WorldWideScience

Sample records for ozone reactive nitrogen

  1. Reactive nitrogen oxides and ozone above a taiga woodland

    Science.gov (United States)

    Bakwin, Peter S.; Jacob, Daniel J.; Wofsy, Steven C.; Munger, J. William; Daube, Bruce C.; Bradshaw, John D.; Sandholm, Scott T.; Talbot, Robert W.; Singh, Hanwant B.; Gregory, Gerald L.

    1994-01-01

    Measurements of reactive nitrogen oxides (NO(x) and NO(y)) and ozone (O3) were made in the planetary boundary layer (PBL) above a taiga woodland in northern Quebec, Canada, during June-August, 1990, as part of NASA Artic Boundary Layer Expedition (ABLE) 3B. Levels of nitrogen oxides and O3 were strongly modulated by the synoptic scale meteorology that brought air from various source regions to the site. Industrial pollution from the Great Lakes region of the U.S. and Canada appears to be a major source for periodic elevation of NO(x), and NO(y) and O3. We find that NO/NO2 ratios at this site at midday were approximately 50% those expected from a simple photochemical steady state between NO(x) and O3, in contrast to our earlier results from the ABLE 3A tundra site. The difference between the taiga and tundra sites is likely due to much larger emissions of biogenic hydrocarbons (particularly isoprene) from the taiga vegetation. Hydrocarbon photooxidation leads to relatively rapid production of peroxy radicals, which convert NO to NO2, at the taiga site. Ratios of NO(x) to NO(y) were typically 2-3 times higher in the PBL during ABLE 3B than during ABLE 3A. This is probably the result of high PAN levels and suppressed formation of HNO3 from NO2 due to high levels of biogenic hydrocarbons at the ABLE 3B site.

  2. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Science.gov (United States)

    Li, Jingyi; Mao, Jingqiu; Fiore, Arlene M.; Cohen, Ronald C.; Crounse, John D.; Teng, Alex P.; Wennberg, Paul O.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Peischl, Jeff; Pollack, Ilana B.; Ryerson, Thomas B.; Veres, Patrick; Roberts, James M.; Neuman, J. Andrew; Nowak, John B.; Wolfe, Glenn M.; Hanisco, Thomas F.; Fried, Alan; Singh, Hanwant B.; Dibb, Jack; Paulot, Fabien; Horowitz, Larry W.

    2018-02-01

    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July-August 2004), SENEX (June-July 2013), and SEAC4RS (August-September 2013) and long-term ground measurement networks alongside a global chemistry-climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (˜ 42-45 %), followed by NOx (31 %), total peroxy nitrates (ΣPNs; 14 %), and total alkyl nitrates (ΣANs; 9-12 %) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  3. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-02-01

    Full Text Available Widespread efforts to abate ozone (O3 smog have significantly reduced emissions of nitrogen oxides (NOx over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004, SENEX (June–July 2013, and SEAC4RS (August–September 2013 and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy in both 2004 and 2013. Among the major RON species, nitric acid (HNO3 is dominant (∼ 42–45 %, followed by NOx (31 %, total peroxy nitrates (ΣPNs; 14 %, and total alkyl nitrates (ΣANs; 9–12 % on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  4. On the export of reactive nitrogen from Asia: NOx partitioning and effects on ozone

    Directory of Open Access Journals (Sweden)

    T. H. Bertram

    2013-05-01

    Full Text Available The partitioning of reactive nitrogen (NOy was measured over the remote North Pacific during spring 2006. Aircraft observations of NO, NO2, total peroxy nitrates (ΣPNs, total alkyl and multi-functional nitrates (ΣANs and nitric acid (HNO3, made between 25° and 55° N, confirm a controlling role for peroxyacyl nitrates in NOx production in aged Asian outflow. ΣPNs account for more than 60% of NOy above 5 km, while thermal dissociation limits their contribution to less than 10% in the lower troposphere. Using simultaneous observations of NOx, ΣPNs, ΣANs, HNO3 and average wind speed, we calculate the flux of reactive nitrogen through the meridional plane of 150° W (between 20° and 55° N to be 0.007 ± 0.002 Tg N day−1, which provides an upper limit of 23 ± 6.5% on the transport efficiency of NOy from East Asia. Observations of NOx, and HOx are used to constrain a 0-D photochemical box model for the calculation of net photochemical ozone production or tendency (Δ O3 as a function of aircraft altitude and NOx concentrations. The model analysis indicates that the photochemical environment of the lower troposphere (altitude 3 destruction, with an experimentally determined crossover point between net O3 destruction and net O3 production of 60 pptv NOx. Qualitative indicators of integrated net O3 production derived from simultaneous measurements of O3 and light alkanes (Parrish et al., 1992, also indicate that the north Pacific is, on average, a region of net O3 destruction.

  5. Ecosystem-scale trade-offs between impacts of ozone and reactive nitrogen

    Science.gov (United States)

    Rowe, Ed; Hayes, Felicity; Sawicka, Kasia; Mills, Gina; Jones, Laurence; Moldan, Filip; Sereina, Bassin; van Dijk, Netty; Evans, Chris

    2015-04-01

    Nitrogen (N) deposition stimulates plant productivity in many terrestrial ecosystems. This is clearly beneficial for production agriculture and forestry, but increased litterfall and decreased ground-level light availability reduce the suitability of habitats for many biota (Jones et al., 2014). This mechanism (Hautier et al., 2009), together with the acidifying effects of N (Stevens et al., 2010), has caused considerable biodiversity loss at global scale. Ozone, by contrast, has the effect of reducing plant production, and a simple assessment would suggest that this might mitigate the effects of N pollution. We explored the interactions between ozone and nitrogen at mechanistic level using a version of the MADOC model (Rowe et al., 2014) modified to include effects of ozone. The model was tested against data from long-term monitoring and experimental sites with a focus on nitrogen and/or ozone effects. Effects on biodiversity were assessed by coupling the MADOC model to the MultiMOVE plant species model. We used this model-chain to explore trade-offs and synergies between the impacts of nitrogen and ozone on biodiversity and ecosystem biogeochemistry. In a review of the effects of ozone on ecosystem processes, two consistent effects were found: decreased net primary production due to damage to photosynthetic mechanisms; and an increase in litter nitrogen apparently caused by interference of ozone with the retranslocation process (Mills, in prep.). Insufficient evidence was found to justify inclusion of posited interactive mechanisms such as increased ozone susceptibility with greater nitrogen supply. However, the MADOC model illustrated emergent ozone-nitrogen interactions at ecosystem scale, for example an increase in N leaching due to decreased plant demand and greater litter N content. Empirical evidence for interactive effects of nitrogen and ozone at ecosystem scale is severely lacking, but simulated results were consistent with soil and soil solution

  6. Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring

    Directory of Open Access Journals (Sweden)

    T. W. Walker

    2010-09-01

    Full Text Available We interpret observations from the Intercontinental Chemical Transport Experiment, Phase B (INTEX-B in spring 2006 using a global chemical transport model (GEOS-Chem to evaluate sensitivities of the free troposphere above the North Pacific Ocean and North America to Asian anthropogenic emissions. We develop a method to use satellite observations of tropospheric NO2 columns to provide timely estimates of trends in NOx emissions. NOx emissions increased by 33% for China and 29% for East Asia from 2003 to 2006. We examine measurements from three aircraft platforms from the INTEX-B campaign, including a Canadian Cessna taking vertical profiles of ozone near Whistler Peak. The contribution to the mean simulated ozone profiles over Whistler below 5.5 km is at least 7.2 ppbv for Asian anthropogenic emissions and at least 3.5 ppbv for global lightning NOx emissions. Tropospheric ozone columns from OMI exhibit a broad Asian outflow plume across the Pacific, which is reproduced by simulation. Mean modelled sensitivities of Pacific (30° N–60° N tropospheric ozone columns are at least 4.6 DU for Asian anthropogenic emissions and at least 3.3 DU for lightning, as determined by simulations excluding either source. Enhancements of ozone over Canada from Asian anthropogenic emissions reflect a combination of trans-Pacific transport of ozone produced over Asia, and ozone produced in the eastern Pacific through decomposition of peroxyacetyl nitrates (PANs. A sensitivity study decoupling PANs globally from the model's chemical mechanism establishes that PANs increase ozone production by removing NOx from regions of low ozone production efficiency (OPE and injecting it into regions with higher OPE, resulting in a global increase in ozone production by 2% in spring 2006. PANs contribute up to 4 ppbv to surface springtime ozone concentrations in western Canada. Ozone production due to PAN transport is

  7. Reactive Nitrogen, Ozone and Ozone Production in the Arctic Troposphere and the Impact of Stratosphere-Troposphere Exchange

    Science.gov (United States)

    Liang, Q.; Rodriquez, J. M.; Douglass, A. R.; Crawford, J. H.; Apel, E.; Bian, H.; Blake, D. R.; Brune, W.; Chin, M.; Colarco, P. R.; hide

    2011-01-01

    We analyze the aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) mission together with the GEOS-5 CO simulation to examine O3 and NOy in the Arctic and sub-Arctic region and their source attribution. Using a number of marker tracers and their probability density distributions, we distinguish various air masses from the background troposphere and examine their contribution to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has mean O3 of approximately 60 ppbv and NOx of approximately 25 pptv throughout spring and summer with CO decreases from approximately 145 ppbv in spring to approximately 100 ppbv in summer. These observed CO, NOx and O3 mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in the past two decades in processes that could have changed the Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses with mean O3 concentration of 140-160 ppbv are the most important direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin is the only notable driver of net O3 formation in the Arctic due to its sustainable high NOx (75 pptv in spring and 110 pptv in summer) and NOy (approximately 800 pptv in spring and approximately 1100 pptv in summer) levels. The ARCTAS measurements present observational evidence suggesting significant conversion of nitrogen from HNO3 to NOx and then to PAN (a net formation of approximately 120 pptv PAN) in summer when air of stratospheric origin is mixed with tropospheric background during stratosphere-to-troposphere transport. These findings imply that an adequate representation of stratospheric O3 and NOy input are essential in accurately simulating O3

  8. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  9. Agricultural Fires in the Southeastern U.S. During SEAC4RS: Emissions of Trace Gases and Particles and Evolution of Ozone, Reactive Nitrogen, and Organic Aerosol

    Science.gov (United States)

    Liu, X.; Zhang, Y.; Huey, L. G.; Yokelson, R. J.; Wang, Y.; Jimenez, J. L.; Campuzano-Jost, P.; Beyersdorf, A. J.; Blake, D. R.; Choi, Y.; hide

    2016-01-01

    Emissions from 15 agricultural fires in the southeastern U.S. were measured from the NASA DC-8 research aircraft during the summer 2013 Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. This study reports a detailed set of emission factors (EFs) for 25 trace gases and 6 fine particle species. The chemical evolution of the primary emissions in seven plumes was examined in detail for 1.2 h. A Lagrangian plume cross-section model was used to simulate the evolution of ozone (O3), reactive nitrogen species, and organic aerosol (OA). Observed EFs are generally consistent with previous measurements of crop residue burning, but the fires studied here emitted high amounts of SO2 and fine particles, especially primary OA and chloride. Filter-based measurements of aerosol light absorption implied that brown carbon (BrC) was ubiquitous in the plumes. In aged plumes, rapid production of O3, peroxyacetyl nitrate (PAN), and nitrate was observed with (Delta)O3/(Delta)CO, (Delta)PAN/(Delta)NOy, and (Delta)nitrate/(Delta)NOy reaching approx. 0.1, approx. 0.3, and approx.0.3. For five selected cases, the model reasonably simulated O3 formation but underestimated PAN formation. No significant evolution of OA mass or BrC absorption was observed. However, a consistent increase in oxygen-to-carbon (O/C) ratios of OA indicated that OA oxidation in the agricultural fire plumes was much faster than in urban and forest fire plumes. Finally, total annual SO2, NOx, and CO emissions from agricultural fires in Arkansas, Louisiana, Mississippi, and Missouri were estimated (within a factor of approx. 2) to be equivalent to approx. 2% SO2 from coal combustion and approx. 1% NOx and approx. 9% CO from mobile sources.

  10. Natural zeolite reactivity towards ozone: The role of compensating cations

    International Nuclear Information System (INIS)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A.

    2012-01-01

    Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L −1 ). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH 3 -TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  11. Natural zeolite reactivity towards ozone: The role of compensating cations

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  12. VOC reactivity and its effect on ozone production during the HaChi summer campaign

    Directory of Open Access Journals (Sweden)

    L. Ran

    2011-05-01

    Full Text Available Measurements of ozone and its precursors conducted within the HaChi (Haze in China project in summer 2009 were analyzed to characterize volatile organic compounds (VOCs and their effects on ozone photochemical production at a suburban site in the North China Plain (NCP. Ozone episodes, during which running 8-h average ozone concentrations exceeding 80 ppbv lasted for more than 4 h, occurred on about two thirds of the observational days during the 5-week field campaign. This suggests continuous ozone exposure risks in this region in the summer. Average concentrations of nitrogen oxides (NOx and VOCs are about 20 ppbv and 650 ppbC, respectively. On average, total VOC reactivity is dominated by anthropogenic VOCs. The contribution of biogenic VOCs to total ozone-forming potential, however, is also considerable in the daytime. Key species associated with ozone photochemical production are 2-butenes (18 %, isoprene (15 %, trimethylbenzenes (11 %, xylenes (8.5 %, 3-methylhexane (6 %, n-hexane (5 % and toluene (4.5 %. Formation of ozone is found to be NOx-limited as indicated by measured VOCs/NOx ratios and further confirmed by a sensitivity study using a photochemical box model NCAR_MM. The Model simulation suggests that ozone production is also sensitive to changes in VOC reactivity under the NOx-limited regime, although this sensitivity depends strongly on how much NOx is present.

  13. Shipboard measurements of nitrogen dioxide, nitrous acid, nitric acid and ozone in the Eastern Mediterranean Sea

    Czech Academy of Sciences Publication Activity Database

    Večeřa, Zbyněk; Mikuška, Pavel; Smolík, Jiří; Eleftheriadis, K.; Bryant, C.; Colbeck, I.; Lazaridis, M.

    2008-01-01

    Roč. 8, č. 1 (2008), s. 117-125 ISSN 1567-7230 Grant - others:5th FP Commission of the EC(XE) EVK2-CT-1999-0052 SUB-AERO Institutional research plan: CEZ:AV0Z40310501; CEZ:AV0Z40720504 Keywords : reactive nitrogen species * ozone * Eastern Mediterranean Sea Subject RIV: CB - Analytical Chemistry, Separation

  14. A reactive nitrogen budget for Lake Michigan

    Science.gov (United States)

    The reactive nitrogen budget for Lake Michigan was reviewed and updated, making use of recent estimates of watershed and atmospheric nitrogen loads. The updated total N load to Lake Michigan was approximately double the previous estimate from the Lake Michigan Mass Balance study ...

  15. Natural zeolite reactivity towards ozone: the role of compensating cations.

    Science.gov (United States)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Recent changes in anthropogenic reactive nitrogen compounds

    Science.gov (United States)

    Andronache, Constantin

    2014-05-01

    Significant anthropogenic perturbations of the nitrogen cycle are the result of rapid population growth, with mounting need for food and energy production. The increase of reactive nitrogen compounds (such as NOx, HNO3, NH3, and N2O) has a significant impact on human health, environment, and climate. NOx emissions contribute to O3 chemistry, aerosol formation and acidic precipitation. Ammonia is a notable atmospheric pollutant that may deteriorate ecosystems and contribute to respiratory problems. It reacts with acidic gases to form aerosols or is deposited back to ecosystems. The application of fertilizers accounts for most of the N2O production, adding to greenhouse gas emissions. We analyze the change of some reactive nitrogen compounds based on observations, in eastern United States. Results show that the control of NOx and SO2 emissions over the last decades caused a significant decrease of acidic deposition. The nitrate deposition is highest in eastern US, while the ammonium ion concentration is highest in central US regions. Overall, the inorganic nitrogen wet deposition from nitrate and ammonium is enhanced in central, and eastern US. Research shows that sensitive ecosystems in northeastern regions exhibit a slow recovery from the accumulated effects of acidic deposition. Given the growing demand for nitrogen in agriculture and industry, we discuss possible pathways to reduce the impact of excess reactive nitrogen on the environment.

  17. Reactive nitrogen impacts on ecosystem services

    Science.gov (United States)

    The Ecosystem Services Research Program (ESRP) is a new, multi-year research initiative under development by the Environmental Protection Agency (EPA). As one of its components, ESRP has chosen to focus on reactive Nitrogen (Nr) for stressor-specific ecosystem research through a...

  18. Dynamics of ozone and nitrogen oxides at Summit, Greenland

    NARCIS (Netherlands)

    Dam, Van Brie; Helmig, Detlev; Toro, Claudia; Doskey, Paul; Kramer, Louisa; Murray, Keenan; Ganzeveld, Laurens; Seok, Brian

    2015-01-01

    A multi-year investigation of ozone (O3) and nitrogen oxides (NOx) in snowpack interstitial air down to a depth of 2.8 m was conducted at Summit, Greenland, to elucidate mechanisms controlling the production and destruction of these important trace gases within the snow.

  19. Deposition of nitrogen oxides and ozone to Danish forest sites

    DEFF Research Database (Denmark)

    Pilegaard, K.; Jensen, N.O.; Hummelshøj, P.

    1995-01-01

    of the influence of meteorological factors. The viscous sub-layer resistance is derived by a new theory, taking the bluff roughness elements of the forest and the dimension of the needles/leaves as well as the LAI into account. The fluxes of nitrogen dioxide and ozone are related to the fluxes of water vapour...

  20. Impacts of reactive nitrogen on climate change in China

    Science.gov (United States)

    Shi, Yalan; Cui, Shenghui; Ju, Xiaotang; Cai, Zucong; Zhu, Yong-Guan

    2015-01-01

    China is mobilizing the largest anthropogenic reactive nitrogen (Nr) in the world due to agricultural, industrial and urban development. However, the climate effects related to Nr in China remain largely unclear. Here we comprehensively estimate that the net climate effects of Nr are −100 ± 414 and 322 ± 163 Tg CO2e on a GTP20 and a GTP100 basis, respectively. Agriculture contributes to warming at 187 ± 108 and 186 ± 56 Tg CO2e on a 20-y and 100-y basis, respectively, dominated by long-lived nitrous oxide (N2O) from fertilized soils. On a 20-y basis, industry contributes to cooling at −287 ± 306 Tg CO2e, largely owing to emissions of nitrogen oxides (NOx) altering tropospheric ozone, methane and aerosol concentrations. However, these effects are short-lived. The effect of industry converts to warming at 136 ± 107 Tg CO2e on a 100-y basis, mainly as a result of the reduced carbon (C) sink from the NOx-induced ozone effect on plant damage. On balance, the warming effects of gaseous Nr are partly offset by the cooling effects of N-induced carbon sequestration in terrestrial ecosystems. The large mitigation potentials through reductions in agricultural N2O and industrial NOx will accompany by a certain mitigation pressure from limited N-induced C sequestration in the future. PMID:25631557

  1. Impacts of reactive nitrogen on climate change in China.

    Science.gov (United States)

    Shi, Yalan; Cui, Shenghui; Ju, Xiaotang; Cai, Zucong; Zhu, Yong-Guan

    2015-01-29

    China is mobilizing the largest anthropogenic reactive nitrogen (Nr) in the world due to agricultural, industrial and urban development. However, the climate effects related to Nr in China remain largely unclear. Here we comprehensively estimate that the net climate effects of Nr are -100 ± 414 and 322 ± 163 Tg CO₂e on a GTP₂₀ and a GTP₁₀₀ basis, respectively. Agriculture contributes to warming at 187 ± 108 and 186 ± 56 Tg CO₂e on a 20-y and 100-y basis, respectively, dominated by long-lived nitrous oxide (N2O) from fertilized soils. On a 20-y basis, industry contributes to cooling at -287 ± 306 Tg CO₂e, largely owing to emissions of nitrogen oxides (NOx) altering tropospheric ozone, methane and aerosol concentrations. However, these effects are short-lived. The effect of industry converts to warming at 136 ± 107 Tg CO₂e on a 100-y basis, mainly as a result of the reduced carbon (C) sink from the NOx-induced ozone effect on plant damage. On balance, the warming effects of gaseous Nr are partly offset by the cooling effects of N-induced carbon sequestration in terrestrial ecosystems. The large mitigation potentials through reductions in agricultural N₂O and industrial NOx will accompany by a certain mitigation pressure from limited N-induced C sequestration in the future.

  2. Fractal and variability analysis of simulations in ozone level due to oxides of nitrogen and sulphur

    Science.gov (United States)

    Bhardwaj, Rashmi; Pruthi, Dimple

    2017-10-01

    Air pollution refers to the release of pollutants into the air. These pollutants are detrimental to human the planet as a whole. Apart from causing respiratory infections and pulmonary disorders, rising levels of Nitrogen Dioxide is worsening ozone pollution. Formation of Ground-level ozone involves nitrogen oxides and volatile gases in the sunlight. Volatile gases are emitted from vehicles primarily. Ozone is harmful gas and its exposure can trigger serious health effects as it damages lung tissues. In order to decrease the level of ozone, level of oxides leading to ozone formation has to be dealt with. This paper deals with the simulations in ozone due to oxides of nitrogen and sulphur. The data from Central Pollution Control Board shows positive correlation for ozone with oxides of sulphur and nitrogen for RK Puram, Delhi in India where high concentration of ozone has been found. The correlation between ozone and sulphur, nitrogen oxides is moderate during summer while weak during winters. Ozone with nitrogen and sulphur dioxide follow persistent behavior as Hurst exponent is between 0.5 and 1. The fractal dimension for Sulphur dioxide is 1.4957 indicating the Brownian motion. The behavior of ozone is unpredictable as index of predictability is close to zero.

  3. 40 CFR 52.136 - Control strategy for ozone: Oxides of nitrogen.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy for ozone: Oxides of nitrogen. 52.136 Section 52.136 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... for ozone: Oxides of nitrogen. EPA is approving an exemption request submitted by the State of Arizona...

  4. Ozone production and hydrocarbon reactivity in Hong Kong, Southern China

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2007-01-01

    Full Text Available Data obtained in Hong Kong during the Hong Kong and the Pearl River Delta (PRD Pilot Air Monitoring Study in autumn 2002 are analyzed to unravel the relationship between ground-level ozone (O3, pollution precursors, and cross-border transport. Ten ozone episodes, during which the hourly O3 concentration exceeded 100 ppbv in 9 cases and 90 ppbv in one case, are subject to detailed analysis, including one case with hourly O3 of 203 ppbv, which is the highest concentration on record to date in Hong Kong. Combined with high-resolution back trajectories, dCO/dNOy (the ratio of enhancement of CO concentration above background to that of NOy is used to define whether O3 is locally or regionally produced. Five out of the ten Hong Kong O3-episodes studied show a "pollution signature" that is indicative of impact from Guangdong Province. Examination of speciated volatile organic compounds (VOCs shows that the reactivity of VOCs is dominated by anthropogenic VOCs, of which the reactive aromatics dominate, in particular xylenes and toluene. Calculations using a photochemical box model indicate that between 50–100% of the O3 increase observed in Hong Kong during the O3 episodes can be explained by photochemical generation within the Hong Kong area, provided that nitrous acid (HONO is present at the concentrations derived from this study. An Observation-Based Model (OBM is used to calculate the sensitivity of the O3 production to changes in the concentrations of the precursor compounds. Generally the production of O3 throughout much of the Hong Kong area is limited by VOCs, while high nitric oxide (NO concentrations suppress O3 concentration.

  5. Extraordinary Difference in Reactivity of Ozone (OOO) and Sulfur Dioxide (OSO): A Theoretical Study.

    Science.gov (United States)

    Lan, Yu; Wheeler, Steven E; Houk, K N

    2011-07-12

    Ozone and sulfur dioxide are valence isoelectronic yet show very different reactivity. While ozone is one of the most reactive 1,3-dipoles, SO2 does not react in this way at all. The activation energies of dipolar cycloadditions of sulfur dioxide with either ethylene or acetylene are predicted here by B3LYP, M06-2X, CBS-QB3, and CCSD(T) to be much higher than reactions of ozone. The dipolar cycloaddition of ozone is very exothermic, while that of than sulfur dioxide is endothermic. The prohibitive barriers in the case of SO2 arise from large distortion energies as well as unfavorable interaction energies in the transition states. This arises in part from the HOMO-LUMO gap of sulfur dioxide, which is larger than that of ozone. Valence bond calculations also show that while ozone has a high degree of diradical character, SO2 does not, and is better characterized as a dritterion.

  6. Evaluation of the reactive nitrogen budget of the remote atmosphere in global models using airborne measurements

    Science.gov (United States)

    Murray, L. T.; Strode, S. A.; Fiore, A. M.; Lamarque, J. F.; Prather, M. J.; Thompson, C. R.; Peischl, J.; Ryerson, T. B.; Allen, H.; Blake, D. R.; Crounse, J. D.; Brune, W. H.; Elkins, J. W.; Hall, S. R.; Hintsa, E. J.; Huey, L. G.; Kim, M. J.; Moore, F. L.; Ullmann, K.; Wennberg, P. O.; Wofsy, S. C.

    2017-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) in the background atmosphere are critical precursors for the formation of tropospheric ozone and OH, thereby exerting strong influence on surface air quality, reactive greenhouse gases, and ecosystem health. The impact of NOx on atmospheric composition and climate is sensitive to the relative partitioning of reactive nitrogen between NOx and longer-lived reservoir species of the total reactive nitrogen family (NOy) such as HNO3, HNO4, PAN and organic nitrates (RONO2). Unfortunately, global chemistry-climate models (CCMs) and chemistry-transport models (CTMs) have historically disagreed in their reactive nitrogen budgets outside of polluted continental regions, and we have lacked in situ observations with which to evaluate them. Here, we compare and evaluate the NOy budget of six global models (GEOS-Chem CTM, GFDL AM3 CCM, GISS E2.1 CCM, GMI CTM, NCAR CAM CCM, and UCI CTM) using new observations of total reactive nitrogen and its member species from the NASA Atmospheric Tomography (ATom) mission. ATom has now completed two of its four planned deployments sampling the remote Pacific and Atlantic basins of both hemispheres with a comprehensive suite of measurements for constraining reactive photochemistry. All six models have simulated conditions climatologically similar to the deployments. The GMI and GEOS-Chem CTMs have in addition performed hindcast simulations using the MERRA-2 reanalysis, and have been sampled along the flight tracks. We evaluate the performance of the models relative to the observations, and identify factors contributing to their disparate behavior using known differences in model oxidation mechanisms, heterogeneous loss pathways, lightning and surface emissions, and physical loss processes.

  7. Effect of sequences of ozone and nitrogen dioxide on plant dry ...

    African Journals Online (AJOL)

    Ozone (O3) is the most important gaseous air pollutant in the world because of its adverse effects on vegetation in general and crop plants in particular. Since nitrogen dioxide (NO2) is a precursor of ozone, studying the implication of sequences of these two gases is very important. Hence, the effects of sequences of ...

  8. Lignin transformations and reactivity upon ozonation in aqueous media

    Science.gov (United States)

    Khudoshin, A. G.; Mitrofanova, A. N.; Lunin, V. V.

    2012-03-01

    The reaction of ozone with lignin in aqueous acidic solutions is investigated. The Danckwerst model is used to describe the kinetics of gas/liquid processes occurring in a bubble reactor. The efficient ozonation rate of a soluble lignin analog, sodium lignosulfate, is determined. The main lines of the reaction between ozone and lignin are revealed on the basis of kinetic analysis results and IR and UV spectroscopy data.

  9. The roles of ozone and zeolite on reactive dye degradation in electrical discharge reactors.

    Science.gov (United States)

    Peternel, L; Kusic, H; Koprivanac, N; Locke, B R

    2006-05-01

    In this study high voltage pulsed corona electrical discharge advanced oxidation processes (AOPs) were applied to bleach and degrade C.I. Reactive Green 8 and C.I. Reactive Red 45 organic dyes in water solutions. Two types of hybrid gas/liquid high voltage electrical discharge (corona) reactors, known as hybrid series and hybrid parallel were studied. The difference between these reactors relates to electrode configuration, which affects the amounts of ozone, hydrogen peroxide and hydroxyl radicals produced. Experiments were conducted using dye concentrations of 20 mgl(-1) and 75 mgl(-1), with and without NH4ZSM5 zeolite addition in order to determine possible effects of added solid particles to total process efficiency. The role of ozone in combination with zeolites was assessed through comparative direct ozonation experiments with ozone supplied by an ozone generator. UV/VIS spectrophotometric measurements and measurements of total organic carbon (TOC) were used for the determination of decolorization and mineralization rates.

  10. Deposition of reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study

    International Nuclear Information System (INIS)

    Beem, Katherine B.; Raja, Suresh; Schwandner, Florian M.; Taylor, Courtney; Lee, Taehyoung; Sullivan, Amy P.; Carrico, Christian M.; McMeeking, Gavin R.; Day, Derek; Levin, Ezra; Hand, Jenny; Kreidenweis, Sonia M.; Schichtel, Bret; Malm, William C.; Collett, Jeffrey L.

    2010-01-01

    Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha -1 and more than doubled to 0.95 kg ha -1 during the summer campaign. - The reactive nitrogen deposition budget for Rocky Mountain National Park.

  11. Global reactive nitrogen deposition from lightning NOx

    NARCIS (Netherlands)

    Shepon, A.; Gildor, H.; Labrador, L.J.; Butler, T.; Ganzeveld, L.N.; Lawrence, M.G.

    2007-01-01

    We present results of the deposition of nitrogen compounds formed from lightning (LNO x ) using the global chemical transport Model of Atmospheric Transport and Chemistry¿Max Planck Institute for Chemistry version. The model indicates an approximately equal deposition of LNO x in both terrestrial

  12. Regulatory Drivers of Multimedia Reactive Nitrogen Research (Invited)

    Science.gov (United States)

    Shaw, S. L.; Knipping, E.; Kumar, N.

    2010-12-01

    The presence of nitrogenous compounds can impact biogeochemical processes in the atmosphere, oceans and freshwater, and land surfaces. As a result, a number of regulations exist that are intended to control the amount and forms of nitrogen present in the environment. These range from the newly proposed Transport Rule, both the primary and secondary National Ambient Air Quality Standards (NAAQS) for nitrogen oxide targeted at ozone and particulate matter formation and nitrogen deposition, and waterbody requirements such as the Total Maximum Daily Load. This talk will cover a subset of research activities at EPRI that inform environmental nitrogen concerns. A multimedia modeling framework has facilitated effect studies of atmospheric loadings on ecosystems. Improvements in emissions estimates, such as for mobile sources, suggest large current underestimates that will substantially impact air quality modeling of nitrogen oxides. Analyses of wintertime nitrate formation in the northern U.S. are demonstrating the roles of NH3 and NOx in particle formation there. Novel measurements of power plant stack emissions suggest operating configurations can influence the isotopic composition of emitted NOx. Novel instruments for ambient measurements of nitrogen, and suggestions for improved deposition estimates, are being developed. EPRI results suggest that multimedia solutions across multiple economic sectors, such as electrification of a wide variety of engines and water quality treatment and trading, have the potential to improve environmental quality effectively.

  13. Rapid cycling of reactive nitrogen in the marine boundary layer.

    Science.gov (United States)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph

    2016-04-28

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  14. Air-snow exchange of nitrogen oxides and ozone at a polluted mid-latitude site

    Science.gov (United States)

    Murphy, Jennifer G.; Hong, Angela C.; Quinn, Patricia K.; Bates, Tim

    2017-04-01

    Vertical gradients of O3, NO, NO2 and NOywere measured within and above the snowpack between January 17 to February 14, 2014 as part of the Uintah Basin Winter Ozone Study. During the first half of the campaign, the snowpack was relatively aged and contained high levels of inorganic ions and dissolved and particulate organics. A snowfall on Jan 31 added 5 cm of fresh snow with lower solute concentrations to the top of the snowpack. Vertical gradients (ΔC = C(25cm) - C(125cm)) in the measured gas phase species were used to investigate the role of the snowpack as a source or sink. Small positive gradients were seen for NO, peaking in the middle of the day, which much larger negative gradients were seen for O3 and NOy. Comparing the fresh to the aged snowpacks, there was a noticeable decrease in the gradient for O3, but not for NOy over the fresh snow, implying a chemical control of O3 deposition to the snow. The ratio of the gradient of NOx to the gradient of NOy was used to determine a snowpack NOy recycling ratio (emission/deposition) of approximately 4 %, consistent with independent estimates of low nitrate photolysis rates inferred from nitrogen isotopes by Zatko et al., (2016). Reference Zatko et al., The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA, Atmos. Chem. Phys., 16, 13837-13851, 2016.

  15. Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species.

    Directory of Open Access Journals (Sweden)

    Lina Fusaro

    Full Text Available The effects of nitrogen (N deposition, tropospheric ozone (O3 and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous and Quercus ilex L. (evergreen, having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively, in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes. Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.

  16. Nitrogen mediates above-ground effects of ozone but not below-ground effects in a rhizomatous sedge

    International Nuclear Information System (INIS)

    Jones, M.L.M.; Hodges, G.; Mills, G.

    2010-01-01

    Ozone and atmospheric nitrogen are co-occurring pollutants with adverse effects on natural grassland vegetation. Plants of the rhizomatous sedge Carex arenaria were exposed to four ozone regimes representing increasing background concentrations (background-peak): 10-30, 35-55, 60-80 and 85-105 ppb ozone at two nitrogen levels: 12 and 100 kg N ha -1 yr -1 . Ozone increased the number and proportion of senesced leaves, but not overall leaf number. There was a clear nitrogen x ozone interaction with high nitrogen reducing proportional senescence in each treatment and increasing the ozone dose (AOT40) at which enhanced senescence occurred. Ozone reduced total biomass due to significant effects on root biomass. There were no interactive effects on shoot:root ratio. Rhizome tissue N content was increased by both nitrogen and ozone. Results suggest that nitrogen mediates above-ground impacts of ozone but not impacts on below-ground resource translocation. This may lead to complex interactive effects between the two pollutants on natural vegetation. - Nitrogen alters threshold of ozone-induced senescence, but not below-ground resource allocation.

  17. Environmental and human impacts of reactive nitrogen. Chapter 1.

    Science.gov (United States)

    Many ecological problems occur with increased inputs of reactive nitrogen (Nr) into the environment. Excessive Nr is directly associated with the need for food production. The importance of managing Nr is quite broad and extends to numerous issues associated with excessive Nr in the environment. ...

  18. Reactive nitrogen deposition to South East Asian rainforest

    Science.gov (United States)

    di Marco, Chiara F.; Phillips, Gavin J.; Thomas, Rick; Tang, Sim; Nemitz, Eiko; Sutton, Mark A.; Fowler, David; Lim, Sei F.

    2010-05-01

    The supply of reactive nitrogen (N) to global terrestrial ecosystems has doubled since the 1960s as a consequence of human activities, such as fertilizer application and production of nitrogen oxides by fossil-fuel burning. The deposition of atmospheric N species constitutes a major nutrient input to the biosphere. Tropical forests have been undergoing a radical land use change by increasing cultivation of sugar cane and oil palms and the remaining forests are increasingly affected by anthropogenic activities. Yet, quantifications of atmospheric nitrogen deposition to tropical forests, and nitrogen cycling under near-pristine and polluted conditions are rare. The OP3 project ("Oxidant and Particle Photochemical Processes above a Southeast Asian Tropical Rainforest") was conceived to study how emissions of reactive trace gases from a tropical rain forest mediate the regional scale production and processing of oxidants and particles, and to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate. As part of this study we have measured reactive, nitrogen containing trace gas (ammonia, nitric acid) and the associated aerosol components (ammonium, nitrate) at monthly time resolution using a simple filter / denuder for 16 months. These measurements were made at the Bukit Atur Global Atmospheric Watch tower near Danum Valley in the Malaysian state of Sabah, Borneo. In addition, the same compounds were measured at hourly time-resolution during an intensive measurement period, with a combination of a wet-chemistry system based on denuders and steam jet aerosol collectors and an aerosol mass spectrometer (HR-ToF-AMS), providing additional information on the temporal controls. During this period, concentrations and fluxes of NO, NO2 and N2O were also measured. The measurements are used for inferential dry deposition modelling and combined with wet deposition data from the South East Asian Acid

  19. Ozone and nitrogen oxides in surface air in Russia: TROICA experiments.

    Science.gov (United States)

    Pankratova, N.; Elansky, N.; Belikov, I.; Shumskiy, R.

    2009-04-01

    The results of measurements of surface ozone and nitrogen oxides concentrations over the continental regions of Russia are discussed. The measurements were done during 10 TROICA experiments (Transcontinental Observations Into the Chemistry of the Atmosphere). The TROICA experiment started in 1995. By the present moment ten expeditions along the Trans-Siberian railroad from Moscow to Vladivostok (around 9300 km) are carried out. We separate data sets into unpolluted and polluted areas to study temporal and spatial features. Moreover we analyzed cities (more then 100 cities). About 50% of all data corresponds to unpolluted conditions. The data collected are used in an analysis of the physical and chemical processes occurring over continental Russia. In this work the estimations of seasonal and daily ozone and NOx distribution were made. The seasonal distribution of ozone for TROICA experiments concentration considerably differs from ozone distribution at Mace Head (Ireland) and Hohenpeissenberg (Germany) stations and well agrees with the ozone distribution at Zotino (Russia, East Siberia). The same concerns also a daily variability. The ozone concentration gradient is presented. Ozone concentration gradually increases in the eastward direction. Its result of the air transport from polluted regions of Europe and ozone depletions, oxidations of CH4 in Siberia, forest fires in Siberia and around Baikal Lake, regional transport of burning products from Northern China. Significant factor of ozone increasing is stratospheric-tropospheric exchange. It appears in TROICA-3 experiment. During several hours ozone concentration was more then 60 ppbv. The areas of photochemical ozone generation in polluted air are also detected. We estimate anthropogenic and natural factors, which are responsible for sharp ozone concentration increasing. Acknowledgments. The work was supported by International Science and Technology Center (ISTC) under contract No. 2770 and by Russian Basic

  20. The interaction of ozone and nitrogen dioxide in the stratosphere of East Antarctica

    Science.gov (United States)

    Bruchkouski, Ilya; Krasouski, Aliaksandr; Dziomin, Victar; Svetashev, Alexander

    2016-04-01

    At the Russian Antarctic station "Progress" (S69°23´, E76°23´) simultaneous measurements of trace gases using the MARS-B (Multi-Axis Recorder of Spectra) instrument and PION-UV spectro-radiometer for the time period from 05.01.2014 to 28.02.2014 have been performed. Both instruments were located outdoors. The aim of the measurements was to retrieve the vertical distribution of ozone and nitrogen dioxide in the atmosphere and to study their variability during the period of measurements. The MARS-B instrument, developed at the National Ozone Monitoring Research and Education Centre of the Belarusian State University (NOMREC BSU), successfully passed the procedure of international inter-comparison campaign MAD-CAT 2013 in Mainz, Germany. The instrument is able to record the spectra of scattered sunlight at different elevation angles within a maximum aperture of 1.3°. 12 elevation angles have been used in this study, including the zenith direction. Approximately 7000 spectra per day were registered in the range of 403-486 nm, which were then processed by DOAS technique aiming to retrieve differential slant columns of ozone, nitrogen dioxide and oxygen dimer. Furthermore, total nitrogen dioxide column values have been retrieved employing the Libradtran radiative transfer model. The PION-UV spectro-radiometer, also developed at NOMREC BSU, is able to record the spectra of scattered sunlight from the hemisphere in the range of 280-430 nm. The registered spectra have been used to retrieve the total ozone column values employing the Stamnes method. In this study observational data from both instruments is presented and analyzed. Furthermore, by combining analysis of this data with model simulations it is shown that decreases in nitrogen dioxide content in the upper atmosphere can be associated with increases in total ozone column values and rising of the ozone layer upper boundary. Finally, the time delay between changes in nitrogen dioxide and ozone values is

  1. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  2. 40 CFR 52.235 - Control strategy for ozone: Oxides of nitrogen.

    Science.gov (United States)

    2010-07-01

    ... nitrogen. 52.235 Section 52.235 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Unified Air Pollution Control District on April 26, 1994 for the Monterey Bay ozone nonattainment area... technology (RACT), new source review (NSR), the related requirements of general and transportation conformity...

  3. Passive monitoring techniques for evaluating atmospheric ozone and nitrogen exposure and deposition to California ecosystems

    Science.gov (United States)

    Mark E. Fenn; Andrzej Bytnerowicz; Susan L. Schilling

    2018-01-01

    Measuring the exposure of ecosystems to ecologically relevant pollutants is needed for evaluating ecosystem effects and to identify regions and resources at risk. In California, ozone (O3) and nitrogen (N) pollutants are of greatest concern for ecological effects. "Passive" monitoring methods have been developed to obtain spatially...

  4. Reactivity and selectivity of arenes in reactions with ozone

    International Nuclear Information System (INIS)

    Vysotskii, Yu.B.; Mestechkin, M.M.; Sivyakova, L.N.; Tyupalo, N.F.

    1987-01-01

    The reactions of arenes with ozone, distinguished by the variety of products (quinones, aldehydes, acids), are of interest not only from the theoretical standpoint but also are of preparative value in the case of polycyclic hydrocarbons. In this work a quantitative treatment of this reaction is given on the basis of direct kinetic measurements and simple quantum chemical means, permitting its rate constants and the yield of the products to be related to the elements of electronic structure readily subject to quantum mechanical calculation

  5. Soil emissions of gaseous reactive nitrogen from North American arid lands: an overlooked source.

    Science.gov (United States)

    Sparks, J. P.; McCalley, C. K.; Strahm, B. D.

    2008-12-01

    The biosphere-atmosphere exchange and transformation of nitrogen has important ramifications for both terrestrial biogeochemistry and atmospheric chemistry. Several important mechanisms within this process (e.g., photochemistry, nitrogen deposition, aerosol formation) are strongly influenced by the emission of reactive nitrogen compounds from the Earth's surface. Therefore, a quantification of emission sources is a high priority for future conceptual understanding. One source largely overlooked in most global treatments are the soil emissions from arid and semi-arid landscapes worldwide. Approximately 35-40% of global terrestrial land cover is aridland and emission of reactive nitrogen from soils in these regions has the potential to strongly influence both regional and global biogeochemistry. Here we present estimates of soil emission of oxidized (NO, total NOy including NO2 and HONO) and reduced (NH3) forms of reactive nitrogen from two North American arid regions: the Mojave Desert and the Colorado Plateau. Soil fluxes in these regions are highly dependent on soil moisture conditions. Soil moisture is largely driven by pulsed rain events with fluxes increasing 20-40 fold after a rain event. Using field measurements made across seasons under an array of moisture conditions, precipitation records, and spatially explicit cover type information we have estimated annual estimates for the Mojave Desert (1.5 ± 0.7 g N ha-1 yr-1), the shale derived (1.4 ± 0.9 g N ha-1 yr-1), and sandy soil derived (2.8 ± 1.2 g N ha-1 yr-1) regions of the Colorado Plateau. The chemical composition of soil emissions varies significantly both with season and soil moisture content. Emissions from dry soils tend to be dominated by ammonia and forms of NOy other than NO. In contrast, NO becomes a dominant portion of the flux post rain events (~30% of the total flux). This variability in chemical form has significant implications for the tropospheric fate of the emitted N. NO and other

  6. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species

    International Nuclear Information System (INIS)

    Roberts, Ruth A.; Smith, Robert A.; Safe, Stephen; Szabo, Csaba; Tjalkens, Ronald B.; Robertson, Fredika M.

    2010-01-01

    'Oxidative and Nitrative Stress in Toxicology and Disease' was the subject of a symposium held at the EUROTOX meeting in Dresden 15th September 2009. Reactive oxygen (ROS) and reactive nitrogen species (RNS) produced during tissue pathogenesis and in response to viral or chemical toxicants, induce a complex series of downstream adaptive and reparative events driven by the associated oxidative and nitrative stress. As highlighted by all the speakers, ROS and RNS can promote diverse biological responses associated with a spectrum of disorders including neurodegenerative/neuropsychiatric and cardiovascular diseases. Similar pathways are implicated during the process of liver and skin carcinogenesis. Mechanistically, reactive oxygen and nitrogen species drive sustained cell proliferation, cell death including both apoptosis and necrosis, formation of nuclear and mitochondrial DNA mutations, and in some cases stimulation of a pro-angiogenic environment. Here we illustrate the pivotal role played by oxidative and nitrative stress in cell death, inflammation and pain and its consequences for toxicology and disease pathogenesis. Examples are presented from five different perspectives ranging from in vitro model systems through to in vivo animal model systems and clinical outcomes.

  7. Measurement and modeling of ozone and nitrogen oxides produced by laser breakdown in oxygen-nitrogen atmospheres.

    Science.gov (United States)

    Gornushkin, Igor B; Stevenson, Chris L; Galbács, Gábor; Smith, Ben W; Winefordner, James D

    2003-11-01

    The production of ozone nad nitrogen oxides was studied during multiple laser breakdown in oxygen-nitrogen mixtures at atmospheric pressure. About 2000 laser shots at 10(10) W cm-2 were delivered into a sealed reaction chamber. The chamber with a long capillary was designed to measure absorption of O3, NO, and NO2 as a function of the number of laser shots. The light source for absorption measurements was the continuum radiation emitted by the plasma during the first 0.2 microsecond of its evolution. A kinetic model was developed that encompassed the principal chemical reactions between the major atmospheric components and the products of laser breakdown. In the model, the laser plasma was treated as a source of nitric oxide and atomic oxygen, whose rates of production were calculated using measured absorption by NO, NO2, and O3. The calculated concentration profiles for NO, NO2, and O3 were in good agreement with measured profiles over a time scale of 0-200 s. The steady-state concentration of ozone was measured in a flow cell in air. For a single breakdown in air, the estimated steady-state yield of ozone was 2 x 10(12) molecules, which agreed with the model prediction. This study can be of importance for general understanding of laser plasma chemistry and for elucidating the nature of spectral interferences and matrix effects that may take place in applied spectrochemical analysis.

  8. Toxicity of ozone and nitrogen dioxide to alveolar macrophages: comparative study revealing differences in their mechanism of toxic action

    NARCIS (Netherlands)

    Rietjens, I. M.; Poelen, M. C.; Hempenius, R. A.; Gijbels, M. J.; Alink, G. M.

    1986-01-01

    The toxicity of ozone and nitrogen dioxide is generally ascribed to their oxidative potential. In this study their toxic mechanism of action was compared using an intact cell model. Rat alveolar macrophages were exposed by means of gas diffusion through a Teflon film. In this in vitro system, ozone

  9. Dissolved organic nitrogen and its biodegradable portion in a water treatment plant with ozone oxidation.

    Science.gov (United States)

    Wadhawan, Tanush; Simsek, Halis; Kasi, Murthy; Knutson, Kristofer; Prüβ, Birgit; McEvoy, John; Khan, Eakalak

    2014-05-01

    Biodegradability of dissolved organic nitrogen (DON) has been studied in wastewater, freshwater and marine water but not in drinking water. Presence of biodegradable DON (BDON) in water prior to and after chlorination may promote formation of nitrogenous disinfectant by-products and growth of microorganisms in the distribution system. In this study, an existing bioassay to determine BDON in wastewater was adapted and optimized, and its application was tested on samples from four treatment stages of a water treatment plant including ozonation and biologically active filtration. The optimized bioassay was able to detect BDON in 50 μg L(-1) as N of glycine and glutamic solutions. BDON in raw (144-275 μg L(-1) as N), softened (59-226 μg L(-1) as N), ozonated (190-254 μg L(-1) as N), and biologically filtered (17-103 μg L(-1) as N) water samples varied over a sampling period of 2 years. The plant on average removed 30% of DON and 68% of BDON. Ozonation played a major role in increasing the amount of BDON (31%) and biologically active filtration removed 71% of BDON in ozonated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Air pollution: Tropospheric ozone, and wet deposition of sulfate and inorganic nitrogen

    Science.gov (United States)

    John W. Coulston

    2009-01-01

    The influence of air pollutants on ecosystems in the United States is an important environmental issue. The term “air pollution” encompasses a wide range of topics, but acid deposition and ozone are primary concerns in the context of forest health. Acid deposition partially results from emissions of sulfur dioxide, nitrogen oxides, and ammonia that are deposited in wet...

  11. Ozone production, nitrogen oxides, and radical budgets in Mexico City: observations from Pico de Tres Padres

    Science.gov (United States)

    Wood, E. C.; Herndon, S. C.; Onasch, T. B.; Kroll, J. H.; Canagaratna, M. R.; Kolb, C. E.; Worsnop, D. R.; Neuman, J. A.; Seila, R.; Zavala, M.; Knighton, W. B.

    2008-08-01

    Observations at a mountain-top site within the Mexico City basin are used to characterize ozone production and destruction, the nitrogen oxide budget, and the radical budget during the MILAGRO campaign. An ozone production rate of ~50 ppbv/h was observed in a stagnant air mass during the afternoon of 12 March 2006, which is among the highest observed anywhere in the world. Approximately half of the ozone destruction was due to the oxidation of NO2. During this time period ozone production was VOC-limited, deduced by a comparison of the radical production rates and the formation rate of NOx oxidation products (NOz) For [NOx]/[NOy] values between 0.2 and 0.8, gas-phase HNO3 typically accounted for less than 10% of NOz and accumulation-mode particulate nitrate (NO3-(PM)) accounted for 20% 70% of NOz, consistent with high ambient NH3 concentrations. The fraction of NOz accounted for by the sum of HNO3(g) and NO3-(PM) decreased with photochemical processing. This decrease is apparent even when dry deposition of HNO3 is accounted for, and indicates that HNO3 formation decreased relative to other NOx "sink" processes during the first 12 h of photochemistry and/or a significant fraction of the nitrate was associated with the coarse aerosol size mode. The ozone production efficiency of NOx on 11 and 12 March 2006 was approximately 7 on a time scale of one day. A new metric for ozone production efficiency that relates the dilution-adjusted ozone mixing ratio to cumulative OH exposure is proposed.

  12. Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water

    International Nuclear Information System (INIS)

    Chen Bingyan; Wen Wen; Zhu Changping; Wang Yuan; Gao Ying; Fei Juntao; He Xiang; Yin Cheng; Jiang Yongfeng; Chen Longwei

    2016-01-01

    Discharge plasma in and in contact with water can be accompanied with ultraviolet radiation and electron impact, thus can generate hydroxyl radicals, ozone, nitrite nitrogen and hydrogen peroxide. In this paper, a non-equilibrium plasma processing system was established by means of an atmospheric pressure plasma jet immersed in water. The hydroxyl intensities and discharge energy waveforms were tested. The results show that the positive and negative discharge energy peaks were asymmetric, where the positive discharge energy peak was greater than the negative one. Meanwhile, the yield of ozone and nitrite nitrogen was enhanced with the increase of both the treatment time and the discharge energy. Moreover, the pH value of treated water was reduced rapidly and maintained at a lower level. The residual concentration of hydrogen peroxide in APPJ treated water was kept at a low level. Additionally, both the efficiency energy ratio of the yield of ozone and nitrite nitrogen and that of the removal of p-nitrophenol increased as a function of discharge energy and discharge voltage. The experimental results were fully analyzed and the chemical reaction equations and the physical processes of discharges in water were given. (paper)

  13. Governing processes for reactive nitrogen compounds in the European atmosphere

    Directory of Open Access Journals (Sweden)

    O. Hertel

    2012-12-01

    Full Text Available Reactive nitrogen (Nr compounds have different fates in the atmosphere due to differences in the governing processes of physical transport, deposition and chemical transformation. Nr compounds addressed here include reduced nitrogen (NHx: ammonia (NH3 and its reaction product ammonium (NH4+, oxidized nitrogen (NOy: nitrogen monoxide (NO + nitrogen dioxide (NO2 and their reaction products as well as organic nitrogen compounds (organic N. Pollution abatement strategies need to take into account the differences in the governing processes of these compounds when assessing their impact on ecosystem services, biodiversity, human health and climate. NOx (NO + NO2 emitted from traffic affects human health in urban areas where the presence of buildings increases the residence time in streets. In urban areas this leads to enhanced exposure of the population to NOx concentrations. NOx emissions generally have little impact on nearby ecosystems because of the small dry deposition rates of NOx. These compounds need to be converted into nitric acid (HNO3 before removal through deposition is efficient. HNO3 sticks quickly to any surface and is thereby either dry deposited or incorporated into aerosols as nitrate (NO3. In contrast to NOx compounds, NH3 has potentially high impacts on ecosystems near the main agricultural sources of NH3 because of its large ground-level concentrations along with large dry deposition rates. Aerosol phase NH4+ and NO3 contribute significantly to background PM2.5 and PM10 (mass of aerosols with an aerodynamic diameter of less than 2.5 and 10 μm, respectively with an impact on radiation balance as well as potentially on human

  14. Physiological studies on photochemical oxidant injury in rice plants. IV. Effect of nitrogen application on endogenous abscisic acid (ABA) production and ozone injury of rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Ota, Y.

    1981-12-01

    In order to determine the effects of nitrogen application on ABA content of rice plants and their ozone-sensitivity, ABA production and ozone injuries were observed under different levels of nitrogen application with two Japonica and two Japonica X Indica type varieties. In all varieties, endogenous ABA content decreased with the increasing level of nitrogen applied, although total nitrogen content increased with the increasing level of nitrogen applied. Ozone injury was found with increasing level of nitrogen applied and to change depending on the varieties. Ozone injury was found to be more serious with increasing nitrogen content in Jinheung and Nongback, however it was less pronounced in Tongil and Milyang No. 23. Endogenous ABA content and ozone-sensitivity were related to the nitrogen content in the rice plants.

  15. The global impact of biomass burning on tropospheric reactive nitrogen

    International Nuclear Information System (INIS)

    Levy, H. II; Moxim, W.J.; Kasibhatla, P.S.; Logan, J.A.

    1991-01-01

    In this chapter the authors first review their current understanding of both the anthropogenic and natural sources of reactive nitrogen compounds in the troposphere. Then the available observations of both surface concentration and wet deposition are summarized for regions with significant sources, for locations downwind of strong sources, and for remote sites. The obvious sparsity of the data leads to the next step: an attempt to develop a more complete global picture of surface concentrations and deposition of NO y with the help of global chemistry transport model (GCTM). The available source data are inserted into the GCTM and the resulting simulations compared with surface observations. The impact of anthropogenic sources, both downwind and at remote locations, is discussed and the particular role of biomass burning is identified

  16. [Reactivity of several classes of pesticides with UV, ozone and permanganate].

    Science.gov (United States)

    Liu, Chao; Qiang, Zhi-min; Tian, Fang; Zhang, Tao

    2009-01-01

    The reactivity of eight classes of 26 extensively used pesticides, namely, organochlorines, thiadiazole, dinitroanaline, acetamides, triazines, uracil and carbamates, with three common disinfectants or oxidants including UV254 (average intensity of 10.8 mW x cm(-2)), ozone (dosage of 4.1 - 6.2 mg x L(-1)) and permanganate (dosage of 15.8 mg x L(-1)) was investigated. The reactions were allowed to proceed for 30 min at pH 7.0 and ambient temperature (25 degrees C +/- 3 degrees C). Results indicate that under the applied experimental conditions, more than 95% of chlorobenzilate, etridiazole, alachlor, butachlor, metolachlor, propachlor, atrazine, simazine, aldicarb, oxamyl and methiocarb could be effectively removed by UV254; and the removal efficiencies of other pesticides were in a range of 12.9%-77.7%. Ozone could completely degrade chloroneb, dichlorvos, bromacil, aldicarb, carbaryl, carbofuran, oxamyl and methiocarb; prometon and aldicarb sulfone were resistant to ozonation; and the removal efficiencies of other pesticides varied from 19.0% to 93.1%. Permanganate could fully degrade dichlorvos, aldicarb and methiocarb; organochlorines, dinitroanaline, thiadiazole, acetamides and other carbamates were resistant to permanganate oxidation; and the removal efficiencies of other pesticides ranged from 16.0% to 88.2%. If the practical dosage applied in drinking water treatment is considered, it is expected that most of the pesticides will be completely degraded by ozone, a few by permanganate, but probably none by UV254 .

  17. Low-temperature conversion of ammonia to nitrogen in water with ozone over composite metal oxide catalyst.

    Science.gov (United States)

    Chen, Yunnen; Wu, Ye; Liu, Chen; Guo, Lin; Nie, Jinxia; Chen, Yu; Qiu, Tingsheng

    2018-04-01

    As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co 3 O 4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia (50mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co 3 O 4 molar ratio 8:2, calcined at 500°C for 3hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of 44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO 4 2- and HCO 3 - could inhibit the catalytic activity while CO 3 2- and Br - could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia. Copyright © 2017. Published by Elsevier B.V.

  18. Mitochondrial Signaling in Plants Under Hypoxia: Use of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS)

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Møller, Ian Max

    2015-01-01

    Hypoxia commonly occurs in roots in water-saturated soil and in maturing and germinating seeds. We here review the role of the mitochondria in the cellular response to hypoxia with an emphasis on the turnover of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) and their potential...

  19. Reactive nitrogen losses from China's food system for the shared socioeconomic pathways (SSPs)

    NARCIS (Netherlands)

    Wang, Mengru; Kroeze, Carolien; Strokal, Maryna; Ma, Lin

    2017-01-01

    Food production in China has been changing fast as a result of socio-economic development. This resulted in an increased use of nitrogen (N) in food production, and also to increased reactive nitrogen (Nr) losses to the environment, causing nitrogen pollution. Our study is the first to quantify

  20. Reactive nitrogen in the environment and its effect on climate change

    NARCIS (Netherlands)

    Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Butterbach-Bahl, K.

    2011-01-01

    Humans have doubled levels of reactive nitrogen in circulation, largely as a result of fertilizer application and fossil fuel burning. This massive alteration of the nitrogen cycle affects climate, food security, energy security, human health and ecosystem services. Our estimates show that nitrogen

  1. Management of Excess Reactive Nitrogen in the Environment

    Science.gov (United States)

    Galloway, J. N.; Theis, T.; Doering, O.

    2011-12-01

    Managing the impacts of excessive reactive nitrogen (Nr) in the environment is a complex problem that begins with the recognition of the obligate dietary need for Nr by all living populations. The human solution to this need has been to devise ways to bring Nr into the biosphere (via the Haber-Bosch process) to grow food. Other Nr is created as a by-product of fossil-fuel combustion. The net result is the introduction of more than five times the Nr created by natural processes in the U.S., only a fraction of which is converted back to diatomic nitrogen through denitrification. This presentation summarizes findings and recommendations of the newly-released US EPA Science Advisory Board's Integrated Nitrogen Committee report, "Reactive Nitrogen in the United States: An Analysis of Flows, Consequences, and Management Options", that deal specifically with approaches for solving the excess Nr problem. These can be grouped into four general areas: (1) Recognition of the Problem. Until there is recognition that excess Nr is a serious problem with economic, health, and societal consequences, there will be little willingness to expend resources on this issue. Education, communication and outreach are critically important to engender in regulators, and the public at large, sufficient will to undertake the large scale effort needed to reduce Nr in the environment. (2) Development of Integrated Regulatory Approaches. Given what is known about the way Nr behaves, efforts to deal with excess Nr must be organized in a way that reflects the nature of the problem. Unfortunately, most approaches tend to conceive of Nr issues within a narrowly focused disciplinary model, and our policy and regulatory institutions are often bound by enabling legislation that stresses source-by-source, chemical-by-chemical, and media-by-media. The resulting regulatory structure that has evolved for problems such as Nr that affect human health and the environment is apt to miss the complex nature of the

  2. Reactive transport modeling of nitrogen in Seine River sediments

    Science.gov (United States)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  3. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China.

    Science.gov (United States)

    Fan, Changhua; Li, Bo; Xiong, Zhengqin

    2018-01-15

    Nitrification inhibitors, a promising tool for reducing nitrous oxide (N 2 O) losses and promoting nitrogen use efficiency by slowing nitrification, have gained extensive attention worldwide. However, there have been few attempts to explore the broad responses of multiple reactive gaseous nitrogen emissions of N 2 O, nitric oxide (NO) and ammonia (NH 3 ) and vegetable yield to nitrification inhibitor applications across intensive vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was performed to assess the efficacies of two nitrification inhibitors, namely, nitrapyrin and dicyandiamide on reactive gaseous nitrogen emissions, vegetable yield and reactive gaseous nitrogen intensity in four typical vegetable soils representing the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. The results showed soil type had significant influences on reactive gaseous nitrogen intensity, with reactive gaseous nitrogen emissions and yield mainly driven by soil factors: pH, nitrate, C:N ratio, cation exchange capacity and microbial biomass carbon. The highest reactive gaseous nitrogen emissions and reactive gaseous nitrogen intensity were in Acrisol while the highest vegetable yield occurred in Phaeozem. Nitrification inhibitor applications decreased N 2 O and NO emissions by 1.8-61.0% and 0.8-79.5%, respectively, but promoted NH 3 volatilization by 3.2-44.6% across all soils. Furthermore, significant positive correlations were observed between inhibited N 2 O+NO and stimulated NH 3 emissions with nitrification inhibitor additions across all soils, indicating that reduced nitrification posed the threat of NH 3 losses. Additionally, reactive gaseous nitrogen intensity was significantly reduced in the Anthrosol and Cambisol due to the reduced reactive gaseous nitrogen emissions and increased

  4. Oxygen nitrogen and ozone: application in wastewater treatment and environment protection

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Julio A.G. [Oxigenio do Brasil, Sao Paulo, SP (Brazil)

    1993-12-31

    Oxygen`s versatility as an oxidant and as a combustion atmosphere provides clean solutions to different industries. Oxygen also finds excellent application for the regeneration of eutrophic surface waters where high biochemical oxygen demand loading demands extra available oxygen for life support. When even stronger oxidizing properties are needed, ozone may act as a supplement. Nitrogen, on the other hand, has excellent cooling capacity, resulting in practical application in solvent recapture, enabling processes to meet emission standards while allowing solvent recycle for reuse. 7 figs., 1 tab.

  5. Oxygen nitrogen and ozone: application in wastewater treatment and environment protection

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Julio A.G. [Oxigenio do Brasil, Sao Paulo, SP (Brazil)

    1994-12-31

    Oxygen`s versatility as an oxidant and as a combustion atmosphere provides clean solutions to different industries. Oxygen also finds excellent application for the regeneration of eutrophic surface waters where high biochemical oxygen demand loading demands extra available oxygen for life support. When even stronger oxidizing properties are needed, ozone may act as a supplement. Nitrogen, on the other hand, has excellent cooling capacity, resulting in practical application in solvent recapture, enabling processes to meet emission standards while allowing solvent recycle for reuse. 7 figs., 1 tab.

  6. A case study of ozone production, nitrogen oxides, and the radical budget in Mexico City

    Directory of Open Access Journals (Sweden)

    E. C. Wood

    2009-04-01

    Full Text Available Observations at a mountain-top site within the Mexico City basin are used to characterize ozone production and destruction, nitrogen oxide speciation and chemistry, and the radical budget, with an emphasis on a stagnant air mass observed on one afternoon. The observations compare well with the results of recent photochemical models. An ozone production rate of ~50 ppbv/h was observed in a stagnant air mass during the afternoon of 12 March 2006, which is among the highest observed anywhere in the world. Approximately half of the ozone destruction was due to the oxidation of NO2. During this time period ozone production was VOC-limited, deduced by a comparison of the radical production rates and the formation rate of NOx oxidation products (NOz. For [NOx]/[NOy] values between 0.2 and 0.8, gas-phase HNO3 typically accounted for less than 10% of NOz and accumulation-mode particulate nitrate (NO3(PM1 accounted for 20%–70% of NOz, consistent with high ambient NH3 concentrations. The fraction of NOz accounted for by the sum of HNO3(g and NO3(PM1 decreased with photochemical processing. This decrease is apparent even when dry deposition of HNO3 is accounted for, and indicates that HNO3 formation decreased relative to other NOx "sink" processes during the first 12 h of photochemistry and/or a significant fraction of the nitrate was associated with the coarse aerosol size mode. The ozone production efficiency of NOx on 11 and 12 March 2006 was approximately 7 on a time scale of one day. A new metric for ozone production efficiency that relates the dilution-adjusted ozone mixing ratio to cumulative OH exposure is proposed.

  7. Integrated reactive nitrogen budgets and future trends in China.

    Science.gov (United States)

    Gu, Baojing; Ju, Xiaotang; Chang, Jie; Ge, Ying; Vitousek, Peter M

    2015-07-14

    Reactive nitrogen (Nr) plays a central role in food production, and at the same time it can be an important pollutant with substantial effects on air and water quality, biological diversity, and human health. China now creates far more Nr than any other country. We developed a budget for Nr in China in 1980 and 2010, in which we evaluated the natural and anthropogenic creation of Nr, losses of Nr, and transfers among 14 subsystems within China. Our analyses demonstrated that a tripling of anthropogenic Nr creation was associated with an even more rapid increase in Nr fluxes to the atmosphere and hydrosphere, contributing to intense and increasing threats to human health, the sustainability of croplands, and the environment of China and its environs. Under a business as usual scenario, anthropogenic Nr creation in 2050 would more than double compared with 2010 levels, whereas a scenario that combined reasonable changes in diet, N use efficiency, and N recycling could reduce N losses and anthropogenic Nr creation in 2050 to 52% and 64% of 2010 levels, respectively. Achieving reductions in Nr creation (while simultaneously increasing food production and offsetting imports of animal feed) will require much more in addition to good science, but it is useful to know that there are pathways by which both food security and health/environmental protection could be enhanced simultaneously.

  8. Integrated reactive nitrogen budgets and future trends in China

    Science.gov (United States)

    Gu, Baojing; Ju, Xiaotang; Chang, Jie; Ge, Ying; Vitousek, Peter M.

    2015-01-01

    Reactive nitrogen (Nr) plays a central role in food production, and at the same time it can be an important pollutant with substantial effects on air and water quality, biological diversity, and human health. China now creates far more Nr than any other country. We developed a budget for Nr in China in 1980 and 2010, in which we evaluated the natural and anthropogenic creation of Nr, losses of Nr, and transfers among 14 subsystems within China. Our analyses demonstrated that a tripling of anthropogenic Nr creation was associated with an even more rapid increase in Nr fluxes to the atmosphere and hydrosphere, contributing to intense and increasing threats to human health, the sustainability of croplands, and the environment of China and its environs. Under a business as usual scenario, anthropogenic Nr creation in 2050 would more than double compared with 2010 levels, whereas a scenario that combined reasonable changes in diet, N use efficiency, and N recycling could reduce N losses and anthropogenic Nr creation in 2050 to 52% and 64% of 2010 levels, respectively. Achieving reductions in Nr creation (while simultaneously increasing food production and offsetting imports of animal feed) will require much more in addition to good science, but it is useful to know that there are pathways by which both food security and health/environmental protection could be enhanced simultaneously. PMID:26124118

  9. Will the ozone shield of the earth be destroyed by the increasing use of nitrogen fertilizers

    International Nuclear Information System (INIS)

    Huebner, H.

    1981-01-01

    The increase of the world's population is accompanied by a parallel increase of the application of nitrogen fertilizers since an extensive expansion of land use cannot keep up with the currently increasing population. Continuous transformations of matter in soils are accompanied by isotopic variations. Using delta 15 N-NO 3 variations as an example, it is shown that in the aerobic zone values are becoming more negative at the beginning, whereas they are shifted anew to the positive during transition to the anaerobic zone. Accountable for the latter change of delta 15 N-NO 3 values is the isotope effect in denitrification which allows to determine the degree of denitrification. The increasing fertilizer use is accompanied by some environmental problems. NO 3 in groundwaters and N 2 O originating from denitrification processes are such environmental problems. Apprehensions for destroying the ozone shield of the earth by the increasing N 2 O in the stratosphere and the current knowledge of the global N cycle are discussed. Natural variations in the stratospheric ozone content are much higher than those resulting from possible NOsub(x)-catalyzed decomposition reactions of ozone. (author)

  10. Ozone Formation Induced by the Impact of Reactive Bromine and Iodine Species on Photochemistry in a Polluted Marine Environment.

    Science.gov (United States)

    Shechner, M; Tas, E

    2017-12-19

    Reactive iodine and bromine species (RIS and RBS, respectively) are known for altering atmospheric chemistry and causing sharp tropospheric ozone (O 3 ) depletion in polar regions and significant O 3 reduction in the marine boundary layer (MBL). Here we use measurement-based modeling to show that, unexpectedly, both RIS and RBS can lead to enhanced O 3 formation in a polluted marine environment under volatile organic compound (VOC)-limited conditions associated with high nitrogen oxide (NO X = [NO] + [NO 2 ]) concentrations. Under these conditions, the daily average O 3 mixing ratio increased to ∼44 and ∼28% for BrO and IO mixing ratios of up to ∼6.8 and 4.7 ppt, respectively. The increase in the level of O 3 was partially induced by enhanced ClNO 3 formation for higher Br 2 and I 2 emission flux. The increase in the level of O 3 was associated with an increased mixing ratio of hydroperoxyl radical to hydroxyl radical ([HO 2 ]/[OH]) and increased [NO 2 ]/[NO] with higher levels of RBS and/or RIS. NO X -rich conditions are typical of the polluted MBL, near coastlines and ship plumes. Considering that O 3 is toxic to humans, plants, and animals and is a greenhouse gas, our findings call for adequate updating of local and regional air-quality models with the effects of activities of RBS and RIS on O 3 mixing ratios in the polluted MBL.

  11. The Antarctic ozone minimum - Relationship to odd nitrogen, odd chlorine, the final warming, and the 11-year solar cycle

    Science.gov (United States)

    Callis, L. B.; Natarajan, M.

    1986-01-01

    Photochemical calculations along 'diabatic trajectories' in the meridional phase are used to search for the cause of the dramatic springtime minimum in Antarctic column ozone. The results indicate that the minimum is principally due to catalytic destruction of ozone by high levels of total odd nitrogen. Calculations suggest that these levels of odd nitrogen are transported within the polar vortex and during the polar night from the middle to upper stratosphere and lower mesosphere to the lower stratosphere. The possibility that these levels are related to the 11-year solar cycle and are increased by enhanced formation in the thermosphere and mesosphere during solar maximum conditions is discussed.

  12. Modelling horizontal and vertical concentration profiles of ozone and oxides of nitrogen within high-latitude urban areas

    International Nuclear Information System (INIS)

    Nicholson, J.P.; Weston, K.J.

    2001-01-01

    Urban ozone concentrations are determined by the balance between ozone destruction, chemical production and supply through advection and turbulent down-mixing from higher levels. At high latitudes, low levels of solar insolation and high horizontal advection speeds reduce the photochemical production and the spatial ozone concentration patterns are largely determined by the reaction of ozone with nitric oxide and dry deposition to the surface. A Lagrangian column model has been developed to simulate the mean (monthly and annual) three-dimensional structure in ozone and nitrogen oxides (NO x ) concentrations in the boundary-layer within and immediately around an urban area. The short-time-scale photochemical processes of ozone and NO x , as well as emissions and deposition to the ground, are simulated. The model has a horizontal resolution of 1x1km and high resolution in the vertical. It has been applied over a 100x100km domain containing the city of Edinburgh (at latitude 56 o N) to simulate the city-scale processes of pollutants. Results are presented, using averaged wind-flow frequencies and appropriate stability conditions, to show the extent of the depletion of ozone by city emissions. The long-term average spatial patterns in the surface ozone and NO x concentrations over the model domain are reproduced quantitatively. The model shows the average surface ozone concentrations in the urban area to be lower than the surrounding rural areas by typically 50% and that the areas experiencing a 20% ozone depletion are generally restricted to within the urban area. The depletion of the ozone concentration to less than 50% of the rural surface values extends only 20m vertically above the urban area. A series of monitoring sites for ozone, nitric oxide and nitrogen dioxide on a north-south transect through the city - from an urban, through a semi-rural, to a remote rural location - allows the comparison of modelled with observed data for the mean diurnal cycle of ozone

  13. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Langner, J.; Bergstroem, R.; Foltescu, V. [Swedish Meteorological and Hydrological Institute, Norrkoeping (Sweden)

    2005-02-01

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition. (author)

  14. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Science.gov (United States)

    Langner, Joakim; Bergström, Robert; Foltescu, Valentin

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition.

  15. Assessing ozone and nitrogen impact on net primary productivity with a Generalised non-Linear Model

    International Nuclear Information System (INIS)

    De Marco, Alessandra; Screpanti, Augusto; Attorre, Fabio; Proietti, Chiara; Vitale, Marcello

    2013-01-01

    Some studies suggest that in Europe the majority of forest growth increment can be accounted for N deposition and very little by elevated CO 2 . High ozone (O 3 ) concentrations cause reductions in carbon fixation in native plants by offsetting the effects of elevated CO 2 or N deposition. The cause-effect relationships between primary productivity (NPP) of Quercus cerris, Q. ilex and Fagus sylvatica plant species and climate and pollutants (O 3 and N deposition) in Italy have been investigated by application of Generalised Linear/non-Linear regression model (GLZ model). The GLZ model highlighted: i) cumulative O 3 concentration-based indicator (AOT40F) did not significantly affect NPP; ii) a differential action of oxidised and reduced nitrogen depositions to NPP was linked to the geographical location; iii) the species-specific variation of NPP caused by combination of pollutants and climatic variables could be a potentially important drive-factor for the plant species' shift as response to the future climate change. - Highlights: ► GLZ Models emphasized the role of combination of variables affecting NPP. ► A differential action of ox-N and red-N deposition to NPP was observed for plants. ► Different responses to climate and pollutants could affect the plant species' shift. - Ozone and nitrogen depositions have non-linear effects on primary productivity of tree species differently distributed in Italy.

  16. Ozone impacts on vegetation in a nitrogen enriched and changing climate

    International Nuclear Information System (INIS)

    Mills, Gina; Harmens, Harry; Wagg, Serena; Sharps, Katrina; Hayes, Felicity; Fowler, David; Sutton, Mark; Davies, Bill

    2016-01-01

    This paper provides a process-oriented perspective on the combined effects of ozone (O_3), climate change and/or nitrogen (N) on vegetation. Whereas increasing CO_2 in controlled environments or open-top chambers often ameliorates effects of O_3 on leaf physiology, growth and C allocation, this is less likely in the field. Combined responses to elevated temperature and O_3 have rarely been studied even though some critical growth stages such as seed initiation are sensitive to both. Under O_3 exposure, many species have smaller roots, thereby enhancing drought sensitivity. Of the 68 species assessed for stomatal responses to ozone, 22.5% were unaffected, 33.5% had sluggish or increased opening and 44% stomatal closure. The beneficial effect of N on root development was lost at higher O_3 treatments whilst the effects of increasing O_3 on root biomass became more pronounced as N increased. Both responses to gradual changes in pollutants and climate and those under extreme weather events require further study. - Highlights: • CO_2 amelioration of O_3 effects on leaf physiology are less likely in the field. • Both extremes of temperature and O_3 impact on critical growth stages. • Many species are more sensitive to drought as a result of exposure to O_3 pollution. • The beneficial effect of N on root development is lost at higher O_3 treatments. • The effects of O_3 on root biomass are higher at high than low N. - A process-oriented perspective on the combined effects of ozone, climate change and/or nitrogen on vegetation.

  17. Dry Deposition of Reactive Nitrogen From Satellite Observations of Ammonia and Nitrogen Dioxide Over North America

    Science.gov (United States)

    Kharol, S. K.; Shephard, M. W.; McLinden, C. A.; Zhang, L.; Sioris, C. E.; O'Brien, J. M.; Vet, R.; Cady-Pereira, K. E.; Hare, E.; Siemons, J.; Krotkov, N. A.

    2018-01-01

    Reactive nitrogen (Nr) is an essential nutrient to plants and a limiting element for growth in many ecosystems, but it can have harmful effects on ecosystems when in excess. Satellite-derived surface observations are used together with a dry deposition model to estimate the dry deposition flux of the most abundant short-lived nitrogen species, NH3 and NO2, over North America during the 2013 warm season. These fluxes demonstrate that the NH3 contribution dominates over NO2 for most regions (comprising 85% of their sum in Canada and 65% in the U.S.), with some regional exceptions (e.g. Alberta and northeastern U.S.). Nationwide, 51 t of N from these species were dry deposited in the U.S., approximately double the 28 t in Canada over this period. Forest fires are shown to be the major contributor of dry deposition of Nr from NH3 in northern latitudes, leading to deposition fluxes 2-3 times greater than from expected amounts without fires.

  18. NOxTOy: A miniaturised new instrument for reactive nitrogen oxides in the atmosphere

    International Nuclear Information System (INIS)

    Dommen, J.; Prevot, A.S.H.; Neininger, B.; Clark, N.

    2000-01-01

    Emission of nitrogen oxides (NO, NO 2 ) and hydrocarbons into the atmosphere lead, under sunlight, to the formation of ozone and other photo oxidants. To better understand the ozone forming processes, the production and concentration of the nitrogen containing reaction products like nitric acid (HNO 3 ) or peroxyacetylnitrate (PAN) have to be determined. In a joint project with other research institutions and a private enterprise a miniaturised instrument was developed under a KTI contract. It is possible to measure several nitrogen oxides, NO 2 , NO x , NO y , PAN, HNO 3 and O x simultaneously. The dimensions and the power consumption of the instrument are suited for the operation in a motor glider and in a van. First measurements have been successfully performed and are presented. (authors)

  19. Treatability study of the effluent containing reactive blue 21 dye by ozonation and the mass transfer study of ozone

    Science.gov (United States)

    Velpula, Priyadarshini; Ghuge, Santosh; Saroha, Anil K.

    2018-04-01

    Ozonation is a chemical treatment process in which ozone reacts with the pollutants present in the effluent by infusion of ozone into the effluent. This study includes the effect of various parameters such as inlet ozone dose, pH of solution and initial concentration of dye on decolorization of dye in terms CRE. The maximum CRE of 98.62% with the reaction rate constant of 0.26 min-1 is achieved in 18 minutes of reaction time at inlet ozone dose of 11.5 g/m3, solution pH of 11 and 30 mg/L of initial concentration of dye. The presence of radical scavenger (Tertiary Butyl Alcohol) suppressed the CRE from 98.62% to 95.4% at high pH values indicates that the indirect mechanism dominates due to the presence of hydroxyl radicals which are formed by the decomposition of ozone. The diffusive and convective mass transfer coefficients of ozone are calculated as 1.78 × 10-5 cm2/sec and 0.075 min-1. It is observed that the fraction of resistance offered by liquid is very much high compared to gas phase indicates that the ozonation is a liquid phase mass transfer controlled operation.

  20. Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122

    International Nuclear Information System (INIS)

    Santana, Mario H.P.; Da Silva, Leonardo M.; Freitas, Admildo C.; Boodts, Julien F.C.; Fernandes, Karla C.; De Faria, Luiz A.

    2009-01-01

    Aqueous solutions containing the commercial azo dye Reactive Orange 122 (RO122) were ozonated in acid and alkaline conditions. Ozone was electrochemically generated using a laboratory-made electrochemical reactor and applied using semi-batch conditions and a column bubble reactor. A constant ozone application rate of 0.25 g h -1 was used throughout. Color removal and degradation efficiency were evaluated as function of ozonation time, pH and initial dye concentration by means of discoloration kinetics and COD-TOC removal. Experimental findings revealed that pH affects both discoloration kinetics and COD-TOC removal. A single pseudo-first-order kinetic rate constant, k obs , for discoloration was found for ozonation carried out in alkaline solutions, contrary to acidic solutions where k obs depends on ozonation time. COD-TOC removal supports degradation of RO122 is more pronounced for alkaline conditions. Evaluation of the oxidation feasibility by means of the COD/TOC ratio indicates that the ozonation process in both acid and alkaline conditions leads to a reduction in recalcitrance of the soluble organic matter

  1. Textile wastewater treatment: colour and COD removal of reactive black-5 by ozonation

    Science.gov (United States)

    Suryawan, I. W. K.; Helmy, Q.; Notodarmojo, S.

    2018-01-01

    Textile industries produced a large amount of highly coloured wastewater containing variety of dyes in different concentrations. Due to the high concentration of organics in the effluents and the higher stability of modern synthetic dyes, the conventional biological treatment methods are ineffective for the complete colour removal and degradation of organics and dyes. On the other hand, physical-chemical treatment are not destructive, mainly just concentrate and separate the pollutants phases. This research paper investigates the removal of colour and chemical oxygen demand/COD from textile wastewater using ozone treatment. Varied ozone dosages of 1.16; 3.81; 18.79; and 40.88 mg/minute were used in the experiment. Varied wastewater containing Reactive Black 5 (RB-5) concentrations of 40 mg/L, 100 mg/L were also applied. Research result showed the highest colour removal efficiency of 96.9 % was achieved after 5 hours incubation time, while the highest COD removal efficiency of 77.5% was achieved after 2 hours incubation time.

  2. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, and growth of young spruce trees (Picea abies)

    International Nuclear Information System (INIS)

    Thomas, V.F.D.; Braun, S.; Flueckiger, W.

    2005-01-01

    Spruce saplings were grown under different nitrogen fertilization regimes in eight chamberless fumigation systems, which were fumigated with either charcoal-filtered (F) or ambient air (O 3 ). After the third growing season trees were harvested for biomass and non-structural carbohydrate analysis. Nitrogen had an overall positive effect on the investigated plant parameters, resulting in increased shoot elongation, biomass production, fine root soluble carbohydrate concentrations, and also slightly increased starch concentrations of stems and roots. Only needle starch concentrations and fine root sugar alcohol concentrations were decreased. Ozone fumigation resulted in needle discolorations and affected most parameters negatively, including decreased shoot elongation and decreased starch concentrations in roots, stems, and needles. In fine roots, however, soluble carbohydrate concentrations remained unaffected or increased by ozone fumigation. The only significant interaction was an antagonistic effect on root starch concentrations, where higher nitrogen levels alleviated the negative impact of ozone. - Simultaneous ozone fumigation and nitrogen fertilization have no synergistic impacts on carbohydrate concentrations, biomass, or growth of Picea abies saplings

  3. Role of photoexcited nitrogen dioxide chemistry on ozone formation and emission control strategy over the Pearl River Delta, China

    Science.gov (United States)

    A new hydroxyl radical formation pathway via photo-excited nitrogen dioxide chemistry is incorporated into a chemistry-only box model as well as a 3D air quality model to examine its potential role on ozone formation and emission control strategy over the Pearl River Delta region...

  4. Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars

    Science.gov (United States)

    Ben'ko, E. M.; Manisova, O. R.; Lunin, V. V.

    2013-07-01

    The efficiency of pre-treatment of aspen wood with ozone for subsequent enzymatic hydrolysis into sugars is determined by the amount of absorbed ozone. The ozone absorption rate depended on the water content in the sample being ozonized and was maximum at a relative humidity of wood of ˜40%. As a result of ozone pre-treatment, the initial rate of the enzymatic hydrolysis of wood under the action of a cellulase complex increased eightfold, and the maximum yield of sugars increased tenfold depending on the ozone dose. The ozonation at ozone doses of more than 3 mol/PPU (phenylpropane structural unit of lignin) led to a decrease in the yield of sugars because of the oxidative destruction of cellulose and hemicellulose. The alkaline ozonation in 2 and 12% NaOH was inefficient because of the accompanying oxidation of carbohydrates and considerably decreased the yield of sugars.

  5. Governing processes for reactive nitrogen compounds in the European atmosphere

    DEFF Research Database (Denmark)

    Hertel, Ole; Skjøth, Carsten Ambelas; Reis, S.

    2012-01-01

    +)), oxidized nitrogen (NOy: nitrogen monoxide (NO) + nitrogen dioxide (NO2) and their reaction products) as well as organic nitrogen compounds (organic N). Pollution abatement strategies need to take into account the differences in the governing processes of these compounds when assessing their impact...... on ecosystem services, biodiversity, human health and climate. NOx (NO+NO2) emitted from traffic affects human health in urban areas where the presence of buildings increases the residence time in streets. In urban areas this leads to enhanced exposure of the population to NOx concentrations. NOx emissions.......5 and PM10 (mass of aerosols with an aerodynamic diameter of less than 2.5 and 10 mu m, respectively) with an impact on radiation balance as well as potentially on human health. Little is known quantitatively and qualitatively about organic N in the atmosphere, other than that it contributes a significant...

  6. Reactive Nitrogen Monitoring Gaps: Issues, Activities and Needs

    Science.gov (United States)

    In this article we demonstrate the importance of ammonia and organic nitrogen to total N deposition budgets and review the current activities to close these monitoring gaps. Finally, remaining monitoring needs and issues are discussed.

  7. Reactive Uptake of Sulfur Dioxide and Ozone on Volcanic Glass and Ash at Ambient Temperature

    Science.gov (United States)

    Maters, Elena C.; Delmelle, Pierre; Rossi, Michel J.; Ayris, Paul M.

    2017-09-01

    The atmospheric impacts of volcanic ash from explosive eruptions are rarely considered alongside those of volcanogenic gases/aerosols. While airborne particles provide solid surfaces for chemical reactions with trace gases in the atmosphere, the reactivity of airborne ash has seldom been investigated. Here we determine the total uptake capacity (NiM) and initial uptake coefficient (γM) for sulfur dioxide (SO2) and ozone (O3) on a compositional array of volcanic ash and glass powders at 25°C in a Knudsen flow reactor. The measured ranges of NiSO2 and γSO2 (1011-1013 molecules cm-2 and 10-3-10-2) and NiO3 and γO3 (1012-1013 molecules cm-2 and 10-3-10-2) are comparable to values reported for mineral dust. Differences in ash and glass reactivity toward SO2 and O3 may relate to varying abundances of, respectively, basic and reducing sites on these materials. The typically lower SO2 and O3 uptake on ash compared to glass likely results from prior exposure of ash surfaces to acidic and oxidizing conditions within the volcanic eruption plume/cloud. While sequential uptake experiments overall suggest that these gases do not compete for reactive surface sites, SO2 uptake forming adsorbed S(IV) species may enhance the capacity for subsequent O3 uptake via redox reaction forming adsorbed S(VI) species. Our findings imply that ash emissions may represent a hitherto neglected sink for atmospheric SO2 and O3.

  8. Reactivity of amino acid anions with nitrogen and oxygen atoms.

    Science.gov (United States)

    Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M

    2018-02-14

    For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

  9. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China

    Science.gov (United States)

    Liang, Xiaoming; Chen, Xiaofang; Zhang, Jiani; Shi, Tianli; Sun, Xibo; Fan, Liya; Wang, Liming; Ye, Daiqi

    2017-08-01

    Increasingly serious ozone (O3) pollution, along with decreasing NOx emission, is creating a big challenge in the control of volatile organic compounds (VOCs) in China. More efficient and effective measures are assuredly needed for controlling VOCs. In this study, a reactivity-based industrial VOCs emission inventory was established in China based on the concept of ozone formation potential (OFP). Key VOCs species, major VOCs sources, and dominant regions with high reactivity were identified. Our results show that the top 15 OFP-based species, including m/p-xylene, toluene, propene, o-xylene, and ethyl benzene, contribute 69% of the total OFP but only 30% of the total emission. The architectural decoration industry, oil refinery industry, storage and transport, and seven other sources constituted the top 10 OFP subsectors, together contributing a total of 85%. The provincial and spatial characteristics of OFP are generally consistent with those of mass-based inventory. The implications for O3 control strategies in China are discussed. We propose a reactivity-based national definition of VOCs and low-reactive substitution strategies, combined with evaluations of health risks. Priority should be given to the top 15 or more species with high reactivity through their major emission sources. Reactivity-based policies should be flexibly applied for O3 mitigation based on the sensitivity of O3 formation conditions.

  10. Observational constraints for the source strengths, transport and partitioning of reactive nitrogen on regional and global scales

    Science.gov (United States)

    Bertram, Timothy Hugh

    Reactive nitrogen (NOy) exerts control over the production of tropospheric ozone (O3) and the destruction of stratospheric O 3, plays an important role in the formation of secondary organic aerosol and represents a critical link between the atmosphere and biosphere. Accurate estimates of the spatial and temporal distribution of nitrogen oxide (NO x) emissions and their subsequent transport and chemical processing are critical to furthering our understanding of these processes. In this dissertation, several new approaches to understanding the role of nitrogen oxides in atmospheric chemistry are developed. Most of the observations and analyses presented are based on aircraft measurements used to describe and understand the distribution of NOx from the surface to the upper troposphere (UT) and to provide an understanding of the accuracy of satellite measurements. First, new experiments to establish the absolute accuracy and long term precision of the standards maintained at the National Institute of Standards and Technology (NIST) are described. These standards serve as the references upon which calibration of the instruments used to make atmospheric measurements of O3, nitric oxide (NO) and nitrogen dioxide (NO2) are based. Gas-phase titration of ozone with nitric oxide was used to show that the O3, NO and NO2 standards are self-consistent to within 1%. Prior experiments had only established these three to be self-consistent to 4%. Following this, the implementation of the Thermal Dissociation - Laser Induced Fluorescence (TD-LIF) Technique for measurements of NO2, total peroxy nitrates (SigmaPNs), total alkyl nitrates (SigmaANs) and nitric acid (HNO3) from an aircraft platform is discussed and the measurements obtained are compared directly to analogous measurements made aboard the same aircraft or different aircraft during in-flight comparisons. Detailed observations of the partitioning of reactive nitrogen in the upper troposphere, during a period of intense

  11. Reactive nitrogen in the environment and its effect on climate change

    International Nuclear Information System (INIS)

    Erisman, J.W.; Bleeker, A.; Galloway, J.; Seitzinger, S.; Butterbach-Bahl, K.

    2011-01-01

    Humans have doubled levels of reactive nitrogen in circulation, largely as a result of fertilizer application and fossil fuel burning. This massive alteration of the nitrogen cycle affects climate, food security, energy security, human health and ecosystem services. Our estimates show that nitrogen currently leads to a net-cooling effect on climate with very high uncertainty. The many complex warming and cooling interactions between nitrogen and climate need to be better assessed, taking also into account the other effects of nitrogen on human health, environment and ecosystem services. Through improved nitrogen management substantial reductions in atmospheric greenhouse gas concentrations could be generated, also allowing for other co-benefits, including improving human health and improved provision of ecosystem services, for example clean air and water, and biodiversity.

  12. Stratospheric Aerosol and Gas Experiment II measurements of the quasi-biennial oscillations in ozone and nitrogen dioxide

    Science.gov (United States)

    Zawodny, Joseph M.; Mccormick, M. P.

    1991-01-01

    The first measurements ever to show a quasi-biennial oscillation (QBO) in NO2 have been made by the Stratospheric Aerosol and Gas Experiment II) (SAGE II) and are presented in this work along with observations of the well-known QBO in stratospheric ozone. The SAGE II instrument was launched aboard the Earth Radiation Budget satellite near the end of 1984. Measurements of ozone and nitrogen dioxide through early 1990 are analyzed for the presence of a quasi-biennial oscillation. The measurements show the global extent of both the O3 and NO2 QBO in the 25- to 40-km region of the stratosphere. The SAGE II QBO results for ozone compare favorably to theory and previous measurements. The QBO in NO2 is found to be consistent with the vertical and horizontal transport of NOy. Both species exhibit a QBO at extratropical latitudes consistent with strong meridional transport into the winter hemisphere.

  13. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    Science.gov (United States)

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  14. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  15. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    Science.gov (United States)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  16. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    Science.gov (United States)

    Foley, Theresa

    The Clean Air Act of 1970 was promulgated after thousands of lives were lost in four catastrophic air pollution events. It authorized the establishment of National Ambient Air Quality Standards or (NAAQS) for six pollutants that are harmful to human health and welfare: carbon monoxide, lead, nitrogen dioxide, particulate matter, ozone and sulfur dioxide. The Clean Air Act also led to the establishment of the United Stated Environmental Protection Agency (US EPA) to set and enforce regulations. The first paper in this dissertation studies ozone in the Lake Michigan region (Foley, T., Betterton, E.A., Jacko, R., Hillery, J., 2011. Lake Michigan air quality: The 1994-2003 LADCO Aircraft Project (LAP). Atmospheric Environment 45, 3192-3202.) The Chicago-Milwaukee-Gary metropolitan area has been unable to meet the ozone NAAQS since the Clean Air Act was implemented. The Lake Michigan Air Directors' Consortium (LADCO) hypothesized that land breezes transport ozone precursor compounds over the lake, where a large air/water temperature difference creates a shallow conduction layer, which is an efficient reaction chamber for ozone formation. In the afternoon, lake breezes and prevailing synoptic winds then transport ozone back over the land. To further evaluate this hypothesis, LADCO sponsored the 1994-2003 LADCO Aircraft Project (LAP) to measure the air quality over Lake Michigan and the surrounding areas. This study has found that the LAP data supports this hypothesis of ozone formation, which has strong implications for ozone control strategies in the Lake Michigan region. The second paper is this dissertation (Foley, T., Betterton, E.A., Wolf, A.M.A., 2012. Ambient PM10 and metal concentrations measured in the Sunnyside Unified School District, Tucson, Arizona. Journal of the Arizona-Nevada Academy of Science, 43, 67-76) evaluated the airborne concentrations of PM10 (particulate matter with an aerodynamic diameter of 10 microns or less) and eight metalloids and metals

  17. Pulmonary arachidonic acid metabolism following acute exposures to ozone and nitrogen dioxide

    International Nuclear Information System (INIS)

    Schlesinger, R.B.; Driscoll, K.E.; Gunnison, A.F.; Zelikoff, J.T.

    1990-01-01

    Ozone (O 3 ) and nitrogen dioxide (NO 2 ) are common air pollutants, and exposure to these gases has been shown to affect pulmonary physiology, biochemistry, and structure. This study examined their ability to modulate arachidonic acid metabolites (eicosanoids) in the lungs. Rabbits were exposed for 2 h to O 3 at 0.1, 0.3, or 1 ppm; NO 2 at 1, 3, or 10 ppm; or to a mixture of 0.3 ppm O 3 and 3 ppm NO 2 . Groups of animals sacrificed either immediately or 24 h after each exposure underwent broncho-pulmonary lavage. Selected eicosanoids were assessed in lavage fluid by radioimmunoassay. Increases in prostaglandins E2 (PGE2) and F2 alpha (PGF2 alpha) were found immediately after exposure to 1 ppm O 3 . Exposure to 10 ppm NO 2 resulted in a depression of 6-keto-PGF1 alpha, while thromboxane B2 (TxB2) was elevated after exposure to 1 ppm NO 2 and depressed following 3 and 10 ppm. The O 3 /NO 2 mixture resulted in synergistic increases in PGE2 and PGF2 alpha, with the response appearing to be driven by O 3 . This study has demonstrated that acute exposure to either O 3 or NO 2 can alter pulmonary arachidonic acid metabolism and that the responses to these oxidants differ, both quantitatively and qualitatively

  18. Air Pollution and Watershed Research in the Central Sierra Nevada of California: Nitrogen and Ozone

    Directory of Open Access Journals (Sweden)

    Carolyn Hunsaker

    2007-01-01

    Full Text Available Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3 and nitrogenous (N air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100–2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.

  19. Absorption of ozone, sulfur dioxide, and nitrogen dioxide by petunia plants

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1981-01-01

    Petunia plants (Petunia hybrida Vilm.) of three varieties with differing air pollutant sensitivities were grown in controlled environments and the absorption rates of ozone (O/sub 3/), sulfur dioxide (SO/sub 2/) and nitrogen dioxide (NO/sub 2/) determined during single gas and mixed gas exposures. Additional experiments were conducted to evaluate effects of duration of exposure, leaf age, and plant growth stage on absorption of O/sub 3/. Absorption of all pollutants from single gases or the mixture was generally greater for the more sensitive varieties. Absorption from single gases was generally greater than from the mixed gases. Absorption rates tended to decrease gradually throughout the day and from day to day with continuous exposure. Absorption of O/sub 3/ was proportional to exposure concentration and decreased with time at differing rates for each variety. More O/sub 3/ was absorbed by older than younger leaves and by plants at the early vegetative stage compared with those in the prefloral stage.

  20. Effects of local meteorology and aerosols on ozone and nitrogen dioxide retrievals from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011.

    Science.gov (United States)

    Reed, Andra J; Thompson, Anne M; Kollonige, Debra E; Martins, Douglas K; Tzortziou, Maria A; Herman, Jay R; Berkoff, Timothy A; Abuhassan, Nader K; Cede, Alexander

    An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of D eriving I nformation on S urface CO nditions from Column and VER tically Resolved Observations Relevant to A ir Q uality (DISCOVER-AQ). Satellite retrievals of total column ozone and nitrogen dioxide from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used, while Pandora spectrometers provide total column ozone and nitrogen dioxide amounts from the ground. We found that OMI and Pandora agree well (residuals within ±25 % for nitrogen dioxide, and ±4.5 % for ozone) for a majority of coincident observations during July 2011. Comparisons with surface nitrogen dioxide from a Teledyne API 200 EU NO x Analyzer showed nitrogen dioxide diurnal variability that was consistent with measurements by Pandora. However, the wide OMI field of view, clouds, and aerosols affected retrievals on certain days, resulting in differences between Pandora and OMI of up to ±65 % for total column nitrogen dioxide, and ±23 % for total column ozone. As expected, significant cloud cover (cloud fraction >0.2) was the most important parameter affecting comparisons of ozone retrievals; however, small, passing cumulus clouds that do not coincide with a high (>0.2) cloud fraction, or low aerosol layers which cause significant backscatter near the ground affected the comparisons of total column nitrogen dioxide retrievals. Our results will impact post-processing satellite retrieval algorithms and quality control procedures.

  1. Cost of reactive nitrogen release from human activities to the environment in the United States

    Science.gov (United States)

    The leakage of reactive nitrogen (N) from human activities to the environment can cause human health and ecological problems. Often these harmful effects are not reflected in the costs of food, fuel, and fiber that derive from N use. Spatial analyses of economic costs and benef...

  2. Reactivity of niobium cluster anions with nitrogen and carbon monoxide

    Science.gov (United States)

    Mwakapumba, Joseph; Ervin, Kent M.

    1997-02-01

    Reactions of small niobium cluster anions, Nbn-(n = 2-7), with CO and N2 are investigated using a flow tube reactor (flowing afterglow) apparatus. Carbon monoxide chemisorption on niobium cluster anions occurs with faster reaction rates than nitrogen chemisorption on corresponding cluster sizes. N2 addition to niobium cluster anions is much more size-selective than is CO addition. These general trends follow those reported in the literature for reactions of neutral and cationic niobium clusters with CO and N2. Extensive fragmentation of the clusters is observed upon chemisorption. A small fraction of the larger clusters survive and sequentially add multiple CO or N2 units without fragmentation. However, chemisorption saturation is not reached at the experimentally accessible pressure and reagent concentration ranges. The thermochemistry of the adsorption processes and the nature of the adsorbed species, molecular or dissociated, are discussed.

  3. Formation of reactive nitrogen oxides from urban grime photochemistry

    Science.gov (United States)

    Baergen, Alyson M.; Donaldson, D. James

    2016-05-01

    Impervious surfaces are ubiquitous in urban environments and constitute a substrate onto which atmospheric constituents can deposit and undergo photochemical and oxidative processing, giving rise to "urban grime" films. HNO3 and N2O5 are important sinks for NOx in the lower atmosphere and may be deposited onto these films, forming nitrate through surface hydrolysis. Although such deposition has been considered as a net loss of NOx from the atmosphere, there is increasing evidence that surface-associated nitrate undergoes further reaction. Here, we examine the gas phase products of the photochemistry of real, field-collected urban grime using incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Gas phase nitrogen oxides are emitted upon illumination of grime samples and their production increases with ambient relative humidity (RH) up to 35 % after which the production becomes independent of RH. These results are discussed in the context of water uptake onto and evaporation from grime films.

  4. An MCM modeling study of nitryl chloride (ClNO2) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow

    Science.gov (United States)

    Riedel, T. P.; Wolfe, G. M.; Danas, K. T.; Gilman, J. B.; Kuster, W. C.; Bon, D. M.; Vlasenko, A.; Li, S.-M.; Williams, E. J.; Lerner, B. M.; Veres, P. R.; Roberts, J. M.; Holloway, J. S.; Lefer, B.; Brown, S. S.; Thornton, J. A.

    2014-04-01

    Nitryl chloride (ClNO2) is produced at night by reactions of dinitrogen pentoxide (N2O5) on chloride containing surfaces. ClNO2 is photolyzed during the morning hours after sunrise to liberate highly reactive chlorine atoms (Cl·). This chemistry takes place primarily in polluted environments where the concentrations of N2O5 precursors (nitrogen oxide radicals and ozone) are high, though it likely occurs in remote regions at lower intensities. Recent field measurements have illustrated the potential importance of ClNO2 as a daytime Cl· source and a nighttime NOx reservoir. However, the fate of the Cl· and the overall impact of ClNO2 on regional photochemistry remain poorly constrained by measurements and models. To this end, we have incorporated ClNO2 production, photolysis, and subsequent Cl· reactions into an existing master chemical mechanism (MCM version 3.2) box model framework using observational constraints from the CalNex 2010 field study. Cl· reactions with a set of alkenes and alcohols, and the simplified multiphase chemistry of N2O5, ClNO2, HOCl, ClONO2, and Cl2, none of which are currently part of the MCM, have been added to the mechanism. The presence of ClNO2 produces significant changes to oxidants, ozone, and nitrogen oxide partitioning, relative to model runs excluding ClNO2 formation. From a nighttime maximum of 1.5 ppbv ClNO2, the daytime maximum Cl· concentration reaches 1 × 105 atoms cm-3 at 07:00 model time, reacting mostly with a large suite of volatile organic compounds (VOC) to produce 2.2 times more organic peroxy radicals in the morning than in the absence of ClNO2. In the presence of several ppbv of nitrogen oxide radicals (NOx = NO + NO2), these perturbations lead to similar enhancements in hydrogen oxide radicals (HOx = OH + HO2). Neglecting contributions from HONO, the total integrated daytime radical source is 17% larger when including ClNO2, which leads to a similar enhancement in integrated ozone production of 15%. Detectable

  5. Distributions of chemical reactive compounds: Effects of different emissions on the formation of ozone

    International Nuclear Information System (INIS)

    Vogel, H.; Fiedler, F.; Vogel, B.

    1993-01-01

    By using the model system the concentration distributions are simulated in accordance to the conditions of the beginning of August 1990. For this situation the influence of the emissions outside of the modelling region and the influence of biogenic emissions of hydrocarbons on the ozone formation in the modeling region was investigated. Comparing the results of the different simulations one can find differences concerning the netto production of the oxidants. For the first simulation day the emissions outside of the modeling region show a strong influence on the ozone production. Integrated over the whole boundary layer the ozone mass increases by 24%. If additionally the biogenic emissions are taken into account one can find only an increase of 7% for the 1. day. In contrast at the 2. simulation day the ozone production increases by 81%. For this case the ozone concentration near the ground is up to 20 ppb higher than for the model rund without biogenic emissions. (orig./BBR) [de

  6. A New GIS-Nitrogen Trading Tool Concept to Minimize Reactive Nitrogen losses to the Environment

    Science.gov (United States)

    Nitrogen (N) is an essential element which is needed to maximize agricultural production and sustainability of worldwide agroecosystems. N losses to the environment are impacting water and air quality that has become an environmental concern for the future generations. It has led to the need for dev...

  7. Dynamics of nitrogen oxides and ozone above and within a mixed hardwood forest in northern Michigan

    Directory of Open Access Journals (Sweden)

    B. Seok

    2013-08-01

    Full Text Available The dynamic behavior of nitrogen oxides (NOx = NO + NO2 and ozone (O3 above and within the canopy at the University of Michigan Biological Station AmeriFlux (UMBS Flux site was investigated by continuous multi-height vertical gradient measurements during the summer and the fall of 2008. A daily maximum in nitric oxide (NO mixing ratios was consistently observed during the morning hours between 06:00 and 09:00 EST above the canopy. Daily NO maxima ranged between 0.1 and 2 ppbv (with a median of 0.3 ppbv, which were 2 to 20 times above the atmospheric background. The sources and causes of the morning NO maximum were evaluated using NOx and O3 measurements and synoptic and micrometeorological data. Numerical simulations with a multi-layer canopy-exchange model were done to further support this analysis. The observations indicated that the morning NO maximum was caused by the photolysis of NO2 from non-local air masses, which were transported into the canopy from aloft during the morning breakup of the nocturnal boundary layer. The analysis of simulated process tendencies indicated that the downward turbulent transport of NOx into the canopy compensates for the removal of NOx through chemistry and dry deposition. The sensitivity of NOx and O3 concentrations to soil and foliage NOx emissions was also assessed with the model. Uncertainties associated with the emissions of NOx from the soil or from leaf-surface nitrate photolysis did not explain the observed diurnal behavior in NOx (and O3 and, in particular, the morning peak in NOx mixing ratios. However, a ~30% increase in early morning NOx and NO peak mixing ratios was simulated when a foliage exchange NO2 compensation point was considered. This increase suggests the potential importance of leaf-level, bidirectional exchange of NO2 in understanding the observed temporal variability in NOx at UMBS.

  8. Biogeochemical reactive transport of carbon, nitrogen and iron in the hyporheic zone

    Science.gov (United States)

    Dwivedi, D.; Steefel, C. I.; Newcomer, M. E.; Arora, B.; Spycher, N.; Hammond, G. E.; Moulton, J. D.; Fox, P. M.; Nico, P. S.; Williams, K. H.; Dafflon, B.; Carroll, R. W. H.

    2017-12-01

    To understand how biogeochemical processes in the hyporheic zone influence carbon and nitrogen cycling as well as stream biogeochemistry, we developed a biotic and abiotic reaction network and integrated it into a reactive transport simulator - PFLOTRAN. Three-dimensional reactive flow and transport simulations were performed to describe the hyporheic exchange of fluxes from and within an intra-meander region encompassing two meanders of East River in the East Taylor watershed, Colorado. The objectives of this study were to quantify (1) the effect of transience on the export of carbon, nitrogen, and iron; and (2) the biogeochemical transformation of nitrogen and carbon species as a function of the residence time. The model was able to capture reasonably well the observed trends of nitrate and dissolved oxygen values that decreased as well as iron (Fe (II)) values that increased along the meander centerline away from the stream. Hyporheic flow paths create lateral redox zonation within intra-meander regions, which considerably impact nitrogen export into the stream system. Simulation results further demonstrated that low water conditions lead to higher levels of dissolved iron in groundwater, which (Fe (II)> 80%) is exported to the stream on the downstream side during high water conditions. An important conclusion from this study is that reactive transport models representing spatial and temporal heterogeneities are required to identify important factors that contribute to the redox gradients at riverine scales.

  9. Identification of Reactive and Refractory Components of Dissolved Organic Nitrogen by FT-ICR Mass Spectrometry

    Science.gov (United States)

    Cooper, W. T.; Podgorski, D. C.; Osborne, D. M.; Corbett, J.; Chanton, J.

    2010-12-01

    Dissolved organic nitrogen is an often overlooked but potentially significant bioavailable component of dissolved organic matter. Studies of bulk DON turnover have been reported, but the compositions of the reactive and refractory components of DON are largely unknown. Here we show the unique ability of atmospheric pressure photoionization (APPI) coupled to ultrahigh resolution mass spectrometry to identify the reactive and refractory components of DON. Figure 1 is an isolated 0.30 m/z window from an ultrahigh resolution APPI FT-ICR mass spectrum of DON in surface waters draining an agricultural area in South Florida. Using this optimized, negative-ion APPI strategy we have been able to identify the reactive and refractory components of DON in these nitrogen-rich waters. Similar results were observed with samples from soil porewaters in sedge-dominated fens and sphagnum-dominated bogs within the Glacial Lake Agassiz Peatlands (GLAP) of northern Minnesota. Surprisingly, microbes appear to initially use similar enzymatic pathways to degrade DON and DOC, often with little release of nitrogen. Figure 1. Isolated 0.30 m/z window at nominal mass 432 from negative-ion APPI FT-ICR mass spectrum of DOM from waters draining an agricultural area in South Florida. Peaks marked contain nitrogen.

  10. Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow

    KAUST Repository

    Vu, Tran Manh; Won, Sanghee; Ombrello, Timothy M.; Cha, Min

    2014-01-01

    Ozone (O3) is known as one of the strongest oxidizers and therefore is widely used in many applications. Typically in the combustion field, a combination of non-thermal plasma and combustion systems have been studied focusing on the effects of ozone

  11. Evaluation of the accuracy of thermal dissociation CRDS and LIF techniques for atmospheric measurement of reactive nitrogen species

    Science.gov (United States)

    Womack, Caroline C.; Neuman, J. Andrew; Veres, Patrick R.; Eilerman, Scott J.; Brock, Charles A.; Decker, Zachary C. J.; Zarzana, Kyle J.; Dube, William P.; Wild, Robert J.; Wooldridge, Paul J.; Cohen, Ronald C.; Brown, Steven S.

    2017-05-01

    The sum of all reactive nitrogen species (NOy) includes NOx (NO2 + NO) and all of its oxidized forms, and the accurate detection of NOy is critical to understanding atmospheric nitrogen chemistry. Thermal dissociation (TD) inlets, which convert NOy to NO2 followed by NO2 detection, are frequently used in conjunction with techniques such as laser-induced fluorescence (LIF) and cavity ring-down spectroscopy (CRDS) to measure total NOy when set at > 600 °C or speciated NOy when set at intermediate temperatures. We report the conversion efficiency of known amounts of several representative NOy species to NO2 in our TD-CRDS instrument, under a variety of experimental conditions. We find that the conversion efficiency of HNO3 is highly sensitive to the flow rate and the residence time through the TD inlet as well as the presence of other species that may be present during ambient sampling, such as ozone (O3). Conversion of HNO3 at 400 °C, nominally the set point used to selectively convert organic nitrates, can range from 2 to 6 % and may represent an interference in measurement of organic nitrates under some conditions. The conversion efficiency is strongly dependent on the operating characteristics of individual quartz ovens and should be well calibrated prior to use in field sampling. We demonstrate quantitative conversion of both gas-phase N2O5 and particulate ammonium nitrate in the TD inlet at 650 °C, which is the temperature normally used for conversion of HNO3. N2O5 has two thermal dissociation steps, one at low temperature representing dissociation to NO2 and NO3 and one at high temperature representing dissociation of NO3, which produces exclusively NO2 and not NO. We also find a significant interference from partial conversion (5-10 %) of NH3 to NO at 650 °C in the presence of representative (50 ppbv) levels of O3 in dry zero air. Although this interference appears to be suppressed when sampling ambient air, we nevertheless recommend regular

  12. OZONE CONCENTRATION ATTRIBUTABLE PREMATURE DEATH IN POLAND

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2010-03-01

    Full Text Available Ozone in the lower part of the atmosphere (troposphere, strong photochemical oxidant, is not directly emitted to the atmosphere but formed through a series of complex reactions. Ozone concentrations depends on ozone precursors air contamination (mainly nitrogen dioxide and non-methane volatile organic compounds and meteorological conditions (temperature and solar radiation. The main sectors emitted ozone precursors are road transport, power and heat generation plants, household (heating, industry, and petrol storage and distribution. Ozone and some of its precursors are also transported long distances in the atmosphere and are therefore considered a transboundary problem. As a result, the ozone concentrations are often low in busy urban areas and higher in suburban and rural areas. Nowadays, instead of particulate matter, ozone is one of the most widespread global air pollution problems. In and around urban areas, relatively large gradients of ozone can be observed. Because of its high reactivity in elevated concentrations ozone causes serious health problems and damage to ecosystems, agricultural crops and materials. Main ill-health endpoints as a results of ozone concentrations can be characterised as an effect of pulmonary and cardiovascular system, time morbidity and mortality series, development of atherosclerosis and asthma and finally reduction in life expectancy. The associations with increased daily mortality due to ozone concentrations are confirmed by many researches and epidemiological studies. Estimation of the level selected ill-health endpoints (mortality in total and due to cardiovascular and respiratory causes as a result of the short-term ozone exposure in Poland was the main aim of the project. Final results have been done based on estimation method elaborated by WHO, ozone measurements from National Air Quality Monitoring System and statistical information such as mortality rate and populations. All analysis have been done in

  13. Ozone Pollution

    Science.gov (United States)

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  14. TRANC - a novel fast-response converter to measure total reactive atmospheric nitrogen

    Science.gov (United States)

    Marx, O.; Brümmer, C.; Ammann, C.; Wolff, V.; Freibauer, A.

    2012-05-01

    The input and loss of plant available nitrogen (reactive nitrogen: Nr) from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter), which offers the opportunity to quantify the sum of all airborne reactive nitrogen compounds (∑Nr) in high time resolution. The basic concept of the TRANC is the full conversion of all Nr to nitrogen monoxide (NO) within two reaction steps. Initially, reduced Nr compounds are being oxidised, and oxidised Nr compounds are thermally converted to lower oxidation states. Particulate Nr is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher nitrogen oxides or those generated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD) for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3-, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in ∑Nr concentrations and also matches the sum of all individual Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal and catalytic

  15. TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen

    Directory of Open Access Journals (Sweden)

    V. Wolff

    2012-05-01

    Full Text Available The input and loss of plant available nitrogen (reactive nitrogen: Nr from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter, which offers the opportunity to quantify the sum of all airborne reactive nitrogen compounds (∑Nr in high time resolution. The basic concept of the TRANC is the full conversion of all Nr to nitrogen monoxide (NO within two reaction steps. Initially, reduced Nr compounds are being oxidised, and oxidised Nr compounds are thermally converted to lower oxidation states. Particulate Nr is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher nitrogen oxides or those generated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3−, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in ∑Nr concentrations and also matches the sum of all individual Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal

  16. Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow

    KAUST Repository

    Vu, Tran Manh

    2014-04-01

    Ozone (O3) is known as one of the strongest oxidizers and therefore is widely used in many applications. Typically in the combustion field, a combination of non-thermal plasma and combustion systems have been studied focusing on the effects of ozone on flame propagation speeds and ignition characteristics. Here, we experimentally investigated the effects of ozone on blowoff of premixed methane/air and propane/air flames over a full range of equivalence ratios at room temperature and atmospheric pressure by using a co-flow burner and a dielectric barrier discharge. The results with ozone showed that a nozzle exit jet velocity at the moment of flame blowoff (blowoff velocity) significantly increased, and flammability limits for both fuel-lean and rich mixtures were also extended. Ozone had stronger effects of percent enhancement in the blowoff velocity for off-stoichiometric mixtures, while minimum enhancements could be observed around stoichiometric conditions for both fuels showing linear positive dependence on a tested range of ozone concentration up to 3810ppm. Through chemical kinetic simulations, the experimentally observed trends of the enhancement in blowoff velocity were identified as a result of the modification of the laminar burning velocity. Two ozone decomposition pathways of O3+N2→O+O2+N2 and O3+H→O2+OH were identified as the most controlling steps. These reactions, coupled with fuel consumption characteristics of each fuel determined the degree of promotion in laminar burning velocities, supporting experimental observations on blowoff velocities with ozone addition. © 2013 The Combustion Institute.

  17. Characteristics of surface ozone and nitrogen oxides at urban, suburban and rural sites in Ningbo, China

    Science.gov (United States)

    Tong, Lei; Zhang, Huiling; Yu, Jie; He, Mengmeng; Xu, Nengbin; Zhang, Jingjing; Qian, Feizhong; Feng, Jiayong; Xiao, Hang

    2017-05-01

    Surface ozone (O3) is a harmful air pollutant that has attracted growing concern in China. In this study, the mixing ratios of O3 and nitrogen oxides (NOx) at three different sites (urban, suburban and rural) of Ningbo were continuously measured to investigate the spatiotemporal characteristics of O3 and its relationships with environmental variables. The diurnal O3 variations were characterized by afternoon maxima (38.7-53.1 ppb on annual average) and early morning minima (11.7-26.2 ppb) at all the three sites. Two seasonal peaks of O3 were observed in spring (April or May) and autumn (October) with minima being observed in winter (December). NOx levels showed generally opposite variations to that of O3 with diurnal and seasonal maxima occurring in morning/evening rush-hours and in winter, respectively. As to the inter-annual variations of air pollutants, generally decreasing and increasing trends were observed in NO and O3 levels, respectively, from 2012 to 2015 at both urban and suburban sites. O3 levels were positively correlated with temperature but negatively correlated with relative humidity and NOx levels. Significant differences in O3 levels were observed for different wind speeds and wind directions (p variation, higher levels of O3 were observed at the suburban and rural sites where less O3 was depleted by NO titration. In contrast, the urban site exhibited lower O3 but higher NOx levels due to the influence of traffic emissions. Larger amplitudes of diurnal and monthly O3 variations were observed at the suburban site than those at the urban and rural sites. In general, the O3 levels at the non-urban sites were more affected by the background transport, while both the local and regional contributions played roles in urban O3 variations. The annual average O3 mixing ratios (22.7-37.7 ppb) in Ningbo were generally similar to those of other regions around the world. However, the recommended air quality standards for O3 were often exceeded during warm

  18. Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002-2011: SD-WACCM simulations compared to GOMOS observations

    Science.gov (United States)

    Kyrölä, Erkki; Andersson, Monika E.; Verronen, Pekka T.; Laine, Marko; Tukiainen, Simo; Marsh, Daniel R.

    2018-04-01

    Most of our understanding of the atmosphere is based on observations and their comparison with model simulations. In middle atmosphere studies it is common practice to use an approach, where the model dynamics are at least partly based on temperature and wind fields from an external meteorological model. In this work we test how closely satellite measurements of a few central trace gases agree with this kind of model simulation. We use collocated vertical profiles where each satellite measurement is compared to the closest model data. We compare profiles and distributions of O3, NO2 and NO3 from the Global Ozone Monitoring by Occultation of Stars instrument (GOMOS) on the Envisat satellite with simulations by the Whole Atmosphere Community Climate Model (WACCM). GOMOS measurements are from nighttime. Our comparisons show that in the stratosphere outside the polar regions differences in ozone between WACCM and GOMOS are small, between 0 and 6%. The correlation of 5-day time series show a very high 0.9-0.95. In the tropical region 10° S-10° N below 10 hPa WACCM values are up to 20 % larger than GOMOS. In the Arctic below 6 hPa WACCM ozone values are up to 20 % larger than GOMOS. In the mesosphere between 0.04 and 1 hPa the WACCM is at most 20 % smaller than GOMOS. Above the ozone minimum at 0.01 hPa (or 80 km) large differences are found between WACCM and GOMOS. The correlation can still be high, but at the second ozone peak the correlation falls strongly and the ozone abundance from WACCM is about 60 % smaller than that from GOMOS. The total ozone columns (above 50 hPa) of GOMOS and WACCM agree within ±2 % except in the Arctic where WACCM is 10 % larger than GOMOS. Outside the polar areas and in the validity region of GOMOS NO2 measurements (0.3-37 hPa) WACCM and GOMOS NO2 agree within -5 to +25 % and the correlation is high (0.7-0.95) except in the upper stratosphere at the southern latitudes. In the polar areas, where solar particle precipitation and downward

  19. Where the rubber meets the road: What is needed to sustainably manage reactive nitrogen in the United States?

    Science.gov (United States)

    Reactive nitrogen (N) is essential for food, fuel and fiber production of a growing human population. Intensification of reactive N (defined as any N compound other than N2) release to the environment, however, has resulted in important and mounting impacts on human health and e...

  20. Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Pekarová, Michaela; Lojek, Antonín

    2010-01-01

    Roč. 49, č. 3 (2010), s. 133-139 ISSN 1436-6207 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : polyunsaturated fatty acids * reactive oxygen species * reactive nitrogen species Subject RIV: BO - Biophysics Impact factor: 3.343, year: 2010

  1. Interactive effects of reactive nitrogen and climate change on US water resources

    Science.gov (United States)

    Baron, J.; Bernhardt, E. S.; Finlay, J. C.; Chan, F.; Nolan, B. T.; Howarth, B.; Hall, E.; Boyer, E. W.

    2011-12-01

    Water resources and aquatic ecosystems are increasingly strained by withdrawals for agriculture and drinking water supply, nitrogen and other pollutant inputs, and climate change. We describe current and projected effects of the interactions of reactive nitrogen (N) and climate change on water resources of the United States. As perturbations to the N cycle intensify in a warmer less predictable climate, interactions will negatively affect the services we expect of our water resources. There are also feedbacks to the climate system itself through the production of greenhouse gases. We conclude: 1. Nitrogen concentrations will increase in the nation's waters from increased N loading and higher N mineralization rates. N export from terrestrial to aquatic ecosystems exhibits a high sensitivity to climate variations. 2. Consequences range from eutrophication and acidification, which reduce natural biodiversity and harm economically valuable fisheries, to adverse impacts on human health. 3. Extreme flood events have the potential to transport N rapidly long distances downstream from its source. 4. A recent national assessment found 67% of streams derived more than 37% of their total nitrate load from base flow often derived from groundwater. Long residence times for groundwater nitrate below agricultural fields may cause benefits from proper N management practices to take decades to be realized under current and future climates. 5. Streams, wetlands, rivers, lakes, estuaries and continental shelves are hotspots for denitrification. Maintenance of N removal capacity thus a critical component of eutrophication management under changing climate and land use conditions. 6. The amount of N inputs from fertilizer and manure use, human population, and deposition is tightly coupled with hydrology to influence the rates and proportion of N emitted to the atmosphere as N2O. About 20% of global N2O emissions come from groundwater, lakes, rivers, and estuaries; stream and wetland

  2. Does high reactive nitrogen input from the atmosphere decrease the carbon sink strength of a peatland?

    Science.gov (United States)

    Brümmer, Christian; Zöll, Undine; Hurkuck, Miriam; Schrader, Frederik; Kutsch, Werner

    2017-04-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (ΣNr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ΣNr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ΣNr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study indicates that the sink strength of the peatland has likely been decreased through elevated N deposition over the past decades. It also demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  3. Thin films of amorphous nitrogenated carbon a-CN{sub x}: Electron transfer and surface reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Tamiasso-Martinhon, P.; Cachet, H.; Debiemme-Chouvy, C.; Deslouis, C. [Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques, CNRS, UPR15-LISE, 4 Place Jussieu, Paris F-75005 (France)

    2008-08-01

    The electrochemical behaviour of thin films of nitrogenated amorphous carbon a-CN{sub x} is similar to that of boron-doped diamond, with a wide potential window in aqueous media. They are elaborated by cathodic sputtering of a graphite target in an Ar-N{sub 2} active plasma for varying nitrogen contents, determined by XPS (0.06 {<=} x {<=} 0.39). Their electrochemical reactivity is sensitive to the surface state. The present study reports on the influence of electrochemical pre treatment on the electronic transfer rate of a fast redox system ferri-ferrocyanide, by focusing on the direction of the potential excursion. On the other hand, the role of both the pH and the potential on the interfacial capacitance in the presence of Na{sub 2}SO{sub 4} without redox species is documented. The results show up the sensitivity of the film surface to the electrochemical conditions. (author)

  4. EFFECTS OF CARBON DIOXIDE AND OZONE ON NITROGEN RETRANSLOCATION IN PONDEROSA PINE NEEDLES

    Science.gov (United States)

    Changes in leaf N concentration can be an important response to air pollutants in trees, with implications both for tree growth and N cycling through forest ecosystems. Ozone causes premature leaf senescence, which may be associated with a shift in N from the senescing leaves to...

  5. The Load of Lightning-induced Nitrogen Oxides and Its Impact on the Ground-level Ozone during Summertime over the Mountain West States

    Science.gov (United States)

    Lightning-induced nitrogen oxides (LNOX), in the presence of sunlight, volatile organic compounds and water, can be a relatively large but uncertain source for ozone (O3) and hydroxyl radical (OH) in the atmosphere. Using lightning flash data from the National Lightning Detection...

  6. In situ mid-infrared analyses of reactive gas-phase intermediates in TEOS/Ozone SAPCVD

    International Nuclear Information System (INIS)

    Whidden, Thomas K.; Doiron, Sarah

    1998-01-01

    In this report, we present in situ characterizations of chemical vapour deposition (CVD) reactors used in silicon dioxide thin film depositions. The characterizations are based on Fourier transform infrared spectroscopy. The infrared absorption data are interpreted within the context of process and thin film properties and the bearing of the spectroscopic data upon the chemical mechanisms extant in the deposition reaction. The relevance of the interpretations to real-time process control is discussed. The process under study in this work is TEOS/ozone-based deposition of silicon dioxide thin films at subatmospheric pressures. This process exhibits many desirable properties but has fundamental problems that may be solvable by reaction control based on in situ analyses and the real-time manipulation of reagent concentrations and process conditions. Herein we discuss our preliminary data on characterizations of TEOS/ozone chemistries in commercial reactor configurations. Reaction products and reactive intermediate species are detected and identified. Quantitative in situ measurements of the reagent materials are demonstrated. Preliminary correlations of these data with process and thin film properties are discussed

  7. Strategies for measuring flows of reactive nitrogen at the landscape scale

    DEFF Research Database (Denmark)

    Theobald, M.R.; Akkal, N.; Bienkowski, J.

    2011-01-01

    Within a rural landscape there are flows of reactive nitrogen (Nr) through and between the soil, vegetation, atmosphere and hydrological systems as well as transfer as a result of agricultural activities. Measurements of these flows and transfers have generally been limited to individual media (e.......g., hydrological flows) or the interface between two media (e.g., exchange between the soil and the atmosphere). However, the study of flows of Nr at the landscape scale requires a more integrated approach that combines measurement techniques to quantify the flows from one medium to the next. This paper discusses...

  8. Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives.

    Science.gov (United States)

    Manaa, M Riad; Reed, Evan J; Fried, Laurence E; Goldman, Nir

    2009-04-22

    We report the first quantum-based multiscale simulations to study the reactivity of shocked perfect crystals of the insensitive energetic material triaminotrinitrobenzene (TATB). Tracking chemical transformations of TATB experiencing overdriven shock speeds of 9 km/s for up to 0.43 ns and 10 km/s for up to 0.2 ns reveal high concentrations of nitrogen-rich heterocyclic clusters. Further reactivity of TATB toward the final decomposition products of fluid N(2) and solid carbon is inhibited due to the formation of these heterocycles. Our results thus suggest a new mechanism for carbon-rich explosive materials that precedes the slow diffusion-limited process of forming the bulk solid from carbon clusters and provide fundamental insight at the atomistic level into the long reaction zone of shocked TATB.

  9. Trifluoperazine inhibits acetaminophen-induced hepatotoxicity and hepatic reactive nitrogen formation in mice and in freshly isolated hepatocytes

    Directory of Open Access Journals (Sweden)

    Sudip Banerjee

    Full Text Available The hepatotoxicity of acetaminophen (APAP occurs by initial metabolism to N-acetyl-p-benzoquinone imine which depletes GSH and forms APAP-protein adducts. Subsequently, the reactive nitrogen species peroxynitrite is formed from nitric oxide (NO and superoxide leading to 3-nitrotyrosine in proteins. Toxicity occurs with inhibited mitochondrial function. We previously reported that in hepatocytes the nNOS (NOS1 inhibitor NANT inhibited APAP toxicity, reactive nitrogen and oxygen species formation, and mitochondrial dysfunction. In this work we examined the effect of trifluoperazine (TFP, a calmodulin antagonist that inhibits calcium induced nNOS activation, on APAP hepatotoxicity and reactive nitrogen formation in murine hepatocytes and in vivo. In freshly isolated hepatocytes TFP inhibited APAP induced toxicity, reactive nitrogen formation (NO, GSNO, and 3-nitrotyrosine in protein, reactive oxygen formation (superoxide, loss of mitochondrial membrane potential, decreased ATP production, decreased oxygen consumption rate, and increased NADH accumulation. TFP did not alter APAP induced GSH depletion in the hepatocytes or the formation of APAP protein adducts which indicated that reactive metabolite formation was not inhibited. Since we previously reported that TFP inhibits the hepatotoxicity of APAP in mice without altering hepatic APAP-protein adduct formation, we examined the APAP treated mouse livers for evidence of reactive nitrogen formation. 3-Nitrotyrosine in hepatic proteins and GSNO were significantly increased in APAP treated mouse livers and decreased in the livers of mice treated with APAP plus TFP. These data are consistent with a hypothesis that APAP hepatotoxicity occurs with altered calcium metabolism, activation of nNOS leading to increased reactive nitrogen formation, and mitochondrial dysfunction. Keywords: Acetaminophen, Neuronal nitric oxide, Oxidative stress, Mitochondria

  10. Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments.

    Science.gov (United States)

    Peterson, Philip J D; Aujla, Amrita; Grant, Kirsty H; Brundle, Alex G; Thompson, Martin R; Vande Hey, Josh; Leigh, Roland J

    2017-07-19

    The potential of inexpensive Metal Oxide Semiconductor (MOS) gas sensors to be used for urban air quality monitoring has been the topic of increasing interest in the last decade. This paper discusses some of the lessons of three years of experience working with such sensors on a novel instrument platform (Small Open General purpose Sensor (SOGS)) in the measurement of atmospheric nitrogen dioxide and ozone concentrations. Analytic methods for increasing long-term accuracy of measurements are discussed, which permit nitrogen dioxide measurements with 95% confidence intervals of 20.0 μ g m - 3 and ozone precision of 26.8 μ g m - 3 , for measurements over a period one month away from calibration, averaged over 18 months of such calibrations. Beyond four months from calibration, sensor drift becomes significant, and accuracy is significantly reduced. Successful calibration schemes are discussed with the use of controlled artificial atmospheres complementing deployment on a reference weather station exposed to the elements. Manufacturing variation in the attributes of individual sensors are examined, an experiment possible due to the instrument being equipped with pairs of sensors of the same kind. Good repeatability (better than 0.7 correlation) between individual sensor elements is shown. The results from sensors that used fans to push air past an internal sensor element are compared with mounting the sensors on the outside of the enclosure, the latter design increasing effective integration time to more than a day. Finally, possible paths forward are suggested for improving the reliability of this promising sensor technology for measuring pollution in an urban environment.

  11. Sources of reactive nitrogen in marine aerosol over the Northwest Pacific Ocean in spring

    Science.gov (United States)

    Luo, Li; Kao, Shuh-Ji; Bao, Hongyan; Xiao, Huayun; Xiao, Hongwei; Yao, Xiaohong; Gao, Huiwang; Li, Jiawei; Lu, Yangyang

    2018-05-01

    Atmospheric deposition of long-range transport of anthropogenic reactive nitrogen (Nr, mainly comprised of NHx, NOy and water-soluble organic nitrogen, WSON) from continents may have profound impact on marine biogeochemistry. In addition, surface ocean dissolved organic nitrogen (DON) may also contribute to aerosol WSON in the overlying atmosphere. Despite the importance of off-continent dispersion and Nr interactions at the atmosphere-ocean boundary, our knowledge of the sources of various nitrogen species in the atmosphere over the open ocean remains limited due to insufficient observations. We conducted two cruises in the spring of 2014 and 2015 from the coast of China through the East China seas (ECSs, i.e. the Yellow Sea and East China Sea) to the open ocean (i.e. the Northwest Pacific Ocean, NWPO). Concentrations of water-soluble total nitrogen (WSTN), NO3- and NH4+, as well as the δ15N of WSTN and NO3- in marine aerosol, were measured during both cruises. In the spring of 2015, we also analysed the concentrations and δ15N of NO3- and the DON of surface seawater (SSW; at a depth of 5 m) along the cruise track. Aerosol NO3-, NH4+ and WSON decreased logarithmically (1-2 orders of magnitude) with distance from the shore, reflecting strong anthropogenic emission sources of NO3-, NH4+ and WSON in China. Average aerosol NO3- and NH4+ concentrations were significantly higher in 2014 (even in the remote NWOP) than in 2015 due to the stronger wind field in 2014, underscoring the role of the Asian winter monsoon in the seaward transport of anthropogenic NO3- and NH4+. However, the background aerosol WSON over the NWPO in 2015 (13.3 ± 8.5 nmol m-3) was similar to that in 2014 (12.2 ± 6.3 nmol m-3), suggesting an additional non-anthropogenic WSON source in the open ocean. Obviously, marine DON emissions should be considered in model and field assessments of net atmospheric WSON deposition in the open ocean. This study contributes information on parallel isotopic

  12. Sources of reactive nitrogen in marine aerosol over the Northwest Pacific Ocean in spring

    Directory of Open Access Journals (Sweden)

    L. Luo

    2018-05-01

    Full Text Available Atmospheric deposition of long-range transport of anthropogenic reactive nitrogen (Nr, mainly comprised of NHx, NOy and water-soluble organic nitrogen, WSON from continents may have profound impact on marine biogeochemistry. In addition, surface ocean dissolved organic nitrogen (DON may also contribute to aerosol WSON in the overlying atmosphere. Despite the importance of off-continent dispersion and Nr interactions at the atmosphere–ocean boundary, our knowledge of the sources of various nitrogen species in the atmosphere over the open ocean remains limited due to insufficient observations. We conducted two cruises in the spring of 2014 and 2015 from the coast of China through the East China seas (ECSs, i.e. the Yellow Sea and East China Sea to the open ocean (i.e. the Northwest Pacific Ocean, NWPO. Concentrations of water-soluble total nitrogen (WSTN, NO3− and NH4+, as well as the δ15N of WSTN and NO3− in marine aerosol, were measured during both cruises. In the spring of 2015, we also analysed the concentrations and δ15N of NO3− and the DON of surface seawater (SSW; at a depth of 5 m along the cruise track. Aerosol NO3−, NH4+ and WSON decreased logarithmically (1–2 orders of magnitude with distance from the shore, reflecting strong anthropogenic emission sources of NO3−, NH4+ and WSON in China. Average aerosol NO3− and NH4+ concentrations were significantly higher in 2014 (even in the remote NWOP than in 2015 due to the stronger wind field in 2014, underscoring the role of the Asian winter monsoon in the seaward transport of anthropogenic NO3− and NH4+. However, the background aerosol WSON over the NWPO in 2015 (13.3 ± 8.5 nmol m−3 was similar to that in 2014 (12.2 ± 6.3 nmol m−3, suggesting an additional non-anthropogenic WSON source in the open ocean. Obviously, marine DON emissions should be considered in model and field assessments of net atmospheric WSON deposition in the open ocean. This

  13. Fluxes of total reactive atmospheric nitrogen (ΣNr using eddy covariance above arable land

    Directory of Open Access Journals (Sweden)

    Christophe R. Flechard

    2013-02-01

    Full Text Available The amount and timing of reactive nitrogen exchange between agricultural land and the atmosphere play a key role in evaluating ecosystem productivity and in addressing atmospheric nitrogen budgets and transport. With the recent development of the Total Reactive Atmospheric Nitrogen Converter (TRANC apparatus, a methodology has been provided for continuous measurement of the sum of all airborne nitrogen containing species (ΣNr allowing for diurnal and seasonal investigations. We present ΣNr concentration and net flux data from an 11-month field campaign conducted at an arable field using the TRANC system within an eddy-covariance setup. Clear diurnal patterns of both ΣNr concentrations and fluxes with significant dependencies on atmospheric stability and stomatal regulation were observed in the growing season. TRANC data were compared with monthly-averaged concentrations and dry deposition rates of selected Nr compounds using DELTA denuders and ensemble-averages of four inferential models, respectively. Similar seasonal trends were found for Nr concentrations from DELTA and TRANC measurements with values from the latter being considerably higher than those of DELTA denuders. The variability of the difference between these two systems could be explained by seasonally changing source locations of NOx contributions to the TRANC signal. As soil and vegetation Nr emissions to the atmosphere are generally not treated by inferential (dry deposition models, TRANC data showed lower monthly deposition rates than those obtained from inferential modelling. Net ΣNr exchange was almost neutral (~0.072 kg N ha−1 at the end of the observation period. However, during most parts of the year, slight but permanent net ΣNr deposition was found. Our measurements demonstrate that fertilizer addition followed by substantial ΣNr emissions plays a crucial role in a site's annual atmospheric nitrogen budget. As long-term Nr measurements with high temporal

  14. Reactive nitrogen losses from China's food system for the shared socioeconomic pathways (SSPs).

    Science.gov (United States)

    Wang, Mengru; Kroeze, Carolien; Strokal, Maryna; Ma, Lin

    2017-12-15

    Food production in China has been changing fast as a result of socio-economic development. This resulted in an increased use of nitrogen (N) in food production, and also to increased reactive nitrogen (Nr) losses to the environment, causing nitrogen pollution. Our study is the first to quantify future Nr losses from China's food system for the Shared Socio-economic Pathways (SSPs). We show that Nr losses differ largely among SSPs. We first qualitatively described the five SSP storylines for China with a focus on food production and consumption. Next, we interpreted these SSP scenarios quantitatively for 2030 and 2050, using the NUFER (NUtrient Flows in Food chains, Environment and Resources use) model to project the Nr losses from China's food system. The results indicate that Nr losses from future food system in China are relatively low for SSP1 and SSP2, and relatively high for SSP3 and SSP4. In SSP5 Nr losses from China's food system are projected to be slightly lower than the level of today. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J., E-mail: mcampen@salud.unm.edu

    2016-08-15

    Ozone (O{sub 3})-related cardiorespiratory effects are a growing public health concern. Ground level O{sub 3} can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O{sub 3}-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O{sub 3} pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O{sub 3} exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O{sub 2}) or hypoxia (10.0% O{sub 2}), followed by a 4-h exposure to either 1 ppm O{sub 3} or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O{sub 3} exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O{sub 3} exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O{sub 3} exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O{sub 3}-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive

  16. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    International Nuclear Information System (INIS)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J.

    2016-01-01

    Ozone (O 3 )-related cardiorespiratory effects are a growing public health concern. Ground level O 3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O 3 -induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O 3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O 3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O 2 ) or hypoxia (10.0% O 2 ), followed by a 4-h exposure to either 1 ppm O 3 or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O 3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O 3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O 3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O 3 -induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive pulmonary disease (COPD). • It is unknown if comorbid

  17. The contribution to nitrogen deposition and ozone formation in South Norway from atmospheric emissions related to the petroleum activity in the North Sea

    International Nuclear Information System (INIS)

    Solberg, S.; Walker, S.-E.; Knudsen, S.; Lazaridis, M.; Beine, H.J.; Semb, A.

    1999-03-01

    A photochemical plume model has been developed and refined. The model is designed to simulate the advection and photochemistry for several simultaneous point sources as well as the atmospheric mixing. the model has been used to calculate nitrogen deposition and ozone formation due to offshore emissions in the North Sea. Based on meteorological data for 1992 the calculations give a total contribution of 60-80 mg (N)/m 2 at most in South Norway. Emission from British and Norwegian sector is calculated to contribute less than 5% each to the AOT40 index for ozone. (author)

  18. The contribution to nitrogen deposition and ozone formation in South Norway from atmospheric emissions related to the petroleum activity in the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Solberg, S; Walker, S -E; Knudsen, S; Lazaridis, M; Beine, H J; Semb, A

    1999-03-01

    A photochemical plume model has been developed and refined. The model is designed to simulate the advection and photochemistry for several simultaneous point sources as well as the atmospheric mixing. the model has been used to calculate nitrogen deposition and ozone formation due to offshore emissions in the North Sea. Based on meteorological data for 1992 the calculations give a total contribution of 60-80 mg (N)/m{sub 2} at most in South Norway. Emission from British and Norwegian sector is calculated to contribute less than 5% each to the AOT40 index for ozone. (author)

  19. Plant phenology, growth and nutritive quality of Briza maxima: Responses induced by enhanced ozone atmospheric levels and nitrogen enrichment

    International Nuclear Information System (INIS)

    Sanz, J.; Bermejo, V.; Muntifering, R.; Gonzalez-Fernandez, I.; Gimeno, B.S.; Elvira, S.; Alonso, R.

    2011-01-01

    An assessment of the effects of tropospheric ozone (O 3 ) levels and substrate nitrogen (N) supplementation, singly and in combination, on phenology, growth and nutritive quality of Briza maxima was carried out. Two serial experiments were developed in Open-Top Chambers (OTC) using three O 3 and three N levels. Increased O 3 exposure did not affect the biomass-related parameters, but enhanced senescence, increased fiber foliar content (especially lignin concentration) and reduced plant life span; these effects were related to senescence acceleration induced by the pollutant. Added N increased plant biomass production and improved nutritive quality by decreasing foliar fiber concentration. Interestingly, the effects of N supplementation depended on meteorological conditions and plant physiological activity. N supplementation counteracted the O 3 -induced senescence but did not modifiy the effects on nutritive quality. Nutritive quality and phenology should be considered in new definitions of the O 3 limits for the protection of herbaceous vegetation. - Research highlights: → Forage quality (foliar protein and fiber content) and phenology are more O 3 -sensitive than growth parameters in the Mediterranean annual grass Briza maxima. → The effects of N supplementation depended on meteorological conditions and plant physiological activity. → Increase in nitrogen supplementation counterbalanced the O 3 -induced increase in senescence biomass. → Nutritive quality and phenology should be considered in new definitions of the O 3 limits for the protection of natural herbaceous vegetation. - Forage quality and phenology are more O 3 -sensitive than growth parameters in the Mediterranean annual grass Briza maxima.

  20. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms

    Directory of Open Access Journals (Sweden)

    Spyridon Loridas

    2013-08-01

    Full Text Available Reactive oxygen or nitrogen species (ROS, RNS and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.. Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM, at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc. play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM10 and PM2.5 are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.

  1. Treatment of diazo dye C.I. Reactive Black 5 in aqueous solution by combined process of interior microelectrolysis and ozonation.

    Science.gov (United States)

    Guo, Xiaoyan; Cai, Yaping; Wei, Zhongbo; Hou, Haifeng; Yang, Xi; Wang, Zunyao

    2013-01-01

    Interior microelectrolysis (IM) as a pretreatment process was effective to treat Reactive Black 5 (RB5) in this study. The removal rates of chemical oxygen demand (COD), total organic carbon (TOC) and color were 46.05, 39.99 and 98.77%, respectively, when this process was conducted under the following optimal conditions: the volumetric ratio between iron scraps and active carbon (AC) (V(Fe)/V(C)) 1.0, pH 2.0, aeration dosage 0.6 L/min, and reaction time 100 min. Contaminants could be further removed by ozonation. After subsequent ozonation for 200 min, the solution could be completely decolorized, and the COD and TOC removal rates were up to 77.78 and 66.51%, respectively. In addition, acute toxicity tests with Daphnia magna showed that pretreatment by IM generated effluents that were more toxic when compared with the initial wastewater, and the toxicity was reduced after subsequent ozonation.

  2. Nitrogen oxides, ozone and heavy metals analysis of suspended particulate matter (spm) of air in Nairobi, Kenya

    International Nuclear Information System (INIS)

    Odhiambo, O.; Kinyua, A.M.; Gatebe, C.K.

    2001-01-01

    Motor vehicle emissions are a major source of air pollution in most urban centers. In Kenya, Nairobi city has the highest traffic density and is therefore a particular cause for concern due to the poor maintenance standards of most vehicles plus the use of leaded gasoline. This study was carried out to determine the levels of nitrogen oxides (nox), suspended particulate matter (PM10), ozone (O3) and heavy metals in the SPM collected from the ambient air of Nairobi city. Sampling was done once every week for a period of three months (February to April 2000). Hourly average concentrations of N0 2 , NO and O3 were measured simultaneously from 9.00 am to 5.00 p.m., at a roundabout connecting two main highways (University and Uhuru) in the city. PM10 was collected using Gent Stacked Filter Unit (SFU) air sampler on nuclepore filters (0.4 and 8.0 ?m pore size for fine and coarse filters respectively) which were weighed and analysed for trace elements by Energy Dispersive X-ray Fluorescent (EDXRF) technique. Nitrogen oxides were analysed with thermo electron's Chemiluminescent nox Model 14B analyser while ozone was by using DASIBI ozone monitor, Model 1003 AH. An automatic vehicle counter was used For determining the vehicle density at the sampling point. The findings of the study show that the values obtained for Pb, Mn, Fe, Br, Zn, Cu and Ca are within the Who guidelines. Lead concentrations ranged from 0.051 to 1.106?g/m3; Fe, 0.149 to 3.154?g/m3; Mn, 0.002 to 0.526?g/m3; Cu, lower limit of detection (LLD) to 0.15?g/m3; Br, LLD to 0.43?g/m3; Zn, LLD to 0.14 ?g/m3 and Ca 2.18 to 5.389?g/m3. Concentrations of NO 2 , NO and O3 were also within the 8-hour Who limits with levels ranging from 0.011-0.976 ppm for NO, 0.001-0.2628 ppm for NO 2 and LLD-0.1258 ppm for ozone. The O3 levels were slightly higher in the afternoons when solar intensity was high especially the days with cloud cover of less than 3 Oktas. PM10 levels were, however, above the Who guidelines for most of

  3. Reactive Oxygen and Nitrogen Species in the Development of Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    David J.R. Fulton

    2017-07-01

    Full Text Available Pulmonary arterial hypertension (PAH is a progressive disease of the lung vasculature that involves the loss of endothelial function together with inappropriate smooth muscle cell growth, inflammation, and fibrosis. These changes underlie a progressive remodeling of blood vessels that alters flow and increases pulmonary blood pressure. Elevated pressures in the pulmonary artery imparts a chronic stress on the right ventricle which undergoes compensatory hypertrophy but eventually fails. How PAH develops remains incompletely understood and evidence for the altered production of reactive oxygen and nitrogen species (ROS, RNS respectively in the pulmonary circulation has been well documented. There are many different types of ROS and RNS, multiple sources, and collective actions and interactions. This review summarizes past and current knowledge of the sources of ROS and RNS and how they may contribute to the loss of endothelial function and changes in smooth muscle proliferation in the pulmonary circulation.

  4. Nitrogen soil emissions and belowground plant processes in Mediterranean annual pastures are altered by ozone exposure and N-inputs

    Science.gov (United States)

    Sánchez-Martín, L.; Bermejo-Bermejo, V.; García-Torres, L.; Alonso, R.; de la Cruz, A.; Calvete-Sogo, H.; Vallejo, A.

    2017-09-01

    Increasing tropospheric ozone (O3) and atmospheric nitrogen (N) deposition alter the structure and composition of pastures. These changes could affect N and C compounds in the soil that in turn can influence soil microbial activity and processes involved in the emission of N oxides, methane (CH4) and carbon dioxide (CO2), but these effects have been scarcely studied. Through an open top chamber (OTC) field experiment, the combined effects of both pollutants on soil gas emissions from an annual experimental Mediterranean community were assessed. Four O3 treatments and three different N input levels were considered. Fluxes of nitric (NO) and nitrous (N2O) oxide, CH4 and CO2 were analysed as well as soil mineral N and dissolved organic carbon. Belowground plant parameters like root biomass and root C and N content were also sampled. Ozone strongly increased soil N2O emissions, doubling the cumulative emission through the growing cycle in the highest O3 treatment, while N-inputs enhanced more slightly NO; CH4 and CO2 where not affected. Both N-gases had a clear seasonality, peaking at the start and at the end of the season when pasture physiological activity is minimal; thus, higher microorganism activity occurred when pasture had a low nutrient demand. The O3-induced peak of N2O under low N availability at the end of the growing season was counterbalanced by the high N inputs. These effects were related to the O3 x N significant interaction found for the root-N content in the grass and the enhanced senescence of the community. Results indicate the importance of the belowground processes, where competition between plants and microorganisms for the available soil N is a key factor, for understanding the ecosystem responses to O3 and N.

  5. Enhanced nitrogen deposition exacerbates the negative effect of increasing background ozone in Dactylis glomerata, but not Ranunculus acris

    Energy Technology Data Exchange (ETDEWEB)

    Wyness, Kirsten, E-mail: kirnes@ceh.ac.uk [Centre for Ecology and Hydrology (CEH), Environment Centre Wales, Deiniol Road, Bangor LL57 2UW (United Kingdom); Newcastle Institute for Research on the Environment and Sustainability - NIRES, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Mills, Gina; Jones, Laurence [Centre for Ecology and Hydrology (CEH), Environment Centre Wales, Deiniol Road, Bangor LL57 2UW (United Kingdom); Barnes, Jeremy D. [Newcastle Institute for Research on the Environment and Sustainability - NIRES, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Jones, Davey L. [School of the Environment and Natural Resources, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom)

    2011-10-15

    The combined impacts of simulated increased nitrogen (N) deposition (75 kg N ha{sup -1} yr{sup -1}) and increasing background ozone (O{sub 3}) were studied using two mesotrophic grassland species (Dactylis glomerata and Ranunculus acris) in solardomes, by means of eight O{sub 3} treatments ranging from 15.5 ppb to 92.7 ppb (24 h average mean). A-C{sub i} curves were constructed for each species to gauge effects on photosynthetic efficiency and capacity, and effects on biomass partitioning were determined after 14 weeks. Increasing the background concentration of O{sub 3} reduced the healthy above ground and root biomass of both species, and increased senesced biomass. N fertilisation increased biomass production in D. glomerata, and a significantly greater than additive effect of O{sub 3} and N on root biomass was evident. In contrast, R. acris biomass was not affected by high N. The study shows the combined effects of these pollutants have differential implications for carbon allocation patterns in common grassland species. - Highlights: > Dactylis glomerata and Ranunculus acris enhanced senescence with increasing O{sub 3}. > Ozone effects on root biomass were larger than on shoot biomass in both species. > N deposition exacerbated the negative O{sub 3} effect on D. glomerata root biomass. > Inter-specific differences in the response to O{sub 3} and N combined exposure. - Synergistic effects of elevated O{sub 3} and N were observed in below ground C-partitioning in the grass Dactylis glomerata, but not in the forb Ranunculus acris.

  6. Export of reactive nitrogen from coal-fired power plants in the U.S.: Estimates from a plume-in-grid modeling study - article no. D04308

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, K.; Zhang, Y.; Seigneur, C.; Karamchandani, P.; Snell, H.E.

    2009-02-15

    The export of reactive nitrogen (nitrogen oxides and their oxidation products, collectively referred to as NOy) from coal-fired power plants in the U.S. to the rest of the world could have a significant global contribution to ozone. Traditional Eulerian gridded air quality models cannot characterize accurately the chemistry and transport of plumes from elevated point sources such as power plant stacks. A state-of-the-science plume-in-grid (PinG) air quality model, a reactive plume model embedded in an Eulerian gridded model, is used to estimate the export of NOy from 25 large coal-fired power plants in the U. S. (in terms of NOx and SO{sub 2} emissions) in July 2001 to the global atmosphere. The PinG model used is the Community Multiscale Air Quality Model with Advanced Plume Treatment (CMAQ-APT). A benchmark simulation with only the gridded model, CMAQ, is also conducted for comparison purposes. The simulations with and without advanced plume treatment show differences in the calculated export of NOy from the 25 plants considered reflecting the effect of using a detailed and explicit treatment of plume transport and chemistry. The advanced plume treatment results in 31% greater simulated export of NOy compared to the purely grid-based modeling approach. The export efficiency of NOy (the fraction of NOy emitted that is exported) is predicted to be 21% without APT and 27% with APT. When considering only export through the eastern boundary across the Atlantic, CMAQ-APT predicts that the export efficiency is 24% and that 2% of NOy is exported as NOx, 49% as inorganic nitrate, and 25% as PAN. These results are in reasonably good agreement with an analysis reported in the literature of aircraft measurements over the North Atlantic.

  7. Minimizing Freshwater Consumption in the Wash-Off Step in Textile Reactive Dyeing by Catalytic Ozonation with Carbon Aerogel Hosted Bimetallic Catalyst

    Directory of Open Access Journals (Sweden)

    Enling Hu

    2018-02-01

    Full Text Available In textile reactive dyeing, dyed fabrics have to be rinsed in the wash-off step several times to improve colorfastness. Thus, the multiple rinsing processes drastically increase the freshwater consumption and meanwhile generate massive waste rinsing effluents. This paper addresses an innovative alternative to recycle the waste effluents to minimize freshwater consumption in the wash-off step. Accordingly, catalytic ozonation with a highly effective catalyst has been applied to remedy the waste rinsing effluents for recycling. The carbon aerogel (CA hosted bimetallic hybrid material (Ag–Fe2O3@CA was fabricated and used as the catalyst in the degradation of residual dyes in the waste rinsing effluents by ozonation treatments. The results indicate the participation of Ag–Fe2O3@CA had strikingly enhanced the removal percentage of chemical oxidation demand by 30%. In addition, it has been validated that waste effluents had been successfully reclaimed after catalytic ozonation with Ag–Fe2O3@CA. They could be additionally reused to reduce freshwater consumption in the wash-off step, but without sacrificing the color quality of corresponding fabrics in terms of color difference and colorfastness. This study may be the first to report the feasibility of catalytic ozonation in minimization of freshwater consumption in the wash-off step in textile reactive dyeing.

  8. Effect of hydrocarbons and nitrogen oxides on ozone formation in smog chambers exposed to solar irradiance of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval F, J; Marroquin de la R, O; Jaimes L, J. L; Zuniga L, V. A; Gonzalez O, E; Guzman Lopez-Figueroa, F [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2001-01-01

    Outdoor smog chambers experiments were performed on air to determine the answer of maximum ozone levels, to changes in the initial hydrocarbons, HC, and nitrogen oxide NO{sub x}. These captive-air experiments under natural irradiation were carried out. Typically, eight chambers were filled with Mexico city air in the morning. In some of those chambers, the initial HC and/or Nox concentrations were varied by {+-}25% to {+-}50% by adding various combinations of a mixture of HC, clean air, or NO{sub x} (perturbed chambers). The O{sub 3} and NO{sub x} concentration in each chamber was monitored throughout the day to determine O{sub 3} (max). The initial HC and NO{sub x} concentration effects were determined by comparing the maximum ozone concentrations measured in the perturbed and unperturbed chambers. Ozone isopleths were constructed from the empirical model obtained of measurements of the eight chambers and plotted in a graph whose axe were the initial HC and NO{sub x} values. For the average initial conditions that were measured in Mexico City, it was found that the most efficient strategy to reduce the maximum concentration of O{sub 3} is the one that reduces NO{sub x}. [Spanish] Se realizaron experimentos de camaras de esmog con el aire de la ciudad de Mexico para determinar las respuestas de los niveles maximos de ozono a los cambios en las concentraciones iniciales de hidrocarburos, HC y oxido de nitrogeno, NO{sub x}. Por lo general, se llenaron 8 bolsas con aire matutino de la Ciudad de Mexico. En algunas camaras, las concentraciones iniciales fueron cambiadas de 25% a 50%, anadiendo varias concentraciones de una mezcla de HC, aire limpio y/o NO{sub x}. La concentracion de O{sub 3} y NO{sub x}, en cada camara, fueron monitoreadas a lo largo del dia para determinar el maximo de O{sub 3}. El efecto de los HC y el NO{sub x} fue determinado por comparacion del maximo de ozono formado en las camaras, que fueron perturbadas por adicion o reduccion de HC y/o Nox

  9. Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ben H.; Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Lutz, Anna; Hallquist, Mattias; Lee, Lance; Romer, Paul; Cohen, Ronald C.; Iyer, Siddharth; Kurtén, Theo; Hu, Weiwei; Day, Douglas A.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Xu, Lu; Ng, Nga Lee; Guo, Hongyu; Weber, Rodney J.; Wild, Robert J.; Brown, Steven S.; Koss, Abigail; de Gouw, Joost; Olson, Kevin; Goldstein, Allen H.; Seco, Roger; Kim, Saewung; McAvey, Kevin; Shepson, Paul B.; Starn, Tim; Baumann, Karsten; Edgerton, Eric S.; Liu, Jiumeng; Shilling, John E.; Miller, David O.; Brune, William; Schobesberger, Siegfried; D' Ambro, Emma L.; Thornton, Joel A.

    2016-01-25

    Organic nitrates (ON = RONO2 + RO2NO2) are an important reservoir, if not sink, of atmospheric nitrogen oxides (NOx=NO+NO2). ON formed from isoprene oxidation alone are responsible for the export of 8 to 30% of anthropogenic NOx out of the U.S. continental boundary layer [Horowitz et al., 1998; Liang et al., 1998]. Regional NOx budgets and tropospheric ozone (O3) production, are therefore particularly sensitive to uncertainties in the yields and fates of ON [Beaver et al., 2012; Browne et al., 2013]. The yields implemented in modeling studies are determined from laboratory experiments in which only a few of the first generation gaseous ON or the total gas and particle-phase ON have been quantified [Perring et al., 2013 and references therein], while production of highly functionalized ON capable of strongly partitioning to the particle-phase have been inferred [Farmer et al., 2010; Ng et al., 2007; Nguyen et al., 2011; Perraud et al., 2012; Rollins et al., 2012], or directly measured [Ehn et al., 2014]. Addition of a nitrate (–ONO2) functional group to a hydrocarbon is estimated to lower the equilibrium saturation vapor pressure by 2.5 to 3 orders of magnitude [e.g. Capouet and Muller, 2006]. Thus, organic nitrate formation can potentially enhance particle-phase partitioning of hydrocarbons in regions with elevated levels of nitrogen oxides, contributing to secondary organic aerosol (SOA) formation [Ng et al., 2007]. There has, however, been no high time-resolved measurements of speciated ON in the particle-phase. We utilize a newly developed high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) using Iodide-adduct ionization [B H Lee et al., 2014a] with a filter inlet for gases and aerosols (FIGAERO) [Lopez-Hilfiker et al., 2014] that allows alternating in situ measurement of the molecular composition of gas and particle phases. We present observations of speciated ON in the particle-phase obtained during the 2013 Southern Oxidant

  10. Impact of Front Range sources on reactive nitrogen concentrations and deposition in Rocky Mountain National Park

    Directory of Open Access Journals (Sweden)

    Katherine B. Benedict

    2018-05-01

    Full Text Available Human influenced atmospheric reactive nitrogen (RN is impacting ecosystems in Rocky Mountain National Park (ROMO. Due to ROMO’s protected status as a Class 1 area, these changes are concerning, and improving our understanding of the contributions of different types of RN and their sources is important for reducing impacts in ROMO. In July–August 2014 the most comprehensive measurements (to date of RN were made in ROMO during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ. Measurements included peroxyacetyl nitrate (PAN, C1–C5 alkyl nitrates, and high-time resolution NOx, NOy, and ammonia. A limited set of measurements was extended through October. Co-located measurements of a suite of volatile organic compounds provide information on source types impacting ROMO. Specifically, we use ethane as a tracer of oil and gas operations and tetrachloroethylene (C2Cl4 as an urban tracer to investigate their relationship with RN species and transport patterns. Results of this analysis suggest elevated RN concentrations are associated with emissions from oil and gas operations, which are frequently co-located with agricultural production and livestock feeding areas in the region, and from urban areas. There also are periods where RN at ROMO is impacted by long-range transport. We present an atmospheric RN budget and a nitrogen deposition budget with dry and wet components. Total deposition for the period (7/1–9/30 was estimated at 1.58 kg N/ha, with 87% from wet deposition during this period of above average precipitation. Ammonium wet deposition was the dominant contributor to total nitrogen deposition followed by nitrate wet deposition and total dry deposition. Ammonia was estimated to be the largest contributor to dry deposition followed by nitric acid and PAN (other species included alkyl nitrates, ammonium and nitrate. All three species are challenging to measure routinely, especially at high time resolution.

  11. Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways

    Science.gov (United States)

    Mogollón, J. M.; Lassaletta, L.; Beusen, A. H. W.; van Grinsven, H. J. M.; Westhoek, H.; Bouwman, A. F.

    2018-04-01

    Reactive nitrogen (N) inputs in agriculture strongly outpace the outputs at the global scale due to inefficiencies in cropland N use. While improvement in agricultural practices and environmental legislation in developed regions such as Western Europe have led to a remarkable increase in the N use efficiency since 1985, this lower requirement for reactive N inputs via synthetic fertilizers has yet to occur in many developing and transition regions. Here, we explore future N input requirements and N use efficiency in agriculture for the five shared socioeconomic pathways. Results show that under the most optimistic sustainability scenario, the global synthetic fertilizer use in croplands stabilizes and even shrinks (85 Tg N yr‑1 in 2050) regardless of the increase in crop production required to feed the larger estimated population. This scenario is highly dependent on projected increases in N use efficiency, particularly in South and East Asia. In our most pessimistic scenario, synthetic fertilization application rates are expected to increase almost threefold by 2050 (260 Tg N yr‑1). Excepting the sustainability scenario, all other projected scenarios reveal that the areal N surpluses will exceed acceptable limits in most of the developing regions.

  12. Micrometeorological measurements of ammonia and total reactive nitrogen exchange over semi-natural peatland

    Science.gov (United States)

    Brümmer, Christian; Richter, Undine; Schrader, Frederik; Kutsch, Werner

    2015-04-01

    Intensive agriculture generates a substantial atmospheric burden for nitrogen-limited ecosystems such as peatlands when the latter are located in close vicinity to arable sites and animal houses. The exchange of reactive nitrogen compounds between these bog ecosystems and the atmosphere is still not very well understood due to the lack of suitable measurement techniques. With recent advancements in laser spectrometry, we used a quantum cascade laser spectrometer as well as a custom-built total reactive atmospheric nitrogen (ΣNr) converter (TRANC) coupled to a fast-response chemiluminescence detector to measure NH3 and ΣNr concentrations, respectively. The analyzers' high temporal resolution allowed for determination of the respective nitrogen exchange within eddy covariance-based setups. Field campaigns were conducted at a northwestern German peatland site that is surrounded by an area of highly fertilized agricultural land and intensive livestock production (~1 km distance). The field site is part of a natural park with a very small remaining protected zone of less than 2 km x 2 km. Ammonia and ΣNr concentrations were highly variable between 2 to 110 ppb and 10 to 120 ppb, respectively. Peak values coincided with main fertilization periods on the neighboring agricultural land in early spring and fall. The trend in weekly averaged ΣNr concentrations from TRANC measurements was in good agreement with results from KAPS denuder filter systems when the latter were combined with the missing and apparently highly variable NOx contribution. Wind direction and land use in the closer vicinity clearly regulated whether ΣNr concentrations were NH3 or NOx-dominated. Ammonia uptake rates between 40 ng N m-2 s-1 and near-neutral exchange were observed. The cumulative net uptake for the period of investigation was ~700 g N ha-1 resulting in a dry net deposition of ~4 kg N ha-1 when extrapolated to an entire year, whereas KAPS denuder measurements in combination with dry

  13. Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages.

    Science.gov (United States)

    Gong, Yunqian; Yu, Bin; Yang, Wen; Zhang, Xiaoling

    2016-05-15

    Phosphorus and nitrogen doped carbon dots (PN-CDs) were conveniently prepared by carbonization of adenosine-5'-triphosphate using a hydrothermal treatment. The PN-CDs with P/C atomic ratio of ca. 9.2/100 emit blue luminescence with high quantum yields of up to 23.5%. The PN-CDs were used as a novel sensing platform for live cell imaging of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including ClO(-), ONOO(-), and NO in macrophages. The nanosensor design is based on our new finding that the strong fluorescence of the PN-CDs can be sensitively and selectively quenched by ROS and RNS both in vitro and in vivo. These results reveal that the PN-CDs can serve as a sensitive sensor for rapid imaging of ROS and RNS signaling with high selectivity and contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Analysing the causes of chronic cough: relation to diesel exhaust, ozone, nitrogen oxides, sulphur oxides and other environmental factors

    Directory of Open Access Journals (Sweden)

    Wagner Ulrich

    2006-05-01

    Full Text Available Abstract Air pollution remains a leading cause of many respiratory diseases including chronic cough. Although episodes of incidental, dramatic air pollution are relatively rare, current levels of exposure of pollutants in industrialized and developing countries such as total articles, diesel exhaust particles and common cigarette smoke may be responsible for the development of chronic cough both in children and adults. The present study analyses the effects of common environmental factors as potential causes of chronic cough. Different PubMed-based researches were performed that related the term cough to various environmental factors. There is some evidence that chronic inhalation of diesel can lead to the development of cough. For long-term exposure to nitrogen dioxide (NO2, children were found to exhibit increased incidences of chronic cough and decreased lung function parameters. Although a number of studies did not show that outdoor pollution directly causes the development of asthma, they have demonstrated that high levels pollutants and their interaction with sunlight produce ozone (O3 and that repeated exposure to it can lead to chronic cough. In summary, next to the well-known air pollutants which also include particulate matter and sulphur dioxide, a number of other indoor and outdoor pollutants have been demonstrated to cause chronic cough and therefore, environmental factors have to be taken into account as potential initiators of both adult and pediatric chronic cough.

  15. Mechanistic modeling of reactive soil nitrogen emissions across agricultural management practices

    Science.gov (United States)

    Rasool, Q. Z.; Miller, D. J.; Bash, J. O.; Venterea, R. T.; Cooter, E. J.; Hastings, M. G.; Cohan, D. S.

    2017-12-01

    The global reactive nitrogen (N) budget has increased by a factor of 2-3 from pre-industrial levels. This increase is especially pronounced in highly N fertilized agricultural regions in summer. The reactive N emissions from soil to atmosphere can be in reduced (NH3) or oxidized (NO, HONO, N2O) forms, depending on complex biogeochemical transformations of soil N reservoirs. Air quality models like CMAQ typically neglect soil emissions of HONO and N2O. Previously, soil NO emissions estimated by models like CMAQ remained parametric and inconsistent with soil NH3 emissions. Thus, there is a need to more mechanistically and consistently represent the soil N processes that lead to reactive N emissions to the atmosphere. Our updated approach estimates soil NO, HONO and N2O emissions by incorporating detailed agricultural fertilizer inputs from EPIC, and CMAQ-modeled N deposition, into the soil N pool. EPIC addresses the nitrification, denitrification and volatilization rates along with soil N pools for agricultural soils. Suitable updates to account for factors like nitrite (NO2-) accumulation not addressed in EPIC, will also be made. The NO and N2O emissions from nitrification and denitrification are computed mechanistically using the N sub-model of DAYCENT. These mechanistic definitions use soil water content, temperature, NH4+ and NO3- concentrations, gas diffusivity and labile C availability as dependent parameters at various soil layers. Soil HONO emissions found to be most probable under high NO2- availability will be based on observed ratios of HONO to NO emissions under different soil moistures, pH and soil types. The updated scheme will utilize field-specific soil properties and N inputs across differing manure management practices such as tillage. Comparison of the modeled soil NO emission rates from the new mechanistic and existing schemes against field measurements will be discussed. Our updated framework will help to predict the diurnal and daily variability

  16. Treatment of methyl orange by nitrogen non-thermal plasma in a corona reactor: The role of reactive nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Cadorin, Bruno Mena, E-mail: brunomenacadorin@gmail.com [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Tralli, Vitor Douglas [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Ceriani, Elisa [Department of Chemical Sciences, Università di Padova (Italy); Benetoli, Luís Otávio de Brito [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Marotta, Ester, E-mail: ester.marotta@unipd.it [Department of Chemical Sciences, Università di Padova (Italy); Ceretta, Claudio [Department of Industrial Engineering, Università di Padova (Italy); Debacher, Nito Angelo [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Paradisi, Cristina [Department of Chemical Sciences, Università di Padova (Italy)

    2015-12-30

    Highlights: • Nitration of methyl orange is one of the main processes in treatment with N{sub 2}-plasma. • MS/MS analysis shows preferred nitration of methyl orange in ortho position. • N{sub 2} plasma, N{sub 2}-PAW, reaction with NO{sub 2}{sup −} or NO{sub 2}{sup −}/H{sub 2}O{sub 2} at pH 2 give the same products. - Abstract: Methyl orange (MO) azo dye served as model organic pollutant to investigate the role of reactive nitrogen species (RNS) in non-thermal plasma (NTP) induced water treatments. The results of experiments in which MO aqueous solutions were directly exposed to N{sub 2}-NTP are compared with those of control experiments in which MO was allowed to react with nitrite, nitrate and hydrogen peroxide, which are species formed in water exposed to N{sub 2}-NTP. Treatment of MO was also performed in PAW, Plasma Activated Water, that is water previously exposed to N{sub 2}-NTP. Both direct N{sub 2}-NTP and N{sub 2}-PAW treatments induced the rapid decay of MO. No appreciable reaction was instead observed when MO was treated with NO{sub 3}{sup −} and H{sub 2}O{sub 2} either under acidic or neutral pH. In contrast, in acidic solutions MO decayed rapidly when treated with NO{sub 2}{sup −} and with a combination of NO{sub 2}{sup −} and H{sub 2}O{sub 2}. Thorough product analysis was carried out by HPLC coupled with UV–vis and ESI–MS/MS detectors. In all experiments in which MO reaction was observed, the major primary product was a derivative nitro-substituted at the ortho position with respect to the N,N-dimethylamino group of MO. The reactions of RNS are discussed and a mechanism for the observed nitration products is proposed.

  17. Ozone modeling

    Energy Technology Data Exchange (ETDEWEB)

    McIllvaine, C M

    1994-07-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.

  18. Ozone modeling

    International Nuclear Information System (INIS)

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  19. Modeling of multi-phase interactions of reactive nitrogen between snow and air in Antarctica

    Science.gov (United States)

    McCrystall, M.; Chan, H. G. V.; Frey, M. M.; King, M. D.

    2016-12-01

    In polar and snow-covered regions, the snowpack is an important link between atmospheric, terrestrial and oceanic systems. Trace gases, including nitrogen oxides, produced via photochemical reactions in snow are partially released to the lower atmosphere with considerable impact on its composition. However, the post-depositional processes that change the chemical composition and physical properties of the snowpack are still poorly understood. Most current snow chemistry models oversimplify as they assume air-liquid interactions and aqueous phase chemistry taking place at the interface between the snow grain and air. Here, we develop a novel temperature dependent multi-phase (gas-liquid-ice) physical exchange model for reactive nitrogen. The model is validated with existing year-round observations of nitrate in the top 0.5-2 cm of snow and the overlying atmosphere at two very different Antarctic locations: Dome C on the East Antarctic Plateau with very low annual mean temperature (-54ºC) and accumulation rate (rate and high background level of sea salt aerosol. We find that below the eutectic temperature of the H2O/dominant ion mixture the surface snow nitrate is controlled by kinetic adsorption onto the surface of snow grains followed by grain diffusion. Above the eutectic temperature, in addition to the former two processes, thermodynamic equilibrium of HNO3 between interstitial air and liquid water pockets, possibly present at triple junctions or grooves at grain boundaries, greatly enhances the nitrate uptake by snow in agreement with the concentration peak observed in summer.

  20. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    Directory of Open Access Journals (Sweden)

    D. A. Plummer

    2010-09-01

    Full Text Available A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs and Ozone Depleting Substances (ODSs. The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHG-related effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the

  1. Carbon Nitrogen Co-Doped P25: Parameter Study on Photodegradation of Reactive Red 4

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available Photocatalytic degradation rate of reactive red 4 (RR4 using carbon coated nitrogen doped TiO2 (C N co-doped TiO2 in photocatalysis process is main goal on this research. The main operating the parameters such as effect of initial dye concentration, catalyst loading, aeration flow rate and initial pH on degradation of RR4 under 45 W fluorescent lamp was investigated. photocatalytic activity of RR4 dye decreased with increasing RR4 dye concentration. The optimum loading is around 0.04 g and optimum aeration rate is about 25 mL min-1 of C N co-doped TiO2. Effect of pH was conducted based on the optimum loading and conclude that the photocatalytic degradation of RR4 became faster at pH 2 - 7. For the future work, the modification of doping with others element like non-metal or metal with C N co-doped TiO2 can be enhanced toward the higher efficieny of photodegradation under visible light. Moreover, the immobilized technique can be used in future to overcome the difficulty of filtration on suspension.

  2. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Chen, Xing-miao; Chen, Han-sen; Xu, Ming-jing; Shen, Jian-gang

    2013-01-01

    Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.

  3. Standard Gibbs free energies of reactions of ozone with free radicals in aqueous solution: quantum-chemical calculations.

    Science.gov (United States)

    Naumov, Sergej; von Sonntag, Clemens

    2011-11-01

    Free radicals are common intermediates in the chemistry of ozone in aqueous solution. Their reactions with ozone have been probed by calculating the standard Gibbs free energies of such reactions using density functional theory (Jaguar 7.6 program). O(2) reacts fast and irreversibly only with simple carbon-centered radicals. In contrast, ozone also reacts irreversibly with conjugated carbon-centered radicals such as bisallylic (hydroxycylohexadienyl) radicals, with conjugated carbon/oxygen-centered radicals such as phenoxyl radicals, and even with nitrogen- oxygen-, sulfur-, and halogen-centered radicals. In these reactions, further ozone-reactive radicals are generated. Chain reactions may destroy ozone without giving rise to products other than O(2). This may be of importance when ozonation is used in pollution control, and reactions of free radicals with ozone have to be taken into account in modeling such processes.

  4. Mapping critical levels of ozone, sulfur dioxide and nitrogen oxide for crops, forests and natural vegetation in the United States

    International Nuclear Information System (INIS)

    Rosenbaum, B.J.; Strickland, T.C.; McDowell, M.K.

    1994-01-01

    Air pollution abatement strategies for controlling nitrogen dioxide, sulfur dioxide, and ozone emissions in the United States focus on a 'standards-based' approach. This approach places limits on air pollution by maintaining a baseline value for air quality, no matter what the ecosystem can or cannot withstand. This paper, presents example critical levels maps for the conterminous U.S. developed using the 'effects-based' mapping approach as defined by the United Nations Economic Commission for Europe's Convention on Long-Range Transboundary Air Pollution, Task Force on Mapping. This approach emphasizes the pollution level or load capacity an ecosystem can accommodate before degradation occurs, and allows for analysis of cumulative effects. Presents the first stage of an analysis that reports the distribution of exceedances of critical levels for NO 2 , SO 2 , and O 3 in sensitive forest, crop, and natural vegetation ecosystems in the contiguous United States. It is concluded that extrapolation to surrounding geographic areas requires the analysis of diverse and compounding factors that preclude simple extrapolation methods. Pollutant data depicted in this analysis are limited to locationally specific data, and would be enhanced by utilizing spatial statistics, along with converging associated anthropogenic and climatological factors. Values used for critical levels were derived from current scientific knowledge. While not intended to be a definitive value, adjustments will occur as the scientific community gains new insight to pollutant/receptor relationships. We recommend future analysis to include a refinement of sensitive receptor data coverages and to report relative proportions of exceedances at varying grid scales. 27 refs., 4 figs., 1 tab

  5. Spectroscopic studies of ozone in cryosolutions: FT-IR spectra of 16O3 in liquid nitrogen, oxygen, argon and krypton

    Science.gov (United States)

    Bulanin, Kirill M.; Bulanin, Michael O.; Rudakova, Aida V.; Kolomijtsova, Tatiana D.; Shchepkin, Dmitrij N.

    2018-03-01

    We have measured and interpreted the IR spectra of ozone dissolved in liquid nitrogen, oxygen, argon, and krypton in the 650-4700 cm-1 spectral region at 79-117 K. Frequency shifts, band intensities and bandshapes of 22 spectral features of soluted ozone were analyzed. The bands of the A1 symmetry have a complex contour and possess an excess intensity with respect to the value of the purely vibrational transition moment. It was found that this effect is related to the manifestation of the Coriolis interaction. The bandshape distortion manifests itself as an additional intensity from the side of the B1 symmetry band being an intensity source in the case of the Coriolis interaction.

  6. An Efficient Computational Model to Predict Protonation at the Amide Nitrogen and Reactivity along the C–N Rotational Pathway

    Science.gov (United States)

    Szostak, Roman; Aubé, Jeffrey

    2015-01-01

    N-protonation of amides is critical in numerous biological processes, including amide bonds proteolysis and protein folding, as well as in organic synthesis as a method to activate amide bonds towards unconventional reactivity. A computational model enabling prediction of protonation at the amide bond nitrogen atom along the C–N rotational pathway is reported. Notably, this study provides a blueprint for the rational design and application of amides with a controlled degree of rotation in synthetic chemistry and biology. PMID:25766378

  7. Tracking Reactive Nitrogen Sources, Chemistry and Deposition in Urban Environments Using Stable Isotopes

    Science.gov (United States)

    Hastings, M. G.; Clark, S. C.; Chai, J.; Joyce, E.; Miller, D. J.; Schiebel, H.; Walters, W.

    2017-12-01

    Reactive nitrogen (Nr) includes compounds such as nitrogen oxides (NOx, HONO), ammonia (NH3), nitrate (NO3-), ammonium (NH4+), and organic nitrates. These compounds serve major roles in controlling the composition of our atmosphere, and have a direct impact on ecosystem health and water quality. Our research is focused on using stable isotopes of Nr to investigate variations in sources, chemistry, atmospheric transport, and deposition. Our aim is to fingerprint distinct emission sources - such as vehicles, power plants, aircraft, agriculature, wildfires, and lightning - and track their influence in the environment. We have recently characterized vehicle emission plumes, emissions from agricultural soils under different management practices, and (in the near future) wildfire plumes in the western U.S. Our approach targets characterizing the isotopic composition of NOx, HONO, and NH3 at both the emissions source and the plume scale. In contrast to large ranges found for individual tailpipe emissions of NOx, on-road plumes in the U.S. have a mean δ15N of -4.7 ± 1.7‰. The plume scale approach integrates across the typical U.S. fleet giving a representative value that can be used for tracking the impact of this emission source in the environment. NH3 also tends towards a narrow isotopic range when considered at the roadside scale compared to individual vehicles. In agricultural settings, the isotopes of NOx and HONO released from soils under different fertilizer practices is typically very negative in δ15N (-40 to -10‰) and appears to vary most with soil N properties rather than meteorology. Our work is now extending to discern sources influencing Nr deposition in an urban area at the head of New England's largest estuary. National monitoring of N deposition shows decreases in NO3- (but not NH4+) deposition over the last two decades, following better controls on NOx emissions. Wet deposition collected in an urban area exhibits N concentrations that are often 3

  8. Growth and characterization of nitrogen-doped TiO2 thin films prepared by reactive pulsed laser deposition

    International Nuclear Information System (INIS)

    Sauthier, G.; Ferrer, F.J.; Figueras, A.; Gyoergy, E.

    2010-01-01

    Nitrogen-doped titanium dioxide (TiO 2 ) thin films were grown on (001) SiO 2 substrates by reactive pulsed laser deposition. A KrF* excimer laser source (λ = 248 nm, τ FWHM ≅ 10 ns, ν = 10 Hz) was used for the irradiations of pressed powder targets composed by both anatase and rutile phase TiO 2 . The experiments were performed in a controlled reactive atmosphere consisting of oxygen or mixtures of oxygen and nitrogen gases. The obtained thin film crystal structure was investigated by X-ray diffraction, while their chemical composition as well as chemical bonding states between the elements were studied by X-ray photoelectron spectroscopy. An interrelation was found between nitrogen concentration, crystalline structure, bonding states between the elements, and the formation of titanium oxinitride compounds. Moreover, as a result of the nitrogen incorporation in the films a continuous red-shift of the optical absorption edge accompanied by absorption in the visible spectral range between 400 and 500 nm wavelength was observed.

  9. AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species.

    Science.gov (United States)

    Morales-Alamo, David; Calbet, Jose A L

    2016-09-01

    Reactive oxygen and nitrogen species (RONS) are generated during exercise depending on intensity, duration and training status. A greater amount of RONS is released during repeated high-intensity sprint exercise and when the exercise is performed in hypoxia. By activating adenosine monophosphate-activated kinase (AMPK), RONS play a critical role in the regulation of muscle metabolism but also in the adaptive responses to exercise training. RONS may activate AMPK by direct an indirect mechanisms. Directly, RONS may activate or deactivate AMPK by modifying RONS-sensitive residues of the AMPK-α subunit. Indirectly, RONS may activate AMPK by reducing mitochondrial ATP synthesis, leading to an increased AMP:ATP ratio and subsequent Thr(172)-AMPK phosphorylation by the two main AMPK kinases: LKB1 and CaMKKβ. In presence of RONS the rate of Thr(172)-AMPK dephosphorylation is reduced. RONS may activate LKB1 through Sestrin2 and SIRT1 (NAD(+)/NADH.H(+)-dependent deacetylase). RONS may also activate CaMKKβ by direct modification of RONS sensitive motifs and, indirectly, by activating the ryanodine receptor (Ryr) to release Ca(2+). Both too high (hypoxia) and too low (ingestion of antioxidants) RONS levels may lead to Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation causing inhibition of Thr(172)-AMPKα phosphorylation. Exercise training increases muscle antioxidant capacity. When the same high-intensity training is applied to arm and leg muscles, arm muscles show signs of increased oxidative stress and reduced mitochondrial biogenesis, which may be explained by differences in RONS-sensing mechanisms and basal antioxidant capacities between arm and leg muscles. Efficient adaptation to exercise training requires optimal exposure to pulses of RONS. Inappropriate training stimulus may lead to excessive RONS formation, oxidative inactivation of AMPK and reduced adaptation or even maladaptation. Theoretically, exercise programs should be designed taking into account the

  10. A NEW GIS NITROGEN TRADING TOOL CONCEPT FOR CONSERVATION AND REDUCTION OF REACTIVE NITROGEN LOSSES TO THE ENVIRONMENT

    Science.gov (United States)

    Nitrogen inputs to agricultural systems are important for their sustainability. However, when N inputs are unnecessarily high, the excess can contribute to greater agricultural N losses that impact air, surface water and groundwater quality. It is paramount to reduce off-site transport of N by using...

  11. Elevated CO{sub 2} and ozone reduce nitrogen acquisition by Pinus halepensis from its mycorrhizal symbiont

    Energy Technology Data Exchange (ETDEWEB)

    Kytoeviita, M.M. [Oulu Univ., Dept. of Biology, Oulu (Finland); Thiec, D. Le [Univ. Henri Poincare-Nancy, Lab. de Biologie Forestiere, Vandoeuvre-les-Nancy (France); Dizengremel, P. [Unite Ecophysiologie Forestiere-Lab. de Pollution Atmospherique, INRA-Centre de Recherches Forestieres, Champenoux (France)

    2001-07-01

    The effects of 700 {mu}mol mol{sup -1} CO{sub 2} and 200 nmol mol{sup -1} ozone on photosynthesis in Pinus halepensis seedlings and on N translocation from its mycorrhizal symbiont, Paxillus involutus, were studied under nutrient-poor conditions. After 79 days of exposure, ozone reduced and elevated CO{sub 2} increased net assimilation rate. However, the effect was dependent on daily accumulated exposure. No statistically significant differences in total plant mass accumulation were observed, although ozone-treated plants tended to be smaller. Changes in atmospheric gas concentrations induced changes in allocation of resources: under elevated ozone, shoots showed high priority over roots and had significantly elevated N concentrations. As a result of different shoot N concentration and net carbon assimilation rates, photosynthetic N use efficiency was significantly increased under elevated CO{sub 2} and decreased under ozone. The differences in photosynthesis were mirrored in the growth of the fungus in symbiosis with the pine seedlings. However, exposure to CO{sub 2} and ozone both reduced the symbiosis-mediated N uptake. The results suggest an increased carbon cost of symbiosis-mediated N uptake under elevated CO{sub 2} while under ozone, plant N acquisition is preferentially shifted towards increased root uptake. (au)

  12. Nitrogen oxides transport from La Cygne Station, KS: A study for assessing its influence on urban ozone. Final report

    International Nuclear Information System (INIS)

    Blumenthal, D.L.

    1998-02-01

    As a result of the new ozone and PM 2.5 national ambient air quality standards, it appears that the Kansas City metropolitan area will be classified as nonattainment with respect to ozone. The Kansas Department of Health and Environment (KDHE) is planning to develop a new Kansas State Implementation Plan (SIP) to address this issue between 1997 and 2000 with implementation scheduled for 2004. Some Ozone Transport Assessment Group (OTAG) related air quality analyses have indicated that the Kansas City area is subject to surface and aloft windfields that could carry ozone or ozone precursors into Kansas City from outside the region, including from other parts of the state of Kansas. But questions have arisen whether or not local emission reductions would be more effective in achieving ozone standards. To better understand the causes of high ozone in the region and, specifically, to understand the role of emissions from certain power generating stations, the NO x Steering Committee was formed. The Committee includes representatives of the Kansas Department of Health and Environment and two local utility companies (Kansas City Power and Light (KCPL) and Western Resources). Input was also solicited from the US Environmental Protection Agency (EPA). This report presents the results of a scoping study commissioned by the Committee

  13. Reactivity Of Radiolytically-Produced Nitrogen Oxide Radicals Toward Aromatic Compounds

    International Nuclear Information System (INIS)

    Elias, Gracy

    2010-01-01

    radiolysis of the modifier (Cs-7SB), which solvates both metal complexes, is responsible for this change. These reactions presumably occur due to reactions with radiolytically-produced nitrogen-centered radicals like (sm b ullet)NO, (sm b ullet)NO 2 and (sm b ullet)NO 3 . Anisole (C 6 H 5 -OCH 3 ) was used in this study as a surrogate for Cs-7SB, since both are aryl ethers. Toluene was used as a surrogate for Cs-7SB because of the alkyl group on the benzene ring in both molecules. Anisole, highly reactive in acids, is a small molecule compared to Cs-7SB and the nitration products are easier to identify compared to those for the larger Cs-7SB molecule. Toluene is less reactive than anisole. Therefore, the highly reactive anisole and the less reactive toluene were considered in this study as model compounds to compare the reaction mechanisms and the nitrated products in acidic media under irradiation. Experiments were designed to elucidate the mechanism of the nitration of aromatic rings in γ-irradiated aqueous nitric acid. Since a suite of radical and ionic reactive species are produced in this condensed-phase system, solutions of nitric acid, neutral nitrate and neutral nitrite were irradiated in separate experiments to isolate selected reactive species. Product nitration species were assessed by high performance liquid chromatography (HPLC) with a reversed phase C-18 column and photodiode array detector. The nitrated anisole product distributions were the same with and without radiation in acidic solution, although more products were formed with radiation. In the irradiated acidic condensed phase, radiation-enhanced nitrous acid-catalyzed nitrosonium ion electrophilic aromatic substitution followed by oxidation reactions dominated over radical addition reactions. In contrast, the distribution of nitrated derivatives for toluene showed nitronium ion electrophilic substitution in the unirradiated acidic medium as a result of thermal nitration only at elevated temperatures

  14. Total-ozone and nitrogen-dioxide measurements at the Molodezhnaya and Mirnyi Antarctic stations during spring 1987-autumn 1988

    Energy Technology Data Exchange (ETDEWEB)

    Elokhov, A.S.; Gruzdev, A.N. (AN SSSR, Institut Fiziki Atmosfery, Moscow, (USSR))

    1991-09-01

    Results of measurements of the total-ozone and NO2 content during November-December (Molodezhnaya) and February-April 1988 (Mirnyi) are reported. During the November-December period an irregular total ozone increase was observed, which characterized the filling up of the ozone hole. Stratospheric warming and the total NO2 increase occurred simultaneously. During the summer-autumn period the total NO2 content decreased gradually. The evening total NO2 content was systematically greater than the morning one, which reflects changes in the NO2 abundance from day to night. 12 refs.

  15. Effect of operational parameters on the decolorization of C.I. Reactive Blue 19 in aqueous solution by ozone-enhanced electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Song Shuang; Yao Jie [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); He Zhiqiao [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)], E-mail: zqhe@zjut.edu.cn; Qiu Jianping; Chen Jianmeng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2008-03-21

    The aim of this paper was to investigate the efficiency of the ozone-enhanced electrocoagulation (EC) process in the decolorization of C.I. Reactive Blue 19 in water using iron electrodes. We determined the effects of various operating parameters such as initial pH, initial dye concentration, current density, salt concentration, temperature, ozone flow rate, and distance between electrodes on decolorization efficiency in a laboratory-scale reactor. Increasing the initial dye concentration decreased the decolorization efficiency, whereas increasing the distance between electrodes increased it. The other operating factors had both positive and negative effects. With an initial pH of 10.0, an initial dye concentration of 100 mg/L, current density of 10 mA/cm{sup 2}, salt concentration of 3000 mg/L, temperature of 30 deg. C, ozone flow rate of 20 mL/min, and distance between electrodes of 3 cm, over 96% of the color was removed after 10 min. As a consequence, removal of total organic carbon (TOC) was over 80%.

  16. Effect of operational parameters on the decolorization of C.I. Reactive Blue 19 in aqueous solution by ozone-enhanced electrocoagulation

    International Nuclear Information System (INIS)

    Song Shuang; Yao Jie; He Zhiqiao; Qiu Jianping; Chen Jianmeng

    2008-01-01

    The aim of this paper was to investigate the efficiency of the ozone-enhanced electrocoagulation (EC) process in the decolorization of C.I. Reactive Blue 19 in water using iron electrodes. We determined the effects of various operating parameters such as initial pH, initial dye concentration, current density, salt concentration, temperature, ozone flow rate, and distance between electrodes on decolorization efficiency in a laboratory-scale reactor. Increasing the initial dye concentration decreased the decolorization efficiency, whereas increasing the distance between electrodes increased it. The other operating factors had both positive and negative effects. With an initial pH of 10.0, an initial dye concentration of 100 mg/L, current density of 10 mA/cm 2 , salt concentration of 3000 mg/L, temperature of 30 deg. C, ozone flow rate of 20 mL/min, and distance between electrodes of 3 cm, over 96% of the color was removed after 10 min. As a consequence, removal of total organic carbon (TOC) was over 80%

  17. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  18. Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW) using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR).

    Science.gov (United States)

    Zhu, Hao; Han, Yuxing; Ma, Wencheng; Han, Hongjun; Ma, Weiwei

    2017-12-01

    Three identical anoxic-aerobic membrane bioreactors (MBRs) were operated in parallel for 300 consecutive days for raw (R 1 ), ozonated (R 2 ) and catalytic ozonated (R 3 ) biologically pretreated coal gasification wastewater (BPCGW) treatment. The results demonstrated that catalytic ozonation process (COP) applied asa pretreatment remarkably improved the performance of the unsatisfactory single MBR. The overall removal efficiencies of COD, NH 3 -N and TN in R 3 were 92.7%, 95.6% and 80.6%, respectively. In addition, typical nitrogenous heterocyclic compounds (NHCs) of quinoline, pyridine and indole were completely removed in the integrated process. Moreover, COP could alter sludge properties and reshape microbial community structure, thus delaying the occurrence of membrane fouling. Finally, the total cost for this integrated process was estimated to be lower than that of single MBR. The results of this study suggest that COP is a good option to enhance pollutants removal and alleviate membrane fouling in the MBR for BPCGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Simulating the reactive transport of nitrogen species in a regional irrigated agricultural groundwater system

    Science.gov (United States)

    Bailey, R. T.; Gates, T. K.

    2011-12-01

    The fate and transport of nitrogen (N) species in irrigated agricultural groundwater systems is governed by irrigation patterns, cultivation practices, aquifer-surface water exchanges, and chemical reactions such as oxidation-reduction, volatilization, and sorption, as well as the presence of dissolved oxygen (O2). We present results of applying the newly-developed numerical model RT3D-AG to a 50,400-ha regional study site within the Lower Arkansas River Valley in southeastern Colorado, where elevated concentrations of NO3 have been observed in both groundwater and surface water during the recent decade. Furthermore, NO3 has a strong influence on the fate and transport of other contaminants in the aquifer system such as selenium (Se) through inhibition of reduction of dissolved Se as well as oxidation of precipitate Se from outcropped and bedrock shale. RT3D-AG, developed by appending the multi-species reactive transport finite-difference model RT3D with modular packages that account for variably-saturated transport, the cycling of carbon (C) and N, and the fate and transport of O2 within the soil and aquifer system, simulates organic C and organic N decomposition and mineralization, oxidation-reduction reactions, and sorption. System sources/sinks consist of applied fertilizer and manure; crop uptake of ammonium (NH4) and NO3 during the growing season; mass of O2, NO3, and NH4 associated with irrigation water and canal seepage; mass of O2, NO3, and NH4 transferred to canals and the Arkansas River from the aquifer; and dead root mass and after-harvest stover mass incorporated into the soil organic matter at the end of the growing season. Chemical reactions are simulated using first-order Monod kinetics, wherein the rate of reaction is dependent on the concentration of the reactants as well as temperature and water content of the soil. Fertilizer and manure application timing and loading, mass of seasonal crop uptake, and end-of-season root mass and stover mass are

  20. Study to determine the nature and extent of ozone and ozone precursor transport in selected areas of California. Final report

    International Nuclear Information System (INIS)

    Roberts, P.T.; Musarra, S.; Smith, T.B.; Lurmann, F.W.

    1992-04-01

    The project was designed to assess the contribution of transported pollutants to violations of the state ozone standard within the air basins covered by the report using existing data and advanced data analysis techniques. The objectives of the project were to determine the characteristics of ozone and ozone precursor transport within the California air basins covered by the report and to identify whether the contribution of transported pollutants to ozone violations in each downwind area was inconsequential, significant, or overwhelming, relative to locally-emitted pollutants. The precursor pollutants of interest were nitrogen oxides and reactive organic gases. The project evaluated transport to the following areas: The Broader Sacramento Area and the Upper Sacramento Valley; The North Central Coast Air Basin; The Southeast Desert Air Basin (SEDAB); and the Imperial County portion of the SEDAB

  1. 2001 Ozone Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the...

  2. Lanthanide ions (III) as sensitizers of melatonin oxidation in reaction mixtures providing reactive species of oxygen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Małgorzata, E-mail: mkaczmar@amu.edu.pl

    2015-06-15

    Chemiluminescence (CL) of the reactive systems providing strong oxidants (reactive species of oxygen and nitrogen) containing lanthanide ions (III) and melatonin, was studied. Kinetic curves of emission decay and spectral distributions of chemiluminescence were obtained. Analysis of differences in the intensity of chemiluminescence and CL spectra proved that excitation of Tb(III) and Dy(III) ions takes place with the energy transfer from the products of melatonin oxidation: N{sup 1}-acetyl-N{sup 2}-formyl-5-methoxykynuramine (AFMK) and N{sup 1}-acetyl-5-methoxykynuramine (AMK) to the lanthanide ions. In the system Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) a linear correlation was established between the integrated CL intensity and melatonin concent. - Highlights: • Chemiluminescence (CL) of melatonin (Mel) oxidation by reactive species of oxygen and nitrogen. • Tb(III) and Dy(III) ions as sensitizers of a melatonin oxidation process. • New CL method for determination of melatonin in pharmaceutical preparations based on CL of Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) system.

  3. Biosphere-atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: Measurement strategy and first data sets

    DEFF Research Database (Denmark)

    Skiba, U.; Drewer, J.; Tang, Y.S.

    2009-01-01

    The NitroEurope project aims to improve understanding of the nitrogen (N) cycle at the continental scale and quantify the major fluxes of reactive N by a combination of reactive N measurements and modelling activities. As part of the overall measurement strategy, a network of 13 flux ‘super sites...

  4. Piling up reactive nitrogen and declining nitrogen use efficiency in Pakistan: a challenge not challenged (1961-2013)

    Science.gov (United States)

    Raza, Sajjad; Zhou, Jianbin; Aziz, Tariq; Rahil Afzal, Muhammad; Ahmed, Muneer; Javaid, Shahbaz; Chen, Zhujun

    2018-03-01

    Excessive nitrogen (N) application and reduced nitrogen use efficiency (NUE) are the key reasons behind N notoriety worldwide, including in Pakistan. We estimated the changes in NUE of Pakistan by calculating the N budget of Pakistan’s agriculture during the last 53 years (1961-2013). A more than ten-fold increase in N input (including N fertilizer, biological N fixation, manure, and atmospheric deposition) from 408 GgNyr-1 (1961-1965) to 4636 GgNyr-1 (2009-2013) highlights the fact that Pakistan is experiencing a massive expansion of N consumption. Significantly declining NUE (from 58% to 23%) and sharply increasing surplus N (171 GgNyr-1 to 3581 GgNyr-1) may cause N-related environment problems in the future if not handled immediately. Escalating gaseous N emissions of NH3, N2O, and NO (70, 10, and 1 GgNyr-1 to 1023, 155, and 46 GgNyr-1, respectively) is already posing a serious threat in terms of impaired air quality. There is a dire need to devise/adapt strategies and consistent policies for improving NUE, using proper management approaches at the grass root level and applying appropriate legislative measures for judicious N use as per crops requirements. Moreover, promotion of a balanced use of fertilizers would help in improving NUE in agriculture.

  5. Feed-derived volatile basic nitrogen increases reactive oxygen species production of blood leukocytes in lactating dairy cows.

    Science.gov (United States)

    Tsunoda, Ei; Gross, Josef J; Kawashima, Chiho; Bruckmaier, Rupert M; Kida, Katsuya; Miyamoto, Akio

    2017-01-01

    The present study investigated over 9 months the changes of fermentative quality of total mixed rations (TMR) containing grass silage (GS) as a major component, associated with changes in the volatile basic nitrogen (VBN) levels in an experimental dairy farm. Effects of VBN levels in TMR on metabolic parameters, reactive oxygen species (ROS) production by blood polymorphonuclear leukocytes (PMNs) and conception rates for dairy cows were analyzed. According to VBN levels in TMR during survey periods, three distinct phases were identified; phase A with low VBN; phase B with high VBN; and phase C with mid-VBN. Metabolic parameters in blood were all within normal range. However, during phases B and C, nitrogen metabolic indices such as blood urea nitrogen and milk urea nitrogen showed higher levels compared to those in phase A, and a simultaneous increase in ROS production by blood PMNs and the load on hepatic function in metabolic parameters was observed in the cows with a lower conception rate. This suggests that feeding TMR with elevated VBN levels due to poor fermented GS results in stimulation of ROS production by PMNs by ammonia, and negatively affects metabolism and reproductive performance in lactating dairy cow. © 2016 Japanese Society of Animal Science.

  6. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    Science.gov (United States)

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  7. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China.

    Science.gov (United States)

    Ou, Jiamin; Zheng, Junyu; Li, Rongrong; Huang, Xiaobo; Zhong, Zhuangmin; Zhong, Liuju; Lin, Hui

    2015-10-15

    The increasing ground-ozone (O3) levels, accompanied by decreasing SO2, NO2, PM10 and PM2.5 concentrations benefited from air pollution control measures implemented in recent years, initiated a serious challenge to control Volatile Organic Compound (VOC) emissions in the Pearl River Delta (PRD) region, China. Speciated VOC emission inventory is fundamental for estimating Ozone Formation Potentials (OFPs) to identify key reactive VOC species and sources in order to formulate efficient O3 control strategies. With the use of the latest bulk VOC emission inventory and local source profiles, this study developed the PRD regional speciated Oxygenated Volatile Organic Compound (OVOC) and VOC emission inventories to identify the key emission-based and OFP-based VOC sources and species. Results showed that: (1) Methyl alcohol, acetone and ethyl acetate were the major constituents in the OVOC emissions from industrial solvents, household solvents, architectural paints and biogenic sources; (2) from the emission-based perspective, aromatics, alkanes, OVOCs and alkenes made up 39.2%, 28.2%, 15.9% and 10.9% of anthropogenic VOCs; (3) from the OFP-based perspective, aromatics and alkenes become predominant with contributions of 59.4% and 25.8% respectively; (4) ethene, m/p-xylene, toluene, 1,2,4-trimethyl benzene and other 24 high OFP-contributing species were the key reactive species that contributed to 52% of anthropogenic emissions and up to 80% of OFPs; and (5) industrial solvents, industrial process, gasoline vehicles and motorcycles were major emission sources of these key reactive species. Policy implications for O3 control strategy were discussed. The OFP cap was proposed to regulate VOC control policies in the PRD region due to its flexibility in reducing the overall OFP of VOC emission sources in practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Ozone effects on growth of radish plants as influenced by nitrogen and phosphorus nutrition and by temperature. [Raphanus sativus L

    Energy Technology Data Exchange (ETDEWEB)

    Ormrod, D.P.; Adedipe, N.O.; Hofstra, G.

    1973-10-01

    Raphanus sativus L. (radish) plants were grown in sand culture at two temperatures and fed with nutrient solutions containing relatively low or high levels of either N or P. At the 4-leaf stage, the plants were exposed to ozone at a concentration of 25 pphm for 4 h. Ozone treatments resulted in decreased dry weight of low- and high-N plants at both temperatures and of low and high P plants only at the lower temperature. The study showed that air pollutant growth reduction is not necessarily accentuated by luxuriant growth resulting from high nutritional status. Responses to the nutrition of specific mineral nutrients depend on the modifying affect of temperature.

  9. Comparison of spatiotemporal prediction models of daily exposure of individuals to ambient nitrogen dioxide and ozone in Montreal, Canada.

    Science.gov (United States)

    Buteau, Stephane; Hatzopoulou, Marianne; Crouse, Dan L; Smargiassi, Audrey; Burnett, Richard T; Logan, Travis; Cavellin, Laure Deville; Goldberg, Mark S

    2017-07-01

    In previous studies investigating the short-term health effects of ambient air pollution the exposure metric that is often used is the daily average across monitors, thus assuming that all individuals have the same daily exposure. Studies that incorporate space-time exposures of individuals are essential to further our understanding of the short-term health effects of ambient air pollution. As part of a longitudinal cohort study of the acute effects of air pollution that incorporated subject-specific information and medical histories of subjects throughout the follow-up, the purpose of this study was to develop and compare different prediction models using data from fixed-site monitors and other monitoring campaigns to estimate daily, spatially-resolved concentrations of ozone (O 3 ) and nitrogen dioxide (NO 2 ) of participants' residences in Montreal, 1991-2002. We used the following methods to predict spatially-resolved daily concentrations of O 3 and NO 2 for each geographic region in Montreal (defined by three-character postal code areas): (1) assigning concentrations from the nearest monitor; (2) spatial interpolation using inverse-distance weighting; (3) back-extrapolation from a land-use regression model from a dense monitoring survey, and; (4) a combination of a land-use and Bayesian maximum entropy model. We used a variety of indices of agreement to compare estimates of exposure assigned from the different methods, notably scatterplots of pairwise predictions, distribution of differences and computation of the absolute agreement intraclass correlation (ICC). For each pairwise prediction, we also produced maps of the ICCs by these regions indicating the spatial variability in the degree of agreement. We found some substantial differences in agreement across pairs of methods in daily mean predicted concentrations of O 3 and NO 2 . On a given day and postal code area the difference in the concentration assigned could be as high as 131ppb for O 3 and 108ppb

  10. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient

    Science.gov (United States)

    Influences of ozone (O3) on light-saturated rates of photosynthesis in crop leaves have been well documented. To increase our understanding of O3 effects on individual- or stand level productivity, a mechanistic understanding of factors determining canopy photosynthesis is necessary. We used a canop...

  11. Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002–2011: SD-WACCM simulations compared to GOMOS observations

    Directory of Open Access Journals (Sweden)

    E. Kyrölä

    2018-04-01

    Full Text Available Most of our understanding of the atmosphere is based on observations and their comparison with model simulations. In middle atmosphere studies it is common practice to use an approach, where the model dynamics are at least partly based on temperature and wind fields from an external meteorological model. In this work we test how closely satellite measurements of a few central trace gases agree with this kind of model simulation. We use collocated vertical profiles where each satellite measurement is compared to the closest model data. We compare profiles and distributions of O3, NO2 and NO3 from the Global Ozone Monitoring by Occultation of Stars instrument (GOMOS on the Envisat satellite with simulations by the Whole Atmosphere Community Climate Model (WACCM. GOMOS measurements are from nighttime. Our comparisons show that in the stratosphere outside the polar regions differences in ozone between WACCM and GOMOS are small, between 0 and 6%. The correlation of 5-day time series show a very high 0.9–0.95. In the tropical region 10° S–10° N below 10 hPa WACCM values are up to 20 % larger than GOMOS. In the Arctic below 6 hPa WACCM ozone values are up to 20 % larger than GOMOS. In the mesosphere between 0.04 and 1 hPa the WACCM is at most 20 % smaller than GOMOS. Above the ozone minimum at 0.01 hPa (or 80 km large differences are found between WACCM and GOMOS. The correlation can still be high, but at the second ozone peak the correlation falls strongly and the ozone abundance from WACCM is about 60 % smaller than that from GOMOS. The total ozone columns (above 50 hPa of GOMOS and WACCM agree within ±2 % except in the Arctic where WACCM is 10 % larger than GOMOS. Outside the polar areas and in the validity region of GOMOS NO2 measurements (0.3–37 hPa WACCM and GOMOS NO2 agree within −5 to +25 % and the correlation is high (0.7–0.95 except in the upper stratosphere at the southern latitudes. In the

  12. Estimation of In-canopy Flux Distributions of Reactive Nitrogen and Sulfur within a Mixed Hardwood Forest in Southern Appalachia

    Science.gov (United States)

    Wu, Z.; Walker, J. T.; Chen, X.; Oishi, A. C.; Duman, T.

    2017-12-01

    Estimating the source/sink distribution and vertical fluxes of air pollutants within and above forested canopies is critical for understanding biological, physical, and chemical processes influencing the soil-vegetation-atmosphere exchange. The vertical source-sink profiles of reactive nitrogen and sulfur were examined using multiple inverse modeling methods in a mixed hardwood forest in the southern Appalachian Mountains where the ecosystem is highly sensitive to loads of pollutant from atmospheric depositions. Measurements of the vertical concentration profiles of ammonia (NH3), nitric acid (HNO3), sulfur dioxide (SO2), and ammonium (NH4+), nitrate (NO3-), and sulfate (SO42-) in PM2.5 were measured during five study periods between May 2015 and August 2016. The mean concentration of NH3 decreased with height in the upper canopy and increased below the understory toward the forest floor, indicating that the canopy was a sink for NH3 but the forest floor was a source. All other species exhibited patterns of monotonically decreasing concentration from above the canopy to the forest floor. Using the measured concentration profiles, we simulated the within-canopy flow fields and estimated the vertical source-sink flux profiles using three inverse approaches: a Eulerian high-order closure model (EUL), a Lagrangian localized near-field (LNF) model, and a new full Lagrangian stochastic model (LSM). The models were evaluated using the within- and above-canopy eddy covariance flux measurements of heat, CO2 and H2O. Differences between models were analyzed and the flux profiles were used to investigate the origin and fate of reactive nitrogen and sulfur compounds within the canopy. The knowledge gained in this study will benefit the development of soil-vegetation-atmosphere models capable of partitioning canopy-scale deposition of nitrogen and sulfur to specific ecosystem compartments.

  13. PRODUCTION, MANAGEMENT AND THE ENVIRONMENT SYMPOSIUM: Measurement and mitigation of reactive nitrogen species from swine and poultry production.

    Science.gov (United States)

    Powers, W; Capelari, M

    2017-05-01

    Reactive nitrogen (Nr) species include oxides of nitrogen [N; nitric oxide, nitrogen dioxide and nitrous oxide (NO)], anions (nitrate and nitrite), and amine derivatives [ammonia (NH), ammonium salts and urea]. Of the different Nr species, air emissions from swine and poultry facilities are predominantly NH followed by NO. Excreta emissions are NH, ammonium ions, and urea with trace amounts of nitrate and nitrite. Farm systems and practices that handle manure as a wet product without pH modification favor almost exclusive NH production. Systems and practices associated with dry manure handling and bedded systems emit more NH than NO. Results from a turkey grow-out study estimated that just under 1% of consumed N was emitted as NO from housing, compared with just under 11% emitted as NH. Despite generally less NO emissions from animal housing compared with crop field emissions, NO emissions from housing are often greater than estimated. Lagoon systems emit more NO than either slurry or deep pit swine systems. Deep pit swine buildings emit only one-third the NO that is emitted from deep bedded swine systems. Laying hen, broiler chicken, and turkey buildings emit over 4 times as much NO as swine housing, on a weight-adjusted basis. Critical control points for mitigation center on: 1) reducing the amount of N excreted and, therefore, excreted N available for loss to air or water during housing, manure storage, or following land application of manures; 2) capturing excreted N to prevent release of N-containing compounds to air, water, or soil resources; or 3) conversion or treatment of N-containing compounds to non-reactive N gas.

  14. Structural, optical and electrical properties of reactively sputtered CrxNy films: Nitrogen influence on the phase formation

    Directory of Open Access Journals (Sweden)

    Mirjana Novaković

    2017-03-01

    Full Text Available The properties of various CrxNy films grown by direct current (DC reactive sputtering process with different values of nitrogen partial pressures (0, 2×10-4, 3.5×10-4 and 5×10-4 mbar were studied. The structural analysis of the samples was performed by using X-ray diffraction and transmission electron microscopy (TEM, while an elemental analysis was realized by means of Rutherford backscattering spectrometry. By varying nitrogen partial pressure the pure Cr layer, mixture of Cr, Cr2N and CrN phases, or single-phase CrN was produced. TEM analysis showed that at pN2 = 2×10-4 mbar the layer has dense microstructure. On the other hand, the layer deposited at the highest nitrogen partial pressure exhibits pronounced columnar structure. The optical properties of CrxNy films were evaluated from spectroscopic ellipsometry data by the Drude or combined Drude and Tauc-Lorentz model. It was found that both refractive index and extinction coefficient are strongly dependent on the dominant phase formation (Cr, Cr2N, CrN during the deposition process. Finally, the electrical studies indicated the metallic character of Cr2N phase and semiconducting behaviour of CrN.

  15. Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains.

    Science.gov (United States)

    Arbaugh, Michael; Bytnerowicz, Andrzej; Grulke, Nancy; Fenn, Mark; Poth, Mark; Temple, Patrick; Miller, Paul

    2003-06-01

    Toxic effects of photochemical smog on ponderosa and Jeffrey pines in the San Bernardino Mountains were discovered in the 1950s. It was revealed that ozone is the main cause of foliar injury manifested as chlorotic mottle and premature needle senescence. Various morphological, physiological and biochemical alterations in the affected plants have been reported over a period of about 40 years of multidisciplinary research. Recently, the focus of research has shifted from studying the effects of ozone to multiple pollutant effects. Recent studies have indicated that the combination of ozone and nitrogen may alter biomass allocation in pines towards that of deciduous trees, accelerate litter accumulation, and increase carbon sequestration rates in heavily polluted forests. Further study of the effects of multiple pollutants, and their long-term consequences on the mixed conifer ecosystem, cannot be adequately done using the original San Bernardino Mountains Air Pollution Gradient network. To correct deficiencies in the design, the new site network is being configured for long-term studies on multiple air pollutant concentrations and deposition, physiological and biochemical changes in trees, growth and composition of over-story species, biogeochemical cycling including carbon cycling and sequestration, water quality, and biodiversity of forest ecosystems. Eleven sites have been re-established. A comparison of 1974 stand composition with data from 2000 stand composition indicate that significant changes in species composition have occurred at some sites with less change at other sites. Moist, high-pollution sites have experienced the greatest amount of forest change, while dryer low-pollution sites have experienced the least amount of stand change. In general, ponderosa pine had the lowest basal area increases and the highest mortality across the San Bernardino Mountains.

  16. Using air quality modeling to study source-receptor relationships between nitrogen oxides emissions and ozone exposures over the United States.

    Science.gov (United States)

    Tong, Daniel Q; Muller, Nicholas Z; Kan, Haidong; Mendelsohn, Robert O

    2009-11-01

    Human exposure to ambient ozone (O(3)) has been linked to a variety of adverse health effects. The ozone level at a location is contributed by local production, regional transport, and background ozone. This study combines detailed emission inventory, air quality modeling, and census data to investigate the source-receptor relationships between nitrogen oxides (NO(x)) emissions and population exposure to ambient O(3) in 48 states over the continental United States. By removing NO(x) emissions from each state one at a time, we calculate the change in O(3) exposures by examining the difference between the base and the sensitivity simulations. Based on the 49 simulations, we construct state-level and census region-level source-receptor matrices describing the relationships among these states/regions. We find that, for 43 receptor states, cumulative NO(x) emissions from upwind states contribute more to O(3) exposures than the state's own emissions. In-state emissions are responsible for less than 15% of O(3) exposures in 90% of U.S. states. A state's NO(x) emissions can influence 2 to 40 downwind states by at least a 0.1 ppbv change in population-averaged O(3) exposure. The results suggest that the U.S. generally needs a regional strategy to effectively reduce O(3) exposures. But the current regional emission control program in the U.S. is a cap-and-trade program that assumes the marginal damage of every ton of NO(x) is equal. In this study, the average O(3) exposures caused by one ton of NO(x) emissions ranges from -2.0 to 2.3 ppm-people-hours depending on the state. The actual damage caused by one ton of NO(x) emissions varies considerably over space.

  17. Tropospheric profiles of nitrogen oxides, ozone, and other related trace species measured over the Atlantic near the west coast of Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, F; Bruening, D; Grobler, E S; Koppmann, R; Kraus, A B; Schrimpf, W; Weber, M; Ehhalt, D H [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Atmosphaerische Chemie

    1998-12-31

    In June and December 1994, the concentrations of the nitrogen oxides NO, NO{sub 2} and NO{sub y} were measured together with ozone, photolysis frequency of NO{sub 2}, methane, CO, CO{sub 2}, PAN, and light hydrocarbons near the west coast of Europe above the Atlantic Ocean. Two vertical profiles for each season were obtained in the altitude range 1.5 to 12 km at four locations: near Prestwick (56 deg N, 9 deg W), Brest (49 deg N, 6 deg W), Faro (37 deg N, 12 deg W) and Tenerife (30 deg N, 18 deg W). The measured vertical profiles of NO are compared to the results of a low resolution 3-D chemical tracer model. (author)

  18. Tropospheric profiles of nitrogen oxides, ozone, and other related trace species measured over the Atlantic near the west coast of Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, F.; Bruening, D.; Grobler, E.S.; Koppmann, R.; Kraus, A.B.; Schrimpf, W.; Weber, M.; Ehhalt, D.H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Atmosphaerische Chemie

    1997-12-31

    In June and December 1994, the concentrations of the nitrogen oxides NO, NO{sub 2} and NO{sub y} were measured together with ozone, photolysis frequency of NO{sub 2}, methane, CO, CO{sub 2}, PAN, and light hydrocarbons near the west coast of Europe above the Atlantic Ocean. Two vertical profiles for each season were obtained in the altitude range 1.5 to 12 km at four locations: near Prestwick (56 deg N, 9 deg W), Brest (49 deg N, 6 deg W), Faro (37 deg N, 12 deg W) and Tenerife (30 deg N, 18 deg W). The measured vertical profiles of NO are compared to the results of a low resolution 3-D chemical tracer model. (author)

  19. Reactive nitrogen in the United States: How certain are we about sources and fluxes?

    Science.gov (United States)

    Human alteration of the nitrogen (N) cycle has produced benefits for health and well-being, but excess N has altered many ecosystems and degraded air and water quality. US regulations mandate protection of the environment in terms that directly connect to ecosystem services. Here...

  20. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry

    Science.gov (United States)

    Jha, Nayansi; Ryu, Jae Jun

    2017-01-01

    The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases. PMID:29204250

  1. Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential.

    Science.gov (United States)

    Song, Yang; Breider, Florian; Ma, Jun; von Gunten, Urs

    2017-10-01

    In this study, nitrate formation from ammonium and/or dissolved organic nitrogen (DON) was investigated as a novel surrogate parameter to evaluate the abatement of micropollutants during ozonation of synthetic waters containing natural organic matter (NOM) isolates, a natural water and secondary wastewater effluents. Nitrate formation during ozonation was compared to the changes in UV absorbance at 254 nm (UVA 254 ) including the effect of pH. For low specific ozone doses UVA 254 was abated more efficiently than nitrate was formed. This is due to a relatively slow rate-limiting step for nitrate formation from the reaction between ozone and a proposed nitrogen-containing intermediate. This reaction cannot compete with the fast reactions between ozone and UV-absorbing moieties (e.g., activated aromatic compounds). To further test the kinetics of nitrate formation, two possible intermediates formed during ozonation of DON were tested. At pH 7, nitrate was formed during ozonation of acetone oxime and methyl nitroacetate with second-order rate constants of 256.7 ± 4.7 M -1  s -1 and 149.5 ± 5.8 M -1  s -1 , respectively. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) was investigated for specific ozone doses ≤1.53 mgO 3 /mgDOC and its efficiency depended strongly on the reactivity of the selected compounds with ozone. The relative abatement of micropollutants (i.e., EE2 and CBZ) with high ozone reactivity showed linear relationships with nitrate formation. The abatement of micropollutants with intermediate-low ozone reactivity (BZF, IBU, and pCBA) followed one- and two-phase behaviors relative to nitrate formation during ozonation of water samples containing high and low concentrations of nitrate-forming DON, respectively. During ozonation of a wastewater sample, the N-nitrosodimethylamine formation potential (NDMA-FP) during

  2. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    Directory of Open Access Journals (Sweden)

    L. Ran

    2012-08-01

    Full Text Available Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP and Yangtze River Delta (YRD. Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP and Shanghai (YRD. Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx and various non-methane hydrocarbons (NMHCs. Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  3. Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    DEFF Research Database (Denmark)

    Jepsen, Lars H.; Ley, Morten B.; Lee, Young-Su

    2014-01-01

    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights...... a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved. © 2014 Elsevier Ltd....

  4. Impacts of ozone on trees and crops

    International Nuclear Information System (INIS)

    Felzer, B.S.; Cronina, T.; Melillo, J.M.; Reilly, J.M.; Xiaodong, Wang

    2007-01-01

    In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NO x , which are also a source of nitrogen deposition. Reduced carbon sequestration of temperate forests resulting from ozone is likely offset by increased carbon sequestration from nitrogen fertilization. However, since fertilized crop-lands are generally not nitrogen-limited, capping ozone-polluting substances in the USA, Europe, and China can reduce future crop yield loss substantially. (authors)

  5. Atmospheric photochemical reactivity and ozone production at two sites in Hong Kong: Application of a Master Chemical Mechanism-photochemical box model

    Science.gov (United States)

    Ling, Z. H.; Guo, H.; Lam, S. H. M.; Saunders, S. M.; Wang, T.

    2014-09-01

    A photochemical box model incorporating the Master Chemical Mechanism (v3.2), constrained with a full suite of measurements, was developed to investigate the photochemical reactivity of volatile organic compounds at a semirural site (Mount Tai Mo Shan (TMS)) and an urban site (Tsuen Wan (TW)) in Hong Kong. The levels of ozone (O3) and its precursors, and the magnitudes of the reactivity of O3 precursors, revealed significant differences in the photochemistry at the two sites. Simulated peak hydroperoxyl radical (HO2) mixing ratios were similar at TW and TMS (p = 0.05), while the simulated hydroxyl radical (OH) mixing ratios were much higher at TW (p TMS, but at TW, both HCHO and O3 photolyses were found to be major contributors. By contrast, radical-radical reactions governed HOx radical losses at TMS, while at TW, the OH + NO2 reaction was found to dominate in the morning and the radical-radical reactions at noon. Overall, the conversion of NO to NO2 by HO2 dictated the O3 production at the two sites, while O3 destruction was dominated by the OH + NO2 reaction at TW, and at TMS, O3 photolysis and the O3 + HO2 reaction were the major mechanisms. The longer OH chain length at TMS indicated that more O3 was produced for each radical that was generated at this site.

  6. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    International Nuclear Information System (INIS)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe 3 ) 4 Ru(X)(Y) and (DMPM) 2 Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe 3 ) 4 Ru(Ph)(Me) or (PMe 3 ) 4 Ru(Ph) 2 leads to the ruthenium benzyne complex (PMe 3 ) 4 Ru(η 2 -C 6 H 4 ) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO 2 and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe 3 ) 4 Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs

  7. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  8. Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement.

    Science.gov (United States)

    Antoniou, Chrystalla; Savvides, Andreas; Christou, Anastasis; Fotopoulos, Vasileios

    2016-10-01

    Abiotic stresses severely limit crop yield and their detrimental effects are aggravated by climate change. Chemical priming is an emerging field in crop stress management. The exogenous application of specific chemical agents before stress events results in tolerance enhancement and reduction of stress impacts on plant physiology and growth. However, the molecular mechanisms underlying the remarkable effects of chemical priming on plant physiology remain to be elucidated. Reactive oxygen, nitrogen and sulfur species (RONSS) are molecules playing a vital role in the stress acclimation of plants. When applied as priming agents, RONSS improve stress tolerance. This review summarizes the recent knowledge on the role of RONSS in cell signalling and gene regulation contributing to abiotic stress tolerance enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States

    Science.gov (United States)

    Baron, Jill S.; Hall, E.K.; Nolan, B.T.; Finlay, J.C.; Bernhardt, E.S.; Harrison, J.A.; Chan, F.; Boyer, E.W.

    2012-01-01

    Nearly all freshwaters and coastal zones of the US are degraded from inputs of excess reactive nitrogen (Nr), sources of which are runoff, atmospheric N deposition, and imported food and feed. Some major adverse effects include harmful algal blooms, hypoxia of fresh and coastal waters, ocean acidification, long-term harm to human health, and increased emissions of greenhouse gases. Nitrogen fluxes to coastal areas and emissions of nitrous oxide from waters have increased in response to N inputs. Denitrification and sedimentation of organic N to sediments are important processes that divert N from downstream transport. Aquatic ecosystems are particularly important denitrification hotspots. Carbon storage in sediments is enhanced by Nr, but whether carbon is permanently buried is unknown. The effect of climate change on N transport and processing in fresh and coastal waters will be felt most strongly through changes to the hydrologic cycle, whereas N loading is mostly climate-independent. Alterations in precipitation amount and dynamics will alter runoff, thereby influencing both rates of Nr inputs to aquatic ecosystems and groundwater and the water residence times that affect Nr removal within aquatic systems. Both infrastructure and climate change alter the landscape connectivity and hydrologic residence time that are essential to denitrification. While Nr inputs to and removal rates from aquatic systems are influenced by climate and management, reduction of N inputs from their source will be the most effective means to prevent or to minimize environmental and economic impacts of excess Nr to the nation’s water resources.

  10. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    Science.gov (United States)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  11. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.

    Science.gov (United States)

    Hardy, Micael; Zielonka, Jacek; Karoui, Hakim; Sikora, Adam; Michalski, Radosław; Podsiadły, Radosław; Lopez, Marcos; Vasquez-Vivar, Jeannette; Kalyanaraman, Balaraman; Ouari, Olivier

    2018-05-20

    Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.

  12. Atmospheric redistribution of reactive nitrogen and phosphorus by wildfires and implications for global carbon cycling

    Science.gov (United States)

    Randerson, J. T.; Xu, L.; Wiggins, E. B.; Chen, Y.; Riley, W. J.; Mekonnen, Z. A.; Pellegrini, A.; Mahowald, N. M.

    2017-12-01

    Fires are an important process regulating the redistribution of nutrients within terrestrial ecosystems. Frequently burning ecosystems such as savannas are a net source of N and P to the atmosphere each year, with atmospheric transport and dry and wet deposition increasing nutrient availability in downwind ecosystems and over the open ocean. Transport of N and P aerosols from savanna fires within the Hadley circulation contributes to nutrient deposition over tropical forests, yielding an important cross-biome nutrient transfer. Pyrodenitrification of reactive N increases with fire temperature and modified combustion efficiency, generating a global net biospheric loss of approximately 14 Tg N per year. Here we analyze atmospheric N and P redistribution using the Global Fire Emissions Database version 4s and the Accelerated Climate Modeling for Energy earth system model. We synthesize literature estimates of N and P concentrations in fire-emitted aerosols and ecosystem mass balance measurements to help constrain model estimates of these biosphere-atmosphere fluxes. In our analysis, we estimate the fraction of terrestrial net primary production (NPP) that is sustained by fire-emitted P and reactive N from upwind ecosystems. We then evaluate how recent global declines in burned area in savanna and grassland ecosystems may be changing nutrient availability in downwind ecosystems.

  13. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  14. Biogenic nitrogen oxide emissions from soils ─ impact on NOx and ozone over West Africa during AMMA (African Monsoon Multidisciplinary Experiment: modelling study

    Directory of Open Access Journals (Sweden)

    J.-P. Chaboureau

    2008-05-01

    Full Text Available Nitrogen oxide biogenic emissions from soils are driven by soil and environmental parameters. The relationship between these parameters and NO fluxes is highly non linear. A new algorithm, based on a neural network calculation, is used to reproduce the NO biogenic emissions linked to precipitations in the Sahel on the 6 August 2006 during the AMMA campaign. This algorithm has been coupled in the surface scheme of a coupled chemistry dynamics model (MesoNH Chemistry to estimate the impact of the NO emissions on NOx and O3 formation in the lower troposphere for this particular episode. Four different simulations on the same domain and at the same period are compared: one with anthropogenic emissions only, one with soil NO emissions from a static inventory, at low time and space resolution, one with NO emissions from neural network, and one with NO from neural network plus lightning NOx. The influence of NOx from lightning is limited to the upper troposphere. The NO emission from soils calculated with neural network responds to changes in soil moisture giving enhanced emissions over the wetted soil, as observed by aircraft measurements after the passing of a convective system. The subsequent enhancement of NOx and ozone is limited to the lowest layers of the atmosphere in modelling, whereas measurements show higher concentrations above 1000 m. The neural network algorithm, applied in the Sahel region for one particular day of the wet season, allows an immediate response of fluxes to environmental parameters, unlike static emission inventories. Stewart et al (2008 is a companion paper to this one which looks at NOx and ozone concentrations in the boundary layer as measured on a research aircraft, examines how they vary with respect to the soil moisture, as indicated by surface temperature anomalies, and deduces NOx fluxes. In this current paper the model-derived results are compared to the observations and calculated fluxes presented by Stewart et

  15. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    Science.gov (United States)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  16. Measurements of reactive nitrogen produced by tropical thunderstorms during BIBLE-C

    Science.gov (United States)

    Koike, M.; Kondo, Y.; Kita, K.; Takegawa, N.; Nishi, N.; Kashihara, T.; Kawakami, S.; Kudoh, S.; Blake, D.; Shirai, T.; Liley, B.; Ko, M.; Miyazaki, Y.; Kawasaki, Z.; Ogawa, T.

    2007-09-01

    The Biomass Burning and Lightning Experiment phase C (BIBLE-C) aircraft mission was carried out near Darwin, Australia (12°S, 131°E) in December 2000. This was the first aircraft experiment designed to estimate lightning NO production rates in the tropics, where production is considered to be most intense. During the two flights (flights 10 and 13 made on December 9 and 11-12, respectively) enhancements of NOx (NO + NO2) up to 1000 and 1600 parts per trillion by volume (pptv, 10-s data) were observed at altitudes between 11.5 and 14 km. The Geostationary Meteorological Satellite (GMS) cloud (brightness temperature) data and ground-based lightning measurements by the Global Positioning and Tracking System (GPATS) indicate that there were intensive lightning events over the coast of the Gulf of Carpentaria, which took place upstream from our measurement area 10 to 14 h prior to the measurements. For these two flights, air in which NOx exceeded 100 pptv extended over 620 × 140 and 400 × 170 km2 (wind direction × perpendicular direction), respectively, suggesting a significant impact of lightning NO production on NOx levels in the tropics. We estimate the amount of NOx observed between 11.5 and 14 km produced by the thunderstorms to be 3.3 and 1.8 × 1029 NO molecules for flights 10 and 13, respectively. By using the GPATS lightning flash count data, column NO production rates are estimated to be 1.9-4.4 and 21-49 × 1025 NO molecules per single flash for these two flight data sets. In these estimations, it is assumed that the column NO production between 0 and 16 km is greater than the observed values between 11.5 and 14 km by a factor of 3.2, which is derived using results reported by Pickering et al. (1998). There are however large uncertainties in the GPATS lightning data in this study and care must be made when the production rates are referred. Uncertainties in these estimates are discussed. The impact on the ozone production rate is also described.

  17. Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species.

    Science.gov (United States)

    Morikawa, Yoshifumi; Shibata, Akinobu; Okumura, Naoko; Ikari, Akira; Sasajima, Yasuhide; Suenami, Koichi; Sato, Kiyohito; Takekoshi, Yuji; El-Kabbani, Ossama; Matsunaga, Toshiyuki

    2017-01-01

    Overdose administration of sibutramine, a serotonin-noradrenalin reuptake inhibitor, is considered to elicit severe side effects including hypertension, whose pathogenic mechanism remains unclear. Here, we found that 48-h incubation with >10μM sibutramine provokes apoptosis of human aortic endothelial (HAE) cells. Treatment with the lethal concentration of sibutramine facilitated production of reactive oxygen species (ROS), altered expression of endoplasmic reticulum stress response genes (heat shock protein 70 and C/EBP homologous protein), and inactivated 26S proteasome-based proteolysis. The treatment also decreased cellular level of nitric oxide (NO) through lowering of expression and activity of endothelial NO synthase. These results suggest that ROS production and depletion of NO are crucial events in the apoptotic mechanism and may be linked to the pathogenesis of vasoconstriction elicited by the drug. Compared to sibutramine, its metabolites (N-desmethylsibutramine and N-didesmethylsibutramine) were much less cytotoxic to HAE cells, which hardly metabolized sibutramine. In contrast, both the drug and metabolites showed low cytotoxicity to hepatic HepG2 cells with high metabolic potency and expression of cytochrome P450 (CYP) 3A4. The cytotoxicity of sibutramine to HepG2 and Chang Liver cells was remarkably augmented by inhibition and knockdown of CYP3A4. This study also suggests an inverse relationship between sibutramine cytotoxicity and CYP3A4-mediated metabolism into the N-desmethyl metabolites. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Secondary targets of nitrite-derived reactive nitrogen species: nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications.

    Science.gov (United States)

    d'Ischia, Marco; Napolitano, Alessandra; Manini, Paola; Panzella, Lucia

    2011-12-19

    Nitrite, the primary metabolite of nitric oxide (NO) and a widely diffused component of human diet, plays distinct and increasingly appreciated roles in human physiology. However, when exposed to acidic environments, typically in the stomach, or under oxidative stress conditions, it may be converted to a range of reactive nitrogen species (RNS) which in turn can target a variety of biomolecules. Typical consequences of toxicological relevance include protein modification, DNA base deamination and the formation of N-nitrosamines, among the most potent mutagenic and carcinogenic compounds for humans. Besides primary biomolecules, nitrite can cause structural modifications to a variety of endogenous and exogenous organic compounds, ranging from polyunsaturated fatty acids to estrogens, tocopherol, catecholamines, furans, retinoids, dietary phenols, and a range of xenobiotics. The study of the interactions between nitrite and key food components, including phenolic antioxidants, has therefore emerged as an area of great promise for delineating innovative strategies in cancer chemoprevention. Depending on substrates and conditions, diverse reaction pathways may compete to determine product features and distribution patterns. These include nitrosation and nitration but also oxidation, via electron transfer to nitrosonium ion or nitrogen dioxide. This contribution aims to provide an overview of the main classes of compounds that can be targeted by nitrite and to discuss at chemical levels the possible reaction mechanisms under conditions that model those occurring in the stomach. The toxicological implications of the nitrite-modified molecules are finally addressed, and a rational chemical approach to the design of potent antinitrosing agents is illustrated. © 2011 American Chemical Society

  19. Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem

    Science.gov (United States)

    Boot, Claudia M.; Hall, Ed K.; Denef, Karolien; Baron, Jill S.

    2016-01-01

    Elevated nitrogen (N) deposition due to increased fossil fuel combustion and agricultural practices has altered global carbon (C) cycling. Additions of reactive N to N-limited environments are typically accompanied by increases in plant biomass. Soil C dynamics, however, have shown a range of different responses to the addition of reactive N that seem to be ecosystem dependent. We evaluated the effect of N amendments on biogeochemical characteristics and microbial responses of subalpine forest organic soils in order to develop a mechanistic understanding of how soils are affected by N amendments in subalpine ecosystems. We measured a suite of responses across three years (2011–2013) during two seasons (spring and fall). Following 17 years of N amendments, fertilized soils were more acidic (control mean 5.09, fertilized mean 4.68), and had lower %C (control mean 33.7% C, fertilized mean 29.8% C) and microbial biomass C by 22% relative to control plots. Shifts in biogeochemical properties in fertilized plots were associated with an altered microbial community driven by reduced arbuscular mycorrhizal (control mean 3.2 mol%, fertilized mean 2.5 mol%) and saprotrophic fungal groups (control mean 17.0 mol%, fertilized mean 15.2 mol%), as well as a decrease in N degrading microbial enzyme activity. Our results suggest that decreases in soil C in subalpine forests were in part driven by increased microbial degradation of soil organic matter and reduced inputs to soil organic matter in the form of microbial biomass.

  20. Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshifumi [Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501 (Japan); Shibata, Akinobu; Okumura, Naoko; Ikari, Akira [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Sasajima, Yasuhide; Suenami, Koichi; Sato, Kiyohito; Takekoshi, Yuji [Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501 (Japan); El-Kabbani, Ossama [Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Matsunaga, Toshiyuki, E-mail: matsunagat@gifu-pu.ac.jp [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan)

    2017-01-01

    Overdose administration of sibutramine, a serotonin-noradrenalin reuptake inhibitor, is considered to elicit severe side effects including hypertension, whose pathogenic mechanism remains unclear. Here, we found that 48-h incubation with > 10 μM sibutramine provokes apoptosis of human aortic endothelial (HAE) cells. Treatment with the lethal concentration of sibutramine facilitated production of reactive oxygen species (ROS), altered expression of endoplasmic reticulum stress response genes (heat shock protein 70 and C/EBP homologous protein), and inactivated 26S proteasome-based proteolysis. The treatment also decreased cellular level of nitric oxide (NO) through lowering of expression and activity of endothelial NO synthase. These results suggest that ROS production and depletion of NO are crucial events in the apoptotic mechanism and may be linked to the pathogenesis of vasoconstriction elicited by the drug. Compared to sibutramine, its metabolites (N-desmethylsibutramine and N-didesmethylsibutramine) were much less cytotoxic to HAE cells, which hardly metabolized sibutramine. In contrast, both the drug and metabolites showed low cytotoxicity to hepatic HepG2 cells with high metabolic potency and expression of cytochrome P450 (CYP) 3A4. The cytotoxicity of sibutramine to HepG2 and Chang Liver cells was remarkably augmented by inhibition and knockdown of CYP3A4. This study also suggests an inverse relationship between sibutramine cytotoxicity and CYP3A4-mediated metabolism into the N-desmethyl metabolites. - Highlights: • Treatment with sibutramine, an anorexiant, induces endothelial cell apoptosis. • The apoptotic mechanism includes induction of ROS and NO depletion. • There is an inverse relationship between sibutramine cytotoxicity and its metabolism.

  1. Nitrogen oxides and ozone fluxes from an oilseed-rape management cycle: the influence of cattle slurry application

    Science.gov (United States)

    Vuolo, Raffaella M.; Loubet, Benjamin; Mascher, Nicolas; Gueudet, Jean-Christophe; Durand, Brigitte; Laville, Patricia; Zurfluh, Olivier; Ciuraru, Raluca; Stella, Patrick; Trebs, Ivonne

    2017-05-01

    This study reports NO, NO2 and O3 mixing ratios and flux measurements using the eddy covariance method during a 7-month period over an oilseed-rape field, spanning an organic and a mineral fertilisation event. Cumulated NO emissions during the whole period were in agreement with previous studies and showed quite low emissions of 0.26 kg N ha-1 with an emission factor of 0.27 %, estimated as the ratio between total N emitted in the form of NO and total N input. The NO emissions were higher following organic fertilisation in August due to conditions favouring nitrification (soil water content around 20 % and high temperatures), while mineral fertilisation in February did not result in high emissions. The ozone deposition velocity increased significantly after organic fertilisation. The analysis of the chemical and turbulent transport times showed that reactions between NO, NO2 and O3 below the measurement height occurred constantly throughout the 7-month period. Following organic fertilisation, the NO ground fluxes were 30 % larger than the NO fluxes at the measurement height (3.2 m), while the NO2 fluxes switched from deposition to emission during certain periods, being negative at the surface and positive at the measurement height. This phenomenon of apparent NO2 emissions appears to be significant during strong NO emissions and high O3 ambient mixing ratios, even on a bare soil during August.

  2. Effects of ambient ozone on reactive oxygen species and antioxidant metabolites in leaves of pea (pisum sativum l.) plants

    International Nuclear Information System (INIS)

    Hassan, I.A.; Almeelbi, T.; Basahi, J.M.

    2017-01-01

    The differential response of two pea plants (Pisum sativum L. cultivars Little Marvel and Victory) to ambient O3 grown under open top chambers (OTCs) was analyzed and compared. Reactive oxygen species (ROS) generation, antioxidant metabolites such as ascorbate/glutathione as well as a series of enzymes for scavenging ROS were analyzed, all aiming to reveal the differential behavior of two closely related plants when exposed to ambient O3.Antioxidant levels and activities of related enzymes in response to ambient were noticeably different among Little Marvel and Victory plants. However, the response was cultivar-specific. There was higher accumulation of ROS and relatively lower induction of antioxidants and more inhibition in photosynthetic rates in Victory than Little Marvel. There was a good correlation between tolerance to O3 and high endogenous levels of antioxidant metabolites such as ascorbate (As), glutathione reductase (GR), superoxide dismutase (SOD), reduced (GSH) and oxidized glutathione (GSSG) in pea plants. These portrays a higher sensitivity of Victory to ambient O3.To the best of our knowledge, this is one of the very few studies attempted to describe the changes in contents of antioxidants and activities of related enzymes in leaves of two closely related cultivars to further ourunderstanding on the defense mechanism and strategies under ambient O3. The results highlighted the possible roles of antioxidants in O3 detoxification through activation an adaptive survival mechanism allowing the plant to complete its life cycle even under oxidative stressful conditions. (author)

  3. Nitrogen oxides and ozone in the tropopause region of the Northern Hemisphere: Measurements from commercial aircraft in 1995/1996 and 1997

    Science.gov (United States)

    Brunner, Dominik; Staehelin, Johannes; Jeker, Dominique; Wernli, Heini; Schumann, Ulrich

    2001-11-01

    Measurements of nitrogen oxides (NO and NO2) and ozone (O3) were performed from a Swissair B-747 passenger aircraft in two extended time periods (May 1995 to May 1996, August to November 1997) in the framework of the Swiss NOXAR and the European POLINAT 2 project. The measurements were obtained on a total of 623 flights between Europe and destinations in the United States and the Far East. NO2 measurements were obtained only after December 1995 and were less precise than the NO measurements. Therefore daytime NO2 values were derived from measured NO and O3 concentrations assuming photostationary equilibrium. The completed NOx data set (measured NO, measured NO2 during night, and calculated NO2 during day) includes a complete annual cycle and is the most extensive and representative data set currently available for the upper troposphere (UT) and the lower stratosphere (LS) covering a significant proportion of the northern hemisphere between 15°N and 65°N. NOx concentrations in midlatitudes (30°-60°N) showed a marked seasonal variation both in the UT and the LS with a maximum in summer (median/mean values of 159/264 pptv in UT, 199/237 pptv in LS) and a minimum in winter (51/99 pptv in UT, 67/91 pptv in LS). Mean NOx concentrations were generally much higher than the respective median values, in particular in the UT, which reflects the important contribution from comparatively few very high concentrations observed in large-scale convection/lightning and small-scale aircraft plumes. Seasonal mean NOx concentrations in the UT were up to 3-4 times higher over continental regions than over the North Atlantic during summer. Lightning production of NO and convective vertical transport from the polluted boundary layer thus appear to have dominated the upper tropospheric NOx budget over these continental regions, particularly during summer. Ozone concentrations at aircraft cruising levels typically varied by an order of magnitude due to the strong vertical gradient in

  4. Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec.

    Science.gov (United States)

    Gourdji, Shannon

    2018-05-28

    In urbanized regions with expansive impervious surfaces and often low vegetation cover, air pollution due to motor vehicles and other combustion sources, is a problem. The poor air quality days in Montreal, Quebec are mainly due to fine particulate matter and ozone. Businesses using wood ovens are a source of particulates. Careful vegetation selection and increased green roof usage can improve air quality. This paper reviews different green roofs and the capability of plants in particulate matter (PM), ozone (O 3 ) as well as nitrogen dioxide (NO 2 ) level reductions. Both the recommended green roof category and plants to reduce these pollutants in Montreal's zone 5 hardiness region are provided. Green roofs with larger vegetation including shrubs and trees, or intensive green roofs, remove air pollutants to a greater extent and are advisable to implement on existing, retrofitted or new buildings. PM is most effectively captured by pines. The small Pinus strobus 'Nana', Pinus mugho var. pumilio, Pinus mugho 'Slowmound' and Pinus pumila 'Dwarf Blue' are good candidates for intensive green roofs. Drought tolerant, deciduous broadleaved trees with low biogenic volatile organic compound emissions including Japanese Maple or Acer palmatum 'Shaina' and 'Mikawa-Yatsubusa' are options to reduce O 3 levels. Magnolias are tolerant to NO 2 and it is important in their metabolic pathways. The small cold-tolerant Magnolia 'Genie' is a good option to remove NO 2 in urban settings and to indirectly reduce O 3 formation. Given the emissions by Montreal businesses' wood ovens, calculations performed based on their respective complex roof areas obtained via Google Earth Pro indicates 88% Pinus mugho var. pumilio roof coverage can annually remove 92.37 kg of PM 10 of which 35.10 kg is PM 2.5 . The removal rates are 4.00 g/m 2 and 1.52 g/m 2 for PM 10 and PM 2.5 , respectively. This paper provides insight to addressing air pollution through urban rooftop greening. Copyright

  5. Exchange of reactive nitrogen compounds: concentrations and fluxes of total ammonium and total nitrate above a spruce canopy

    Directory of Open Access Journals (Sweden)

    V. Wolff

    2010-05-01

    Full Text Available Total ammonium (tot-NH4+ and total nitrate (tot-NO3 provide chemically conservative quantities in the measurement of surface exchange of reactive nitrogen compounds ammonia (NH3, particulate ammonium (NH4+, nitric acid (HNO3, and particulate nitrate (NO3, using the aerodynamic gradient method. Total fluxes were derived from concentration differences of total ammonium (NH3 and NH4+ and total nitrate (HNO3 and NO3 measured at two levels. Gaseous species and related particulate compounds were measured selectively, simultaneously and continuously above a spruce forest canopy in south-eastern Germany in summer 2007. Measurements were performed using a wet-chemical two-point gradient instrument, the GRAEGOR. Median concentrations of NH3, HNO3, NH4+, and NO3 were 0.57, 0.12, 0.76, and 0.48 μg m−3, respectively. Total ammonium and total nitrate fluxes showed large variations depending on meteorological conditions, with concentrations close to zero under humid and cool conditions and higher concentrations under dry conditions. Mean fluxes of total ammonium and total nitrate in September 2007 were directed towards the forest canopy and were −65.77 ng m−2 s−1 and −41.02 ng m−2 s−1 (in terms of nitrogen, respectively. Their deposition was controlled by aerodynamic resistances only, with very little influence of surface resistances. Including measurements of wet deposition and findings of former studies on occult deposition (fog water interception at the study site, the total N deposition in September 2007 was estimated to 5.86 kg ha−1.

  6. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance?

    Science.gov (United States)

    Xia, Longlong; Lam, Shu Kee; Yan, Xiaoyuan; Chen, Deli

    2017-07-05

    Recycling of livestock manure in agroecosystems to partially substitute synthetic fertilizer nitrogen (N) input is recommended to alleviate the environmental degradation associated with synthetic N fertilization, which may also affect food security and soil greenhouse gas (GHG) emissions. However, how substituting livestock manure for synthetic N fertilizer affects crop productivity (crop yield; crop N uptake; N use efficiency), reactive N (Nr) losses (ammonia (NH 3 ) emission, N leaching and runoff), GHG (methane, CH 4 ; and nitrous oxide, N 2 O; carbon dioxide) emissions and soil organic carbon (SOC) sequestration in agroecosystems is not well understood. We conducted a global meta-analysis of 141 studies and found that substituting livestock manure for synthetic N fertilizer (with equivalent N rate) significantly increased crop yield by 4.4% and significantly decreased Nr losses via NH 3 emission by 26.8%, N leaching by 28.9% and N runoff by 26.2%. Moreover, annual SOC sequestration was significantly increased by 699.6 and 401.4 kg C ha -1 yr -1 in upland and paddy fields, respectively; CH 4 emission from paddy field was significantly increased by 41.2%, but no significant change of that was observed from upland field; N 2 O emission was not significantly affected by manure substitution in upland or paddy fields. In terms of net soil carbon balance, substituting manure for fertilizer increased carbon sink in upland field, but increased carbon source in paddy field. These results suggest that recycling of livestock manure in agroecosystems improves crop productivity, reduces Nr pollution and increases SOC storage. To attenuate the enhanced carbon source in paddy field, appropriate livestock manure management practices should be adopted.

  7. Atmospheric reactive nitrogen concentrations at ten sites with contrasting land use in an arid region of central Asia

    Directory of Open Access Journals (Sweden)

    K. H. Li

    2012-10-01

    Full Text Available Atmospheric concentrations of reactive nitrogen (Nr species from 2009 to 2011 are reported for ten sites in Xinjiang, China, an arid region of central Asia. Concentrations of NH3, NO2, particulate ammonium and nitrate (pNH4+ and pNO3 showed large spatial and seasonal variation and averaged 7.71, 9.68, 1.81 and 1.13 μg N m−3, and PM10 concentrations averaged 249.2 μg m−3 across all sites. Lower NH3 concentrations and higher NO2, pNH4+ and pNO3 concentrations were found in winter, reflecting serious air pollution due to domestic heating in winter and other anthropogenic sources such as increased emissions from motor traffic and industry. The increasing order of total concentrations of Nr species was alpine grassland; desert, desert-oasis ecotone; desert in an oasis; farmland; suburban and urban ecosystems. Lower ratios of secondary particles (NH4+ and NO3 were found in the desert and desert-oasis ecotone, while urban and suburban areas had higher ratios, which implied that anthropogenic activities have greatly influenced local air quality and must be controlled.

  8. Lipoteichoic acid from Staphylococcus aureus induces lung endothelial cell barrier dysfunction: role of reactive oxygen and nitrogen species.

    Directory of Open Access Journals (Sweden)

    Amy Barton Pai

    Full Text Available Tunneled central venous catheters (TCVCs are used for dialysis access in 82% of new hemodialysis patients and are rapidly colonized with Gram-positive organism (e.g. Staphylococcus aureus biofilm, a source of recurrent infections and chronic inflammation. Lipoteichoic acid (LTA, a cell wall ribitol polymer from Gram-positive organisms, mediates inflammation through the Toll-like receptor 2 (TLR2. The effect of LTA on lung endothelial permeability is not known. We tested the hypothesis that LTA from Staphylococcus aureus induces alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM that result from activation of TLR2 and are mediated by reactive oxygen/nitrogen species (RONS. The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin, the activation of the TLR2 pathway was assessed by Western blot, and the generation of RONS was measured by the fluorescence of oxidized dihydroethidium and a dichlorofluorescein derivative. Treatment with LTA or the TLR2 agonist Pam((3CSK((4 induced significant increases in albumin permeability, IκBα phosphorylation, IRAK1 degradation, RONS generation, and endothelial nitric oxide synthase (eNOS activation (as measured by the p-eNOS(ser1177:p-eNOS(thr495 ratio. The effects on permeability and RONS were effectively prevented by co-administration of the superoxide scavenger Tiron, the peroxynitrite scavenger Urate, or the eNOS inhibitor L-NAME and these effects as well as eNOS activation were reduced or prevented by pretreatment with an IRAK1/4 inhibitor. The results indicate that the activation of TLR2 and the generation of ROS/RNS mediates LTA-induced barrier dysfunction in PMEM.

  9. Ozone health effects

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Ozone is a principal component of photochemical air pollution endogenous to numerous metropolitan areas. It is primarily formed by the oxidation of NOx in the presence of sunlight and reactive organic compounds. Ozone is a highly active oxidizing agent capable of causing injury to the lung. Lung injury may take the form of irritant effects on the respiratory tract that impair pulmonary function and result in subjective symptoms of respiratory discomfort. These symptoms include, but are not limited to, cough and shortness of breath, and they can limit exercise performance. The effects of ozone observed in humans have been primarily limited to alterations in respiratory function, and a range of respiratory physiological parameters have been measured as a function of ozone exposure in adults and children. These affects have been observed under widely varying (clinical experimental and environmental settings) conditions

  10. Snowpack-atmosphere gas exchanges of carbon dioxide, ozone, and nitrogen oxides at a hardwood forest site in northern Michigan

    Directory of Open Access Journals (Sweden)

    Brian Seok

    2015-03-01

    Full Text Available Abstract Snowpack-atmosphere gas exchanges of CO2, O3, and NOx (NO + NO2 were investigated at the University of Michigan Biological Station (UMBS, a mid-latitude, low elevation hardwood forest site, during the 2007–2008 winter season. An automated trace gas sampling system was used to determine trace gas concentrations in the snowpack at multiple depths continuously throughout the snow-covered period from two adjacent plots. One natural plot and one with the soil covered by a Tedlar sheet were setup for investigating whether the primary source of measured trace gases was biogenic (i.e., from the soil or non-biogenic (i.e., from the snowpack. The results were compared with the “White on Green” study conducted at the Niwot Ridge (NWT Long Term Ecological Research site in Colorado. The average winter CO2 flux ± s.e. from the soil at UMBS was 0.54 ± 0.037 µmol m-2 s-1 using the gradient diffusion method and 0.71 ± 0.012 µmol m-2 s-1 using the eddy covariance method, and in a similar range as found for NWT. Observed snowpack-O3 exchange was also similar to NWT. However, nitrogen oxides (NOx fluxes from snow at UMBS were 10 times smaller than those at NWT, and fluxes were bi-directional with the direction of the flux dependent on NOx concentrations in ambient air. The compensation point for the change in the direction of NOx flux was estimated to be 0.92 nmol mol-1. NOx in snow also showed diurnal dependency on incident radiation. These NOx dynamics in the snow at UMBS were notably different compared to NWT, and primarily determined by snow-atmosphere interactions rather than by soil NOx emissions.

  11. Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO2/Stanene heterostructures employing DFT calculations

    Science.gov (United States)

    Abbasi, Amirali; Sardroodi, Jaber Jahanbin

    2018-06-01

    Based on the density functional theory (DFT) calculations, we explored the sensing capabilities and electronic structures of TiO2/Stanene heterostructures as novel and highly efficient materials for detection of toxic NO2 and O3 molecules in the environment. Studied gas molecules were positioned at different sites and orientations towards the nanocomposite, and the adsorption process was examined based on the most stable structures. We found that both of these molecules are chemically adsorbed on the TiO2/Stanene heterostructures. The calculations of the adsorption energy indicate that the fivefold coordinated titanium sites of the TiO2/Stanene are the most stable sites for the adsorption of NO2 and O3 molecules. The side oxygen atoms of the gas molecules were found to be chemically bonded to these titanium atoms. The adsorption of gas molecules is an exothermic process, and the adsorption on the pristine nanocomposite is more favorable in energy than that on the nitrogen-doped nanocomposite. The effects of van der Waals interactions were taken into account, which indicate the adsorption energies were increased for the most sable configurations. The gas sensing response and charge transfers were analyzed in detail. The pristine nanocomposites have better sensing response than the doped ones. The spin density distribution plots indicate that the magnetization was mainly located over the adsorbed gas molecules. Mulliken charge analysis reveals that both NO2 and O3 molecules behave as charge acceptors, as evidenced by the accumulation of electronic charges on the adsorbed molecules predicted by charge density difference calculations. Our DFT results provide a theoretical basis for an innovative gas sensor system designed from a sensitive TiO2/Stanene heterostructures for efficient detection of harmful air pollutants such as NO2 and O3.

  12. Assessment of the ozone-nitrogen oxide-volatile organic compound sensitivity of Mexico City through an indicator-based approach: measurements and numerical simulations comparison.

    Science.gov (United States)

    Torres-Jardón, Ricardo; García-Reynoso, J Agustín; Jazcilevich, Arón; Ruiz-Suárez, L Gerardo; Keener, Tim C

    2009-10-01

    The ozone (O3) sensitivity to nitrogen oxides (NOx, or nitric oxide [NO] + nitrogen dioxide [NO2]) versus volatile organic compounds (VOCs) in the Mexico City metropolitan area (MCMA) is a current issue of scientific controversy. To shed light on this issue, we compared measurements of the indicator species O3/NOy (where NOy represents the sum of NO + NO2 + nitric acid [HNO3] + peroxyacetyl nitrate [PAN] + others), NOy, and the semiempirically derived O3/NOz(surrogate) (where NOz(surrogate) is the derived surrogate NOz, and NOz represents NOx reaction products, or NOy - NOx) with results of numerical predictions reproducing the transition regimes between NOx and VOC sensitivities. Ambient air concentrations of O3, NOx, and NOy were measured from April 14 to 25, 2004 in one downwind receptor site of photochemically aged air masses within Mexico City. MCMA-derived transition values for an episode day occurring during the same monitoring period were obtained through a series of photochemical simulations using the Multiscale Climate and Chemistry Model (MCCM). The comparison between the measured indicator species and the simulated spatial distribution of the indicators O3/ NOy, O3/NOz(surrogate), and NOy in MCMA suggest that O3 in this megacity is likely VOC-sensitive. This is in opposition to past studies that, on the basis of the observed morning VOC/NOx ratios, have concluded that O3 in Mexico City is NOx-sensitive. Simulated MCMA-derived sensitive transition values for O3/NOy, hydrogen peroxide (H2O2)/HNO3, and NOy were found to be in agreement with threshold criteria proposed for other regions in North America and Europe, although the transition crossover for O3/NOz and O3/HNO3 was not consistent with values reported elsewhere. An additional empirical evaluation of weekend/weekday differences in average maximum O3 concentrations and 6:00- to 9:00-a.m. NOx and NO levels registered at the same site in April 2004 indirectly confirmed the above results. A preliminary

  13. Investigations of nitrogen oxide plasmas: Fundamental chemistry and surface reactivity and monitoring student perceptions in a general chemistry recitation

    Science.gov (United States)

    Blechle, Joshua M.

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of these plasma systems. Understanding the kinetics and thermodynamics of processes in these systems is vital to realizing their potential in a range of applications. Unraveling the complex chemical nature of these systems, however, presents numerous challenges. As such, this work serves as a foundational step in the diagnostics and assessment of these NxOy plasmas. The partitioning of energy within the plasma system is essential to unraveling these complications as it provides insight into both gas and surface reactivity. To obtain this information, techniques such as optical emission spectroscopy (OES), broadband absorption spectroscopy (BAS), and laser induced fluorescence (LIF) were utilized to determine species energetics (vibrational, rotational, translational temperatures). These temperature data provide mechanistic insight and establish the relationships between system parameters and energetic outcomes. Additionally, these data are also correlated to surface reactivity data collected with the Imaging of Radicals Interacting with Surfaces (IRIS) technique. IRIS data demonstrate the relationship between internal temperatures of radicals and their observed surface scatter coefficients (S), the latter of which is directly related to surface reactivity (R) [R = 1-S]. Furthermore, time-resolved (TR) spectroscopic techniques, specifically TR-OES, revealed kinetic trends in NO and N2 formation from a range of precursors (NO, N2O, N2/O2). By examining the rate constants associated with the generation and destruction of various plasma species we can investigate possible mechanistic implications. All told, such data provides

  14. [Ozone concentration distribution of urban].

    Science.gov (United States)

    Yin, Yong-quan; Li, Chang-mei; Ma, Gui-xia; Cui, Zhao-jie

    2004-11-01

    The increase of ozone concentration in urban is one of the most important research topics on environmental science. With the increase of nitrogen oxides and hydrogen-carbon compounds which are exhausted from cars, the ozone concentration in urban is obviously increased on sunlight, and threat of photochemistry smog will be possible. Therefore, it is very important to monitor and study the ozone concentration distribution in urban. The frequency-distribution, diurnal variation and monthly variation of ozone concentration were studied on the campus of Shandong University during six months monitoring. The influence of solar radiation and weather conditions on ozone concentration were discussed. The frequency of ozone concentration less than 200 microg/m3 is 96.88%. The ozone concentration has an obvious diurnal variation. The ozone concentration in the afternoon is higher than in the morning and in the evening. The maximum appears in June, when it is the strong solar radiation and high air-temperature. The weather conditions also influence the ozone concentration. The ozone concentration in clear day is higher than in rainy and cloudy day.

  15. Utilization of Alternate Propellants to Reduce Stratospheric Ozone Depletion

    National Research Council Canada - National Science Library

    Lewis, David

    1994-01-01

    There is continuing concern about the depletion of the ozone layer. Recently it has been determined that effluents from rockets exhausts contain chemical species that can be classified as Potentially Ozone Reactive Chemicals (PORCs...

  16. Ozone depletion calculations

    International Nuclear Information System (INIS)

    Luther, F.M.; Chang, J.S.; Wuebbles, D.J.; Penner, J.E.

    1992-01-01

    Models of stratospheric chemistry have been primarily directed toward an understanding of the behavior of stratospheric ozone. Initially this interest reflected the diagnostic role of ozone in the understanding of atmospheric transport processes. More recently, interest in stratospheric ozone has arisen from concern that human activities might affect the amount of stratospheric ozone, thereby affecting the ultraviolet radiation reaching the earth's surface and perhaps also affecting the climate with various potentially severe consequences for human welfare. This concern has inspired a substantial effort to develop both diagnostic and prognostic models of stratospheric ozone. During the past decade, several chemical agents have been determined to have potentially significant impacts on stratospheric ozone if they are released to the atmosphere in large quantities. These include oxides of nitrogen, oxides of hydrogen, chlorofluorocarbons, bromine compounds, fluorine compounds and carbon dioxide. In order to assess the potential impact of the perturbations caused by these chemicals, mathematical models have been developed to handle the complex coupling between chemical, radiative, and dynamical processes. Basic concepts in stratospheric modeling are reviewed

  17. Seasonal Changes in Tropospheric Ozone Concentrations over South Korea and Its Link to Ozone Precursors

    Science.gov (United States)

    Jung, H. C.; Moon, B. K.; Wie, J.

    2017-12-01

    Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  18. Effects of fuel properties, temperature, and pressure on fuel reactivity, formation and destruction of nitrogen oxides, and release of alkalis

    International Nuclear Information System (INIS)

    Aho, M.

    1998-01-01

    This study assists in the development of advanced combustion technologies (PFBC, IGCC) with high efficiency of electricity production from solid fuels (η = 47 - 50%) and in minimizing emissions of nitrogen oxides in atmospheric and pressurised FB combustion. In addition to the work done within the LIEKKI 2 programme, research work has been carried out inside the Joule 2 programme of EU. The research work may be divided into three parts: (1) Study of N x O y formation and destruction, (2) Study of fuel reactivity at elevated pressures, and (3) Study on alkali release from different coals. Experimental work was carried out utilizing a novel pressurized entrained flow reactor (PEFR) completed in VTT Energy in the autumn 1992. The device was unique in the world between 1992 and 1995. The effects of fuel properties on the formation of N 2 O and NO at conditions typical to FB combustion were studied for a large number of fuels including different coals, coal-derived char, peat, and bark. This work started before 1993 and was completed in 1995. FTIR technology was utilized for on-line gas analysis of N 2 O, NO, and NO 2 . The ratio fuel-O/fuel-N was found to be the most important fuel factor determining the formation of N 2 O and NO from volatile fuel-N. Only a small part of N 2 O is formed from char-N. The effect of pressure (0.2 - 2.0 MPa) on the formation of N 2 O, NO, and NO 2 , and destruction of NO with ammonia (Thermal DeNO x , experiments at 0.2, 0.5, and 1.5 MPa) and urea (NO x Out, experiments at 0.5 MPa) were studied in cooperation with Aabo Akademi University (AaAU). VTT performed the experimental work and AaAU the kinetic modelling. A part of these results are presented in the report by AaAU. Increase of pressure decreases NO formation and increases NO 2 formation. The behaviour of N 2 O is more complex. Both destruction processes for NO seem to operate well at elevated pressure, although clear effects of pressure on the temperature window of Thermal DeNO x

  19. Ozone as an ecotoxicological problem

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, L. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark)

    1996-11-01

    Ozone is quantitatively the dominating oxidant in photochemical air pollution. Other compounds like hydrogen peroxide, aldehydes, formate, peroxyacetyl nitrate (PAN) and nitrogen dioxide are present too, and several of these are known to be phytotoxic, but under Danish conditions the concentration of these gases are without significance for direct effects on vegetation. Therefore, it is the effects of ozone on plant growth that will be described below. (EG) 65 refs.

  20. Comparison of N-nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong Dong, E-mail: ydliu@bjut.edu.cn; Zhong, Rugang

    2017-01-05

    Highlights: • NDMA formation mechanisms from dimethylamine in chloramination/ozonation were reinvestigated by G4 method. • The reactivity order of halo-/hydroxyl-amines reacting with dimethylamine is NHCl{sub 2} ∼ NHBrCl > NH{sub 2}Cl >> NH{sub 2}OH. • Nitrene compound is an important intermediate to form NDMA in oxidation reaction. • Oxidation of unsymmetrical dimethylhydrazine by O{sub 2} is significantly less feasible compared to that by O{sub 3}. • The amines containing the second nitrogen source are potential NDMA precursors in ozonation. - Abstract: N-nitrosodimethylamine (NDMA) as a disinfection by-product has recently become the focus of considerable research interest due to its unusually high carcinogenicity. In this study, the formation mechanisms of NDMA from dimethylamine (DMA) during chloramination and ozonation were investigated by using the quantum chemical G4 method. The reactivity of haloamines and hydroxylamine reacting with DMA was found in the order: NHCl{sub 2} ∼ NHBrCl (Br{sup -}leaving) > NHBr{sub 2} > NH{sub 2}Cl ∼ NH{sub 2}Br >> NH{sub 2}OH. This offers a theoretical support for the experimentally proposed mechanism that dimethylamine reacts with NHCl{sub 2} rather than NH{sub 2}Cl to form chlorinated unsymmetrical dimethylhydrazine intermediate and the existence of bromochloramine in the presence of bromide during chloramination, and explains the observation that NDMA yield during ozonation is much lower than that during chloramination. Importantly, an N,N-dimethylaminonitrene was found to be a significant intermediate to form NDMA in oxidation reactions by molecular oxygen and ozone. Additionally, results suggest that the amines containing the second nitrogen source directly connecting or close to the N-(CH{sub 3}){sub 2} moiety are potential significant NDMA precursors upon ozonation. The findings of this study are helpful for expanding the knowledge of NDMA formation mechanism, and predicting potential NDMA precursors

  1. Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network

    Directory of Open Access Journals (Sweden)

    C. R. Flechard

    2011-03-01

    Full Text Available Inferential models have long been used to determine pollutant dry deposition to ecosystems from measurements of air concentrations and as part of national and regional atmospheric chemistry and transport models, and yet models still suffer very large uncertainties. An inferential network of 55 sites throughout Europe for atmospheric reactive nitrogen (Nr was established in 2007, providing ambient concentrations of gaseous NH3, NO2, HNO3 and HONO and aerosol NH4+ and NO3 as part of the NitroEurope Integrated Project.

    Network results providing modelled inorganic Nr dry deposition to the 55 monitoring sites are presented, using four existing dry deposition routines, revealing inter-model differences and providing ensemble average deposition estimates. Dry deposition is generally largest over forests in regions with large ambient NH3 concentrations, exceeding 30–40 kg N ha−1 yr−1 over parts of the Netherlands and Belgium, while some remote forests in Scandinavia receive less than 2 kg N ha−1 yr−1. Turbulent Nr deposition to short vegetation ecosystems is generally smaller than to forests due to reduced turbulent exchange, but also because NH3 inputs to fertilised, agricultural systems are limited by the presence of a substantial NH3 source in the vegetation, leading to periods of emission as well as deposition.

    Differences between models reach a factor 2–3 and are often greater than differences between monitoring sites. For soluble Nr gases such as NH3 and HNO3, the non-stomatal pathways are responsible for most of the annual uptake over many surfaces, especially the non-agricultural land uses, but parameterisations of the sink strength vary considerably among models. For aerosol NH4

  2. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China

    Directory of Open Access Journals (Sweden)

    Y. C. Lee

    2014-08-01

    Full Text Available Concerns have been raised about the possible connections between the local and regional photochemical problem and global warming. The current study assesses the trend of ozone in Hong Kong and the Pearl River Delta (PRD in South China and investigates the interannual changes of sensitivity of ozone to air temperature, as well as the trends in regional precursors. Results reveal, at the three monitoring sites from the mid-1990s to 2010, an increase in the mean ozone concentrations from 1.0 to 1.6 µg m−3 per year. The increase occurred in all seasons, with the highest rate in autumn. This is consistent with trends and temperature anomalies in the region. The increase in the sensitivity of ozone to temperature is clearly evident from the correlation between ozone (OMI [Ozone Monitoring Instrument] column amount and surface air temperature (from the Atmospheric Infrared Sounder displayed in the correlation maps for the PRD during the prominently high ozone period of July–September. It is observed to have increased from 2005 to 2010, the latter being the hottest year on record globally. To verify this temporal change in sensitivity, the ground-level trends of correlation coefficients/regression slopes are analysed. As expected, results reveal a statistically significant upward trend over a 14-year period (1997–2010. While the correlation revealed in the correlation maps is in agreement with the corresponding OMI ozone maps when juxtaposed, temperature sensitivity of surface ozone also shows an association with ozone concentration, with R=0.5. These characteristics of ozone sensitivity are believed to have adverse implications for the region. As shown by ground measurements and/or satellite analyses, the decrease in nitrogen oxides (NO2 and NOx in Hong Kong is not statistically significant while NO2 of the PRD has only very slightly changed. However, carbon dioxide has remarkably declined in the whole region. While these observations concerning

  3. Modelling and mapping long-term risks due to reactive nitrogen effects: An overview of LRTAP convention activities

    International Nuclear Information System (INIS)

    Spranger, T.; Hettelingh, J.-P.; Slootweg, J.; Posch, M.

    2008-01-01

    Long-range transboundary air pollution has caused severe environmental effects in Europe. European air pollution abatement policy, in the framework of the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP Convention) and the European Union Clean Air for Europe (CAFE) programme, has used critical loads and their exceedances by atmospheric deposition to design emission abatement targets and strategies. The LRTAP Convention International Cooperative Programme on Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends (ICP M and M) generates European critical loads datasets to enable this work. Developing dynamic nitrogen flux models and using them for a prognosis and assessment of nitrogen effects remains a challenge. Further research is needed on links between nitrogen deposition effects, climate change, and biodiversity. - Sustainable targets for European air pollution abatement policy are defined using critical loads in an effects-based approach

  4. Predicting major subsurface transport pathways as a key to understand spatial dynamics of reactive nitrogen in stream water

    DEFF Research Database (Denmark)

    Kraft, P.; Dalgaard, Tommy; Schelde, Kirsten

    Process based modelling of nitrogen turnover and transport is mainly focused on the plot and field scale. However, scaling up to the landscape level with sufficient topographic gradient and conductivities, Nr is relocated in the landscape through surface runoff, interflow as well as lateral...... groundwater movement. Cause and effects of Nr Approach can therefore be spatially disaggregated, i.e. leached Nr applied uphill on agricultural land can for example lead to gaseous N emissions downhill in riparian plains. In the Danish NitroEurope study landscape, lateral translocation of dissolved nitrogen...

  5. Effect of various nitrogen flow ratios on the optical properties of (Hf:N-DLC films prepared by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Meng Qi

    2017-08-01

    Full Text Available Hf and N co-doped diamond-like carbon [(Hf:N-DLC] films were deposited on 316L stainless steel and glass substrates through reactive magnetron sputtering of hafnium and carbon targets at various nitrogen flow ratios (R=N2/[N2+CH4+Ar]. The effects of chemical composition and crystal structure on the optical properties of the (Hf:N-DLC films were studied. The obtained films consist of uniform HfN nanocrystallines embedded into the DLC matrix. The size of the graphite clusters with sp2 bonds (La and the ID/IG ratio increase to 2.47 nm and 3.37, respectively, with increasing R. The optical band gap of the films decreases from 2.01 eV to 1.84 eV with increasing R. This finding is consistent with the trends of structural transformations and could be related to the increase in the density of π-bonds due to nitrogen incorporation. This paper reports the influence of nitrogen flow ratio on the correlation among the chemical composition, crystal structure, and optical properties of (Hf:N-DLC films.

  6. Identifying the causes of differences in ozone production from the CB05 and CBMIV chemical mechanisms

    Directory of Open Access Journals (Sweden)

    R. D. Saylor

    2012-02-01

    Full Text Available An investigation was conducted to identify the mechanistic differences between two versions of the carbon bond gas-phase chemical mechanism (CB05 and CBMIV which consistently lead to larger ground-level ozone concentrations being produced in the CB05 version of the National Air Quality Forecasting Capability (NAQFC modeling system even though the two parallel forecast systems utilize the same meteorology and base emissions and similar initial and boundary conditions. Box models of each of the mechanisms as they are implemented in the NAQFC were created and a set of 12 sensitivity simulations was designed. The sensitivity simulations independently probed the conceptual mechanistic differences between CB05 and CBMIV and were exercised over a 45-scenario simulation suite designed to emulate the wide range of chemical regimes encountered in a continental-scale atmospheric chemistry model. Results of the sensitivity simulations indicate that two sets of reactions that were included in the CB05 mechanism, but which were absent from the CBMIV mechanism, are the primary causes of the greater ozone production in the CB05 version of the NAQFC. One set of reactions recycles the higher organic peroxide species of CB05 (ROOH, resulting in additional photochemically reactive products that act to produce additional ozone in some chemical regimes. The other set of reactions recycles reactive nitrogen from less reactive forms back to NO2, increasing the effective NOx concentration of the system. In particular, the organic nitrate species (NTR, which was a terminal product for reactive nitrogen in the CBMIV mechanism, acts as a reservoir species in CB05 to redistribute NOx from major source areas to potentially NOx-sensitive areas where additional ozone may be produced in areas remote from direct NOx sources.

  7. Reactions of GD and VX with Ozone

    National Research Council Canada - National Science Library

    Bartram, Philip

    1998-01-01

    .... The identified products reveal that the reaction is strictly analogous to the well-known ozonation of tertiary amines, with oxidation occurring predominately at carbons adjacent to the nitrogen...

  8. Investigations of Nitrogen Oxide Plasmas: Fundamental Chemistry and Surface Reactivity and Monitoring Student Perceptions in a General Chemistry Recitation

    Science.gov (United States)

    Blechle, Joshua M.

    2016-01-01

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of…

  9. Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains

    Science.gov (United States)

    Michael Arbaugh; Andrzej Bytnerowicz; Nancy Grulke; Mark Fenn; Mark Poth; Patrick Temple; Paul Miller

    2003-01-01

    Toxic effects of photochemical smog on ponderosa and Jeffrey pines in the San Bernardino Mountains were discovered in the 1950s. It was revealed that ozone is the main cause of foliar injury manifested as chlorotic mottle and premature needle senescence. Various morphological, physiological and biochemical alterations in the affected plants have been reported over a...

  10. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  11. Transport of nitrogen oxides, carbon monoxide and ozone to the Alpine Global Atmosphere Watch stations Jungfraujoch (Switzerland), Zugspitze and Hohenpeissenberg (Germany), Sonnblick (Austria) and Mt. Krvavec (Slovenia)

    Science.gov (United States)

    Kaiser, August; Scheifinger, Helfried; Spangl, Wolfgang; Weiss, Andrea; Gilge, Stefan; Fricke, Wolfgang; Ries, Ludwig; Cemas, Danijel; Jesenovec, Brigita

    The Alpine stations Zugspitze, Hohenpeissenberg, Sonnblick, Jungfraujoch and Mt. Krvavec contribute to the Global Atmosphere Watch Programme (GAW) of the World Meteorological Organization (WMO). The aim of GAW is the surveillance of the large-scale chemical composition of the atmosphere. Thus, the detection of air pollutant transport from regional sources is of particular interest. In this paper, the origin of NO x (measured with a photo-converter), CO and O 3 at the four Alpine GAW stations is studied by trajectory residence time statistics. Although these methods originated during the early 1980s, no comprehensive study of different atmospheric trace gases measured simultaneously at several background observatories in the Alps was conducted up to present. The main NO x source regions detected by the trajectory statistics are the northwest of Europe and the region covering East Germany, Czech Republic and southeast Poland, whereas the main CO source areas are the central, north eastern and eastern parts of Europe with some gradient from low to high latitudes. Subsiding air masses from west and southwest are relatively poor in NO x and CO. The statistics for ozone show strong seasonal effects. Near ground air masses are poor in ozone in winter but rich in ozone in summer. The main source for high ozone concentration in winter is air masses that subside from higher elevations, often enhanced by foehn effects at Hohenpeissenberg. During summer, the Mediterranean constitutes an important additional source for high ozone concentrations. Especially during winter, large differences between Hohenpeissenberg and the higher elevated stations are found. Hohenpeissenberg is frequently within the inversion, whereas the higher elevated stations are above the inversion. Jungfraujoch is the only station where the statistics detect an influence of air rich in CO and NO x from the Po Basin.

  12. Development of an instrument for direct ozone production rate measurements: measurement reliability and current limitations

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip S.; Wood, Ezra; Kundu, Shuvashish; Dusanter, Sébastien

    2018-02-01

    Ground-level ozone (O3) is an important pollutant that affects both global climate change and regional air quality, with the latter linked to detrimental effects on both human health and ecosystems. Ozone is not directly emitted in the atmosphere but is formed from chemical reactions involving volatile organic compounds (VOCs), nitrogen oxides (NOx = NO + NO2) and sunlight. The photochemical nature of ozone makes the implementation of reduction strategies challenging and a good understanding of its formation chemistry is fundamental in order to develop efficient strategies of ozone reduction from mitigation measures of primary VOCs and NOx emissions. An instrument for direct measurements of ozone production rates (OPRs) was developed and deployed in the field as part of the IRRONIC (Indiana Radical, Reactivity and Ozone Production Intercomparison) field campaign. The OPR instrument is based on the principle of the previously published MOPS instrument (Measurement of Ozone Production Sensor) but using a different sampling design made of quartz flow tubes and a different Ox (O3 and NO2) conversion-detection scheme composed of an O3-to-NO2 conversion unit and a cavity attenuated phase shift spectroscopy (CAPS) NO2 monitor. Tests performed in the laboratory and in the field, together with model simulations of the radical chemistry occurring inside the flow tubes, were used to assess (i) the reliability of the measurement principle and (ii) potential biases associated with OPR measurements. This publication reports the first field measurements made using this instrument to illustrate its performance. The results showed that a photo-enhanced loss of ozone inside the sampling flow tubes disturbs the measurements. This issue needs to be solved to be able to perform accurate ambient measurements of ozone production rates with the instrument described in this study. However, an attempt was made to investigate the OPR sensitivity to NOx by adding NO inside the instrument

  13. Effects of mineral nutrients on ozone susceptibility of Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Craker, L E

    1971-01-01

    Susceptibility of Lemna minor L. to ozone injury was influenced by the mineral nutrients available to the Lemna plants. Additional nitrogen or additional iron in the nutrient media respectively enhanced or reduced chlorophyll loss of Lemna plants fumigated with ozone. Lemna plants growing on a nutrient medium lacking copper had significantly less injury from ozone fumigation than Lemna plants growing on a complete nutrient medium. There were apparent interactions among phosphorus and potassium nutrient levels in determing the Lemna plant's susceptibility to ozone.

  14. Effect of deposition temperature on the properties of nitrogen-doped AZO thin films grown on glass by rf reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Shinho, E-mail: scho@silla.ac.kr [Center for Green Fusion Technology and Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Kim, Heetae [Backlight Technology, LCD Division, Samsung Electronics Co., Ltd., Asan 336-841 (Korea, Republic of)

    2010-09-15

    Nitrogen-doped aluminum zinc oxide (NAZO) thin films were deposited on glass substrates at various deposition temperatures by rf reactive magnetron sputtering. The NAZO film deposited at 400 deg. C shows a strongly c-axis preferred orientation and n-type conduction with a resistivity of 2.1 x 10{sup -2} {Omega} cm, Hall mobility of 7.7 cm{sup 2} V{sup -1} s{sup -1}, and electron concentration of 3.8 x 10{sup 19} cm{sup -3}. The optimum crystallographic structure occurs at a deposition temperature of 400 deg. C, where a considerable crystallinity enhancement of the films is observed. The band gap energies of the NAZO films, obtained by using Tauc model and parabolic bands, are found to significantly depend on the deposition temperature, along with the band gap narrowing at higher deposition temperature due to renormalization effects.

  15. Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells.

    Science.gov (United States)

    Jeon, Hui-Jeon; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2014-11-01

    Gelidium elegans is an edible red alga native to the intertidal area of northeastern Asia. We investigated the effect of G. elegans extract and its main flavonoids, rutin and hesperidin, on lipid accumulation and the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 3T3-L1 and RAW264.7 cells. Our data show that G. elegans extract decreased lipid accumulation and ROS/RNS production in a dose-dependent manner. The extract also inhibited the mRNA expression of adipogenic transcription factors, such as peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, while enhancing the protein expression of the antioxidant enzymes superoxide dismutases 1 and 2, glutathione peroxidase, and glutathione reductase compared with controls. In addition, lipopolysaccharide-induced nitric oxide production was significantly reduced in G. elegans extract-treated RAW264.7 cells. In analysis of the effects of G. elegans flavonoids on lipid accumulation and ROS/RNS production, only hesperidin showed an inhibitory effect on lipid accumulation and ROS production; rutin did not affect adipogenesis and ROS status. The antiadipogenic effect of hesperidin was evidenced by the downregulation of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and fatty acid binding protein 4 gene expression. Collectively, our data suggest that G. elegans is a potential food source containing antiobesity and antioxidant constituents. Copyright © 2014 John Wiley & Sons, Ltd.

  16. OH, HO2 and RO2 Radical and OH Reactivity Observations during the Summertime in Beijing: High In-Situ Ozone Production and Evidence of a Missing OH Source.

    Science.gov (United States)

    Whalley, L.; Ye, C.; Slater, E.; Woodward-Massey, R.; Lee, J. D.; Squires, F. A.; Hopkins, J. R.; Dunmore, R.; Shaw, M.; Hamilton, J.; Lewis, A. C.; Crilley, L.; Kramer, L. J.; Bloss, W.; Heard, D. E.

    2017-12-01

    Despite substantial reductions in primary emissions of pollutants in China over the past decade, concentrations of the secondary pollutant, ozone, still frequently exceed air quality threshold limits in urban areas during the summertime. We will present measurements of OH, HO2 and RO2 radicals and OH reactivity made in central Beijing at the Institute of Atmospheric Physics of the Chinese Academy of Sciences, close to the North 4th ring road in May and June 2017 which formed the summer phase of `An Integrated Study of AIR Pollution PROcesses'. Elevated levels of O3 (>100 ppbv) were regularly observed. NO concentrations were elevated during the morning but often decreased to below the instrument limit of detection during the afternoon hours when the ozone concentrations peaked. Biogenic emissions influenced the chemistry at the site, with several ppbv of isoprene measured during the afternoons. The OH measurements were made using the FAGE technique, equipped with an inlet pre injector (IPI) which provides an alternative method to determine the instrument background signal by injecting a scavenger to remove ambient OH and ensures an artefact-free OH measurement. Elevated levels of OH were observed, with a mean peak OH concentration of 1.2×107 molecule cm-3 at noon; but with OH concentrations reaching up to 2.5×107 molecule cm-3 on some days. Mean peak HO2 concentrations of 3×108 molecule cm-3 and total RO2 of 1.2×109 molecule cm-3 were recorded, with maximum concentrations of 1.0×109 molecule cm-3 and 4×109 molecule cm-3 observed for HO2 and RO2 respectively, suggesting significant in situ ozone production. A comparison of the artefact-free OH observations with steady state calculations, constrained to the total OH reactivity measurement and known OH precursors that were measured alongside OH, highlights a significant missing daytime OH source under low [NO], with the steady state OH concentrations approximately a factor of two lower than the OH concentrations

  17. Source attribution of tropospheric ozone

    Science.gov (United States)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  18. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, C.S.

    1995-01-05

    Two of the most important chemically reactive tropospheric gases are ozone (O{sub 3}) and the hydroxyl radical (OH). Although ozone in the stratosphere is a necessary protector against the sun`s radiation, tropospheric ozone is actually a pollutant which damages materials and vegetation, acts as a respiratory irritant, and is a greenhouse gas. One of the two main sources of ozone in the troposphere is photochemical production. The photochemistry is initiated when hydrocarbons and carbon monoxide (CO) react with nitrogen oxides (NO{sub x} = NO + NO{sub 2}) in the presence of sunlight. Reaction with the hydroxyl radical, OH, is the main sink for many tropospheric gases. The hydroxyl radical is highly reactive and has a lifetime on the order of seconds. Its formation is initiated by the photolysis of tropospheric ozone. Tropospheric chemistry involves a complex, non-linear set of chemical reactions between atmospheric species that vary substantially in time and space. To model these and other species on a global scale requires the use of a global, three-dimensional chemistry, transport, and deposition (CTD) model. In this work, I developed two such three dimensional CTD models. The first model incorporated the chemistry necessary to model tropospheric ozone production from the reactions of nitrogen oxides with carbon monoxide (CO) and methane (CH{sub 4}). The second also included longer-lived alkane species and the biogenic hydrocarbon isoprene, which is emitted by growing plants and trees. The models` ability to predict a number of key variables (including the concentration of O{sub 3}, OH, and other species) were evaluated. Then, several scenarios were simulated to understand the change in the chemistry of the troposphere since preindustrial times and the role of anthropogenic NO{sub x} on present day conditions.

  19. Reversal of Long-Term Trends in Ethane Identified from the Global Atmosphere Watch Reactive Gases Measurement Network

    OpenAIRE

    Helmig, Detlev; Buchmann, Brigitte; Carpenter, Lucy; Claude, Anja; Emmons, Louisa; Flocke, Frank; Franco, Bruno; Galbally, Ian; Hannigan, James; Hueber, Jacques; Koide, Hiroshi; Lewis, Alastair; Masarie, Ken; Mahieu, Emmanuel; Montzka, Stephen

    2016-01-01

    Reactive gases play an important role in climate and air pollution issues. They control the self-cleansing capability of the troposphere, contribute to air pollution and acid deposition, regulate the lifetimes and provide tracers for deciphering sources and sinks for greenhouse gases. Within GAW, the focus is placed on long-term, high-quality observations of ozone (O3), carbon monoxide (CO), volatile organic compounds (VOC), nitrogen oxides (NOx), and sulfur dioxide (SO2). More than 100 stati...

  20. Influence of substrate biasing on the growth of c-axis oriented AlN thin films by RF reactive sputtering in pure nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Monteagudo-Lerma, L.; Naranjo, F.B.; Gonzalez-Herraez, M. [Departamento de Electronica, Escuela Politecnica, Universidad de Alcala, Campus Universitario, 28871 Alcala de Henares (Spain); Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain)

    2012-03-15

    We report on the investigation of the influence of deposition conditions on structural, morphological and optical properties of AlN thin films deposited on sapphire (Al{sub 2}O{sub 3}) substrates by radio-frequency (RF) reactive sputtering. The deposition parameters studied are RF power, substrate temperature and substrate bias, while using pure nitrogen as reactive gas. The effect of such deposition parameters on AlN film properties are analyzed by different characterization methods as high resolution X-ray diffraction (HRXRD), field emission scanning electron microscopy (FESEM) and linear optical transmission. AlN thin films with a full-width at half-maximum (FWHM) of the rocking curve obtained for the (0002) diffraction peak of 1.2 are achieved under optimized conditions. The time resolved evolution of the self and externally-induced biasing of the substrate during deposition process is monitored and analyzed in terms of the rate of atomic species incorporation into the layer. The bias-induced change of the atomic incorporation leads to an enhancement in the structural quality of the layer and an increase of the deposition rate. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    Science.gov (United States)

    Yang, Liming; Fountain, Jake C.; Wang, Hui; Ni, Xinzhi; Ji, Pingsheng; Lee, Robert D.; Kemerait, Robert C.; Scully, Brian T.; Guo, Baozhu

    2015-01-01

    Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding. PMID:26492235

  2. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Liming Yang

    2015-10-01

    Full Text Available Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS and reactive nitrogen species (RNS than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding.

  3. Regulation of Cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophils

    Czech Academy of Sciences Publication Activity Database

    Heneberg, Petr; Dráber, Petr

    2005-01-01

    Roč. 12, č. 16 (2005), s. 1859-1871 ISSN 0929-8673 R&D Projects: GA ČR(CZ) GA204/03/0594; GA ČR(CZ) GA301/03/0596; GA AV ČR(CZ) IAA5052310; GA MZd(CZ) NR8079; GA MŠk(CZ) 1M0506; GA MŠk(CZ) 1P04OE158 Institutional research plan: CEZ:AV0Z50520514 Keywords : mast cell * tyrosine phosphatase * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.904, year: 2005

  4. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  5. ambient volatile organic compounds pollution and ozone formation

    African Journals Online (AJOL)

    OLUMAYEDE

    2013-08-01

    Aug 1, 2013 ... Volatile organic compound (VOC) species react at different rate and exhibit differences in reactivity with respect to ozone formation in polluted urban atmosphere. To assess this, the variations pattern, reactivity relative to OH radical and ozone creation potential of ambient VOCs were investigated in field.

  6. Capturing the externalities: National and watershed scale damages from release of reactive nitrogen beyond the farm, factory, tailpipe and table

    Science.gov (United States)

    Compton, J.; Sobota, D. J.; McCrackin, M. L.; Harrison, J.

    2014-12-01

    Human demand for food, fuel, and industrial products results in the release of 61% of the newly fixed anthropogenic N to the environment in the US each year. This 15.8 Tg N yr-1 input to air, land and water has important social, economic and environmental consequences, yet little research clearly links this N release to the full suite of effects. Here we connect the biogeochemical fluxes of N with existing data on N-associated damages in order to quantify the externalities of N release related to human health, ecosystems and climate regulation for the US at national and watershed scales. Release of N to the environment was estimated circa 2000 with models describing N inputs by source, nutrient uptake efficiency, leaching losses, and gaseous emissions at the scale of 8-digit US Geologic Survey Hydrologic Unit Codes (HUC8s). Potential damages or benefits of anthropogenic N leaked to the environment were calculated by scaling specific N fluxes with the costs associated with human health, agriculture, ecosystems, and the climate system. For the US, annual damage costs of anthropogenic N leaked to the environment in 2000 totaled 289 billion USD. Approximately 57% of the total damages were associated with fossil fuel combustion, driven by the human respiratory health impacts of NOx as a precursor of ozone and a component of particulates. Another 37% of the damage costs were associated with agricultural N. Damages associated with agriculture were 85.5 billion, largely through eutrophication and harmful effects on aquatic habitat. Through aggressive but tangible improvements in atmospheric emissions, agricultural N use and wastewater treatment, we could reduce N export to the coast by nearly 25% within 30 years. These improvements would reduce the externalities associated with the leakage of N beyond its intended uses in agriculture, transportation and energy with minimal impact to these sectors dependent on anthropogenic N fixation.

  7. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul.

    Science.gov (United States)

    Im, Ulas; Poupkou, Anastasia; Incecik, Selahattin; Markakis, Konstantinos; Kindap, Tayfun; Unal, Alper; Melas, Dimitros; Yenigun, Orhan; Topcu, Sema; Odman, M Talat; Tayanc, Mete; Guler, Meltem

    2011-03-01

    Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25ppb. The VOC/NO(x) ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NO(x) and NMVOCs were perturbed by ±30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NO(x)-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NO(x) due to very high anthropogenic emissions. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere.

    Science.gov (United States)

    Watanabe, Nobuhisa; Takata, Mitsuyasu; Takemine, Shusuke; Yamamoto, Katsuya

    2018-03-01

    Waste disposal site is one of the important sinks of chemicals. A significant amount of perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexanoic acid (PFHxA) have been brought into it. Because of their aqueous solubility, PFASs are released to landfill effluent waters, from which PFASs are efficiently collected by adsorption technique using granular activated carbon (GAC). The exhausted GAC is reactivated by heating processes. The mineralization of PFASs during the reactivation process was studied. Being thermally treated in N 2 atmosphere, the recovery rate of mineralized fluorine and PFC homologues including short-chained perfluorocarboxylic acids was determined. If the reagent form of PFOA, PFHxA, and PFOS were treated at 700 °C, the recovery of mineralized fluorine was less than 30, 46, and 72 %, respectively. The rate increased to 51, 74, and 70 %, if PFASs were adsorbed onto GAC in advance; moreover, addition of excess sodium hydroxide (NaOH) improved the recovery to 74, 91, and 90 %. Residual PFAS homologue was less than 1 % of the original amount. Steamed condition did not affect destruction. The significant role of GAC was to suppress volatile release of PFASs from thermal ambient, whereas NaOH enhanced destruction and retained mineralized fluorine on the GAC surface. Comparing the recovery of mineralized fluorine, the degradability of PFOS was considered to be higher than PFOA and PFHxA. Whole mass balance missing 9~26 % of initial amount suggested formation of some volatile organofluoro compounds beyond analytical coverage.

  9. Reactive template synthesis of nitrogen-doped graphene-like carbon nanosheets derived from hydroxypropyl methylcellulose and dicyandiamide as efficient oxygen reduction electrocatalysts

    Science.gov (United States)

    Hu, Chun; Zhou, Yao; Ma, Ruguang; Liu, Qian; Wang, Jiacheng

    2017-03-01

    Oxygen reduction reaction (ORR) plays a dominant role in proton exchange membrane fuel cells (PEMFCs). Thus, the design and preparation of efficient ORR electrocatalysts is of high importance. In this work, we successfully prepared a series of nitrogen-doped graphene-like carbon nanosheets (NCNSs) with large pore volumes of up to 1.244 cm3 g-1 and high level of N dopants (5.3-6.8 at%) via a one-step, in-situ reactive template strategy by co-pyrolysis of hydroxypropyl methylcellulose (HPMC) and dicyandiamide (DICY) as the precursors at 1000 °C. The DICY-derived graphitic carbon nitride (g-C3N4) nanosheets could act as the hard template for the confined growth of 2D carbon nanosheets, and the further increase in the pyrolysis temperature could directly remove off the g-C3N4 template by complete decomposition and simultaneously dope N atoms within the carbon nanosheets. The pyridinic and graphitic nitrogen groups are dominant among various N functional groups in the NCNSs. The NCNS_1:10 prepared with the HPMC/DICY mass ratio of 1/10 can be used as the metal-free ORR electrocatalysts with optimal activity (onset potential: -0.1 V vs. SCE; limiting current density: 4.8 mA cm-2) in O2-saturated 0.1 M KOH electrolyte among the NCNSs. Moreover, the NCNS_1:10 demonstrates a dominant four-electron reduction process, as well as excellent long-term operation stability and outstanding methanol crossover resistance. The excellent ORR activity of the NCNS_1:10 should be mainly owing to high contents of pyridinic and graphitic N dopants, large pore volume, hierarchical structures, and microstructural defects.

  10. Effect of Freeze-Thaw Cycles on Soil Nitrogen Reactive Transport in a Polygonal Arctic Tundra Ecosystem at Barrow AK Using 3-D Coupled ALM-PFLOTRAN

    Science.gov (United States)

    Yuan, F.; Wang, G.; Painter, S. L.; Tang, G.; Xu, X.; Kumar, J.; Bisht, G.; Hammond, G. E.; Mills, R. T.; Thornton, P. E.; Wullschleger, S. D.

    2017-12-01

    In Arctic tundra ecosystem soil freezing-thawing is one of dominant physical processes through which biogeochemical (e.g., carbon and nitrogen) cycles are tightly coupled. Besides hydraulic transport, freezing-thawing can cause pore water movement and aqueous species gradients, which are additional mechanisms for soil nitrogen (N) reactive-transport in Tundra ecosystem. In this study, we have fully coupled an in-development ESM(i.e., Advanced Climate Model for Energy, ACME)'s Land Model (ALM) aboveground processes with a state-of-the-art massively parallel 3-D subsurface thermal-hydrology and reactive transport code, PFLOTRAN. The resulting coupled ALM-PFLOTRAN model is a Land Surface Model (LSM) capable of resolving 3-D soil thermal-hydrological-biogeochemical cycles. This specific version of PFLOTRAN has incorporated CLM-CN Converging Trophic Cascade (CTC) model and a full and simple but robust soil N cycle. It includes absorption-desorption for soil NH4+ and gas dissolving-degasing process as well. It also implements thermal-hydrology mode codes with three newly-modified freezing-thawing algorithms which can greatly improve computing performance in regarding to numerical stiffness at freezing-point. Here we tested the model in fully 3-D coupled mode at the Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic) field intensive study site at the Barrow Environmental Observatory (BEO), AK. The simulations show that: (1) synchronous coupling of soil thermal-hydrology and biogeochemistry in 3-D can greatly impact ecosystem dynamics across polygonal tundra landscape; and (2) freezing-thawing cycles can add more complexity to the system, resulting in greater mobility of soil N vertically and laterally, depending upon local micro-topography. As a preliminary experiment, the model is also implemented for Pan-Arctic region in 1-D column mode (i.e. no lateral connection), showing significant differences compared to stand-alone ALM. The developed ALM-PFLOTRAN coupling

  11. Effect of nitrogen incorporation on the structural, optical and dielectric properties of reactive sputter grown ITO films

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, M.; Stroescu, H. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Marin, A., E-mail: alexmarin@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Osiceanu, P. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Anastasescu, M., E-mail: manastasescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Stoica, M.; Nicolescu, M.; Duta, M.; Preda, S. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Aperathitis, E.; Pantazis, A.; Kampylafka, V. [FORTH-IESL, Crete (Greece); Modreanu, M. [Tyndall National Institute, University College Cork, Cork (Ireland); Zaharescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2014-09-15

    Highlights: • Graded optical model for ITON films is presented. • ITON thin films retain an amorphous structure even after RTA at 500 °C in N{sub 2} ambient. • The lowest resistivity was 2 × 10{sup −3} Ω cm for films deposited in 75%N{sub 2} and RTA at 500 °C. • Films deposited in 75% N{sub 2} and RTA at 500 °C have degenerate semiconductor behavior. • Chemical composition before and after RTA has been analyzed by XPS depth profiling. - Abstract: The changes in the optical, microstructural and electrical properties, following the nitrogen incorporation into indium tin oxide thin films are investigated. The films are formed by r.f. sputtering from an indium-tin-oxide (80% In{sub 2}O{sub 3}–20% SnO{sub 2}) target in a mixture of Ar and N{sub 2} plasma (75% N{sub 2}–25% Ar and 100% N{sub 2} respectively) on fused silica glass substrate. The impact of rapid thermal annealing (up to 500 °C, in N{sub 2} ambient) on the properties of indium tin oxynitride (ITON) thin films is also reported. The UV–vis–NIR ellipsometry (SE) characterization of ITON films was performed assuming several realistic approaches based on various oscillator models, using a chemical composition gradient depth profiling, in agreement with the X-ray photoelectron spectroscopy measurements. The Hall measurements show that the ITON films prepared by r.f. sputtering in 75% N{sub 2} and annealed at 500 °C behave as degenerate semiconductors. X-ray diffraction analysis proved that ITON thin films retain an amorphous structure even after RTA at 500 °C in N{sub 2} ambient and atomic force microscopy showed the formation of continuous and smooth ITON thin films, with a morphology consisting in quasispherical nanometric particles.

  12. Biogenic nitrogen oxide emissions from soils: impact on NOx and ozone over west Africa during AMMA (African Monsoon Multidisciplinary Analysis: observational study

    Directory of Open Access Journals (Sweden)

    J. B. McQuaid

    2008-04-01

    Full Text Available Chemical and meteorological parameters measured on board the Facility for Airborne Atmospheric Measurements (FAAM BAe 146 Atmospheric Research Aircraft during the African Monsoon Multidisciplinary Analysis (AMMA campaign are presented to show the impact of NOx emissions from recently wetted soils in West Africa. NO emissions from soils have been previously observed in many geographical areas with different types of soil/vegetation cover during small scale studies and have been inferred at large scales from satellite measurements of NOx. This study is the first dedicated to showing the emissions of NOx at an intermediate scale between local surface sites and continental satellite measurements. The measurements reveal pronounced mesoscale variations in NOx concentrations closely linked to spatial patterns of antecedent rainfall. Fluxes required to maintain the NOx concentrations observed by the BAe-146 in a number of cases studies and for a range of assumed OH concentrations (1×106 to 1×107 molecules cm−3 are calculated to be in the range 8.4 to 36.1 ng N m−2 s−1. These values are comparable to the range of fluxes from 0.5 to 28 ng N m−2 s−1 reported from small scale field studies in a variety of non-nutrient rich tropical and sub-tropical locations reported in the review of Davidson and Kingerlee (1997. The fluxes calculated in the present study have been scaled up to cover the area of the Sahel bounded by 10 to 20 N and 10 E to 20 W giving an estimated emission of 0.03 to 0.30 Tg N from this area for July and August 2006. The observed chemical data also suggest that the NOx emitted from soils is taking part in ozone formation as ozone concentrations exhibit similar fine scale structure to the NOx, with enhancements over the wet soils. Such variability can not be explained on the basis of transport from other areas. Delon et al. (2008 is a companion paper to this one which models the impact of soil NOx emissions on the NOx and ozone

  13. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  14. Chemical properties and reactive oxygen and nitrogen species quenching activities of dry sugar-amino acid maillard reaction mixtures exposed to baking temperatures.

    Science.gov (United States)

    Chen, Xiu-Min; Liang, Ningjian; Kitts, David D

    2015-10-01

    Maillard reaction products (MRPs) derived from 10 different, dry sugar-amino acid reaction model systems were examined for changes in color index (E), sugar loss, and formation of α-dicarbonyl compounds; the changes were correlated with relative activities to quench both reactive oxygen (ROS) and reactive nitrogen (RNS) species. Reducing sugars, xylose, ribose, fructose, glucose, and non-reducing sucrose were reacted with glycine (Xyl-Gly, Rib-Gly, Fru-Gly, Glc-Gly, and Suc-Gly), or lysine (Xyl-Lys, Rib-Lys, Fru-Lys, Glc-Lys, and Suc-Lys), respectively, at temperatures of 150°C and 180°C for time periods ranging from 5 to 60min. ROS quenching capacity was negatively correlated with color index (E) (r=-0.604, P<0.001), and positively correlated with sugar loss (r=0.567, P<0.001). MRPs also exhibited activity to quench RNS as assessed by nitric oxide (NO) inhibition in differentiated Caco-2 cells that were induced with interferon-γ (IFN-γ) and phorbol ester (PMA) cocktail. We also showed a correlation between RNS and color index, sugar loss, and ROS quenching activities for MR mixtures that were heated for a short time (e.g. 10min) at 150°C. MRP quenching of ROS was largely influenced by sugar type, whereas, RNS quenching was dependent more so on the interaction between reactants and reaction conditions used to generate MRPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Production and correlation of reactive oxygen and nitrogen species in gas- and liquid-phase generated by helium plasma jets under different pulse widths

    Science.gov (United States)

    Liu, Zhijie; Zhou, Chunxi; Liu, Dingxin; Xu, Dehui; Xia, Wenjie; Cui, Qingjie; Wang, Bingchuan; Kong, Michael G.

    2018-01-01

    In this paper, we present the effects of the pulse width (PW) on the plasma jet's discharge characteristics, particularly focusing on the production and correlation of the reactive oxygen and nitrogen species (RONS) in gas- and liquid-phase. It is found that the length of plasma jet plume first increases before the PW of 10 μs, then gradually decreases and finally almost remains unchanged beyond 150 μs. The plasma bullet disappears after the falling edge of the voltage pulse at low PW, while it terminates far ahead of the falling edge of voltage pulse at high PW. This is mainly attributed to accumulation of space charges that lead to weakening of the reduced electric field with an increase of PW from low to high. More important, it is found that the excited reactive species, the positive and negative ions from plasma jet, and the concentrations of NO2- and NO3- in deionized water exposed to plasma jet also display the first increasing and then decreasing change trend with increase of PW, while the concentration of H2O2 in water almost displays the linearly increasing trend. This mainly results from the formation of the H3O+ and HO2-, as well as their ion water clusters that can produce more OH radicals to be converted into H2O2, while the NO2- and NO3- in gas phase can transport into water and exist most stably in water. The water cluster formation at gas-liquid interface is an important key process that can affect the chemical nature and dose of aqueous RONS in water; this is beneficial for understanding how the RONS are formed in liquid-phase.

  16. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    International Nuclear Information System (INIS)

    Graves, David B

    2012-01-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well. (topical review)

  17. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    Science.gov (United States)

    Graves, David B.

    2012-07-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well.

  18. Nitrogen doping on NiO by reactive magnetron sputtering: A new pathway to dynamically tune the optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Keraudy, Julien, E-mail: julien.keraudy@liu.se [Institut de Recherche Technologique (IRT), Chemin du Chaffault, 44340, Bouguenais (France); Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP32229, 44322, Nantes Cedex 3 (France); Plasma & Coatings Physics Division, IFM Materials Physics, Linköping University, Linköping, SE 581-83 (Sweden); Ferrec, Axel; Richard-Plouet, Mireille; Hamon, Jonathan; Goullet, Antoine; Jouan, Pierre-Yves [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP32229, 44322, Nantes Cedex 3 (France)

    2017-07-01

    Highlights: • Nitrogen doping into NiO lattice (4 at.%) is achieved by only monitoring the N{sub 2}/O{sub 2} gas ratio in the plasma. • The replacement of O by N leads to a narrowing of the optical band-gap energy from 3.6 to 2.3 eV. • The origin of the narrowing is explained by the presence of an intermediate band and the introduction of occupied N 2p states. • Electrical conductivity of NiO:N samples depends on the amount of nickel vacancies and the nitrogen doping. - Abstract: N-doped nickel oxide (NiO:N) thin films were deposited on glass and silicon substrates by reactive DC magnetron sputtering in Ar/O{sub 2}/N{sub 2} gas atmosphere with a series of N{sub 2}/O{sub 2} gas ratio ranging from 0 to 80%. X-ray diffraction measurements have revealed that the films are constituted of Ni{sub 1-x}O grains and showed enhanced polycrystalline features with increasing N-doping concentration. For the first time, we report here that N-doping in the Ni-deficient NiO (Ni{sub 1-x}O) film leads to a band-gap narrowing from 3.6 to 2.3 eV. X-ray photoelectron spectroscopy (XPS) measurements proved that up to 4 atomic percent (at.%) nitrogen can be incorporated at least at the surface of the NiO:N samples. In addition, XPS valence band spectra and UV–vis transmission measurements have demonstrated that the band-gap narrowing may originates from the contribution of an intermediate band (IB) ∼2.4 eV just above the valence band maximum and the up-shifting of the valence band edge (∼0.3 eV) due to the introduction of occupied N 2p states. Local I–V measurements, carried out by conductive AFM (C-AFM), have revealed that the extrinsic doping of N atoms within the oxide can be a good way to precisely control the electrical conductivity of such p-type materials.

  19. Consequences of human modification of the global nitrogen cycle.

    Science.gov (United States)

    Erisman, Jan Willem; Galloway, James N; Seitzinger, Sybil; Bleeker, Albert; Dise, Nancy B; Petrescu, A M Roxana; Leach, Allison M; de Vries, Wim

    2013-07-05

    The demand for more food is increasing fertilizer and land use, and the demand for more energy is increasing fossil fuel combustion, leading to enhanced losses of reactive nitrogen (Nr) to the environment. Many thresholds for human and ecosystem health have been exceeded owing to Nr pollution, including those for drinking water (nitrates), air quality (smog, particulate matter, ground-level ozone), freshwater eutrophication, biodiversity loss, stratospheric ozone depletion, climate change and coastal ecosystems (dead zones). Each of these environmental effects can be magnified by the 'nitrogen cascade': a single atom of Nr can trigger a cascade of negative environmental impacts in sequence. Here, we provide an overview of the impact of Nr on the environment and human health, including an assessment of the magnitude of different environmental problems, and the relative importance of Nr as a contributor to each problem. In some cases, Nr loss to the environment is the key driver of effects (e.g. terrestrial and coastal eutrophication, nitrous oxide emissions), whereas in some other situations nitrogen represents a key contributor exacerbating a wider problem (e.g. freshwater pollution, biodiversity loss). In this way, the central role of nitrogen can remain hidden, even though it actually underpins many trans-boundary pollution problems.

  20. Consequences of human modification of the global nitrogen cycle

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, J.N.; Leach, A.M. [Environmental Sciences, University of Virginia, Charlottesville, VA 22904-4123 (United States); Bleeker, A. [Energy research Centre of the Netherlands, 1755 ZG, Petten (Netherlands); Erisman, J.W. [VU University, 1081 HV Amsterdam (Netherlands); Seitzinger, S. [4International Geosphere-Biosphere Programme (IGBP) Secretariat, Royal Swedish Academy of Sciences, PO Box 50005, 104 05 Stockholm (Sweden); Dise, N.B. [Department of Environmental and Geographical Sciences, Manchester Metropolitan University, John Dalton East Building, Chester Street, Manchester M15GD (United Kingdom); Petrescu, A.M.R. [European Commission, Joint Research Centre, Institute for Environment and Sustainability (IES) Air and Climate Unit, TP290 Via Enrico Fermi 2749, 21027 Ispra, Varese (Italy); De Vries, W. [Alterra Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen (Netherlands)

    2013-07-15

    The demand for more food is increasing fertilizer and land use, and the demand for more energy is increasing fossil fuel combustion, leading to enhanced losses of reactive nitrogen (Nr) to the environment. Many thresholds for human and ecosystem health have been exceeded owing to Nr pollution, including those for drinking water (nitrates), air quality (smog, particulate matter, ground-level ozone), freshwater eutrophication, biodiversity loss, stratospheric ozone depletion, climate change and coastal ecosystems (dead zones). Each of these environmental effects can be magnified by the 'nitrogen cascade': a single atom of Nr can trigger a cascade of negative environmental impacts in sequence. Here, we provide an overview of the impact of Nr on the environment and human health, including an assessment of the magnitude of different environmental problems, and the relative importance of Nr as a contributor to each problem. In some cases, Nr loss to the environment is the key driver of effects (e.g. terrestrial and coastal eutrophication, nitrous oxide emissions), whereas in some other situations nitrogen represents a key contributor exacerbating a wider problem (e.g. freshwater pollution, biodiversity loss). In this way, the central role of nitrogen can remain hidden, even though it actually underpins many transboundary pollution problems.

  1. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    Energy Technology Data Exchange (ETDEWEB)

    Rastad, Jessica L. [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Green, William R., E-mail: William.R.Green@dartmouth.edu [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States)

    2016-12-15

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  2. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    International Nuclear Information System (INIS)

    Rastad, Jessica L.; Green, William R.

    2016-01-01

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  3. Generation and Reduction of NOx on Air-Fed Ozonizers

    Science.gov (United States)

    Ehara, Yoshiyasu; Amemiya, Yusuke; Yamamoto, Toshiaki

    A generation and reduction of NOx on air-fed ozonizers using a ferroelectric packed bed reactor have been experimentally investigated. The reactors packed with CaTiO3, SrTiO3 and BaTiO3 pellets are examined for ozone generation. An ac voltage is applied to the reactor to generate partial discharge. Ozone concentration and the different nitrogen oxides at downstream of the packed bed reactor were measured with UV absorption ozone monitor and a Fourier transform infrared spectroscope respectively. The dielectric constant of packed ferroelectric pellets influences the discharge characteristic, ozone and NOx generations are varied by the dielectric constant value. Focusing on a discharge pulse current and maximum discharge magnitude, the ferroelectric packed bed plasma reactors have been evaluated on nitrogen oxide and ozone generated concentrations.

  4. OZONE PRECURSORS, SOURCE REGIONS, AND O(3) FORMATION DURING THE TEXAQS 2000 STUDY

    International Nuclear Information System (INIS)

    DAUM, P.H.; KLEINMAN, L.I.; BRECHTEL, F.; LEE, Y.N.; NUNNERMACKER, L.J.; SPRINGSTON, S.R.; WEINSTEIN-LLOYD, J.

    2001-01-01

    The DOE G-1 aircraft made flights on 14 days during the TexAQS 2000 study. On 7 of those days, the aircraft encountered highly localized plumes exhibiting O(sub 3) concentrations in excess of 150 ppb; on some days, peak O(sub 3) concentrations were in excess of 200 ppb. These ozone plumes were rapidly formed with an efficiency (O(sub 3) per NO(sub x) molecule consumed) much higher (7-20) than observed in other urban areas (3-4), and were frequently associated with high concentrations ( and gt;20 ppb) of secondary hydrocarbon species such as formaldehyde. Back trajectory analysis showed that the plumes were invariably associated with emissions from one or more of the large industrial complexes clustered about the Houston Ship Channel and Galveston Bay. Very high hydrocarbon reactivities were found in the vicinity of these facilities during morning flights. These hydrocarbon reactivities, in combination with local NO(sub x) emissions, were large enough to support instantaneous O(sub 3) production rates as high as 200 ppb/h. It is hypothesized that the combination of nitrogen oxides and hydrocarbon emissions emanating from this complex of industries provided a potent mixture of chemicals that caused the rapid formation of very high concentrations of ozone which, depending on the prevailing meteorology, could cause exceedance of the NAAQS ozone standard anywhere in the Houston metropolitan area

  5. Ozone Layer Protection

    Science.gov (United States)

    ... and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “sunscreen” – protecting ... GreenChill Partnership Responsible Appliance Disposal (RAD) Program Ozone Protection vs. Ozone Pollution This website addresses stratospheric ozone ...

  6. Stability and Application of Reactive Nitrogen and Oxygen Species-Induced Hemoglobin Modifications in Dry Blood Spots As Analyzed by Liquid Chromatography Tandem Mass Spectrometry.

    Science.gov (United States)

    Chen, Hauh-Jyun Candy; Fan, Chih-Huang; Yang, Ya-Fen

    2016-12-19

    Dried blood spot (DBS) is an emerging microsampling technique for the bioanalysis of small molecules, including fatty acids, metabolites, drugs, and toxicants. DBS offers many advantages as a sample format including easy sample collection and cheap sample shipment. Hemoglobin adducts have been recognized as a suitable biomarker for monitoring chemical exposure. We previously reported that certain modified peptides in hemoglobin derived from reactive chlorine, nitrogen, and oxygen species are associated with factors including smoking, diabetes mellitus, and aging. However, the stability of these oxidation-induced modifications of hemoglobin remains unknown and whether they can be formed artifactually during storage of DBS. To answer these questions, globin extracted from the DBS cards was analyzed, and the stability of the modifications was evaluated. After storage of the DBS cards at 4 °C or room temperature up to 7 weeks, we isolated globin from a quarter of the spot every week. The extents of 11 sites and types of post-translational modifications (PTMs), including nitration and nitrosylation of tyrosine and oxidation of cysteine and methionine residues, in human hemoglobin were measured in the trypsin digest by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) using selected reaction monitoring. The extents of all these PTMs are stable within 14 days when stored on DBS at room temperature and at 4 °C, while those from direct extraction of fresh blood are stable for at least 8 weeks when stored as an aqueous solution at -20 °C. Extraction of globin from a DBS card is of particular importance for hemolytic blood samples. To our knowledge, this is the first report on the stability of oxidative modifications of hemoglobin on DBSs, which are stable for 14 days under ambient conditions (room temperature, in air). Therefore, it is feasible and convenient to analyze these hemoglobin modifications from DBSs in studies

  7. The possible impact of fluorocarbons and halocarbons on ozone

    International Nuclear Information System (INIS)

    1975-05-01

    Partial contents: Chemistry-(The production and atmospheric release of fluorocarbons and certain other chlorine compounds, Photochemistry of fluorocarbons); Measurement techniques-(Stratospheric sampling platforms, Methods for measuring fluorocarbons and other halocarbons); Measurements-(Halogenated organic compounds in the troposphere, Stratospheric measurement of oxides of nitrogen, Total ozone trends); Models-(Assessment of the accuracy of atmospheric transport, Model prediction of ozone depletion); Effects-

  8. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  9. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings.

    Science.gov (United States)

    Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C; Barroso, Juan B; del Río, Luis A; Palma, José M; Corpas, Francisco J

    2015-09-01

    The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate-glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide ((·)NO), superoxide radical (O2 (·-)) and peroxynitrite (ONOO(-)) was investigated using confocal laser scanning microscopy. The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes

  10. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential.

    Science.gov (United States)

    Xia, Longlong; Ti, Chaopu; Li, Bolun; Xia, Yongqiu; Yan, Xiaoyuan

    2016-06-15

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO2-NEB and Nr-NEB), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH4 emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH4 emissions dominated the carbon footprints, while NH3 volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404-701) TgCO2eqGHG and 10 (7.4-12.4) Tg Nr-N were released every year during 2001-2010 from staple food production. This caused the total damage costs of 325 (70-555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7TgCO2eqyr(-1) and 2.2TgNr-Nyr(-1) could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize farmers to gradually adopt knowledge-based managements. Copyright © 2016

  11. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Longlong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ti, Chaopu [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Bolun [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xia, Yongqiu [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yan, Xiaoyuan, E-mail: yanxy@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-06-15

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO{sub 2-NEB} and Nr{sub -NEB}), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH{sub 4} emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH{sub 4} emissions dominated the carbon footprints, while NH{sub 3} volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404–701) Tg CO{sub 2} eq GHG and 10 (7.4–12.4) Tg Nr-N were released every year during 2001–2010 from staple food production. This caused the total damage costs of 325 (70–555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7 Tg CO{sub 2} eq yr{sup −1} and 2.2 Tg Nr-N yr{sup −1} could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize

  12. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential

    International Nuclear Information System (INIS)

    Xia, Longlong; Ti, Chaopu; Li, Bolun; Xia, Yongqiu; Yan, Xiaoyuan

    2016-01-01

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO 2-NEB and Nr -NEB ), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH 4 emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH 4 emissions dominated the carbon footprints, while NH 3 volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404–701) Tg CO 2 eq GHG and 10 (7.4–12.4) Tg Nr-N were released every year during 2001–2010 from staple food production. This caused the total damage costs of 325 (70–555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7 Tg CO 2 eq yr −1 and 2.2 Tg Nr-N yr −1 could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize farmers to gradually adopt knowledge

  13. Effects of mineral nutrients on ozone susceptibility of Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Craker, L.E.

    1971-01-01

    Susceptibility of Lemna minor L. to ozone injury was influenced by the mineral nutrients available to the Lemna plants. Additional nitrogen or additional iron in the nutrient media respectively enhanced or reduced chlorophyll loss of Lemna plants fumigated with ozone. Lemna plants growing on a nutrient medium lacking copper had significantly less injury from ozone fumigation than Lemna plants growing on a complete nutrient medium. There were apparent interactions among phosphorus and potassium nutrient levels in determing the Lemna plant's susceptibility to ozone.

  14. Ozone formation in a transverse-flow gas discharge

    International Nuclear Information System (INIS)

    Baranov, G.A.; Zinchenko, A.K.; Lednev, M.G.

    1994-01-01

    The measurements of the ozone concentration in flows of air and nitrogen-oxygen mixtures under transverse dc discharge are performed using an absorption spectroscopy technique. The mechanism of ozone formation in the discharge is discussed. A simple equation is suggested for the estimation of ozone concentration in the gas mixtures. The influence of water vapor on the kinetics of formation and decay of O 3 molecules is considered. The numerical estimates of the ozone concentration are made using the suggested model of plasma-chemical reactions

  15. Effect of increased carbon dioxide concentrations on stratospheric ozone

    International Nuclear Information System (INIS)

    Boughner, R.E.

    1978-01-01

    During the past several years, much attention has been focused on the destruction of ozone by anthropogenic pollutants such as the nitrogen oxides and chlorofluoromethane. Little or no attention has been given to the influence on ozone of an increased carbon dioxide concentration for which a measurable growth has been observed. Increased carbon dioxide can directly affect ozone by perturbing atmospheric temperatures, which will alter ozone production, whose rate displays a fairly strong temperature dependence. This paper presents one-dimensional model results for the steady state ozone behavior when the CO 2 concentration is twice its ambient level which account for coupling between chemistry and temperature. When the CO 2 level doubled, the total ozone burden increased in relation to the ambient burden by 1.2--2.5%, depending on the vertical diffusion coefficient used. Above 30 km. In this region the relation variations were insensitive to the choice of diffusion coefficient. Below 30 km, ozone concentrations were smaller than the unperturbed values and were sensitive to the vertical diffusion profile in this region (10--30 km). Ozone decreases in the lower stratosphere because of a reduction in ozone-producing solar radiation, which results in smaller downward ozone fluxes from the region at 25--30 km relative to the flux values for the ambient atmosphere. These offsetting changes occurring in the upper and lower stratosphere act to minimize the variation in total ozone

  16. A passive sampler for atmospheric ozone

    International Nuclear Information System (INIS)

    Grosjean, D.; Hisham, M.W.M.

    1992-01-01

    A simple, cost-effective passive sampler has been developed for the determination of atmospheric ozone. This passive sampler is based on a colorant which fades upon reaction with ozone, whose concentration can be determined by reflectance measurement of the color change. Direct, on-site measurements are possible, and no chemical analyses are needed. Sampler design and validation studies have been carried out and included quantitative determination of color change vs exposure time (1-8 days), color change vs. ozone concentration (30-350 ppb), and response to changes in sampler configuration that modify the passive sampling rate. With indigo carmine as the colorant, the detection limits are 30 ppb. day and 120 ppb. day using a plastic grid and Teflon filter, respectively, as diffusion barriers. Interferences from nitrogen dioxide, formaldehyde and peroxyacetyl nitrate are 15, 4 and 16%, respectively, thus resulting in a negligible bias when measuring ozone in ambient air

  17. Investigation of the impact of extraterrestrial energetic particles on stratospheric nitrogen compounds and ozone on the basis of three dimensional model studies

    Energy Technology Data Exchange (ETDEWEB)

    Wieters, Nadine

    2013-06-17

    As a result of solar events like Coronal Mass Ejections (CMEs) and solar flares, highly energetic charged particles including protons and electrons can precipitate in the direction of the Earth. Having sufficient energies, these particles can penetrate down to the middle atmosphere and lead to a change in the chemical composition of the atmosphere. In particular during strong events, these charged particles induce an ionisation in the atmosphere that can reach down to the lower stratosphere. This ionisation is followed by a fast positive ion chemistry that causes a strong increase in reactive HO{sub x} (H,OH,HO{sub 2}) an NO{sub x} (N,NO,NO{sub 2}). HO{sub x} and NO{sub x} constituents eventually destroy O{sub 3} in catalytical reaction cycles. Furthermore, NO{sub x} is long-lived during polar winter and can be transported into the middle and lower stratosphere, where it can contribute to the O{sub 3} depletion. The increase in NO{sub x} in the upper and middle atmosphere due to solar events and the consequential depletion of O{sub 3} has been observed as during the Solar Proton Event (SPE) in October/November 2003 by satellite instruments. In atmospheric models, the generation of HO{sub x} and NO{sub x} can be well described by parametrisations to include in neutral models. Whereas other changes, for instance in chlorine compounds, can not be described sufficiently by this parametrisation. The purpose of this PhD thesis is, to investigate the impact of strong solar particle events on the abundance in NO{sub x} and O{sub 3} in the stratosphere and mesosphere on the basis of three-dimensional model studies. For this purpose a three-dimensional Chemistry and Transport Model (CTM) has been extended to the upper atmosphere (lower thermosphere). To include the processes in the mesosphere and lower thermosphere a new meteorological data set has been implemented to the model. To describe the ionising effect of energetic particle on the atmosphere, three

  18. Ground-level ozone: Our new environmental policy

    International Nuclear Information System (INIS)

    Schiff, H.

    1991-01-01

    The environmental problem of ground level ozone is discussed, and the Canadian strategy for dealing with it is explained. Ozone in the troposphere can cause serious health problems in susceptible persons, and is estimated to cause up to $70 million in crop damage per year. The Canadian Council of Ministers of the Environment (CCME) Plan calls for less than 82 ppB by volume of ozone in any one-hour period in all areas of Canada by 2005. Three areas of Canada regularly exceed this value: the Lower Frazer valley in British Columbia, Saint John in New Brunswick, and the Windsor-Quebec corridor along the lower Great Lakes and the St. Lawrence River. Ozone is formed by a photochemical reaction of ammonia gases, nitrogen oxides, hydrogen sulfide or sulfur dioxide. Historically, ozone control has concentrated on controlling hydrocarbon emissions, but to little effect. In most locations close to large cities, ozone production is nitrogen oxide-limited, and the most recent models predict that the best strategy for ozone reduction requires the simultaneous reduction of both hydrocarbons and nitrogen oxides. The CCME Management Plan suggests that the 82 ppB ozone target will require a reduction of 40-50% in nitrogen oxide emissions. The Windsor end of the Windsor-Quebec corridor is dominated by transport of ozone and precursors from the USA, particularly Detroit and Cleveland, so Canadian controls alone are unlikely to solve the problem. For the rest of the corridor, nitrogen oxide control is likely to be most effective in urban areas. 1 fig

  19. Secondary maxima in ozone profiles

    Directory of Open Access Journals (Sweden)

    R. Lemoine

    2004-01-01

    Full Text Available Ozone profiles from balloon soundings as well as SAGEII ozone profiles were used to detect anomalous large ozone concentrations of ozone in the lower stratosphere. These secondary ozone maxima are found to be the result of differential advection of ozone-poor and ozone-rich air associated with Rossby wave breaking events. The frequency and intensity of secondary ozone maxima and their geographical distribution is presented. The occurrence and amplitude of ozone secondary maxima is connected to ozone variability and trend at Uccle and account for a large part of the total ozone and lower stratospheric ozone variability.

  20. Destruction of disinfection byproducts and their precursors in swimming pool water by combined UV treatment and ozonation

    DEFF Research Database (Denmark)

    Cheema, Waqas Akram; Kaarsholm, Kamilla Marie Speht; Andersen, Henrik Rasmus

    Both UV treatment and ozonation are used to reduce different types of disinfection byproducts (DBP) in swimming pools. UV treatment is most common as it is particularly efficient in removing the repulsive chlorine like smelling chloramines (combined chlorine). UV treatment of a pool water increased...... chlorine reactivity and formation of chlor-organic DBP such as trihalomethanes. Based on the similar selective reactivity of ozone and chlorine we hypothesized that the created reactivity towards chlorine by UV treatment of dissolved organic matter in pool water might also be expressed as an increased...... reactivity towards ozone and that ozonation might saturate the chlorine reactivity created by UV treatment and mitigate the increased DBP formation. By experimentally treating pool water samples, we found that UV treatment makes pool water highly reactive to ozone. The created reactivity towards chlorine...

  1. Ozone decomposition kinetics on alumina: effects of ozone partial pressure, relative humidity and repeated oxidation cycles

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2004-01-01

    Full Text Available The room temperature kinetics of gas-phase ozone loss via heterogeneous interactions with thin alumina films has been studied in real-time using 254nm absorption spectroscopy to monitor ozone concentrations. The films were prepared from dispersions of fine alumina powder in methanol and their surface areas were determined by an in situ procedure using adsorption of krypton at 77K. The alumina was found to lose reactivity with increasing ozone exposure. However, some of the lost reactivity could be recovered over timescales of days in an environment free of water, ozone and carbon dioxide. From multiple exposures of ozone to the same film, it was found that the number of active sites is large, greater than 1.4x1014 active sites per cm2 of surface area or comparable to the total number of surface sites. The films maintain some reactivity at this point, which is consistent with there being some degree of active site regeneration during the experiment and with ozone loss being catalytic to some degree. The initial uptake coefficients on fresh films were found to be inversely dependent on the ozone concentration, varying from roughly 10-6 for ozone concentrations of 1014 molecules/cm3 to 10-5 at 1013 molecules/cm3. The initial uptake coefficients were not dependent on the relative humidity, up to 75%, within the precision of the experiment. The reaction mechanism is discussed, as well as the implications these results have for assessing the effect of mineral dust on atmospheric oxidant levels.

  2. OH reactivity of the urban air in Helsinki, Finland, during winter

    Science.gov (United States)

    Praplan, Arnaud P.; Pfannerstill, Eva Y.; Williams, Jonathan; Hellén, Heidi

    2017-11-01

    A new instrument to measure total OH reactivity in ambient air based on the Comparative Reactivity Method (CRM) has been built and characterized at the Finnish Meteorological Institute in Helsinki, Finland. The system is based on the detection of pyrrole by a gas chromatograph with a photoionization detector and designed for long term studies. It was tested in a container close to the SMEAR III semi-urban station in Helsinki during the winter in February 2016. The sampling location next to the delivery area of the institute was influenced by local vehicle emissions and cannot be considered representative of background conditions in Helsinki. However, effects of nitrogen oxides on the measurements could be investigated there. During this campaign, 56 compounds were measured individually by 1) an in-situ gas chromatograph coupled to a mass spectrometer (GC/MS) and by 2) off-line sampling in canisters and on adsorbent filled cartridges taken at the container and subsequently analysed by GC-FID and liquid chromatography, respectively. In addition, nitrogen oxides were measured at the same location, while ozone, carbon monoxide and sulfur dioxide concentrations have been retrieved from the SMEAR III mast data. The comparison between the total OH reactivity measured and the OH reactivity derived from individual compound measurements are in better agreement for lower reactivity levels. Possible explanations for the differences are discussed in detail.

  3. Tropospheric Ozone and Photochemical Smog

    Science.gov (United States)

    Sillman, S.

    2003-12-01

    global background ozone can make the effects of local pollution events everywhere more acute, and can also cause ecological damage in remote locations that are otherwise unaffected by urban pollution. Ozone at the global scale is also related to greenhouse warming.This chapter provides an overview of photochemical smog at the urban and regional scale, focused primarily on ozone and including a summary of information about particulates. It includes the following topics: dynamics and extent of pollution events; health and ecological impacts; relation between ozone and precursor emissions, including hydrocarbons and nitrogen oxides (NOx); sources, composition, and fundamental properties of particulates; chemistry of ozone and related species; methods of interpretation based on ambient measurements; and the connection between air pollution events and the chemistry of the global troposphere. Because there are many similarities between the photochemistry of ozone during pollution events and the chemistry of the troposphere in general, this chapter will include some information about global tropospheric chemistry and the links between urban-scale and global-scale events. Additional treatment of the global troposphere is found in Volume 4 of this work. The chemistry of ozone formation discussed here is also related to topics discussed in greater detail elsewhere in this volume (see Chapters 9.10 and 9.12) and in Volume 4.

  4. The Antarctic ozone hole

    International Nuclear Information System (INIS)

    Jones, Anna E

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For the historical perspective, the events leading up to the discovery of the 'hole' are presented, as well as the response from the international community and the measures taken to protect the ozone layer now and into the future

  5. Observations of ozone formation in power plant plumes and implications for ozone control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, T.B.; Trainer, M.; Holloway, J.S.; Parrish, D.D.; Huey, L.G.; Sueper, D.T.; Frost, G.J.; Donnelly, S.G.; Schauffler, S.; Atlas, E.L.; Kuster, W.C.; Goldan, P.D.; Huebler, G.; Meagher, J.F.; Fehsenfeld, F.C. [NOAA, Boulder, CO (USA). Aeronomy Lab.

    2001-04-27

    Data taken in aircraft transects of emissions plumes from rural US coal-fired power plants were used to confirm and quantify the nonlinear dependence of tropospheric ozone formation on plume NOx (NO plus NO{sub 2}) concentration, which is determined by plant NOx emission rate and atmospheric dispersion. The ambient availability of reactive volatile organic compounds, principally biogenic isoprene, was also found to modular ozone production rate and yield in these rural plumes. Differences of a factor of 2 or greater in plume ozone formation rates and yields as a function of NOx and volatile organic compound concentrations were consistently observed. These large differences suggest that consideration of power plant NOx emission rates and geographic locations in current and future US ozone control strategies could substantially enhance the efficacy of NOx reductions from these sources. 18 refs., 4 figs.

  6. Dual roles of hydroxyl radicals and effects of competition on ozonation kinetics of two phenazone-type pollutants

    Directory of Open Access Journals (Sweden)

    Siyu Zhang

    2015-11-01

    Full Text Available Ozonation has been proved to be a promising approach for eliminating emerging pollutants in wastewater. In previous studies, emerging pollutants including diverse pharmaceuticals were found to exhibit significantly different ozonation reactivity. However, how the structural differences of emerging pollutants determine ozonation reactivity and mechanisms are still ambiguous. In this work, ozonation of dimethylaminophenazone (DMP and acetylaminophenazone (AAA with the same parent structure of phenazone but different substitution groups was investigated, in order to probe influencing mechanisms of structural differences on ozonation reactivity. Results show that DMP reacts with ozone and HO·≡ almost 2 and 1 order of magnitude faster than AAA, respectively. At pH 8, HO·≡ accelerates ozonation of DMP, but decreases ozonation of AAA. Competition simultaneously decreases degradation rate of the two phenazones, but effects on AAA are more significant than that on DMP. According to theoretical calculation results, differences in ozonation reactivity and mechanisms of the two phenazones can be mainly attributed to different substitution groups. The dimethylamino group in the structure of DMP increases the ozonation reactivity of phenazone by increasing reaction orbital energies and altering reaction sites, while the acetylamino group in the structure of AAA decreases the reaction orbital energy and therefore lowers the reactivity.

  7. Ozone Antimicrobial Efficacy

    Science.gov (United States)

    Ozone is a potent germicide that has been used extensively for water purification. In Europe, 90 percent of the municipal water systems are treated with ozone, and in France, ozone has been used to treat drinking water since 1903. However, there is limited information on the bioc...

  8. Tropospheric Ozone as a Short-lived Chemical Climate Forcer

    Science.gov (United States)

    Pickering, Kenneth E.

    2012-01-01

    Tropospheric ozone is the third most important greenhouse gas according to the most recent IPCC assessment. However, tropospheric ozone is highly variable in both space and time. Ozone that is located in the vicinity of the tropopause has the greatest effect on climate forcing. Nitrogen oxides (NOx) are the most important precursors for ozone In most of the troposphere. Therefore, pollution that is lofted upward in thunderstorm updrafts or NOx produced by lightning leads to efficient ozone production in the upper troposphere, where ozone is most important climatically. Global and regional model estimates of the impact of North American pollution and lightning on ozone radiative forcing will be presented. It will be shown that in the Northern Hemisphere summer, the lightning effect on ozone radiative forcing can dominate over that of pollution, and that the radiative forcing signal from North America extends well into Europe and North Africa. An algorithm for predicting lightning flash rates and estimating lightning NOx emissions is being incorporated into the NASA GEOS-5 Chemistry and Climate Model. Changes in flash rates and emissions over an ENSO cycle and in future climates will be assessed, along with the resulting changes in upper tropospheric ozone. Other research on the production of NOx per lightning flash and its distribution in the vertical based on cloud-resolving modeling and satellite observations will be presented. Distributions of NO2 and O3 over the Middle East from the OMI instrument on NASA's Aura satellite will also be shown.

  9. Impact of climate variability on tropospheric ozone

    International Nuclear Information System (INIS)

    Grewe, Volker

    2007-01-01

    A simulation with the climate-chemistry model (CCM) E39/C is presented, which covers both the troposphere and stratosphere dynamics and chemistry during the period 1960 to 1999. Although the CCM, by its nature, is not exactly representing observed day-by-day meteorology, there is an overall model's tendency to correctly reproduce the variability pattern due to an inclusion of realistic external forcings, like observed sea surface temperatures (e.g. El Nino), major volcanic eruption, solar cycle, concentrations of greenhouse gases, and Quasi-Biennial Oscillation. Additionally, climate-chemistry interactions are included, like the impact of ozone, methane, and other species on radiation and dynamics, and the impact of dynamics on emissions (lightning). However, a number of important feedbacks are not yet included (e.g. feedbacks related to biogenic emissions and emissions due to biomass burning). The results show a good representation of the evolution of the stratospheric ozone layer, including the ozone hole, which plays an important role for the simulation of natural variability of tropospheric ozone. Anthropogenic NO x emissions are included with a step-wise linear trend for each sector, but no interannual variability is included. The application of a number of diagnostics (e.g. marked ozone tracers) allows the separation of the impact of various processes/emissions on tropospheric ozone and shows that the simulated Northern Hemisphere tropospheric ozone budget is not only dominated by nitrogen oxide emissions and other ozone pre-cursors, but also by changes of the stratospheric ozone budget and its flux into the troposphere, which tends to reduce the simulated positive trend in tropospheric ozone due to emissions from industry and traffic during the late 80s and early 90s. For tropical regions the variability in ozone is dominated by variability in lightning (related to ENSO) and stratosphere-troposphere exchange (related to Northern Hemisphere Stratospheric

  10. Effect of nitrogen flow rate on structural, morphological and optical properties of In-rich In{sub x}Al{sub 1−x}N thin films grown by plasma-assisted dual source reactive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, M., E-mail: alizadeh_kozerash@yahoo.com [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ganesh, V.; Goh, B.T. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Dee, C.F.; Mohmad, A.R. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Rahman, S.A., E-mail: saadah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-08-15

    Highlights: • In-rich In{sub x}Al{sub 1−x}N films were grown by Plasma-aided reactive evaporation. • Effect of nitrogen flow rate on the films properties was investigated. • The band gap of the films was varied from 1.17 to 0.90 eV. • By increasing N{sub 2} flow rate the In{sub x}Al{sub 1−x}N films tend to turn into amorphous state. • At higher N{sub 2} flow rate agglomeration of the particles is highly enhanced. - Abstract: In-rich In{sub x}Al{sub 1−x}N thin films were deposited on quartz substrate at various nitrogen flow rates by plasma-assisted dual source reactive evaporation technique. The elemental composition, surface morphology, structural and optical properties of the films were investigated by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Raman spectroscopy, X-ray diffraction (XRD), UV–vis spectrophotometer and photoluminescence (PL) measurements. XPS results revealed that the indium composition (x) of the In{sub x}Al{sub 1−x}N films increases from 0.90 to 0.97 as the nitrogen flow rate is increased from 40 to 100 sccm, respectively. FESEM images of the surface and cross-sectional microstructure of the In{sub x}Al{sub 1−x}N films showed that by increasing the N{sub 2} flow rate, the grown particles are highly agglomerated. Raman and XRD results indicated that by increasing nitrogen flow rate the In-rich In{sub x}Al{sub 1−x}N films tend to turn into amorphous state. It was found that band gap energy of the films are in the range of 0.90–1.17 eV which is desirable for the application of full spectra solar cells.

  11. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  12. Contribution of ozone to airborne aldehyde formation in Paris homes.

    Science.gov (United States)

    Rancière, Fanny; Dassonville, Claire; Roda, Célina; Laurent, Anne-Marie; Le Moullec, Yvon; Momas, Isabelle

    2011-09-15

    Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m(3). The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Ozone generation by rock fracture: Earthquake early warning?

    Energy Technology Data Exchange (ETDEWEB)

    Baragiola, Raul A.; Dukes, Catherine A.; Hedges, Dawn [Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2011-11-14

    We report the production of up to 10 ppm ozone during crushing and grinding of typical terrestrial crust rocks in air, O{sub 2} and CO{sub 2} at atmospheric pressure, but not in helium or nitrogen. Ozone is formed by exoelectrons emitted by high electric fields, resulting from charge separation during fracture. The results suggest that ground level ozone produced by rock fracture, besides its potential health hazard, can be used for early warning in earthquakes and other catastrophes, such as landslides or land shifts in excavation tunnels and underground mines.

  14. Direct measurement of NO3 radical reactivity in a boreal forest

    Science.gov (United States)

    Liebmann, Jonathan; Karu, Einar; Sobanski, Nicolas; Schuladen, Jan; Ehn, Mikael; Schallhart, Simon; Quéléver, Lauriane; Hellen, Heidi; Hakola, Hannele; Hoffmann, Thorsten; Williams, Jonathan; Fischer, Horst; Lelieveld, Jos; Crowley, John N.

    2018-03-01

    We present the first direct measurements of NO3 reactivity (or inverse lifetime, s-1) in the Finnish boreal forest. The data were obtained during the IBAIRN campaign (Influence of Biosphere-Atmosphere Interactions on the Reactive Nitrogen budget) which took place in Hyytiälä, Finland during the summer/autumn transition in September 2016. The NO3 reactivity was generally very high with a maximum value of 0.94 s-1 and displayed a strong diel variation with a campaign-averaged nighttime mean value of 0.11 s-1 compared to a daytime value of 0.04 s-1. The highest nighttime NO3 reactivity was accompanied by major depletion of canopy level ozone and was associated with strong temperature inversions and high levels of monoterpenes. The daytime reactivity was sufficiently large that reactions of NO3 with organic trace gases could compete with photolysis and reaction with NO. There was no significant reduction in the measured NO3 reactivity between the beginning and end of the campaign, indicating that any seasonal reduction in canopy emissions of reactive biogenic trace gases was offset by emissions from the forest floor. Observations of biogenic hydrocarbons (BVOCs) suggested a dominant role for monoterpenes in determining the NO3 reactivity. Reactivity not accounted for by in situ measurement of NO and BVOCs was variable across the diel cycle with, on average, ≈ 30 % missing during nighttime and ≈ 60 % missing during the day. Measurement of the NO3 reactivity at various heights (8.5 to 25 m) both above and below the canopy, revealed a strong nighttime, vertical gradient with maximum values closest to the ground. The gradient disappeared during the daytime due to efficient vertical mixing.

  15. Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation

    Science.gov (United States)

    Jouyandeh, Maryam; Jazani, Omid Moini; Navarchian, Amir H.; Shabanian, Meisam; Vahabi, Henri; Saeb, Mohammad Reza

    2018-07-01

    Curing behavior of epoxy-based nanocomposites depends on dispersion state of nanofillers and their physical and chemical interactions with the curing moieties. In this work, a systematic approach was introduced for chemical functionalization of nanoparticles with macromolecules in order to enrich crosslinking potential of epoxy/amine systems, particularly at late stages of cure where the curing is diffusion-controlled. Super-reactive hyperbranched polyethylenimine (PEI)-attached nanosilica was materialized in this work to facilitate epoxy-amine curing. Starting from coupling [3-(2,3-epoxypropoxy) propyl] trimethoxysilane (EPPTMS) with hyperbranched PEI, a super-reactive macromolecule was obtained and subsequently grafted onto the nanosilica surface. Eventually, a thermally-stable highly-curable nanocomposite was attained by replacement of amine and imine groups of the PEI with imide and amide groups through the reaction with pyromellitic acid dianhydride. Fourier-transform infrared spectrophotometry, X-ray diffractometry, X-ray photoelectron spectroscopy and transmission electron microscopy approved successful grafting of polymer chains onto the nanosilica surface. Thermogravimetric analyses approved a relatively high grafting ratio of ca. 21%. Curing potential of the developed super-reactive nanoparticle was uncovered through nonisothermal differential scanning calorimetry signifying an enthalpy rise of ca. 120 J/g by addition of 2 wt.% to epoxy at 5 °C/min heating rate. Even at low concentration of 0.5 wt.%, the glass transition temperature of epoxy increased from 128 to 156 °C, demonstrating prolonged crosslinking.

  16. Ozone in Lombardy: Years 1998-1999

    Science.gov (United States)

    Sesana, L.; Begnini, S.; Toscani, D.; Facchini, U.; Balasso, A.; Borelli, P.

    2003-11-01

    Photochemical pollutants, especially ozone, have reached very high levels in Lombardy in recent years, with peaks of up to 150 ppb in late spring and summer. Lombardy, lying on the Po Plain, supports a large number of cities and industries and these, along with heavy traffic, produce copious amounts of primary pollutants such as nitrogen oxides and numerous volatile organic compounds. Furthermore, the peculiar orography of this region fosters the stagnation of air masses on a basin-scale and the presence of diurnal breezes towards northern areas, along with the evolution of the Mixing Layer, spread the polluted air masses over a large territory. Numerous stations in Lombardy give the concentrations of ozone and of nitrogen oxides. In this paper, ozone measurements carried out at the plain area around Milan and at pre-alpine sites in the spring and summer 1998 and 1999 will be shown and discussed, focusing on the months of May and July. The study of temporal and spatial behaviour of ozone goes hand in hand with the analysis of the Boundary Layer's evolution. A number of radon stations were operating in Milan and in other sites in Lombardy. Measurements of atmospheric concentrations of radon yield an index of atmospheric stability, of the formation of thermal inversion, of convective turbulence, and of the movement of air masses, and hence they are very relevant to the understanding of the conditions of atmospheric pollutants.

  17. Efficacy of reactive mineral-based sorbents for phosphate, bacteria, nitrogen and TOC removal--column experiment in recirculation batch mode.

    Science.gov (United States)

    Nilsson, Charlotte; Lakshmanan, Ramnath; Renman, Gunno; Rajarao, Gunaratna Kuttuva

    2013-09-15

    Two mineral-based materials (Polonite and Sorbulite) intended for filter wells in on-site wastewater treatment were compared in terms of removal of phosphate (PO4-P), total inorganic nitrogen (TIN), total organic carbon (TOC) and faecal indicator bacteria (Escherichia coli and Enterococci). Using an innovative, recirculating system, septic tank effluent was pumped at a hydraulic loading rate of 3000 L m(2) d(-1) into triplicate bench-scale columns of each material over a 90-day period. The results showed that Polonite performed better with respect to removal of PO4-P, retaining on average 80% compared with 75% in Sorbulite. This difference was attributed to higher CaO content in Polonite and its faster dissolution. Polonite also performed better in terms of removal of bacteria because of its higher pH value. The total average reduction in E. coli was 60% in Polonite and 45% in Sorbulite, while for Enterococci the corresponding value was 56% in Polonite and 34% in Sorbulite. Sorbulite removed TIN more effectively, with a removal rate of 23%, while Polonite removed 11% of TIN, as well as TOC. Organic matter (measured as TOC) was accumulated in the filter materials but was also released periodically. The results showed that Sorbulite could meet the demand in removing phosphate and nitrogen with reduced microbial release from the wastewater treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Nitrogen Out of the Bottle: The Challenge of Managing the Genie

    Science.gov (United States)

    Galloway, J. N.

    2012-12-01

    Human activity converts more N2 to reactive nitrogen (Nr; all nitrogen species other than N2) than do natural terrestrial processes (mostly biological nitrogen fixation (BNF) in unmanaged ecosystems). Most of the Nr is created as a consequence of food production, fossil fuel combustion and industry. The Haber-Bosch process, invented in the early 20th century, now provides a virtually inexhaustible supply of nitrogen fertilizer. This one invention is responsible for the existence of about half of the world's population. That's the good news. The other news is that most of this nitrogen (and additional amounts from fossil fuel combustion and industry) is lost to the environment where it has exceeded the ability of the environment to convert it back to unreactive N2. The accumulating Nr contributes to smog, greenhouse effect, ecosystem eutrophication, acid rain and loss of stratospheric ozone in a sequential manner—the nitrogen cascade. Collectively these changes alter climate, decrease air quality, and diminish ecosystem sustainability. The challenge is how do we manage the genie—make sure we get the benefits of nitrogen, while minimizing the problems it causes. The paper will layout the possible, the probable and the improbable (but if it occurred, would be transformative) options for nitrogen management. Included will be the role that a nation vs. a person should play. The paper will also give examples of success stories, where nitrogen losses to the environment have been decreased, without impacting the service being provided—food and energy production. The paper will conclude with a forecast to the future, based upon the RCP scenarios for 2100.

  19. Response to Reactive Nitrogen Intermediates in Mycobacterium tuberculosis: Induction of the 16-Kilodalton α-Crystallin Homolog by Exposure to Nitric Oxide Donors

    OpenAIRE

    Garbe, T. R.; Hibler, N. S.; Deretic, V.

    1999-01-01

    In contrast to the apparent paucity of Mycobacterium tuberculosis response to reactive oxygen intermediates, this organism has evolved a specific response to nitric oxide challenge. Exposure of M. tuberculosis to NO donors induces the synthesis of a set of polypeptides that have been collectively termed Nox. In this work, the most prominent Nox polypeptide, Nox16, was identified by immunoblotting and by N-terminal sequencing as the α-crystallin-related, 16-kDa small heat shock protein, sHsp16...

  20. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    Science.gov (United States)

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  1. The stratospheric ozone and the ozone layer

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  2. Ozone pollution: rising concentrations despite French and EU efforts

    International Nuclear Information System (INIS)

    Ba, M.; Elichegaray, Ch.

    2003-11-01

    Ozone is the main indicator of photochemical pollution which is caused by a complex combination of primary pollutants formed by chemical reactions in the troposphere, in the presence of sunlight. These primary pollutants, otherwise known as precursors of ozone (nitrogen oxides, volatile organic compounds and carbon monoxide), are emitted both by natural sources and human activities. In urban areas, during the summer months, ozone is often the main cause of deterioration in air quality. Directive 2002/3/EC relating to ozone in ambient air entered into force on 9 September 2003, superseding the first ozone Directive (92/72/CE) of 21 September 1992. In the last 10 years, monitoring of ozone pollution has considerably progressed in France (the number of analysers has increased tenfold). Emissions of the ozone precursors fell significantly (-27%) between 1990 and 2000 in France as a result of combined efforts in all sectors of activity. However, between 1994 and 2002, ozone levels remained above the information threshold for the protection of human health and vegetation on average more than 100 days a year in rural areas and over 40 days a year in urban and peri-urban areas. Efforts undertaken both in France and other European countries aim to improve the situation and ensure compliance with the requirements of Directive 2002/3/EC. (author)

  3. Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Torsethaugen, Gro

    1998-09-01

    The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.

  4. Analysis of alternative pathways for reducing nitrogen oxide emissions

    Science.gov (United States)

    Strategies for reducing tropospheric ozone typically include modifying combustion processes to reduce the formation of nitrogen oxides (NOx) and applying control devices that remove NOx from the exhaust gases of power plants, industrial sources and vehicles. For portions of the ...

  5. Explosion hazard in liquid nitrogen cooled fusion systems

    International Nuclear Information System (INIS)

    Brereton, S.J.

    1988-01-01

    The explosion hazard associated with the use of liquid nitrogen in a radiation environment in fusion facilities has been investigated. The principal product of irradiating liquid nitrogen is thought to be ozone, resulting from the action of radiation on oxygen impurity. Ozone is a very unstable material, and explosions may occur as it rapidly decomposes to oxygen. Occurrences of this problem in irradiated liquid nitrogen systems are reviewed. An empirical expression, from early experiments, for the yield of ozone in liquid nitrogen-oxygen mixtures exposed to gamma radiation is employed to assess the degree of ozone explosion hazard expected at fusion facilities. The problem is investigated for the Compact Ignition Tokamak (CIT) as a particular example. 16 refs., 5 figs., 1 tab

  6. Human Decisions: Nitrogen Footprints and Environmental Effects

    Science.gov (United States)

    Leach, A. M.; Bleeker, A.; Galloway, J. N.; Erisman, J.

    2012-12-01

    Human consumption choices are responsible for growing losses of reactive nitrogen (Nr) to the environment. Once in the environment, Nr can cause a cascade of negative impacts such as smog, acid rain, coastal eutrophication, climate change, and biodiversity loss. Although all humans must consume nitrogen as protein, the food production process releases substantial Nr to the environment. This dilemma presents a challenge: how do we feed a growing population while reducing Nr? Although top-down strategies to reduce Nr losses (e.g., emissions controls) are necessary, the bottom-up strategies focusing on personal consumption patterns will be imperative to solve the nitrogen challenge. Understanding the effects of different personal choices on Nr losses and the environment is an important first step for this strategy. This paper will utilize information and results from the N-Calculator, a per capita nitrogen footprint model (www.N-Print.org), to analyze the impact of different food consumption patterns on a personal food nitrogen footprint and the environment. Scenarios will analyze the impact of the following dietary patterns on the average United States (28 kg Nr/cap/yr) food nitrogen footprint: 1) Consuming only the recommended protein as defined by the WHO and the USDA; 2) Reducing food waste by 50%; 3) Consuming a vegetarian diet; 4) Consuming a vegan diet; 5) Consuming a demitarian diet (replacing half of animal protein consumption with vegetable protein); 6) Substituting chicken (a more efficient animal protein) with beef (a less efficient animal protein); 7) Consuming sustainably-produced food; and 8) Using advanced wastewater treatment. Preliminary results suggest that widespread advanced wastewater treatment with nutrient removal technology and halving food waste would each reduce the US personal food nitrogen footprint by 13%. In addition, reducing protein consumption to the recommended levels would reduce the footprint by about 42%. Combining these measures

  7. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    Science.gov (United States)

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  8. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    Science.gov (United States)

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen

  9. Nitrous Oxides Ozone Destructiveness Under Different Climate Scenarios

    Science.gov (United States)

    Kanter, David R.; McDermid, Sonali P.

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas and ozone depleting substance as well as a key component of the nitrogen cascade. While emissions scenarios indicating the range of N2O's potential future contributions to radiative forcing are widely available, the impact of these emissions scenarios on future stratospheric ozone depletion is less clear. This is because N2O's ozone destructiveness is partially dependent on tropospheric warming, which affects ozone depletion rates in the stratosphere. Consequently, in order to understand the possible range of stratospheric ozone depletion that N2O could cause over the 21st century, it is important to decouple the greenhouse gas emissions scenarios and compare different emissions trajectories for individual substances (e.g. business-as-usual carbon dioxide (CO2) emissions versus low emissions of N2O). This study is the first to follow such an approach, running a series of experiments using the NASA Goddard Institute for Space Sciences ModelE2 atmospheric sub-model. We anticipate our results to show that stratospheric ozone depletion will be highest in a scenario where CO2 emissions reductions are prioritized over N2O reductions, as this would constrain ozone recovery while doing little to limit stratospheric NOx levels (the breakdown product of N2O that destroys stratospheric ozone). This could not only delay the recovery of the stratospheric ozone layer, but might also prevent a return to pre-1980 global average ozone concentrations, a key goal of the international ozone regime. Accordingly, we think this will highlight the importance of reducing emissions of all major greenhouse gas emissions, including N2O, and not just a singular policy focus on CO2.

  10. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  11. Long-term meteorologically independent trend analysis of ozone air quality at an urban site in the greater Houston area.

    Science.gov (United States)

    Botlaguduru, Venkata S V; Kommalapati, Raghava R; Huque, Ziaul

    2018-04-19

    The Houston-Galveston-Brazoria (HGB) area of Texas has a history of ozone exceedances and is currently classified under moderate nonattainment status for the 2008 8-hr ozone standard of 75 ppb. The HGB area is characterized by intense solar radiation, high temperature, and humidity, which influence day-to-day variations in ozone concentrations. Long-term air quality trends independent of meteorological influence need to be constructed for ascertaining the effectiveness of air quality management in this area. The Kolmogorov-Zurbenko (KZ) filter technique used to separate different scales of motion in a time series, is applied in the current study for maximum daily 8-hr (MDA8) ozone concentrations at an urban site (EPA AQS Site ID: 48-201-0024, Aldine) in the HGB area. This site located within 10 miles of downtown Houston and the George Bush Intercontinental Airport, was selected for developing long-term meteorologically independent MDA8 ozone trends for the years 1990-2016. Results from this study indicate a consistent decrease in meteorologically independent MDA8 ozone between 2000-2016. This pattern could be partially attributed to a reduction in underlying NO X emissions, particularly that of lowering nitrogen dioxide (NO 2 ) levels, and a decrease in the release of highly reactive volatile organic compounds (HRVOC). Results also suggest solar radiation to be most strongly correlated to ozone, with temperature being the secondary meteorological control variable. Relative humidity and wind speed have tertiary influence at this site. This study observed that meteorological variability accounts for a high of 61% variability in baseline ozone (low-frequency component, sum of long-term and seasonal components), while 64% of the change in long-term MDA8 ozone post-2000 could be attributed to NO X emissions reduction. Long-term MDA8 ozone trend component was estimated to be decreasing at a linear rate of 0.412 ± 0.007 ppb/yr for the years 2000-2016, and 0.155

  12. The nitrogen cycle.

    Science.gov (United States)

    Stein, Lisa Y; Klotz, Martin G

    2016-02-08

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  14. SMM mesospheric ozone measurements

    Science.gov (United States)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  15. About the need of controlling the nitrogen oxides to reduce the formation of ozone in the metropolitan zone of Mexico city; Acerca de la necesidad de controlar las emisiones de oxidos de nitrogeno para reducir la formacion de ozono en la zona metropolitana de la ciudad de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Torijano, E. F.; Vazquez, A. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Departamento de Ingenieria de Procesos e Hidraulica, Mexico, D. F. (Mexico)

    1995-12-31

    The results obtained through the application of an air quality model: AQUAMI for the Metropolitan Area of Mexico City, are presented. The model requires of a photochemical mechanism and the information regarding the total amount of nitrogen oxides and hydrocarbons emitted to the air during that time. In this way the maximum concentrations of ozone that can be reached for the possible ratios of hydrocarbons and nitrogen oxides are obtained. The results are plotted and with them it can be determined that if the nitrogen oxide emission can be diminished, this will impact directly on the ozone emission. Furthermore, the evolution of another product derived of the presence of nitrogen oxides, the peroxiacil nitrate, which is irritant to the respiratory mucosa and to the eyes, is also presented. Through this simulation model the impact derived of the actions aimed at reducing the formation of nitrogen oxides and the release of hydrocarbons at the level of the formed ozone by the sunlight effect. With this basis the ecological impact of the actions such as the following, can be discussed: -improve the combustion process in all thermal equipment. -improve the quality of the fossil fuels utilized. -slightly modify the operational habits in the industrial sector trying that the intensive use of fuels be displaced towards the evening and night hours, when the sunlight incidence is less or null. [Espanol] Se presentan los resultados obtenidos mediante la aplicacion de un modelo de calidad del aire: AQUAMI, para las condiciones de la zona metropolitana de la ciudad de Mexico. El modelo requiere de un mecanismo fotoquimico y de informacion concerniente a la cantidad total emitida de oxidos de nitrogeno e hidrocarburos, para un periodo especificado, asi como de la forma en que estos compuestos son emitidos a la atmosfera durante ese lapso. Se obtienen asi las concentraciones maximas que puede alcanzar el ozono para las posibles razones de hidrocarburos y oxidos de nitrogeno. Los

  16. About the need of controlling the nitrogen oxides to reduce the formation of ozone in the metropolitan zone of Mexico city; Acerca de la necesidad de controlar las emisiones de oxidos de nitrogeno para reducir la formacion de ozono en la zona metropolitana de la ciudad de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Torijano, E F; Vazquez, A [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Departamento de Ingenieria de Procesos e Hidraulica, Mexico, D. F. (Mexico)

    1996-12-31

    The results obtained through the application of an air quality model: AQUAMI for the Metropolitan Area of Mexico City, are presented. The model requires of a photochemical mechanism and the information regarding the total amount of nitrogen oxides and hydrocarbons emitted to the air during that time. In this way the maximum concentrations of ozone that can be reached for the possible ratios of hydrocarbons and nitrogen oxides are obtained. The results are plotted and with them it can be determined that if the nitrogen oxide emission can be diminished, this will impact directly on the ozone emission. Furthermore, the evolution of another product derived of the presence of nitrogen oxides, the peroxiacil nitrate, which is irritant to the respiratory mucosa and to the eyes, is also presented. Through this simulation model the impact derived of the actions aimed at reducing the formation of nitrogen oxides and the release of hydrocarbons at the level of the formed ozone by the sunlight effect. With this basis the ecological impact of the actions such as the following, can be discussed: -improve the combustion process in all thermal equipment. -improve the quality of the fossil fuels utilized. -slightly modify the operational habits in the industrial sector trying that the intensive use of fuels be displaced towards the evening and night hours, when the sunlight incidence is less or null. [Espanol] Se presentan los resultados obtenidos mediante la aplicacion de un modelo de calidad del aire: AQUAMI, para las condiciones de la zona metropolitana de la ciudad de Mexico. El modelo requiere de un mecanismo fotoquimico y de informacion concerniente a la cantidad total emitida de oxidos de nitrogeno e hidrocarburos, para un periodo especificado, asi como de la forma en que estos compuestos son emitidos a la atmosfera durante ese lapso. Se obtienen asi las concentraciones maximas que puede alcanzar el ozono para las posibles razones de hidrocarburos y oxidos de nitrogeno. Los

  17. Is nitrogen the next carbon?

    Science.gov (United States)

    Battye, William; Aneja, Viney P.; Schlesinger, William H.

    2017-09-01

    Just as carbon fueled the Industrial Revolution, nitrogen has fueled an Agricultural Revolution. The use of synthetic nitrogen fertilizers and the cultivation of nitrogen-fixing crops both expanded exponentially during the last century, with most of the increase occurring after 1960. As a result, the current flux of reactive, or fixed, nitrogen compounds to the biosphere due to human activities is roughly equivalent to the total flux of fixed nitrogen from all natural sources, both on land masses and in the world's oceans. Natural fluxes of fixed nitrogen are subject to very large uncertainties, but anthropogenic production of reactive nitrogen has increased almost fivefold in the last 60 years, and this rapid increase in anthropogenic fixed nitrogen has removed any uncertainty on the relative importance of anthropogenic fluxes to the natural budget. The increased use of nitrogen has been critical for increased crop yields and protein production needed to keep pace with the growing world population. However, similar to carbon, the release of fixed nitrogen into the natural environment is linked to adverse consequences at local, regional, and global scales. Anthropogenic contributions of fixed nitrogen continue to grow relative to the natural budget, with uncertain consequences.

  18. ANTIOXIDANT SUPPLEMENTATION AND NASAL INFLAMMATORY RESPONSES AMONG YOUNG ASTHMATICS EXPOSED TO HIGH LEVELS OF OZONE

    Science.gov (United States)

    Background: Recent studies examining the inflammatory response in atopic asthma to ozone suggest a release of soluble mediators of inflammation factors that might be related to reactive oxygen species (ROS). Antioxidant could prove useful in subjects exposed to additional oxidati...

  19. Pollution Control Using Ozone

    DEFF Research Database (Denmark)

    2017-01-01

    This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone.......This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone....

  20. The pollution by ozone

    International Nuclear Information System (INIS)

    1997-09-01

    Air pollution by ozone is increasing in spite of several points to reduce it. If the process of ozone formation are complex, the sources of this pollution are well known: first, mobile sources with automobiles (49%), boats , trains and planes (13%), then are following paints and solvents(18%), thermal power plants(11%), and finally industry processing with 5%. (N.C.)

  1. Massive global ozone loss predicted following regional nuclear conflict

    Science.gov (United States)

    Mills, Michael J.; Toon, Owen B.; Turco, Richard P.; Kinnison, Douglas E.; Garcia, Rolando R.

    2008-01-01

    We use a chemistry-climate model and new estimates of smoke produced by fires in contemporary cities to calculate the impact on stratospheric ozone of a regional nuclear war between developing nuclear states involving 100 Hiroshima-size bombs exploded in cities in the northern subtropics. We find column ozone losses in excess of 20% globally, 25–45% at midlatitudes, and 50–70% at northern high latitudes persisting for 5 years, with substantial losses continuing for 5 additional years. Column ozone amounts remain near or <220 Dobson units at all latitudes even after three years, constituting an extratropical “ozone hole.” The resulting increases in UV radiation could impact the biota significantly, including serious consequences for human health. The primary cause for the dramatic and persistent ozone depletion is heating of the stratosphere by smoke, which strongly absorbs solar radiation. The smoke-laden air rises to the upper stratosphere, where removal mechanisms are slow, so that much of the stratosphere is ultimately heated by the localized smoke injections. Higher stratospheric temperatures accelerate catalytic reaction cycles, particularly those of odd-nitrogen, which destroy ozone. In addition, the strong convection created by rising smoke plumes alters the stratospheric circulation, redistributing ozone and the sources of ozone-depleting gases, including N2O and chlorofluorocarbons. The ozone losses predicted here are significantly greater than previous “nuclear winter/UV spring” calculations, which did not adequately represent stratospheric plume rise. Our results point to previously unrecognized mechanisms for stratospheric ozone depletion. PMID:18391218

  2. Pulsed Power Production of Ozone in 02/N2 iin a Coaxial Reactor without Dielectric Layer

    OpenAIRE

    Samaranayake, W. J. M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; ミヤハラ, Y.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2001-01-01

    Very short duration pulsed streamer discharges have been used to produce ozone in a gas mixture of nitrogen and oxygen at atmospheric pressure. The ratio of nitrogen to oxygen in the mixture was varied in the range from 2.5/0.5 to 0.5/2.5, while maintaining a total flow rate of 3 l/min. The production of ozone was found to be higher for a specific mixture ratio of N2/O2 than that in oxygen or in dry air. The production of ozone in O2 was higher than that in dry air. The production yield of oz...

  3. Generation and reactivity of the phenyl cation in cryogenic argon matrices: monitoring the reactions with nitrogen and carbon monoxide directly by IR spectroscopy.

    Science.gov (United States)

    Winkler, Michael; Sander, Wolfram

    2006-08-18

    The phenyl cation 1 has been prepared by co-deposition of iodobenzene 6 or bromobenzene 7 with a microwave-induced argon plasma and characterized by IR spectroscopy in cryogenic argon matrices. The cation can clearly be identified by its strongest absorption at 3110 cm(-1) that is rapidly bleached upon visible light irradiation. This characteristic band is observed neither in the conventional photochemistry of 6 or 7 nor in discharge experiments with alkyl halides or chlorobenzene. The latter finding is in line with energetic considerations. According to density functional theory (DFT) computations, the strongest absorption of 1 is caused by a C-H stretching vibration that involves almost entirely the ortho-hydrogens. This is confirmed by isotopic labeling experiments. Co-deposition of halobenzene/N2 mixtures leads to a decrease of the 3110 cm(-1) absorption, whereas several new signals are detected in the 2200-2400 cm(-1) range of the IR spectrum. Annealing of a matrix that contains 1 and 1% N2 leads to an increase of a broad band at 2260 cm(-1) that is assigned to the benzenediazonium ion 2. A sharp signal at 2327 cm(-1) that had previously been assigned to the N-N stretching vibration of 2 is due to molecular nitrogen. The mechanism that triggers the IR activity of N2 is not yet understood. Annealing of a matrix that contains 1 and 0.5% CO leads to an increase of a broad band at 2217 cm(-1) that is considerably stronger than the 2260 cm(-1) absorption of 2. This signal is assigned to the C-O stretching vibration of the benzoyl cation 12, in excellent agreement with previous investigations of 12 in superacidic media. Some consequences of the measured frequencies with regard to bonding in 2 and 12 are discussed.

  4. Effects of elevated ozone concentrations on reactive oxygen metabolism and related gene expression in Ginkgo biloba leaves%大气臭氧浓度升高对银杏叶片活性氧代谢及相关基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    阮亚男; 徐胜; 郭龙; 朱明珠; 王聪; 李淑媛; 王红艳

    2017-01-01

    By using the open top chambers (OTCs) fumigation method,this paper investigated the changes of foliar injury,level of reactive oxygen species (ROS),activities and gene expression of antioxidant enzymes in Ginkgo biloba leaves under different ozone (ambient ozone≈40,80,160,200 nmol · mol-1) concentrations,in order to study the effects of elevated ozone (O3) concentrations on reactive metabolism.The results showed that the obvious foliar injuries were observed in 160 and 200 nmol mol-1 O3 treatments,while no visible injury was observed in 80 nmol · mol-1 O3 and ambient O3 treatments.After 20 d,a significant increase in O2 generation rate was observed in G.biloba leaves exposed to 160,200 nmol · mol-1 O3,compared with ambient ozone and 80 nmol · mol-1 O3,and there were no significant differences between ambient O3 and 80 nmol · mol-1 treatments.After 40 d,H2O2 content of G.biloba leaves in 160 and 200 nmol · mol-1 O3 was significantly higher than that in 80 nmol · mol-1 and ambient ozone,respectively.The activities of catalase (CAT) in 160 and 200 nmol · mol-1 treatments were also significantly higher than that in 80 nmol · mol-1 and ambient O3 treatments.The ascorbate peroxidase (APX) activity of leaves for each elevated O3 treatment was lower than that of ambient ozone.The level of CAT and APX expression increased progressively after 40 d O3 treatment.The expression intensity of GbD was conspicuously strengthened along with the increase of ozone concentration and fumigation time.Level of reactive oxygen increased,activities of antioxidant enzyme decreased,level of gene expression down-regulated,and foliar visible injury was observed in leaves of G.biloba in elevated ozone stress.%采用开顶式气室熏蒸法,设置自然条件下臭氧(O3)浓度(对照,约40 nmol·mol-1)、80、160及200 nmol·mol-14个臭氧浓度,观测了不同浓度臭氧条件下银杏叶片可见伤害、活性氧生成量、抗氧化酶活性及相关基因表达变化情况,分

  5. Simultaneous determination of reactive oxygen and nitrogen species in mitochondrial compartments of apoptotic HepG2 cells and PC12 cells based on microchip electrophoresis-laser-induced fluorescence.

    Science.gov (United States)

    Chen, Zhenzhen; Li, Qingling; Sun, Qianqian; Chen, Hao; Wang, Xu; Li, Na; Yin, Miao; Xie, Yanxia; Li, Hongmin; Tang, Bo

    2012-06-05

    Determination of intracellular bioactive species will afford beneficial information related to cell metabolism, signal transduction, cell function, and disease treatment. In this study, the first application of a microchip electrophoresis-laser-induced fluorescence (MCE-LIF) method for concurrent determination of reactive oxygen species (ROS) and reactive nitrogen species (RNS), i.e., superoxide (O(2)(-•)) and nitric oxide (NO) in mitochondria, was developed using fluorescent probes 2-chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and 3-amino,4-aminomethyl-2',7'-difluorescein (DAF-FM), respectively. Potential interference of intracellular dehydroascorbic acid (DHA) and ascorbic acid (AA) for NO detection with DAF-FM was eliminated through oxidation of AA with the addition of ascorbate oxidase, followed by subsequent MCE separation. Fluorescent products of O(2)(-•) and NO, DBZTC oxide (DBO), and DAF-FM triazole (DAF-FMT) showed excellent baseline separation within 1 min with a running buffer of 40 mM Tris solution (pH 7.4) and a separating electric field of 500 V/cm. The levels of DBO and DAF-FMT in mitochondria isolated from normal HepG2 cells and PC12 cells were evaluated using this method. Furthermore, the changes of DBO and DAF-FMT levels in mitochondria isolated from apoptotic HepG2 cells and PC12 cells could also be detected. The current approach was proved to be simple, fast, reproducible, and efficient. Measurement of the two species with the method will be beneficial to understand ROS/RNS distinctive functions. In addition, it will provide new insights into the role that both species play in biological systems.

  6. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  7. DNA bulky adducts in a Mediterranean population correlate with environmental ozone concentration, an indicator of photochemical smog.

    Science.gov (United States)

    Palli, Domenico; Saieva, Calogero; Grechi, Daniele; Masala, Giovanna; Zanna, Ines; Barbaro, Antongiulio; Decarli, Adriano; Munnia, Armelle; Peluso, Marco

    2004-03-01

    Ozone (O(3)), the major oxidant component in photochemical smog, mostly derives from photolysis of nitrogen dioxide. O(3) may have biologic effects directly and/or via free radicals reacting with other primary pollutants and has been reported to influence daily mortality and to increase lung cancer risk. Although DNA damage may be caused by ozone itself, only other photochemical reaction products (as oxidised polycyclic aromatic hydrocarbons) may form bulky DNA adducts, a reliable biomarker of genotoxic damage and cancer risk, showing a seasonal trend. In a large series consisting of 320 residents in the metropolitan area of Florence, Italy, enrolled in a prospective study for the period 1993-1998 (206 randomly sampled volunteers, 114 traffic-exposed workers), we investigated the correlation between individual levels of DNA bulky adducts and a cumulative O(3) exposure score. The average O(3) concentrations were calculated for different time windows (0-5 to 0-90 days) prior to blood drawing for each participant, based on daily measurements provided by the local monitoring system. Significant correlations between DNA adduct levels and O3 cumulative exposure scores in the last 2-8 weeks before enrollment emerged in never smokers. Correlations were highest in the subgroup of never smokers residing in the urban area and not occupationally exposed to vehicle traffic pollution, with peak values for average concentrations 4-6 weeks before enrollment (r = 0.34). Our current findings indicate that DNA adduct formation may be modulated by individual characteristics and by the cumulative exposure to environmental levels of ozone in the last 4-6 weeks, possibly through ozone-associated reactive pollutants. Copyright 2003 Wiley-Liss, Inc.

  8. Responses of the lichen Ramalina menziesii Tayl. to ozone fumigations

    Science.gov (United States)

    J. Riddell; T.H. Nash; P. Padgett

    2010-01-01

    Tropospheric ozone (O3) is a strong oxidant, and is known to have serious negative effects on forest health. Lichens have bccn used as biomonitors of the effects of air pollution on forest health for sulfur and nitrogen pollutants. However, effects of O3 on lichens are not well understood, as past fumigation studies and...

  9. Modeling the effects of ozone on soybean growth and yield.

    Science.gov (United States)

    Kobayashi, K; Miller, J E; Flagler, R B; Heck, W W

    1990-01-01

    A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.

  10. A new diagnostic for tropospheric ozone production

    Science.gov (United States)

    Edwards, Peter M.; Evans, Mathew J.

    2017-11-01

    Tropospheric ozone is important for the Earth's climate and air quality. It is produced during the oxidation of organics in the presence of nitrogen oxides. Due to the range of organic species emitted and the chain-like nature of their oxidation, this chemistry is complex and understanding the role of different processes (emission, deposition, chemistry) is difficult. We demonstrate a new methodology for diagnosing ozone production based on the processing of bonds contained within emitted molecules, the fate of which is determined by the conservation of spin of the bonding electrons. Using this methodology to diagnose ozone production in the GEOS-Chem chemical transport model, we demonstrate its advantages over the standard diagnostic. We show that the number of bonds emitted, their chemistry and lifetime, and feedbacks on OH are all important in determining the ozone production within the model and its sensitivity to changes. This insight may allow future model-model comparisons to better identify the root causes of model differences.

  11. A new diagnostic for tropospheric ozone production

    Directory of Open Access Journals (Sweden)

    P. M. Edwards

    2017-11-01

    Full Text Available Tropospheric ozone is important for the Earth's climate and air quality. It is produced during the oxidation of organics in the presence of nitrogen oxides. Due to the range of organic species emitted and the chain-like nature of their oxidation, this chemistry is complex and understanding the role of different processes (emission, deposition, chemistry is difficult. We demonstrate a new methodology for diagnosing ozone production based on the processing of bonds contained within emitted molecules, the fate of which is determined by the conservation of spin of the bonding electrons. Using this methodology to diagnose ozone production in the GEOS-Chem chemical transport model, we demonstrate its advantages over the standard diagnostic. We show that the number of bonds emitted, their chemistry and lifetime, and feedbacks on OH are all important in determining the ozone production within the model and its sensitivity to changes. This insight may allow future model–model comparisons to better identify the root causes of model differences.

  12. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  13. Techniques for Estimating Emissions Factors from Forest Burning: ARCTAS and SEAC4RS Airborne Measurements Indicate which Fires Produce Ozone

    Science.gov (United States)

    Chatfield, Robert B.; Andreae, Meinrat O.

    2016-01-01

    Previous studies of emission factors from biomass burning are prone to large errors since they ignore the interplay of mixing and varying pre-fire background CO2 levels. Such complications severely affected our studies of 446 forest fire plume samples measured in the Western US by the science teams of NASA's SEAC4RS and ARCTAS airborne missions. Consequently we propose a Mixed Effects Regression Emission Technique (MERET) to check techniques like the Normalized Emission Ratio Method (NERM), where use of sequential observations cannot disentangle emissions and mixing. We also evaluate a simpler "consensus" technique. All techniques relate emissions to fuel burned using C(burn) = delta C(tot) added to the fire plume, where C(tot) approximately equals (CO2 = CO). Mixed-effects regression can estimate pre-fire background values of C(tot) (indexed by observation j) simultaneously with emissions factors indexed by individual species i, delta, epsilon lambda tau alpha-x(sub I)/C(sub burn))I,j. MERET and "consensus" require more than emissions indicators. Our studies excluded samples where exogenous CO or CH4 might have been fed into a fire plume, mimicking emission. We sought to let the data on 13 gases and particulate properties suggest clusters of variables and plume types, using non-negative matrix factorization (NMF). While samples were mixtures, the NMF unmixing suggested purer burn types. Particulate properties (b scant, b abs, SSA, AAE) and gas-phase emissions were interrelated. Finally, we sought a simple categorization useful for modeling ozone production in plumes. Two kinds of fires produced high ozone: those with large fuel nitrogen as evidenced by remnant CH3CN in the plumes, and also those from very intense large burns. Fire types with optimal ratios of delta-NOy/delta- HCHO associate with the highest additional ozone per unit Cburn, Perhaps these plumes exhibit limited NOx binding to reactive organics. Perhaps these plumes exhibit limited NOx binding to

  14. Explosion and detonation of ozone in mixtures with carrier gases employed in nuclear technology

    International Nuclear Information System (INIS)

    Weh, M.M.L.

    1988-09-01

    Explosive ozone is known to be formed during low temperature radiolysis of oxygen. Detailed knowledge on the explosion and the detonation of ozone is therefore required for safety considerations of nuclear installations such as proposed for the cryogenic separation of 85 krypton from the head end off gas of a reprocessing plant. The explosion properties of gaseous ozone in mixtures with oxygen, nitrogen, helium, argon, krypton, xenon and difluorodichloromethane were studied by varying the ozone concentration, the initial pressure and the shape of the vessel containing the gas. Detonation velocities were determined for gaseous mixtures of ozone with oxygen, argon, krypton or xenon as functions of the ozone concentration. In addition, the initial pressure was varied for ozone-xenon mixtures. The effect of a packing such as used in the 85 Kr-separation plant 'KRETA' in KfK on ozone-xenon detonation was investigated. In addition, the effect of low amounts of carbon monoxide, methane and nitrogen dioxide on the explosion (O 3 /Ar) and the detonation (O 3 /Xe) of an ozone-noble gas mixture was determined. (orig.) [de

  15. Ozone carcinogenesis in vitro and its co-carcinogenesis with radiation

    International Nuclear Information System (INIS)

    Borek, C.

    1988-01-01

    Ozone (O/sub 3/), a reactive species of oxygen, is an important natural constituent of the atmosphere. Background levels of ozone in the lower atmosphere may range up to 0.1 ppm and are modified by geographic elevation, solar radiation and climatic conditions. Since some ozone effects are radiomimetic, its actions may be enhanced in the presence of ionizing radiation from background and/or manmade sources. While stratospheric ozone spares the earth from excess solar ultraviolet (UV) radiation, high levels of ozone in the environment are toxic and present a health hazard to man. Excess environmental exposure to ozone can result from a variety of sources. Ozone is a key component in oxidant smog and in the vicinity of high electric voltage equipment when in operation. Ozone is widely used as a disinfectant for air and water, in bleaches, waxes, textiles, oils. and inorganic synthesis. Enhanced levels of ozone are found in planes flying at high altitudes. Because of the toxic nature of ozone and its potential hazard to man, its levels in the environment are subject to government regulation. The current standard is set at an hourly average of 235 μg/m/sup 3/ (0.12 ppm) not to be exceeded more than once per year. Urban areas with high levels of photochemical smog (e.g. Southern California) may experience high ambient ozone levels which can reach 0.5 ppm

  16. Catalyzed ozonation process with GAC and metal doped-GAC for removing organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B.S.; Kang, J.W.; Song, S.J. [Dept. of Environmental Engineering, Yonsei Univ., Wonju Campus, Hyeung-up Myon (Korea); Oh, H.J. [Water Resources and Environmental Research Div., Korea Inst. of Construction Technology, Kyonggi-do (Korea)

    2003-07-01

    This study investigates the catalytic role of granular activated carbon (GAC) and metal (Mn or Fe) doped-GAC in transforming ozone into more reactive secondary radicals such as OH radicals for the treatment of wastewater. The GAC doped with Mn showed the highest catalytic performance of ozone decomposition into OH radical (OH{sup .}) production. Likewise, activated carbon alone could accelerate ozone decomposition, resulting in the formation of OH{sup .}s. In the presence of promoters, ozone depletion rate was enhanced further by the Mn-GAC catalyst system even in an acidic pH aqueous condition. (orig.)

  17. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone

    DEFF Research Database (Denmark)

    Singer, B.C.; Coleman, B.K.; Destaillats, H.

    2006-01-01

    introduction. In the absence of reactive chemicals, the chamber ozone level was approximately 60 ppb. Ozone was substantially consumed following cleaning product use, mainly by homogeneous reaction. For the AFR, ozone consumption was weaker and heterogeneous reaction with sorbed AFR-constituent VOCs...... than 100 mu g m(-3)) in some experiments. Ozone consumption and elevated hydroxyl radical concentrations persisted for 10-12 h following brief cleaning events, indicating that secondary pollutant production can persist for extended periods. (c) 2006 Elsevier Ltd. All rights reserved....

  18. Activity of coals of different rank to ozone

    Directory of Open Access Journals (Sweden)

    Vladimir Kaminskii

    2017-12-01

    Full Text Available Coals of different rank were studied in order to characterize their activity to ozone decomposition and changes of their properties at interaction with ozone. Effects of coal rank on their reactivity to ozone were described by means of kinetic modeling. To this end, a model was proposed for evaluation of kinetic parameters describing coals activity to ozone. This model considers a case when coals surface properties change during interaction with ozone (deactivation processes. Two types of active sites (zones at the surface that are able to decompose ozone were introduced in the model differing by their deactivation rates. Activity of sites that are being deactivated at relatively higher rate increases with rank from 2400 1/min for lignite to 4000 1/min for anthracite. Such dependence is related to increase of micropores share in coals structure that grows from lignites to anthracites. Parameter characterizing initial total activity of coals to ozone decomposition also depends on rank by linear trend and vary between 2.40 for lignites up to 4.98 for anthracite. The proposed model could further be used in studies of coals oxidation processes and tendency to destruction under the weathering and oxidation conditions.

  19. OZONE ABSORPTION IN RAW WATERS

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIĆ

    2008-03-01

    Full Text Available The ozone absorption in raw water entering the main ozonization step at the Belgrade drinking water supply plant was investigated in a continuous stirred tank reactor (CSTR. A slow chemical reaction rate of dissolved ozone and pollutants present in raw water have been experimentally determined. The modified Hatta number was defined and calculated as a criterion which determines whether and to which extent the reactions of ozone and pollutants influence the rate of the pure physical ozone absorption.

  20. Ozone, greenhouse effect. Ozone, effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Aviam, A.M.; Arthaut, R.

    1992-12-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs.

  1. Automatic programmable air ozonizer

    International Nuclear Information System (INIS)

    Gubarev, S.P.; Klosovsky, A.V.; Opaleva, G.P.; Taran, V.S.; Zolototrubova, M.I.

    2015-01-01

    In this paper we describe a compact, economical, easy to manage auto air ozonator developed at the Institute of Plasma Physics of the NSC KIPT. It is designed for sanitation, disinfection of premises and cleaning the air from foreign odors. A distinctive feature of the developed device is the generation of a given concentration of ozone, approximately 0.7 maximum allowable concentration (MAC), and automatic maintenance of a specified level. This allows people to be inside the processed premises during operation. The microprocessor controller to control the operation of the ozonator was developed

  2. Nitrogen in rock: Occurrences and biogeochemical implications

    Science.gov (United States)

    Holloway, J.M.; Dahlgren, R.A.

    2002-01-01

    There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.

  3. LaRC Modeling of Ozone Formation in San Antonio, Texas

    Science.gov (United States)

    Guo, F.; Griffin, R. J.; Bui, A.; Schulze, B.; Wallace, H. W., IV; Flynn, J. H., III; Erickson, M.; Kotsakis, A.; Alvarez, S. L.; Usenko, S.; Sheesley, R. J.; Yoon, S.

    2017-12-01

    Ozone (O3) is one of the most important trace species within the troposphere and results from photochemistry involving emissions from a complex array of sources. Ground-level O3 is detrimental to ecosystems and causes a variety of human health problems including respiratory irritation, asthma and reduction in lung capacity. However, the O3 Design Value in San Antonio, Texas, was in violation of the federal threshold set by the EPA (70 ppb, 8-hr max) based on the average for the most recent three-year period (2014-2016). To understand the sources of high O3 concentrations in this nonattainment area, we assembled and deployed a mobile air quality laboratory and operated it in two locations in the southeast (Traveler's World RV Park) and northwest (University of Texas at San Antonio) of downtown San Antonio during summer 2017 to measure O3 and its precursors, including total nitrogen oxides (NOx) and volatile organic compounds (VOCs). Additional measurements included temperature, relative humidity, pressure, solar radiation, wind speed, wind direction, total reactive nitrogen (NOy), carbon monoxide (CO), and aerosol composition and concentration. We will use the campaign data and the NASA Langley Research Center (LaRC) Zero-Dimensional Box Model (Crawford et al., 1999; Olson et al., 2006) to calculate O3 production rate, NOx and hydroxyl radical chain length, and NOx versus VOCs sensitivity at different times of a day with different photochemical and meteorological conditions. A key to our understanding is to combine model results with measurements of precursor gases, particle chemistry and particle size to support the identification of O3 sources, its major formation pathways, and how the ozone production efficiency (OPE) depends on various factors. The resulting understanding of the causes of high O3 concentrations in the San Antonio area will provide insight into future air quality protection.

  4. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bakkal, B.H. [Department of Radiation Oncology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Gultekin, F.A. [Department of General Surgery, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Guven, B. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Turkcu, U.O. [Mugla School of Health Sciences, Mugla Sitki Kocman University, Mugla (Turkey); Bektas, S. [Department of Pathology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Can, M. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey)

    2013-09-27

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  5. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    International Nuclear Information System (INIS)

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage

  6. Comparative study of ozonized olive oil and ozonized sunflower oil

    Directory of Open Access Journals (Sweden)

    Díaz Maritza F.

    2006-01-01

    Full Text Available In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observed in both oils but they were higher in ozonized sunflower oil. Iodine value was zero in ozonized olive oil whereas in ozonized sunflower was 8.8 g Iodine per 100 g. The antimicrobial activity was similar for both ozonized oils except for Minimum Bactericidal Concentrations of Pseudomona aeruginosa. Composition of fatty acids in both ozonized oils showed gradual decrease in unsaturated fatty acids (C18:1, C18:2 with gradual increase in ozone doses.

  7. Stratospheric ozone: an introduction to its study

    International Nuclear Information System (INIS)

    Nicolet, M.

    1975-01-01

    An analysis is made of the various reactions in which ozone and atomic oxygen are involved in the stratosphere. At the present time, hydrogen, nitrogen, and chlorine compounds in the ranges parts per million, parts per billion, and parts per trillion may have significant chemical effects. In the upper stratosphere, above the ozone peak, where there is no strong departure from photochemical equilibrium conditions, the action of hydroxyl and hydroperoxyl radicals of nitrogen dioxide and chlorine monoxide on atomic oxygen and of atomic chlorine on ozone can be introduced. A precise determination of their exact effects requires knowledge of the vertical distribution of the H 2 O, CH 4 , and H 2 dissociation by reaction of these molecules with electronically excited oxygen atom O( 1 D); the ratio of the OH and HO 2 concentrations and their absolute values, which depend on insufficiently known rate coefficients; the various origins of nitric oxide production, with their vertical distributions related to latitude and season; and the various sources giving different chlorine compounds that may be dissociated in the stratosphere. In the lower stratosphere, below the ozone peak, there is no important photochemical production of O 3 , but there exist various possibilities of transport. The predictability of the action of chemical reactions depends strongly on important interactions between OH and HO 2 radicals with CO and NO, respectively, which affect the ratio n(OH)/n(HO 2 ) at the tropopause level; between OH and NO 2 , which lead to the formation of nitric acid with its downward transport toward the troposphere; between NO and HO 2 , which lead to NO 2 and its subsequent photodissociation; between ClO and NO, which also lead to NO 2 and become more important than the reaction of ClO with O; and between Cl and various molecules, such as CH 4 and H 2 , which lead to HCl with its downward transportation toward the troposphere

  8. Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, J N [Environmental Sciences Dept., Univ. of Virginia, Charlottesville, VA (United States); Levy, H; Kasibhatla, P S [NOAA Geophysical Fluid Dynamics Lab., Princeton, NJ (United States)

    1994-01-01

    With a current world population of 5.3 billion, fossil fuel and biomass burning have already greatly increased the emission of fixed nitrogen to the global atmosphere. In 2020, with a projected population of 8.5 billion and an assumed 100% increase in per capita energy consumption relative to 1980 by the lesser developed countries, we predict an approximate 25% increase in total nitrogen deposition in the more developed country source regions such as North America. In addition, reactive nitrogen deposition will at least double in less developed regions, such as SE Asia and Latin America, and will increase by more than 50% over the oceans of the Northern Hemisphere. Although we also predict significant increases in the deposition of nitrogen from fossil-fuel sources over most of the Southern Hemisphere, particularly Africa, the tropical eastern Pacific, and the southern Atlantic and Indian Oceans, biomass burning and the natural sources of nitrogen oxides (lightning and biogenic soil emissions) are also important in these regions. This increased deposition has the potential to fertilize both terrestrial and marine ecosystems, resulting in the sequestering of carbon. Increases in nitrogen deposition have also been shown not only to acidify ecosystems but also to increase emissions of nitric oxide (NO), nitrous oxide (N[sub 2]O), carbonyl sulfide (COS), and carbon+sulfur (CS[sub 2]) to the atmosphere and decrease methane (CH[sub 4]) consumption in forest soils. We also find that the atmospheric levels of nitrogen oxides increase significantly throughout much of the Northern Hemisphere and populated regions of the Southern Hemisphere. This increase may lead to larger ozone concentrations with resulting increases in the oxidative capacity of the remote atmosphere and its ability to absorb IR radiation. 31 refs, 3 figs, 1 tab

  9. Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen

    International Nuclear Information System (INIS)

    Galloway, J.N.; Levy, H.; Kasibhatla, P.S.

    1994-01-01

    With a current world population of 5.3 billion, fossil fuel and biomass burning have already greatly increased the emission of fixed nitrogen to the global atmosphere. In 2020, with a projected population of 8.5 billion and an assumed 100% increase in per capita energy consumption relative to 1980 by the lesser developed countries, we predict an approximate 25% increase in total nitrogen deposition in the more developed country source regions such as North America. In addition, reactive nitrogen deposition will at least double in less developed regions, such as SE Asia and Latin America, and will increase by more than 50% over the oceans of the Northern Hemisphere. Although we also predict significant increases in the deposition of nitrogen from fossil-fuel sources over most of the Southern Hemisphere, particularly Africa, the tropical eastern Pacific, and the southern Atlantic and Indian Oceans, biomass burning and the natural sources of nitrogen oxides (lightning and biogenic soil emissions) are also important in these regions. This increased deposition has the potential to fertilize both terrestrial and marine ecosystems, resulting in the sequestering of carbon. Increases in nitrogen deposition have also been shown not only to acidify ecosystems but also to increase emissions of nitric oxide (NO), nitrous oxide (N 2 O), carbonyl sulfide (COS), and carbon+sulfur (CS 2 ) to the atmosphere and decrease methane (CH 4 ) consumption in forest soils. We also find that the atmospheric levels of nitrogen oxides increase significantly throughout much of the Northern Hemisphere and populated regions of the Southern Hemisphere. This increase may lead to larger ozone concentrations with resulting increases in the oxidative capacity of the remote atmosphere and its ability to absorb IR radiation. 31 refs, 3 figs, 1 tab

  10. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  11. Ozone Therapy in Dentistry

    Science.gov (United States)

    Domb, William C

    2014-01-01

    Summary The 21st century dental practice is quite dynamic. New treatment protocols and new materials are being developed at a rapid pace. Ozone dental therapy falls into the category of new treatment protocols in dentistry, yet ozone is not new at all. Ozone therapy is already a major treatment modality in Europe, South America and a number of other countries. What is provided here will not be an exhaustive scientific treatise so much as a brief general introduction into what dentists are now doing with ozone therapies and the numerous oral/systemic links that make this subject so important for physicians so that, ultimately, they may serve their patients more effectively and productively. PMID:25363268

  12. Effect of ozonation on the biological treatability of a textile mill effluent.

    Science.gov (United States)

    Karahan, O; Dulkadiroglu, H; Kabdasli, I; Sozen, S; Babuna, F Germirli; Orhon, D

    2002-12-01

    Ozonation applied prior to biological processes, has proved to be a very effective chemical treatment step mostly for colour removal when soluble dyes are used in textile finishing operations. Its impact on biological treatability however has not been fully evaluated yet. This study evaluates the effect of ozonation on the quality of wastewater from a textile mill involving bleaching and reactive dyeing of cotton and synthetic knit fabric. The effect of ozonation on COD fractionation and kinetic coefficients defining major biological processes is emphasised. The results indicate that the extent of ozone applied greatly affects the remaining organic carbon composition in the wastewater. The relative magnitude of different COD fractions varies as a function of the ozone dose. Ozonation does not however exert a measurable impact on the rate of major biological processes.

  13. Virtual Nitrogen Losses from Organic Food Production

    Science.gov (United States)

    Cattell Noll, L.; Galloway, J. N.; Leach, A. M.; Seufert, V.; Atwell, B.; Shade, J.

    2015-12-01

    Reactive nitrogen (Nr) is necessary for crop and animal production, but when it is lost to the environment, it creates a cascade of detrimental environmental impacts. The nitrogen challenge is to maximize the food production benefits of Nr, while minimizing losses to the environment. The first nitrogen footprint tool was created in 2012 to help consumers learn about the Nr losses to the environment that result from an individual's lifestyle choices. The nitrogen lost during food production was estimated with virtual nitrogen factors (VNFs) that quantify the amount of nitrogen lost to the environment per unit nitrogen consumed. Alternative agricultural systems, such as USDA certified organic farms, utilize practices that diverge from conventional production. In order to evaluate the potential sustainability of these alternative agricultural systems, our team calculated VNFs that reflect organic production. Initial data indicate that VNFs for organic grains and organic starchy roots are comparable to, but slightly higher than conventional (+10% and +20% respectively). In contrast, the VNF for organic vegetables is significantly higher (+90%) and the VNF for organic legumes is significantly lower (-90%). Initial data on organic meat production shows that organic poultry and organic pigmeat are comparable to conventional production (both <5% difference), but that the organic beef VNF is significantly higher (+30%). These data show that in some cases organic and conventional production are comparable in terms of nitrogen efficiency. However, since conventional production relies heavily on the creation of new reactive nitrogen (Haber-Bosch, biological nitrogen fixation) and organic production primarily utilizes already existing reactive nitrogen (manure, crop residue, compost), the data also show that organic production contributes less new reactive nitrogen to the environment than conventional production (approximately 70% less). Therefore, we conclude that on a local

  14. OZONE BLEACHING AT NEUTRAL PH – A NEW CONCEPT

    Directory of Open Access Journals (Sweden)

    Fernando de Carvalho

    2010-08-01

    Full Text Available The effect of medium consistency ozone stage pH was evaluated for brown and oxygen delignified eucalyptus kraft pulp samples obtained from VCP - Luiz Antônio pulp mill. These samples were used as such or previously treated with the hot acid stage (A. The main objective of this study was to determine the viability of increasing the ozone stage pH aiming at decreasing bleaching variable costs. The ozone stage was studied in the pH range of 2.5-9.0, taking into account some important variables which affect ozone bleaching: (1 pulp kappa number entering the ozone stage, (2 reactivity of ozone towards lignin versus hexenuronic acids (HexA´s, (3 pulp treatments prior to ozone stage (acid hydrolysis, and (4 pulp treatments after the ozone stage (extraction or a chlorine dioxide stage.  Therefore, the impact of ozone stage pH was investigated in bleaching process such as Z/DEop vs AZ/DEop, Z/DEopD vs AZ/DEopD, Z/E vs AZ/E. The results were interpreted based on ozone stage efficiency and selectivity, and overall bleaching performance measured by the total bleaching chemical consumption required to achieve full brightness, pulp quality and environmental impact. It was concluded that the increase of ozone stage pH from 2.5 to 7.0 has a slightly negative impact on the efficiency and selectivity, measured after Z/DEop sequence, but this effect is not expressive in the end of Z/DEopD bleaching sequence. The increase of ozone stage pH from 2.5 to 7.0 in the sequence Z/DEopD is cost-effective at industrial level because it represents expressive reduction of sulphuric acid and caustic soda demand for pH control in the bleaching plant. These gain areas achieved without any significant changes in pulp quality and effluent load discharge. Nevertheless, the increase of ozone stage pH from 2.5 to 7.0 has a very high negative impact on the efficiency and selectivity for the Z/E and AZ/E processes and it is not recommended in such cases.

  15. Treating water-reactive wastes

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Some compounds and elements, such as lithium hydride, magnesium, sodium, and calcium react violently with water to generate much heat and produce hydrogen. The hydrogen can ignite or even form an explosive mixture with air. Other metals may react rapidly only if they are finely divided. Some of the waste produced at Los Alamos National Laboratory includes these metals that are contaminated with radioactivity. By far the greatest volume of water-reactive waste is lithium hydride contaminated with depleted uranium. Reactivity of the water-reactive wastes is neutralized with an atmosphere of humid nitrogen, which prevents the formation of an explosive mixture of hydrogen and air. When we adjust the temperature of the nitrogen and the humidifier, the nitrogen can be more or less humid, and the rate of reaction can be adjusted and controlled. Los Alamos has investigated the rates of reaction of lithium hydride as a function of the temperature and humidity, and, as anticipated, they in with in temperature and humidity. Los Alamos will investigate other variables. For example, the nitrogen flow will be optimized to conserve nitrogen and yet keep the reaction rates high. Reaction rates will be determined for various forms of lithium waste, from small chips to powder. Bench work will lead to the design of a skid-mounted process for treating wastes. Other water-reactive wastes will also be investigated

  16. The ozone backlash

    International Nuclear Information System (INIS)

    Taubes, G.

    1993-01-01

    While evidence for the role of chlorofluorocarbons in ozone depletion grows stronger, researchers have recently been subjected to vocal public criticism of their theories-and their motives. Their understanding of the mechanisms of ozone destruction-especially the annual ozone hole that appears in the Antarctic-has grown stronger, yet everywhere they go these days, they seem to be confronted by critics attacking their theories as baseless. For instance, Rush Limbaugh, the conservative political talk-show host and now-best-selling author of The Way Things Ought to Be, regularly insists that the theory of ozone depletion by CFCs is a hoax: bladerdash and poppycock. Zoologist Dixy Lee Ray, former governor of the state of Washington and former head of the Atomic Energy Commission, makes the same argument in her book, Trashing the Planet. The Wall Street Journal and National Review have run commentaries by S. Fred Singer, a former chief scientists for the Department of Transportation, purporting to shoot holes in the theory of ozone depletion. Even the June issue of Omni, a magazine with a circulation of more than 1 million that publishes a mixture of science and science fiction, printed a feature article claiming to expose ozone research as a politically motivated scam

  17. Measurements of the potential ozone production rate in a forest

    Science.gov (United States)

    Crilley, L.; Sklaveniti, S.; Kramer, L.; Bloss, W.; Flynn, J. H., III; Alvarez, S. L.; Erickson, M.; Dusanter, S.; Locoge, N.; Stevens, P. S.; Millet, D. B.; Alwe, H. D.

    2017-12-01

    Biogenic volatile organic compounds (BVOC) are a significant source of organic compounds globally and alongside NOx play a key role in the formation of ozone in the troposphere. Understanding how changes in NOx concentrations feed through to altered ozone production in BVOC dominated environments will aid our understanding of future atmospheric composition, notably as developing nations transition from NOx dominated to NOx limited chemistry as a result of mitigation strategies. Here we empirically investigate this ambient ozone formation potential. We report deployment of a custom built instrument to measure in near real time the potential for in situ chemical ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for a sampled ambient air mixture, including full VOC complexity, i.e. independent of characterization of individual organic compounds. Ground level measurements were performed as part of the PROPHET-AMOS 2016 field campaign, at a site located within a Northern Michigan forest that has typically low NOx abundance, but high isoprene and terpenoid loadings. As the ambient NOx concentrations were low during the campaign, experiments were performed in which NO was artificially added to the sampled ambient air mixture, to quantify changes in the potential ozone production rate as a function of NOx, and hence the ozone forming characteristics of the ambient air. Preliminarily results from these experiments are presented, and indicate that while ozone production increases with added NO, significant variation was observed for a given NO addition, reflecting differences in the ambient VOC chemical reactivity and ozone formation tendency.

  18. The nitrogen footprint tool network: a multi-institution program to reduce nitrogen pollution

    Science.gov (United States)

    Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This paper uses the nitrogen footprint tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional...

  19. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  20. Impact of future nitrous oxide and carbon dioxide emissions on the stratospheric ozone layer

    International Nuclear Information System (INIS)

    Stolarski, Richard S; Waugh, Darryn W; Douglass, Anne R; Oman, Luke D

    2015-01-01

    The atmospheric levels of human-produced chlorocarbons and bromocarbons are projected to make only small contributions to ozone depletion by 2100. Increases in carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) will become increasingly important in determining the future of the ozone layer. N 2 O increases lead to increased production of nitrogen oxides (NO x ), contributing to ozone depletion. CO 2 increases cool the stratosphere and affect ozone levels in several ways. Cooling decreases the rate of many photochemical reactions, thus slowing ozone loss rates. Cooling also increases the chemical destruction of nitrogen oxides, thereby moderating the effect of increased N 2 O on ozone depletion. The stratospheric ozone level projected for the end of this century therefore depends on future emissions of both CO 2 and N 2 O. We use a two-dimensional chemical transport model to explore a wide range of values for the boundary conditions for CO 2 and N 2 O, and find that all of the current scenarios for growth of greenhouse gases project the global average ozone to be larger in 2100 than in 1960. (letter)

  1. Reactive species output of a plasma jet with a shielding gas device—combination of FTIR absorption spectroscopy and gas phase modelling

    International Nuclear Information System (INIS)

    Schmidt-Bleker, A; Winter, J; Iseni, S; Dünnbier, M; Reuter, S; Weltmann, K-D

    2014-01-01

    In this work, a simple modelling approach combined with absorption spectroscopy of long living species generated by a cold atmospheric plasma jet yields insight into relevant gas phase chemistry. The reactive species output of the plasma jet is controlled using a shielding gas device. The shielding gas is varied using mixtures of oxygen and nitrogen at various humidity levels. Through the combination of Fourier transform infrared (FTIR) spectroscopy, computational fluid dynamics (CFD) simulations and zero dimensional kinetic modelling of the gas phase chemistry, insight into the underlying reaction mechanisms is gained. While the FTIR measurements yield absolute densities of ozone and nitrogen dioxide in the far field of the jet, the kinetic simulations give additional information on reaction pathways. The simulation is fitted to the experimentally obtained data, using the CFD simulations of the experimental setup to estimate the correct evaluation time for the kinetic simulation. It is shown that the ozone production of the plasma jet continuously rises with the oxygen content in the shielding gas, while it significantly drops as humidity is increased. The production of nitrogen dioxide reaches its maximum at about 30% oxygen content in the shielding gas. The underlying mechanisms are discussed based on the simulation results. (paper)

  2. 76 FR 68638 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Revision to Nitrogen...

    Science.gov (United States)

    2011-11-07

    ... Promulgation of Air Quality Implementation Plans; Virginia; Revision to Nitrogen Oxides Budget Trading Program... pertains to regulatory language in its nitrogen oxides (NO X ) Budget Trading Program that inadvertently..., Nitrogen dioxide, Ozone, Sulfur oxides. Dated: October 25, 2011. W.C. Early, Acting Regional Administrator...

  3. 76 FR 52283 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Control of Nitrogen...

    Science.gov (United States)

    2011-08-22

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Control of Nitrogen Oxides Emissions From Glass... revisions pertain to the control of nitrogen oxide (NO X ) emissions from glass melting furnaces. EPA is..., Nitrogen dioxide, Ozone, Particulate matter, Reporting and recordkeeping requirements. Dated: August 8...

  4. 78 FR 47253 - Approval and Promulgation of Air Quality Implementation Plans; Maine; Oxides of Nitrogen...

    Science.gov (United States)

    2013-08-05

    ... Promulgation of Air Quality Implementation Plans; Maine; Oxides of Nitrogen Exemption and Ozone Transport... is proposing to approve Maine's October 13, 2012, request for an exemption from the nitrogen oxides... from Stephen D. Page, Director, OAQPS, dated January 14, 2005, entitled ``Guidance on Limiting Nitrogen...

  5. 76 FR 34021 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Control of Nitrogen...

    Science.gov (United States)

    2011-06-10

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Control of Nitrogen Oxides Emissions From Glass... Pennsylvania. This revision pertains to the control of nitrogen oxide (NO X ) emissions from glass melting... protection, Air pollution control, Nitrogen dioxide, Ozone, Particulate matter, Reporting and recordkeeping...

  6. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  7. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    Science.gov (United States)

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  8. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  9. Air Quality Guide for Ozone

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Air Quality Guide for Ozone Ground-level ozone is one of our nation’s most common air pollutants. Use the chart below to help reduce ...

  10. Health Effects of Ozone Pollution

    Science.gov (United States)

    Inhaling ozone can cause coughing, shortness of breath, worse asthma or bronchitis symptoms, and irritation and damage to airways.You can reduce your exposure to ozone pollution by checking air quality where you live.

  11. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T.; Hakola, H. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  12. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T; Hakola, H [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  13. Exposure-Relevant Ozone Chemistry in Occupied Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly Kaye [Univ. of California, Berkeley, CA (United States)

    2009-04-01

    Ozone, an ambient pollutant, is transformed into other airborne pollutants in the indoor environment. In this dissertation, the type and amount of byproducts that result from ozone reactions with common indoor surfaces, surface residues, and vapors were determined, pollutant concentrations were related to occupant exposure, and frameworks were developed to predict byproduct concentrations under various indoor conditions. In Chapter 2, an analysis is presented of secondary organic aerosol formation from the reaction of ozone with gas-phase, terpene-containing consumer products in small chamber experiments under conditions relevant for residential and commercial buildings. The full particle size distribution was continuously monitored, and ultrafine and fine particle concentrations were in the range of 10 to>300 mu g m-3. Particle nucleation and growth dynamics were characterized.Chapter 3 presents an investigation of ozone reactions with aircraft cabin surfaces including carpet, seat fabric, plastics, and laundered and worn clothing fabric. Small chamber experiments were used to determine ozone deposition velocities, ozone reaction probabilities, byproduct emission rates, and byproduct yields for each surface category. The most commonly detected byproducts included C1?C10 saturated aldehydes and skin oil oxidation products. For all materials, emission rates were higher with ozone than without. Experimental results were used to predict byproduct exposure in the cabin and compare to other environments. Byproduct levels are predicted to be similar to ozone levels in the cabin, which have been found to be tens to low hundreds of ppb in the absence of an ozone converter. In Chapter 4, a model is presented that predicts ozone uptake by and byproduct emission from residual chemicals on surfaces. The effects of input parameters (residue surface concentration, ozone concentration, reactivity of the residue and the surface, near-surface airflow conditions, and

  14. Process-scale modeling of elevated wintertime ozone in Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  15. Impact of climate change on tropospheric ozone and its global budgets

    Directory of Open Access Journals (Sweden)

    G. Zeng

    2008-01-01

    Full Text Available We present the chemistry-climate model UMCAM in which a relatively detailed tropospheric chemical module has been incorporated into the UK Met Office's Unified Model version 4.5. We obtain good agreements between the modelled ozone/nitrogen species and a range of observations including surface ozone measurements, ozone sonde data, and some aircraft campaigns.

    Four 2100 calculations assess model responses to projected changes of anthropogenic emissions (SRES A2, climate change (due to doubling CO2, and idealised climate change-associated changes in biogenic emissions (i.e. 50% increase of isoprene emission and doubling emissions of soil-NOx. The global tropospheric ozone burden increases significantly for all the 2100 A2 simulations, with the largest response caused by the increase of anthropogenic emissions. Climate change has diverse impacts on O3 and its budgets through changes in circulation and meteorological variables. Increased water vapour causes a substantial ozone reduction especially in the tropical lower troposphere (>10 ppbv reduction over the tropical ocean. On the other hand, an enhanced stratosphere-troposphere exchange of ozone, which increases by 80% due to doubling CO2, contributes to ozone increases in the extratropical free troposphere which subsequently propagate to the surface. Projected higher temperatures favour ozone chemical production and PAN decomposition which lead to high surface ozone levels in certain regions. Enhanced convection transports ozone precursors more rapidly out of the boundary layer resulting in an increase of ozone production in the free troposphere. Lightning-produced NOx increases by about 22% in the doubled CO2 climate and contributes to ozone production.

    The response to the increase of isoprene emissions shows that the change of ozone is largely determined by background NOx levels: high

  16. Ozone damage to tobacco in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Macdowall, F D.H.; Vickery, L S; Runeckles, V C; Patrick, Z A

    1963-12-01

    Tobacco weather fleck has caused significant losses of flue-cured tobacco in southern Ontario since 1955. Fleck damage was greatest near the coast of Lake Erie and decreased progressively inland. Ozone has been shown to be one of the most important incitants of the fleck response in tobacco whereas parasitic fungi, bacteria and viruses were proven not to be implicated as causes of the disorder. The inherently susceptible variety White Gold, used in all tests, was rendered more susceptible by irrigation and nitrogen deficiency. It was also more susceptible during flowering and when producing lateral shoots. The degree and duration of stomatal opening were important factors in determining the amount of injury. Concentration of ozone in the air was shown experimentally to affect the speed of fleck response as well as the severity of symptoms. Statistically significant correlations between ozone concentrations and fleck damage were obtained from field data when the response of highly susceptible tissues only was considered. The merits of several visual rating methods are compared and discussed. 22 references, 5 figures, 11 tables.

  17. Ozone bioindicator sampling and estimation

    Science.gov (United States)

    Gretchen C, Smith; William D. Smith; John W. Coulston

    2007-01-01

    Ozone is an important forest stressor that has been measured at known phytotoxic levels at forest locations across the United States. The percent forest exhibiting negative impacts from ozone air pollution is one of the Montreal Process indicators of forest health and vitality. The ozone bioindicator data of the U.S. Forest Service Forest Inventory and Analysis Program...

  18. Ozonated Olive Oils and Troubles

    Directory of Open Access Journals (Sweden)

    Bulent Uysal

    2014-04-01

    Full Text Available One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. [J Intercult Ethnopharmacol 2014; 3(2.000: 49-50

  19. Factors Controlling Nitrogen Loadings in Major River Basins Across the United States

    Science.gov (United States)

    Boyer, E. W.; Alexander, R. B.; Galloway, J. N.; Golden, H. E.; Moore, R. B.; Schwarz, G. E.; Harvey, J. W.; Gomez-Velez, J. D.; Scott, D.; Clune, J.

    2017-12-01

    Inputs of reactive nitrogen (all N species except for N2) have been increasing worldwide, largely due to human activities associated with food production and energy consumption via the combustion of fossil fuels and biofuels. Despite the obvious essential benefits of a plentiful supply of food and energy, the adverse consequences associated with the accumulation of N in the environment are large. Most of the N created by human activities is released to the environment, often with unintended negative consequences. The greater the inputs of N to the landscape, the greater the potential for negative effects - caused by greenhouse gas production, ground level ozone, acid deposition, and N overload; which in turn can contribute to climate change, degradation of soils and vegetation, acidification of surface waters, coastal eutrophication, hypoxia, habitat loss, and loss of stratospheric ozone. Here we present a contemporary inventory of reactive N inputs to major water regions in the United States, and discuss accounting methods for quantifying N sources and transport. Furthermore, we quantify loadings of N from terrestrial headwaters downstream to coastal estuaries and embayments. N delivery to downstream waters is influenced by nutrient sources as well as coupled hydrological and biogeochemical processes occurring along the river corridor (e.g., travel time distributions, denitrification, and storage) that scale with stream size and are affected by impoundments such as lakes and reservoirs. This underscores the need to account for the nonlinear interactions of aquatic transport processes with watershed nutrient sources, as well as cumulative effects, in developing efficient nutrient reduction strategies. Our work is useful as a benchmark of the current N situation against which future progress can be assessed in varying water regions of the country; amidst changing N inputs, policies, and management strategies. Our results stem from the EPA Integrated Nitrogen

  20. Disappearing threat to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Gribbin, J

    1979-02-15

    Concern that human activities might disturb the dynamic natural equilibrium of the ozone layer has stemmed from the fact that this layer plays a key part in the ecology of the earth by absorbing harmful ultraviolet radiation which would otherwise penetrate to the ground. Apparently, however, a decline of as much at 15% in total global ozone would have very little effect on climate. A 50% reduction would produce a marked cooling of the stratosphere at 40 km altitude over the tropics, but barely detectable changes in temperature and rainfall in the lower atmosphere. Therefore, biological effects of more uv light at ground level is the only hazard associated with ozone depletion on the scale which might take place.

  1. Tropospheric Ozone Change from 1980 to 2010 Dominated by Equatorward Redistribution of Emissions

    Science.gov (United States)

    Zhang, Yuqiang; Cooper, Owen R.; Gaudel, Audrey; Thompson, Anne M.; Nedelec, Philippe; Ogino, Shin-Ya; West, J. Jason

    2016-01-01

    Ozone is an important air pollutant at the surface, and the third most important anthropogenic greenhouse gas in the troposphere. Since 1980, anthropogenic emissions of ozone precursors methane, non-methane volatile organic compounds, carbon monoxide and nitrogen oxides (NOx) have shifted from developed to developing regions. Emissions have thereby been redistributed equatorwards, where they are expected to have a stronger effect on the tropospheric ozone burden due to greater convection, reaction rates and NOx sensitivity. Here we use a global chemical transport model to simulate changes in tropospheric ozone concentrations from 1980 to 2010, and to separate the influences of changes in the spatial distribution of global anthropogenic emissions of short-lived pollutants, the magnitude of these emissions, and the global atmospheric methane concentration. We estimate that the increase in ozone burden due to the spatial distribution change slightly exceeds the combined influences of the increased emission magnitude and global methane. Emission increases in Southeast, East and South Asia may be most important for the ozone change, supported by an analysis of statistically significant increases in observed ozone above these regions. The spatial distribution of emissions dominates global tropospheric ozone, suggesting that the future ozone burden will be determined mainly by emissions from low latitudes.

  2. Ozonation for source treatment of pharmaceuticals in hospital wastewater - ozone lifetime and required ozone dose

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Chhetri, Ravi Kumar

    2016-01-01

    Ozonation aimed at removing pharmaceuticals was studied in an effluent from an experimental pilot system using staged moving bed biofilm reactor (MBBR) tanks for the optimal biological treatment of wastewater from a medical care unit of Aarhus University Hospital. Dissolved organic carbon (DOC......) and pH in samples varied considerably, and the effect of these two parameters on ozone lifetime and the efficiency of ozone in removing pharmaceuticals were determined. The pH in the effluent varied from 5.0 to 9.0 resulting in approximately a doubling of the required ozone dose at the highest p......H for each pharmaceutical. DOC varied from 6 to 20 mg-DOC/L. The ozone required for removing each pharmaceutical, varied linearly with DOC and thus, ozone doses normalized to DOC (specific ozone dose) agreed between water samples (typically within 15%). At neutral pH the specific ozone dose required...

  3. Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions

    Science.gov (United States)

    Martin, Randall V.; Fiore, Arlene M.; VanDonkelaar, Aaron

    2004-01-01

    We present a novel capability in satellite remote sensing with implications for air pollution control strategy. We show that the ratio of formaldehyde columns to tropospheric nitrogen dioxide columns is an indicator of the relative sensitivity of surface ozone to emissions of nitrogen oxides (NO(x) = NO + NO2) and volatile organic compounds (VOCs). The diagnosis from these space-based observations is highly consistent with current understanding of surface ozone chemistry based on in situ observations. The satellite-derived ratios indicate that surface ozone is more sensitive to emissions of NO(x) than of VOCs throughout most continental regions of the Northern Hemisphere during summer. Exceptions include Los Angeles and industrial areas of Germany. A seasonal transition occurs in the fall when surface ozone becomes less sensitive to NOx and more sensitive to VOCs.

  4. UN ECE-Convention on long-range transboundary air pollution. Task Force on Reactive Nitrogen. Systematic cost-benefit analysis of mitigation measures for agricultural ammonia emissions, supporting national costing analysis; UN ECE-Luftreinhaltekonvention. Task Force on Reactive Nitrogen. Systematische Kosten-Nutzen-Analyse von Minderungsmassnahmen fuer Ammoniakemissionen in der Landwirtschaft fuer nationale Kostenabschaetzung

    Energy Technology Data Exchange (ETDEWEB)

    Doehler, Helmut; Eurich-Menden, Brigitte; Roessler, Regina; Vandre, Robert; Wulf, Sebastian [Kuratorium fuer Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt (Germany)

    2011-07-01

    In this project, the methods for the determination of the expenses for the reduction of agricultural ammonia emissions were updated, and the costs of selected, representative mitigation measures suitable for Germany's agriculture were newly calculated. The reduction costs are determined based on the ratio of the extra costs for the reduction measure and the emission reduction in comparison with a reference system. Protein-adapted feeding in pig fattening generally leads to lower expenses for feedstuff, which provides negative reduction costs (- Euro 3.5 to - Euro 13.5 per kg of NH{sub 3} depending on the reference system). Pig fattening in naturally ventilated housing causes reduction costs of Euro 9.2 per kg of NH{sub 3} as compared with forced-ventilated animal houses. However, this amount cannot always be exclusively attributed to ammonia emission reduction (allocation) because naturally ventilated houses are generally built for the improvement of animal welfare and animal health. Single and multiple-stage air purification techniques in forced-ventilated pig fattening houses are a technically efficient, though costintensive reduction measure (Euro 4,6 - Euro 8,6 per kg of NH{sub 3}). Solid covers for pig slurry stores (concrete ceiling, tent) are characterized by high investment expenses and a long service life causes moderate reduction costs (Euro 1.1 - Euro 2.5 per kg of NH{sub 3}). Floating covers (plastic sheet, granules) are almost cost-neutral given reduction costs of Euro 0.3 to Euro 0.9 per kg of NH{sub 3} (pig slurry) if the fertilizer value of the conserved nitrogen is included in the calculation. Cattle slurry requires significantly higher extra costs for the covering of slurry stores because the natural floating cover itself reduces emissions (Euro 1.3 to Euro 12 per kg of NH{sub 3}). If annual spreading performances are low (1,000 to 3,000 m{sup 3}/a), only promptly incorporation of cattle and pig slurry is cost-effective. If spreading

  5. Ozone-surface reactions in five homes: surface reaction probabilities, aldehyde yields, and trends.

    Science.gov (United States)

    Wang, H; Morrison, G

    2010-06-01

    Field experiments were conducted in five homes during three seasons (summer 2005, summer 2006 and winter 2007) to quantify ozone-initiated secondary aldehyde yields, surface reaction probabilities, and trends any temporal over a 1.5-year interval. Surfaces examined include living room carpets, bedroom carpets, kitchen floors, kitchen counters, and living room walls. Reaction probabilities for all surfaces for all seasons ranged from 9.4 x 10(-8) to 1.0 x 10(-4). There were no significant temporal trends in reaction probabilities for any surfaces from summer 2005 to summer 2006, nor over the entire 1.5-year period, indicating that it may take significantly longer than this period for surfaces to exhibit any 'ozone aging' or lowering of ozone-surface reactivity. However, all surfaces in three houses exhibited a significant decrease in reaction probabilities from summer 2006 to winter 2007. The total yield of aldehydes for the summer of 2005 were nearly identical to that for summer of 2006, but were significantly higher than for winter 2007. We also observed that older carpets were consistently less reactive than in newer carpets, but that countertops remained consistently reactive, probably because of occupant activities such as cooking and cleaning. Ozone reactions taking place at indoor surfaces significantly influence personal exposure to ozone and volatile reaction products. These field studies show that indoor surfaces only slowly lose their ability to react with ozone over several year time frames, and that this is probably because of a combination of large reservoirs of reactive coatings and periodic additions of reactive coatings in the form of cooking, cleaning, and skin-oil residues. When considering exposure to ozone and its reaction products and in the absence of dramatic changes in occupancy, activities or furnishings, indoor surface reactivity is expected to change very slowly.

  6. Comparing Model Ozone Loss during the SOLVE and SOLVE-2 Winters

    Science.gov (United States)

    Drdla, K.

    2003-01-01

    Model simulations have been used to analyze the factors influencing ozone loss during the 1999-2000 and 2002-2003 js. For both winters, the evolution of the Arctic vortex from November to April has been simulated using a trajectory-based microphysical and photochemical model. Extensive PSC formation and strong ozone depletion are evident in both winters. However, the ozone loss begins earlier in the 2002-2003 winter, with significant ozone depletion by early January. Analysis of the model results shows that during December 2002 not only cold temperatures but also the vortex structure was critical, allowing PSC-processed air parcels to experience significant solar exposure. The resultant ozone loss can be differentiated from ozone loss that occurs in the springtime, in particular because of the continued exposure to PSCs. For example, chlorine reactivation by the PSCs causes ozone loss to be insensitive to denitrification. Therefore, diagnosing the extent of ozone loss early in the winter is critical In understanding the overall winter-long ozone depletion.

  7. Physicochemical patterns of ozone absorption by wood

    Science.gov (United States)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  8. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Shimizu, Tetsuji; Zimmermann, Julia L; Morfill, Gregor E; Sakiyama, Yukinori; Graves, David B

    2012-01-01

    We present the transient, dynamic behavior of ozone production in surface micro-discharge (SMD) plasma in ambient air. Ultraviolet absorption spectroscopy at 254 nm was used to measure the time development of ozone density in a confined volume. We observed that ozone density increases monotonically over 1000 ppm for at least a few minutes when the input power is lower than ∼0.1 W/cm 2 . Interestingly, when input power is higher than ∼0.1 W/cm 2 , ozone density starts to decrease in a few tens of seconds at a constant power density, showing a peak ozone density. A model calculation suggests that the ozone depletion at higher power density is caused by quenching reactions with nitrogen oxides that are in turn created by vibrationally excited nitrogen molecules reacting with O atoms. The observed mode transition is significantly different from classical ozone reactors in that the transition takes place over time at a constant power. In addition, we observed a positive correlation between time-averaged ozone density and the inactivation rate of Escherichia coli on adjacent agar plates, suggesting that ozone plays a key role in inactivating bacteria under the conditions considered here. (paper)

  9. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    Directory of Open Access Journals (Sweden)

    P. Jöckel

    2006-01-01

    Full Text Available The new Modular Earth Submodel System (MESSy describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy

  10. Measurement of Ozone Production Sensor

    Directory of Open Access Journals (Sweden)

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  11. Observed and Model-Derived Ozone Production Efficiency over Urban and Rural New York State

    Directory of Open Access Journals (Sweden)

    Matthew Ninneman

    2017-07-01

    Full Text Available This study examined the model-derived and observed ozone production efficiency (OPE = ∆Ox/∆NOz in one rural location, Pinnacle State Park (PSP in Addison, New York (NY, and one urban location, Queens College (QC in Flushing, NY, in New York State (NYS during photo-chemically productive hours (11 a.m.–4 p.m. Eastern Standard Time (EST in summer 2016. Measurement data and model predictions from National Oceanic and Atmospheric Administration National Air Quality Forecast Capability (NOAA NAQFC—Community Multiscale Air Quality (CMAQ model versions 4.6 (v4.6 and 5.0.2 (v5.0.2 were used to assess the OPE at both sites. CMAQ-predicted and observed OPEs were often in poor agreement at PSP and in reasonable agreement at QC, with model-predicted and observed OPEs, ranging from approximately 5–11 and 10–13, respectively, at PSP; and 4–7 and 6–8, respectively, at QC. The observed relationship between OPE and oxides of nitrogen (NOx was studied at PSP to examine where the OPE downturn may have occurred. Summer 2016 observations at PSP did not reveal a distinct OPE downturn, but they did indicate that the OPE at PSP remained high (10 or greater regardless of the [NOx] level. The observed OPEs at QC were found by using species-specific reactive odd nitrogen (NOy instruments and an estimated value for nitrogen dioxide (NO2, since observed OPEs determined using non-specific NOx and NOy instruments yielded observed OPE results that (1 varied from approximately 11–25, (2 sometimes had negative [NOz] concentrations, and (3 were inconsistent with CMAQ-predicted OPE. This difference in observed OPEs at QC depending on the suite of instruments used suggests that species-specific NOx and NOy instruments may be needed to obtain reliable urban OPEs.

  12. Characterization of surface dielectric barrier discharge influenced by intermediate frequency for ozone production

    Science.gov (United States)

    Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi; Osawa, Naoki; Wedaa, Hassan; Otani, Yoshio

    2016-06-01

    The aim of this study is to investigate the effect of the intermediate frequency (1-10 kHz) of the sinusoidal driving voltage on the characteristics of a developed surface dielectric barrier discharge (SDBD)-based reactor having spikes on its discharge electrode. Moreover, its influence on the production of ozone and nitrogen oxide byproducts is evaluated. The results show that SDBD is operated in the filamentary mode at all the frequencies. Nevertheless, the pulses of the discharge current at high frequencies are much denser and have higher amplitudes than those at low frequencies. The analysis of the power consumed in the reactor shows that a small portion of the input power is dissipated in the dielectric material of SDBD source, whereas the major part of the power is consumed in the plasma discharge. The results of the ozone production show that higher frequencies have a slightly adverse effect on the ozone production at relatively high energy density values, where the ozone concentration is slightly decreased when the frequency is increased at the same energy density. The temperature of the discharge channels and gas is not a crucial factor for the decomposition of ozone in this reactor, while the results of the measurements of nitrogen oxides characteristics indicate that the formation of NO and NO2 has a significant adverse effect on the production efficiency of ozone due to their oxidation to another nitrogen oxides and their catalytic effect.

  13. Characterization of surface dielectric barrier discharge influenced by intermediate frequency for ozone production

    International Nuclear Information System (INIS)

    Abdelaziz, Ayman A; Ishijima, Tatsuo; Seto, Takafumi; Otani, Yoshio; Osawa, Naoki; Wedaa, Hassan

    2016-01-01

    The aim of this study is to investigate the effect of the intermediate frequency (1–10 kHz) of the sinusoidal driving voltage on the characteristics of a developed surface dielectric barrier discharge (SDBD)-based reactor having spikes on its discharge electrode. Moreover, its influence on the production of ozone and nitrogen oxide byproducts is evaluated. The results show that SDBD is operated in the filamentary mode at all the frequencies. Nevertheless, the pulses of the discharge current at high frequencies are much denser and have higher amplitudes than those at low frequencies. The analysis of the power consumed in the reactor shows that a small portion of the input power is dissipated in the dielectric material of SDBD source, whereas the major part of the power is consumed in the plasma discharge. The results of the ozone production show that higher frequencies have a slightly adverse effect on the ozone production at relatively high energy density values, where the ozone concentration is slightly decreased when the frequency is increased at the same energy density. The temperature of the discharge channels and gas is not a crucial factor for the decomposition of ozone in this reactor, while the results of the measurements of nitrogen oxides characteristics indicate that the formation of NO and NO 2 has a significant adverse effect on the production efficiency of ozone due to their oxidation to another nitrogen oxides and their catalytic effect. (paper)

  14. Evaluation of passive methods for measuring ozone in the European Alps

    Energy Technology Data Exchange (ETDEWEB)

    Hangartner, M. [Inst. of Applied Ergonomics and Hygiene, Zurich (Switzerland); Kirchner, M. [GSF Research Centre for Environment and Human Health, Neuherberg (Germany); Werner, H. [Munich Univ. (Germany). Inst. for Bioclimatology and Environmental Research

    1995-12-31

    Under the leadership of the GSF research centre, various research groups were invited to make their ozone and nitrogen oxide collection systems available for comparative testing. It was considered valuable to include not only well developed systems but also methods still under development. For the main comparative test 11 working groups with differing methods took part. Essentially the goal was to evaluate of the integrating ozone measuring methods as compared to continual ozone monitoring methods under field conditions. For this the various collection systems at 6 alpine continual measuring stations in Italy and Bavaria characterising different location types, were compared over 22 weeks

  15. Our Shrinking Ozone Layer

    Indian Academy of Sciences (India)

    Depletion of the ozone layer is therefore having significant effects on life on .... but there is always a net balance between the rate of formation and destruction ..... award of Commonwealth Fellowship during the present work and also being an ...

  16. Dobson ozone spectrophotometer modification.

    Science.gov (United States)

    Komhyr, W. D.; Grass, R. D.

    1972-01-01

    Description of a modified version of the Dobson ozone spectrophotometer in which several outdated electronic design features have been replaced by circuitry embodying more modern design concepts. The resulting improvement in performance characteristics has been obtained without changing the principle of operation of the original instrument.

  17. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  18. Ozone, greenhouse effect

    International Nuclear Information System (INIS)

    Aviam, A.M.; Arthaut, R.

    1992-01-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs

  19. Revisiting Antarctic Ozone Depletion

    Science.gov (United States)

    Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf

    2015-04-01

    Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.

  20. Ozonation of isoproturon adsorbed on silica particles under atmospheric conditions

    Science.gov (United States)

    Pflieger, Maryline; Grgić, Irena; Kitanovski, Zoran

    2012-12-01

    The results on heterogeneous ozonation of a phenylurea pesticide, isoproturon, under atmospheric conditions are presented for the first time in the present study. The study was carried out using an experimental device previously adopted and validated for the heterogeneous reactivity of organics toward ozone (Pflieger et al., 2011). Isoproturon was adsorbed on silica particles via a liquid-to-solid equilibrium with a load far below a monolayer (0.02% by weight/surface coverage of 0.5%). The rate constants were estimated by measuring the consumption of the organic (dark, T = 26 °C, RH isoproturon on the aerosol surface does not affect the kinetics of ozonation, indicating that both compounds are adsorbed on different surface sites of silica particles.

  1. Ozone tolerance in snap bean is associated with elevated ascorbic acid in the leaf apoplast

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, K.O. [North Carolina State Univ., United States Dept. of Agriculture-Agricultural Research Service, and Dept. of Crop Science, Raleigh, NC (United States); Eason, G. [North Carolina, State Univ., United States Dept. of Plant Pathology, Raleigh, NC (United States)

    2002-03-01

    Ascorbic acid (AA) in the leaf apoplast has the potential to limit ozone injury by participating in reactions that detoxify ozone and reactive oxygen intermediates and thus prevent plasma membrane damage. Genotypes of snap bean (Phaseolus vulgaris L) were compared in controlled environments and in open-top field chambers to assess the relationship between extracellular AA content and ozone tolerance. Vacuum infiltration methods were employed to separate leaf AA into extracellular and intracellular fractions. For plants grown in controlled environments at low ozone concentration (4 nmol mol{sup -1} ozone), leaf apoplast AA was significantly higher in tolerant genotypes (300-400 nmol g{sup -1} FW) compared with sensitive genotypes (approximately 50 nmol g{sup -1} FW), evidence that ozone tolerance is associated with elevated extracellular AA. For the open top chamber study, plants were grown in pots under charcoal-filtered air (CF) conditions and then either maintained under CF conditions (29 nmol mol{sup -1} ozone) or exposed to elevated ozone (67 nmol mol{sup -1} ozone). Following an 8-day treatment period, leaf apoplast AA was in the range of 100-190 nmol g{sup -1} FW for all genotypes, but no relationship was observed between apoplast AA content and ozone tolerance. The contrasting results in the two studies demonstrated a potential limitation in the interpretation of extracellular AA data. Apoplast AA levels presumably reflect the steady-state condition between supply from the cytoplasm and utilization within the cell wall. The capacity to detoxify ozone in the extracellular space may be underestimated under elevated ozone conditions where the dynamics of AA supply and utilization are not adequately represented by a steady-state measurement. (au)

  2. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China

    Science.gov (United States)

    Li, Kangwei; Chen, Linghong; Ying, Fang; White, Stephen J.; Jang, Carey; Wu, Xuecheng; Gao, Xiang; Hong, Shengmao; Shen, Jiandong; Azzi, Merched; Cen, Kefa

    2017-11-01

    Regional ozone pollution has become one of the most challenging problems in China, especially in the more economically developed and densely populated regions like Hangzhou. In this study, measurements of O3, CO, NOx and non-methane hydrocarbons (NMHCs), together with meteorological data, were obtained for the period July 1, 2013-August 15, 2013 at three sites in Hangzhou. These sites included an urban site (Zhaohui ;ZH;), a suburban site (Xiasha ;XS;) and a rural site (Qiandaohu ;QDH;). During the observation period, both ZH and XS had a higher ozone level than QDH, with exceeding rates of 41.3% and 47.8%, respectively. Elevated O3 levels in QDH were found at night, which could be explained by less prominent NO titration effect in rural area. Detailed statistical analysis of meteorological and chemical impacts on ozone formation was carried out for ZH, and higher ozone concentration was observed when the wind direction was from the east. This is possibly due to emissions of VOCs from XS, a typical chemical industrial park located in 30 km upwind area of ZH. A comprehensive comparison between three ozone episode periods and one non-episode period were made in ZH. It was concluded that elevated concentrations of precursors and temperatures, low relative humidity and wind speed and easterly-dominated wind direction contribute to urban ozone episodes in Hangzhou. VOCs reactivity analysis indicated that reactive alkenes like isoprene and isobutene contributed most to ozone formation. Three methods were applied to evaluate O3-VOCs-NOx sensitivity in ZH: VOCs/NOx ratio method, Smog Production Model (SPM) and Relative Incremental Reactivity (RIR). The results show that summer ozone in urban Hangzhou mostly presents VOCs-limited and transition region alternately. Our study implies that the increasing automobiles and VOCs emissions from upwind area could result in ozone pollution in urban Hangzhou, and synergistic reduction of VOCs and NOx will be more effective.

  3. Degradation of acephate using combined ultrasonic and ozonation method

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-07-01

    Full Text Available The degradation of acephate in aqueous solutions was investigated with the ultrasonic and ozonation methods, as well as a combination of both. An experimental facility was designed and operation parameters such as the ultrasonic power, temperature, and gas flow rate were strictly controlled at constant levels. The frequency of the ultrasonic wave was 160 kHz. The ultraviolet-visible (UV-Vis spectroscopic and Raman spectroscopic techniques were used in the experiment. The UV-Vis spectroscopic results show that ultrasonication and ozonation have a synergistic effect in the combined system. The degradation efficiency of acephate increases from 60.6% to 87.6% after the solution is irradiated by a 160 kHz ultrasonic wave for 60 min in the ozonation process, and it is higher with the combined method than the sum of the separated ultrasonic and ozonation methods. Raman spectra studies show that degradation via the combined ultrasonic/ozonation method is more thorough than photocatalysis. The oxidability of nitrogen atoms is promoted under ultrasonic waves. Changes of the inorganic ions and degradation pathway during the degradation process were investigated in this study. Most final products are innocuous to the environment.

  4. Ozone and the oxidizing properties of the troposphere

    International Nuclear Information System (INIS)

    Megie, G.

    1996-01-01

    This article is about the rising concentration of ozone and photo-oxidizers observed in the troposphere, the atmosphere between the ground and a height of 10 to 15 km. This serious global environmental problem has up to now been less well known than the greenhouse effect or the decrease in stratospheric ozone. This is because it varies with time and place and involves many complicated physico-chemical and atmospheric processes. At our latitudes, the average ozone concentration in the air we breathe has quadrupled since the beginning of this century. In polluted areas it often exceeds the recommended norms. This increase in ozone concentrations in the lower atmosphere directly reflects the impact of man-made emissions of compounds like methane, carbon monoxide, hydrocarbons and nitrogen oxides. Sunlight acts on these compounds to form ozone via complicated chemical reactions. This change in oxidizing properties of the troposphere is beginning produce perceptible effects on vegetable production, human health and climate. (author). 24 refs., 5 figs., 4 tabs

  5. Strategy for reducing ozone levels in the northeast United States

    International Nuclear Information System (INIS)

    Bradley, M.

    1992-01-01

    In the northeast USA, ozone episodes are frequent during the summer; most of these episodes last 3-4 days. The duration and frequency of these episodes is mainly determined by weather conditions. The persistence of ozone episodes in the region is explained by the fact that emissions of ozone precursors (nitrogen oxides (NOx) and volatile organic compounds (VOC)) are like those of other regions of the USA affected by acute ozone problems. The population density, industry, and use of automobiles are other factors contributing to the difficulty of maintaining acceptable ozone levels. The ozone problem is especially severe in the New York metropolitan area and most of New Jersey. Strategies for combating ozone precursors have relied entirely on reducing emissions of VOCs, while little has been done to reduce NOx, except for automobile emissions. The Clean Air Act of 1990 provides for significant reductions of NOx and VOC from mobile sources and insists on VOC emissions reductions from stationary sources. In California, stricter emission standards for VOC and NOx have been implemented for new vehicles, requiring wider use of low- or zero-emission vehicles. The Northeast States for Coordinated Air Use Management (NESCAUM) organization, formed by the state agencies responsible for air quality, is aiding the northeast states to evaluate the advantages of adopting California standards for vehicles. Twelve northeast states propose to adopt the Californian low-emission vehicle program and are examining other options such as reformulated gasolines, improved maintenance and verification programs, and measures to reduce the number of miles travelled. 1 fig., 1 tab

  6. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Glenn Charles [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  7. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    Science.gov (United States)

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-02

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.

  8. Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe.

    Science.gov (United States)

    Jung, Youmi; Yoon, Yeojoon; Hong, Eunkyung; Kwon, Minhwan; Kang, Joon-Wun

    2013-07-15

    Since ballast water affects the ocean ecosystem, the International Maritime Organization (IMO) sets a standard for ballast water management and might impose much tighter regulations in the future. The aim of this study is to evaluate the inactivation efficiency of ozonation, electrolysis, and an ozonation-electrolysis combined process, using B. subtilis spores. In seawater ozonation, HOBr is the key active substance for inactivation, because of rapid reactivity of ozone with Br(-) in seawater. In seawater electrolysis, it is also HOBr, but not HOCl, because of the rapid reaction of HOCl with Br(-), which has not been recognized carefully, even though many electrolysis technologies have been approved by the IMO. Inactivation pattern was different in ozonation and electrolysis, which has some limitations with the tailing or lag-phase, respectively. However, each deficiency can be overcome with a combined process, which is most effective as a sequential application of ozonation followed by electrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Comparative study of ozonized olive oil and ozonized sunflower oil

    OpenAIRE

    Díaz,Maritza F.; Hernández,Rebeca; Martínez,Goitybell; Vidal,Genny; Gómez,Magali; Fernández,Harold; Garcés,Rafael

    2006-01-01

    In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observ...

  10. Vertical distribution of ozone at the terminator on Mars

    Science.gov (United States)

    Maattanen, Anni; Lefevre, Franck; Guilbon, Sabrina; Listowski, Constantino; Montmessin, Franck

    2016-10-01

    The SPICAM/Mars Express UV solar occultation dataset gives access to the ozone vertical distribution via the ozone absorption in the Hartley band (220-280 nm). We present the retrieved ozone profiles and compare them to the LMD Mars Global Climate Model (LMD-MGCM) results.Due to the photochemical reactivity of ozone, a classical comparison of local density profiles is not appropriate for solar occultations that are acquired at the terminator, and we present here a method often used in the Earth community. The principal comparison is made via the slant profiles (integrated ozone concentration on the line-of-sight), since the spherical symmetry hypothesis made in the onion-peeling vertical inversion method is not valid for photochemically active species (e.g., ozone) around terminator. For each occultation, we model the ozone vertical and horizontal distribution with high solar zenith angle (or local time) resolution around the terminator and then integrate the model results following the lines-of-sight of the occultation to construct the modeled slant profile. We will also discuss the difference of results between the above comparison method and a comparison using the local density profiles, i.e., the observed ones inverted by using the spherical symmetry hypothesis and the modeled ones extracted from the LMD-MGCM exactly at the terminator. The method and the results will be presented together with the full dataset.SPICAM is funded by the French Space Agency CNES and this work has received funding from the European Union's Horizon 2020 Programme (H2020-Compet-08-2014) under grant agreement UPWARDS-633127.

  11. Reactive Arthritis

    Directory of Open Access Journals (Sweden)

    Eren Erken

    2013-06-01

    Full Text Available Reactive arthritis is an acute, sterile, non-suppurative and inflammatory arthropaty which has occured as a result of an infectious processes, mostly after gastrointestinal and genitourinary tract infections. Reiter syndrome is a frequent type of reactive arthritis. Both reactive arthritis and Reiter syndrome belong to the group of seronegative spondyloarthropathies, associated with HLA-B27 positivity and characterized by ongoing inflammation after an infectious episode. The classical triad of Reiter syndrome is defined as arthritis, conjuctivitis and urethritis and is seen only in one third of patients with Reiter syndrome. Recently, seronegative asymmetric arthritis and typical extraarticular involvement are thought to be adequate for the diagnosis. However, there is no established criteria for the diagnosis of reactive arthritis and the number of randomized and controlled studies about the therapy is not enough. [Archives Medical Review Journal 2013; 22(3.000: 283-299

  12. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.

    Science.gov (United States)

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F

    2015-03-17

    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  13. Options for including nitrogen management in climate policy

    International Nuclear Information System (INIS)

    Erisman, J.W.

    2010-12-01

    The outline of the presentation is as follows: Climate change and nitrogen; Nitrogen and climate interlinkages; Options for nitrogen management; Report, workshop and IPCC; and Conclusions. The concluding remarks are: Fertilizing the biosphere with reactive nitrogen compounds lead to ecosystem, health, water and climate impacts; Nitrogen deposition can lead to additional carbon sequestration and to impacts on biodiversity and ecosystem services; Nitrogen addition to the biosphere might have a net cooling effect of 1 W/m 2 ; Life Cycle Analysis is needed to show the full impact; and Nitrogen management is essential for the environment and can have a positive effect on the net GHG exchange.

  14. Artificially ionized region as a source of ozone in the stratosphere

    International Nuclear Information System (INIS)

    Gurevich, Aleksandr V; Litvak, Aleksandr G; Vikharev, A L; Ivanov, O A; Borisov, Nikolai D; Sergeichev, Konstantin F

    2000-01-01

    A set of physical and chemical processes occurring in a microwave stratospheric discharge of nanosecond duration is discussed in connection with the effect they may have locally on the ozone layer in the artificially ionized region (AIR) in the stratosphere. The AIR, to be created at altitudes of 18 - 20 km by the microwave breakdown of air with ground-produced powerful electromagnetic wave beams, is planned for use in the natural physical experiment aimed at active monitoring of the ozone layer (its internal state and a set of plasma-chemical and photochemical processes) by controllably generating a considerable amount of ozone in the stratosphere. Results of relevant theoretical studies are presented, as are those of a large series of laboratory experiments performed under conditions similar to those prevailing in the stratosphere. Discharge regimes securing the efficient growth of ozone concentration are identified and studied in detail. It is demonstrated that such a stratospheric ozonizer is about as efficient as the best ground-based ozonizers used at present. For typical stratospheric conditions (low pressures and temperatures T ∼ 200 - 220 K), it is shown that the intense generation of ozone in a microwave breakdown effected by groups of short nanosecond pulses does not virtually increase the density of nitrogen oxides - gases that play a vital role in catalytic ozone-decomposing reactions. The possibility of effectively producing ozone in prebreakdown electric fields is established experimentally. It is demonstrated that due to its long lifetime, ozone produced locally at altitudes of 18 - 20 km may spread widely under the action of winds and turbulent diffusion, thus leading to an additional - artificial - ozonization of the stratosphere. (reviews of topical problems)

  15. Health Effects of Ozone and Particle Pollution

    Science.gov (United States)

    ... this page: Health Effects of Ozone and Particle Pollution Two types of air pollution dominate in the ... So what are ozone and particle pollution? Ozone Pollution It may be hard to imagine that pollution ...

  16. Protecting the ozone layer.

    Science.gov (United States)

    Munasinghe, M; King, K

    1992-06-01

    Stratospheric ozone layer depletion has been recognized as a problem by the Vienna Convention for the Protection of the Ozone Layer and the 1987 Montreal Protocol (MP). The ozone layer shields the earth from harmful ultraviolet radiation (UV-B), which is more pronounced at the poles and around the equator. Industrialized countries have contributed significantly to the problem by releasing chlorofluorocarbons (CFCs) and halons into the atmosphere. The effect of these chemicals, which were known for their inertness, nonflammability, and nontoxicity, was discovered in 1874. Action to deal with the effects of CFCs and halons was initiated in 1985 in a 49-nation UN meeting. 21 nations signed a protocol limiting ozone depleting substances (ODS): CFCs and halons. Schedules were set based on each country's use in 1986; the target phaseout was set for the year 2000. The MP restricts trade in ODSs and weights the impact of substances to reflect the extent of damage; i.e., halons are 10 times more damaging than CFCs. ODS requirements for developing countries were eased to accommodate scarce resources and the small fraction of ODS emissions. An Interim Multilateral Fund under the Montreal Protocol (IMFMP) was established to provide loans to finance the costs to developing countries in meeting global environmental requirements. The IMFMP is administered by the World Bank, the UN Environmental Program, and the UN Development Program. Financing is available to eligible countries who use .3 kg of ODS/person/year. Rapid phaseout in developed countries has occurred due to strong support from industry and a lower than expected cost. Although there are clear advantages to rapid phaseout, there were no incentives included in the MP for rapid phaseout. Some of the difficulties occur because the schedules set minimum targets at the lowest possible cost. Also, costs cannot be minimized by a country-specific and ODS-specific process. The ways to improve implementation in scheduling and

  17. Is it true that ozone is always toxic? The end of a dogma

    International Nuclear Information System (INIS)

    Bocci, Velio

    2006-01-01

    There are a number of good experimental studies showing that exposure by inhalation to prolonged tropospheric ozone damages the respiratory system and extrapulmonary organs. The skin, if extensively exposed, may also contribute to the damage. The undoubtful strong reactivity of ozone has contributed to establish the dogma that ozone is always toxic and its medical application must be proscribed. Although it is less known, judiciously practiced ozonetherapy is becoming very useful either on its own or applied in combination with orthodox medicine in a broad range of pathologies. The opponents of ozonetherapy base their judgment on the ozone chemistry, and physicians, without any knowledge of the problem, are often skeptical. During the last 15 years, a clear understanding of the action of ozone in biology and medicine has been gained, allowing today to argue if it is true that ozone is always toxic. The fundamental points that are discussed in this paper are: the topography, anatomical and biochemical characteristics of the organs daily exposed to ozone versus the potent antioxidant capacity of blood exposed to a small and precisely calculated dose of ozone only for a few minutes. It is becoming clear how the respiratory system undergoing a chronic oxidative stress can release slowly, but steadily, a huge amount of toxic compounds able to enter the circulation and cause serious damage. The aim of this paper is to objectively evaluate this controversial issue

  18. Ozone-mist spray sterilization for pest control in agricultural management

    Science.gov (United States)

    Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun

    2013-02-01

    We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  19. Generation of ozone and safety aspects in an accelerator facility of BARC

    International Nuclear Information System (INIS)

    Dubey, Praveen; Sawatkar, Aparna R.; Sathe, Arun P.; Soundararajan, S.; Sarma, K.S.S.

    2009-01-01

    Industrial electron beam accelerators up to 10 MeV are commonly employed for different applications. During normal operation of an accelerator, the principal hazard is the high radiation level produced. Experiments and applications in which the electron beam is used to irradiate materials outside the accelerator vacuum system are associated with problems such as radiation damage and production of considerable quantities of ozone. The possible generation of ozone during the operation of an electron beam accelerator is of special interest due to reactivity, corrosivity and the toxic characteristics of ozone. Industrial hygiene surveys were conducted to estimate the airborne concentration of ozone during operations of the electron beam accelerator (Type: ILU-6; 2 MeV; 20 KW) at varied operating parameters. The ozone concentration in the accelerator room was measured at different powers of the accelerator and the ozone decay pattern was also observed after beam shut down. Ozone in the accelerator room was measured by different methods such as colorimetry using neutral buffered potassium iodide, chemiluminescence method using ethylene and by using electrochemical sensor. An air velocity meter was used to measure the linear air velocity across the exhaust grills and the number of air changes available in the accelerator room was calculated. Necessary control measures were suggested to keep the occupational exposure of the personnel to ozone concentrations well within the Threshold Limit Values. (author)

  20. Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation.

    Science.gov (United States)

    Hakeem, Khalid Rehman; Sabir, Muhammad; Ozturk, Munir; Akhtar, Mohd Sayeed; Ibrahim, Faridah Hanum

    Increased use of nitrogenous (N) fertilizers in agriculture has significantly altered the global N-cycle because they release nitrogenous gases of environmental concerns. The emission of nitrous oxide (N 2 O) contributes to the global greenhouse gas accumulation and the stratospheric ozone depletion. In addition, it causes nitrate leaching problem deteriorating ground water quality. The nitrate toxicity has been reported in a number of studies showing the health hazards like methemoglobinemia in infants and is a potent cause of cancer. Despite these evident negative environmental as well as health impacts, consumption of N fertilizer cannot be reduced in view of the food security for the teeming growing world population. Various agronomic and genetic modifications have been practiced to tackle this problem. Some agronomic techniques adopted include split application of N, use of slow-release fertilizers, nitrification inhibitors and encouraging the use of organic manure over chemical fertilizers. As a matter of fact, the use of chemical means to remediate nitrate from the environment is very difficult and costly. Particularly, removal of nitrate from water is difficult task because it is chemically non-reactive in dilute aqueous solutions. Hence, the use of biological means for nitrate remediation offers a promising strategy to minimize the ill effects of nitrates and nitrites. One of the important goals to reduce N-fertilizer application can be effectively achieved by choosing N-efficient genotypes. This will ensure the optimum uptake of applied N in a balanced manner and exploring the molecular mechanisms for their uptake as well as metabolism in assimilatory pathways. The objectives of this paper are to evaluate the interrelations which exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake and analyze the global consumption and demand for fertilizer nitrogen in relation to cereal production, evaluate the various

  1. The global nitrogen cycle in the twenty-first century.

    Science.gov (United States)

    Fowler, David; Coyle, Mhairi; Skiba, Ute; Sutton, Mark A; Cape, J Neil; Reis, Stefan; Sheppard, Lucy J; Jenkins, Alan; Grizzetti, Bruna; Galloway, James N; Vitousek, Peter; Leach, Allison; Bouwman, Alexander F; Butterbach-Bahl, Klaus; Dentener, Frank; Stevenson, David; Amann, Marcus; Voss, Maren

    2013-07-05

    Global nitrogen fixation contributes 413 Tg of reactive nitrogen (Nr) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic Nr are on land (240 Tg N yr(-1)) within soils and vegetation where reduced Nr contributes most of the input through the use of fertilizer nitrogen in agriculture. Leakages from the use of fertilizer Nr contribute to nitrate (NO3(-)) in drainage waters from agricultural land and emissions of trace Nr compounds to the atmosphere. Emissions, mainly of ammonia (NH3) from land together with combustion related emissions of nitrogen oxides (NOx), contribute 100 Tg N yr(-1) to the atmosphere, which are transported between countries and processed within the atmosphere, generating secondary pollutants, including ozone and other photochemical oxidants and aerosols, especially ammonium nitrate (NH4NO3) and ammonium sulfate (NH4)2SO4. Leaching and riverine transport of NO3 contribute 40-70 Tg N yr(-1) to coastal waters and the open ocean, which together with the 30 Tg input to oceans from atmospheric deposition combine with marine biological nitrogen fixation (140 Tg N yr(-1)) to double the ocean processing of Nr. Some of the marine Nr is buried in sediments, the remainder being denitrified back to the atmosphere as N2 or N2O. The marine processing is of a similar magnitude to that in terrestrial soils and vegetation, but has a larger fraction of natural origin. The lifetime of Nr in the atmosphere, with the exception of N2O, is only a few weeks, while in terrestrial ecosystems, with the exception of peatlands (where it can be 10(2)-10(3) years), the lifetime is a few decades. In the ocean, the lifetime of Nr is less well known but seems to be longer than in terrestrial ecosystems and may represent an important long-term source of N2O that will respond very slowly to control measures on the sources of Nr from which it is produced.

  2. Ozone, OH and NO3 sink terms at a coniferous forest site in Central Germany: Role of biogenic VOCs

    Science.gov (United States)

    Bonn, B.; Bourtsoukidis, S.; Haunold, W.; Sitals, R.; Jacobi, S.

    2012-04-01

    sink terms during daytime. The contributions of monoterpene and isoprene reactions strengthened towards the summer period, while sesquiterpene reactions slowed down. Hydroxyl radical: The picture becomes much more complex for OH. Besides the reaction with nitrogen dioxide, isoprene and monoterpenes were key destructing agents of OH with estimated contributions of about 50-60%, increasing towards the summertime. Contributions of their oxidation products to the total sink of OH are supposed to be less than 20% but showing more intense during summer and less towards cooler periods. Sesquiterpene OH-reactions only contributed to 10% with a maximum of about 20% at the early April. Nitrate radical: NO3 displayed a mixture of the sinks of OH and ozone. The dominant destruction takes place via NOx-reactions (about 50%) and the remainder primarily via monoterpene (36±20%), sesquiterpene (11±8%) and isoprene (2±1%) OH-reactions. From our observations at this particular site it is apparent that the spruce forest provides a quite efficient variety of pathways to compensate oxidation stress. This is essentially displayed in the variation of emission pattern of different compound classes with different reactivity for the three major oxidation agents. One needs to be aware of the fact that the sink is highly variable in space, too. Therefore we conclude: In order to understand and describe the oxidation tolerance of a certain ecosystem one needs to detect at least the reactive hydrocarbons. [1] Jenkin, M.E., Shallcross, D. E., and Harvey, J. N.: Development and application of a possible mechanism for the generation of cis-pinic acid form the ozonolysis of α- and β-pinene. Atmos.Environ., 34, 2837-2850, 2000.

  3. Contribution of regional-scale fire events to ozone and PM2.5 ...

    Science.gov (United States)

    Two specific fires from 2011 are tracked for local to regional scale contribution to ozone (O3) and fine particulate matter (PM2.5) using a freely available regulatory modeling system that includes the BlueSky wildland fire emissions tool, Spare Matrix Operator Kernel Emissions (SMOKE) model, Weather and Research Forecasting (WRF) meteorological model, and Community Multiscale Air Quality (CMAQ) photochemical grid model. The modeling system was applied to track the contribution from a wildfire (Wallow) and prescribed fire (Flint Hills) using both source sensitivity and source apportionment approaches. The model estimated fire contribution to primary and secondary pollutants are comparable using source sensitivity (brute-force zero out) and source apportionment (Integrated Source Apportionment Method) approaches. Model estimated O3 enhancement relative to CO is similar to values reported in literature indicating the modeling system captures the range of O3 inhibition possible near fires and O3 production both near the fire and downwind. O3 and peroxyacetyl nitrate (PAN) are formed in the fire plume and transported downwind along with highly reactive VOC species such as formaldehyde and acetaldehyde that are both emitted by the fire and rapidly produced in the fire plume by VOC oxidation reactions. PAN and aldehydes contribute to continued downwind O3 production. The transport and thermal decomposition of PAN to nitrogen oxides (NOX) enables O3 production in areas

  4. Enhanced nitrogen deposition over China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuejun; Zhang, Ying; Han, Wenxuan; Tang, Aohan; Shen, Jianlin; Cui, Zhenling; Christie, Peter; Zhang, Fusuo [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Vitousek, Peter [Department of Biology, Stanford University, Stanford, California 94305 (United States); Erisman, Jan Willem [VU University Amsterdam, 1081 HV Amsterdam (Netherlands); Goulding, Keith [The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden AL5 2JQ (United Kingdom); Fangmeier, Andreas [Institute of Landscape and Plant Ecology, University of Hohenheim, 70593 Stuttgart (Germany)

    2013-02-28

    China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen. These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity. However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s, before the introduction of mitigation measures. Nitrogen from ammonium (NH4+) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3-), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized croplands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.

  5. Study of the superficial ozone concentrations in the atmosphere of Comunidad de Madrid using passive samplers

    Directory of Open Access Journals (Sweden)

    D. Galán Madruga

    2001-06-01

    Full Text Available The ozone is a secondary atmospheric pollutant which is generated for photochemical reactions of volatil organic compounds (VOC’s and nitrogen oxides (NOx. In Spain the ozone is a big problem as a consequence of the solar radiation to reach high levels. Exposure over a period of time to elevated ozone concentrations can cause damage in the public health and alterations in the vegetation.The aim of this study is to carry out the development and validation of a measurement method to let asses the superficial ozone levels in the Comunidad de Madrid, by identifing the zones more significants, where to measure with UV photometric monitors (automatics methods this pollutant and where the health and the vegetation can be affected. To such effect, passive samplers are used, which have glass fiber filters coated with a solution of sodium nitrite, potassium carbonate, glycerol and water. The nitrite ion in the presence of ozone is oxidized to nitrato ion, which it is extrated with ultrapure water and analyzed for ion chromatography, by seen proportional to the concentration existing in the sampling point.The results of validation from field tests indicate a excellent correlation between the passive and the automatic method.The higher superficial ozone concentrations are placed in rural zones, distanced of emission focus of primary pollutants (nitrogen oxides and volatil organic compounds... principally in direction soutwest and northwest of the Comunidad of Madrid.

  6. Exploration of the formation mechanism and source attribution of ambient ozone in Chongqing with an observation-based model

    Institute of Scientific and Technical Information of China (English)

    SU Rong; ZHAI ChongZhi; ZHANG YuanHang; LU KeDing; YU JiaYan; TAN ZhaoFeng; JIANG MeiQing; LI Jing; XIE ShaoDong; WU YuSheng; ZENG LiMin

    2018-01-01

    An intensive field campaign was conducted in Chongqing during the summer of 2015 to explore the formation mechanisms of ozone pollution.The sources of ozone,the local production rates,and the controlling factors,as well as key species of volatile organic compounds (VOCs),were quantified by integrating a local ozone budget analysis,calculations of the relative incremental reactivity,and an empirical kinetic model approach.It was found that the potential for rapid local ozone formation exists in Chongqing.During ozone pollution episodes,the ozone production rates were found to be high at the upwind station Nan Quan,the urban station Chao Zhan,and the downwind station Jin-Yun Shan.The average local ozone production rate was 30× 10-9 V/V h1 and the daily integration of the produced ozone was greater than 180× 10-9 V/V.High ozone concentrations were associated with urban and downwind air masses.At most sites,the local ozone production was VOC-limited and the key species were aromatics and alkene,which originated mainly from vehicles and solvent usage.In addition,the air masses at the northwestern rural sites were NOx-limited and the local ozone production rates were significantly higher during the pollution episodes due to the increased NOx concentrations.In summary,the ozone abatement strategies of Chongqing should be focused on the mitigation of VOCs.Nevertheless,a reduction in NOx is also beneficial for reducing the regional ozone peak values in Chongqing and the surrounding areas.

  7. Ground-level ozone in the Pearl River Delta and the roles of VOC and NO(x) in its production.

    Science.gov (United States)

    Shao, Min; Zhang, Yuanhang; Zeng, Limin; Tang, Xiaoyan; Zhang, Jing; Zhong, Liuju; Wang, Boguang

    2009-01-01

    In many regions of China, very rapid economic growth has been accompanied by air pollution caused by vehicle emissions. In one of these regions, the Pearl River Delta, the variations of ground-level ozone and its precursors were investigated. Overall, the ambient concentrations of NO(2) increased quickly between 1995 and 1996, but then slightly decreased due to stringent nitrogen oxide (NO(x)) emission controls. Nonetheless, ambient NO(2) levels in the Pearl River Delta remained high. The regional average concentrations of volatile organic compounds (VOCs) were 290 ppbC in summer and 190 ppbC in autumn. Local emissions and long-distance transportation of pollutants play important roles in the regional distribution of VOCs. Ambient O(3) production is significant in urban areas and also downwind of cities. The relative incremental reactivities (RIRs), determined by an observation-based model, showed that ground-level ozone formation in the Guangzhou urban area is generally limited by the concentrations of VOCs, but there are also measurable impacts of NO(x).

  8. The Eyjafjallajökull eruption in April 2010 – detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles

    Directory of Open Access Journals (Sweden)

    H. Flentje

    2010-10-01

    Full Text Available Volcanic emissions from the Eyjafjallajökull volcano eruption on the Southern fringe of Iceland in April 2010 were detected at the Global Atmosphere Watch (GAW station Zugspitze/Hohenpeissenberg (Germany by means of in-situ measurements, ozone sondes and ceilometers. Information from the German Meteorological Service (DWD ceilometer network (Flentje et al., 2010 aided identifying the air mass origin. We discuss ground level in-situ measurements of sulphur dioxide (SO2, sulphuric acid (H2SO4 and particulate matter as well as ozone sonde profiles and column measurements of SO2 by a Brewer spectrometer. At Hohenpeissenberg, a number of reactive gases, e.g. carbon monoxide and nitrogen oxides, and particle properties, e.g. size distribution and ionic composition, were additionally measured during this period. Our results describe the arrival of the volcanic plume at Zugspitze and Hohenpeissenberg during 16 and 17 April 2010 and its residence in the planetary boundary layer (PBL for several days thereafter. The ash plume was first seen in the ceilometer backscatter profiles at Hohenpeissenberg in about 6–7 km altitude. After entrainment into the PBL at noon of 17 April, largely enhanced values of sulphur dioxide, sulphuric acid and super-micron-particle number concentration were recorded at Zugspitze/Hohenpeissenberg till 21 April.

  9. Effect of regional precursor emission controls on long-range ozone transport – Part 1: Short-term changes in ozone air quality

    Directory of Open Access Journals (Sweden)

    J. J. West

    2009-08-01

    Full Text Available Observations and models demonstrate that ozone and its precursors can be transported between continents and across oceans. We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx emissions from each of nine world regions on surface ozone air quality in that region and all other regions. In doing so, we quantify the relative importance of long-range transport between all source-receptor pairs, for direct short-term ozone changes. We find that for population-weighted concentrations during the three-month "ozone-season", the strongest inter-regional influences are from Europe to the Former Soviet Union, East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for source regions in the tropics and Southern Hemisphere, which we attribute mainly to greater sensitivity to changes in NOx in the lower troposphere, and secondarily to increased vertical convection to the free troposphere in tropical regions, allowing pollutants to be transported further. Results show, for example, that NOx reductions in North America are ~20% as effective per unit NOx in reducing ozone in Europe during summer, as NOx reductions from Europe itself. Reducing anthropogenic emissions of non-methane volatile organic compounds (NMVOCs and carbon monoxide (CO by 10% in selected regions, can have as large an impact on long-range ozone transport as NOx reductions, depending on the source region. We find that for many source-receptor pairs, the season of greatest long-range influence does not coincide with the season when ozone is highest in the receptor region. Reducing NOx emissions in most source regions causes a larger decrease in export of ozone from the source region than in ozone production outside of the source region.

  10. Stratospheric ozone - Impact of human activity

    Science.gov (United States)

    Mcelroy, Michael B.; Salawitch, Ross J.

    1989-01-01

    The current knowledge of the chemistry of the stratosphere is reviewed, with particular consideration given to the measurements from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment and from the Airborne Antarctic Ozone Experiment. Analysis of the ATMOS data at 30 deg N suggests that the current understanding of the contemporary-stratosphere chemistry at mid-latitudes is relatively complete, except for possible problems with the diurnal variations of N2O5 at low altitudes, and with ClNO3 at higher altitudes. Except for some difficulties with these two compounds, the data from ATMOS agree well with the gas phase models for nitrogen and chlorine species at 30 deg N in spring. It is emphasized that, in addition to the HOCl mechanism proposed by Solomon et al. (1986), the ClO-BrO scheme proposed by McElroy et al. (1986), and the ClO dimer mechanism introduced by Molina and Molina (1987), other processes exist that are responsible for ozone removal.

  11. Trend Analysis of Nitrogen Deposition to Baltic Sea and its sub basins

    Science.gov (United States)

    Semeena, V. S.; Jerzy, Bartnicki

    2009-04-01

    Since the beginning of last century, Baltic Sea has changed from a clear-water sea into a eutrophic marine environment. Eutrophication is the major problem in the Baltic Sea. Excessive nitrogen and phosphorus loads coming from land-based sources within and outside the catchment area of the bordering countries of the Baltic Sea are the main cause of the eutrophication in the sea. Even though a major part of nitrogen(75%) and phosphorus load(95%) enter the sea via rivers or as water-born discharges, 25% of the nitrogen load comes as atmospheric deposition. Numerical models are the best tools to measure atmospheric deposition into sea waters. We have used the latest version of the Unified EMEP model - which has been developed at the EMEP/MSC-W (Meteorological Synthesizing Centre - West of EMEP) for simulating atmospheric transport and deposition of acidifying and eutrophying compounds as well as photo-oxidants in Europe- to study the trends in atmospheric deposition of nitrogen into Baltic Sea for the period 1995-2006. The model domain covers Europe and the Atlantic Ocean. The model grid (of the size 170×133) has a horizontal resolution of 50 km at 60o N, which is consistent with the resolution of emission data reported to CLRTAP. Approximately 10 of these layers are placed below 2 km to obtain high resolution of the boundary layer which is of special importance to the long range transport of air pollution. EMEP model has been thouroughly validated (Fagerli et.al.[1], Simpson et.al.[2], Simpson et.al.[3] ) The contribution of deposition of nitrogen into Baltic Sea from each of the bordering countries of the Baltic Sea and the deposition trends for the period 1995-2006 has been analysed and the results will be presented. References: [1]. Fagerli H., Simpson D. and Aas W.: Model performance for sulphur and nitrogen compounds for the period 1980 to 2000. [In:] L. Tarraśon, (editor), Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. EMEP

  12. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  13. Experimental study of ozone synthesis

    International Nuclear Information System (INIS)

    Garamoon, A A; Elakshar, F F; Nossair, A M; Kotp, E F

    2002-01-01

    A silent discharge ozonizer has been constructed with a design that enables the study of ozone concentration behaviour as a function of different parameters when oxygen used as a working gas. The behaviour of ozone concentration as a function of discharge current density has four characteristic regions. The concentration is enhanced by more than threefold whenever gas pressure is reduced by a factor of two. The flow rate of the working gas is a more effective parameter on ozone concentration than the gas pressure. When the flow rate is kept constant, and the pressure is decreased by 100%, the ozone concentration increases by only 10%. On the other hand, when the flow rate is decreased by 13%, the ozone concentration increases by 200%, whenever the gas pressure is kept constant. The concentration is nearly doubled when the gap space is increased by four times under the same conditions. The length of the discharge region, the thickness and the dielectric constant of the insulating materials are found to have a considerable effect on the generated ozone concentration. Also, the ozone concentration is ten times less when air is used instead of oxygen as a working gas. A maximum efficiency of 185 g/kWh, is obtained for the present system

  14. Measurements and Mesoscale Modeling of Autumnal Vertical Ozone Profiles in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Yen-Ping Peng

    2008-01-01

    Full Text Available Vertical measurements of ozone were made using a tethered balloon at the Linyuan site in Kaohsiung County, southern Taiwan. Ozone was monitored at altitudes of 0, 100, 300, 500, and 1000 m from November 23 to 25 in 2005. The potential temperature profiles revealed a stable atmosphere during the study period, largely because of the dominance of the high-pressure system and nocturnal radiation cooling close to the surface. The mixing height was low (50 - 300 m, particularly in the late night and early morning. The surface ozone concentrations that were predicted using TAPM (The Air Pollution Model were high (33.7 - 119 ppbv in the daytime (10:00 - 16:00 and were low (10 - 40 ppbv at other times; the predictions of which were consistent with the observations. The simulated surface ozone concentrations reveal that costal lands typically had higher ozone concentrations than those inland, because most industrial parks are located in or close to the boundaries of Kaohsiung City. Both measurements and simulations indicate that daytime ozone concentrations decreased quickly with increasing height at altitudes below 300 m; while nighttime ozone concentrations were lower at low altitudes (50 to 300 m than at higher altitudes, partly because of dry deposition and titration of surface ozone by the near-surface nitrogen oxides (NOx and partly because of the existence of the residual layer above the stable nocturnal boundary layer. The simulations show a good correlation between the maximum daytime surface ozone concentration and average nighttime ozone concentration above the nocturnal boundary layer.

  15. Determination of nitrous oxide and dinitrogen pentoxide concentrations in the output of air-fed ozone generators of high power density

    International Nuclear Information System (INIS)

    Kogelschatz, U.; Baessler, P.

    1987-01-01

    Infrared absorption spectroscopy is utilized to identify and measure different nitrogen oxide species in the output of air-fed ozone generators. The concentrations of nitrous oxide (N 2 O) and dinitrogen pentoxide (N 2 O 5 ) were determined over a wide parameter range of modern high power medium-frequency ozone generators. With a typical ozonation dose of 1 mg ozone per liter of drinking water, less than 10 μ N 2 O and about 20 μ N 2 O 5 are introduced into one liter of drinking water

  16. The relation between the production efficiency of nitrogen atoms and the electrical characteristics of a dielectric barrier discharge

    NARCIS (Netherlands)

    Peeters, F.J.J.; Yang, R.; van de Sanden, M.C.M.

    2015-01-01

    In a nitrogen plasma jet, atomic nitrogen is the longest lived radical species and, through recombination, gives rise to highly reactive excited nitrogen species. In this paper, the atomic nitrogen concentration in the effluent of a nitrogen-fed dielectric barrier discharge (DBD) is determined by

  17. Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment Ambio

    NARCIS (Netherlands)

    Shibata, H.; Galloway, J.N.; Leach, A.M.; Noll, C.; Erisman, J.W.

    2016-01-01

    Nitrogen (N) management presents a sustainability dilemma: N is strongly linked to energy and food production, but excess reactiv