods Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue. Results Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH. Conclusion Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary

  18. Aerosol indirect effects on lightning in the generation of induced NOx and tropospheric ozone over an Indian urban metropolis

    Science.gov (United States)

    Saha, Upal; Maitra, Animesh; Talukdar, Shamitaksha; Jana, Soumyajyoti

    Lightning flashes, associated with vigorous convective activity, is one of the most prominent weather phenomena in the tropical atmosphere. High aerosol loading is indirectly associated with the increase in lightning flash rates via the formation of tropospheric ozone during the pre-monsoon and monsoon over the tropics. Tropospheric ozone, an important greenhouse pollutant gas have impact on Earth’s radiation budget and play a key role in changing the atmospheric circulation patterns. Lightning-induced NOx is a primary pollutant found in photochemical smog and an important precursor for the formation of tropospheric ozone. A critical analysis is done to study the indirect effects of high aerosol loading on the formation of tropospheric ozone via lightning flashes and induced NOx formation over an urban metropolitan location Kolkata (22°32'N, 88°20'E), India during the period 2001-2012. The seasonal variation of lightning flash rates (LFR), taken from TRMM-LIS 2.5o x 2.5o gridded dataset, show that the LFR was observed to be intensified in the pre-monsoon (March-May) and high in monsoon (June-September) months over the region. Aerosol Optical Depth (AOD) at 555nm, taken from MISR 0.5o x 0.5o gridded level-3 dataset, plays an indirect effect on the increase in LFR during the pre-monsoon and monsoon months and has positive correlations between them during these periods. This is also justified from the seasonal variation of the increase in LFR due to the increase in AOD over the region during 2001-2012. The calibrated GOME and OMI/AURA satellite data analysis shows that the tropospheric ozone, formed as a result of lightning-induced NOx and due to the increased AOD at 555 nm, also increases during the pre-monsoon and monsoon months. The seasonal variation of lightning-induced tropospheric NOx, taken from SCIAMACHY observations also justified the fact that the pre-monsoon and monsoon LFR solely responsible for the generation of induced NOx over the region. The

  19. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death.

    Directory of Open Access Journals (Sweden)

    Takashi Kadono

    Full Text Available BACKGROUND: Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS: By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3 treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3, Ca(2+ influx and NADPH-oxidase generated reactive oxygen species (ROS in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3; namely, H(2O(2 generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE: Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.

  20. Seasonal development of ozone-induced foliar injury on tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park.

    Science.gov (United States)

    Souza, Lara; Neufeld, Howard S; Chappelka, Arthur H; Burkey, Kent O; Davison, Alan W

    2006-05-01

    The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants.

  1. The NALP3/Cryopyrin-Inflammasome Complex is Expressed in LPS-Induced Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    José F. González-Benítez

    2008-01-01

    Full Text Available In the inflammosome complex, NALP3 or NALP1 binds to ASC and activates caspase-1 which induces IL-1β. In murine LPS-induced ocular inflammation, the production of IL-1β is increased. We suggest that NALP3- or NALP1-inflammasome complex can be participating in the LPS-induced ocular inflammation. In this work, eye, brain, testis, heart, spleen, and lung were obtained from C3H/HeN mice treated with LPS for 3 to 48 hours, and the expression of NALP1b, NALP3, ASC, caspase-1, IL-1β, and IL-18 was determined. Infiltrated leukocytes producing IL-1β in the anterior chamber were found at 12-hour posttreatment. A high upregulated expression of NALP3, ASC, caspase-1, IL-1β, and IL-18 was found at the same time when infiltrated leukocytes were observed. NALP1b was not detected in the eye of treated mice. NALP3 was also overexpressed in heart and lung. These results suggest that NALP3-, but not NALP1-inflammosome complex, is participating in the murine LPS-induced ocular inflammation.

  2. TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Hou, Jiwei; Ma, Tan; Cao, Honghui; Chen, Yabing; Wang, Cong; Chen, Xiang; Xiang, Zou; Han, Xiaodong

    2018-03-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible lung disease of unknown cause. It has been reported that both lung resident mesenchymal stem cells (LR-MSCs) and tumor necrosis factor-α (TNF-α) play important roles in the development of pulmonary fibrosis. However, the underlying connections between LR-MSCs and TNF-α in the pathogenesis of pulmonary fibrosis are still elusive. In this study, we found that the pro-inflammatory cytokine TNF-α and the transcription factor nuclear factor kappa B (NF-κB) p65 subunit were both upregulated in bleomycin-induced fibrotic lung tissue. In addition, we discovered that TNF-α promotes myofibroblast differentiation of LR-MSCs through activating NF-κB signaling. Interestingly, we also found that TNF-α promotes the expression of β-catenin. Moreover, we demonstrated that suppression of the NF-κB signaling could attenuate myofibroblast differentiation of LR-MSCs and bleomycin-induced pulmonary fibrosis which were accompanied with decreased expression of β-catenin. Our data implicates that inhibition of the NF-κB signaling pathway may provide a therapeutic strategy for pulmonary fibrosis, a disease that warrants more effective treatment approaches. © 2017 Wiley Periodicals, Inc.

  3. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models

    Directory of Open Access Journals (Sweden)

    V. Eyring

    2010-10-01

    Full Text Available Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs and greenhouse gases (GHGs vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates and ozone no longer being influenced by ODSs (full ozone recovery. The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively. In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH and by ~2055 in the Southern Hemisphere (SH, and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the

  4. Pulmonary and central nervous system pathology in fatal cases of hand foot and mouth disease caused by enterovirus A71 infection.

    Science.gov (United States)

    Wang, Zijun; Nicholls, John M; Liu, Fengfeng; Wang, Joshua; Feng, Zijian; Liu, Dongge; Sun, Yanni; Zhou, Cheng; Li, Yunqian; Li, Hai; Qi, Shunxiang; Huang, Xueyong; Sui, Jilin; Liao, Qiaohong; Peiris, Malik; Yu, Hongjie; Wang, Yu

    2016-04-01

    In the past 17 years, neurological disease associated with enterovirus A71 (EV-A71) has increased dramatically in the Asia-Pacific region with a high fatality rate in young infants, often due to pulmonary oedema, however the mechanism of this oedema remains obscure. We analysed the brainstem, heart and lungs of 15 fatal cases of confirmed EV-A71 infection in order to understand the pathophysiological mechanism of death and pulmonary oedema. In keeping with other case studies, the main cause of death was neurogenic pulmonary oedema. In the brainstem, 11 cases showed inflammation and all cases showed parenchymal inflammation with seven cases showing moderate or severe clasmatodendrosis. No viral antigen was detected in sections of the brainstem in any of the cases. All fatal cases showed evidence of pulmonary oedema; however, there was absence of direct pulmonary viral damage or myocarditis-induced damage and EV-A71 viral antigen staining was negative. Though there was no increase in staining for Na/K-ATPase, 11 of the 15 cases showed a marked reduction in aquaporin-4 staining in the lung, and this reduction may contribute to the development of fatal pulmonary oedema. Copyright © 2016. Published by Elsevier B.V.

  5. Anti-inflammatory effects of potato extract on a rat model of cigarette smoke–induced chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gui Hua Xu

    2015-10-01

    Full Text Available Objective: This study aimed to evaluate the therapeutic effects of potato extract (PE on cigarette smoke (CS–induced chronic obstructive pulmonary disease (COPD. Methods: PE was first prepared by frozen centrifugation, and its amino acid composition was detected. Toxicity of PE was analyzed by changes in morphology, behavior, routine blood indexes, and biochemical criteria of mice. Then, the COPD rat model was established by CS exposure, and PE, doxofylline, and prednisolone acetate were used to treat these rats. After 45 days of treatment, the morphology and behavior of rats were recorded. In addition, the histopathology of lung tissue was evaluated by chest x-ray and hematoxylin and eosin staining. The expression of interleukine-10 (IL-10, tumor necrosis factor-α (TNF-α, and granulocyte colony-stimulating factor (G-CSF was detected in serum and lung tissue by enzyme-linked immunosorbent assay (ELISA and immunohistochemistry, respectively. Results: Various amino acids were identified in PE, and no toxicity was exhibited in mice. The CS-induced COPD rat model was successfully established, which exhibited significant thickened and disordered lung markings on 90% of the rats. After administering doxofylline and prednisolone acetate, inflammation symptoms were improved. However, side effects such as emaciation, weakness, and loosening of teeth appeared. In the PE group, obviously improved histopathology was observed in lung tissues. Meanwhile, it was revealed that PE could increase the expression of IL-10 and reduce the expression of TNF-α and G-CSF in COPD rats, and doxofylline and prednisolone acetate also elicited similar results. Conclusion: Our study suggests PE might be effective in the treatment of CS-induced COPD by inhibiting inflammation.

  6. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    Directory of Open Access Journals (Sweden)

    Takeshi Tohyama

    Full Text Available Lipopolysaccharide (LPS induces acute inflammation, activates sympathetic nerve activity (SNA and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP, examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis.Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg. We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection.In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.. In contrast, AP increased initially (until 75 min, then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP.LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and

  7. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    Science.gov (United States)

    Tohyama, Takeshi; Saku, Keita; Kawada, Toru; Kishi, Takuya; Yoshida, Keimei; Nishikawa, Takuya; Mannoji, Hiroshi; Kamada, Kazuhiro; Sunagawa, Kenji; Tsutsui, Hiroyuki

    2018-01-01

    Lipopolysaccharide (LPS) induces acute inflammation, activates sympathetic nerve activity (SNA) and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP), examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis. Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg). We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP) by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection. In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.). In contrast, AP increased initially (until 75 min), then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship) upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship) downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP. LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and suppressed

  8. Re-defining the Unique Roles for Eosinophils in Allergic Respiratory Inflammation

    Science.gov (United States)

    Jacobsen, Elizabeth A.; Lee, Nancy A.; Lee, James J.

    2014-01-01

    Summary The role of eosinophils in the progression and resolution of allergic respiratory inflammation is poorly defined despite the commonality of their presence and in some cases their use as a biomarker for disease severity and/or symptom control. However, this ambiguity belies the wealth of insights that have recently been gained through the use of eosinophil-deficient/attenuated strains of mice that have demonstrated novel immunoregulatory and remodeling/repair functions for these cells in the lung following allergen provocation. Specifically, studies of eosinophil-deficient mice suggest that eosinophils contribute to events occurring in the lungs following allergen provocation at several key moments: (i) The initiating phase of events leading to Th2-polarized pulmonary inflammation, (ii) The suppression Th1/Th17 pathways in lung draining lymph nodes, (iii) The recruitment of effector Th2 T cells to the lung, and finally (iv) Mechanisms of inflammatory resolution that re-establish pulmonary homeostasis. These suggested functions have recently been confirmed and expanded upon using allergen provocation of an inducible eosinophil-deficient strain of mice (iPHIL) that demonstrated an eosinophil-dependent mechanism(s) leading to Th2 dominated immune responses in the presence of eosinophils in contrast to neutrophilic as well as mixed Th1/Th17/Th2 variant phenotypes in the absence of eosinophils. These findings highlighted that eosinophils are not exclusively downstream mediators controlled by T cells, dendritic cells (DC), and/or innate lymphocytic cells (ILC2). Instead, eosinophils appear to be more aptly described as significant contributors in complex interrelated pathways that lead to pulmonary inflammation and subsequently promote resolution and the re-establishment of homeostatic baseline. In this review we summarize and put into the context the evolving hypotheses that are now expanding our understanding of the roles eosinophils likely have in the lung

  9. Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension

    NARCIS (Netherlands)

    Ghobadi, G.; Bartelds, B.; van der Veen, S. J.; Dickinson, M. G.; Brandenburg, S.; Berger, R. M. F.; Langendijk, J. A.; Coppes, R. P.; van Luijk, P.

    Background Pulmonary arterial hypertension (PAH) is a commonly fatal pulmonary vascular disease that is often diagnosed late and is characterised by a progressive rise in pulmonary vascular resistance resulting from typical vascular remodelling. Recent data suggest that vascular damage plays an

  10. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  11. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    International Nuclear Information System (INIS)

    Takai, Atsushi; Marusawa, Hiroyuki; Chiba, Tsutomu

    2011-01-01

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis

  12. Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Fadel Elie

    2011-09-01

    Full Text Available Abstract Background Involvement of inflammation in pulmonary hypertension (PH has previously been demonstrated and recently, immune-modulating dendritic cells (DCs infiltrating arterial lesions in patients suffering from idiopathic pulmonary arterial hypertension (IPAH and in experimental monocrotaline-induced PH have been reported. Occurrence of perivascular inflammatory cells could be linked to local increase of oxidative stress (OS, as it has been shown for systemic atherosclerosis. The impact of OS on vascular remodeling in PH is still to be determined. We hypothesized, that augmented blood-flow could increase OS and might thereby contribute to DC/inflammatory cell-recruitment and smooth-muscle-cell-proliferation. Methods We applied a monocrotaline-induced PH-model and combined it with permanent flow-challenge. Thirty Sprague-Dawley rats were assigned to following groups: control, monocrotaline-exposure (MCT, monocrotaline-exposure/pneumonectomy (MCT/PE. Results Hemodynamic exploration demonstrated most severe effects in MCT/PE, corresponding in histology to exuberant medial and adventitial remodeling of pulmonary muscular arteries, and intimal remodeling of smaller arterioles; lung-tissue PCR evidenced increased expression of DCs-specific fascin, CD68, proinflammatory cytokines (IL-6, RANTES, fractalkine in MCT/PE and to a lesser extent in MCT. Major OS enzyme NOX-4 was maximal in MCT/PE. Antioxidative stress enzymes Mn-SOD and glutathion-peroxidase-1 were significantly elevated, while HO-1 showed maximal expression in MCT with significant decrease in MCT/PE. Catalase was decreased in MCT and MCT/PE. Expression of NOX-4, but also of MN-SOD in MCT/PE was mainly attributed to a highly increased number of interstitial and perivascular CXCR4/SDF1 pathway-recruited mast-cells. Stress markers malonedialdehyde and nitrotyrosine were produced in endothelial cells, medial smooth muscle and perivascular leucocytes of hypertensive vasculature

  13. Transient infection of the zebrafish notochord with E. coli induces chronic inflammation.

    Science.gov (United States)

    Nguyen-Chi, Mai; Phan, Quang Tien; Gonzalez, Catherine; Dubremetz, Jean-François; Levraud, Jean-Pierre; Lutfalla, Georges

    2014-07-01

    Zebrafish embryos and larvae are now well-established models in which to study infectious diseases. Infections with non-pathogenic Gram-negative Escherichia coli induce a strong and reproducible inflammatory response. Here, we study the cellular response of zebrafish larvae when E. coli bacteria are injected into the notochord and describe the effects. First, we provide direct evidence that the notochord is a unique organ that is inaccessible to leukocytes (macrophages and neutrophils) during the early stages of inflammation. Second, we show that notochord infection induces a host response that is characterised by rapid clearance of the bacteria, strong leukocyte recruitment around the notochord and prolonged inflammation that lasts several days after bacteria clearance. During this inflammatory response, il1b is first expressed in macrophages and subsequently at high levels in neutrophils. Moreover, knock down of il1b alters the recruitment of neutrophils to the notochord, demonstrating the important role of this cytokine in the maintenance of inflammation in the notochord. Eventually, infection of the notochord induces severe defects of the notochord that correlate with neutrophil degranulation occurring around this tissue. This is the first in vivo evidence that neutrophils can degranulate in the absence of a direct encounter with a pathogen. Persistent inflammation, neutrophil infiltration and restructuring of the extracellular matrix are defects that resemble those seen in bone infection and in some chondropathies. As the notochord is a transient embryonic structure that is closely related to cartilage and bone and that contributes to vertebral column formation, we propose infection of the notochord in zebrafish larvae as a new model to study the cellular and molecular mechanisms underlying cartilage and bone inflammation. © 2014. Published by The Company of Biologists Ltd.

  14. Inflammation responses in patients with pulmonary tuberculosis in an intensive care unit

    Science.gov (United States)

    Liu, Qiu-Yue; Han, Fen; Pan, Li-Ping; Jia, Hong-Yan; Li, Qi; Zhang, Zong-De

    2018-01-01

    Pulmonary tuberculosis caused by Mycobacterium tuberculosis remains a global problem. Inflammatory responses are the primary characteristics of patients with pulmonary tuberculosis in intensive care units (ICU). The aim of the present study was to investigate the clinical importance of inflammatory cells and factors for patients with pulmonary tuberculosis in ICU. A total of 124 patients with pulmonary tuberculosis in ICU were recruited for the present study. The inflammatory responses in patients with pulmonary tuberculosis in ICU were examined by changes in inflammatory cells and factors in the serum. The results indicated that serum levels of lymphocytes, plasma cells, granulocytes and monocytes were increased in patients with pulmonary tuberculosis in ICU compared with healthy controls. The serum levels of inflammatory factors interleukin (IL)-1, IL-6, IL-10, IL-12, and IL-4 were upregulated in patients with pulmonary tuberculosis in ICU. Lower plasma concentrations of IL-2, IL-15 and interferon-γ were detected in patients with pulmonary tuberculosis compared with healthy controls. It was demonstrated that high mobility group box-1 protein expression levels were higher in the serum of patients with pulmonary tuberculosis compared with healthy controls. Notably, an imbalance of T-helper cell (Th)1/Th2 cytokines was observed in patients with pulmonary tuberculosis. Pulmonary tuberculosis caused by M. tuberculosis also upregulated expression of matrix metalloproteinase (MMP)-1 and MMP-9 in hPMCs. In conclusion, these outcomes demonstrated that inflammatory responses and inflammatory factors are associated with the progression of pulmonary tuberculosis, suggesting that inhibition of inflammatory responses and inflammatory factors may be beneficial for the treatment of patients with pulmonary tuberculosis in ICU. PMID:29456674

  15. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Steve

    2015-08-28

    Silymarin (SM), a natural product, is touted as a liver protectant and preventer of both chronic inflammation and diseases. To define how SM elicits these effects at a systems level, we performed transcriptional profiling, metabolomics, and signaling studies in human liver and T cell lines. Multiple pathways associated with cellular stress and metabolism were modulated by SM treatment within 0.5 to four hours: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed suppression of glycolytic, TCA cycle, and amino acid metabolism by SM treatment. Antiinflammatory effects arose with prolonged (i.e. 24 hours) SM exposure, with suppression of multiple proinflammatory mRNAs and nuclear factor kappa B (NF-κB) and forkhead box O (FOXO) signaling. Studies with murine knock out cells revealed that SM inhibition of both mTOR and NF-κB was partially AMPK dependent, while SM inhibition of the mTOR pathway in part required DDIT4. Thus, SM activates stress and repair responses that culminate in an anti-inflammatory phenotype. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Therefore, natural products like SM may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.

  16. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    International Nuclear Information System (INIS)

    Satwiko, Muhammad Gahan; Ikeda, Koji; Nakayama, Kazuhiko; Yagi, Keiko; Hocher, Berthold; Hirata, Ken-ichi; Emoto, Noriaki

    2015-01-01

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  17. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Satwiko, Muhammad Gahan [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Ikeda, Koji [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Nakayama, Kazuhiko [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Yagi, Keiko [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Hocher, Berthold [Institute for Nutritional Science, University of Potsdam, Potsdam (Germany); Hirata, Ken-ichi [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Emoto, Noriaki, E-mail: emoto@med.kobe-u.ac.jp [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan)

    2015-09-25

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  18. Deciduous shrubs for ozone bioindication: Hibiscus syriacus as an example

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena [Institut Plant Protection (IPP), National Council Research (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)], E-mail: e.paoletti@ipp.cnr.it; Ferrara, Anna Maria [Istituto per le Piante da Legno e l' Ambiente (IPLA), Corso Casale 476, 10132 Turin (Italy); Calatayud, Vicent; Cervero, Julia [Fundacion C.E.A.M., Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Giannetti, Fabio [Istituto per le Piante da Legno e l' Ambiente (IPLA), Corso Casale 476, 10132 Turin (Italy); Sanz, Maria Jose [Fundacion C.E.A.M., Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Manning, William J. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003-9320 (United States)

    2009-03-15

    Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300 ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30 ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation. - An Italian population of the deciduous shrub Hibiscus syriacus, a common ornamental species in temperate zones, is recommended as ozone bioindicator.

  19. Deciduous shrubs for ozone bioindication: Hibiscus syriacus as an example

    International Nuclear Information System (INIS)

    Paoletti, Elena; Ferrara, Anna Maria; Calatayud, Vicent; Cervero, Julia; Giannetti, Fabio; Sanz, Maria Jose; Manning, William J.

    2009-01-01

    Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300 ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30 ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation. - An Italian population of the deciduous shrub Hibiscus syriacus, a common ornamental species in temperate zones, is recommended as ozone bioindicator

  20. The protective effect of Transhinone II A in radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Li Guanghu; Li Zhiping; Xu Yong; Xu Feng; Wang Jin

    2006-01-01

    Objective: To investigate the protective effect and it's possible mechanism of Tanshinone II A in radiation-induced pulmonary fibrosis. Methods: Having the right hemithorax of female Wistar rats irradiated 30 Gy in 10 fractions within 14 days by 6 MV photons, the radiation-induced pulmonary fibrosis animal model was established. In the treatment group, sodium Tanshinone II A sulfonate (15 mg/kg) was given by intraperitoneal injection 1 hour before each fraction of irradiation. Five months after irradiation, the difference of the histopathological changes, the hyckoxyproline content and expression of TGF-β1 between the radiation alone group, tanshinone plus radiation and control group were analyzed by HE stain, Massion stain, immunohistochemical methor and reverse transcriptase polymerase chain reaction(RT-PCR) method. Results: The histopathological comparison revealed the protective effect of Tanshinone II A. The content of hydroxyproline was (21.99±3.96), (38.25± 7.18), (28.94±4.29) μg/g in the control group, radiation alone group and radiation plus Tanshinone II A. The expression of TGF-β1 (mRNA and protein) was reduced by Tanshinone II A. Pathological changes of the pulmonary fibrosis was reduced by Tanshinone II A yet. Conclusions: Our study shows that Tanshinone II A can inhibit radiation-induced pulmonary fibrosis, and the possible mechanism of its may be made possible through down-regulating the expression of TGF-β1 in the irritated lung tissue. (authors)

  1. Susceptibility of adult and senescent brown norway rats to repeated ozone exposure: An assessment of behavior, serum biochemistry and cardiopulmonary function

    Science.gov (United States)

    Tropospheric ozone (03) is a pervasive air pollutant that produces pulmonary and cardiovascular dysfunction and there is growing evidence suggesting neurological dysfunction as well. Young and old individuals are generally recognized as being susceptible to ozone toxicity; howeve...

  2. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    Science.gov (United States)

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  3. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, Gary M. [Dermatology Research Laboratories, Division of Medicine, Melanoma and Skin Cancer Research Institute, Royal Prince Alfred Hospital at the University of Sydney, Sydney, NSW (Australia)]. E-mail: garyh@med.usyd.edu.au

    2005-04-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans.

  4. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    International Nuclear Information System (INIS)

    Halliday, Gary M.

    2005-01-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans

  5. Effect of sildenafil on acrolein-induced airway inflammation and mucus production in rats.

    Science.gov (United States)

    Wang, T; Liu, Y; Chen, L; Wang, X; Hu, X-R; Feng, Y-L; Liu, D-S; Xu, D; Duan, Y-P; Lin, J; Ou, X-M; Wen, F-Q

    2009-05-01

    Airway inflammation with mucus overproduction is a distinguishing pathophysiological feature of many chronic respiratory diseases. Phosphodiesterase (PDE) inhibitors have shown anti-inflammatory properties. In the present study, the effect of sildenafil, a potent inhibitor of PDE5 that selectively degrades cyclic guanosine 3',5'-monophosphate (cGMP), on acrolein-induced inflammation and mucus production in rat airways was examined. Rats were exposed to acrolein for 14 and 28 days. Sildenafil or distilled saline was administered intragastrically prior to acrolein exposure. Bronchoalveolar lavage fluid (BALF) was acquired for cell count and the detection of pro-inflammatory cytokine levels. Lung tissue was examined for cGMP content, nitric oxide (NO)-metabolite levels, histopathological lesion scores, goblet cell metaplasia and mucin production. The results suggested that sildenafil pretreatment reversed the significant decline of cGMP content in rat lungs induced by acrolein exposure, and suppressed the increase of lung NO metabolites, the BALF leukocyte influx and pro-inflammatory cytokine release. Moreover, sildenafil pretreatment reduced acrolein-induced Muc5ac mucin synthesis at both mRNA and protein levels, and attenuated airway inflammation, as well as epithelial hyperplasia and metaplasia. In conclusion, sildenafil could attenuate airway inflammation and mucus production in the rat model, possibly through the nitric oxide/cyclic guanosine 3',5'-monophosphate pathway, and, thus, might have a therapeutic potential for chronic airway diseases.

  6. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  7. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John; hide

    2018-01-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  8. The Role of the Mammalian Target of Rapamycin (mTOR) in Pulmonary Fibrosis

    Science.gov (United States)

    Nho, Richard

    2018-01-01

    The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-dependent pathway is one of the most integral pathways linked to cell metabolism, proliferation, differentiation, and survival. This pathway is dysregulated in a variety of diseases, including neoplasia, immune-mediated diseases, and fibroproliferative diseases such as pulmonary fibrosis. The mTOR kinase is frequently referred to as the master regulator of this pathway. Alterations in mTOR signaling are closely associated with dysregulation of autophagy, inflammation, and cell growth and survival, leading to the development of lung fibrosis. Inhibitors of mTOR have been widely studied in cancer therapy, as they may sensitize cancer cells to radiation therapy. Studies also suggest that mTOR inhibitors are promising modulators of fibroproliferative diseases such as idiopathic pulmonary fibrosis (IPF) and radiation-induced pulmonary fibrosis (RIPF). Therefore, mTOR represents an attractive and unique therapeutic target in pulmonary fibrosis. In this review, we discuss the pathological role of mTOR kinase in pulmonary fibrosis and examine how mTOR inhibitors may mitigate fibrotic progression. PMID:29518028

  9. Low Tidal Volume Reduces Lung Inflammation Induced by Liquid Ventilation in Piglets With Severe Lung Injury.

    Science.gov (United States)

    Jiang, Lijun; Feng, Huizhen; Chen, Xiaofan; Liang, Kaifeng; Ni, Chengyao

    2017-05-01

    Total liquid ventilation (TLV) is an alternative treatment for severe lung injury. High tidal volume is usually required for TLV to maintain adequate CO 2 clearance. However, high tidal volume may cause alveolar barotrauma. We aim to investigate the effect of low tidal volume on pulmonary inflammation in piglets with lung injury and under TLV. After the establishment of acute lung injury model by infusing lipopolysaccharide, 12 piglets were randomly divided into two groups, TLV with high tidal volume (25 mL/kg) or with low tidal volume (6 mL/kg) for 240 min, respectively. Extracorporeal CO 2 removal was applied in low tidal volume group to improve CO 2 clearance and in high tidal volume group as sham control. Gas exchange and hemodynamic status were monitored every 30 min during TLV. At the end of the study, pulmonary mRNA expression and plasmatic concentration of interleukin-6 (IL-6) and interleukin-8 (IL-8) were measured by collecting lung tissue and blood samples from piglets. Arterial blood pressure, PaO 2 , and PaCO 2 showed no remarkable difference between groups during the observation period. Compared with high tidal volume strategy, low tidal volume resulted in 76% reduction of minute volume and over 80% reduction in peak inspiratory pressure during TLV. In addition, low tidal volume significantly diminished pulmonary mRNA expression and plasmatic level of IL-6 and IL-8. We conclude that during TLV, low tidal volume reduces lung inflammation in piglets with acute lung injury without compromising gas exchange. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. Anti-Inflammatory Effects of Licorice and Roasted Licorice Extracts on TPA-Induced Acute Inflammation and Collagen-Induced Arthritis in Mice

    Directory of Open Access Journals (Sweden)

    Ki Rim Kim

    2010-01-01

    Full Text Available The anti-inflammatory activity of licorice (LE and roated licorice (rLE extracts determined in the murine phorbol ester-induced acute inflammation model and collagen-induced arthritis (CIA model of human rheumatoid arthritis. rLE possessed greater activity than LE in inhibiting phorbol ester-induced ear edema. Oral administration of LE or rLE reduced clinical arthritis score, paw swelling, and histopathological changes in a murine CIA. LE and rLE decreased the levels of proinflammatory cytokines in serum and matrix metalloproteinase-3 expression in the joints. Cell proliferation and cytokine secretion in response to type II collagen or lipopolysaccharide stimulation were suppressed in spleen cells from LE or rLE-treated CIA mice. Furthermore, LE and rLE treatment prevented oxidative damages in liver and kidney tissues of CIA mice. Taken together, LE and rLE have benefits in protecting against both acute inflammation and chronic inflammatory conditions including rheumatoid arthritis. rLE may inhibit the acute inflammation more potently than LE.

  11. Pulmonary lesions induced by inhaled plutonium in beagles

    International Nuclear Information System (INIS)

    Dagle, G.E.; Lund, J.E.; Park, J.F.

    1975-01-01

    The histopathologic features of pulmonary fibrosis and bronchiolo-alveolar carcinoma in beagles exposed to aerosols of plutonium oxide were reviewed. A hypothesis of the pathogenesis of radiation pneumonitis induced by inhalation of plutonium oxide was presented; this hypothesis included phagocytosis of plutonium particles, fibrosis responding to the necrosis, and alveolar cell hyperplasia compensating for alveolar cells killed by alpha radiation. Histopathologic features of the epithelial changes suggest a progression from hyperplasia to metaplasia and, finally, to bronchiolo-alveolar carcinoma. The possibility of concurrent radiation-induced lymphopenia contributing to the development of bronchiolo-alveolar carcinoma through a loss of immunologic surveillance was discussed

  12. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  13. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  14. C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice.

    Science.gov (United States)

    Kimura, Toru; Nojiri, Takashi; Hino, Jun; Hosoda, Hiroshi; Miura, Koichi; Shintani, Yasushi; Inoue, Masayoshi; Zenitani, Masahiro; Takabatake, Hiroyuki; Miyazato, Mikiya; Okumura, Meinoshin; Kangawa, Kenji

    2016-02-19

    Pulmonary fibrosis has high rates of mortality and morbidity; however, no effective pharmacological therapy has been established. C-type natriuretic peptide (CNP), a member of the natriuretic peptide family, selectively binds to the transmembrane guanylyl cyclase (GC)-B receptor and exerts anti-inflammatory and anti-fibrotic effects in various organs through vascular endothelial cells and fibroblasts that have a cell-surface GC-B receptor. Given the pathophysiological importance of fibroblast activation in pulmonary fibrosis, we hypothesized that the anti-fibrotic and anti-inflammatory effects of exogenous CNP against bleomycin (BLM)-induced pulmonary fibrosis were exerted in part by the effect of CNP on pulmonary fibroblasts. C57BL/6 mice were divided into two groups, CNP-treated (2.5 μg/kg/min) and vehicle, to evaluate BLM-induced (1 mg/kg) pulmonary fibrosis and inflammation. A periostin-CNP transgenic mouse model exhibiting CNP overexpression in fibroblasts was generated and examined for the anti-inflammatory and anti-fibrotic effects of CNP via fibroblasts in vivo. Additionally, we assessed CNP attenuation of TGF-β-induced differentiation into myofibroblasts by using immortalized human lung fibroblasts stably expressing GC-B receptors. Furthermore, to investigate whether CNP acts on human lung fibroblasts in a clinical setting, we obtained primary-cultured fibroblasts from surgically resected lungs of patients with lung cancer and analyzed levels of GC-B mRNA transcription. CNP reduced mRNA levels of the profibrotic cytokines interleukin (IL)-1β and IL-6, as well as collagen deposition and the fibrotic area in lungs of mice with bleomycin-induced pulmonary fibrosis. Furthermore, similar CNP effects were observed in transgenic mice exhibiting fibroblast-specific CNP overexpression. In cultured-lung fibroblasts, CNP treatment attenuated TGF-β-induced phosphorylation of Smad2 and increased mRNA and protein expression of α-smooth muscle actin and SM22

  15. Acupuncture as an adjunct to pulmonary rehabilitation.

    LENUS (Irish Health Repository)

    Deering, Brenda M

    2012-02-01

    PURPOSE: Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation and by both systemic and airway inflammation. In COPD, acupuncture has been shown to improve quality-of-life scores and decrease breathlessness; similar findings have also been reported after pulmonary rehabilitation (PR). The hypothesis of this study was that acupuncture in conjunction with pulmonary rehabilitation would improve COPD outcome measures compared to pulmonary rehabilitation alone. METHODS: The design was a randomized prospective study; all subjects had COPD. There were 19 controls, 25 who underwent PR, and 16 who had both acupuncture and PR. The primary outcome measure was a change in measures of systemic inflammation at the end of PR and at 3 month followup. Lung function, including maximum inspiratory pressure (PiMax), quality-of-life scores, functional capacity including steps taken, dyspnea scores, and exercise capacity, were secondary endpoints. RESULTS: After PR, both groups had significantly improved quality-of-life scores, reduced dyspnea scores, improved exercise capacity, and PiMax, but no change in measures of systemic inflammation compared with the controls. There were no differences in most of the outcome measures between the 2 treatment groups except that subjects who had both acupuncture and PR remained less breathless for a longer period. CONCLUSION: The addition of acupuncture to PR did not add significant benefit in most of the outcomes measured.

  16. Intravenous superoxide dismutase as a protective agent to prevent impairment of lung function induced by high tidal volume ventilation.

    Science.gov (United States)

    Wu, Nan-Chun; Liao, Fan-Ting; Cheng, Hao-Min; Sung, Shih-Hsien; Yang, Yu-Chun; Wang, Jiun-Jr

    2017-07-26

    Positive-pressure mechanical ventilation is essential in assisting patients with respiratory failure in the intensive care unit and facilitating oxygenation in the operating room. However, it was also recognized as a primary factor leading to hospital-acquired pulmonary dysfunction, in which pulmonary oxidative stress and lung inflammation had been known to play important roles. Cu/Zn superoxide dismutase (SOD) is an important antioxidant, and possesses anti-inflammatory capacity. In this study, we aimed to study the efficacy of Cu/Zn SOD, administered intravenously during high tidal volume (HTV) ventilation, to prevent impairment of lung function. Thirty-eight male Sprague-Dawley rats were divided into 3 groups: 5 h ventilation with (A) low tidal volume (LTV; 8 mL/kg; n = 10), (B) high tidal volume (HTV; 18 mL/kg; n = 14), or (C) HTV and intravenous treatment of Cu/Zn SOD at a dose of 1000 U/kg/h (HTV + SOD; n = 14). Lung function was evaluated both at baseline and after 5-h ventilation. Lung injury was assessed by histological examination, lung water and protein contents in the bronchoalveolar lavage fluid (BALF). Pulmonary oxidative stress was examined by concentrations of methylguanidine (MG) and malondialdehyde (MDA) in BALF, and antioxidative activity by protein expression of glutathione peroxidase-1 (GPx-1) in the lung. Severity of lung inflammation was evaluated by white blood cell and differential count in BALF, and protein expression of inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), and mRNA expression of nuclear factor-κB (NF-κB) in the lung. We also examined protein expression of surfactant protein (SP)-A and D and we measured hourly changes in serum nitric oxide (NO) level. Five hours of LTV ventilation did not induce a major change in lung function, whereas 5 h of HTV ventilation induced apparent combined restrictive and

  17. Exercise alleviates depression related systemic inflammation in ...

    African Journals Online (AJOL)

    Exercise alleviates depression related systemic inflammation in chronic obstructive pulmonary disease patients. ... African Health Sciences ... Currently, physical activity is an important lifestyle factor that has the potential to modify inflammatory ...

  18. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Carla M. P. Ribeiro

    2017-01-01

    Full Text Available Cystic fibrosis (CF pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR. This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease.

  19. Intervention effect and dose-dependent response of tanreqing injection on airway inflammation in lipopolysaccharide-induced rats.

    Science.gov (United States)

    Dong, Shoujin; Zhong, Yunqing; Yang, Kun; Xiong, Xiaoling; Mao, Bing

    2013-08-01

    To assess the effect of Tanreqing injection on airway inflammation in rats. A rat model of airway inflammation was generated with lipopolysaccharide (LPS). Tanreqing injection was given by intratracheal instillation, and bronchoalveolar lavage fluid (BALF) from the right lung was collected. BALF total cell and neutrophil counts were then determined. In addition, BALF levels of inflammatory cytokines interleukin-13, cytokine-induced neutrophil chemoat-tractant-1, and tumor necrosis factor-alpha were measured using enzyme linked immunosorbent assay. The middle lobe of the right lung was stained with hematoxylin-eosin and histological changes examined. LPS increased airway inflammation, decreased BALF inflammatory cell count, inflammatory cytokine levels, and suppressed leukocyte influx of the lung. The LPS-induced airway inflammation peaked at 24 h, decreased beginning at 48 h, and had decreased markedly by 96 h. Tanreqing injection contains anti-inflammatory properties, and inhibits airway inflammation in a dose-dependent manner.

  20. The preventive role of levosimendan against bleomycin-induced pulmonary fibrosis in rats.

    Science.gov (United States)

    Gürbüzel, Mehmet; Sayar, Ilyas; Cankaya, Murat; Gürbüzel, Ahmet; Demirtas, Levent; Bakirci, Eftal Murat; Capoglu, Ilyas

    2016-04-01

    In this study, the effects of levosimendan used in the treatment of acute congestive heart failure upon pulmonary fibrosis in rats induced with bleomycin (BL) were analyzed. A total of 33 male Sprague-Dawley type rats were categorized into five groups randomly. About 2.5U/kg BL was intratracheally administered to the rats in the BL, BL+L1, BL+L2, and BL+L3 groups, and 0.9% saline was intratracheally administered at the same rate to the control group. 0.3, 1, and 3mg/kg levosimendan was intraperitoneally administered to the BL+L1, BL+L2, and BL+L3 groups, respectively. Blood and tissue samples were taken from the rats euthanized to determine the changes in erythrocyte enzyme activities and to conduct histopathological evaluations after 14 days. With values between 0 and 3, histopathological scoring damage was assessed by the presence of inflammation and fibrosis in a semiquantitative manner. Compared with those in the C group, glutathione reductase (GR) and Catalase (CAT) enzymes decreased in the BL group; compared with that in the BL group, GR increased in the BL+L1 and BL+L3 groups, 6-phosphogluconate dehydrogenase (6PGD) increased in the BL+L3 group, and CAT increased in the BL+L2 and BL+L3 groups (p<0.05). In the histopathological evaluation, fibrosis occurred in all rats in the BL group, and tissue damage was noticed to be generally less in the BL+L1, BL+L2, and BL+L3 groups (p<0.001). The results obtained from biochemical and histopathological evaluations indicate that levosimendan had an anti-fibrotic effect without a dose-dependent response on pulmonary fibrosis. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Effects of 0.2 ppm ozone on biomarkers of inflammation in bronchoalveolar lavage fluid and bronchial mucosa of healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, M.T.; Madden, J.; Teran, L.M. [and others

    1998-08-01

    Short-term exposure to ozone at peak ambient levels induces neutrophil influx and impairs lung function in healthy humans. In order to investigate the mechanisms contributing to neutrophil recruitment and to examine the role of T-cells in the acute inflammatory response, we exposed 12 healthy humans to 0.2 parts per million (ppm) of ozone and filtered air on two separate occasions for 2 h with intermittent periods of rest and exercise (minute ventilation=30 L x min{sup -1}). Fibreoptic bronchoscopy was performed 6 h after the end of exposures. Total protein, tryptase, histamine, myeloperoxidase, interleukin (IL)-8 and growth-related oncogene-{alpha} (Gro-{alpha}) were measured and total and differential cell counts were performed in bronchoalveolar lavage (BAL) fluid. Flow cytometry was performed on BAL cells to study total T-cells, T-cell receptors ({alpha}{beta} and {gamma}{delta}), T-cell subsets (CD4+ and CD8+ cells) and activated T-cell subsets (CD25+). Using immunohistochemistry, neutrophils, mast cells, total T-cell numbers, T-cell subsets, CD25+ T-cells and leukocyte endothelial adhesion molecules including P-selectin, E-selectin, intercellular adhesion molecule (ICAM)-1 and vascular adhesion molecule (VCAM)-1 were quantified in the bronchial biopsies. Paired samples were available from nine subjects. Following ozone exposure there was a threefold increase in the proportion of polymorphonuclear neutrophils (PMNs) (p=0.07) and epithelial cells (p=0.05) in BAL fluid. This was accompanied by increased concentrations of IL-8 (p=0.01), Gro-{alpha} (p=0.05) and total protein (p=0.058). A significant positive correlation was demonstrated between the two chemokines and proportion of PMNs in BAL fluid. After ozone exposure there was a significant decrease in the CD4/CD8 ratio (p=0.05) and the proportion of activated CD4+ (p=001) and CD8+ T-cells (p=0.04). However, no significant changes were demonstrable in any of the inflammatory markers studied in the biopsies

  2. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China); Qiao, Juan, E-mail: qjuan@tsinghua.edu.cn [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Lu, Yun, E-mail: luyun@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China)

    2016-02-13

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  3. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    International Nuclear Information System (INIS)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-01-01

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  4. 12-oxo-phytodienoic acid, a plant-derived oxylipin, attenuates lipopolysaccharide-induced inflammation in microglia

    Energy Technology Data Exchange (ETDEWEB)

    Taki-Nakano, Nozomi [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Advanced Drug Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505 (Japan); Kotera, Jun [Advanced Drug Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505 (Japan); Ohta, Hiroyuki, E-mail: ohta.h.ab@m.titech.ac.jp [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan)

    2016-05-13

    Jasmonates are plant lipid–derived oxylipins that act as key signaling compounds in plant immunity, germination, and development. Although some physiological activities of natural jasmonates in mammalian cells have been investigated, their anti-inflammatory actions in mammalian cells remain unclear. Here, we investigated whether jasmonates protect mouse microglial MG5 cells against lipopolysaccharide (LPS)–induced inflammation. Among the jasmonates tested, only 12-oxo-phytodienoic acid (OPDA) suppressed LPS-induced expression of the typical inflammatory cytokines interleukin-6 and tumor necrosis factor α. In addition, only OPDA reduced LPS-induced nitric oxide production through a decrease in the level of inducible nitric oxide synthase. Further mechanistic studies showed that OPDA suppressed neuroinflammation by inhibiting nuclear factor κB and p38 mitogen-activated protein kinase signaling in LPS-activated MG5 cells. In addition, OPDA induced expression of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of inflammation, in MG5 cells. Finally, we found that the nuclear factor erythroid 2-related factor 2 signaling cascade induced by OPDA is not involved in the anti-inflammatory effects of OPDA. These results demonstrate that OPDA inhibited LPS-induced cell inflammation in mouse microglial cells via multiple pathways, including suppression of nuclear factor κB, inhibition of p38, and activation of SOCS-1 signaling. -- Highlights: •OPDA attenuates LPS-induced inflammatory cytokines such as IL-6 and TNF-α. •OPDA reduces LPS-induced iNOS expression and NO production. •OPDA suppresses NF-κB and p38 pathways and activates SOCS-1 signaling.

  5. 12-oxo-phytodienoic acid, a plant-derived oxylipin, attenuates lipopolysaccharide-induced inflammation in microglia

    International Nuclear Information System (INIS)

    Taki-Nakano, Nozomi; Kotera, Jun; Ohta, Hiroyuki

    2016-01-01

    Jasmonates are plant lipid–derived oxylipins that act as key signaling compounds in plant immunity, germination, and development. Although some physiological activities of natural jasmonates in mammalian cells have been investigated, their anti-inflammatory actions in mammalian cells remain unclear. Here, we investigated whether jasmonates protect mouse microglial MG5 cells against lipopolysaccharide (LPS)–induced inflammation. Among the jasmonates tested, only 12-oxo-phytodienoic acid (OPDA) suppressed LPS-induced expression of the typical inflammatory cytokines interleukin-6 and tumor necrosis factor α. In addition, only OPDA reduced LPS-induced nitric oxide production through a decrease in the level of inducible nitric oxide synthase. Further mechanistic studies showed that OPDA suppressed neuroinflammation by inhibiting nuclear factor κB and p38 mitogen-activated protein kinase signaling in LPS-activated MG5 cells. In addition, OPDA induced expression of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of inflammation, in MG5 cells. Finally, we found that the nuclear factor erythroid 2-related factor 2 signaling cascade induced by OPDA is not involved in the anti-inflammatory effects of OPDA. These results demonstrate that OPDA inhibited LPS-induced cell inflammation in mouse microglial cells via multiple pathways, including suppression of nuclear factor κB, inhibition of p38, and activation of SOCS-1 signaling. -- Highlights: •OPDA attenuates LPS-induced inflammatory cytokines such as IL-6 and TNF-α. •OPDA reduces LPS-induced iNOS expression and NO production. •OPDA suppresses NF-κB and p38 pathways and activates SOCS-1 signaling.

  6. Stat-6 signaling pathway and not Interleukin-1 mediates multi-walled carbon nanotube-induced lung fibrosis in mice: insights from an adverse outcome pathway framework

    DEFF Research Database (Denmark)

    Nikota, Jake; Banville, Allyson; Goodwin, Laura Rose

    2017-01-01

    Background: The accumulation of MWCNTs in the lung environment leads to inflammation and the development of disease similar to pulmonary fibrosis in rodents. Adverse Outcome Pathways (AOPs) are a framework for defining and organizing the key events that comprise the biological changes leading...... to undesirable events. A putative AOP has been developed describing MWCNT-induced pulmonary fibrosis; inflammation and the subsequent healing response induced by inflammatory mechanisms have been implicated in disease progression. The objective of the present study was to address a key data gap in this AOP...... development. In contrast, STAT6 KO mice exhibited suppressed acute inflammation and attenuated fibrotic disease in response to MWCNT administration compared to STAT6 WT mice. Whole genome analysis of all post-exposure time points identified a subset of differentially expressed genes associated with fibrosis...

  7. Pulmonary toxicity of well-dispersed cerium oxide nanoparticles following intratracheal instillation and inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Yasuo, E-mail: yasuom@med.uoeh-u.ac.jp; Izumi, Hiroto; Yoshiura, Yukiko; Tomonaga, Taisuke; Oyabu, Takako; Myojo, Toshihiko; Kawai, Kazuaki; Yatera, Kazuhiro [University of Occupational and Environmental Health (Japan); Shimada, Manabu; Kubo, Masaru [Hiroshima University (Japan); Yamamoto, Kazuhiro [National Institute of Advanced Industrial Science and Technology (AIST) (Japan); Kitajima, Shinichi [National Sanatorium Hoshizuka Keiaien (Japan); Kuroda, Etsushi [Osaka University, Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (Japan); Kawaguchi, Kenji; Sasaki, Takeshi [National Institute of Advanced Industrial Science and Technology (AIST) (Japan)

    2015-11-15

    We performed inhalation and intratracheal instillation studies of cerium dioxide (CeO{sub 2}) nanoparticles in order to investigate their pulmonary toxicity, and observed pulmonary inflammation not only in the acute and but also in the chronic phases. In the intratracheal instillation study, F344 rats were exposed to 0.2 mg or 1 mg of CeO{sub 2} nanoparticles. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed from 3 days to 6 months following the instillation. In the inhalation study, rats were exposed to the maximum concentration of inhaled CeO{sub 2} nanoparticles (2, 10 mg/m{sup 3}, respectively) for 4 weeks (6 h/day, 5 days/week). The same endpoints as in the intratracheal instillation study were examined from 3 days to 3 months after the end of the exposure. The intratracheal instillation of CeO{sub 2} nanoparticles caused a persistent increase in the total and neutrophil number in BALF and in the concentration of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, chemokine for neutrophil, and heme oxygenase-1 (HO-1), an oxidative stress marker, in BALF during the observation time. The inhalation of CeO{sub 2} nanoparticles also induced a persistent influx of neutrophils and expression of CINC-1, CINC-2, and HO-1 in BALF. Pathological features revealed that inflammatory cells, including macrophages and neutrophils, invaded the alveolar space in both studies. Taken together, the CeO{sub 2} nanoparticles induced not only acute but also chronic inflammation in the lung, suggesting that CeO{sub 2} nanoparticles have a pulmonary toxicity that can lead to irreversible lesions.

  8. Humane metapneumovirus (HMPV) associated pulmonary infections in immunocompromised adults—Initial CT findings, disease course and comparison to respiratory-syncytial-virus (RSV) induced pulmonary infections

    International Nuclear Information System (INIS)

    Syha, R.; Beck, R.; Hetzel, J.; Ketelsen, D.; Grosse, U.; Springer, F.; Horger, M.

    2012-01-01

    Aim: To describe computed tomography (CT)-imaging findings in human metapneumovirus (HMPV)-related pulmonary infection as well as their temporal course and to analyze resemblances/differences to pulmonary infection induced by the closely related respiratory-syncytial-virus (RSV) in immunocompromised patients. Materials and methods: Chest-CT-scans of 10 HMPV PCR-positive patients experiencing pulmonary symptoms were evaluated retrospectively with respect to imaging findings and their distribution and results were then compared with data acquired in 13 patients with RSV pulmonary infection. Subsequently, we analyzed the course of chest-findings in HMPV patients. Results: In HMPV, 8/10 patients showed asymmetric pulmonary findings, whereas 13/13 patients with RSV-pneumonia presented more symmetrical bilateral pulmonary infiltrates. Image analysis yielded in HMPV patients following results: ground-glass-opacity (GGO) (n = 6), parenchymal airspace consolidations (n = 5), ill-defined nodular-like centrilobular opacities (n = 9), bronchial wall thickening (n = 8). In comparison, results in RSV patients were: GGO (n = 10), parenchymal airspace consolidations (n = 9), ill-defined nodular-like centrilobular opacities (n = 10), bronchial wall thickening (n = 4). In the course of the disease, signs of acute HMPV interstitial pneumonia regressed transforming temporarily in part into findings compatible with bronchitis/bronchiolitis. Conclusions: Early chest-CT findings in patients with HMPV-related pulmonary symptoms are compatible with asymmetric acute interstitial pneumonia accompanied by signs of bronchitis; the former transforming with time into bronchitis and bronchiolitis before they resolve. On the contrary, RSV-induced pulmonary infection exhibits mainly symmetric acute interstitial pneumonia.

  9. Humane metapneumovirus (HMPV) associated pulmonary infections in immunocompromised adults—Initial CT findings, disease course and comparison to respiratory-syncytial-virus (RSV) induced pulmonary infections

    Energy Technology Data Exchange (ETDEWEB)

    Syha, R., E-mail: roland.syha@med.uni-tuebingen.de [Department of Diagnostic Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen (Germany); Beck, R. [Institute of Medical Virology, Eberhard-Karls-University, Elfriede-Authorn-Str. 6, 72076 Tübingen (Germany); Hetzel, J. [Department of Medical Oncology and Hematology, Eberhard-Karls-University, Otfried-Müller-Str. 10, 72070 Tübingen (Germany); Ketelsen, D.; Grosse, U.; Springer, F.; Horger, M. [Department of Diagnostic Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen (Germany)

    2012-12-15

    Aim: To describe computed tomography (CT)-imaging findings in human metapneumovirus (HMPV)-related pulmonary infection as well as their temporal course and to analyze resemblances/differences to pulmonary infection induced by the closely related respiratory-syncytial-virus (RSV) in immunocompromised patients. Materials and methods: Chest-CT-scans of 10 HMPV PCR-positive patients experiencing pulmonary symptoms were evaluated retrospectively with respect to imaging findings and their distribution and results were then compared with data acquired in 13 patients with RSV pulmonary infection. Subsequently, we analyzed the course of chest-findings in HMPV patients. Results: In HMPV, 8/10 patients showed asymmetric pulmonary findings, whereas 13/13 patients with RSV-pneumonia presented more symmetrical bilateral pulmonary infiltrates. Image analysis yielded in HMPV patients following results: ground-glass-opacity (GGO) (n = 6), parenchymal airspace consolidations (n = 5), ill-defined nodular-like centrilobular opacities (n = 9), bronchial wall thickening (n = 8). In comparison, results in RSV patients were: GGO (n = 10), parenchymal airspace consolidations (n = 9), ill-defined nodular-like centrilobular opacities (n = 10), bronchial wall thickening (n = 4). In the course of the disease, signs of acute HMPV interstitial pneumonia regressed transforming temporarily in part into findings compatible with bronchitis/bronchiolitis. Conclusions: Early chest-CT findings in patients with HMPV-related pulmonary symptoms are compatible with asymmetric acute interstitial pneumonia accompanied by signs of bronchitis; the former transforming with time into bronchitis and bronchiolitis before they resolve. On the contrary, RSV-induced pulmonary infection exhibits mainly symmetric acute interstitial pneumonia.

  10. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.

    Science.gov (United States)

    Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E

    2010-06-01

    Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P fatty acid (100, 250, or 500 microM for neurons, whereas they did in control muscle and endothelial cell lines. Despite the lack of evidence of inflammatory signaling, saturated fatty acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.

  11. Grain dust-induced lung inflammation is reduced by Rhodobacter sphaeroides diphosphoryl lipid A.

    Science.gov (United States)

    Jagielo, P J; Quinn, T J; Qureshi, N; Schwartz, D A

    1998-01-01

    To further determine the importance of endotoxin in grain dust-induced inflammation of the lower respiratory tract, we evaluated the efficacy of pentaacylated diphosphoryl lipid A derived from the lipopolysaccharide of Rhodobacter sphaeroides (RsDPLA) as a partial agonist of grain dust-induced airway inflammation. RsDPLA is a relatively inactive compound compared with lipid A derived from Escherichia coli (LPS) and has been demonstrated to act as a partial agonist of LPS-induced inflammation. To assess the potential stimulatory effect of RsDPLA in relation to LPS, we incubated THP-1 cells with RsDPLA (0.001-100 micrograms/ml), LPS (0.02 microgram endotoxin activity/ml), or corn dust extract (CDE; 0.02 microgram endotoxin activity/ml). Incubation with RsDPLA revealed a tumor necrosis factor (TNF)-alpha stimulatory effect at 100 micrograms/ml. In contrast, incubation with LPS or CDE resulted in TNF-alpha release at 0.02 microgram/ml. Pretreatment of THP-1 cells with varying concentrations of RsDPLA before incubation with LPS or CDE (0.02 microgram endotoxin activity/ml) resulted in a dose-dependent reduction in the LPS- or CDE-induced release of TNF-alpha with concentrations of RsDPLA of up to 10 micrograms/ml but not at 100 micrograms/ml. To further understand the role of endotoxin in grain dust-induced airway inflammation, we utilized the unique LPS inhibitory property of RsDPLA to determine the inflammatory response to inhaled CDE in mice in the presence of RsDPLA. Ten micrograms of RsDPLA intratracheally did not cause a significant inflammatory response compared with intratracheal saline. However, pretreatment of mice with 10 micrograms of RsDPLA intratracheally before exposure to CDE (5.4 and 0.2 micrograms/m3) or LPS (7.2 and 0.28 micrograms/m3) resulted in significant reductions in the lung lavage concentrations of total cells, neutrophils, and specific proinflammatory cytokines compared with mice pretreated with sterile saline. These results confirm the LPS

  12. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation.

    Science.gov (United States)

    Yang, Xiyue; Wang, Jing; Zhou, Zewei; Jiang, Rong; Huang, Jie; Chen, Lulu; Cao, Zhouli; Chu, Han; Han, Bing; Cheng, Yusi; Chao, Jie

    2018-01-22

    Phagocytosis of silicon dioxide (SiO 2 ) into lung cells causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Circular RNAs (circRNAs) are a subclass of noncoding RNAs that are present within mammalian cells; however, researchers have not determined whether circRNAs are involved in the pathophysiologic process of silicosis. To elucidate the role of these RNAs in SiO 2 -induced inflammation in pulmonary macrophages, we investigated the upstream molecular mechanisms and functional effects of circRNAs on cell apoptosis, proliferation, and migration. Primary cultures of alveolar macrophages from healthy donors and from patients and the RAW264.7 macrophage cell line were used to explore the functions of circZC3H4 RNA in macrophage activation. The experimental results indicated the following: 1) SiO 2 concomitantly increased circZC3H4 RNA expression and increased ZC3H4 protein levels; 2) circular ZC3H4 (circZC3H4) RNA and ZC3H4 protein participated in SiO 2 -induced macrophage activation; and 3) SiO 2 -activated macrophages promoted fibroblast proliferation and migration via the circZC3H4 RNA/ZC3H4 pathway. The up-regulation of the ZC3H4 protein was confirmed in tissue samples from patients with silicosis. Our study elucidates a link between SiO 2 -induced macrophage activation and the circZC3H4 RNA/ZC3H4 pathway, thereby providing novel insight into the potential use of ZC3H4 to develop novel therapeutic strategies for silicosis.-Yang, X., Wang, J., Zhou, Z., Jiang, R., Huang, J., Chen, L., Cao, Z., Chu, H., Han, B., Cheng, Y., Chao, J. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation.

  13. ATTENUATION OF THE DISRUPTIVE EFFECTS INDUCED BY GAMMA IRRADIATION IN RATS USING OZONATED WATER AND/OR TAURINE

    International Nuclear Information System (INIS)

    HEIBASHY, M.I.A.; SHAROUD, M.N.M.

    2008-01-01

    People can be exposed to irradiation either external or internal. The potential for health effects depends in part on the radiation dose delivered, the rate of delivery and where in the body particular radionuclides are concentrated. All radionuclides are partly absorbed from the lung and intestinal tract into the blood stream causing oxidation and free radical formation.In the first experiment, the data showed that the ionizing radiation induced a significant increment in the levels of serum glucose and lipid profile (cholesterol, triglycerides, HDL and LDL) and elevation in the activities of both serum AST and ALT. On the other hand, the ionizing radiation induced a significant decline in the concentrations of serum insulin, total protein, albumin and free T 3 while no remarkable change was occurred on the level of free T 4 . In case of exposing rat to gamma ray, both liver GSH and GPx activities were decreased while the level of liver TBARS was significantly elevated as compared to the corresponding normal control group.In the second experiment, a significant correction was occurred in all previous parameters after the irradiated rats were treated with taurine (500 mg/100g body weight/ day for one month) while the irradiated rats which received ozonated water showed no remarkable changes in the levels of estimated parameters. The best amelioration effect was occurred in the previous parameters in irradiated rats which were treated with both taurine and ozone (ozonated water) for one month.It could be concluded that taurine is considered as a radio-protector agent while ozone (ozonated water) acts as co-radioprotector agent when the irradiated animals are treated by a mixture of those agents

  14. Exercise protects against high-fat diet-induced hypothalamic inflammation.

    Science.gov (United States)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D; Woods, Stephen C; Hofmann, Susanna M

    2012-06-25

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing local production of specific interleukins and cytokines, and these in turn may further promote systemic metabolic disease. Whether or how this microglial activation can be averted or reversed is unknown. Since running exercise improves systemic metabolic health and has been found to promote neuronal survival as well as the recovery of brain functions after injury, we hypothesized that regular treadmill running may blunt the effect of western diet on hypothalamic inflammation. Using low-density lipoprotein receptor deficient (l dlr-/-) mice to better reflect human lipid metabolism, we first confirmed that microglial activation in the hypothalamus is severely increased upon exposure to a high-fat, or "western", diet. Moderate, but regular, treadmill running exercise markedly decreased hypothalamic inflammation in these mice. Furthermore, the observed decline in microglial activation was associated with an improvement of glucose tolerance. Our findings support the hypothesis that hypothalamic inflammation can be reversed by exercise and suggest that interventions to avert or reverse neuronal damage may offer relevant potential in obesity treatment and prevention. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Percutaneous treatment of lumbar disc herniation by oxygen-ozone injection -clinical study with indication

    International Nuclear Information System (INIS)

    Wang Zhuying; Jiang Caimei; Wang Zhimin

    2006-01-01

    Objective: To study the clinical effect and the range of indications of oxygen-ozone treatment for lumber disc herniation. Methods: 6-15 ml of oxygen-ozone (35-45 μg/ml) were injected percutaneously into lumbar disc. In case of multiple disc herniations, the procedure could be taken with two discs for once. Results: 323 patients with 433 discs were treated by oxygen-ozone injection procedure. Total effective rate was 77.7%. Conclusions: The treatment of lumber disc herniation by oxygen-ozone injection is simple, safe and effective with mild trauma. Oxygen-ozone not only can oxidize the proteoglycan in the nucleus leading to the contraction of nucleus, but also provide anti-inflammation effect with pain relief and without complication yet. (authors)

  16. Exercise Training Mitigates Water Pipe Smoke Exposure-Induced Pulmonary Impairment via Inhibiting NF-κB and Activating Nrf2 Signalling Pathways

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2018-01-01

    Full Text Available Water pipe smoking is a tobacco smoking method commonly used in Eastern countries and is gaining popularity in Europe and North America, in particular among adolescents and young adults. Several clinical and experimental studies have reported that exposure to water pipe smoke (WPS induces lung inflammation and impairment of pulmonary function. However, the mechanisms of such effects are not understood, as are data on the possible palliative effect of exercise training. The present study evaluated the effects of regular aerobic exercise training (treadmill: 5 days/week, 40 min/day on subchronic exposure to WPS (30 minutes/day, 5 days/week for 2 months. C57BL/6 mice were exposed to air or WPS with or without exercise training. Airway resistance measured using forced oscillation technique was significantly and dose-dependently increased in the WPS-exposed group when compared with the air-exposed one. Exercise training significantly prevented the effect of WPS on airway resistance. Histologically, the lungs of WPS-exposed mice had focal moderate interstitial inflammatory cell infiltration consisting of neutrophil polymorphs, plasma cells, and lymphocytes. There was a mild increase in intra-alveolar macrophages and a focal damage to alveolar septae in some foci. Exercise training significantly alleviated these effects and also decreased the WPS-induced increase of tumor necrosis factor α and interleukin 6 concentrations and attenuated the increase of 8-isoprostane in lung homogenates. Likewise, the lung DNA damage induced by WPS was significantly inhibited by exercise training. Moreover, exercise training inhibited nuclear factor kappa-B (NF-κB expression induced by WPS and increased that of nuclear factor erythroid 2-related factor 2 (Nrf2. Our findings suggest that exercise training significantly mitigated WPS-induced increase in airway resistance, inflammation, oxidative stress, and DNA damage via mechanisms that include inhibiting NF-κB and

  17. The role of ozone therapy in maintaining the articular function and in relieving the pain for patients with knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Camelia Ciobotaru

    2014-02-01

    Full Text Available Ozone Therapy is thought to be a non-pharmacological therapy, which makes use of oxygen and ozone, It is based on the ozone characteristics, such as the antibacterial and antimycotic, anti-inflammatory and immunomodulatory, of systemic modulation of homeostasy and of the optimization of the way the organs and systems function, but also of tissue bionourishing. Some of the beneficial effects of the ozone are: the enhancement of the oxygen supply in the tissues affected by inflammation and pain, the increase of the blood stream and the removal of the metabolic waste in the joints affected, the obstruction of the substances which maintain the inflammation and pain, an immunomodulatory action upon the whole body, the stimulation of the health improving mechanisms in the body, a mio-relaxing action and thus, a better joint mobility and a better body system functioning

  18. HemoHIM, a herbal preparation, alleviates airway inflammation caused by cigarette smoke and lipopolysaccharide.

    Science.gov (United States)

    Shin, Na-Rae; Kim, Sung-Ho; Ko, Je-Won; Park, Sung-Hyeuk; Lee, In-Chul; Ryu, Jung-Min; Kim, Jong-Choon; Shin, In-Sik

    2017-03-01

    HemoHIM, herbal preparation has designed for immune system recovery. We investigated the anti-inflammatory effect of HemoHIM on cigarette smoke (CS) and lipopolysaccharide (LPS) induced chronic obstructive pulmonary disease (COPD) mouse model. To induce COPD, C57BL/6 mice were exposed to CS for 1 h per day (eight cigarettes per day) for 4 weeks and intranasally received LPS on day 26. HemoHIM was administrated to mice at a dose of 50 or 100 mg/kg 1h before CS exposure. HemoHIM reduced the inflammatory cell count and levels of tumor necrosis factor receptor (TNF)-α, interleukin (IL)-6 and IL-1β in the broncho-alveolar lavage fluid (BALF) induced by CS+LPS exposure. HemoHIM decreased the inflammatory cell infiltration in the airway and inhibited the expression of iNOS and MMP-9 and phosphorylation of Erk in lung tissue exposed to CS+LPS. In summary, our results indicate that HemoHIM inhibited a reduction in the lung inflammatory response on CS and LPS induced lung inflammation via the Erk pathway. Therefore, we suggest that HemoHIM has the potential to treat pulmonary inflammatory disease such as COPD.

  19. Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Stavros Selemidis

    Full Text Available Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4 PFU influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y mice resulted in significantly greater: loss of bodyweight (Day 3; BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+ and CD4(+ T lymphocytes, and of Tregs were similar between WT and Nox1(-/y mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear

  20. B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis.

    Science.gov (United States)

    François, Antoine; Gombault, Aurélie; Villeret, Bérengère; Alsaleh, Ghada; Fanny, Manoussa; Gasse, Paméla; Adam, Sylvain Marchand; Crestani, Bruno; Sibilia, Jean; Schneider, Pascal; Bahram, Seiamak; Quesniaux, Valérie; Ryffel, Bernhard; Wachsmann, Dominique; Gottenberg, Jacques-Eric; Couillin, Isabelle

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive devastating, yet untreatable fibrotic disease of unknown origin. We investigated the contribution of the B-cell activating factor (BAFF), a TNF family member recently implicated in the regulation of pathogenic IL-17-producing cells in autoimmune diseases. The contribution of BAFF was assessed in a murine model of lung fibrosis induced by airway administered bleomycin. We show that murine BAFF levels were strongly increased in the bronchoalveolar space and lungs after bleomycin exposure. We identified Gr1(+) neutrophils as an important source of BAFF upon BLM-induced lung inflammation and fibrosis. Genetic ablation of BAFF or BAFF neutralization by a soluble receptor significantly attenuated pulmonary fibrosis and IL-1β levels. We further demonstrate that bleomycin-induced BAFF expression and lung fibrosis were IL-1β and IL-17A dependent. BAFF was required for rIL-17A-induced lung fibrosis and augmented IL-17A production by CD3(+) T cells from murine fibrotic lungs ex vivo. Finally we report elevated levels of BAFF in bronchoalveolar lavages from IPF patients. Our data therefore support a role for BAFF in the establishment of pulmonary fibrosis and a crosstalk between IL-1β, BAFF and IL-17A. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Rando, Roy J. [Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, New Orleans, LA (United States); Pathak, Yashwant V. [College of Pharmacy, University of South Florida, Tampa, FL (United States); Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States)

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.

  2. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    OpenAIRE

    Xibao Zhao; Xibao Zhao; Debing Pu; Debing Pu; Zizhao Zhao; Huihui Zhu; Hongrui Li; Hongrui Li; Yaping Shen; Xingjie Zhang; Ruihan Zhang; Jianzhong Shen; Weilie Xiao; Weilie Xiao; Weilin Chen

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)–induced pro-inflamm...

  3. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    OpenAIRE

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)?induced pro-inflamm...

  4. Awara (Astrocaryum vulgare M.) pulp oil: chemical characterization, and anti-inflammatory properties in a mice model of endotoxic shock and a rat model of pulmonary inflammation.

    Science.gov (United States)

    Bony, Emilie; Boudard, Frédéric; Brat, Pierre; Dussossoy, Emilie; Portet, Karine; Poucheret, Patrick; Giaimis, Jean; Michel, Alain

    2012-01-01

    Awara (Astrocaryum vulgare M.) is a palm fruit mainly used in nutrition. We analysed the pulp oil for fatty acid, tocopherol, carotenoid, and phytosterol and we evaluated whether this oil may attenuate inflammation in vivo. In an endotoxic shock model, awara pulp oil treatment decreased pro-inflammatory cytokines and increased anti-inflammatory cytokines. In a pulmonary inflammation model, awara pulp oil treatment reduced eosinophil and lymphocyte numbers recovered into the broncho-alveolar lavages. These results suggest that awara pulp oil administration can efficiently counteract an acute and chronic inflammatory response in vivo that is probably mediated by fatty acids and minor compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure.

    Directory of Open Access Journals (Sweden)

    Cristiane Miranda da Silva

    Full Text Available Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA, an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1% or vehicle (distillated water during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure. Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant.

  6. Airway Surface Dehydration Aggravates Cigarette Smoke-Induced Hallmarks of COPD in Mice.

    Science.gov (United States)

    Seys, Leen J M; Verhamme, Fien M; Dupont, Lisa L; Desauter, Elke; Duerr, Julia; Seyhan Agircan, Ayca; Conickx, Griet; Joos, Guy F; Brusselle, Guy G; Mall, Marcus A; Bracke, Ken R

    2015-01-01

    Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na⁺ channel (βENaC). βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD.

  7. Biomarkers for Pulmonary Inflammation and Fibrosis and Lung Ventilation Function in Chinese Occupational Refractory Ceramic Fibers-Exposed Workers.

    Science.gov (United States)

    Zhu, Xiaojun; Gu, Yishuo; Ma, Wenjun; Gao, Panjun; Liu, Mengxuan; Xiao, Pei; Wang, Hongfei; Chen, Juan; Li, Tao

    2017-12-27

    Refractory ceramic fibers (RCFs) can cause adverse health effects on workers' respiratory system, yet no proper biomarkers have been used to detect early pulmonary injury of RCFs-exposed workers. This study assessed the levels of two biomarkers that are related to respiratory injury in RCFs-exposed workers, and explored their relations with lung function. The exposure levels of total dust and respirable fibers were measured simultaneously in RCFs factories. The levels of TGF-β1 and ceruloplasmin (CP) increased with the RCFs exposure level ( p relations were found between the concentrations of CP and FVC (B = -0.423, p = 0.025), or FEV₁ (B = -0.494, p = 0.014). The concentration of TGF-β1 (B = 0.103, p = 0.001) and CP (B = 8.027, p = 0.007) were associated with respirable fiber exposure level. Occupational exposure to RCFs can impair lung ventilation function and may have the potential to cause pulmonary inflammation and fibrosis. TGF-β1 and CP might be used as sensitive and noninvasive biomarkers to detect lung injury in occupational RCFs-exposed workers. Respirable fiber concentration can better reflect occupational RCFs exposure and related respiratory injuries.

  8. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    Directory of Open Access Journals (Sweden)

    Rong Yao

    Full Text Available Pulmonary fibrosis is one of the most common complications of paraquat (PQ poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR. Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR 1 small-interfering RNA (siRNA group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8 and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (p<0.05. Pretreatment with APN significantly attenuated the reduced cell viability and up-regulated collagen type III expression induced by PQ in lung fibroblasts, (p<0.05. APN pretreatment up-regulated AdipoR1, but not AdipoR2, expression in WI-38 fibroblasts. AdipoR1 siRNA abrogated APN-mediated protective effects in PQ-exposed fibroblasts. Taken together, our data suggests APN protects against PQ-induced pulmonary fibrosis in a

  9. Pulmonary lesions induced by inhaled plutonium in beagles

    International Nuclear Information System (INIS)

    Dagle, G.E.; Lund, J.E.; Park, J.F.

    1976-01-01

    The histopathologic features of pulmonary fibrosis and bronchiolo-alveolar carcinoma in beagles exposed to aerosols of 238 Pu or 239 Pu oxide are reviewed. A hypothesis of the pathogenesis of radiation pneumonitis induced by inhalation of plutonium oxide is presented; this hypothesis included phagocytosis of Pu particles, fibrosis responding to the necrosis, and alveolar cell hyperplasia compensating for alveolar cells killed by alpha radiation. Histopathologic features of the epithelial changes suggest a progression from hyperplasia to metaplasia and, finally, to bronchiolo-alveolar carcinoma. The possibility of concurrent radiation-induced lymphopenia contributing to the development of bronchiolo-alveolar carcinoma through a loss of immunologic surveillance is discussed

  10. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Wang H

    2016-09-01

    Full Text Available Hao Wang,1,2,* Ting Yang,1,2,* Diandian Li,1,2 Yanqiu Wu,1,2 Xue Zhang,1,2 Caishuang Pang,1,2 Junlong Zhang,3 Binwu Ying,3 Tao Wang,1,2 Fuqiang Wen1,2 1Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China; 2Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China; 3Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China *These authors contributed equally to this work Background: Plasminogen activator inhibitor-1 (PAI-1 and soluble urokinase-type plasminogen activator receptor (suPAR participate in inflammation and tissue remolding in various diseases, but their roles in chronic obstructive pulmonary disease (COPD are not yet clear. This study aimed to investigate if PAI-1 and suPAR were involved in systemic inflammation and small airway obstruction (SAO in COPD. Methods: Demographic and clinical characteristics, spirometry examination, and blood samples were obtained from 84 COPD patients and 51 healthy volunteers. Serum concentrations of PAI-1, suPAR, tissue inhibitor of metalloproteinase-1 (TIMP-1, Matrix metalloproteinase-9 (MMP-9, and C-reactive protein (CRP were detected with Magnetic Luminex Screening Assay. Differences between groups were statistically analyzed using one-way analysis of variance or chi-square test. Pearson’s partial correlation test (adjusted for age, sex, body mass index, cigarette status, and passive smoke exposure and multivariable linear analysis were used to explore the relationships between circulating PAI-1 and indicators of COPD. Results: First, we found that serum PAI-1 levels but not suPAR levels were significantly increased in COPD patients compared with healthy volunteers (125.56±51.74 ng/mL versus 102.98±36.62 ng/mL, P=0.007. Then, the

  11. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Kalayarasan, Srinivasan, E-mail: kalaivasanbio@gmail.com; Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam, E-mail: sudhandiran@yahoo.com

    2013-09-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells.

  12. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    International Nuclear Information System (INIS)

    Kalayarasan, Srinivasan; Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam

    2013-01-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells

  13. Plant cell death and cellular alterations induced by ozone: Key studies in Mediterranean conditions

    International Nuclear Information System (INIS)

    Faoro, Franco; Iriti, Marcello

    2009-01-01

    An account of histo-cytological and ultrastructural studies on ozone effect on crop and forest species in Italy is given, with emphasis on induced cell death and the underlying mechanisms. Cell death phenomena possibly due to ambient O 3 were recorded in crop and forest species. In contrast, visible O 3 effects on Mediterranean vegetation are often unclear. Microscopy is thus suggested as an effective tool to validate and evaluate O 3 injury to Mediterranean vegetation. A DAB-Evans blue staining was proposed to validate O 3 symptoms at the microscopic level and for a pre-visual diagnosis of O 3 injury. The method has been positively tested in some of the most important crop species, such as wheat, tomato, bean and onion and, with some restriction, in forest species, and it also allows one to gain some very useful insights into the mechanisms at the base of O 3 sensitivity or tolerance. - Ozone-induced cell death is a frequent phenomenon in Mediterranean conditions, not only in the most sensitive crops but also in forest species.

  14. Passion fruit peel extract attenuates bleomycin-induced pulmonary fibrosis in mice.

    Science.gov (United States)

    Chilakapati, Shanmuga Reddy; Serasanambati, Mamatha; Manikonda, Pavan Kumar; Chilakapati, Damodar Reddy; Watson, Ronald Ross

    2014-08-01

    Idiopathic pulmonary fibrosis is a progressive fatal lung disease characterized by excessive collagen deposition, with no effective treatments. We investigated the efficacy of natural products with high anti-inflammatory activity, such as passion fruit peel extract (PFPE), in a mouse model of bleomycin-induced pulmonary fibrosis (PF). C57BL/6J mice were subjected to a single intratracheal instillation of bleomycin to induce PF. Daily PFPE treatment significantly reduced loss of body mass and mortality rate in mice compared with those treated with bleomycin. While bleomycin-induced PF resulted in elevated total numbers of inflammatory cells, macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage fluid on both days 7 and 21, PFPE administration significantly attenuated these phenomena compared with bleomycin group. On day 7, the decreased superoxide dismutase and myeloperoxidase activities observed in the bleomycin group were significantly restored with PFPE treatment. On day 21, enhanced hydroxyproline deposition in the bleomycin group was also suppressed by PFPE administration. PFPE treatment significantly attenuated extensive inflammatory cell infiltration and accumulation of collagen in lung tissue sections of bleomycin-induced mice on days 7 and 21, respectively. Our results indicate that administration of PFPE decreased bleomycin-induced PF because of anti-inflammatory and antioxidant activities.

  15. Plasma 25-hydroxyvitamin D, lung function and risk of chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Afzal, Shoaib; Lange, Peter; Bojesen, Stig Egil

    2014-01-01

    25-hydroxyvitamin D (25(OH)D) may be associated with lung function through modulation of pulmonary protease-antiprotease imbalance, airway inflammation, lung remodelling and oxidative stress. We examined the association of plasma 25(OH)D levels with lung function, lung function decline and risk o...... of chronic obstructive pulmonary disease (COPD).......25-hydroxyvitamin D (25(OH)D) may be associated with lung function through modulation of pulmonary protease-antiprotease imbalance, airway inflammation, lung remodelling and oxidative stress. We examined the association of plasma 25(OH)D levels with lung function, lung function decline and risk...

  16. Negative Pressure Pulmonary Edema after Reversing Rocuronium-Induced Neuromuscular Blockade by Sugammadex

    Directory of Open Access Journals (Sweden)

    Manzo Suzuki

    2014-01-01

    Full Text Available Negative pressure pulmonary edema (NPPE is a rare complication that accompanies general anesthesia, especially after extubation. We experienced a case of negative pressure pulmonary edema after tracheal extubation following reversal of rocuronium-induced neuromuscular blockade by sugammadex. In this case, the contribution of residual muscular block on the upper airway muscle as well as large inspiratory forces created by the respiratory muscle which has a low response to muscle relaxants, is suspected as the cause.

  17. Distinct Roles of Wnt/β-Catenin Signaling in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis

    Science.gov (United States)

    Shi, Juan; Li, Feng; Luo, Meihui; Wei, Jun

    2017-01-01

    Wnt signaling pathways are tightly controlled under a physiological condition, under which they play key roles in many biological functions, including cell fate specification and tissue regeneration. Increasing lines of evidence recently demonstrated that a dysregulated activation of Wnt signaling, particularly the Wnt/β-catenin signaling, was involved in the pathogenesis of chronic pulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). In this respect, Wnt signaling interacts with other cellular signaling pathways to regulate the initiation and pathogenic procedures of airway inflammation and remodeling, pulmonary myofibroblast proliferation, epithelial-to-mesenchymal transition (EMT), and development of emphysema. Intriguingly, Wnt/β-catenin signaling is activated in IPF; an inhibition of this signaling leads to an alleviation of pulmonary inflammation and fibrosis in experimental models. Conversely, Wnt/β-catenin signaling is inactivated in COPD tissues, and its reactivation results in an amelioration of airspace enlargement with a restored alveolar epithelial structure and function in emphysema models. These studies thus imply distinct mechanisms of Wnt/β-catenin signaling in the pathogenesis of these two chronic pulmonary diseases, indicating potential targets for COPD and IPF treatments. This review article aims to summarize the involvement and pathogenic roles of Wnt signaling pathways in the COPD and IPF, with a focus on the implication of Wnt/β-catenin signaling as underlying mechanisms and therapeutic targets in these two incurable diseases. PMID:28588349

  18. Effects of medical ozone upon healthy equine joints: Clinical and laboratorial aspects.

    Directory of Open Access Journals (Sweden)

    Cynthia do Prado Vendruscolo

    Full Text Available The aim of this study was to verify whether transient inflammatory reactions induced by intra-articular medicinal ozone administration affect joint components, by in vivo evaluation of inflammatory (prostaglandin E2, Substance P, Interleukin-6, Interleukine-1, Tumor Necrosis Factor, anti-inflammatory (Interleukin-10 and oxidative (superoxide dismutase activity and oxidative burst biomarkers and extracellular matrix degradation products (chondroitin sulphate and hyaluronic acid in synovial fluid.The effects of medicinal ozone were analyzed at two ozone concentrations (groups A and B, 20 and 40 μg/ml, respectively, using oxygen-injected joints as controls (group C; each group received ten treatments (15 ml gas per treatment. Physical evaluation, evaluation of lameness, ultrasonography, and synovial fluid analysis were performed.All joints presented mild and transient effusion throughout the study. Group B exhibited the highest lameness score on day 14 (P<0.05, detected by the lameness measurement system, probably because of the higher ozone concentration. All groups exhibited increased ultrasonography scores on day 14 (P < 0.05. Groups A and B exhibited increased proteins concentrations on day 21 (P<0.05. There was no change in hyaluronic acid concentration or the percentage of high-molecular weight hyaluronic acid throughout the experiment. Chondroitin sulfate concentrations decreased in group B, and did not change in group A and C, indicating that neither treatment provoked extracellular matrix catabolism. Cytokine and eicosanoid concentrations were not significantly changed.The ozonetherapy did not cause significant inflammation process or cartilage degradation, therefore, ozonetherapy is safe at both evaluated doses.

  19. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    Science.gov (United States)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P pulmonary hypertension.

  20. Bronchus-associated lymphoid tissue in pulmonary hypertension produces pathologic autoantibodies.

    Science.gov (United States)

    Colvin, Kelley L; Cripe, Patrick J; Ivy, D Dunbar; Stenmark, Kurt R; Yeager, Michael E

    2013-11-01

    Autoimmunity has long been associated with pulmonary hypertension. Bronchus-associated lymphoid tissue plays important roles in antigen sampling and self-tolerance during infection and inflammation. We reasoned that activated bronchus-associated lymphoid tissue would be evident in rats with pulmonary hypertension, and that loss of self-tolerance would result in production of pathologic autoantibodies that drive vascular remodeling. We used animal models, histology, and gene expression assays to evaluate the role of bronchus-associated lymphoid tissue in pulmonary hypertension. Bronchus-associated lymphoid tissue was more numerous, larger, and more active in pulmonary hypertension compared with control animals. We found dendritic cells in and around lymphoid tissue, which were composed of CD3(+) T cells over a core of CD45RA(+) B cells. Antirat IgG and plasma from rats with pulmonary hypertension decorated B cells in lymphoid tissue, resistance vessels, and adventitia of large vessels. Lymphoid tissue in diseased rats was vascularized by aquaporin-1(+) high endothelial venules and vascular cell adhesion molecule-positive vessels. Autoantibodies are produced in bronchus-associated lymphoid tissue and, when bound to pulmonary adventitial fibroblasts, change their phenotype to one that may promote inflammation. Passive transfer of autoantibodies into rats caused pulmonary vascular remodeling and pulmonary hypertension. Diminution of lymphoid tissue reversed pulmonary hypertension, whereas immunologic blockade of CCR7 worsened pulmonary hypertension and hastened its onset. Bronchus-associated lymphoid tissue expands in pulmonary hypertension and is autoimmunologically active. Loss of self-tolerance contributes to pulmonary vascular remodeling and pulmonary hypertension. Lymphoid tissue-directed therapies may be beneficial in treating pulmonary hypertension.