WorldWideScience

Sample records for ozone precursor emissions

  1. Impacts of Lowered Urban Air Temperatures on Precursor Emission and Ozone Air Quality.

    Science.gov (United States)

    Taha, Haider; Konopacki, Steven; Akbari, Hashem

    1998-09-01

    Meteorological, photochemical, building-energy, and power plant simulations were performed to assess the possible precursor emission and ozone air quality impacts of decreased air temperatures that could result from implementing the "cool communities" concept in California's South Coast Air Basin (SoCAB). Two pathways are considered. In the direct pathway, a reduction in cooling energy use translates into reduced demand for generation capacity and, thus, reduced precursor emissions from electric utility power plants. In the indirect pathway, reduced air temperatures can slow the atmospheric production of ozone as well as precursor emission from anthropogenic and biogenic sources. The simulations suggest small impacts on emissions following implementation of cool communities in the SoCAB. In summer, for example, there can be reductions of up to 3% in NO x emissions from in-basin power plants. The photochemical simulations suggest that the air quality impacts of these direct emission reductions are small. However, the indirect atmospheric effects of cool communities can be significant. For example, ozone peak concentrations can decrease by up to 11% in summer and population-weighted exceedance exposure to ozone above the California and National Ambient Air Quality Standards can decrease by up to 11 and 17%, respectively. The modeling suggests that if these strategies are combined with others, such as mobile-source emission control, the improvements in ozone air quality can be substantial.

  2. Low modeled ozone production suggests underestimation of precursor emissions (especially NOx) in Europe

    Science.gov (United States)

    Oikonomakis, Emmanouil; Aksoyoglu, Sebnem; Ciarelli, Giancarlo; Baltensperger, Urs; Prévôt, André Stephan Henry

    2018-02-01

    High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone modeling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of the ozone-temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and meteorology by using the regional air quality model, the Comprehensive Air Quality Model with Extensions (CAMx). The results show that the model significantly underestimates the observed high afternoon surface ozone mixing ratios (≥ 60 ppb) by 10-20 ppb and overestimates the lower ones (degradation of the model performance for the lower ozone mixing ratios. The model performance for ozone-temperature correlation is also better when NOx emissions are doubled. In the Benelux area, however, the third scenario (where both NOx and VOC emissions are increased) leads to a better model performance. Although increasing only the traffic NOx emissions by a factor of 4 gave very similar results to the doubling of all NOx emissions, the first scenario is more consistent with the uncertainties reported by other studies than the latter, suggesting that high uncertainties in NOx emissions might originate mainly from the road-transport sector rather than from other sectors. The impact of meteorology was examined with three sensitivity tests: (i) increased surface temperature by 4 °C, (ii) reduced wind speed by 50 % and (iii) doubled wind speed. The first two scenarios led to a consistent increase in all surface ozone mixing ratios, thus improving the model performance for the high ozone values but significantly degrading it for the low ozone values, while the third scenario had exactly the

  3. Low modeled ozone production suggests underestimation of precursor emissions (especially NOx in Europe

    Directory of Open Access Journals (Sweden)

    E. Oikonomakis

    2018-02-01

    Full Text Available High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone modeling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of the ozone–temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and meteorology by using the regional air quality model, the Comprehensive Air Quality Model with Extensions (CAMx. The results show that the model significantly underestimates the observed high afternoon surface ozone mixing ratios (≥  60 ppb by 10–20 ppb and overestimates the lower ones (<  40 ppb by 5–15 ppb, resulting in a misleading good agreement with the observations for average ozone. The model also underestimates the ozone–temperature regression slope by about a factor of 2 for most of the measurement stations. To investigate the impact of emissions, four scenarios were tested: (i increased volatile organic compound (VOC emissions by a factor of 1.5 and 2 for the anthropogenic and biogenic VOC emissions, respectively, (ii increased nitrogen oxide (NOx emissions by a factor of 2, (iii a combination of the first two scenarios and (iv increased traffic-only NOx emissions by a factor of 4. For southern, eastern, and central (except the Benelux area Europe, doubling NOx emissions seems to be the most efficient scenario to reduce the underestimation of the observed high ozone mixing ratios without significant degradation of the model performance for the lower ozone mixing ratios. The model performance for ozone–temperature correlation is also better when NOx emissions are doubled. In the Benelux area, however, the third scenario

  4. Effect of regional precursor emission controls on long-range ozone transport – Part 2: Steady-state changes in ozone air quality and impacts on human mortality

    Directory of Open Access Journals (Sweden)

    J. J. West

    2009-08-01

    Full Text Available Large-scale changes in ozone precursor emissions affect ozone directly in the short term, and also affect methane, which in turn causes long-term changes in ozone that affect surface ozone air quality. Here we assess the effects of changes in ozone precursor emissions on the long-term change in surface ozone via methane, as a function of the emission region, by modeling 10% reductions in anthropogenic nitrogen oxide (NOx emissions from each of nine world regions. Reductions in NOx emissions from all world regions increase methane and long-term surface ozone. While this long-term increase is small compared to the intra-regional short-term ozone decrease, it is comparable to or larger than the short-term inter-continental ozone decrease for some source-receptor pairs. The increase in methane and long-term surface ozone per ton of NOx reduced is greatest in tropical and Southern Hemisphere regions, exceeding that from temperate Northern Hemisphere regions by roughly a factor of ten. We also assess changes in premature ozone-related human mortality associated with regional precursor reductions and long-range transport, showing that for 10% regional NOx reductions, the strongest inter-regional influence is for emissions from Europe affecting mortalities in Africa. Reductions of NOx in North America, Europe, the Former Soviet Union, and Australia are shown to reduce more mortalities outside of the source regions than within. Among world regions, NOx reductions in India cause the greatest number of avoided mortalities per ton, mainly in India itself. Finally, by increasing global methane, NOx reductions in one hemisphere tend to cause long-term increases in ozone concentration and mortalities in the opposite hemisphere. Reducing emissions of methane, and to a lesser extent carbon monoxide and non-methane volatile organic compounds, alongside NOx reductions would

  5. NOx emissions trading: Precursor to future growth

    International Nuclear Information System (INIS)

    Colella, A.

    1993-01-01

    Title I of the Clean Air Act Amendments (CAAA) of 1990 specified the framework for enhanced regulation in ozone non-attainment areas with increasingly stringent requirements dependent on the area classification - marginal, moderate, serious, severe or extreme. Before the CAAA were passed, only volatile organic compounds (VOCs) were regulated as precursors to ozone formation, Now, by statute, emissions of nitrogen oxides (NO x ) are also regulated as ozone precursor. Under the CAAA, new sources and modifications of existing sources are subject to Title I permitting requirements in ozone non-attainment areas if emissions of NO x and/or VOCs exceed certain triggering levels. For many new or facility expansion projects, especially power generation, the NO x thresholds are easily exceeded thus triggering Title I non-attainment new source review which requires application of control technology to new equipment which results in the Lowest Achievable Emission Rate (LAER), and securing emission reductions either internally or from other major sources to offset the increased emission from the new or modified source. The selection of a LAER technology is generally within an applicant's control. An applicant can determine up-front the engineering and cost considerations associated with LAER technology is assessing a project's viability. However, without a clear source of emission offsets of a means to secure them, assessing project viability could be difficult if not impossible. No available emission offsets means no industrial growth. For sources of NO x undergoing Title I new source review, a regional or state banking system that facilitates NO x emissions trading is needed as a precursor to future growth. This paper presents an overview of EPA's Emissions Trading Policy and Title I new source review offset provisions. Industry's concerns about emissions trading and recommendations for future trading programs are presented

  6. Assessing the effects of oil sands related ozone precursor emissions on ambient ozone levels in the Alberta oil sands region, Canada

    Science.gov (United States)

    Cho, Sunny; Vijayaraghavan, Krish; Spink, David; Cosic, Biljana; Davies, Mervyn; Jung, Jaegun

    2017-11-01

    A study was undertaken to determine whether, and the extent to which, increased ground-level ozone (O3) precursor emissions from oil sands development have impacted ambient air quality in the north-eastern Alberta, Canada, over the period 1998 to 2012. Temporal trends in emissions of O3 precursors (NOx and VOC) and ambient air concentrations of O3 precursors, and O3 were examined using the Theil-Sen statistical analysis method. Statistically significant correlations between NOx emissions and ambient NOx concentrations were found mainly near surface (open-pit) mining areas where mine fleets are a large source of NOx emissions. No statistically significant trends in the 4th highest daily maximum 8-hr average O3 at any of the continuous and passive ambient air monitoring stations were found. A significant long-term decrease in monthly averaged O3 is observed at some ambient monitoring sites in summer. A visual examination of long-term variations in annual NOx and VOC emissions and annual 4th highest daily maximum 8-hr O3 concentrations does not reveal any indication of a correlation between O3 concentrations and O3 precursor emissions or ambient levels in the study area. Despite a significant increase in oil sands NOx emissions (8%/yr), there is no statistically significant increase in long-term O3 concentrations at any of monitoring stations considered. This suggests that there is surplus NOx available in the environment which results in a titration of ambient O3 in the areas that have ambient monitoring. The limited ambient O3 monitoring data distant from NOx emission sources makes it impossible to assess the impact of these increased O3 precursor levels on O3 levels on a regional scale. As a precautionary measure, the increasing oil sands development O3 precursor emissions would require that priority be given to the management of these emissions to prevent possible future O3 ambient air quality issues.

  7. Effect of regional precursor emission controls on long-range ozone transport – Part 1: Short-term changes in ozone air quality

    Directory of Open Access Journals (Sweden)

    J. J. West

    2009-08-01

    Full Text Available Observations and models demonstrate that ozone and its precursors can be transported between continents and across oceans. We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx emissions from each of nine world regions on surface ozone air quality in that region and all other regions. In doing so, we quantify the relative importance of long-range transport between all source-receptor pairs, for direct short-term ozone changes. We find that for population-weighted concentrations during the three-month "ozone-season", the strongest inter-regional influences are from Europe to the Former Soviet Union, East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for source regions in the tropics and Southern Hemisphere, which we attribute mainly to greater sensitivity to changes in NOx in the lower troposphere, and secondarily to increased vertical convection to the free troposphere in tropical regions, allowing pollutants to be transported further. Results show, for example, that NOx reductions in North America are ~20% as effective per unit NOx in reducing ozone in Europe during summer, as NOx reductions from Europe itself. Reducing anthropogenic emissions of non-methane volatile organic compounds (NMVOCs and carbon monoxide (CO by 10% in selected regions, can have as large an impact on long-range ozone transport as NOx reductions, depending on the source region. We find that for many source-receptor pairs, the season of greatest long-range influence does not coincide with the season when ozone is highest in the receptor region. Reducing NOx emissions in most source regions causes a larger decrease in export of ozone from the source region than in ozone production outside of the source region.

  8. Tropospheric ozone using an emission tagging technique in the CAM-Chem and WRF-Chem models

    Science.gov (United States)

    Lupascu, A.; Coates, J.; Zhu, S.; Butler, T. M.

    2017-12-01

    Tropospheric ozone is a short-lived climate forcing pollutant. High concentration of ozone can affect human health (cardiorespiratory and increased mortality due to long-term exposure), and also it damages crops. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used as an important component of the design of emissions reduction strategies by indicating which emission sources could be targeted for effective reductions, thus reducing the burden of ozone pollution. Using a "tagging" approach within the CAM-Chem (global) and WRF-Chem (regional) models, we can quantify the contribution of individual emission of NOx and VOC precursors on air quality. Hence, when precursor emissions of NOx are tagged, we have seen that the largest contributors on ozone levels are the anthropogenic sources, while in the case of precursor emissions of VOCs, the biogenic sources and methane account for more than 50% of ozone levels. Further, we have extended the NOx tagging method in order to investigate continental source region contributions to concentrations of ozone over various receptor regions over the globe, with a zoom over Europe. In general, summertime maximum ozone in most receptor regions is largely attributable to local emissions of anthropogenic NOx and biogenic VOC. During the rest of the year, especially during springtime, ozone in most receptor regions shows stronger influences from anthropogenic emissions of NOx and VOC in remote source regions.

  9. Towards an Integrated Assessment Model for Tropospheric Ozone-Emission Inventories, Scenarios and Emission-control Options

    OpenAIRE

    Olsthoorn, X.

    1994-01-01

    IIASA intends to extend its RAINS model for addressing the issue of transboundary ozone air pollution. This requires the development of a VOC-emissions module, VOCs being precursors in ozone formation. The module should contain a Europe-wide emission inventory, a submodule for developing emission scenarios and a database of measures for VOC-emission control, including data about control effectiveness and control costs. It is recommended to use the forthcoming CORINAIR90 inventory for construc...

  10. Ozone response to emission changes: a modeling study during the MCMA-2006/MILAGRO Campaign

    Directory of Open Access Journals (Sweden)

    J. Song

    2010-04-01

    Full Text Available The sensitivity of ozone production to precursor emissions was investigated under five different meteorological conditions in the Mexico City Metropolitan Area (MCMA during the MCMA-2006/MILAGRO field campaign using the gridded photochemical model CAMx driven by observation-nudged WRF meteorology. Precursor emissions were constrained by the comprehensive data from the field campaign and the routine ambient air quality monitoring network. Simulated plume mixing and transport were examined by comparing with measurements from the G-1 aircraft during the campaign. The observed concentrations of ozone precursors and ozone were reasonably well reproduced by the model. The effects of reducing precursor emissions on urban ozone production were performed for three representative emission control scenarios. A 50% reduction in VOC emissions led to 7 to 22 ppb decrease in daily maximum ozone concentrations, while a 50% reduction in NOx emissions leads to 4 to 21 ppb increase, and 50% reductions in both NOx and VOC emission decrease the daily maximum ozone concentrations up to 10 ppb. These results along with a chemical indicator analysis using the chemical production ratios of H2O2 to HNO3 demonstrate that the MCMA urban core region is VOC-limited for all meteorological episodes, which is consistent with the results from MCMA-2003 field campaign; however the degree of the VOC-sensitivity is higher during MCMA-2006 due to lower VOCs, lower VOC reactivity and moderately higher NOx emissions. Ozone formation in the surrounding mountain/rural area is mostly NOx-limited, but can be VOC-limited, and the range of the NOx-limited or VOC-limited areas depends on meteorology.

  11. Radiative forcing and climate metrics for ozone precursor emissions: the impact of multi-model averaging

    Directory of Open Access Journals (Sweden)

    C. R. MacIntosh

    2015-04-01

    Full Text Available Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOCs (volatile organic compounds and CO. When these ozone changes are used to calculate radiative forcing (RF (and climate metrics such as the global warming potential (GWP and global temperature-change potential (GTP there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane concentration changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution source–receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in four regions (East Asia, Europe, North America and South Asia. We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOCs and 2% for NOx. Differences of up to 60% for NOx 7% for VOCs and 3% for CO are introduced into the 20 year GWP. The differences for the 20 year GTP are smaller than for the GWP for NOx, and similar for the other species. However, estimates of the standard deviation calculated from the ensemble-mean input fields (where the standard deviation at each point on the model grid is added to or subtracted from the mean field are almost always substantially larger in RF, GWP and GTP metrics than the true standard deviation, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. The order of averaging has most impact on the metrics for NOx, as the net values for these quantities is the residual of the sum of terms of opposing signs. For example, the standard deviation for the 20 year GWP is 2–3

  12. Future heat waves and surface ozone

    Science.gov (United States)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  13. Tropospheric Ozone Change from 1980 to 2010 Dominated by Equatorward Redistribution of Emissions

    Science.gov (United States)

    Zhang, Yuqiang; Cooper, Owen R.; Gaudel, Audrey; Thompson, Anne M.; Nedelec, Philippe; Ogino, Shin-Ya; West, J. Jason

    2016-01-01

    Ozone is an important air pollutant at the surface, and the third most important anthropogenic greenhouse gas in the troposphere. Since 1980, anthropogenic emissions of ozone precursors methane, non-methane volatile organic compounds, carbon monoxide and nitrogen oxides (NOx) have shifted from developed to developing regions. Emissions have thereby been redistributed equatorwards, where they are expected to have a stronger effect on the tropospheric ozone burden due to greater convection, reaction rates and NOx sensitivity. Here we use a global chemical transport model to simulate changes in tropospheric ozone concentrations from 1980 to 2010, and to separate the influences of changes in the spatial distribution of global anthropogenic emissions of short-lived pollutants, the magnitude of these emissions, and the global atmospheric methane concentration. We estimate that the increase in ozone burden due to the spatial distribution change slightly exceeds the combined influences of the increased emission magnitude and global methane. Emission increases in Southeast, East and South Asia may be most important for the ozone change, supported by an analysis of statistically significant increases in observed ozone above these regions. The spatial distribution of emissions dominates global tropospheric ozone, suggesting that the future ozone burden will be determined mainly by emissions from low latitudes.

  14. Source attribution of tropospheric ozone

    Science.gov (United States)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  15. The potential near-source ozone impacts of upstream oil and gas industry emissions.

    Science.gov (United States)

    Olaguer, Eduardo P

    2012-08-01

    Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution.

  16. Using satellite data to guide emission control strategies for surface ozone pollution

    Science.gov (United States)

    Jin, X.; Fiore, A. M.

    2017-12-01

    Surface ozone (O3) has adverse effects on public health, agriculture and ecosystems. As a secondary pollutant, ozone is not emitted directly. Ozone forms from two classes of precursors: NOx and VOCs. We use satellite observations of formaldehyde (a marker of VOCs) and NO2 (a marker of NOx) to identify areas which would benefit more from reducing NOx emissions (NOx-limited) versus areas where reducing VOC emissions would lead to lower ozone (VOC-limited). We use a global chemical transport model (GEOS-Chem) to develop a set of threshold values that separate the NOx-limited and VOC-limited conditions. Combining these threshold values with a decadal record of satellite observations, we find that U.S. cities (e.g. New York, Chicago) have shifted from VOC-limited to NOx-limited ozone production regimes in the warm season. This transition reflects the NOx emission controls implemented over the past decade. Increasing NOx sensitivity implies that regional NOx emission control programs will improve O3 air quality more now than it would have a decade ago.

  17. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul.

    Science.gov (United States)

    Im, Ulas; Poupkou, Anastasia; Incecik, Selahattin; Markakis, Konstantinos; Kindap, Tayfun; Unal, Alper; Melas, Dimitros; Yenigun, Orhan; Topcu, Sema; Odman, M Talat; Tayanc, Mete; Guler, Meltem

    2011-03-01

    Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25ppb. The VOC/NO(x) ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NO(x) and NMVOCs were perturbed by ±30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NO(x)-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NO(x) due to very high anthropogenic emissions. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China

    Directory of Open Access Journals (Sweden)

    Y. C. Lee

    2014-08-01

    precursors do not seem to adequately support an increasing ozone trend, measured surface levels of formaldehyde, a proxy for volatile organic compound (VOC emissions, have risen significantly in the PRD (2004–2010. Hence, the reactive VOCs in the PRD are likely to be the main culprit for the increase of ozone, as far as precursors are concerned. Despite the prevailing problem, model simulations suggest prospects for improvement in the future.

  19. Distribution and urban-suburban differences in ground-level ozone and its precursors over Shenyang, China

    Science.gov (United States)

    Liu, Ningwei; Ren, Wanhui; Li, Xiaolan; Ma, Xiaogang; Zhang, Yunhai; Li, Bingkun

    2018-03-01

    Hourly mixing ratio data of ground-level ozone and its main precursors at ambient air quality monitoring sites in Shenyang during 2013-2015 were used to survey spatiotemporal variations in ozone. Then, the transport of ozone and its precursors among urban, suburban, and rural sites was examined. The correlations between ozone and some key meteorological factors were also investigated. Ozone and O x mixing ratios in Shenyang were higher during warm seasons and lower during cold ones, while ozone precursors followed the opposite cycle. Ozone mixing ratios reached maximum and minimum values in the afternoon and morning, respectively, reflecting the significant influence of photochemical production during daytime and depletion via titration during nighttime. Compared to those in downtown Shenyang, ozone mixing ratios were higher and the occurrence of peak values were later in suburban and rural areas downwind of the prevailing wind. The differences were most significant in summer, when the ozone mixing ratios at one suburban downwind site reached a maximum value of 35.6 ppb higher than those at the downtown site. This suggests that photochemical production processes were significant during the transport of ozone precursors, particularly in warm seasons with sufficient sunlight. Temperature, total radiation, and wind speed all displayed positive correlations with ozone concentration, reflecting their important role in accelerating ozone formation. Generally, the correlations between ozone and meteorological factors were slightly stronger at suburban sites than in urban areas, indicating that ozone levels in suburban areas were more sensitive to these meteorological factors.

  20. Study to determine the nature and extent of ozone and ozone precursor transport in selected areas of California. Final report

    International Nuclear Information System (INIS)

    Roberts, P.T.; Musarra, S.; Smith, T.B.; Lurmann, F.W.

    1992-04-01

    The project was designed to assess the contribution of transported pollutants to violations of the state ozone standard within the air basins covered by the report using existing data and advanced data analysis techniques. The objectives of the project were to determine the characteristics of ozone and ozone precursor transport within the California air basins covered by the report and to identify whether the contribution of transported pollutants to ozone violations in each downwind area was inconsequential, significant, or overwhelming, relative to locally-emitted pollutants. The precursor pollutants of interest were nitrogen oxides and reactive organic gases. The project evaluated transport to the following areas: The Broader Sacramento Area and the Upper Sacramento Valley; The North Central Coast Air Basin; The Southeast Desert Air Basin (SEDAB); and the Imperial County portion of the SEDAB

  1. Importance of Ship Emissions to Local Summertime Ozone Production in the Mediterranean Marine Boundary Layer: A Modeling Study

    OpenAIRE

    Christian N. Gencarelli; Ian M. Hedgecock; Francesca Sprovieri; Gregor J. Schürmann; Nicola Pirrone

    2014-01-01

    Ozone concentrations in the Mediterranean area regularly exceed the maximum levels set by the EU Air Quality Directive, 2008/50/CE, a maximum 8-h mean of 120 μg·m-3, in the summer, with consequences for both human health and agriculture. There are a number of reasons for this: the particular geographical and meteorological conditions in the Mediterranean play a part, as do anthropogenic ozone precursor emissions from around the Mediterranean and continental Europe. Ozone concentrations measur...

  2. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Llusia, J.; Penuelas, J. [Universitat Autonoma de Barcelona (Spain). Unitat Ecofisiologia CSIC-CEAB-CREAF; Gimeno, R.S. [CIEMAT, Madrid (Spain). Ecotoxicologia de la Contaminacion Atmosferica

    2002-08-01

    %) and total VOC (45%) emission rates in ozone-fumigated plants, whereas stomatal conductance did not change. Since VOCs are precursors of ozone, the increase in BVOC emission as a consequence of elevated tropospheric ozone concentrations may lead to positive feedback mechanisms in ozone formation. (author)

  3. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Science.gov (United States)

    Llusià, J.; Peñuelas, J.; Gimeno, B. S.

    %) emission rates in ozone-fumigated plants, whereas stomatal conductance did not change. Since VOCs are precursors of ozone, the increase in BVOC emission as a consequence of elevated tropospheric ozone concentrations may lead to positive feedback mechanisms in ozone formation.

  4. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    Science.gov (United States)

    Wang, Guihua; Ogden, Joan M.; Chang, Daniel P. Y.

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality

  5. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    International Nuclear Information System (INIS)

    Guihua Wang; Ogden, Joan M.; Chang, Daniel P.Y.

    2007-01-01

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x ) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air

  6. Seasonal Changes in Tropospheric Ozone Concentrations over South Korea and Its Link to Ozone Precursors

    Science.gov (United States)

    Jung, H. C.; Moon, B. K.; Wie, J.

    2017-12-01

    Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  7. An ozone episode over the Pearl River Delta in October 2008

    Science.gov (United States)

    Shen, Jin; Zhang, Yuanhang; Wang, Xuesong; Li, Jinfeng; Chen, Hao; Liu, Run; Zhong, Liuju; Jiang, Ming; Yue, Dingli; Chen, Duohong; Lv, Wei

    2015-12-01

    The north and east Pearl River Delta (PRD) is usually a clean, upwind area in autumn. Serious ozone pollution there in mid-late October 2008 was first discovered and then analyzed. Trajectory analysis, process analysis, ozone source apportionment technology, and sensitivity analysis were used to study this episode. Under the influence of a weak south wind, the precursors emitted in Guangzhou and Foshan were transported to the north and northeast PRD and formed ozone there, which resulted in high ozone concentration (>100 ppb). As the wind direction later transited to northerly, the precursors in the northeast PRD that originated from the central and west PRD were transported to the south, and caused severe ozone pollution in the southeast PRD. The ozone contributed by chemical processes reached >20 ppb/h in Jinguowan. More than 40 ppb ozone was contributed by the precursor emission in the central and west PRD during the episode. The ozone concentration was highly sensitive to the precursor emission in the PRD region in the high-ozone situations. This episode showed the complexity of regional pollution in the PRD. When the PRD is controlled by a low air pressure system and then cold air moves from northern China to the south, the risk of ozone pollution in the north and southeast PRD increases.

  8. Measurements of ozone and its precursors in Beijing in summer

    Science.gov (United States)

    Lee, J. D.; Squires, F. A.; Dunmore, R.; Hamilton, J. F.; Hopkins, J. R.; Rickard, A. R.

    2017-12-01

    Over the past few years there have been substantial reductions in emission of primary pollutants (e.g. PM, NOx) in Beijing. However, levels of ozone (O3), which is produced from VOCs and NOxin the presence of sunlight, frequently break recommended exposure limits in Beijing and other large conurbations in China. In fact, it is suggested that ozone is likely to become the major air pollutant effecting human health in Beijing over the next 5-10 years. For 5 weeks in May and June 2017 O3 was measured, along with NOx, CO and a large range of VOCs (C2 - C13) at the Institute of Atmospheric Physics of the Chinese Academy of Sciences site, close to the 4th ring road in central Beijing. Elevated levels of O3 were regularly observed, with maximum concentrations of 180 ppbv. On 75% of days during this period, O3 breached the recommended WHO 8 hour exposure limit of 60 ppbv. Data will be presented showing the effect of different levels of precursor species and photolysis rates on O3. The peak concentration of O3 on each day seemed to have little correlation with NOx. Typically NO concentrations were elevated during the morning but often decreased to below 35oC meaning biogenic emissions also influenced the chemistry at the site, with several ppbv of isoprene measured during the afternoons. The importance of different VOCs for in-situ O3 formation is investigated using a simple steady state analysis of OH reactivity, along with a more detailed analysis using the Master Chemical Mechanism.

  9. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    Science.gov (United States)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global

  10. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    Directory of Open Access Journals (Sweden)

    L. Ran

    2012-08-01

    Full Text Available Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP and Yangtze River Delta (YRD. Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP and Shanghai (YRD. Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx and various non-methane hydrocarbons (NMHCs. Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  11. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    Directory of Open Access Journals (Sweden)

    M. Zavala

    2009-01-01

    Full Text Available The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies and improvements in fuel quality, among others. Along with these changes, concurrent non-linear changes in photochemical levels and criteria pollutants have been observed, providing a unique opportunity to understand the effects of perturbations of mobile emission levels on the photochemistry in the region using observational and modeling approaches. The observed historical trends of ozone (O3, carbon monoxide (CO and nitrogen oxides (NOx suggest that ozone production in the MCMA has changed from a low to a high VOC-sensitive regime over a period of 20 years. Comparison of the historical emission trends of CO, NOx and hydrocarbons derived from mobile-source emission studies in the MCMA from 1991 to 2006 with the trends of the concentrations of CO, NOx, and the CO/NOx ratio during peak traffic hours also indicates that fuel-based fleet average emission factors have significantly decreased for CO and VOCs during this period whereas NOx emission factors do not show any strong trend, effectively reducing the ambient VOC/NOx ratio.

    This study presents the results of model analyses on the sensitivity of the observed ozone levels to the estimated historical changes in its precursors. The model sensitivity analyses used a well-validated base case simulation of a high pollution episode in the MCMA with the mathematical Decoupled Direct Method (DDM and the standard Brute Force Method (BFM in the 3-D CAMx chemical transport model. The model reproduces adequately the observed historical trends and current photochemical levels. Comparison of the BFM and the DDM sensitivity techniques indicates that the model yields ozone values that increase linearly with

  12. Effect of Climate Change on Surface Ozone over North America, Europe, and East Asia

    Science.gov (United States)

    Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg

    2016-01-01

    The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.

  13. Relative impacts of worldwide tropospheric ozone changes and regional emission modifications on European surface-ozone levels

    International Nuclear Information System (INIS)

    Szopa, S.; Hauglustaine, D.A.

    2007-01-01

    Multi-scale models were applied to assess the surface ozone changes in 2030. Several emission scenarios are considered, ranging from (a) a pessimistic anthropogenic emission increase to (b) an optimistic decrease of emissions, and including (c) a realistic scenario that assumes the implementation of control legislations [CLE]. The two extreme scenarios lead respectively to homogeneous global increase and decrease of surface ozone, whereas low and inhomogeneous changes associated with a slight global increase of ozone are found for the CLE scenario. Over western Europe, for the CLE scenario, the benefit of European emission reduction is significantly counterbalanced by increasing global ozone levels. Considering warmer conditions over Europe and future emission modifications, the human health exposure to surface ozone is found to be significantly worsened. (authors)

  14. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    Science.gov (United States)

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry

  15. Rapid increases in tropospheric ozone production and export from China

    NARCIS (Netherlands)

    Verstraeten, W.W.; Neu, J.L.; Williams, J.E.; Bowman, K.W.; Worden, J.R.; Boersma, K.F.

    2015-01-01

    Rapid population growth and industrialization have driven substantial increases in Asian ozone precursor emissions over the past decade1, with highly uncertain impacts on regional and global tropospheric ozone levels. According to ozonesonde measurements2, 3, tropospheric ozone concentrations at two

  16. The influence of different matrices on the nature and content of haloacetic acids precursors in ozonized water

    Directory of Open Access Journals (Sweden)

    Molnar Jelena J.

    2012-01-01

    Full Text Available This paper investigates the influence of different matrices (groundwater a realistic natural matrix and commercial humic acid solution a synthetic matrix on the nature and content of haloacetic acid (HAA precursors in ozonized water (0.4 to 3.0 mg O3/mg DOC; pH 6. Natural organic matter (NOM characterization of the natural matrix showed it was largely of hydrophobic character (65% fulvic and 14% humic acids, with the hydrophilic fractions HPIA and HPI-NA at 12% and 9%, respectively. At approximately the same dissolved organic carbon (DOC content of the investigated matrices (~10 mg /L, a greater degree of hydrophobicity was seen in the humic acid solution than in the natural matrix, resulting in a higher content of HAA precursors (559 ± 21 μg/L in the synthetic matrix compared to 309 ± 15 μg/L in the natural matrix. By applying different ozone doses (0.4 to 3.0 mg O3/mg DOC, the DOC content of the studied matrices was reduced by 6-22%, with a maximum process efficacy being achieved with 3.0 mg O3/mg DOC. Ozonation also lead to changes in the NOM structure, i.e. complete oxidation of the humic acid fractions in both investigated matrices. After oxidation, hydrophilic structures dominate the natural water matrix (65%, whereas the synthetic matrix has an equal distribution of hydrophobic and hydrophilic fractions (~50%. Changes in the content and structure of NOM during ozonation resulted in the reduction of the total HAA precursors content (63-85%, using 3.0 mg O3/mg DOC. Detailed analysis of the reactivity of the residual HAA precursor materials shows that ozonation using 3.0 mg O3/mg DOC reduced the reactivity of the NOM fractions in comparison to the raw water. By contrast, HAA precursor material present in the commercial HA solution was transformed after ozonation into other reactive compounds, i.e. precursors which originated from the fulvic acid and hydrophilic fractions. The results of the laboratory testing indicate that the

  17. Global tropospheric ozone modeling: Quantifying errors due to grid resolution

    Science.gov (United States)

    Wild, Oliver; Prather, Michael J.

    2006-06-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NOx by convection is overestimated at coarse resolution.

  18. Video-documentation: 'The Pannonic ozon project'

    International Nuclear Information System (INIS)

    Loibl, W.; Cabela, E.; Mayer, H. F.; Schmidt, M.

    1998-07-01

    Goal of the project was the production of a video film as documentation of the Pannonian Ozone Project- POP. The main part of the video describes the POP-model consisting of the modules meteorology, emissions and chemistry, developed during the POP-project. The model considers the European emission patterns of ozone precursors and the actual wind fields. It calculates ozone build up and depletion within air parcels due to emission and weather situation along trajectory routes. Actual ozone concentrations are calculated during model runs simulating the photochemical processes within air parcels moving along 4 day trajectories before reaching the Vienna region. The model computations were validated during extensive ground and aircraft-based measurements of ozone precursors and ozone concentration within the POP study area. Scenario computations were used to determine how much ozone can be reduced in north-eastern Austria by emissions control measures. The video lasts 12:20 minutes and consists of computer animations and life video scenes, presenting the ozone problem in general, the POP model and the model results. The video was produced in co-operation by the Austrian Research Center Seibersdorf - Department of Environmental Planning (ARCS) and Joanneum Research - Institute of Informationsystems (JR). ARCS was responsible for idea, concept, storyboard and text while JR was responsible for computer animation and general video production. The speaker text was written with scientific advice by the POP - project partners: Institute of Meteorology and Physics, University of Agricultural Sciences- Vienna, Environment Agency Austria - Air Quality Department, Austrian Research Center Seibersdorf- Environmental Planning Department/System Research Division. The film was produced as German and English version. (author)

  19. Background Ozone in Southern China During 1994-2015: Role of Anthropogenic Emission and Climate Change

    Science.gov (United States)

    Wang, T.; Zhang, L.; Poon, S.

    2016-12-01

    Tropospheric ozone plays important roles in atmospheric chemistry, air quality, and climate. Changes in background ozone concentrations and underlying causes are therefore of great interest to the scientific community and governments. Compared with North America and Europe, long-term measurements of background ozone in China are scarce. This study reports the longest continuous ozone record in southern China measured at a background site (Hok Tsui) in Hong Kong during 1994-2015. The analysis of the 22-year record shows that the surface ozone in the background atmosphere of southern China has been increasing, with an overall Theil-Sen estimated rate of 0.43 ppbv/yr. Compared with our previous results during 1994-2007 (Wang et al., 2009), the average rate of increase has slowed down over during 2008-2015 (0.32 vs. 0.58 ppbv/yr), possibly due to smaller increase or even decrease in ozone precursors emission in mainland China in recent years. The average rates of change show significant seasonal differences with the largest rate occurring in summer (0.32, 0.55, 0.52, and 0.36 ppbv/yr in spring, summer, autumn, and winter, respectively). Monthly mean ozone concentrations at Hok Tsui are compared against an East Asian Monsoon index. It is found that only the summer-time ozone over period 2008-2015 has a strong positive correlation with the index, suggesting that climate might have played an important role in driving the ozone increase observed in summer since 2008. The ozone trend in Hong Kong will be compared to those from other regions in East Asia, and the role of emission changes in Asia will be discussed.

  20. Photochemistry and transport of tropospheric ozone and its precursors in urban and remote environments

    Science.gov (United States)

    Anderson, Daniel Craig

    Tropospheric ozone (O3) adversely affects human health, reduces crop yields, and contributes to climate forcing. To limit these effects, the processes controlling O3 abundance as well as that of its precursor molecules must be fully characterized. Here, I examine three facets of O 3 production, both in heavily polluted and remote environments. First, using in situ observations from the DISCOVER-AQ field campaign in the Baltimore/Washington region, I evaluate the emissions of the O 3 precursors CO and NOx (NOx = NO + NO2) in the National Emissions Inventory (NEI). I find that CO/NOx emissions ratios derived from observations are 21% higher than those predicted by the NEI. Comparisons to output from the CMAQ model suggest that CO in the NEI is accurate within 15 +/- 11%, while NOx emissions are overestimated by 51-70%, likely due to errors in mobile sources. These results imply that ambient ozone concentrations will respond more efficiently to NOx controls than current models suggest. I then investigate the source of high O3 and low H2O structures in the Tropical Western Pacific (TWP). A combination of in situ observations, satellite data, and models show that the high O3 results from photochemical production in biomass burning plumes from fires in tropical Southeast Asia and Central Africa; the low relative humidity results from large-scale descent in the tropics. Because these structures have frequently been attributed to mid-latitude pollution, biomass burning in the tropics likely contributes more to the radiative forcing of climate than previously believed. Finally, I evaluate the processes controlling formaldehyde (HCHO) in the TWP. Convective transport of near surface HCHO leads to a 33% increase in upper tropospheric HCHO mixing ratios; convection also likely increases upper tropospheric CH 3OOH to ~230 pptv, enough to maintain background HCHO at ~75 pptv. The long-range transport of polluted air, with NO four times the convectively controlled background

  1. Strategy for reducing ozone levels in the northeast United States

    International Nuclear Information System (INIS)

    Bradley, M.

    1992-01-01

    In the northeast USA, ozone episodes are frequent during the summer; most of these episodes last 3-4 days. The duration and frequency of these episodes is mainly determined by weather conditions. The persistence of ozone episodes in the region is explained by the fact that emissions of ozone precursors (nitrogen oxides (NOx) and volatile organic compounds (VOC)) are like those of other regions of the USA affected by acute ozone problems. The population density, industry, and use of automobiles are other factors contributing to the difficulty of maintaining acceptable ozone levels. The ozone problem is especially severe in the New York metropolitan area and most of New Jersey. Strategies for combating ozone precursors have relied entirely on reducing emissions of VOCs, while little has been done to reduce NOx, except for automobile emissions. The Clean Air Act of 1990 provides for significant reductions of NOx and VOC from mobile sources and insists on VOC emissions reductions from stationary sources. In California, stricter emission standards for VOC and NOx have been implemented for new vehicles, requiring wider use of low- or zero-emission vehicles. The Northeast States for Coordinated Air Use Management (NESCAUM) organization, formed by the state agencies responsible for air quality, is aiding the northeast states to evaluate the advantages of adopting California standards for vehicles. Twelve northeast states propose to adopt the Californian low-emission vehicle program and are examining other options such as reformulated gasolines, improved maintenance and verification programs, and measures to reduce the number of miles travelled. 1 fig., 1 tab

  2. Importance of Ship Emissions to Local Summertime Ozone Production in the Mediterranean Marine Boundary Layer: A Modeling Study

    Directory of Open Access Journals (Sweden)

    Christian N. Gencarelli

    2014-12-01

    Full Text Available Ozone concentrations in the Mediterranean area regularly exceed the maximum levels set by the EU Air Quality Directive, 2008/50/CE, a maximum 8-h mean of 120 μg·m-3, in the summer, with consequences for both human health and agriculture. There are a number of reasons for this: the particular geographical and meteorological conditions in the Mediterranean play a part, as do anthropogenic ozone precursor emissions from around the Mediterranean and continental Europe. Ozone concentrations measured on-board the Italian Research Council’s R. V. Urania during summer oceanographic campaigns between 2000 and 2010 regularly exceeded 60 ppb, even at night. The WRF/Chem (Weather Research and Forecasting (WRF model coupled with Chemistrymodel has been used to simulate tropospheric chemistry during the periods of the measurement campaigns, and then, the same simulations were repeated, excluding the contribution of maritime traffic in the Mediterranean to the anthropogenic emissions inventory. The differences in the model output suggest that, in large parts of the coastal zone of the Mediterranean, ship emissions Atmosphere 2014, 5 938 contribute to 3 and 12 ppb to ground level daily average ozone concentrations. Near busy shipping lanes, up to 40 ppb differences in the hourly average ozone concentrations were found. It seems that ship emissions could be a significant factor in the exceedance of the EU directive on air quality in large areas of the Mediterranean Basin.

  3. CHARACTERIZATION OF OZONE EMISSIONS FROM AIR CLEANERS EQUIPPED WITH OZONE GENERATORS AND SENSOR AND FEEDBACK CONTROL CIRCUITRY

    Science.gov (United States)

    The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...

  4. Ozone Production in Global Tropospheric Models: Quantifying Errors due to Grid Resolution

    Science.gov (United States)

    Wild, O.; Prather, M. J.

    2005-12-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the Western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes at a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63 and T106 resolution is likewise monotonic but still indicates large errors at 120~km scales, suggesting that T106 resolution is still too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over East Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution, but subsequent ozone production in the free troposphere is less significantly affected.

  5. The impact of large scale biomass production on ozone air pollution in Europe

    NARCIS (Netherlands)

    Beltman, J.B.; Hendriks, C.; Tum, M.; Schaap, M.

    2013-01-01

    Tropospheric ozone contributes to the removal of air pollutants from the atmosphere but is itself a pollutant that is harmful to human health and vegetation. Biogenic isoprene emissions are important ozone precursors, and therefore future changes in land use that change isoprene emissions are likely

  6. Response of climate to regional emissions of ozone precursors: sensitivities and warming potentials

    International Nuclear Information System (INIS)

    Berntsen, T.K.; Fuglestvedt, J.S.; Joshi, M.M.; Shine, K.P.; Hauglustaine, D.A.; Li, L.

    2005-01-01

    The response of climate to ozone perturbations caused by regional emissions of NO x or CO has been studied through a sequence of model simulations. Changes C and OH concentrations due to emission perturbations in Europe and southeast Asia have been calculated with two global 3-D chemical tracer models(CTMs; LMDzINCA and Oslo-CTM2). The radiative transfer codes of three general circulation models (GCMs; ECHAM4, UREAD and LMD) have been used to calculate the radiative forcing of the O 3 perturbations, and for a subset of the cases full GCM simulations have been performed with ECHAM4 and UREAD. The results have been aggregated to a global number in two ways: first, through integrating the global-mean radiative forcing of a sustained step change in emissions, and second through a modified concept (SGWP*) which includes possible differences in the climate sensitivity of O 3 , CH 4 and CO 2 changes. In terms of change in global tropospheric O 3 burden the two CTMs differ by less than 30%. Both CTMs show a higher north/south gradient in the sensitivity to changes in NO x emission than for CO. We are not able to conclude whether real O 3 perturbations in general have a different climate sensitivity from CO 2 . However, in both GCMs high-latitude emission perturbations lead to climate perturbations with higher (10-30%) climate sensitivities. The calculated SGWP*, for a 100 yr time horizon, are negative for three of the four CTM/GCM combinations for European emissions (-9.6 to +6.9), while for the Asian emissions the SGWP* (H=100) is always positive (+2.9 to +25) indicating a warming. For CO the SGWP* values (3.8 and 4.4 for European and Asian emissions respectively, with only the Oslo-CTM2/ECHAM4 model combination) are less regionally dependent. Our results support the view that for NO x , regionally different weighting factors for the emissions are necessary. For CO the results are more robust and one global number may be acceptable

  7. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms

    Directory of Open Access Journals (Sweden)

    A. Sharma

    2017-12-01

    Full Text Available We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem with the second-generation Regional Acid Deposition Model (RADM2 chemical mechanism: the Emissions Database for Global Atmospheric Research – Hemispheric Transport of Air Pollution (EDGAR-HTAP, the Intercontinental Chemical Transport Experiment phase B (INTEX-B and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS. Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30–16:30 IST – Indian Standard Time – UTC +5:30, are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10–30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP, central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.

  8. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms

    Science.gov (United States)

    Sharma, Amit; Ojha, Narendra; Pozzer, Andrea; Mar, Kathleen A.; Beig, Gufran; Lelieveld, Jos; Gunthe, Sachin S.

    2017-12-01

    We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem) with the second-generation Regional Acid Deposition Model (RADM2) chemical mechanism: the Emissions Database for Global Atmospheric Research - Hemispheric Transport of Air Pollution (EDGAR-HTAP), the Intercontinental Chemical Transport Experiment phase B (INTEX-B) and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS). Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30-16:30 IST - Indian Standard Time - UTC +5:30), are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10-30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP), central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART) chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.

  9. Emissions lifetimes and ozone formation in power plant plumes

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, T.B.; Buhr, M.P.; Frost, G.J.; Goldan, P.D.; Holloway, J.S.; Huebler, G.; Jobson, B.T.; Kuster, W.C.; McKeen, S.A.; Parrish, D.D.; Roberts, J.M.; Sueper, D.T.; Trainer, M.; Williams, J.; Fehsenfeld, F.C. [NOAA Aeronomy Laboratory, Boulder, CO (United States)

    1998-09-20

    The concept of ozone production efficiency (OPE) per unit NO{sub x} is based on photochemical models and provides a tool with which to assess potential regional tropospheric ozone control strategies involving NO{sub x} emissions reductions. An aircraft study provided data from which power plant emissions removal rates and measurement-based estimates of OPE are estimated. This study was performed as part of the Southern Oxidants Study - 1995 Nashville intensive and focuses on the evolution of NO{sub x}, SO{sub 2}, and ozone concentrations in coal-fired power plant plumes during transport. Two approaches are examined. A mass balance approach accounts for mixing effects within the boundary layer and is used to calculate effective boundary layer removal rates for NO{sub x} and SO{sub 2} and to estimate net OPE, Net OPE is more directly comparable to photochemical model results than previous measurement-based estimates. Derived net production efficiencies from mass balance range from 1 to 3 molecules of ozone produced per molecule of NO{sub x} emitted. A concentration ratio approach provides an estimate of removal rates of primary emissions relative to a tracer species. This approach can be combined with emissions ratio information to provide upper limit estimates of OPE that range from 2 to 7. Both approaches illustrate the dependence of ozone production on NO{sub x} source strength in these large point source plumes. The dependence of total ozone production, ozone production efficiency, and the rate of ozone production on NO{sub x} source strength is examined. These results are interpreted in light of potential ozone control strategies for the region. 42 refs., 8 figs., 5 tabs.

  10. Emissions lifetimes and ozone formation in power plant plumes

    International Nuclear Information System (INIS)

    Ryerson, T.B.; Buhr, M.P.; Frost, G.J.; Goldan, P.D.; Holloway, J.S.; Huebler, G.; Jobson, B.T.; Kuster, W.C.; McKeen, S.A.; Parrish, D.D.; Roberts, J.M.; Sueper, D.T.; Trainer, M.; Williams, J.; Fehsenfeld, F.C.

    1998-01-01

    The concept of ozone production efficiency (OPE) per unit NO x is based on photochemical models and provides a tool with which to assess potential regional tropospheric ozone control strategies involving NO x emissions reductions. An aircraft study provided data from which power plant emissions removal rates and measurement-based estimates of OPE are estimated. This study was performed as part of the Southern Oxidants Study - 1995 Nashville intensive and focuses on the evolution of NO x , SO 2 , and ozone concentrations in coal-fired power plant plumes during transport. Two approaches are examined. A mass balance approach accounts for mixing effects within the boundary layer and is used to calculate effective boundary layer removal rates for NO x and SO 2 and to estimate net OPE, Net OPE is more directly comparable to photochemical model results than previous measurement-based estimates. Derived net production efficiencies from mass balance range from 1 to 3 molecules of ozone produced per molecule of NO x emitted. A concentration ratio approach provides an estimate of removal rates of primary emissions relative to a tracer species. This approach can be combined with emissions ratio information to provide upper limit estimates of OPE that range from 2 to 7. Both approaches illustrate the dependence of ozone production on NO x source strength in these large point source plumes. The dependence of total ozone production, ozone production efficiency, and the rate of ozone production on NO x source strength is examined. These results are interpreted in light of potential ozone control strategies for the region. 42 refs., 8 figs., 5 tabs

  11. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric

  12. Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Berntsen, T.; Isaksen, I.S.A.; Fuglestvedt, J.S.; Myhre, G.; Larsen, T. Alsvik; Stordal, F.; Freckleton, R.S.; Shine, K.P.

    1997-12-31

    As described in this report, changes in tropospheric ozone since pre-industrial times due to changes in emissions have been calculated by the University of Oslo global three-dimensional photochemical model. The radiative forcing caused by the increase in ozone has been calculated by means of two independent radiative transfer models: the University of Reading model (Reading), and the University of Oslo/Norwegian Institute for Air Research model (OsloRad). Significant increases in upper tropospheric ozone concentrations are found at northern mid-latitudes at about 10 km altitude. In the tropical regions the largest increase is found at about 15 km altitude. The increase is found to be caused mainly by enhanced in situ production due to transport of precursors from the boundary layer, with a smaller contribution from increased transport of ozone produced in the boundary layer. The lifetime of ozone in the troposphere decreased by about 35% as a result of enhanced concentrations of HO{sub 2}. The calculated increase in surface ozone in Europe is in good agreement with observations. The calculations of radiative forcing include the effect of clouds and allow for thermal adjustment in the stratosphere. The global and annual averaged radiative forcing at the tropopause from both models are in the lower part of the Intergovernmental Panel on Climate Change estimated range. The calculated radiative forcing is similar in magnitude to the negative radiative forcing by sulfate aerosols, but displaced southward in source regions at northern mid-latitudes. The increase in tropospheric ozone is calculated to have cooled the lower stratosphere by up to 0.9 K, with possibly half of this cooling occurring in the past 2 to 3 decades. 76 refs., 16 figs., 9 tabs.

  13. Impacts of increasing ozone on Indian plants

    International Nuclear Information System (INIS)

    Oksanen, E.; Pandey, V.; Pandey, A.K.; Keski-Saari, S.; Kontunen-Soppela, S.; Sharma, C.

    2013-01-01

    Increasing anthropogenic and biogenic emissions of precursor compounds have led to high tropospheric ozone concentrations in India particularly in Indo-Gangetic Plains, which is the most fertile and cultivated area of this rapidly developing country. Current ozone risk models, based on European and North American data, provide inaccurate estimations for crop losses in India. During the past decade, several ozone experiments have been conducted with the most important Indian crop species (e.g. wheat, rice, mustard, mung bean). Experimental work started in natural field conditions around Varanasi area in early 2000's, and the use of open top chambers and EDU (ethylene diurea) applications has now facilitated more advanced studies e.g. for intra-species sensitivity screening and mechanisms of tolerance. In this review, we identify and discuss the most important gaps of knowledge and future needs of action, e.g. more systematic nationwide monitoring for precursor and ozone formation over Indian region. -- Tropospheric ozone is an increasing threat to food production in India

  14. The impact of large scale biomass production on ozone air pollution in Europe

    OpenAIRE

    Beltman, Joost B.; Hendriks, Carlijn; Tum, Markus; Schaap, Martijn

    2013-01-01

    Tropospheric ozone contributes to the removal of air pollutants from the atmosphere but is itself a pollutant that is harmful to human health and vegetation. Biogenic isoprene emissions are important ozone precursors, and therefore future changes in land use that change isoprene emissions are likely to affect atmospheric ozone concentrations. Here, we use the chemical transport model LOTOS-EUROS (dedicated to the regional modeling of trace gases in Europe) to study a scenario in which 5% of t...

  15. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions.

    Science.gov (United States)

    Hogrefe, Christian; Isukapalli, Sastry S; Tang, Xiaogang; Georgopoulos, Panos G; He, Shan; Zalewsky, Eric E; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.

  16. Emission scenarios 1985-2010: Their influence on ozone in Switzerland - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Andreani-Aksoyoglu, S.; Tinguely, M.; Prevot, A

    2005-07-15

    Ozone levels often exceed the ambient air quality standards during summer time. Since 1985, numerous regulations have been enforced or proposed to improve air quality in Europe. In this study we investigated the effect of these measures on ozone. Seven anthropogenic emission scenarios have been selected: scenario 0: emissions as reported for 2000 (base case); scenario 1: emissions as reported for 1985; scenario 2: emissions in 2000, if economy (and emissions) grows without control; scenario 3: emissions in 2010, if the Gothenburg Protocol is in force; scenario 4: emissions in 2010 according to the current legislation; scenario 5: emissions in 2010: 100% and 50% of the Gothenburg target emissions in Europe and in Switzerland, respectively; scenario 6: emissions in 2010: 50% and 50% of the Gothenburg target emissions in Europe and in Switzerland, respectively; scenario 7: zero anthropogenic emissions in Switzerland, base case emissions elsewhere. The 4-day period from 4 to 7 August 2003 was studied by means of the 3-dimensional photochemical model CAMx with 2 nested domains. The coarse domain covered a large part of Europe with a horizontal resolution of 27 km x 27 km. Switzerland and parts of the surrounding countries including the Greater Milan area were covered by the fine domain with resolution of 9 km x 9 km. Gridded meteorological data were obtained from MM5 meteorological model. The emission inventory was prepared by compiling European and Swiss anthropogenic emissions from various sources. Reference year was 2000. Biogenic emissions were calculated with temperature and irradiance dependent algorithms using land use and meteorological data. Initial and boundary conditions were adjusted from the output of the global model MOZART. The model could reproduce peak ozone concentrations around large urban areas. Model results were strongly affected by meteorological parameterization and emissions. Compared to 2000, ozone concentrations in 1985 were about 5% higher in

  17. Emission scenarios 1985-2010: Their influence on ozone in Switzerland - Final report

    International Nuclear Information System (INIS)

    Keller, J.; Andreani-Aksoyoglu, S.; Tinguely, M.; Prevot, A.

    2005-07-01

    Ozone levels often exceed the ambient air quality standards during summer time. Since 1985, numerous regulations have been enforced or proposed to improve air quality in Europe. In this study we investigated the effect of these measures on ozone. Seven anthropogenic emission scenarios have been selected: scenario 0: emissions as reported for 2000 (base case); scenario 1: emissions as reported for 1985; scenario 2: emissions in 2000, if economy (and emissions) grows without control; scenario 3: emissions in 2010, if the Gothenburg Protocol is in force; scenario 4: emissions in 2010 according to the current legislation; scenario 5: emissions in 2010: 100% and 50% of the Gothenburg target emissions in Europe and in Switzerland, respectively; scenario 6: emissions in 2010: 50% and 50% of the Gothenburg target emissions in Europe and in Switzerland, respectively; scenario 7: zero anthropogenic emissions in Switzerland, base case emissions elsewhere. The 4-day period from 4 to 7 August 2003 was studied by means of the 3-dimensional photochemical model CAMx with 2 nested domains. The coarse domain covered a large part of Europe with a horizontal resolution of 27 km x 27 km. Switzerland and parts of the surrounding countries including the Greater Milan area were covered by the fine domain with resolution of 9 km x 9 km. Gridded meteorological data were obtained from MM5 meteorological model. The emission inventory was prepared by compiling European and Swiss anthropogenic emissions from various sources. Reference year was 2000. Biogenic emissions were calculated with temperature and irradiance dependent algorithms using land use and meteorological data. Initial and boundary conditions were adjusted from the output of the global model MOZART. The model could reproduce peak ozone concentrations around large urban areas. Model results were strongly affected by meteorological parameterization and emissions. Compared to 2000, ozone concentrations in 1985 were about 5% higher in

  18. Effects of elevated ozone concentration on CH4 and N2O emission from paddy soil under fully open-air field conditions.

    Science.gov (United States)

    Tang, Haoye; Liu, Gang; Zhu, Jianguo; Kobayashi, Kazuhiko

    2015-04-01

    We investigated the effects of elevated ozone concentration (E-O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II-you 084 (IIY084), under fully open-air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A-O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3-induced reduction in the whole-plant biomass (-13.2%), root biomass (-34.7%), and maximum tiller number (-10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E-O3, a larger decrease in CH4 emission with IIY084 (-33.2%) than that with YD6 (-7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E-O3. Additionally, E-O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E-O3 was not significantly different from those reported in open-top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem. © 2014 John Wiley & Sons Ltd.

  19. Impact of Future Emissions and Climate Change on Surface Ozone over China

    Science.gov (United States)

    Ma, C. T.; Westervelt, D. M.; Fiore, A. M.; Rieder, H. E.; Kinney, P.; Wang, S.; Correa, G. J. P.

    2017-12-01

    China's immense ambient air pollution problem and world-leading greenhouse gas emissions place it at the forefront of global efforts to address these related environmental concerns. Here, we analyze the impact of ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) future emissions scenarios representative of current legislation (CLE) and maximum technically feasible emissions reductions (MFR) on surface ozone (O3) concentrations over China in the 2030s and 2050s, in the context of a changing climate. We use a suite of simulations performed with the NOAA Geophysical Fluid Dynamics Laboratory's AM3 global chemistry-climate model. To estimate the impact of climate change in isolation on Chinese air quality, we hold emissions of air pollutants including O3 precursors fixed at 2015 levels but allow climate (global sea surface temperatures and sea ice cover) to change according to decadal averages for the years 2026-2035 and 2046-2055 from a three-member ensemble of GFDL-CM3 simulations under the RCP8.5 high warming scenario. Evaluation of the present-day simulation (2015 CLE) with observations from 1497 chiefly urban air quality monitoring stations shows that simulated surface O3 is positively biased by 26 ppb on average over the domain of China. Previous studies, however, have shown that the modeled ozone response to changes in NOx emissions over the Eastern United States mirrors the magnitude and structure of observed changes in maximum daily average 8-hour (MDA8) O3 distributions. Therefore, we use the model's simulated changes for the 2030s and 2050s to project changes in policy-relevant MDA8 O3 concentrations. We find an overall increase in MDA8 O3 for CLE scenarios in which emissions of NOx precursors are projected to increase, and under MFR scenarios, an overall decrease, with the highest changes occurring in summertime for both 2030 and 2050 MFR. Under climate change alone, the model simulates a mean summertime decrease of 1.3 ppb

  20. Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007

    Directory of Open Access Journals (Sweden)

    Ø. Hodnebrog

    2012-09-01

    Full Text Available The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors using state-of-the-art inventories for anthropogenic, biogenic and forest fire emissions. The models have been evaluated against measurement data, and processes leading to ozone formation have been quantified. Heat wave episodes are projected to occur more frequently in a future climate, and therefore this study also makes a contribution to climate change impact research.

    The plume from the Greek forest fires in August 2007 is clearly seen in satellite observations of CO and NO2 columns, showing extreme levels of CO in and downwind of the fires. Model simulations reflect the location and influence of the fires relatively well, but the modelled magnitude of CO in the plume core is too low. Most likely, this is caused by underestimation of CO in the emission inventories, suggesting that the CO/NOx ratios of fire emissions should be re-assessed. Moreover, higher maximum values are seen in WRF-Chem than in EMEP MSC-W, presumably due to differences in plume rise altitudes as the first model emits a larger fraction of the fire emissions in the lowermost model layer. The model results are also in fairly good agreement with surface ozone measurements.

    Biogenic VOC emissions reacting with anthropogenic NOx emissions are calculated to contribute significantly to the levels of ozone in the region, but the magnitude and geographical distribution depend strongly on the model and biogenic emission module used. During the July and August heat waves, ozone levels increased substantially due to a combination of forest fire emissions and the effect of high temperatures. We found that the largest temperature impact on

  1. Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0

    Science.gov (United States)

    Revell, L. E.; Tummon, F.; Stenke, A.; Sukhodolov, T.; Coulon, A.; Rozanov, E.; Garny, H.; Grewe, V.; Peter, T.

    2015-05-01

    Because tropospheric ozone is both a greenhouse gas and harmful air pollutant, it is important to understand how anthropogenic activities may influence its abundance and distribution through the 21st century. Here, we present model simulations performed with the chemistry-climate model SOCOL, in which spatially disaggregated chemistry and transport tracers have been implemented in order to better understand the distribution and projected changes in tropospheric ozone. We examine the influences of ozone precursor emissions (nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs)), climate change (including methane effects) and stratospheric ozone recovery on the tropospheric ozone budget, in a simulation following the climate scenario Representative Concentration Pathway (RCP) 6.0 (a medium-high, and reasonably realistic climate scenario). Changes in ozone precursor emissions have the largest effect, leading to a global-mean increase in tropospheric ozone which maximizes in the early 21st century at 23% compared to 1960. The increase is most pronounced at northern midlatitudes, due to regional emission patterns: between 1990 and 2060, northern midlatitude tropospheric ozone remains at constantly large abundances: 31% larger than in 1960. Over this 70-year period, attempts to reduce emissions in Europe and North America do not have an effect on zonally averaged northern midlatitude ozone because of increasing emissions from Asia, together with the long lifetime of ozone in the troposphere. A simulation with fixed anthropogenic ozone precursor emissions of NOx, CO and non-methane VOCs at 1960 conditions shows a 6% increase in global-mean tropospheric ozone by the end of the 21st century, with an 11 % increase at northern midlatitudes. This increase maximizes in the 2080s and is mostly caused by methane, which maximizes in the 2080s following RCP 6.0, and plays an important role in controlling ozone directly, and indirectly through its

  2. Revisiting the contribution of land transport and shipping emissions to tropospheric ozone

    Science.gov (United States)

    Mertens, Mariano; Grewe, Volker; Rieger, Vanessa S.; Jöckel, Patrick

    2018-04-01

    We quantify the contribution of land transport and shipping emissions to tropospheric ozone for the first time with a chemistry-climate model including an advanced tagging method (also known as source apportionment), which considers not only the emissions of nitrogen oxides (NOx, NO, and NO2), carbon monoxide (CO), and volatile organic compounds (VOC) separately, but also their non-linear interaction in producing ozone. For summer conditions a contribution of land transport emissions to ground-level ozone of up to 18 % in North America and Southern Europe is estimated, which corresponds to 12 and 10 nmol mol-1, respectively. The simulation results indicate a contribution of shipping emissions to ground-level ozone during summer on the order of up to 30 % in the North Pacific Ocean (up to 12 nmol mol-1) and 20 % in the North Atlantic Ocean (12 nmol mol-1). With respect to the contribution to the tropospheric ozone burden, we quantified values of 8 and 6 % for land transport and shipping emissions, respectively. Overall, the emissions from land transport contribute around 20 % to the net ozone production near the source regions, while shipping emissions contribute up to 52 % to the net ozone production in the North Pacific Ocean. To put these estimates in the context of literature values, we review previous studies. Most of them used the perturbation approach, in which the results for two simulations, one with all emissions and one with changed emissions for the source of interest, are compared. For a better comparability with these studies, we also performed additional perturbation simulations, which allow for a consistent comparison of results using the perturbation and the tagging approach. The comparison shows that the results strongly depend on the chosen methodology (tagging or perturbation approach) and on the strength of the perturbation. A more in-depth analysis for the land transport emissions reveals that the two approaches give different results

  3. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    Science.gov (United States)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  4. Development of a sensitive passive sampler using indigotrisulfonate for the determination of tropospheric ozone.

    Science.gov (United States)

    Garcia, Gabriel; Allen, Andrew George; Cardoso, Arnaldo Alves

    2010-06-01

    A new sampling and analytical design for measurement of ambient ozone is presented. The procedure is based on ozone absorption and decoloration (at 600 nm) of indigotrisulfonate dye, where ozone adds itself across the carbon-carbon double bond of the indigo. A mean relative standard deviation of 8.6% was obtained using samplers exposed in triplicate, and a correlation coefficient (r) of 0.957 was achieved in parallel measurements using the samplers and a commercial UV ozone instrument. The devices were evaluated in a measurement campaign, mapping spatial and temporal trends of ozone concentrations in a region of southeast Brazil strongly influenced by seasonal agricultural biomass burning, with associated emissions of ozone precursors. Ozone concentrations were highest in rural areas and lowest at an urban site, due to formation during downwind transport and short-term depletion due to titration with nitric oxide. Ozone concentrations showed strong seasonal trends, due to the influences of precursor emissions, relative humidity and solar radiation intensity. Advantages of the technique include ease and speed of use, the ready availability of components, and excellent sensitivity. Achievable temporal resolution of ozone concentrations is 8 hours at an ambient ozone concentration of 3.8 ppb, or 2 hours at a concentration of 15.2 ppb.

  5. Global health and economic impacts of future ozone pollution

    International Nuclear Information System (INIS)

    Selin, N E; Nam, K M; Reilly, J M; Paltsev, S; Prinn, R G; Webster, M D; Wu, S

    2009-01-01

    We assess the human health and economic impacts of projected 2000-2050 changes in ozone pollution using the MIT Emissions Prediction and Policy Analysis - Health Effects (EPPA-HE) model, in combination with results from the GEOS-Chem global tropospheric chemistry model of climate and chemistry effects of projected future emissions. We use EPPA-HE to assess the human health damages (including mortality and morbidity) caused by ozone pollution, and quantify their economic impacts in sixteen world regions. We compare the costs of ozone pollution under scenarios with 2000 and 2050 ozone precursor and greenhouse gas emissions (using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario). We estimate that health costs due to global ozone pollution above pre-industrial levels by 2050 will be $580 billion (year 2000$) and that mortalities from acute exposure will exceed 2 million. We find that previous methodologies underestimate costs of air pollution by more than a third because they do not take into account the long-term, compounding effects of health costs. The economic effects of emissions changes far exceed the influence of climate alone.

  6. Uncertainties in models of tropospheric ozone based on Monte Carlo analysis: Tropospheric ozone burdens, atmospheric lifetimes and surface distributions

    Science.gov (United States)

    Derwent, Richard G.; Parrish, David D.; Galbally, Ian E.; Stevenson, David S.; Doherty, Ruth M.; Naik, Vaishali; Young, Paul J.

    2018-05-01

    Recognising that global tropospheric ozone models have many uncertain input parameters, an attempt has been made to employ Monte Carlo sampling to quantify the uncertainties in model output that arise from global tropospheric ozone precursor emissions and from ozone production and destruction in a global Lagrangian chemistry-transport model. Ninety eight quasi-randomly Monte Carlo sampled model runs were completed and the uncertainties were quantified in tropospheric burdens and lifetimes of ozone, carbon monoxide and methane, together with the surface distribution and seasonal cycle in ozone. The results have shown a satisfactory degree of convergence and provide a first estimate of the likely uncertainties in tropospheric ozone model outputs. There are likely to be diminishing returns in carrying out many more Monte Carlo runs in order to refine further these outputs. Uncertainties due to model formulation were separately addressed using the results from 14 Atmospheric Chemistry Coupled Climate Model Intercomparison Project (ACCMIP) chemistry-climate models. The 95% confidence ranges surrounding the ACCMIP model burdens and lifetimes for ozone, carbon monoxide and methane were somewhat smaller than for the Monte Carlo estimates. This reflected the situation where the ACCMIP models used harmonised emissions data and differed only in their meteorological data and model formulations whereas a conscious effort was made to describe the uncertainties in the ozone precursor emissions and in the kinetic and photochemical data in the Monte Carlo runs. Attention was focussed on the model predictions of the ozone seasonal cycles at three marine boundary layer stations: Mace Head, Ireland, Trinidad Head, California and Cape Grim, Tasmania. Despite comprehensively addressing the uncertainties due to global emissions and ozone sources and sinks, none of the Monte Carlo runs were able to generate seasonal cycles that matched the observations at all three MBL stations. Although

  7. Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

    Science.gov (United States)

    Banerjee, Antara; Maycock, Amanda C.; Pyle, John A.

    2018-02-01

    The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry-climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model). Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of -0.09 W m-2. This is opposed by a positive ozone RF of 0.05 W m-2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.18 W m-2, which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (˜ 15 %) of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m-2) for RCP4.5 and a negative RF (-0.07 W m-2) for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m-2) for the stratospheric, tropospheric and whole-atmosphere RFs.

  8. Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions

    Science.gov (United States)

    Martin, Randall V.; Fiore, Arlene M.; VanDonkelaar, Aaron

    2004-01-01

    We present a novel capability in satellite remote sensing with implications for air pollution control strategy. We show that the ratio of formaldehyde columns to tropospheric nitrogen dioxide columns is an indicator of the relative sensitivity of surface ozone to emissions of nitrogen oxides (NO(x) = NO + NO2) and volatile organic compounds (VOCs). The diagnosis from these space-based observations is highly consistent with current understanding of surface ozone chemistry based on in situ observations. The satellite-derived ratios indicate that surface ozone is more sensitive to emissions of NO(x) than of VOCs throughout most continental regions of the Northern Hemisphere during summer. Exceptions include Los Angeles and industrial areas of Germany. A seasonal transition occurs in the fall when surface ozone becomes less sensitive to NOx and more sensitive to VOCs.

  9. Air pollution by ozone in Europe in summer 2003 - Overview of exceedances of EC ozone threshold values during the summer season April-August 2003 and comparisons with previous years

    Energy Technology Data Exchange (ETDEWEB)

    Fiala, J.; Cernikovsky, L.; Leeuw, F. de; Kurfuerst, P.; Aalst, R. van (eds.)

    2003-07-01

    In the period 1995-2003 of reporting tinder the old ozone directive, there has been little or no change in the reported exceedances of ozone threshold values. This is not unexpected as reductions in the EU emissions of nitrogen oxides and nonmethane volatile organic compounds, the main ozone precursors, have so far been limited - about 30 % between 1990 and 2000. 2010 under the national emission teilings directive. While peak ozone concentrations seem to go down, ozone concentration statistics relevant to the target values set in the new ozone directive show little or no reduction in the period 1996-2000. Very few stations actually show a significant downward trend for these stabstics. The threshold for warning the population continues to be exceeded on a few occasions Bach year, while the threshold for informing the population is exceeded at riost stations in most countries (outside northern Europe and Ireland) each year, generally more so in warm summers. These exceedances are likely to retur in years with temperatures above the long-term average until there is a substantially larger decrease in precursor emissions. A further reduction of about 30 % is foreseen towards Under current legislation and with the rate of turnover of the vehicle fleet, furtber reductions will gradually occur towards 2010, and further reductions may be necessary to achieve the target values of the new ozone directive. Note that, due to the uncertainties caused by year-to-year meteorological variations and the changes in the monitoring station configuration, these conclusions are tentative. (au)

  10. Impact of climate variability on tropospheric ozone

    International Nuclear Information System (INIS)

    Grewe, Volker

    2007-01-01

    A simulation with the climate-chemistry model (CCM) E39/C is presented, which covers both the troposphere and stratosphere dynamics and chemistry during the period 1960 to 1999. Although the CCM, by its nature, is not exactly representing observed day-by-day meteorology, there is an overall model's tendency to correctly reproduce the variability pattern due to an inclusion of realistic external forcings, like observed sea surface temperatures (e.g. El Nino), major volcanic eruption, solar cycle, concentrations of greenhouse gases, and Quasi-Biennial Oscillation. Additionally, climate-chemistry interactions are included, like the impact of ozone, methane, and other species on radiation and dynamics, and the impact of dynamics on emissions (lightning). However, a number of important feedbacks are not yet included (e.g. feedbacks related to biogenic emissions and emissions due to biomass burning). The results show a good representation of the evolution of the stratospheric ozone layer, including the ozone hole, which plays an important role for the simulation of natural variability of tropospheric ozone. Anthropogenic NO x emissions are included with a step-wise linear trend for each sector, but no interannual variability is included. The application of a number of diagnostics (e.g. marked ozone tracers) allows the separation of the impact of various processes/emissions on tropospheric ozone and shows that the simulated Northern Hemisphere tropospheric ozone budget is not only dominated by nitrogen oxide emissions and other ozone pre-cursors, but also by changes of the stratospheric ozone budget and its flux into the troposphere, which tends to reduce the simulated positive trend in tropospheric ozone due to emissions from industry and traffic during the late 80s and early 90s. For tropical regions the variability in ozone is dominated by variability in lightning (related to ENSO) and stratosphere-troposphere exchange (related to Northern Hemisphere Stratospheric

  11. Distributions of chemical reactive compounds: Effects of different emissions on the formation of ozone

    International Nuclear Information System (INIS)

    Vogel, H.; Fiedler, F.; Vogel, B.

    1993-01-01

    By using the model system the concentration distributions are simulated in accordance to the conditions of the beginning of August 1990. For this situation the influence of the emissions outside of the modelling region and the influence of biogenic emissions of hydrocarbons on the ozone formation in the modeling region was investigated. Comparing the results of the different simulations one can find differences concerning the netto production of the oxidants. For the first simulation day the emissions outside of the modeling region show a strong influence on the ozone production. Integrated over the whole boundary layer the ozone mass increases by 24%. If additionally the biogenic emissions are taken into account one can find only an increase of 7% for the 1. day. In contrast at the 2. simulation day the ozone production increases by 81%. For this case the ozone concentration near the ground is up to 20 ppb higher than for the model rund without biogenic emissions. (orig./BBR) [de

  12. Ozone impacts of natural gas development in the Haynesville Shale.

    Science.gov (United States)

    Kemball-Cook, Susan; Bar-Ilan, Amnon; Grant, John; Parker, Lynsey; Jung, Jaegun; Santamaria, Wilson; Mathews, Jim; Yarwood, Greg

    2010-12-15

    The Haynesville Shale is a subsurface rock formation located beneath the Northeast Texas/Northwest Louisiana border near Shreveport. This formation is estimated to contain very large recoverable reserves of natural gas, and during the two years since the drilling of the first highly productive wells in 2008, has been the focus of intensive leasing and exploration activity. The development of natural gas resources within the Haynesville Shale is likely to be economically important but may also generate significant emissions of ozone precursors. Using well production data from state regulatory agencies and a review of the available literature, projections of future year Haynesville Shale natural gas production were derived for 2009-2020 for three scenarios corresponding to limited, moderate, and aggressive development. These production estimates were then used to develop an emission inventory for each of the three scenarios. Photochemical modeling of the year 2012 showed increases in 2012 8-h ozone design values of up to 5 ppb within Northeast Texas and Northwest Louisiana resulting from development in the Haynesville Shale. Ozone increases due to Haynesville Shale emissions can affect regions outside Northeast Texas and Northwest Louisiana due to ozone transport. This study evaluates only near-term ozone impacts, but the emission inventory projections indicate that Haynesville emissions may be expected to increase through 2020.

  13. Pre-exposure to nitric oxide modulates the effect of ozone on oxidative defenses and volatile emissions in lima bean

    International Nuclear Information System (INIS)

    Souza, Silvia R.; Blande, James D.; Holopainen, Jarmo K.

    2013-01-01

    The roles that ozone and nitric oxide (NO), the chief O 3 precursor, play in the antioxidative balance and inducible volatile emissions of lima bean were assessed. Exposure to O 3 inhibited APX, CAT, and GR, decreased GSH content and induced emissions of (E)-β-ocimene, limonene, 1,8-cineole, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (E)-DMNT, 2-butanone and nonanal. O 3 did not induce emissions of (E)-β-caryophyllene and appeared to reduce the antioxidative capacity of plants to a greater extent than NO and NO followed by O 3 (NO/O 3 ) treatments. There were significant differences in emissions of (E)-β-ocimene and linalool between NO/O 3 treated plants and controls, but no differences in antioxidant concentrations. A model to explain the relationships between the ascorbate–glutathione cycle and O 3 and NO inducible volatiles was proposed. Our findings suggest that prior exposure to NO modulates the oxidative effect of ozone by the process of cross-tolerance, which might regulate the antioxidative system and induction of volatile organic compounds. -- Highlights: •NO and O 3 disturb antioxidant defenses and cause lipid peroxidation in lima bean plants. •Exposure to NO before exposure to O 3 does not alter the antioxidant defenses and malondialdehyde levels. •The total sum of induced volatiles is reduced in plants that are exposed to NO and then O 3 . •The antioxidant system and induced VOC emission were balanced by pre-exposure to NO before O 3 . -- Capsule: Nitric oxide modulates the ozone-induced oxidative stress in lima bean by cross-tolerance effect

  14. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    NARCIS (Netherlands)

    Hendriks, C.; Forsell, N.; Kiesewetter, G.; Schaap, M.; Schöpp, W.

    2016-01-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly

  15. Global health benefits of mitigating ozone pollution with methane emission controls.

    Science.gov (United States)

    West, J Jason; Fiore, Arlene M; Horowitz, Larry W; Mauzerall, Denise L

    2006-03-14

    Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.

  16. Is the ozone climate penalty robust in Europe?

    International Nuclear Information System (INIS)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frédérik; Rouïl, Laurence; Andersson, Camilla; Engardt, Magnuz; Langner, Joakim; Baklanov, Alexander; Brandt, Jørgen; Christensen, Jesper H; Geels, Camilla; Hedegaard, Gitte B; Doherty, Ruth; Giannakopoulos, Christos; Katragkou, Eleni; Lei, Hang; Manders, Astrid; Melas, Dimitris; Sofiev, Mikhail; Soares, Joana

    2015-01-01

    Ozone air pollution is identified as one of the main threats bearing upon human health and ecosystems, with 25 000 deaths in 2005 attributed to surface ozone in Europe (IIASA 2013 TSAP Report #10). In addition, there is a concern that climate change could negate ozone pollution mitigation strategies, making them insufficient over the long run and jeopardising chances to meet the long term objective set by the European Union Directive of 2008 (Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008) (60 ppbv, daily maximum). This effect has been termed the ozone climate penalty. One way of assessing this climate penalty is by driving chemistry-transport models with future climate projections while holding the ozone precursor emissions constant (although the climate penalty may also be influenced by changes in emission of precursors). Here we present an analysis of the robustness of the climate penalty in Europe across time periods and scenarios by analysing the databases underlying 11 articles published on the topic since 2007, i.e. a total of 25 model projections. This substantial body of literature has never been explored to assess the uncertainty and robustness of the climate ozone penalty because of the use of different scenarios, time periods and ozone metrics. Despite the variability of model design and setup in this database of 25 model projection, the present meta-analysis demonstrates the significance and robustness of the impact of climate change on European surface ozone with a latitudinal gradient from a penalty bearing upon large parts of continental Europe and a benefit over the North Atlantic region of the domain. Future climate scenarios present a penalty for summertime (JJA) surface ozone by the end of the century (2071–2100) of at most 5 ppbv. Over European land surfaces, the 95% confidence interval of JJA ozone change is [0.44; 0.64] and [0.99; 1.50] ppbv for the 2041–2070 and 2071–2100 time windows, respectively

  17. Is the ozone climate penalty robust in Europe?

    Science.gov (United States)

    Colette, Augustin; Andersson, Camilla; Baklanov, Alexander; Bessagnet, Bertrand; Brandt, Jørgen; Christensen, Jesper H.; Doherty, Ruth; Engardt, Magnuz; Geels, Camilla; Giannakopoulos, Christos; Hedegaard, Gitte B.; Katragkou, Eleni; Langner, Joakim; Lei, Hang; Manders, Astrid; Melas, Dimitris; Meleux, Frédérik; Rouïl, Laurence; Sofiev, Mikhail; Soares, Joana; Stevenson, David S.; Tombrou-Tzella, Maria; Varotsos, Konstantinos V.; Young, Paul

    2015-08-01

    Ozone air pollution is identified as one of the main threats bearing upon human health and ecosystems, with 25 000 deaths in 2005 attributed to surface ozone in Europe (IIASA 2013 TSAP Report #10). In addition, there is a concern that climate change could negate ozone pollution mitigation strategies, making them insufficient over the long run and jeopardising chances to meet the long term objective set by the European Union Directive of 2008 (Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008) (60 ppbv, daily maximum). This effect has been termed the ozone climate penalty. One way of assessing this climate penalty is by driving chemistry-transport models with future climate projections while holding the ozone precursor emissions constant (although the climate penalty may also be influenced by changes in emission of precursors). Here we present an analysis of the robustness of the climate penalty in Europe across time periods and scenarios by analysing the databases underlying 11 articles published on the topic since 2007, i.e. a total of 25 model projections. This substantial body of literature has never been explored to assess the uncertainty and robustness of the climate ozone penalty because of the use of different scenarios, time periods and ozone metrics. Despite the variability of model design and setup in this database of 25 model projection, the present meta-analysis demonstrates the significance and robustness of the impact of climate change on European surface ozone with a latitudinal gradient from a penalty bearing upon large parts of continental Europe and a benefit over the North Atlantic region of the domain. Future climate scenarios present a penalty for summertime (JJA) surface ozone by the end of the century (2071-2100) of at most 5 ppbv. Over European land surfaces, the 95% confidence interval of JJA ozone change is [0.44; 0.64] and [0.99; 1.50] ppbv for the 2041-2070 and 2071-2100 time windows, respectively.

  18. Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

    Directory of Open Access Journals (Sweden)

    A. Banerjee

    2018-02-01

    Full Text Available The ozone radiative forcings (RFs resulting from projected changes in climate, ozone-depleting substances (ODSs, non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry–climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model. Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of −0.09 W m−2. This is opposed by a positive ozone RF of 0.05 W m−2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario is found to drive an ozone RF of 0.18 W m−2, which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (∼ 15 % of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m−2 for RCP4.5 and a negative RF (−0.07 W m−2 for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m−2 for the stratospheric, tropospheric and whole-atmosphere RFs.

  19. Medium-range mid-tropospheric transport of ozone and precursors over Africa: two numerical case studies in dry and wet seasons

    Directory of Open Access Journals (Sweden)

    B. Sauvage

    2007-10-01

    Full Text Available A meso-scale model was used to understand and describe the dynamical processes driving high ozone concentrations observed during both dry and monsoon season in monthly climatologies profiles over Lagos (Nigeria, 6.6° N, 3.3° E, obtained with the MOZAIC airborne measurements (ozone and carbon monoxide. This study focuses on ozone enhancements observed in the upper-part of the lower troposphere, around 3000 m. Two individual cases have been selected in the MOZAIC dataset as being representative of the climatological ozone enhancements, to be simulated and analyzed with on-line Lagrangian backtracking of air masses.

    This study points out the role of baroclinic low-level circulations present in the Inter Tropical Front (ITF area. Two low-level thermal cells around a zonal axis and below 2000 m, in mirror symmetry to each other with respect to equator, form near 20° E and around 5° N and 5° S during the (northern hemisphere dry and wet seasons respectively. They are caused by surface gradients – the warm dry surface being located poleward of the ITF and the cooler wet surface equatorward of the ITF.

    A convergence line exists between the poleward low-level branch of each thermal cell and the equatorward low-level branch of the Hadley cell. Our main conclusion is to point out this line as a preferred location for fire products – among them ozone precursors – to be uplifted and injected into the lower free troposphere.

    The free tropospheric transport that occurs then depends on the hemisphere and season. In the NH dry season, the AEJ allows transport of ozone and precursors westward to Lagos. In the NH monsoon (wet season, fire products are transported from the southern hemisphere to Lagos by the southeasterly trade that surmounts the monsoon layer. Additionally ozone precursors uplifted by wet convection in the ITCZ can also mix to the ones uplifted by the baroclinic cell and be advected up to Lagos by the trade

  20. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    Science.gov (United States)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  1. Impact of biogenic emissions on ozone formation in the Mediterranean area - a BEMA modelling study

    International Nuclear Information System (INIS)

    Thunis, P.; Cuvelier, C.

    2000-01-01

    The aim of this modelling study is to understand and quantify the influence of biogenic volatile organic compound (BVOC) emissions on the formation of tropospheric ozone in the Burriana area (north of Valencia) on the east coast of Spain. The mesoscale modelling system used consists of the meteorology/transport module TVM and the chemical reaction mechanism RACM. The results of the model simulations are validated and compared with the data collected during the biogenic emissions in the mediterranean area (BEMA) field campaign that took place in June 1997. Anthropogenic and biogenic emission inventories have been constructed with an hourly resolution. Averaged (over the land area and over 24 h) emission fluxes for AVOC, anthropogenic NO x , BVOC and biogenic NO x are given by 16.0, 9.9, 6.2, and 0.7 kg km -2 day -1 , respectively. The impact of biogenic emissions is investigated on peak ozone values by performing simulations with and without biogenic emissions; while keeping anthropogenic emissions constant. The impact on ozone formation is also studied in combination with some anthropogenic emissions reduction strategies, i.e. when anthropogenic VOC emissions and/or NO x emissions are reduced. A factor separation technique is applied to isolate the impact due to biogenic emissions from the overall impact due to biogenic and anthropogenic emissions together. The results indicate that the maximum impact of biogenic emissions on ozone formation represents at the most 10 ppb, while maximum ozone values are of the order of 100 ppb. At different locations the maximum impact is reached at different times of the day depending on the arrival time of the sea breeze. It is also shown that this impact does not coincide in time with the maximum simulated ozone concentrations that are reached over the day. By performing different emission reduction scenarios, BVOC impacts are found to be sensitive mainly to NO x , and not to AVOC. Finally, it is shown that amongst the various

  2. Ozone pollution: rising concentrations despite French and EU efforts

    International Nuclear Information System (INIS)

    Ba, M.; Elichegaray, Ch.

    2003-11-01

    Ozone is the main indicator of photochemical pollution which is caused by a complex combination of primary pollutants formed by chemical reactions in the troposphere, in the presence of sunlight. These primary pollutants, otherwise known as precursors of ozone (nitrogen oxides, volatile organic compounds and carbon monoxide), are emitted both by natural sources and human activities. In urban areas, during the summer months, ozone is often the main cause of deterioration in air quality. Directive 2002/3/EC relating to ozone in ambient air entered into force on 9 September 2003, superseding the first ozone Directive (92/72/CE) of 21 September 1992. In the last 10 years, monitoring of ozone pollution has considerably progressed in France (the number of analysers has increased tenfold). Emissions of the ozone precursors fell significantly (-27%) between 1990 and 2000 in France as a result of combined efforts in all sectors of activity. However, between 1994 and 2002, ozone levels remained above the information threshold for the protection of human health and vegetation on average more than 100 days a year in rural areas and over 40 days a year in urban and peri-urban areas. Efforts undertaken both in France and other European countries aim to improve the situation and ensure compliance with the requirements of Directive 2002/3/EC. (author)

  3. How is ozone pollution reducing our food supply?

    Science.gov (United States)

    Wilkinson, Sally; Mills, Gina; Illidge, Rosemary; Davies, William J

    2012-01-01

    Ground-level ozone pollution is already decreasing global crop yields (from ∼2.2-5.5% for maize to 3.9-15% and 8.5-14% for wheat and soybean, respectively), to differing extents depending on genotype and environmental conditions, and this problem is predicted to escalate given climate change and increasing ozone precursor emissions in many areas. Here a summary is provided of how ozone pollution affects yield in a variety of crops, thus impacting global food security. Ozone causes visible injury symptoms to foliage; it induces early senescence and abscission of leaves; it can reduce stomatal aperture and thereby carbon uptake, and/or directly reduce photosynthetic carbon fixation; it can moderate biomass growth via carbon availability or more directly; it can decrease translocation of fixed carbon to edible plant parts (grains, fruits, pods, roots) due either to reduced availability at source, redirection to synthesis of chemical protectants, or reduced transport capabilities via phloem; decreased carbon transport to roots reduces nutrient and water uptake and affects anchorage; ozone can moderate or bring forward flowering and induce pollen sterility; it induces ovule and/or grain abortion; and finally it reduces the ability of some genotypes to withstand other stresses such as drought, high vapour pressure deficit, and high photon flux density via effects on stomatal control. This latter point is emphasized here, given predictions that atmospheric conditions conducive to drought formation that also give rise to intense precursor emission events will become more severe over the coming decades.

  4. Decadal Changes in Ozone and Emissions in Central California and Current Issues

    Science.gov (United States)

    Tanrikulu, S.; Beaver, S.; Soong, S.; Tran, C.; Cordova, J.; Palazoglu, A.

    2011-12-01

    The relationships among ozone, emissions, and meteorology are very complex in central California, and must be well studied and understood in order to facilitate better air quality planning. Factors significantly impacting changes in emissions such as economic and population growth, and adopted emission controls make the matter even more complex. Here we review the history of ozone pollution in central California since the 1970s to plan for the future. Since the 1970s, changes in emissions have been accompanied by likewise dramatic changes in region-to-region differences in air quality. We focus on the coastal San Francisco Bay Area (SFBA) and the inland San Joaquin Valley (SJV). In the 1970s, the SFBA population was approaching 5 million people while the considerably larger and more rural SJV population remained below 2 million. The SFBA population was mostly confined to coastal locations. Peak ozone levels occurred mostly around the population centers and especially over the Bay itself. Hourly average ozone levels routinely approached 160 ppb. These high ozone levels promoted regulations under which SFBA emissions were continuously reduced through the present. By the 1990s, SFBA emissions had been reduced considerably despite the region's population growing to around 6 million. Relative to the 1970s, in 1990s the SFBA had lower peak ozone levels that were shifted to inland locations where much of the population growth was occurring. The SFBA still exceeded the federal 1-hour standard. A rapidly changing economic landscape in the 1970s promoted vast changes in the central California population distribution. In the SJV, the OPEC oil crisis promoted significant development of petroleum resources. Meanwhile, family farms were quickly being replaced with commercial-scale farming operations. The SJV population rapidly expanded to around 3 million people by the early 1990s. During this time, SJV emissions increased considerably, largely from increases in mobile source

  5. U.S. ozone air quality under changing climate and anthropogenic emissions.

    Science.gov (United States)

    Racherla, Pavan N; Adams, Peter J

    2009-02-01

    We examined future ozone (O3) air quality in the United States (U.S.) under changing climate and anthropogenic emissions worldwide by performing global climate-chemistry simulations, utilizing various combinations of present (1990s) and future (Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 2050s) climates, and present and future (2050s; IPCC SRES A2 and B1) anthropogenic emissions. The A2 climate scenario is employed here because it lies at the upper extreme of projected climate change for the 21st century. To examine the sensitivity of U.S. O3 to regional emissions increases (decreases), the IPCC SRES A2 and B1 scenarios, which have overall higher and lower O3-precursor emissions for the U.S., respectively, have been chosen. We find that climate change, by itself, significantly worsens the severity and frequency of high-O3 events ("episodes") over most locations in the U.S., with relatively small changes in average O3 air quality. These high-O3 increases due to climate change alone will erode moderately the gains made under a U.S. emissions reduction scenario (e.g., B1). The effect of climate change on high- and average-O3 increases with anthropogenic emissions. Insofar as average O3 air quality is concerned, changes in U.S. anthropogenic emissions will play the most important role in attaining (or not) near-term U.S. O3 air quality standards. However, policy makers must plan appropriately for O3 background increases due to projected increases in global CH4 abundance and non-U.S. anthropogenic emissions, as well as potential local enhancements that they could cause. These findings provide strong incentives for more-than-planned emissions reductions at locations that are currently O3-nonattainment.

  6. Impacts of Interannual Variability in Biogenic VOC Emissions near Transitional Ozone Production Regimes

    Science.gov (United States)

    Geddes, J.

    2017-12-01

    Due to successful NOx emission controls, summertime ozone production chemistry in urban areas across North America is transitioning from VOC-limited to increasingly NOx-limited. In some regions where ozone production sensitivity is in transition, interannual variability in surrounding biogenic VOC emissions could drive fluctuations in the prevailing chemical regime and modify the impact of anthropogenic emission changes. I use satellite observations of HCHO and NO2 column density, along with a long-term simulation of atmospheric chemistry, to investigate the impact of interannual variability in biogenic isoprene sources near large metro areas. Peak emissions of isoprene in the model can vary by up to 20-60% in any given year compared to the long term mean, and this variability drives the majority of the variability in simulated local HCHO:NO2 ratios (a common proxy for ozone production sensitivity). The satellite observations confirm increasingly NOx-limited chemical regimes with large interannual variability. In several instances, the model and satellite observations suggest that variability in biogenic isoprene emissions could shift summertime ozone production from generally VOC- to generally NOx- sensitive (or vice versa). This would have implications for predicting the air quality impacts of anthropogenic emission changes in any given year, and suggests that drivers of biogenic emissions need to be well understood.

  7. Future emission scenarios for chemicals that may deplete stratospheric ozone

    International Nuclear Information System (INIS)

    Hammitt, J.K; Camm, Frank; Mooz, W.E.; Wolf, K.A.; Bamezai, Anil; Connel, P.S.; Wuebbles, D.J.

    1990-01-01

    Scenarios are developed for long-term future emissions of seven of the most important manmade chemicals that may deplete ozone and the corresponding effect on stratospheric ozone concentrations is calculated using a one-dimensional atmospheric model. The scenarios are based on detailed analysis of the markets for products that use these chemicals and span a central 90% probability interval for the chemicals joint effect on calculated ozone abundance, assuming no additional regulations. (author). 22 refs., 2 figs., 5 tabs

  8. Evaluation of ozone emissions and exposures from consumer products and home appliances.

    Science.gov (United States)

    Zhang, Q; Jenkins, P L

    2017-03-01

    Ground-level ozone can cause serious adverse health effects and environmental impacts. This study measured ozone emissions and impacts on indoor ozone levels and associated exposures from 17 consumer products and home appliances that could emit ozone either intentionally or as a by-product of their functions. Nine products were found to emit measurable ozone, one up to 6230 ppb at a distance of 5 cm (2 inches). One use of these products increased room ozone concentrations by levels up to 106 ppb (mean, from an ozone laundry system) and personal exposure concentrations of the user by 12-424 ppb (mean). Multiple cycles of use of one fruit and vegetable washer increased personal exposure concentrations by an average of 2550 ppb, over 28 times higher than the level of the 1-h California Ambient Air Quality Standard for ozone (0.09 ppm). Ozone emission rates ranged from 1.6 mg/h for a refrigerator air purifier to 15.4 mg/h for a fruit and vegetable washer. The use of some products was estimated to contribute up to 87% of total daily exposures to ozone. The results show that the use of some products may result in potential health impacts. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  9. Impact of climate change on tropospheric ozone and its global budgets

    Directory of Open Access Journals (Sweden)

    G. Zeng

    2008-01-01

    Full Text Available We present the chemistry-climate model UMCAM in which a relatively detailed tropospheric chemical module has been incorporated into the UK Met Office's Unified Model version 4.5. We obtain good agreements between the modelled ozone/nitrogen species and a range of observations including surface ozone measurements, ozone sonde data, and some aircraft campaigns.

    Four 2100 calculations assess model responses to projected changes of anthropogenic emissions (SRES A2, climate change (due to doubling CO2, and idealised climate change-associated changes in biogenic emissions (i.e. 50% increase of isoprene emission and doubling emissions of soil-NOx. The global tropospheric ozone burden increases significantly for all the 2100 A2 simulations, with the largest response caused by the increase of anthropogenic emissions. Climate change has diverse impacts on O3 and its budgets through changes in circulation and meteorological variables. Increased water vapour causes a substantial ozone reduction especially in the tropical lower troposphere (>10 ppbv reduction over the tropical ocean. On the other hand, an enhanced stratosphere-troposphere exchange of ozone, which increases by 80% due to doubling CO2, contributes to ozone increases in the extratropical free troposphere which subsequently propagate to the surface. Projected higher temperatures favour ozone chemical production and PAN decomposition which lead to high surface ozone levels in certain regions. Enhanced convection transports ozone precursors more rapidly out of the boundary layer resulting in an increase of ozone production in the free troposphere. Lightning-produced NOx increases by about 22% in the doubled CO2 climate and contributes to ozone production.

    The response to the increase of isoprene emissions shows that the change of ozone is largely determined by background NOx levels: high

  10. OZONE PRECURSORS, SOURCE REGIONS, AND O(3) FORMATION DURING THE TEXAQS 2000 STUDY

    International Nuclear Information System (INIS)

    DAUM, P.H.; KLEINMAN, L.I.; BRECHTEL, F.; LEE, Y.N.; NUNNERMACKER, L.J.; SPRINGSTON, S.R.; WEINSTEIN-LLOYD, J.

    2001-01-01

    The DOE G-1 aircraft made flights on 14 days during the TexAQS 2000 study. On 7 of those days, the aircraft encountered highly localized plumes exhibiting O(sub 3) concentrations in excess of 150 ppb; on some days, peak O(sub 3) concentrations were in excess of 200 ppb. These ozone plumes were rapidly formed with an efficiency (O(sub 3) per NO(sub x) molecule consumed) much higher (7-20) than observed in other urban areas (3-4), and were frequently associated with high concentrations ( and gt;20 ppb) of secondary hydrocarbon species such as formaldehyde. Back trajectory analysis showed that the plumes were invariably associated with emissions from one or more of the large industrial complexes clustered about the Houston Ship Channel and Galveston Bay. Very high hydrocarbon reactivities were found in the vicinity of these facilities during morning flights. These hydrocarbon reactivities, in combination with local NO(sub x) emissions, were large enough to support instantaneous O(sub 3) production rates as high as 200 ppb/h. It is hypothesized that the combination of nitrogen oxides and hydrocarbon emissions emanating from this complex of industries provided a potent mixture of chemicals that caused the rapid formation of very high concentrations of ozone which, depending on the prevailing meteorology, could cause exceedance of the NAAQS ozone standard anywhere in the Houston metropolitan area

  11. The impact of biogenic VOC emissions on photochemical ozone formation during a high ozone pollution episode in the Iberian Peninsula in the 2003 summer season

    Directory of Open Access Journals (Sweden)

    N. Castell

    2008-04-01

    Full Text Available Throughout Europe the summer of 2003 was exceptionally warm, especially July and August. The European Environment Agency (EEA reported several ozone episodes, mainly in the first half of August. These episodes were exceptionally long-lasting, spatially extensive, and associated to high temperatures. In this paper, the 10$ndash;15 August 2003 ozone pollution event has been analyzed using meteorological and regional air quality modelling. During this period the threshold values of the European Directive 2002/3/EC were exceeded in various areas of the Iberian Peninsula.

    The aim of this paper is to computationally understand and quantify the influence of biogenic volatile organic compound (BVOC emissions in the formation of tropospheric ozone during this high ozone episode. Being able to differentiate how much ozone comes from biogenic emissions alone and how much comes from the interaction between anthropogenic and biogenic emissions would be helpful to develop a feasible and effective ozone control strategy. The impact on ozone formation was also studied in combination with various anthropogenic emission reduction strategies, i.e., when anthropogenic VOC emissions and/or NOx emissions are reduced. The results show a great dependency of the BVOC contribution to ozone formation on the antropoghenic reduction scenario. In rural areas, the impact due to a NOx and/or VOC reduction does not change the BVOC impact. Nevertheless, within big cities or industrial zones, a NOx reduction results in a decrease of the biogenic impact in ozone levels that can reach 85 μg/m3, whereas an Anthropogenic Volatile Organic Compound (AVOC reduction results in a decrease of the BVOC contribution on ozone formation that varies from 0 to 30 μg/m3 with respect to the contribution at the same points in the 2003 base scenario. On the other hand, downwind of the big cities, a decrease in NOx produces

  12. Model study of the impact of biogenic emission on regional ozone and the effectiveness of emission reduction scenarios over eastern China

    International Nuclear Information System (INIS)

    Han, Zhiwei; Matsuda, Kazuhide; Ueda, Hiromasa

    2005-01-01

    The impact of biogenic emission on regional ozone and emission control scenarios has been numerically studied through a series of sensitivity model simulations. A typical episode with elevated ozone over eastern China from 12 to 16 August 2001 was investigated by using a tropospheric chemistry and transport model (TCTM), driven by a non-hydrostatic mesoscale model MM5. The meteorological conditions during this period were characterized by high-pressure systems associated with low wind speeds, high temperatures and clear skies. Afternoon ozone concentrations exceeding 80 parts per billion (ppb) occurred over broad areas of eastern China. There is a generally good agreement between simulation and observation, indicating that the TCTM is able to represent major physical and chemical processes of tropospheric ozone and well reproduce the diurnal and day-to-day variability associated with synoptic conditions. The sensitivity analysis reveals a significant influence of biogenic hydrocarbons on regional ozone. Ozone levels are apparently enhanced by biogenic emission over large areas of eastern China. The largest increase up to 30 ppb in daytime average concentration is found in portions of the middle reaches of the Yangtze River, Yangtze Delta and northeast China. However, the response of ozone to biogenic emission varies spatially, showing more sensitivity in polluted areas than that in clean rural areas. The regimes limited by nitrogen oxides (NO x ) and volatile organic carbon (VOC) in eastern China are further investigated with respect to biogenic emission. Ozone shows a clear tendency to shift from VOC limitation to NO x limitation as it moves from urban and industrial areas to rural areas. Most of the rural areas in southern China tend to be NO x limited, whereas most of the northern parts of China appear to be VOC limited. By considering biogenic emission, ozone tends to become more NO x limited and less VOC limited, both in extent and intensity, over eastern

  13. Impact of biogenic terpene emissions from Brassica napus on tropospheric ozone over Saxony (Germany): numerical investigation.

    Science.gov (United States)

    Renner, Eberhard; Münzenberg, Annette

    2003-01-01

    The role of biogenic emissions in tropospheric ozone production is currently under discussion and major aspects are not well understood yet. This study aims towards the estimation of the influence of biogenic emissions on tropospheric ozone concentrations over Saxony in general and of biogenic emissions from brassica napus in special. MODELLING TOOLS: The studies are performed by utilizing a coupled numerical modelling system consisting of the meteorological model METRAS and the chemistry transport model MUSCAT. For the chemical part, the Euro-RADM algorithm is used. EMISSIONS: Anthropogenic and biogenic emissions are taken into account. The anthropogenic emissions are introduced by an emission inventory. Biogenic emissions, VOC and NO, are calculated within the chemical transport model MUSCAT at each time step and in each grid cell depending on land use type and on the temperature. The emissions of hydrocarbons from forest areas as well as biogenic NO especially from agricultural grounds are considered. Also terpene emissions from brassica napus fields are estimated. SIMULATION SETUP AND METEOROLOGICAL CONDITIONS: The simulations were performed over an area with an extension of 160 x 140 km2 which covers the main parts of Saxony and neighboring areas of Brandenburg, Sachsen-Anhalt and Thuringia. Summer smog with high ozone concentrations can be expected during high pressure conditions on hot summer days. Typical meteorological conditions for such cases were introduced in an conceptual way. It is estimated that biogenic emissions change tropospheric ozone concentrations in a noticeable way (up to 15% to 20%) and, therefore, should not be neglected in studies about tropospheric ozone. Emissions from brassica napus do have a moderate potential to enhance tropospheric ozone concentrations, but emissions are still under consideration and, therefore, results vary to a high degree. Summing up, the effect of brassica napus terpene emissions on ozone concentrations is

  14. Ozone Depletion in Tropospheric Volcanic Plumes: From Halogen-Poor to Halogen-Rich Emissions

    Directory of Open Access Journals (Sweden)

    Tjarda J. Roberts

    2018-02-01

    Full Text Available Volcanic halogen emissions to the troposphere undergo a rapid plume chemistry that destroys ozone. Quantifying the impact of volcanic halogens on tropospheric ozone is challenging, only a few observations exist. This study presents measurements of ozone in volcanic plumes from Kīlauea (HI, USA, a low halogen emitter. The results are combined with published data from high halogen emitters (Mt Etna, Italy; Mt Redoubt, AK, USA to identify controls on plume processes. Ozone was measured during periods of relatively sustained Kīlauea plume exposure, using an Aeroqual instrument deployed alongside Multi-Gas SO2 and H2S sensors. Interferences were accounted for in data post-processing. The volcanic H2S/SO2 molar ratio was quantified as 0.03. At Halema‘uma‘u crater-rim, ozone was close to ambient in the emission plume (at 10 ppmv SO2. Measurements in grounding plume (at 5 ppmv SO2 about 10 km downwind of Pu‘u ‘Ō‘ō showed just slight ozone depletion. These Kīlauea observations contrast with substantial ozone depletion reported at Mt Etna and Mt Redoubt. Analysis of the combined data from these three volcanoes identifies the emitted Br/S as a strong but non-linear control on the rate of ozone depletion. Model simulations of the volcanic plume chemistry highlight that the proportion of HBr converted into reactive bromine is a key control on the efficiency of ozone depletion. This underlines the importance of chemistry in the very near-source plume on the fate and atmospheric impacts of volcanic emissions to the troposphere.

  15. Contribution of biogenic emissions to the formation of ozone and particulate matter in the eastern United States.

    Science.gov (United States)

    Pun, Betty K; Wu, Shiang-Yuh; Seigneur, Christian

    2002-08-15

    As anthropogenic emissions of ozone (O3) precursors, fine particulate matter (PM2.5), and PM2.5 precursors continue to decrease in the United States, the fraction of O3 and PM2.5 attributable to natural sources may become significant in some locations, reducing the efficacy that can be expected from future controls of anthropogenic sources. Modeling studies were conducted to estimate the contribution of biogenic emissions to the formation of O3 and PM2.5 in Nashville/TN and the northeastern United States. Two approaches were used to bound the estimates. In an anthropogenic simulation, biogenic emissions and their influence at the domain boundaries were eliminated. Contributions of biogenic compounds to the simulated concentrations of O3 and PM2.5 were determined by the deviation of the concentrations in the anthropogenic case from those in the base case. A biogenic simulation was used to assess the amounts of O3 and PM2.5 produced in an environment free from anthropogenic influences in emissions and boundary conditions. In both locations, the contribution of biogenic emissions to O3 was small (production of O3 was much more sensitive to biogenic emissions in urban areas (22-34%). Therefore, the effects of biogenic emissions on O3 manifested mostly via their interaction with anthropogenic emissions of NOx. In the anthropogenic simulations, the average contribution of biogenic and natural sources to PM2.5 was estimated at 9% in Nashville/TN and 12% in the northeast domain. Because of the long atmospheric lifetimes of PM2.5, the contribution of biogenic/natural PM2.5 from the boundary conditions was higher than the contribution of biogenic aerosols produced within the domain. The elimination of biogenic emissions also affected the chemistry of other secondary PM2.5 components. Very little PM2.5 was formed in the biogenic simulations.

  16. Changes in US background ozone due to global anthropogenic emissions from 1970 to 2020

    Science.gov (United States)

    Nopmongcol, Uarporn; Jung, Jaegun; Kumar, Naresh; Yarwood, Greg

    2016-09-01

    Estimates of North American and US Background (NAB and USB) ozone (O3) are critical in setting and implementing the US National Ambient Air Quality Standards (NAAQS) and therefore influence population exposure to O3 across the US. NAB is defined as the O3 concentration in the absence of anthropogenic O3 precursor emissions from North America whereas USB excludes anthropogenic emissions inside the US alone. NAB and USB vary geographically and with time of year. Analyses of O3 trends at rural locations near the west coast suggest that background O3 is rising in response to increasing non-US emissions. As the O3 NAAQS is lowered, rising background O3 would make attaining the NAAQS more difficult. Most studies of changing US background O3 have inferred trends from observations whereas air quality management decisions tend to rely on models. Thus, it is important that the models used to develop O3 management strategies are able to represent the changes in background O3 in order to increase confidence that air quality management strategies will succeed. We focus on how changing global emissions influence USB rather than the effects of inter-annual meteorological variation or long-term climate change. We use a regional model (CAMx) nested within a global model (GEOS-Chem) to refine our grid resolution over high terrain in the western US and near US borders where USB tends to be higher. We determine USB from CAMx simulations that exclude US anthropogenic emissions. Over five decades, from 1970 to 2020, estimated USB for the annual fourth highest maximum daily 8-h average O3 (H4MDA8) in the western US increased from mostly in the range of 40-55 ppb to 45-60 ppb, but remained below 45 ppb in the eastern US. USB increases in the southwestern US are consistent with rising emissions in Asia and Mexico. USB decreases in the northeast US after 1990 follow declining Canadian emissions. Our results show that the USB increases both for the top 30 MDA8 days and the H4MDA8 (the former

  17. Road traffic emissions - predictions of future contributions to regional ozone levels in Europe

    International Nuclear Information System (INIS)

    Reis, S.; Friedrich, R.; Obermeier, A.; Unger, S.

    2000-01-01

    As part of the European Commission research project 'Assessment of policy instruments for efficient ozone abatement strategies in Europe,' detailed emission projections have been developed for the year 2010 based upon currently adopted measures, and feasible reductions. For road-traffic emissions this projection considers passenger cars, light- and heavy-duty vehicles, mopeds and motorcycles. Here we present model calculations made with the EMEP 3-D Eulerian model to illustrate the relative contribution of each of these road-traffic sectors to ozone concentrations across Europe. The model is run for a six-month period, April-September 1996. The model results clearly suggest that further reduction in road-traffic emissions beyond currently planned measures would be beneficial in reducing ozone over Europe, particularly in the case of heavy-duty vehicles and evaporative emissions. These results do of course depend on the estimated emissions in each sector for the year 2010, and we show that this is a major source of uncertainty in such scenario calculations. (author)

  18. Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in eastern China.

    Science.gov (United States)

    Wang, Qin'geng; Han, Zhiwei; Wang, Tijian; Zhang, Renjian

    2008-05-20

    This study is intended to understand and quantify the impacts of biogenic emissions of volatile organic compounds (VOC) and nitrogen oxides (NO(x)) on the formation of tropospheric ozone during summertime in eastern China. The model system consists of the non-hydrostatic mesoscale meteorological model (MM5) and a tropospheric chemical and transport model (TCTM) with the updated carbon-bond chemical reaction mechanism (CBM-IV). The spatial resolution of the system domain is 30 km x 30 km. The impacts of biogenic emissions are investigated by performing simulations (36 h) with and without biogenic emissions, while anthropogenic emissions are constant. The results indicate that biogenic emissions have remarkable impacts on surface ozone in eastern China. In big cities and their surrounding areas, surface ozone formation tends to be VOC-limited. The increase in ozone concentration by biogenic VOC is generally 5 ppbv or less, but could be more than 10 ppbv or even 30 ppbv in some local places. The impacts of biogenic NO(x) are different or even contrary in different regions, depending on the relative availability of NO(x) and VOC. The surface ozone concentrations reduced or increased by the biogenic NO(x) could be as much as 10 ppbv or 20 ppbv, respectively. The impacts of biogenic emissions on ozone aloft are generally restricted to the boundary layer and generally more obvious during the daytime than during the nighttime. This study is useful for understanding the role of biogenic emissions and for planning strategies for surface ozone abatement in eastern China. Due to limitations of the emission inventories used and the highly non-linear nature of zone formation, however, some uncertainties remain in the results.

  19. Climate-driven ground-level ozone extreme in the fall over the Southeast United States.

    Science.gov (United States)

    Zhang, Yuzhong; Wang, Yuhang

    2016-09-06

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980-2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management.

  20. Ozone and NOx chemistry in the eastern US: evaluation of CMAQ/CB05 with satellite (OMI data

    Directory of Open Access Journals (Sweden)

    T. P. Canty

    2015-10-01

    Full Text Available Regulatory air quality models, such as the Community Multiscale Air Quality model (CMAQ, are used by federal and state agencies to guide policy decisions that determine how to best achieve adherence with National Ambient Air Quality Standards for surface ozone. We use observations of ozone and its important precursor NO2 to test the representation of the photochemistry and emission of ozone precursors within CMAQ. Observations of tropospheric column NO2 from the Ozone Monitoring Instrument (OMI, retrieved by two independent groups, show that the model overestimates urban NO2 and underestimates rural NO2 under all conditions examined for July and August 2011 in the US Northeast. The overestimate of the urban to rural ratio of tropospheric column NO2 for this baseline run of CMAQ (CB05 mechanism, mobile NOx emissions from the National Emissions Inventory; isoprene emissions from MEGAN v2.04 suggests this model may underestimate the importance of interstate transport of NOx. This CMAQ simulation leads to a considerable overestimate of the 2-month average of 8 h daily maximum surface ozone in the US Northeast, as well as an overestimate of 8 h ozone at AQS sites during days when the state of Maryland experienced NAAQS exceedances. We have implemented three changes within CMAQ motivated by OMI NO2 as well as aircraft observations obtained in July 2011 during the NASA DISCOVER-AQ campaign: (a the modeled lifetime of organic nitrates within CB05 has been reduced by a factor of 10, (b emissions of NOx from mobile sources has been reduced by a factor of 2, and (c isoprene emissions have been reduced by using MEGAN v2.10 rather than v2.04. Compared to the baseline simulation, the CMAQ run using all three of these changes leads to considerably better simulation of column NO2 in both urban and rural areas, better agreement with the 2-month average of daily 8 h maximum ozone in the US Northeast, fewer number of false positives of an ozone exceedance

  1. Ground-level ozone: Our new environmental policy

    International Nuclear Information System (INIS)

    Schiff, H.

    1991-01-01

    The environmental problem of ground level ozone is discussed, and the Canadian strategy for dealing with it is explained. Ozone in the troposphere can cause serious health problems in susceptible persons, and is estimated to cause up to $70 million in crop damage per year. The Canadian Council of Ministers of the Environment (CCME) Plan calls for less than 82 ppB by volume of ozone in any one-hour period in all areas of Canada by 2005. Three areas of Canada regularly exceed this value: the Lower Frazer valley in British Columbia, Saint John in New Brunswick, and the Windsor-Quebec corridor along the lower Great Lakes and the St. Lawrence River. Ozone is formed by a photochemical reaction of ammonia gases, nitrogen oxides, hydrogen sulfide or sulfur dioxide. Historically, ozone control has concentrated on controlling hydrocarbon emissions, but to little effect. In most locations close to large cities, ozone production is nitrogen oxide-limited, and the most recent models predict that the best strategy for ozone reduction requires the simultaneous reduction of both hydrocarbons and nitrogen oxides. The CCME Management Plan suggests that the 82 ppB ozone target will require a reduction of 40-50% in nitrogen oxide emissions. The Windsor end of the Windsor-Quebec corridor is dominated by transport of ozone and precursors from the USA, particularly Detroit and Cleveland, so Canadian controls alone are unlikely to solve the problem. For the rest of the corridor, nitrogen oxide control is likely to be most effective in urban areas. 1 fig

  2. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Glenn Charles [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  3. The influence of European pollution on ozone in the Near East and northern Africa

    Directory of Open Access Journals (Sweden)

    B. N. Duncan

    2008-04-01

    Full Text Available We present a modeling study of the long-range transport of pollution from Europe, showing that European emissions regularly elevate surface ozone by as much as 20 ppbv in summer in northern Africa and the Near East. European emissions cause 50–150 additional violations per year (i.e. above those that would occur without European pollution of the European health standard for ozone (8-h average >120 μg/m3 or ~60 ppbv in northern Africa and the Near East. We estimate that European ozone pollution is responsible for 50 000 premature mortalities globally each year, of which the majority occurs outside of Europe itself, including 37% (19 000 in northern Africa and the Near East. Much of the pollution from Europe is exported southward at low altitudes in summer to the Mediterranean Sea, northern Africa and the Near East, regions with favorable photochemical environments for ozone production. Our results suggest that assessments of the human health benefits of reducing ozone precursor emissions in Europe should include effects outside of Europe, and that comprehensive planning to improve air quality in northern Africa and the Near East likely needs to address European emissions.

  4. The Influence of European Pollution on Ozone in the Near East and Northern Africa

    Science.gov (United States)

    Duncan, B. N.; West, J. J.; Yoshida, Y.; Fiore, A. M.; Ziemke, J. R.

    2008-01-01

    We present a modeling study of the long-range transport of pollution from Europe, showing that European emissions regularly elevate surface ozone by as much as 20 ppbv in summer in northern Africa and the Near East. European emissions cause 50-150 additional violations per year (i.e. above those that would occur without European pollution) of the European health standard for ozone (8-h average greater than 120 micrograms per cubic meters or approximately 60 ppbv) in northern Africa and the Near East. We estimate that European ozone pollution is responsible for 50 000 premature mortalities globally each year, of which the majority occurs outside of Europe itself, including 37% (19 000) in northern Africa and the Near East. Much of the pollution from Europe is exported southward at low altitudes in summer to the Mediterranean Sea, northern Africa and the Near East, regions with favorable photochemical environments for ozone production. Our results suggest that assessments of the human health benefits of reducing ozone precursor emissions in Europe should include effects outside of Europe, and that comprehensive planning to improve air quality in northern Africa and the Near East likely needs to address European emissions.

  5. Toward an Empirical Theory of Pulsar Emission. X. On the Precursor and Postcursor Emission

    NARCIS (Netherlands)

    Basu, R.; Mitra, D.; Rankin, J.M.

    2015-01-01

    Precursors and postcursors (PPCs) are rare emission components, which appear beyond the main pulse emission, in some cases far away from it, and are detected in a handful of pulsar. In this paper we attempt to characterize the PPC emission in relation to the pulsar main pulse geometry. In our

  6. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K

    2004-09-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-{beta}-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation.

  7. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    International Nuclear Information System (INIS)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K.

    2004-01-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-β-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation

  8. Photochemical model evaluation of the ground-level ozone impacts on ambient air quality and vegetation health in the Alberta oil sands region: Using present and future emission scenarios

    Science.gov (United States)

    Vijayaraghavan, Krish; Cho, Sunny; Morris, Ralph; Spink, David; Jung, Jaegun; Pauls, Ron; Duffett, Katherine

    2016-09-01

    One of the potential environmental issues associated with oil sands development is increased ozone formation resulting from NOX and volatile organic compound emissions from bitumen extraction, processing and upgrading. To manage this issue in the Athabasca Oil Sands Region (AOSR) in northeast Alberta, a regional multi-stakeholder group, the Cumulative Environmental Management Association (CEMA), developed an Ozone Management Framework that includes a modelling based assessment component. In this paper, we describe how the Community Multi-scale Air Quality (CMAQ) model was applied to assess potential ground-level ozone formation and impacts on ambient air quality and vegetation health for three different ozone precursor cases in the AOSR. Statistical analysis methods were applied, and the CMAQ performance results met the U.S. EPA model performance goal at all sites. The modelled 4th highest daily maximum 8-h average ozone concentrations in the base and two future year scenarios did not exceed the Canada-wide standard of 65 ppb or the newer Canadian Ambient Air Quality Standards of 63 ppb in 2015 and 62 ppb in 2020. Modelled maximum 1-h ozone concentrations in the study were well below the Alberta Ambient Air Quality Objective of 82 ppb in all three cases. Several ozone vegetation exposure metrics were also evaluated to investigate the potential impact of ground-level ozone on vegetation. The chronic 3-months SUM60 exposure metric is within the CEMA baseline range (0-2000 ppb-hr) everywhere in the AOSR. The AOT40 ozone exposure metric predicted by CMAQ did not exceed the United Nations Economic Commission for Europe (UN/ECE) threshold of concern of 3000 ppb-hr in any of the cases but is just below the threshold in high-end future emissions scenario. In all three emission scenarios, the CMAQ predicted W126 ozone exposure metric is within the CEMA baseline threshold of 4000 ppb-hr. This study outlines the use of photochemical modelling of the impact of an industry (oil

  9. Chemical Evolution of Ozone and Its Precursors in Asian Pacific Rim Outflow During TRACE-P

    Science.gov (United States)

    Hamlin, A.; Crawford, J.; Olson, J.; Pippin, M.; Avery, M.; Sachse, G.; Barrick, J.; Blake, D.; Tan, D.; Sandholm, S.; Kondo, Y.; Singh, H.; Eisele, F.; Zondlo, M.; Flocke, F.; Talbot, R.

    2002-12-01

    During NASA's GTE/TRACE-P (Transport and Chemical Evolution over the Pacific) mission, a widespread stagnant pollution layer was observed between 2 and 4 km over the central Pacific. In this region, high levels of O3 (70~ppbv), CO (210~ppbv), and NOx (130~pptv) were observed. Back trajectories suggest this airmass had been rapidly transported from the Asian coast near the Yellow Sea to the central Pacific where it underwent subsidence. The chemical evolution of ozone and its precursors for this airmass is examined using lagrangian photochemical box model calculations. Simulations are conducted along trajectories which intersect the flight path where predicted mixing ratios are compared to measurements. An analysis of the photochemical processes controlling the cycling of nitrogen oxides and ozone production and destruction during transport will be presented.

  10. Compilation and evaluation of a Paso del Norte emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Funk, T.H.; Chinkin, L.R.; Roberts, P.T. [Sonoma Technology, Inc., 1360 Redwood Way, Suite C, 94954-1169 Petaluma, CA (United States); Saeger, M.; Mulligan, S. [Pacific Environmental Services, 5001 S. Miami Blvd., Suite 300, 27709 Research Triangle Park, NC (United States); Paramo Figueroa, V.H. [Instituto Nacional de Ecologia, Avenue Revolucion 1425, Nivel 10, Col. Tlacopac San Angel, Delegacion Alvaro Obregon, C.P., 01040, D.F. Mexico (Mexico); Yarbrough, J. [US Environmental Protection Agency - Region 6, 1445 Ross Avenue, Suite 1200, 75202-2733 Dallas, TX (United States)

    2001-08-10

    Emission inventories of ozone precursors are routinely used as input to comprehensive photochemical air quality models. Photochemical model performance and the development of effective control strategies rely on the accuracy and representativeness of an underlying emission inventory. This paper describes the tasks undertaken to compile and evaluate an ozone precursor emission inventory for the El Paso/Ciudad Juarez/Southern Dona Ana region. Point, area and mobile source emission data were obtained from local government agencies and were spatially and temporally allocated to a gridded domain using region-specific demographic and land-cover information. The inventory was then processed using the US Environmental Protection Agency (EPA) recommended Emissions Preprocessor System 2.0 (UAM-EPS 2.0) which generates emissions files compatible with the Urban Airshed Model (UAM). A top-down evaluation of the emission inventory was performed to examine how well the inventory represented ambient pollutant compositions. The top-down evaluation methodology employed in this study compares emission inventory ratios of non-methane hydrocarbon (NMHC)/nitrogen oxide (NO{sub x}) and carbon monoxide (CO)/NO{sub x} ratios to corresponding ambient ratios. Detailed NMHC species comparisons were made in order to investigate the relative composition of individual hydrocarbon species in the emission inventory and in the ambient data. The emission inventory compiled during this effort has since been used to model ozone in the Paso del Norte airshed (Emery et al., CAMx modeling of ozone and carbon monoxide in the Paso del Norte airshed. In: Proc of Ninety-Third Annual Meeting of Air and Waste Management Association, 18-22 June 2000, Air and Waste Management Association, Pittsburgh, PA, 2000)

  11. The zonal structure of tropical O3 and CO as observed by the Tropospheric Emission Spectrometer in November 2004 – Part 2: Impact of surface emissions on O3 and its precursors

    Directory of Open Access Journals (Sweden)

    G. Osterman

    2009-06-01

    Full Text Available The impact of surface emissions on the zonal structure of tropical tropospheric ozone and carbon monoxide is investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions.Vertical ozone profiles from the Tropospheric Emission Spectrometer (TES and ozone sonde measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ network show elevated concentrations of ozone over Indonesia and Australia (60–70 ppb in the lower troposphere against the backdrop of the well-known zonal "wave-one" pattern with ozone concentrations of (70–80 ppb centered over the Atlantic . Observational evidence from TES CO vertical profiles and Ozone Monitoring Instrument (OMI NO2 columns point to regional surface emissions as an important contributor to the elevated ozone over Indonesia. This contribution is investigated with the GEOS-Chem chemistry and transport model using surface emission estimates derived from an optimal inverse model, which was constrained by TES and Measurements Of Pollution In The Troposphere (MOPITT CO profiles (Jones et al., 2009. These a posteriori estimates, which were over a factor of 2 greater than climatological emissions, reduced differences between GEOS-Chem and TES ozone observations by 30–40% over Indonesia. The response of the free tropospheric chemical state to the changes in these emissions is investigated for ozone, CO, NOx, and PAN. Model simulations indicate that ozone over Indonesian/Australian is sensitive to regional changes in surface emissions of NOx but relatively insensitive to lightning NOx. Over sub-equatorial Africa and South America, free tropospheric NOx was reduced in response to increased surface emissions potentially muting ozone production.

  12. Distribution of ozone and its precursors over Bay of Bengal during winter 2009: role of meteorology

    Directory of Open Access Journals (Sweden)

    L. M. David

    2011-09-01

    Full Text Available Measurements of ozone and NO2 were carried out in the marine environment of the Bay of Bengal (BoB during the winter months, December 2008–January 2009, as part of the second Integrated Campaign for Aerosols, gases and Radiation Budget conducted under the Geosphere Biosphere Programme of the Indian Space Research Organization. The ozone mixing ratio was found to be high in the head and the southeast BoB with a mean value of 61 ± 7 ppb and 53 ± 6 ppb, respectively. The mixing ratios of NO2 and CO were also relatively high in these regions. The spatial patterns were examined in the light of airflow patterns, air mass back trajectories and other meteorological conditions and satellite retrieved maps of tropospheric ozone, NO2, CO, and fire count in and around the region. The distribution of these gases was strongly associated with the transport from the adjoining land mass. The anthropogenic activities and forest fires/biomass burning over the Indo Gangetic Plains and other East Asian regions contribute to ozone and its precursors over the BoB. Similarity in the spatial pattern suggests that their source regions could be more or less the same. Most of the diurnal patterns showed decrease of the ozone mixing ratio during noon/afternoon followed by a nighttime increase and a morning high. Over this oceanic region, photochemical production of ozone involving NO2 was not very active. Water vapour played a major role in controlling the variation of ozone. An attempt is made to simulate ozone level over the north and south BoB using the photochemical box model (NCAR-MM. The present observed features were compared with those measured during the earlier cruises conducted in different seasons.

  13. The role of reduced aerosol precursor emissions in driving near-term warming

    International Nuclear Information System (INIS)

    Gillett, Nathan P; Von Salzen, Knut

    2013-01-01

    The representative concentration pathway (RCP) scenarios all assume stringent emissions controls on aerosols and their precursors, and hence include progressive decreases in aerosol and aerosol precursor emissions through the 21st century. Recent studies have suggested that the resultant decrease in aerosols could drive rapid near-term warming, which could dominate the effects of greenhouse gas (GHG) increases in the coming decades. In CanESM2 simulations, we find that under the RCP 2.6 scenario, which includes the fastest decrease in aerosol and aerosol precursor emissions, the contribution of aerosol reductions to warming between 2000 and 2040 is around 30%. Moreover, the rate of warming in the RCP 2.6 simulations declines gradually from its present-day value as GHG emissions decrease. Thus, while aerosol emission reductions contribute to gradual warming through the 21st century, we find no evidence that aerosol emission reductions drive particularly rapid near-term warming in this scenario. In the near-term, as in the long-term, GHG increases are the dominant driver of warming. (letter)

  14. Effects of Drought Stress and Ozone Exposure on Isoprene Emissions from Oak Seedlings in Texas

    Science.gov (United States)

    Madronich, M. B.; Harte, A.; Schade, G. W.

    2014-12-01

    Isoprene is the dominant hydrocarbon emitted by plants to the atmosphere with an approximate global emission of 550 Tg C yr-1. Isoprene emission studies have elucidated plants' isoprene production capacity, and the controlling factors of instantaneous emissions. However, it is not yet well understood how long-term climatic factors such as drought and increasing ozone concentrations affect isoprene emission rates. Drought reduces photosynthetic activity and is thus expected to reduce isoprene emission rate, since isoprene production relies on photosynthates. On the other hand, ozone is also known to negatively affect photosynthesis rates, but can instead increase isoprene emissions. These apparent inconsistencies and a lack of experimental data make it difficult to accurately parameterize isoprene emission responses to changing environmental conditions. The objective of this work is to reduce some of these uncertainties, using oak seedlings as a study system. Our project focuses on isoprene emission responses of oak trees to typical summer drought and high ozone conditions in Texas. We report on experiments conducted using a laboratory whole-plant chamber and leaf-level data obtained from greenhouse-grown seedlings. The chamber experiment studied the effects of ozone and drought on isoprene emissions from >3 year old oak seedlings under controlled conditions of photosynthetically active radiation (PAR), temperature, soil-moisture and the chamber's air composition. Stress in plants was induced by manipulating potted soil-moisture and ozone concentration in the chamber. The greenhouse study focused on understanding the effects of drought under Texas climatic conditions. For this study we used two year old seedlings of water oak (Quercus nigra) and post oak (Quercus stellata). Temperature, humidity and light in the greenhouse followed local conditions. Leaf-level conductance, photosynthesis measurements and isoprene sampling were carried out under controlled leaf

  15. Meteorologically-adjusted trend analysis of surface observed ozone at three monitoring sites in Delhi, India: 2007-2011

    Science.gov (United States)

    Biswas, J.; Farooqui, Z.; Guttikunda, S. K.

    2012-12-01

    It is well known that meteorological parameters have significant impact on surface ozone concentrations. Therefore it is important to remove the effects of meteorology on ozone concentrations to correctly estimate long-term trends in ozone levels due to the alterations in precursor emissions. This is important for the development of effectual control strategies. In this study surface observed ozone trends in New Delhi are analyzed using Komogorov-Zurbenko (KZ) filter, US EPA ozone adjustment due to weather approach and the classification and regression tree method. The statistical models are applied to the ozone data at three observational sites in New Delhi metropolitan areas, 1) Income Tax Office (ITO) 2) Sirifort and 3) Delhi College of Engineering (DCE). The ITO site is located adjacent to a traffic crossing, Sirifort is an urban site and the DCE site is located in a residential area. The ITO site is also influenced by local industrial emissions. DCE has higher ozone levels than the other two sites. It was found that ITO has lowest ozone concentrations amongst the three sites due to ozone titrating due to industrial and on-road mobile NOx emissions. The statistical methods employed can assess ozone trends at these sites with a high degree of confidence and the results can be used to gauge the effectiveness of control strategies on surface ozone levels in New Delhi.

  16. Modeling and direct sensitivity analysis of biogenic emissions impacts on regional ozone formation in the Mexico-U.S. border area.

    Science.gov (United States)

    Mendoza-Dominguez, A; Wilkinson, J G; Yang, Y J; Russell, A G

    2000-01-01

    A spatially and temporally resolved biogenic hydrocarbon and nitrogen oxides (NOx) emissions inventory has been developed for a region along the Mexico-U.S. border area. Average daily biogenic non-methane organic gases (NMOG) emissions for the 1700 x 1000 km2 domain were estimated at 23,800 metric tons/day (62% from Mexico and 38% from the United States), and biogenic NOx was estimated at 1230 metric tons/day (54% from Mexico and 46% from the United States) for the July 18-20, 1993, ozone episode. The biogenic NMOG represented 74% of the total NMOG emissions, and biogenic NOx was 14% of the total NOx. The CIT photochemical airshed model was used to assess how biogenic emissions impact air quality. Predicted ground-level ozone increased by 5-10 ppb in most rural areas, 10-20 ppb near urban centers, and 20-30 ppb immediately downwind of the urban centers compared to simulations in which only anthropogenic emissions were used. A sensitivity analysis of predicted ozone concentration to emissions was performed using the decoupled direct method for three dimensional air quality models (DDM-3D). The highest positive sensitivity of ground-level ozone concentration to biogenic volatile organic compound (VOC) emissions (i.e., increasing biogenic VOC emissions results in increasing ozone concentrations) was predicted to be in locations with high NOx levels, (i.e., the urban areas). One urban center--Houston--was predicted to have a slight negative sensitivity to biogenic NO emissions (i.e., increasing biogenic NO emissions results in decreasing local ozone concentrations). The highest sensitivities of ozone concentrations to on-road mobile source VOC emissions, all positive, were mainly in the urban areas. The highest sensitivities of ozone concentrations to on-road mobile source NOx emissions were predicted in both urban (either positive or negative sensitivities) and rural (positive sensitivities) locations.

  17. Tropospheric Ozone as a Short-lived Chemical Climate Forcer

    Science.gov (United States)

    Pickering, Kenneth E.

    2012-01-01

    Tropospheric ozone is the third most important greenhouse gas according to the most recent IPCC assessment. However, tropospheric ozone is highly variable in both space and time. Ozone that is located in the vicinity of the tropopause has the greatest effect on climate forcing. Nitrogen oxides (NOx) are the most important precursors for ozone In most of the troposphere. Therefore, pollution that is lofted upward in thunderstorm updrafts or NOx produced by lightning leads to efficient ozone production in the upper troposphere, where ozone is most important climatically. Global and regional model estimates of the impact of North American pollution and lightning on ozone radiative forcing will be presented. It will be shown that in the Northern Hemisphere summer, the lightning effect on ozone radiative forcing can dominate over that of pollution, and that the radiative forcing signal from North America extends well into Europe and North Africa. An algorithm for predicting lightning flash rates and estimating lightning NOx emissions is being incorporated into the NASA GEOS-5 Chemistry and Climate Model. Changes in flash rates and emissions over an ENSO cycle and in future climates will be assessed, along with the resulting changes in upper tropospheric ozone. Other research on the production of NOx per lightning flash and its distribution in the vertical based on cloud-resolving modeling and satellite observations will be presented. Distributions of NO2 and O3 over the Middle East from the OMI instrument on NASA's Aura satellite will also be shown.

  18. N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds.

    Science.gov (United States)

    Marti, Erica J; Pisarenko, Aleksey N; Peller, Julie R; Dickenson, Eric R V

    2015-04-01

    Nitrosamines are a class of toxic disinfection byproducts commonly associated with chloramination, of which several were included on the most recent U.S. EPA Contaminant Candidate List. Nitrosamine formation may be a significant barrier to ozonation in water reuse applications, particularly for direct or indirect potable reuse, since recent studies show direct formation during ozonation of natural water and treated wastewaters. Only a few studies have identified precursors which react with ozone to form N-nitrosodimethylamine (NDMA). In this study, several precursor compound solutions, prepared in ultrapure water and treated wastewater, were subjected to a 10 M excess of ozone. In parallel experiments, the precursor solutions in ultrapure water were exposed to gamma radiation to determine NDMA formation as a byproduct of reactions of precursor compounds with hydroxyl radicals. The results show six new NDMA precursor compounds that have not been previously reported in the literature, including compounds with hydrazone and carbamate moieties. Molar yields in deionized water were 61-78% for 3 precursors, 12-23% for 5 precursors and NDMA formation for the other precursors. NDMA formation due to chloramination was minimal compared to formation due to ozonation, suggesting distinct groups of precursor compounds for these two oxidants. Hydroxyl radical reactions with the precursors will produce NDMA, but formation is much greater in the presence of molecular ozone. Also, hydroxyl radical scavenging during ozonation leads to increased NDMA formation. Molar conversion yields were higher for several precursors in wastewater as compared to deionized water, which could be due to catalyzed reactions with constituents found in wastewater or hydroxyl radical scavenging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Characteristics of intercontinental transport of tropospheric ozone from Africa to Asia

    Science.gov (United States)

    Han, Han; Liu, Jane; Yuan, Huiling; Zhuang, Bingliang; Zhu, Ye; Wu, Yue; Yan, Yuhan; Ding, Aijun

    2018-03-01

    In this study, we characterize the transport of ozone from Africa to Asia through the analysis of the simulations of a global chemical transport model, GEOS-Chem, from 1987 to 2006. The receptor region Asia is defined within 5-60° N and 60-145° E, while the source region Africa is within 35° S-15° N and 20° W-55° E and within 15-35° N and 20° W-30° E. The ozone generated in the African troposphere from both natural and anthropogenic sources is tracked through tagged ozone simulation. Combining this with analysis of trajectory simulations using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, we find that the upper branch of the Hadley cell connects with the subtropical westerlies in the Northern Hemisphere (NH) to form a primary transport pathway from Africa to Asia in the middle and upper troposphere throughout the year. The Somali jet that runs from eastern Africa near the equator to the Indian subcontinent in the lower troposphere is the second pathway that appears only in NH summer. The influence of African ozone mainly appears over Asia south of 40° N. The influence shows strong seasonality, varying with latitude, longitude, and altitude. In the Asian upper troposphere, imported African ozone is largest from March to May around 30° N (12-16 ppbv) and lowest during July-October around 10° N ( ˜ 2 ppbv). In the Asian middle and lower troposphere, imported African ozone peaks in NH winter between 20 and 25° N. Over 5-40° N, the mean fractional contribution of imported African ozone to the overall ozone concentrations in Asia is largest during NH winter in the middle troposphere ( ˜ 18 %) and lowest in NH summer throughout the tropospheric column ( ˜ 6 %). This seasonality mainly results from the collective effects of the ozone precursor emissions in Africa and meteorology and chemistry in Africa, in Asia and along the transport pathways. The seasonal swing of the Hadley circulation and subtropical westerlies along the

  20. Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing

    Science.gov (United States)

    Qu, H.; Wang, Y.; Zhang, R.

    2017-12-01

    We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.

  1. The impact of temperature changes on summer time ozone and its precursors in the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    U. Im

    2011-04-01

    Full Text Available Changes in temperature due to variability in meteorology and climate change are expected to significantly impact atmospheric composition. The Mediterranean is a climate sensitive region and includes megacities like Istanbul and large urban agglomerations such as Athens. The effect of temperature changes on gaseous air pollutant levels and the atmospheric processes that are controlling them in the Eastern Mediterranean are here investigated. The WRF/CMAQ mesoscale modeling system is used, coupled with the MEGAN model for the processing of biogenic volatile organic compound emissions. A set of temperature perturbations (spanning from 1 to 5 K is applied on a base case simulation corresponding to July 2004. The results indicate that the Eastern Mediterranean basin acts as a reservoir of pollutants and their precursor emissions from large urban agglomerations. During summer, chemistry is a major sink at these urban areas near the surface, and a minor contributor at downwind areas. On average, the atmospheric processes are more effective within the first 1000 m above ground. Temperature increases lead to increases in biogenic emissions by 9±3% K−1. Ozone mixing ratios increase almost linearly with the increases in ambient temperatures by 1±0.1 ppb O3 K−1 for all studied urban and receptor stations except for Istanbul, where a 0.4±0.1 ppb O3 K−1 increase is calculated, which is about half of the domain-averaged increase of 0.9±0.1 ppb O3 K−1. The computed changes in atmospheric processes are also linearly related with temperature changes.

  2. Chemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production.

    Science.gov (United States)

    Gentner, Drew R; Worton, David R; Isaacman, Gabriel; Davis, Laura C; Dallmann, Timothy R; Wood, Ezra C; Herndon, Scott C; Goldstein, Allen H; Harley, Robert A

    2013-10-15

    Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from on-road vehicles in summer 2010. Second, we use a fuel composition-based approach to quantify uncombusted fuel components in exhaust using the emission factor for total uncombusted fuel in exhaust together with detailed chemical characterization of liquid fuel samples. There is good agreement between the two methods except for products of incomplete combustion, which are not present in uncombusted fuels and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass emitted, the gas-phase organic compounds in gasoline exhaust have the largest potential impact on ozone production with over half of the ozone formation due to products of incomplete combustion (e.g., alkenes and oxygenated VOCs). When combined with data on gasoline and diesel fuel sales in the U.S., these results indicate that gasoline sources are responsible for 69-96% of emissions and 79-97% of the ozone formation potential from gas-phase organic carbon emitted by motor vehicles.

  3. Significant increase of surface ozone at a rural site, north of eastern China

    Directory of Open Access Journals (Sweden)

    Z. Ma

    2016-03-01

    Full Text Available Ozone pollution in eastern China has become one of the top environmental issues. Quantifying the temporal trend of surface ozone helps to assess the impacts of the anthropogenic precursor reductions and the likely effects of emission control strategies implemented. In this paper, ozone data collected at the Shangdianzi (SDZ regional atmospheric background station from 2003 to 2015 are presented and analyzed to obtain the variation in the trend of surface ozone in the most polluted region of China, north of eastern China or the North China Plain. A modified Kolmogorov–Zurbenko (KZ filter method was performed on the maximum daily average 8 h (MDA8 concentrations of ozone to separate the contributions of different factors from the variation of surface ozone and remove the influence of meteorological fluctuations on surface ozone. Results reveal that the short-term, seasonal and long-term components of ozone account for 36.4, 57.6 and 2.2 % of the total variance, respectively. The long-term trend indicates that the MDA8 has undergone a significant increase in the period of 2003–2015, with an average rate of 1.13 ± 0.01 ppb year−1 (R2 = 0.92. It is found that meteorological factors did not significantly influence the long-term variation of ozone and the increase may be completely attributed to changes in emissions. Furthermore, there is no significant correlation between the long-term O3 and NO2 trends. This study suggests that emission changes in VOCs might have played a more important role in the observed increase of surface ozone at SDZ.

  4. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China - Part 2: The roles of anthropogenic emissions and climate variability

    Science.gov (United States)

    Xu, Wanyun; Xu, Xiaobin; Lin, Meiyun; Lin, Weili; Tarasick, David; Tang, Jie; Ma, Jianzhong; Zheng, Xiangdong

    2018-01-01

    Inter-annual variability and long-term trends in tropospheric ozone are both environmental and climate concerns. Ozone measured at Mt Waliguan Observatory (WLG, 3816 m a.s.l.) on the Tibetan Plateau over the period of 1994-2013 has increased significantly by 0.2-0.3 ppbv yr-1 during spring and autumn but shows a much smaller trend in winter and no significant trend in summer. Here we explore the factors driving the observed ozone changes at WLG using backward trajectory analysis, chemistry-climate model hindcast simulations (GFDL AM3), a trajectory-mapped ozonesonde data set, and several climate indices. A stratospheric ozone tracer implemented in GFDL AM3 indicates that stratosphere-to-troposphere transport (STT) can explain ˜ 60 % of the simulated springtime ozone increase at WLG, consistent with an increase in the NW air-mass frequency inferred from the trajectory analysis. Enhanced STT associated with the strengthening of the mid-latitude jet stream contributes to the observed high ozone anomalies at WLG during the springs of 1999 and 2012. During autumn, observations at WLG are more heavily influenced by polluted air masses originating from South East Asia than in the other seasons. Rising Asian anthropogenic emissions of ozone precursors are the key driver of increasing autumnal ozone observed at WLG, as supported by the GFDL AM3 model with time-varying emissions, which captures the observed ozone increase (0.26 ± 0.11 ppbv yr-1). AM3 simulates a greater ozone increase of 0.38 ± 0.11 ppbv yr-1 at WLG in autumn under conditions with strong transport from South East Asia and shows no significant ozone trend in autumn when anthropogenic emissions are held constant in time. During summer, WLG is mostly influenced by easterly air masses, but these trajectories do not extend to the polluted regions of eastern China and have decreased significantly over the last 2 decades, which likely explains why summertime ozone measured at WLG shows no significant trend

  5. BVOC emission in Norway spruce: the effect of stand structure, high temperature and ozone levels.

    Science.gov (United States)

    Pallozzi, Emanuele; Guidolotti, Gabriele; Večeřová, Kristýna; Esposito, Raffaela; Lusini, Ilaria; Juráň, Stanislav; Urban, Otmar; Calfapietra, Carlo

    2015-04-01

    Norway spruce (Picea abies L.) is a widely distributed conifer species in the boreal zone and mountain areas of central Europe and is a moderate emitter of volatile organic compounds (BVOC). Although the vaporization and diffusion processes from resin ducts were generally considered to be the main processes for monoterpene emissions in conifers, recently it has been showed that a significant portion (up to one third) of monoterpene emissions of Norway spruce can originate from novel biosynthesis, thus depending on photosynthetic processes. For this reason, both biosynthesis and emission are strongly influenced by the environment and the stand structure. They increase with both increasing light and temperature during the warmer periods, although those are the periods with the higher ozone concentration that usually act as an inhibitor of both assimilation and isoprenoids synthesis and emission. On the other hand, stand structure can play an important role, because the photosynthetic capacity is influenced by temperature and light conditions through the canopy. In order to assess the effects of stand structure, temperature and ozone on isoprenoids emission of Norway spruce we carried out field and laboratory experiments. In the experimental field campaigns we measured: assimilation and BVOC emission from needles of sun and shade layers within the canopy of the spruce forest present at the Bily Kriz experimental research site (Moravian-Silesian Beskydy Mountains, 49° 33' N, 18° 32' E, NE of Czech Republic, 908 m a.s.l.). Moreover in the same layers we measured continuously concentration of BVOCs in the air using a PTR-TOF-MS. In laboratory we analyzed the effects of short-term exposure to high temperature and high ozone concentrations on branches of spruce trees collected at the Bily Kriz experimental research site. Preliminary results show that in Norway spruce both stand structure and environmental conditions influenced the gas exchange and BVOC emission rates

  6. Assessment of biodiesel scenarios for Midwest freight transport emission reduction.

    Science.gov (United States)

    2010-04-01

    There are trade-offs when attempting to reduce both greenhouse gas and criteria air pollutants for freight transport, as the control : strategies are not necessarily complimentary. While emission controls can remove ozone precursors and particulate f...

  7. Ozone Depletion Caused by Rocket Engine Emissions: A Fundamental Limit on the Scale and Viability of Space-Based Geoengineering Schemes

    Science.gov (United States)

    Ross, M. N.; Toohey, D.

    2008-12-01

    Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our

  8. Potential ozone impacts of excess NO2 emissions from diesel particulate filters for on- and off-road diesel engines.

    Science.gov (United States)

    Bar-llan, Amnon; Johnson, Jeremiah R; Denbleyker, Allison; Chan, Lit-Mian; Yarwood, Gregory; Hitchcock, David; Pinto, Joseph P

    2010-08-01

    This study considers potential impacts of increased use of diesel oxidation catalysts (DOCs) and catalyzed diesel particulate filters (DPFs) on ozone formation in the Dallas/ Fort Worth (DFW) area. There is concern that excess nitrogen dioxide (NO2) emissions from vehicles equipped with these devices could increase ambient ozone levels. The approach involved developing two scenarios for use of these devices, quantifying excess NO2 emissions in each scenario, and using a photochemical model to estimate the resulting ozone changes. In the "maximum penetration" scenario, DOC/DPF devices in a 2009 fleet of heavy-duty on-road trucks, school buses, and construction equipment were significantly increased by accelerating turnover of these vehicles and equipment to models that would require DOCs/DPFs. In the "realistic" scenario, current fractional usage of these devices was assessed for 2009. For both scenarios, excess NO2 emissions from DOCs/DPFs were estimated using U.S. Environmental Protection Agency's MOBILE6 and NONROAD emissions inventory modeling tools. The emissions analyses were used to adjust the DFW photochemical modeling emissions inventories and the Comprehensive Air Quality Model with extensions air quality model was rerun for the DFW area to determine the impact of these two scenarios on ozone formation. The maximum penetration scenario, which showed an overall reduction in oxides of nitrogen (NO(x)) because of the accelerated turnover of equipment to cleaner models, resulted in a net decrease in daily maximum 8-hr ozone of 4-5 parts per billion (ppb) despite the increase in NO2 emissions. The realistic scenario resulted in a small increase in daily maximum 8-hr ozone of less than 1 ppb for the DFW area. It was concluded that the excess NO2 emissions from DOC/DPF devices result in very small ozone impacts, particularly for the realistic scenario, in the DFW area. There are noticeable decreases in ozone for the maximum penetration scenario because NO

  9. Future local and remote influences on Mediterranean ozone air quality and climate forcing

    Science.gov (United States)

    Arnold, Steve; Martin, Maria Val; Emmons, Louisa; Rap, Alex; Heald, Colette; Lamarque, Jean-Francois; Tilmes, Simone

    2013-04-01

    The Mediterranean region is expected to display large increases in population over the coming decades, and to exhibit strong sensitivity to projected climate change, with increasing frequency of extreme summer temperatures and decreases in precipitation. Understanding of how these changes will affect atmospheric composition in the region is limited. The eastern Mediterranean basin has been shown to exhibit a pronounced summertime local maximum in tropospheric ozone, which impacts both local air quality and the atmospheric radiation balance. In summer, the region is subject to import of pollution from Northern Europe in the boundary layer and lower troposphere, from North American sources in the large-scale westerly flow of the free mid and upper-troposphere, as well as import of pollution lofted in the Asian monsoon and carried west to the eastern Mediterranean in anticyclonic flow in the upper troposphere over north Africa. In addition, interactions with the land-surface through biogenic emission sources and dry deposition play important roles in the Mediterranean ozone budget. Here we use the NCAR Community Earth System Model (CESM) to investigate how tropospheric ozone in the Mediterranean region responds to climate, land surface and global emissions changes between present day and 2050. We simulate climate and atmospheric composition for the year 2050, based on greenhouse gas abundances, trace gas and aerosol emissions and land cover and use from two representative concentration pathway (RCP) scenarios (RCP4.5 & RCP8.5), designed for use by the Coupled Model Intercomparison Project Phase 5(CMIP5) experiments in support of the IPCC. By comparing these simulations with a present-day scenario, we investigate the effects of predicted changes in climate and emissions on air quality and climate forcing over the Mediterranean region. The simulations suggest decreases in boundary layer ozone and sulfate aerosol throughout the tropospheric column over the Mediterranean

  10. Simulation of Halocarbon Production and Emissions and Effects on Ozone Depletion

    Science.gov (United States)

    Holmes; Ellis

    1997-09-01

    / This paper describes an integrated model that simulates future halocarbon production/emissions and potential ozone depletion. Applications and historical production levels for various halocarbons are discussed first. A framework is then presented for modeling future halocarbon impacts incorporating differences in underlying demands, applications, regulatory mandates, and environmental characteristics. The model is used to simulate the potential impacts of several prominent issues relating to halocarbon production, regulation, and environmental interactions, notably: changes in agricultural methyl bromide use, increases in effectiveness of bromine for ozone depletion, modifications to the elimination schedule for HCFCs, short-term expansion of CFC demand in low use compliance countries, and delays in Russian Federation compliance. Individually, each issue does not unequivocally represent a significant likely increase in long-term atmospheric halogen loading and stratospheric ozone depletion. In combination, however, these impacts could increase peak halogen concentrations and long-term integral halogen loading, resulting in higher levels of stratospheric ozone depletion and longer exposure to increased levels of UV radiation.KEY WORDS: Halocarbons; Ozone depletion; Montreal Protocol; Integrated assessment

  11. Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks

    Science.gov (United States)

    Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke

    2018-05-01

    We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.

  12. Impact of shipping emissions on ozone levels over Europe: assessing the relative importance of the Standard Nomenclature for Air Pollution (SNAP) categories.

    Science.gov (United States)

    Tagaris, Efthimios; Stergiou, Ioannis; Sotiropoulou, Rafaella-Eleni P

    2017-06-01

    The impact of shipping emissions on ozone mixing ratio over Europe is assessed for July 2006 using the Community Multiscale Air Quality modeling system and the Netherlands Organization for Applied Scientific Research anthropogenic emission inventory. Results suggest that ship-induced ozone contribution to the total surface ozone exceeds 5% over the sea and near the coastline, while an increase up to 5% is simulated over a large portion of the European land. The largest impact (i.e., an increase up to 30%) is simulated over the Mediterranean Sea. In addition, shipping emissions are simulated to increase NO 2 mixing ratio more than 90%, locally, and to modify the oxidizing capacity of the atmosphere through hydroxyl radical formation (increase by 20-60% over the sea along the European coasts and near the coastal zone). Therefore, emissions from ships may counteract the benefits derived from the anthropogenic emissions reduction strategies over the continent. Simulations suggest regions where shipping emissions have a major impact on ozone mixing ratio compared to individual anthropogenic emission sector categories. Shipping emissions are estimated to play an important role on ozone levels compared to road transport sector near the coastal zone. The impact of shipping emissions on ozone formation is also profound over a great part of the European land compared to the rest of anthropogenic emission categories.

  13. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    Science.gov (United States)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the

  14. Health burdens of surface ozone in the UK for a range of future scenarios

    OpenAIRE

    Heal, Mathew R.; Heaviside, Clare; Doherty, Ruth M.; Vieno, Massimo; Stevenson, David S.; Vardoulakis, Sotiris

    2013-01-01

    Exposure to surface ozone (O3), which is influenced by emissions of precursor chemical species, meteorology and population distribution, is associated with excess mortality and respiratory morbidity. In this study, the EMEP-WRF atmospheric chemistry transport model was used to simulate surface O3 concentrations at 5 km horizontal resolution over the British Isles for a baseline year of 2003, for three anthropogenic emissions scenarios for 2030, and for a + 5 °C increase in air temperature on ...

  15. California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements

    Science.gov (United States)

    Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.

    2016-12-01

    Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.

  16. Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds

    Directory of Open Access Journals (Sweden)

    R. Holzinger

    2005-01-01

    Full Text Available Vertical gradients of mixing ratios of volatile organic compounds have been measured in a Ponderosa pine forest in Central California (38.90° N, 120.63° W, 1315m. These measurements reveal large quantities of previously unreported oxidation products of short lived biogenic precursors. The emission of biogenic precursors must be in the range of 13-66µmol m-2h-1 to produce the observed oxidation products. That is 6-30 times the emissions of total monoterpenes observed above the forest canopy on a molar basis. These reactive precursors constitute a large fraction of biogenic emissions at this site, and are not included in current emission inventories. When oxidized by ozone they should efficiently produce secondary aerosol and hydroxyl radicals.

  17. Sulfur dioxide emissions from Peruvian copper smelters detected by the ozone monitoring instrument

    NARCIS (Netherlands)

    Carn, S.A.; Krueger, A.J.; Krotkov, N.A.; Yang, Kai; Levelt, P.F.

    2007-01-01

    We report the first daily observations of sulfur dioxide (SO2) emissions from copper smelters by a satellite-borne sensor - the Ozone Monitoring Instrument (OMI) on NASA's EOS/Aura spacecraft. Emissions from two Peruvian smelters (La Oroya and Ilo) were detected in up to 80% of OMI overpasses

  18. Impact of climate change on ozone-related mortality and morbidity in Europe.

    Science.gov (United States)

    Orru, Hans; Andersson, Camilla; Ebi, Kristie L; Langner, Joakim; Aström, Christofer; Forsberg, Bertil

    2013-02-01

    Ozone is a highly oxidative pollutant formed from precursors in the presence of sunlight, associated with respiratory morbidity and mortality. All else being equal, concentrations of ground-level ozone are expected to increase due to climate change. Ozone-related health impacts under a changing climate are projected using emission scenarios, models and epidemiological data. European ozone concentrations are modelled with the model of atmospheric transport and chemistry (MATCH)-RCA3 (50×50 km). Projections from two climate models, ECHAM4 and HadCM3, are applied under greenhouse gas emission scenarios A2 and A1B, respectively. We applied a European-wide exposure-response function to gridded population data and country-specific baseline mortality and morbidity. Comparing the current situation (1990-2009) with the baseline period (1961-1990), the largest increase in ozone-associated mortality and morbidity due to climate change (4-5%) have occurred in Belgium, Ireland, the Netherlands and the UK. Comparing the baseline period and the future periods (2021-2050 and 2041-2060), much larger increases in ozone-related mortality and morbidity are projected for Belgium, France, Spain and Portugal, with the impact being stronger using the climate projection from ECHAM4 (A2). However, in Nordic and Baltic countries the same magnitude of decrease is projected. The current study suggests that projected effects of climate change on ozone concentrations could differentially influence mortality and morbidity across Europe.

  19. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy

    Science.gov (United States)

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.

    2009-04-01

    "Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations

  20. A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China

    Science.gov (United States)

    Wei, Wei; Lv, Zhao Feng; Li, Yue; Wang, Li Tao; Cheng, Shuiyuan; Liu, Huan

    2018-02-01

    In China, petro-chemical manufacturing plants generally gather in the particular industrial zone defined as PIZ in some cities, and distinctly influence the air quality of these cities for their massive VOCs emissions. This study aims to quantify the local and regional impacts of PIZ VOCs emission and its relevant reduction policy on the surface ozone based on WRF-Chem model, through the case study of Beijing. Firstly, the model simulation under the actual precursors' emissions over Beijing region for July 2010 is conducted and evaluated, which meteorological and chemical predictions both within the thresholds for satisfactory model performance. Then, according to simulated H2O2/HNO3 ratio, the nature of photochemical ozone formation over Beijing is decided, the VOCs-sensitive regime over the urban areas, NOx-sensitive regime over the northern and western rural areas, and both VOCssbnd and NOx-mixed sensitive regime over the southern and eastern rural areas. Finally, a 30% VOCs reduction scenario (RS) and a 100% VOCs reduction scenario (ZS) for Beijing PIZ are additional simulated by WRF-Chem. The sensitivity simulations imply that the current 30% reduction policy would bring about an O3 increase in the southern and western areas (by +4.7 ppb at PIZ site and +2.1 ppb at LLH station), and an O3 decrease in the urban center (by -1.7 ppb at GY station and -2.5 ppb at DS station) and in the northern and eastern areas (by -1.2 ppb at MYX station), mainly through interfering with the circulation of atmospheric HOx radicals. While the contribution of the total VOCs emission of PIZ to ozone is greatly prominent in the PIZ and its surrounding areas along south-north direction (12.7% at PIZ site on average), but slight in the other areas of Beijing (<3% in other four stations on average).

  1. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 2: The roles of anthropogenic emissions and climate variability

    Directory of Open Access Journals (Sweden)

    W. Xu

    2018-01-01

    Full Text Available Inter-annual variability and long-term trends in tropospheric ozone are both environmental and climate concerns. Ozone measured at Mt Waliguan Observatory (WLG, 3816 m a.s.l. on the Tibetan Plateau over the period of 1994–2013 has increased significantly by 0.2–0.3 ppbv yr−1 during spring and autumn but shows a much smaller trend in winter and no significant trend in summer. Here we explore the factors driving the observed ozone changes at WLG using backward trajectory analysis, chemistry–climate model hindcast simulations (GFDL AM3, a trajectory-mapped ozonesonde data set, and several climate indices. A stratospheric ozone tracer implemented in GFDL AM3 indicates that stratosphere-to-troposphere transport (STT can explain ∼ 60 % of the simulated springtime ozone increase at WLG, consistent with an increase in the NW air-mass frequency inferred from the trajectory analysis. Enhanced STT associated with the strengthening of the mid-latitude jet stream contributes to the observed high ozone anomalies at WLG during the springs of 1999 and 2012. During autumn, observations at WLG are more heavily influenced by polluted air masses originating from South East Asia than in the other seasons. Rising Asian anthropogenic emissions of ozone precursors are the key driver of increasing autumnal ozone observed at WLG, as supported by the GFDL AM3 model with time-varying emissions, which captures the observed ozone increase (0.26 ± 0.11 ppbv yr−1. AM3 simulates a greater ozone increase of 0.38 ± 0.11 ppbv yr−1 at WLG in autumn under conditions with strong transport from South East Asia and shows no significant ozone trend in autumn when anthropogenic emissions are held constant in time. During summer, WLG is mostly influenced by easterly air masses, but these trajectories do not extend to the polluted regions of eastern China and have decreased significantly over the last 2 decades, which likely explains why

  2. Near-ground ozone source attributions and outflow in central eastern China during MTX2006

    Science.gov (United States)

    Li, J.; Wang, Z.; Akimoto, H.; Yamaji, K.; Takigawa, M.; Pochanart, P.; Liu, Y.; Tanimoto, H.; Kanaya, Y.

    2008-12-01

    A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was used to study the source of the near-ground (pollutants, and it captured highly polluted and clean cases well. The simulated near-ground ozone level over CEC was 60-85 ppbv (parts per billion by volume), which was higher than values in Japan and over the North Pacific (20-50 ppbv). The simulated tagged tracer data indicated that the regional-scale transport of chemically produced ozone over other areas in CEC contributed to the greatest fraction (49%) of the near-ground mean ozone at Mt. Tai in June; in situ photochemistry contributed only 12%. Due to high anthropogenic and biomass burning emissions that occurred in the southern part of the CEC, the contribution to ground ozone levels from this area played the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai; values reached 59 ppbv (62%) on 6-7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various ozone production regions indicated that photochemical reactions controlled the spatial distribution of O3 over CEC. The regional-scale transport of pollutants also played an important role in the spatial and temporal distribution of ozone over CEC. Chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC; the mean contribution was 5-10 ppbv, and it reached 25 ppbv during high ozone events. Studies of the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries, revealed that the contribution of CEC ozone to mean ozone mixing ratios over the Korean Peninsula and Japan was 5-15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was produced locally by ozone precursors transported from CEC.

  3. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    D. S. Stevenson

    2013-03-01

    Full Text Available Ozone (O3 from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP has been used to calculate tropospheric ozone radiative forcings (RFs. All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750 to present-day (2010 tropospheric ozone RF of 410 mW m−2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation in RFs of ±17%. Three different radiation schemes were used – we find differences in RFs between schemes (for the same ozone fields of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%, nitrogen oxides (31 ± 9%, carbon monoxide (15 ± 3% and non-methane volatile organic compounds (9 ± 2%; earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m−2 DU−1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m−2; relative to 1750 for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5 of 350, 420, 370 and 460 (in 2030, and 200, 300, 280 and 600 (in 2100. Models show some coherent responses of ozone to climate change

  4. Observing Tropospheric Ozone From Space

    Science.gov (United States)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  5. Ozone time scale decomposition and trend assessment from surface observations

    Science.gov (United States)

    Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi

    2017-04-01

    Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological

  6. Tropospheric ozone and the environment II. Effects, modeling and control

    International Nuclear Information System (INIS)

    Berglund, R.L.

    1992-01-01

    This was the sixth International Specialty Conference on ozone for the Air ampersand Waste Management Association since 1978 and the first to be held in the Southeast. Of the preceding five conferences, three were held in Houston, one in New England, and one in Los Angeles. The changing location continues to support the understanding that tropospheric ozone is a nationwide problem, requiring understanding and participation by representatives of all regions. Yet, questions such as the following continue to be raised over all aspects of the nation's efforts to control ozone. Are the existing primary and secondary National Ambient Air Quality Standards (NAAQS) for ozone the appropriate targets for the ozone control strategy, or should they be modified to more effectively accommodate new health or ecological effects information, or better fit statistical analyses of ozone modeling data? Are the modeling tools presently available adequate to predict ozone concentrations for future precursor emission trends? What ozones attainment strategy will be the best means of meeting the ozone standard? To best answer these and other questions there needs to be a continued sharing of information among researchers working on these and other questions. While answers to these questions will often be qualitative and location specific, they will help focus future research programs and assist in developing future regulatory strategies

  7. "OZONE SOURCE APPORTIONMENT IN CMAQ' | Science ...

    Science.gov (United States)

    Ozone source attribution has been used to support various policy purposes including interstate transport (Cross State Air Pollution Rule) by U.S. EPA and ozone nonattainment area designations by State agencies. Common scientific applications include tracking intercontinental transport of ozone and ozone precursors and delineating anthropogenic and non-anthropogenic contribution to ozone in North America. As in the public release due in September 2013, CMAQ’s Integrated Source Apportionment Method (ISAM) attributes PM EC/OC, sulfate, nitrate, ammonium, ozone and its precursors NOx and VOC, to sectors/regions of users’ interest. Although the peroxide-to-nitric acid productions ratio has been the most common indicator to distinguish NOx-limited ozone production from VOC-limited one, other indicators are implemented in addition to allowing for an ensemble decision based on a total of 9 available indicator ratios. Moreover, an alternative approach of ozone attribution based on the idea of chemical sensitivity in a linearized system that has formed the basis of chemical treatment in forward DDM/backward adjoint tools has been implemented in CMAQ. This method does not require categorization into either ozone regime. In this study, ISAM will simulate the 2010 North America ozone using all of the above gas-phase attribution methods. The results are to be compared with zero-out difference out of those sectors in the host model runs. In addition, ozone contribution wil

  8. OZONE CONCENTRATION ATTRIBUTABLE PREMATURE DEATH IN POLAND

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2010-03-01

    Full Text Available Ozone in the lower part of the atmosphere (troposphere, strong photochemical oxidant, is not directly emitted to the atmosphere but formed through a series of complex reactions. Ozone concentrations depends on ozone precursors air contamination (mainly nitrogen dioxide and non-methane volatile organic compounds and meteorological conditions (temperature and solar radiation. The main sectors emitted ozone precursors are road transport, power and heat generation plants, household (heating, industry, and petrol storage and distribution. Ozone and some of its precursors are also transported long distances in the atmosphere and are therefore considered a transboundary problem. As a result, the ozone concentrations are often low in busy urban areas and higher in suburban and rural areas. Nowadays, instead of particulate matter, ozone is one of the most widespread global air pollution problems. In and around urban areas, relatively large gradients of ozone can be observed. Because of its high reactivity in elevated concentrations ozone causes serious health problems and damage to ecosystems, agricultural crops and materials. Main ill-health endpoints as a results of ozone concentrations can be characterised as an effect of pulmonary and cardiovascular system, time morbidity and mortality series, development of atherosclerosis and asthma and finally reduction in life expectancy. The associations with increased daily mortality due to ozone concentrations are confirmed by many researches and epidemiological studies. Estimation of the level selected ill-health endpoints (mortality in total and due to cardiovascular and respiratory causes as a result of the short-term ozone exposure in Poland was the main aim of the project. Final results have been done based on estimation method elaborated by WHO, ozone measurements from National Air Quality Monitoring System and statistical information such as mortality rate and populations. All analysis have been done in

  9. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    Science.gov (United States)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  10. The cost-effectiveness of methanol for reducing motor vehicle emissions and urban ozone

    International Nuclear Information System (INIS)

    Krupnick, A.J.; Walls, M.A.

    1992-01-01

    This article analyzes the costs and emissions characteristics of methanol vehicles. The cost-effectiveness of methanol - the cost per ton of reactive hydrocarbon emissions reduced - is calculated and compared to the cost-effectiveness of other hydrocarbon reduction strategies. Methanol is found to cost from $33,000 to nearly $60,000 per ton, while several other options are available for under $10,000 per ton. The cost per part-per-million reduction in peak ambient ozone levels is also computed for two cities, Houston and Philadelphia. Despite the greater improvement in ozone in Philadelphia than Houston, methanol is found to be more cost-effective in Houston. This result occurs because Houston's distribution and marketing costs are lower than Philadelphia's. The costs in both cities, however, are far higher than estimates of the benefits from acute health improvements. Finally, the reduction in ozone exposure in Los Angeles is estimated and the costs of the reduction compared with an estimate of acute health benefits. Again, the benefits fall far short of the costs. 51 refs., 5 tabs

  11. Impact of future nitrous oxide and carbon dioxide emissions on the stratospheric ozone layer

    International Nuclear Information System (INIS)

    Stolarski, Richard S; Waugh, Darryn W; Douglass, Anne R; Oman, Luke D

    2015-01-01

    The atmospheric levels of human-produced chlorocarbons and bromocarbons are projected to make only small contributions to ozone depletion by 2100. Increases in carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) will become increasingly important in determining the future of the ozone layer. N 2 O increases lead to increased production of nitrogen oxides (NO x ), contributing to ozone depletion. CO 2 increases cool the stratosphere and affect ozone levels in several ways. Cooling decreases the rate of many photochemical reactions, thus slowing ozone loss rates. Cooling also increases the chemical destruction of nitrogen oxides, thereby moderating the effect of increased N 2 O on ozone depletion. The stratospheric ozone level projected for the end of this century therefore depends on future emissions of both CO 2 and N 2 O. We use a two-dimensional chemical transport model to explore a wide range of values for the boundary conditions for CO 2 and N 2 O, and find that all of the current scenarios for growth of greenhouse gases project the global average ozone to be larger in 2100 than in 1960. (letter)

  12. Projections of summertime ozone concentration over East Asia under multiple IPCC SRES emission scenarios

    Science.gov (United States)

    Lee, Jae-Bum; Cha, Jun-Seok; Hong, Sung-Chul; Choi, Jin-Young; Myoung, Ji-Su; Park, Rokjin J.; Woo, Jung-Hun; Ho, Changhoi; Han, Jin-Seok; Song, Chang-Keun

    2015-04-01

    We have developed the Integrated Climate and Air Quality Modeling System (ICAMS) through the one-way nesting of global-regional models to examine the changes in the surface ozone concentrations over East Asia under future climate scenarios. Model simulations have been conducted for the present period of 1996-2005 to evaluate the performance of ICAMS. The simulated surface ozone concentrations reproduced the observed monthly mean concentrations at sites in East Asia with high R2 values (0.4-0.9), indicating a successful simulation to capture both spatial and temporal variability. We then performed several model simulations with the six IPCC SRES scenarios (A2, A1B, A1FI, A1T, B1, and B2) for the next three periods, 2016-2025 (the 2020s), 2046-2055 (the 2050s), and 2091-2100 (the 2090s). The model results show that the projected changes of the annual daily mean maximum eight-hour (DM8H) surface ozone concentrations in summertime for East Asia are in the range of 2-8 ppb, -3 to 8 ppb, and -7 to 9 ppb for the 2020s, the 2050s, and the 2090s, respectively, and are primarily determined based on the emission changes of NOx and NMVOC. The maximum increases in the annual DM8H surface ozone and high-ozone events occur in the 2020s for all scenarios except for A2, implying that the air quality over East Asia is likely to get worse in the near future period (the 2020s) than in the far future periods (the 2050s and the 2090s). The changes in the future environment based on IPCC SRES scenarios would also influence the change in the occurrences of high-concentrations events more greatly than that of the annual DM8H surface ozone concentrations. Sensitivity simulations show that the emissions increase is the key factor in determining future regional surface ozone concentrations in the case of a developing country, China, whereas a developed country, Japan would be influenced more greatly by effects of the regional climate change than the increase in emissions.

  13. Process-based modelling of biogenic monoterpene emissions combining production and release from storage

    NARCIS (Netherlands)

    Schurgers, G.; Arneth, A.; Holzinger, R.|info:eu-repo/dai/nl/337989338; Goldstein, A.H.

    2009-01-01

    Monoterpenes, primarily emitted by terrestrial vegetation, can influence atmospheric ozone chemistry, and can form precursors for secondary organic aerosol. The short-term emissions of monoterpenes have been well studied and understood, but their long-term variability, which is particularly

  14. Ozone and hydrogen peroxide applications for disinfection by-products control in drinking water

    International Nuclear Information System (INIS)

    Collivignarelli, C.; Sorlini, S.; Riganti, V.

    2001-01-01

    A great interest has been developed during the last years for ozone in drinking water treatments thanks to its strong oxidant and disinfectant power and for its efficiency in disinfection by-products (DBPs) precursors removal. However ozonization produces some specific DBPs, such as aldehydes and ketones; moreover, the presence of bromide in raw water engages ozone in a complex cycle in which both organic bromide and inorganic bromate are end products. In this paper the combination of hydrogen peroxide with ozone (known as peroxone process) and the ozone alone process were experimented on one surface water coming from the lake of Brugneto (Genova) in order to investigate bromate formation and trihalomethanes precursors removal during the oxidation process. The results show that the advanced peroxone process can be applied for bromate reduction (about 30-40%) with better results in comparison with the ozone alone process, while no advantages are shown for THMs precursors removal. The addition of in-line filtration step after pre-oxidation improves both bromate and THMs precursors removal, particularly with increasing hydrogen peroxide/ozone ratio in the oxidation step [it

  15. High-resolution inventory of NO emissions from agricultural soils over the Ile-de-France region

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, M.-N. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Gabrielle, B., E-mail: Benoit.Gabrielle@agroparistech.f [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Laville, P.; Cellier, P. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Beekmann, M. [Laboratoire Inter-universitaire des Systemes Atmospheriques - CNRS, Universites Paris-Est and Paris 7, F-94 010 Creteil (France); Gilliot, J.-M.; Michelin, J.; Hadjar, D. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Curci, G. [Dipartimento di Fisica - CETEMPS, Universita' degli Studi dell' Aquila, 67010 Coppito, L' Aquila (Italy)

    2010-03-15

    Arable soils are a significant source of nitric oxide (NO), a precursor of tropospheric ozone, and thereby contribute to ozone pollution. However, their actual impact on ozone formation is strongly related to their spatial and temporal emission patterns, which warrant high-resolution estimates. Here, we combined an agro-ecosystem model and geo-referenced databases to map these sources over the 12 000 km{sup 2} administrative region surrounding Paris, France, with a kilometric level resolution. The six most frequent arable crop species were simulated, with emission rates ranging from 1.4 kg N-NO ha{sup -1} yr{sup -1} to 11.1 kg N-NO ha{sup -1} yr{sup -1}. The overall emission factor for fertilizer-derived NO emissions was 1.7%, while background emissions contributed half of the total NO efflux. Emissions were strongly seasonal, being highest in spring due to fertilizer inputs. They were mostly sensitive to soil type, crops' growing season and fertilizer N rates. - The use of an agro-ecosystem model at regional scale makes it possible to map the emissions of nitric oxide from arable soils at a resolution compatible with tropospheric ozone models.

  16. Development of pollution reduction strategies for Mexico City: Estimating cost and ozone reduction effectiveness

    International Nuclear Information System (INIS)

    Thayer, G.R.; Hardie, R.W.; Barrera-Roldan, A.

    1993-01-01

    This reports on the collection and preparation of data (costs and air quality improvement) for the strategic evaluation portion of the Mexico City Air Quality Research Initiative (MARI). Reports written for the Mexico City government by various international organizations were used to identify proposed options along with estimates of cost and emission reductions. Information from appropriate options identified by SCAQMD for Southem California were also used in the analysis. A linear optimization method was used to select a group of options or a strategy to be evaluated by decision analysis. However, the reduction of ozone levels is not a linear function of the reduction of hydrocarbon and NO x emissions. Therefore, a more detailed analysis was required for ozone. An equation for a plane on an isopleth calculated with a trajectory model was obtained using two endpoints that bracket the expected total ozone precursor reductions plus the starting concentrations for hydrocarbons and NO x . The relationship between ozone levels and the hydrocarbon and NO x concentrations was assumed to lie on this plane. This relationship was used in the linear optimization program to select the options comprising a strategy

  17. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan

    Science.gov (United States)

    Wang, Qiaoli; Li, Sujing; Dong, Minli; Li, Wei; Gao, Xiang; Ye, Rongmin; Zhang, Dongxiao

    2018-06-01

    Zhoushan is an island city with booming tourism and service industry, but also has many developed VOCs and/or NOX emission industries. It is necessary to carry out regional VOCs and O3 pollution control in Zhoushan as the only new area owns the provincial economic and social administration rights. Anthropogenic VOCs emission inventories were built based on emission factor method and main emission sources were identified according to the emission inventories. Then, localized VOCs source profiles were built based on in-site sampling and referring to other studies. Furthermore, ozone formation potentials (OFPs) profiles were built through VOCs source profiles and maximum incremental reactivity (MIR) theory. At last, the priority control analysis results showed that industrial processes, especially surface coating, are the key of VOCs and O3 control. Alkanes were the most emitted group, accounting for 58.67%, while aromatics contributed the most to ozone production accounting for 69.97% in total OFPs. n-butane, m/p-xylene, i-pentane, n-decane, toluene, propane, n-undecane, o-xylene, methyl cyclohexane and ethyl benzene were the top 10 VOC species that should be preferentially controlled for VOCs emission control. However, m/p-xylene, o-xylene, ethylene, n-butane, toluene, propene, 1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, ethyl benzene and 1,2,3-trimethyl benzene were the top 10 VOC species that required preferential control for O3 pollution control.

  18. Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes

    Science.gov (United States)

    Xue, L. K.; Wang, T.; Gao, J.; Ding, A. J.; Zhou, X. H.; Blake, D. R.; Wang, X. F.; Saunders, S. M.; Fan, S. J.; Zuo, H. C.; Zhang, Q. Z.; Wang, W. X.

    2014-12-01

    We analyzed the measurements of ozone (O3) and its precursors made at rural/suburban sites downwind of four large Chinese cities - Beijing, Shanghai, Guangzhou and Lanzhou, to elucidate their pollution characteristics, regional transport, in situ production, and impacts of heterogeneous processes. The same measurement techniques and observation-based model were used to minimize uncertainties in comparison of the results due to difference in methodologies. All four cities suffered from serious O3 pollution but showed different precursor distributions. The model-calculated in situ O3 production rates were compared with the observed change rates to infer the relative contributions of on-site photochemistry and transport. At the rural site downwind of Beijing, export of the well-processed urban plumes contributed to the extremely high O3 levels (up to an hourly value of 286 ppbv), while the O3 pollution observed at suburban sites of Shanghai, Guangzhou and Lanzhou was dominated by intense in situ production. The O3 production was in a volatile organic compound (VOC)-limited regime in both Shanghai and Guangzhou, and a NOx-limited regime in Lanzhou. The key VOC precursors are aromatics and alkenes in Shanghai, and aromatics in Guangzhou. The potential impacts on O3 production of several heterogeneous processes, namely, hydrolysis of dinitrogen pentoxide (N2O5), uptake of hydro peroxy radical (HO2) on particles and surface reactions of NO2 forming nitrous acid (HONO), were assessed. The analyses indicate the varying and considerable impacts of these processes in different areas of China depending on the atmospheric abundances of aerosol and NOx, and suggest the urgent need to better understand these processes and represent them in photochemical models.

  19. Nitrogen oxides transport from La Cygne Station, KS: A study for assessing its influence on urban ozone. Final report

    International Nuclear Information System (INIS)

    Blumenthal, D.L.

    1998-02-01

    As a result of the new ozone and PM 2.5 national ambient air quality standards, it appears that the Kansas City metropolitan area will be classified as nonattainment with respect to ozone. The Kansas Department of Health and Environment (KDHE) is planning to develop a new Kansas State Implementation Plan (SIP) to address this issue between 1997 and 2000 with implementation scheduled for 2004. Some Ozone Transport Assessment Group (OTAG) related air quality analyses have indicated that the Kansas City area is subject to surface and aloft windfields that could carry ozone or ozone precursors into Kansas City from outside the region, including from other parts of the state of Kansas. But questions have arisen whether or not local emission reductions would be more effective in achieving ozone standards. To better understand the causes of high ozone in the region and, specifically, to understand the role of emissions from certain power generating stations, the NO x Steering Committee was formed. The Committee includes representatives of the Kansas Department of Health and Environment and two local utility companies (Kansas City Power and Light (KCPL) and Western Resources). Input was also solicited from the US Environmental Protection Agency (EPA). This report presents the results of a scoping study commissioned by the Committee

  20. A multi-model analysis of vertical ozone profiles

    Directory of Open Access Journals (Sweden)

    J. E. Jonson

    2010-06-01

    Full Text Available A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP under the Convention on Long-range Transboundary Air Pollution (LRTAP. Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations.

    In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further.

    At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and

  1. Aviation-attributable ozone as a driver for changes in mortality related to air quality and skin cancer

    Science.gov (United States)

    Eastham, Sebastian D.; Barrett, Steven R. H.

    2016-11-01

    Aviation is a significant source of tropospheric ozone, which is a critical UV blocking agent, an indirect precursor to the formation of particulate matter, and a respiratory health hazard. To date, investigations of human health impacts related to aviation emissions have focused on particulate matter, and no global estimate yet exists of the combined health impact of aviation due to ozone, particulate matter and UV exposure changes. We use a coupled tropospheric-stratospheric chemical-transport model with a global aviation emissions inventory to estimate the total impact of aviation on all three risk factors. We find that surface ozone due to aviation emissions is maximized during hemispheric winter due to the greater wintertime chemical lifetime of ozone, but that a smaller enhancement of 0.5 ppbv occurs during summertime. This summertime increase results in an estimated 6,800 premature mortalities per year due to ozone exposure, over three times greater than previous estimates. During the winter maximum, interaction with high background NOx concentrations results in enhanced production of nitrate aerosol and increased annual average exposure to particulate matter. This ozone perturbation is shown to be the driving mechanism behind an additional 9,200 premature mortalities due to exposure to particulate matter. However, the increase in tropospheric ozone is also found to result in 400 fewer mortalities due to melanoma skin cancer in 2006. This is the first estimate of global melanoma mortality due to aviation, and the first estimate of skin cancer mortality impacts due to aviation using a global chemical transport model.

  2. Trends of Ozone in Switzerland since 1992 (TROZOS)

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H

    2004-07-01

    This work reports on the trends of the daily afternoon (noon to midnight) maximum ozone concentrations at 15 of the 16 stations of the Swiss air quality monitoring network (NABEL) during the period 1992-2002. The use of numerous meteorological parameters and additional data allowed a detailed seasonal analysis of the influence of the weather on the ozone maxima at the different stations. An analysis of covariance (ANCOVA) was performed separately for each station and season in order to detect the parameters which best explain the variability of the daily ozone maximum concentrations. During the warm seasons (summer and spring) the most explanatory parameters are those related to the ozone production, in particular the afternoon temperature. In winter, the most explanatory variables are the ones influencing the vertical mixing and thus the ozone destruction by titration with NO and dry deposition, like the afternoon global radiation. The trends of both the measured and meteorologically corrected ozone maxima were calculated. The year-to-year variability in the ozone maxima was lowered by a factor of 3 by the meteorological correction. Significantly positive trends of corrected ozone maxima of 0.3 - 1.1 ppb/year were found at the low altitude stations in winter and autumn as well as at Lausanne - urban station - in all the seasons, mainly due to the lower loss of ozone by reaction with NO as a consequence of the decreased emissions of primary pollutants during the 90s. This could be partially confirmed by the lower trends of O{sub X} (sum O{sub 3} of and NO{sub 2}) maxima compared to the trends in ozone maxima. The absence of negative trends of the median or mean ozone maxima north of the Alps in summer suggests that the decrease in the emissions of ozone precursors did not have a strong impact on the afternoon maximum ozone concentrations during the last decade. In contrast to the project TOSS (Trends of Ozone in Southern Switzerland), no significantly negative

  3. Trends of Ozone in Switzerland since 1992 (TROZOS)

    International Nuclear Information System (INIS)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H.

    2004-07-01

    This work reports on the trends of the daily afternoon (noon to midnight) maximum ozone concentrations at 15 of the 16 stations of the Swiss air quality monitoring network (NABEL) during the period 1992-2002. The use of numerous meteorological parameters and additional data allowed a detailed seasonal analysis of the influence of the weather on the ozone maxima at the different stations. An analysis of covariance (ANCOVA) was performed separately for each station and season in order to detect the parameters which best explain the variability of the daily ozone maximum concentrations. During the warm seasons (summer and spring) the most explanatory parameters are those related to the ozone production, in particular the afternoon temperature. In winter, the most explanatory variables are the ones influencing the vertical mixing and thus the ozone destruction by titration with NO and dry deposition, like the afternoon global radiation. The trends of both the measured and meteorologically corrected ozone maxima were calculated. The year-to-year variability in the ozone maxima was lowered by a factor of 3 by the meteorological correction. Significantly positive trends of corrected ozone maxima of 0.3 - 1.1 ppb/year were found at the low altitude stations in winter and autumn as well as at Lausanne - urban station - in all the seasons, mainly due to the lower loss of ozone by reaction with NO as a consequence of the decreased emissions of primary pollutants during the 90s. This could be partially confirmed by the lower trends of O X (sum O 3 of and NO 2 ) maxima compared to the trends in ozone maxima. The absence of negative trends of the median or mean ozone maxima north of the Alps in summer suggests that the decrease in the emissions of ozone precursors did not have a strong impact on the afternoon maximum ozone concentrations during the last decade. In contrast to the project TOSS (Trends of Ozone in Southern Switzerland), no significantly negative trends of ozone

  4. Ozone effects on Sphagnum mosses, carbon dioxide exchange and methane emission in boreal peatland microcosms

    International Nuclear Information System (INIS)

    Niemi, Riikka; Holopainen, Toini; Martikainen, Pertti J.; Silvola, Jouko

    2002-01-01

    Microcosms of a boreal peatland originating from an oligotrophic fen in Eastern Finland were fumigated under four ozone concentrations (0, 50, 100 and 150 ppb O 3 ) in laboratory growth chambers during two separate experiments (autumn and summer) for 4 and 6 weeks, respectively. Ozone effects on Sphagnum mosses and the fluxes of carbon dioxide and methane were evaluated. In both experiments, the three Sphagnum species studied showed only a few significant responses to ozone. In the autumn experiment, membrane permeability of S. angustifolium, measured as conductivity and magnesium leakage, was significantly higher under ozone fumigation (P=0.005 and 2 exchange during the 6-week-long summer experiment, but dark ecosystem respiration was transiently increased by ozone concentration of 100 ppb after 14 days of exposure (P<0.05). Fumigation with 100 ppb of ozone, however, more than doubled (P<0.05) methane emission from the peatland monoliths. Our results suggest that increasing tropospheric ozone concentration may cause substantial changes in the carbon gas cycling of boreal peatlands, even though these changes are not closely associated with the changes in Sphagnum vegetation

  5. Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2013-03-01

    Full Text Available The new generation GISS climate model includes fully interactive chemistry related to ozone in historical and future simulations, and interactive methane in future simulations. Evaluation of ozone, its tropospheric precursors, and methane shows that the model captures much of the large-scale spatial structure seen in recent observations. While the model is much improved compared with the previous chemistry-climate model, especially for ozone seasonality in the stratosphere, there is still slightly too rapid stratospheric circulation, too little stratosphere-to-troposphere ozone flux in the Southern Hemisphere and an Antarctic ozone hole that is too large and persists too long. Quantitative metrics of spatial and temporal correlations with satellite datasets as well as spatial autocorrelation to examine transport and mixing are presented to document improvements in model skill and provide a benchmark for future evaluations. The difference in radiative forcing (RF calculated using modeled tropospheric ozone versus tropospheric ozone observed by TES is only 0.016 W m−2. Historical 20th Century simulations show a steady increase in whole atmosphere ozone RF through 1970 after which there is a decrease through 2000 due to stratospheric ozone depletion. Ozone forcing increases throughout the 21st century under RCP8.5 owing to a projected recovery of stratospheric ozone depletion and increases in methane, but decreases under RCP4.5 and 2.6 due to reductions in emissions of other ozone precursors. RF from methane is 0.05 to 0.18 W m−2 higher in our model calculations than in the RCP RF estimates. The surface temperature response to ozone through 1970 follows the increase in forcing due to tropospheric ozone. After that time, surface temperatures decrease as ozone RF declines due to stratospheric depletion. The stratospheric ozone depletion also induces substantial changes in surface winds and the Southern Ocean circulation, which may play a role in

  6. Influence of enhanced Asian NOx emissions on ozone in the upper troposphere and lower stratosphere in chemistry–climate model simulations

    Directory of Open Access Journals (Sweden)

    C. Roy

    2017-01-01

    78.5 mW m−2 respectively. These elevated NOx emissions produce significant warming over the Tibetan Plateau and increase precipitation over India due to a strengthening of the monsoon Hadley circulation. However, increase in NOx emissions over India by 73 % (similar to the observed increase over China results in large ozone production over the Indo-Gangetic Plain and Tibetan Plateau. The higher ozone concentrations, in turn, induce a reversed monsoon Hadley circulation and negative precipitation anomalies over India. The associated subsidence suppresses vertical transport of NOx and ozone into the ASM anticyclone.

  7. Simulation of summer ozone episodes in Southeast Louisiana during 2006-2015

    Science.gov (United States)

    Guo, H.; Zhang, H.

    2017-12-01

    Southeast Louisiana experiences high ozone (O3) events due to immense emissions from industrial and urban sources and unique meteorology conditions of high temperatures, intensive solar radiation and land-sea breeze circulation. The Community Multi-scale Air Quality (CMAQ) model with modified photochemical mechanism is used to investigate the contributions of regional transport to ozone (O3) and its precursors to Southeast Louisiana in summer months from 2006 to 2015. The meteorological and CMAQ model performance are validated. Spatial and temporal variations of O3 are investigated during summer episodes in 10 years. Contributions of different source types and regions to 1 hour O3 are also quantified. Changes in the contributions of different source types and regions are also obtained to help design intelligent control measures.

  8. UNITED STATES LAND USE INVENTORY FOR ESTIMATING BIOGENIC OZONE PRECURSOR EMISSIONS

    Science.gov (United States)

    The U.S. Geological Survey's (USGS) Earth Resources Observation System (EROS) Data Center's (EDC) 1-km classified land cover data are combined with other land use data using a Geographic Information System (GIS) to create the Biogenic Emissions Landcover Database (BELD). The land...

  9. Global tropospheric ozone modeling: Quantifying errors due to grid resolution

    OpenAIRE

    Wild, Oliver; Prather, Michael J

    2006-01-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quant...

  10. Influence of inter-annual variations of stratospheric dynamics in model simulations of ozone losses by aircraft emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jadin, E.A. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1997-12-31

    The questions of model predictions of aircraft emission impacts on the ozone variations are considered. Using the NMC data it is shown that the stratospheric circulation underwent the abrupt transition to a new regime in summer 1980. The strong correlations are found between the monthly mean total ozone and stratospheric angular momentum anomalies during 1979-1991. The natural long-term changes of transport processes are necessary to take into account in model simulations of anthropogenic impacts on the ozone layer. (author) 12 refs.

  11. Influence of inter-annual variations of stratospheric dynamics in model simulations of ozone losses by aircraft emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jadin, E A [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1998-12-31

    The questions of model predictions of aircraft emission impacts on the ozone variations are considered. Using the NMC data it is shown that the stratospheric circulation underwent the abrupt transition to a new regime in summer 1980. The strong correlations are found between the monthly mean total ozone and stratospheric angular momentum anomalies during 1979-1991. The natural long-term changes of transport processes are necessary to take into account in model simulations of anthropogenic impacts on the ozone layer. (author) 12 refs.

  12. Nitrous Oxides Ozone Destructiveness Under Different Climate Scenarios

    Science.gov (United States)

    Kanter, David R.; McDermid, Sonali P.

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas and ozone depleting substance as well as a key component of the nitrogen cascade. While emissions scenarios indicating the range of N2O's potential future contributions to radiative forcing are widely available, the impact of these emissions scenarios on future stratospheric ozone depletion is less clear. This is because N2O's ozone destructiveness is partially dependent on tropospheric warming, which affects ozone depletion rates in the stratosphere. Consequently, in order to understand the possible range of stratospheric ozone depletion that N2O could cause over the 21st century, it is important to decouple the greenhouse gas emissions scenarios and compare different emissions trajectories for individual substances (e.g. business-as-usual carbon dioxide (CO2) emissions versus low emissions of N2O). This study is the first to follow such an approach, running a series of experiments using the NASA Goddard Institute for Space Sciences ModelE2 atmospheric sub-model. We anticipate our results to show that stratospheric ozone depletion will be highest in a scenario where CO2 emissions reductions are prioritized over N2O reductions, as this would constrain ozone recovery while doing little to limit stratospheric NOx levels (the breakdown product of N2O that destroys stratospheric ozone). This could not only delay the recovery of the stratospheric ozone layer, but might also prevent a return to pre-1980 global average ozone concentrations, a key goal of the international ozone regime. Accordingly, we think this will highlight the importance of reducing emissions of all major greenhouse gas emissions, including N2O, and not just a singular policy focus on CO2.

  13. Influence of isoprene chemical mechanism on modelled changes in tropospheric ozone due to climate and land use over the 21st century

    Science.gov (United States)

    Squire, O. J.; Archibald, A. T.; Griffiths, P. T.; Jenkin, M. E.; Smith, D.; Pyle, J. A.

    2015-05-01

    Isoprene is a~precursor to tropospheric ozone, a key pollutant and greenhouse gas. Anthropogenic activity over the coming century is likely to cause large changes in atmospheric CO2 levels, climate and land use, all of which will alter the global vegetation distribution leading to changes in isoprene emissions. Previous studies have used global chemistry-climate models to assess how possible changes in climate and land use could affect isoprene emissions and hence tropospheric ozone. The chemistry of isoprene oxidation, which can alter the concentration of ozone, is highly complex, therefore it must be parameterised in these models. In this work, we compare the effect of four different reduced isoprene chemical mechanisms, all currently used in Earth system models, on tropospheric ozone. Using a box model we compare ozone in these reduced schemes to that in a more explicit scheme (the Master Chemical Mechanism) over a range of NOx and isoprene emissions, through the use of O3 isopleths. We find that there is some variability, especially at high isoprene emissions, caused by differences in isoprene-derived NOx reservoir species. A global model is then used to examine how the different reduced schemes respond to potential future changes in climate, isoprene emissions, anthropogenic emissions and land use change. We find that, particularly in isoprene-rich regions, the response of the schemes varies considerably. The wide-ranging response is due to differences in the model descriptions of the peroxy radical chemistry, particularly their relative rates of reaction towards NO, leading to ozone formation, or HO2, leading to termination. Also important is the yield of isoprene nitrates and peroxyacyl nitrate precursors from isoprene oxidation. Those schemes that produce less of these NOx reservoir species, tend to produce more ozone locally and less away from the source region. We also note changes in other key oxidants such as NO3 and OH (due to the inclusion of

  14. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  15. Climate and air quality-driven scenarios of ozone and aerosol precursor abatement

    International Nuclear Information System (INIS)

    Rypdal, Kristin; Rive, Nathan; Berntsen, Terje; Fagerli, Hilde; Klimont, Zbigniew; Mideksa, Torben K.; Fuglestvedt, Jan S.

    2009-01-01

    In addition to causing domestic and regional environmental effects, many air pollutants contribute to radiative forcing (RF) of the climate system. However, climate effects are not considered when cost-effective abatement targets for these pollutants are established, nor are they included in current international climate agreements. We construct air pollution abatement scenarios in 2030 which target cost-effective reductions in RF in the EU, USA, and China and compare these to abatement scenarios which instead target regional ozone effects and particulate matter concentrations. Our analysis covers emissions of PM (fine, black carbon and organic carbon), SO 2 , NO x , CH 4 , VOCs, and CO. We find that the effect synergies are strong for PM/BC, VOC, CO and CH 4 . While an air quality strategy targeted at reducing ozone will also reduce RF, this will not be the case for a strategy targeting particulate matter. Abatement in China dominates RF reduction, but there are cheap abatement options also available in the EU and USA. The justification for international cooperation on air quality issues is underlined when the co-benefits of reduced RF are considered. Some species, most importantly SO 2 , contribute a negative forcing on climate. We suggest that given current knowledge, NO x and SO 2 should be ignored in RF-targeted abatement policies.

  16. Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution.

    Science.gov (United States)

    Hickman, Jonathan E; Wu, Shiliang; Mickley, Loretta J; Lerdau, Manuel T

    2010-06-01

    The nitrogen-fixing legume kudzu (Pueraria montana) is a widespread invasive plant in the southeastern United States with physiological traits that may lead to important impacts on ecosystems and the atmosphere. Its spread has the potential to raise ozone levels in the region by increasing nitric oxide (NO) emissions from soils as a consequence of increasing nitrogen (N) inputs and cycling in soils. We studied the effects of kudzu invasions on soils and trace N gas emissions at three sites in Madison County, Georgia in 2007 and used the results to model the effects of kudzu invasion on regional air quality. We found that rates of net N mineralization increased by up to 1,000%, and net nitrification increased by up to 500% in invaded soils in Georgia. Nitric oxide emissions from invaded soils were more than 100% higher (2.81 vs. 1.24 ng NO-N cm(-2) h(-1)). We used the GEOS-Chem chemical transport model to evaluate the potential impact of kudzu invasion on regional atmospheric chemistry and air quality. In an extreme scenario, extensive kudzu invasion leads directly to an increase in the number of high ozone events (above 70 ppb) of up to 7 days each summer in some areas, up from 10 to 20 days in a control scenario with no kudzu invasion. These results establish a quantitative link between a biological invasion and ozone formation and suggest that in this extreme scenario, kudzu invasion can overcome some of the air quality benefits of legislative control.

  17. Ozone Transport Aloft Drives Surface Ozone Maxima Across the Mojave Desert

    Science.gov (United States)

    VanCuren, R. A.

    2014-12-01

    A persistent layer of polluted air in the lower free troposphere over the Mojave Desert (California and Nevada) drives spring and summer surface ozone maxima as deep afternoon mixing delivers ozone and ozone precursors to surface measurement sites 200 km or more downwind of the mountains that separate the deserts from the heavily populated coastal areas of California. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), and from long-range transport from Asia. Recognition of this poorly studied persistent layer explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, resolves an apparent paradox in the timing of ozone peaks due to transport from the upwind basins, and provides a new perspective on the long-range downwind impacts of megacity pollution plumes.

  18. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    Science.gov (United States)

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  19. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets

    Science.gov (United States)

    Anenberg, Susan C.; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K.; Lacey, Forrest; Malley, Christopher S.; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-01

    Vehicle emissions contribute to fine particulate matter (PM2.5) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NOx), which are key PM2.5 and ozone precursors. Regulated NOx emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM2.5- and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NOx emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NOx emissions in these markets, avoiding approximately 174,000 global PM2.5- and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  20. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets.

    Science.gov (United States)

    Anenberg, Susan C; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K; Lacey, Forrest; Malley, Christopher S; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-25

    Vehicle emissions contribute to fine particulate matter (PM 2.5 ) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NO x ), which are key PM 2.5 and ozone precursors. Regulated NO x emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NO x under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM 2.5 - and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NO x emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NO x emissions in these markets, avoiding approximately 174,000 global PM 2.5 - and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  1. High-resolution atmospheric emission inventory of the argentine energy sector. Comparison with edgar global emission database

    Directory of Open Access Journals (Sweden)

    S. Enrique Puliafito

    2017-12-01

    Full Text Available This study presents a 2014 high-resolution spatially disaggregated emission inventory (0.025° × 0.025° horizontal resolution, of the main activities in the energy sector in Argentina. The sub-sectors considered are public generation of electricity, oil refineries, cement production, transport (maritime, air, rail and road, residential and commercial. The following pollutants were included: greenhouse gases (CO2, CH4, N2O, ozone precursors (CO, NOx, VOC and other specific air quality indicators such as SO2, PM10, and PM2.5. This work could contribute to a better geographical allocation of the pollutant sources through census based population maps. Considering the sources of greenhouse gas emissions, the total amount is 144 Tg CO2eq, from which the transportation sector emits 57.8 Tg (40%; followed by electricity generation, with 40.9 Tg (28%; residential + commercial, with 31.24 Tg (22%; and cement and refinery production, with 14.3 Tg (10%. This inventory shows that 49% of the total emissions occur in rural areas: 31% in rural areas of medium population density, 13% in intermediate urban areas and 7% in densely populated urban areas. However, if emissions are analyzed by extension (per square km, the largest impact is observed in medium and densely populated urban areas, reaching more than 20.3 Gg per square km of greenhouse gases, 297 Mg/km2 of ozone precursors gases and 11.5 Mg/km2 of other air quality emissions. A comparison with the EDGAR global emission database shows that, although the total country emissions are similar for several sub sectors and pollutants, its spatial distribution is not applicable to Argentina. The road and residential transport emissions represented by EDGAR result in an overestimation of emissions in rural areas and an underestimation in urban areas, especially in more densely populated areas. EDGAR underestimates 60 Gg of methane emissions from road transport sector and fugitive emissions from refining

  2. Coincident Observations of Surface Ozone and NMVOCs over Abu Dhabi

    Science.gov (United States)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Tarasick, David; Davies, Jonathan; Riemer, Daniel; Apel, Eric

    2016-07-01

    The vertical profiles of ozone are measured coincidently with non-methane volatile organic compounds (NMVOCs) at the meteorological site located at the Abu Dhabi international airport (latitude 24.45N; longitude 54.22E) during the years 2012 - 2014. Some of the profiles show elevated surface ozone >95 ppbv during the winter months (December, January and February). The ground-level NMVOCs obtained from the gas chromatography-flame ionization detection/mass spectrometry system also show elevated values of acetylene, ethane, propane, butane, pentane, benzene, and toluene. NMVOCs and ozone abundances in other seasons are much lower than the values in winter season. NMVOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption, and serve as precursor of ozone. Transport sources contribute a substantial portion of the NMVOC burden to the urban atmosphere in developed regions. Abu Dhabi is located at the edge of the Arabian Gulf and is highly affected by emissions from petrochemical industries in the neighboring Gulf region. The preliminary results indicate that wintertime enhancement in ozone is associated with large values of NMVOCs at Abu Dhabi. The domestic production of surface ozone is estimated from the combination of oxygen recombination and NMVOCs and compared with the data. It is estimated that about 40-50% of ozone in Abu Dhabi is transported from the neighbouring petrochemical industries. We will present ozone sounding and NMVOCs data and our model estimates of surface ozone, including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  3. Simulated changes in biogenic VOC emissions and ozone formation from habitat expansion of Acer Rubrum (red maple)

    International Nuclear Information System (INIS)

    Drewniak, Beth A; Snyder, Peter K; Twine, Tracy E; Steiner, Allison L; Wuebbles, Donald J

    2014-01-01

    A new vegetation trend is emerging in northeastern forests of the United States, characterized by an expansion of red maple at the expense of oak. This has changed emissions of biogenic volatile organic compounds (BVOCs), primarily isoprene and monoterpenes. Oaks strongly emit isoprene while red maple emits a negligible amount. This species shift may impact nearby urban centers because the interaction of isoprene with anthropogenic nitrogen oxides can lead to tropospheric ozone formation and monoterpenes can lead to the formation of particulate matter. In this study the Global Biosphere Emissions and Interactions System was used to estimate the spatial changes in BVOC emission fluxes resulting from a shift in forest composition between oak and maple. A 70% reduction in isoprene emissions occurred when oak was replaced with maple. Ozone simulations with a chemical box model at two rural and two urban sites showed modest reductions in ozone concentrations of up to 5–6 ppb resulting from a transition from oak to red maple, thus suggesting that the observed change in forest composition may benefit urban air quality. This study illustrates the importance of monitoring and representing changes in forest composition and the impacts to human health indirectly through changes in BVOCs. (paper)

  4. Evaluation of three common green building materials for ozone removal, and primary and secondary emissions of aldehydes

    Science.gov (United States)

    Gall, Elliott; Darling, Erin; Siegel, Jeffrey A.; Morrison, Glenn C.; Corsi, Richard L.

    2013-10-01

    Ozone reactions that occur on material surfaces can lead to elevated concentrations of oxidized products in the occupied space of buildings. However, there is little information on the impact of materials at full scale, especially for green building materials. Experiments were completed in a 68 m3 climate-controlled test chamber with three certified green building materials that can cover large areas in buildings: (1) recycled carpet, (2) perlite-based ceiling tile and (3) low-VOC paint and primer on recycled drywall. Ozone deposition velocity and primary and secondary emission rates of C1 to C10 saturated carbonyls were determined for two chamber mixing conditions and three values of relative humidity. A direct comparison was made between ozone deposition velocities and carbonyl yields observed for the same materials analyzed in small (10 L) chambers. Total primary carbonyl emission rates from carpet, ceiling tile and painted drywall ranged from 27 to 120 μg m-2 h-1, 13 to 40 μg m-2 h-1, 3.9 to 42 μg m-2 h-1, respectively. Ozone deposition velocity to these three materials averaged 6.1 m h-1, 2.3 m h-1 and 0.32 m h-1, respectively. Total secondary carbonyl emissions from these materials ranged from 70 to 276 μg m-2 h-1, 0 to 12 μg m-2 h-1, and 0 to 30 μg m-2 h-1, respectively. Carbonyl emissions were determined with a transient approximation, and were found to be in general agreement with those found in the literature. These results suggest that care should be taken when selecting green building materials due to potentially large differences in primary and secondary emissions.

  5. Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States

    Directory of Open Access Journals (Sweden)

    Y. F. Lam

    2011-05-01

    Full Text Available Simulations of present and future average regional ozone and PM2.5 concentrations over the United States were performed to investigate the potential impacts of global climate change and emissions on regional air quality using CMAQ. Various emissions and climate conditions with different biogenic emissions and domain resolutions were implemented to study the sensitivity of future air quality trends from the impacts of changing biogenic emissions. A comparison of GEOS-Chem and CMAQ was performed to investigate the effect of downscaling on the prediction of future air quality trends. For ozone, the impacts of global climate change are relatively smaller when compared to the impacts of anticipated future emissions reduction, except for the Northeast area, where increasing biogenic emissions due to climate change have stronger positive effects (increases to the regional ozone air quality. The combination effect from both climate change and emission reductions leads to approximately a 10 % or 5 ppbv decrease of the maximum daily average eight-hour ozone (MDA8 over the Eastern United States. For PM2.5, the impacts of global climate change have shown insignificant effect, where as the impacts of anticipated future emissions reduction account for the majority of overall PM2.5 reductions. The annual average 24-h PM2.5 of the future-year condition was found to be about 40 % lower than the one from the present-year condition, of which 60 % of its overall reductions are contributed to by the decrease of SO4 and NO3 particulate matters. Changing the biogenic emissions model increases the MDA8 ozone by about 5–10 % or 3–5 ppbv in the Northeast area. Conversely, it reduces the annual average PM2.5 by 5 % or 1.0 μg m−3 in the Southeast region.

  6. Sensitivity analysis of surface ozone to emission controls in Beijing and its neighboring area during the 2008 Olympic Games

    Institute of Scientific and Technical Information of China (English)

    Yi Gao; Meigen Zhang

    2012-01-01

    The regional air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Community Multi-scale Air Quality modeling system) is applied to analyze temporal and spatial variations in surface ozone concentration over Beijing and its surrounding region from July to October 2008.Comparison of simulated and observed meteorological elements and concentration of nitrogen oxides (NOx) and ozone at one urban site and three rural sites during Olympic Games show that model can generally reproduce the main observed feature of wind,temperature and ozone,but NOx concentration is overestimated.Although ozone concentration decreased during Olympics,high ozone episodes occurred on 24 July and 24 August with concentration of 360 and 245 μg/m3 at Aoyuncun site,respectively.The analysis of sensitive test,with and without emission controls,shows that emission controls could reduce ozone concentration in the afternoon when ozone concentration was highest but increase it at night and in the morning.The evolution of the weather system during the ozone episodes (24 July and 24 August) indicates that hot and dry air and a stable weak pressure field intensified the production of ozone and allowed it to accumulate.Process analysis at the urban site and rural site shows that under favorable weather condition on 24 August,horizontal transport was the main contributor of the rural place and the pollution from the higher layer would be transported to the surface layer.On 24 July,as the wind velocity was smaller,the impact of transport on the rural place was not obvious.

  7. Sensitivity analysis of surface ozone to emission controls in Beijing and its neighboring area during the 2008 Olympic Games.

    Science.gov (United States)

    Gao, Yi; Zhang, Meigen

    2012-01-01

    The regional air quality modeling system RAMS (regional atmospheric modeling system)-CMAQ (community multi-scale air quality modeling system) is applied to analyze temporal and spatial variations in surface ozone concentration over Beijing and its surrounding region from July to October 2008. Comparison of simulated and observed meteorological elements and concentration of nitrogen oxides (NOx) and ozone at one urban site and three rural sites during Olympic Games show that model can generally reproduce the main observed feature of wind, temperature and ozone, but NOx concentration is overestimated. Although ozone concentration decreased during Olympics, high ozone episodes occurred on 24 July and 24 August with concentration of 360 and 245 microg/m3 at Aoyuncun site, respectively. The analysis of sensitive test, with and without emission controls, shows that emission controls could reduce ozone concentration in the afternoon when ozone concentration was highest but increase it at night and in the morning. The evolution of the weather system during the ozone episodes (24 July and 24 August) indicates that hot and dry air and a stable weak pressure field intensified the production of ozone and allowed it to accumulate. Process analysis at the urban site and rural site shows that under favorable weather condition on 24 August, horizontal transport was the main contributor of the rural place and the pollution from the higher layer would be transported to the surface layer. On 24 July, as the wind velocity was smaller, the impact of transport on the rural place was not obvious.

  8. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF{sub 6}. Danish consumption and emissions, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [PlanMiljoe (Denmark)

    2007-06-15

    An evaluation of Danish consumption and emissions of ozone-depleting substances and industrial greenhouse gases has been carried out in continuation of previous evaluations, partly to fulfil Denmark's international obligations to provide information within this area and partly to follow the trend in consumption of ozone-depleting substances as well as the consumption and emissions of HFCs, PFCs and SF{sub 6}. The evaluation includes a calculation of actual emissions of HFCs, PFCs, and SF{sub 6} for 2006. In this calculation the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. (BA)

  9. Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing

    Science.gov (United States)

    Niemeier, Ulrike; Granier, Claire; Kornblueh, Luis; Walters, Stacy; Brasseur, Guy P.

    2006-05-01

    Automobile emissions are known to contribute to local air pollution and to photochemical smog in urban areas. The impact of road traffic on the chemical composition of the troposphere at the global scale and on climate forcing is less well quantified. Calculations performed with the chemical transport MOZART-2 model show that the concentrations of ozone and its precursors (NOx, CO, and hydrocarbons) are considerably enhanced in most regions of the Northern Hemisphere in response to current surface traffic. During summertime in the Northern Hemisphere, road traffic has increased the zonally averaged ozone concentration by more than 10% in the boundary layer and in the extratropics by approximately 6% at 500 hPa and 2.5% at 300 hPa. The summertime surface ozone concentrations have increased by typically 1-5 ppbv in the remote regions and by 5-20 ppbv in industrialized regions of the Northern Hemisphere. The corresponding ozone-related radiative forcing is 0.05 Wm-2. In order to assess the sensitivity of potential changes in road traffic intensity, two additional model cases were considered, in which traffic-related emissions in all regions of the world were assumed to be on a per capita basis the same as in Europe and in the United States, respectively. In the second and most dramatic case, the surface ozone concentration increases by 30-50 ppbv (50-100%) in south Asia as compared to the present situation. Under this assumption, the global radiative forcing due to traffic-generated ozone reaches 0.27 Wm-2.

  10. Climate Impacts of Ozone and Sulfate Air Pollution from Specific Emissions Sectors and Regions

    Science.gov (United States)

    Unger, N.; Koch, D. M.; Shindell, D. T.; Streets, D. G.

    2006-12-01

    The secondary air pollutants ozone (O3) and sulfate aerosol are generated by human activities and affect the Earth's climate system. The global mean radiative forcings of these short-lived species depend on the location of the precursor gas emissions, which has so far prevented their incorporation into climate-motivated policy agreements. O3 and sulfate aerosol are strongly coupled through tropospheric photochemistry and yet air quality control efforts consider each species separately. Previous modeling work to assess climate impacts of O3 has focused on individual precursors, such as nitrogen oxides, even though policy action would target a particular sector. We use the G-PUCCINI atmospheric composition-climate model to isolate the O3 and sulfate direct radiative forcing impacts of 6 specific emissions sectors (industry, transport, power, domestic biofuel, domestic fossil fuel and biomass burning) from 7 geographic regions (North America, Europe, South Asia, East Asia, North Africa and the Middle East, Central and South Africa and South America) for the near future 2030 atmosphere. The goal of the study is to identify specific source sectors and regions that present the most effective opportunities to mitigate global warming. At 2030, the industry and power sectors dominate the sulfate forcing across all regions, with East Asia, South Asia and North Africa and Middle East contributing the largest sulfate forcings (-100 to 120 mWm-2). The transport sector represents an important O3 forcing from all regions ranging from 5 mWm-2 (Europe) to 12 mWm-2 (East Asia). Domestic biofuel O3 forcing is important for the East Asia (13 mWm-2), South Asia (7 mWm-2) and Central and South Africa (10 mWm-2) regions. Biomass burning contributes large O3 forcings for the Central and South Africa (15 mWm-2) and South America (11 mWm-2) regions. In addition, the power sector O3 forcings from East Asia (14 mWm-2) and South Asia (8 mWm-2) are also substantial. Considering the sum of the O

  11. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  12. Photochemical modelling of photo-oxidant levels over the Swiss plateau and emission reduction scenarios

    International Nuclear Information System (INIS)

    Rosselet, C.M.; Kerr, J.A.

    1993-05-01

    During summertime high pressure conditions, high photo-oxidant (O 3 , H 2 O 2 , PAN and others) levels are frequently observed in the planetary boundary layer in central Europe. It is well known that close to the earth's surface ozone is formed by complex reactions involving VOC, NO x , and sunlight. Substantial reductions of both precursors are needed to reduce photo-oxidant levels. In this context the reductions of the abundance of the precursors and the variation of their ratios is of great importance. Here we report model calculations from the Harwell Photochemical Trajectory Model of the levels of O 3 , H 2 O 2 and PAN along a trajectory over the Swiss Plateau from Lake Constance to Lake Geneva. These calculations are in satisfactory agreement with measurements made during the intensive observation period of the research program POLLUMET (Pollution and Meteorology in Switzerland). Sensitivity calculations of emission reduction scenarios indicate that on the Swiss Plateau the ozone production may be mainly NO x -limited; under conditions where the CO levels are closer to the upper limit within the range (120-600 ppbv). The calculated peak ozone level reduction caused by an exclusive NO x -emission reduction is about three times larger than that caused by an exclusive VOC reduction. The combined reduction of all precursor compounds is the most efficient strategy, although it is only marginally more efficient than the NO x -reduction scenario alone. (author) figs., tabs., 75 refs

  13. Investigation of vertical and horizontal transport processes and their influence on the concentration of aerosols and ozone over the greater Berlin area

    Science.gov (United States)

    Reimer, E.; Kerschbaumer, A.; Beekmann, M.; Neißner, F.

    2003-04-01

    Urban emissions of particulate matter and precursors of ozone are very important in relation to the EU-council directives and national pollution abatement strategies. Knowledge about the contribution of anthropogenic urban sources and about long range transport of polluted air to local concentrations is needed for any reduction strategy. Thus, within the German Atmospheric Research Program AFO2000 a project has been started to investigate the formation and transport of PM10/PM2.5 in the greater Berlin area by sampling and analysing PM, using LIDAR as well as physico-chemical measurements to determine density, partical size distribution and chemical composition of the aerosol. Participants are: Freie Universität Berlin, Institute for Meteorology BTU Cottbus, Air Chemistry Department Elight Laser Systems GmbH Freie Universität Berlin, Physics Department Environmental Administration, Berlin Government with an additional PM campaign Measurements at central Berlin monitoring stations exceed standard PM10 tresholds. Therefore, it is important to get a better knowledge about PM sources within and outside the city. Long term applications of the chemical transport model with an aerosol-module REM3/Calgrid is used to explain transport, formation and deposition processes. Backward and forward trajectories are used to determine source/receptor relationships between the observations and European wide emission maps for ozone, precursors and PM10 and PM2,5 by correlation between observed primary aerosols in Berlin and possible sources. The measurements obtained within the project are also used to validate REM3/Calgrid with special respect to SO4, NO3, NH4 and ozone precursors.

  14. TOWARD AN EMPIRICAL THEORY OF PULSAR EMISSION. X. ON THE PRECURSOR AND POSTCURSOR EMISSION

    International Nuclear Information System (INIS)

    Basu, Rahul; Mitra, Dipanjan; Rankin, Joanna M.

    2015-01-01

    Precursors and postcursors (PPCs) are rare emission components, which appear beyond the main pulse emission, in some cases far away from it, and are detected in a handful of pulsar. In this paper we attempt to characterize the PPC emission in relation to the pulsar main pulse geometry. In our analysis we find that PPC components have properties very different from that of outer conal emission. The separation of the PPC components from the main pulse center remains constant with frequency. In addition the beam opening angles corresponding to the separation of PPC components from the pulsar center are much larger than the largest encountered in conal emission. Pulsar radio emission is believed to originate within the magnetic polar flux tubes due to the growth of instabilities in the outflowing relativistic plasma. Observationally, there is strong evidence that the main pulse emission originates at altitudes of about 50 neutron star radii for a canonical pulsar. Currently, the most plausible radio emission model that can explain main pulse emission is the coherent curvature radiation mechanism, wherein relativistic charged solitons are formed in a non-stationary electron-positron-pair plasma. The wider beam opening angles of PPC require the emission to emanate from larger altitudes as compared to the main pulse, if both these components originate by the same emission mechanism. We explore this possibility and find that this emission mechanism is probably inapplicable at the height of the PPC emission. We propose that the PPC emission represents a new type of radiation from pulsars with a mechanism different from that of the main pulse

  15. Foreign and Domestic Contributions to Springtime Ozone Pollution over China

    Science.gov (United States)

    Ni, R.; Lin, J.; Yan, Y.; Lin, W.; Chen, H.

    2017-12-01

    Ozone is a critical air pollutant that damages human health and vegetation. Previous studies for the United States and Europe have shown large influences of foreign emissions on domestic ozone levels, whereas the relative contributions of foreign versus domestic emissions are much less clear for China. Here, we use a global-regional two-way coupled model system based on GEOS-Chem to quantify the contributions to springtime ozone over China from anthropogenic emissions in major source regions across the globe. Our results indicate considerable influences of foreign anthropogenic pollution on China's ozone pollution. Together, foreign anthropogenic emissions enhance springtime surface ozone over China by 3 12 ppb. Of all ozone over China produced by global anthropogenic emissions, foreign emissions contribute 40% near the surface, and the contribution increases with altitude until a value of 80% in the upper troposphere. Impact from Japan and Korea is 1 2 ppb over east coastal regions, and negligible in inland. Anthropogenic emissions of South and South-East Asia increase ozone over Tibet and the Yunnan-Guizhou Plateau by up to 5 ppb, and their contribution increases with height due to strong vertical transport. Pollution from North America and Europe mainly accompanies strong westerly winds and frequent cyclonic activities that are favorable to long-range transport. European anthropogenic pollution enhances surface ozone by 1 3 ppb over West and North China. Despite a much longer transport distance, the contribution from North America is greater than European contribution due to the nearly doubled amount of anthropogenic NMVOC emissions. The high percentage contribution of foreign anthropogenic emissions to China's ozone pollution can be partly explained by excessive domestic NOx emissions that suppress ozone production efficiency and even destroy ozone. Our study is relevant to Chinese ozone pollution control and global environmental protection collaboration.

  16. Contributions of foreign, domestic and natural emissions to US ozone estimated using the path-integral method in CAMx nested within GEOS-Chem

    Directory of Open Access Journals (Sweden)

    A. M. Dunker

    2017-10-01

    Full Text Available The Goddard Earth Observing System global chemical transport (GEOS-Chem model was used at 2°  ×  2.5° resolution to simulate ozone formation for a base case representing year 2010 and a natural background case without worldwide anthropogenic emissions. These simulations provided boundary concentrations for base and natural background simulations with the Comprehensive Air Quality Model with Extensions (CAMx on a North American domain (one-way nested at 12 km  ×  12 km resolution over March–September 2010. The predicted maximum daily average 8 h (MDA8 background ozone for the US is largest in the mountainous areas of Colorado, New Mexico, Arizona, and California. The background MDA8 ozone in some of these locations exceeds 60 ppb, when averaged over the 10 days with the largest base-case ozone (T10base average. The background ozone generally becomes both a larger fraction of the base-case ozone in the western US and a smaller fraction in the eastern US when proceeding from spring to summer to the T10base average. The ozone difference between the base and background cases represents the increment to ozone from all anthropogenic sources. The path-integral method was applied to allocate this anthropogenic ozone increment to US anthropogenic emissions, Canadian/Mexican anthropogenic emissions, and the anthropogenic components of the lateral and top boundary concentrations (BCs. Using the T10base average MDA8 ozone, the relative importance of the sources is generally US emissions  >  anthropogenic lateral BCs  >  Canadian/Mexican emissions  ≫  anthropogenic top BCs. Specifically, for 10 US urban areas, the source contributions were 12–53 ppb for US emissions, 3–9 ppb for lateral BCs, 0.2–3 ppb for Canadian/Mexican emissions, and  ≤  0.1 ppb for top BCs. The contributions of the lateral BCs are largest for the higher-elevation US sites in the Intermountain West and along the

  17. Global Air Quality and Health Co-benefits of Mitigating Near-term Climate Change Through Methane and Black Carbon Emission Controls

    Science.gov (United States)

    Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew Todd; Amann, Markus; Faluvegi, Gregory S.; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Dingenen, Rita Van; Vignati, Elisabetta; hide

    2012-01-01

    Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by

  18. Improving emissions inventories in North America through systematic analysis of model performance during ICARTT and MILAGRO

    Science.gov (United States)

    Mena, Marcelo Andres

    During 2004 and 2006 the University of Iowa provided air quality forecast support for flight planning of the ICARTT and MILAGRO field campaigns. A method for improvement of model performance in comparison to observations is showed. The method allows identifying sources of model error from boundary conditions and emissions inventories. Simultaneous analysis of horizontal interpolation of model error and error covariance showed that error in ozone modeling is highly correlated to the error of its precursors, and that there is geographical correlation also. During ICARTT ozone modeling error was improved by updating from the National Emissions Inventory from 1999 and 2001, and furthermore by updating large point source emissions from continuous monitoring data. Further improvements were achieved by reducing area emissions of NOx y 60% for states in the Southeast United States. Ozone error was highly correlated to NOy error during this campaign. Also ozone production in the United States was most sensitive to NOx emissions. During MILAGRO model performance in terms of correlation coefficients was higher, but model error in ozone modeling was high due overestimation of NOx and VOC emissions in Mexico City during forecasting. Large model improvements were shown by decreasing NOx emissions in Mexico City by 50% and VOC by 60%. Recurring ozone error is spatially correlated to CO and NOy error. Sensitivity studies show that Mexico City aerosol can reduce regional photolysis rates by 40% and ozone formation by 5-10%. Mexico City emissions can enhance NOy and O3 concentrations over the Gulf of Mexico in up to 10-20%. Mexico City emissions can convert regional ozone production regimes from VOC to NOx limited. A method of interpolation of observations along flight tracks is shown, which can be used to infer on the direction of outflow plumes. The use of ratios such as O3/NOy and NOx/NOy can be used to provide information on chemical characteristics of the plume, such as age

  19. Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone

    International Nuclear Information System (INIS)

    Reilly, J.; Paltsev, S.; Felzer, B.; Wang, X.; Kicklighter, D.; Melillo, J.; Prinn, R.; Sarofim, M.; Sokolov, A.; Wang, C.

    2007-01-01

    Multiple environmental changes will have consequences for global vegetation. To the extent that crop yields and pasture and forest productivity are affected, there can be important economic consequences. We examine the combined effects of changes in climate, increases in carbon dioxide (CO 2 ), and changes in tropospheric ozone on crop, pasture, and forest lands and the consequences for the global and regional economies. We examine scenarios where there is limited or little effort to control these substances, and policy scenarios that limit emissions of CO 2 and ozone precursors. We find the effects of climate and CO 2 to be generally positive, and the effects of ozone to be very detrimental. Unless ozone is strongly controlled, damage could offset CO 2 and climate benefits. We find that resource allocation among sectors in the economy, and trade among countries, can strongly affect the estimate of economic effect in a country

  20. Ozone modeling for compliance planning: A synopsis of ''The Use of Photochemical Air Quality Models for Evaluating Emission Control Strategies: A Synthesis Report''

    International Nuclear Information System (INIS)

    Blanchard, C.L.

    1992-12-01

    The 1990 federal Clean Air Act Amendments require that many nonattainment areas use gridded, photochemical air quality models to develop compliance plans for meeting the ambient ozone standard. Both industry and regulatory agencies will need to consider explicitly the strengths and limitations of the models. Photochemical air quality models constitute the principal tool available for evaluating the relative effectiveness of alternative emission control strategies. Limitations in the utility of modeling results stem from the uncertainty and bias of predictions for modeled episodes, possible compensating errors, limitations in the number of modeled episodes, and incompatibility between deterministic model predictions and the statistical form of the air quality standard for ozone. If emissions estimates (including naturally produced ''biogenic'' emissions) are accurate, intensive aerometric data are available, and an evaluation of performance (including diagnostic evaluations) is successfully completed, gridded photochemical airquality models can determine (1) the types of emission controls - VOC, NO x , or both - that would be most effective for reducing ozone concentrations, and (2) the approximate magnitudes - to within about 20--40% - of the estimated ozone reductions

  1. Observations of ozone formation in power plant plumes and implications for ozone control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, T.B.; Trainer, M.; Holloway, J.S.; Parrish, D.D.; Huey, L.G.; Sueper, D.T.; Frost, G.J.; Donnelly, S.G.; Schauffler, S.; Atlas, E.L.; Kuster, W.C.; Goldan, P.D.; Huebler, G.; Meagher, J.F.; Fehsenfeld, F.C. [NOAA, Boulder, CO (USA). Aeronomy Lab.

    2001-04-27

    Data taken in aircraft transects of emissions plumes from rural US coal-fired power plants were used to confirm and quantify the nonlinear dependence of tropospheric ozone formation on plume NOx (NO plus NO{sub 2}) concentration, which is determined by plant NOx emission rate and atmospheric dispersion. The ambient availability of reactive volatile organic compounds, principally biogenic isoprene, was also found to modular ozone production rate and yield in these rural plumes. Differences of a factor of 2 or greater in plume ozone formation rates and yields as a function of NOx and volatile organic compound concentrations were consistently observed. These large differences suggest that consideration of power plant NOx emission rates and geographic locations in current and future US ozone control strategies could substantially enhance the efficacy of NOx reductions from these sources. 18 refs., 4 figs.

  2. An upper tropospheric ‘ozone river’ from Africa to India during the 2008 Asian post-monsoon season

    Directory of Open Access Journals (Sweden)

    Flore Tocquer

    2015-03-01

    Full Text Available We have used ozone data from the Infrared Atmospheric Sounding Interferometer to follow an event of ozone-enriched air-masses in the upper troposphere from eastern Africa to northern India. The ozone transport (hereafter called ‘ozone river’ or O3R occurred during the Asian post-monsoon season in 2008 and was associated with Rossby wave propagation. The persistence of the O3R in a narrow channel was confirmed by MOZAIC airborne data over the northwestern Indian coast. The regions of origin of the O3R were identified by a transport analysis based on the Lagrangian model FLEXPART. The Lagrangian simulations combined with potential vorticity fields indicate that stratospheric intrusions are not likely to be the most important contributor to the observed O3 enhancements. A high-resolution Eulerian model, Meso-NH, with tagged tracers was used to discriminate between African biomass burning, lightnings and Indian anthropogenic pollution as potential sources of precursors for the O3R. Lightning NOx emissions, associated with convective clouds over Africa, were found to be the principal contributor to the ozone enhancement over the Indian Ocean taking advantage of a northeastward jet. This case study illustrates African lightning emissions as an important source for enhanced O3 in the upper troposphere over the Indian Ocean region during the post-monsoon season.

  3. Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1°×1°

    NARCIS (Netherlands)

    Olivier, J.G.J.; Bouwman, A.F.; Berdowski, J.J.M.; Veldt, C.; Bloos, J.P.J.; Visschedijk, A.J.H.; Maas, C.W.M. van der; Zandveld, P.Y.J.

    1999-01-01

    A set of global greenhouse gas emission inventories has been compiled per source category for the 1990 annual emissions of the direct greenhouse gases CO2, CH4 and N2O, as well as of the indirect greenhouse gases (ozone precursors) CO, NOx and NMVOC, and of SO2. The inventories are available by

  4. Production and Transport of Ozone From Boreal Forest Fires

    Science.gov (United States)

    Tarasick, David; Liu, Jane; Osman, Mohammed; Sioris, Christopher; Liu, Xiong; Najafabadi, Omid; Parrington, Mark; Palmer, Paul; Strawbridge, Kevin; Duck, Thomas

    2013-04-01

    In the summer of 2010, the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) mission was planned by several universities and government agencies in the United Kingdom, Canada, and USA. Nearly 100 ozone soundings were made at 13 stations through the BORTAS Intensive Sounding Network, although aircraft measurements were unfortunately cancelled due to the volcanic eruption in Iceland. 2010 was actually an exceptional year for Canadian boreal fires. MODIS (Moderate Resolution Imaging Spectroradiometer) fire count data shows large fire events in Saskatchewan on several days in July. High amounts of NO2 close to the large fires are observed from OMI satellite data, indicating that not all NO2 is converted to PAN. Also associated with the fires, large amounts of CO, another precursor of ozone, are observed in MOPITT (Measurements Of Pollution In The Troposphere), AIRS and TES (Tropospheric Emission Spectrometer) satellite data in the middle to upper troposphere. These chemical conditions combined with sunny weather all favour ozone production. Following days with large fire activity, layers of elevated ozone mixing ratio (over 100 ppbv) are observed downwind at several sites. Back-trajectories suggest the elevated ozone in the profile is traceable to the fires in Saskatchewan. Lidar profiles also detect layers of aerosol at the same heights. However, the layers of high ozone are also associated with low humidity, which is not expected from a combustion source, and suggests the possibility of entrainment of stratospheric air.

  5. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China

    Science.gov (United States)

    Li, Kangwei; Chen, Linghong; Ying, Fang; White, Stephen J.; Jang, Carey; Wu, Xuecheng; Gao, Xiang; Hong, Shengmao; Shen, Jiandong; Azzi, Merched; Cen, Kefa

    2017-11-01

    Regional ozone pollution has become one of the most challenging problems in China, especially in the more economically developed and densely populated regions like Hangzhou. In this study, measurements of O3, CO, NOx and non-methane hydrocarbons (NMHCs), together with meteorological data, were obtained for the period July 1, 2013-August 15, 2013 at three sites in Hangzhou. These sites included an urban site (Zhaohui ;ZH;), a suburban site (Xiasha ;XS;) and a rural site (Qiandaohu ;QDH;). During the observation period, both ZH and XS had a higher ozone level than QDH, with exceeding rates of 41.3% and 47.8%, respectively. Elevated O3 levels in QDH were found at night, which could be explained by less prominent NO titration effect in rural area. Detailed statistical analysis of meteorological and chemical impacts on ozone formation was carried out for ZH, and higher ozone concentration was observed when the wind direction was from the east. This is possibly due to emissions of VOCs from XS, a typical chemical industrial park located in 30 km upwind area of ZH. A comprehensive comparison between three ozone episode periods and one non-episode period were made in ZH. It was concluded that elevated concentrations of precursors and temperatures, low relative humidity and wind speed and easterly-dominated wind direction contribute to urban ozone episodes in Hangzhou. VOCs reactivity analysis indicated that reactive alkenes like isoprene and isobutene contributed most to ozone formation. Three methods were applied to evaluate O3-VOCs-NOx sensitivity in ZH: VOCs/NOx ratio method, Smog Production Model (SPM) and Relative Incremental Reactivity (RIR). The results show that summer ozone in urban Hangzhou mostly presents VOCs-limited and transition region alternately. Our study implies that the increasing automobiles and VOCs emissions from upwind area could result in ozone pollution in urban Hangzhou, and synergistic reduction of VOCs and NOx will be more effective.

  6. Convection links biomass burning to increased tropical ozone: However, models will tend to overpredict O3

    Science.gov (United States)

    Chatfield, Robert B.; Delany, Anthony C.

    1990-10-01

    Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. We illustrate basic processes with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale. In the first, cook-then-mix, simulation the nitrogen oxides and other burning-produced pollutants are confined to a persistently subsident fair weather boundary layer for several days, and the resultant ozone is found to have only a transient influence on the whole column of tropospheric ozone. In the second, mix-then-cook, simulation the effect of typical cumulonimbus convection, which vents an actively polluted boundary layer, is to make a persistent increase in the tropical ozone column. Such a broadly increased ozone column is observed over the the populated "continental" portion of the tropics. A third simulation averages all emission, transport, and deposition parameters, representing one column in a global tropospheric model that does not simulate individual weather events. This "oversmoothing" simulation produces 60% more ozone than observed or otherwise modeled. Qualitatively similar overprediction is suggested for all models which average significantly in time or space, as all need do. Clearly, simulating these O3 levels will depend sensitively on knowledge of the timing of emissions and transport.

  7. Options to Accelerate Ozone Recovery: Ozone and Climate Benefits

    Science.gov (United States)

    Fleming, E. L.; Daniel, J. S.; Portmann, R. W.; Velders, G. J. M.; Jackman, C. H.; Ravishankara, A. R.

    2010-01-01

    The humankind or anthropogenic influence on ozone primarily originated from the chlorofluorocarbons and halons (chlorine and bromine). Representatives from governments have met periodically over the years to establish international regulations starting with the Montreal Protocol in 1987, which greatly limited the release of these ozone-depleting substances (DDSs). Two global models have been used to investigate the impact of hypothetical reductions in future emissions of ODSs on total column ozone. The investigations primarily focused on chlorine- and bromine-containing gases, but some computations also included nitrous oxide (N2O). The Montreal Protocol with ODS controls have been so successful that further regulations of chlorine- and bromine-containing gases could have only a fraction of the impact that regulations already in force have had. if all anthropogenic ODS emissions were halted beginning in 2011, ozone is calculated to be higher by about 1-2% during the period 2030-2100 compared to a case of no additional ODS restrictions. Chlorine- and bromine-containing gases and nitrous oxide are also greenhouse gases and lead to warming of the troposphere. Elimination of N 20 emissions would result in a reduction of radiative forcing of 0.23 W/sq m in 2100 than presently computed and destruction of the CFC bank would produce a reduction in radiative forcing of 0.005 W/sq m in 2100. This paper provides a quantitative way to consider future regulations of the CFC bank and N 20 emissions

  8. North American isoprene influence on intercontinental ozone pollution

    Directory of Open Access Journals (Sweden)

    A. M. Fiore

    2011-02-01

    Full Text Available Changing land-use and climate may alter emissions of biogenic isoprene, a key ozone (O3 precursor. Isoprene is also a precursor to peroxy acetyl nitrate (PAN and thus affects partitioning among oxidized nitrogen (NOy species, shifting the balance towards PAN, which more efficiently contributes to long-range transport relative to nitric acid (HNO3 which rapidly deposits. With a suite of sensitivity simulations in the MOZART-2 global tropospheric chemistry model, we gauge the relative importance of the intercontinental influence of a 20% increase in North American (NA isoprene and a 20% decrease in NA anthropogenic emissions (nitrogen oxides (NOx, non-methane volatile organic compounds (NMVOC and NOx + NMVOC + carbon monoxide + aerosols. The surface O3 response to NA isoprene emissions (ΔO3_ISOP in surface air over NA is about one third of the response to all NA anthropogenic emissions (ΔO3_ANTH; although with different signs. Over intercontinental distances, ΔO3_ISOP is relatively larger; in summer and fall, ΔO3_ISOP in surface air over Europe and North Africa (EU region is more than half of ΔO3_ANTH. Future increases in NA isoprene emissions could thus offset decreases in EU surface O3 resulting from controls on NA anthropogenic emissions. Over the EU region, ΔPAN_ISOP at 700 hPa is roughly the same magnitude as ΔPAN_ANTH (oppositely signed. Outside of the continental source region, the percentage changes in PAN are at least twice as large as for surface O3, implying that long-term PAN measurements at high altitude sites may help to detect O3 precursor emission changes. We find that neither the baseline level of isoprene emissions nor the fate of isoprene nitrates contributes to the large diversity in model estimates of the anthropogenic emission influence on intercontinental surface O

  9. Tropospheric ozone over Equatorial Africa: regional aspects from the MOZAIC data

    Directory of Open Access Journals (Sweden)

    B. Sauvage

    2005-01-01

    Full Text Available We analyze ozone observations recorded over Equatorial Africa between April 1997 and March 2003 by the MOZAIC programme, providing the first ozone climatology deriving from continental in-situ data over this region. Three-dimensional streamlines strongly suggests connections between the characteristics of the ozone monthly mean vertical profiles, the most persistent circulation patterns in the troposphere over Equatorial Africa (on a monthly basis such as the Harmattan, the African Easterly Jet, the Trades and the regions of ozone precursors emissions by biomass burning. During the biomass burning season in each hemisphere, the lower troposphere exhibits layers of enhanced ozone (i.e. 70 ppbv over the coast of Gulf of Guinea in December-February and 85 ppbv over Congo in June-August. The characteristics of the ozone monthly mean vertical profiles are clearly connected to the regional flow regime determined by seasonal dynamic forcing. The mean ozone profile over the coast of Gulf of Guinea in the burning season is characterized by systematically high ozone below 650hPa ; these are due to the transport by the Harmattan and the AEJ of the pollutants originating from upwind fires. The confinement of high ozone to the lower troposphere is due to the high stability of the Harmattan and the blocking Saharan anticyclone which prevents efficient vertical mixing. In contrast, ozone enhancements observed over Central Africa during the local dry season (June-August are not only found in the lower troposphere but throughout the troposphere. Moreover, this study highlights a connection between the regions of the coast of Gulf of Guinea and regions of Congo to the south that appears on a semi annual basis. Vertical profiles in wet-season regions exhibit ozone enhancements in the lower troposphere due to biomass burning products transport from fires situated in the opposite dry-season hemisphere.

  10. The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010

    Science.gov (United States)

    Parrington, M.; Palmer, P. I.; Henze, D. K.; Tarasick, D. W.; Hyer, E. J.; Owen, R. C.; Helmig, D.; Clerbaux, C.; Bowman, K. W.; Deeter, M. N.; Barratt, E. M.; Coheur, P.-F.; Hurtmans, D.; Jiang, Z.; George, M.; Worden, J. R.

    2012-02-01

    We have analysed the sensitivity of the tropospheric ozone distribution over North America and the North Atlantic to boreal biomass burning emissions during the summer of 2010 using the GEOS-Chem 3-D global tropospheric chemical transport model and observations from in situ and satellite instruments. We show that the model ozone distribution is consistent with observations from the Pico Mountain Observatory in the Azores, ozonesondes across Canada, and the Tropospheric Emission Spectrometer (TES) and Infrared Atmospheric Sounding Instrument (IASI) satellite instruments. Mean biases between the model and observed ozone mixing ratio in the free troposphere were less than 10 ppbv. We used the adjoint of GEOS-Chem to show the model ozone distribution in the free troposphere over Maritime Canada is largely sensitive to NOx emissions from biomass burning sources in Central Canada, lightning sources in the central US, and anthropogenic sources in the eastern US and south-eastern Canada. We also used the adjoint of GEOS-Chem to evaluate the Fire Locating And Monitoring of Burning Emissions (FLAMBE) inventory through assimilation of CO observations from the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument. The CO inversion showed that, on average, the FLAMBE emissions needed to be reduced to 89% of their original values, with scaling factors ranging from 12% to 102%, to fit the MOPITT observations in the boreal regions. Applying the CO scaling factors to all species emitted from boreal biomass burning sources led to a decrease of the model tropospheric distributions of CO, PAN, and NOx by as much as -20 ppbv, -50 pptv, and -20 pptv respectively. The modification of the biomass burning emission estimates reduced the model ozone distribution by approximately -3 ppbv (-8%) and on average improved the agreement of the model ozone distribution compared to the observations throughout the free troposphere, reducing the mean model bias from 5.5 to 4.0 ppbv

  11. Modelling study of boundary-layer ozone over northern China - Part II: Responses to emission reductions during the Beijing Olympics

    Science.gov (United States)

    Tang, Guiqian; Zhu, Xiaowan; Xin, Jinyuan; Hu, Bo; Song, Tao; Sun, Yang; Wang, Lili; Wu, Fangkun; Sun, Jie; Cheng, Mengtian; Chao, Na; Li, Xin; Wang, Yuesi

    2017-09-01

    The implementation of emission reduction measures during the Olympics provided a valuable opportunity to study regional photochemical pollution over northern China. In this study, the fifth-generation Pennsylvania State University/National Centre for Atmospheric Research Mesoscale Model and Community Multiscale Air Quality model system was applied to conduct two sets of modelling analyses of the period from July 20 to September 20, 2008, to illustrate the influences of emission reduction measures on regional photochemical pollution over northern China during the Beijing Olympics. The results indicated that the implementation of emission control measures decreased the concentrations of ozone (O3) precursors, namely nitrogen oxide (NOx) and volatile organic compounds (VOCs), throughout the boundary layer. The concentrations of these compounds were reduced by 45% in the central urban area of Beijing at the ground level. Although the average O3 concentration in the central urban area increased by more than 8 ppbv, the total oxidant concentration decreased significantly by more than 5 ppbv. Greater O3 concentrations mainly occurred during periods with weak photochemical reactions. During periods of strong photochemical production, the O3 concentration decreased significantly due to a weakening vertical circulation between the lower and upper boundary layer. Consequently, the number of days when the O3 concentration exceeded 100 ppbv decreased by 25% in Beijing. The emission control measures altered the sensitivity of the regional O3 production. The coordinated control region of NOx and VOCs expanded, and the control region of VOCs decreased in size. The reduction of non-point-source emissions, such as fugitive VOCs and vehicles, was more useful for controlling regional photochemical pollution over northern China.

  12. Reações de ozonólise de olefinas em fase gasosa

    Directory of Open Access Journals (Sweden)

    Nunes Fabíola Maria Nobre

    2000-01-01

    Full Text Available Biogenic emissions of volatile organic compounds play a fundamental role in the atmospheric chemistry, vegetation being one of their major sources. Amongst the VOCs emitted by plants, olefins and terpenoids are the most abundant. These compounds, due to the presence of two or more double bonds and other structural features, are very reactive in the atmosphere and act as precursors of the photochemical smog and aerosols. This article presents a review of the reactions of olefins and terpenoids with ozone, in the gas phase, with emphasis toward the mechanisms and kinetic aspects.

  13. Attribution and evolution of ozone from Asian wild fires using satellite and aircraft measurements during the ARCTAS campaign

    Directory of Open Access Journals (Sweden)

    R. Dupont

    2012-01-01

    Full Text Available We use ozone and carbon monoxide measurements from the Tropospheric Emission Spectrometer (TES, model estimates of Ozone, CO, and ozone pre-cursors from the Real-time Air Quality Modeling System (RAQMS, and data from the NASA DC8 aircraft to characterize the source and dynamical evolution of ozone and CO in Asian wildfire plumes during the spring ARCTAS campaign 2008. On the 19 April, NASA DC8 O3 and aerosol Differential Absorption Lidar (DIAL observed two biomass burning plumes originating from North-Western Asia (Kazakhstan and South-Eastern Asia (Thailand that advected eastward over the Pacific reaching North America in 10 to 12 days. Using both TES observations and RAQMS chemical analyses, we track the wildfire plumes from their source to the ARCTAS DC8 platform. In addition to photochemical production due to ozone pre-cursors, we find that exchange between the stratosphere and the troposphere is a major factor influencing O3 concentrations for both plumes. For example, the Kazakhstan and Siberian plumes at 55 degrees North is a region of significant springtime stratospheric/tropospheric exchange. Stratospheric air influences the Thailand plume after it is lofted to high altitudes via the Himalayas. Using comparisons of the model to the aircraft and satellite measurements, we estimate that the Kazakhstan plume is responsible for increases of O3 and CO mixing ratios by approximately 6.4 ppbv and 38 ppbv in the lower troposphere (height of 2 to 6 km, and the Thailand plume is responsible for increases of O3 and CO mixing ratios of approximately 11 ppbv and 71 ppbv in the upper troposphere (height of 8 to 12 km respectively. However, there are significant sources of uncertainty in these estimates that point to the need for future improvements in both model and satellite observations. For example, it is challenging to characterize the fraction of air parcels from the stratosphere versus those from the

  14. Sensitivity of modeled ozone concentrations to uncertainties in biogenic emissions

    International Nuclear Information System (INIS)

    Roselle, S.J.

    1992-06-01

    The study examines the sensitivity of regional ozone (O3) modeling to uncertainties in biogenic emissions estimates. The United States Environmental Protection Agency's (EPA) Regional Oxidant Model (ROM) was used to simulate the photochemistry of the northeastern United States for the period July 2-17, 1988. An operational model evaluation showed that ROM had a tendency to underpredict O3 when observed concentrations were above 70-80 ppb and to overpredict O3 when observed values were below this level. On average, the model underpredicted daily maximum O3 by 14 ppb. Spatial patterns of O3, however, were reproduced favorably by the model. Several simulations were performed to analyze the effects of uncertainties in biogenic emissions on predicted O3 and to study the effectiveness of two strategies of controlling anthropogenic emissions for reducing high O3 concentrations. Biogenic hydrocarbon emissions were adjusted by a factor of 3 to account for the existing range of uncertainty in these emissions. The impact of biogenic emission uncertainties on O3 predictions depended upon the availability of NOx. In some extremely NOx-limited areas, increasing the amount of biogenic emissions decreased O3 concentrations. Two control strategies were compared in the simulations: (1) reduced anthropogenic hydrocarbon emissions, and (2) reduced anthropogenic hydrocarbon and NOx emissions. The simulations showed that hydrocarbon emission controls were more beneficial to the New York City area, but that combined NOx and hydrocarbon controls were more beneficial to other areas of the Northeast. Hydrocarbon controls were more effective as biogenic hydrocarbon emissions were reduced, whereas combined NOx and hydrocarbon controls were more effective as biogenic hydrocarbon emissions were increased

  15. Regional emission metrics for short-lived climate forcers from multiple models

    Directory of Open Access Journals (Sweden)

    B. Aamaas

    2016-06-01

    Full Text Available For short-lived climate forcers (SLCFs, the impact of emissions depends on where and when the emissions take place. Comprehensive new calculations of various emission metrics for SLCFs are presented based on radiative forcing (RF values calculated in four different (chemical-transport or coupled chemistry–climate models. We distinguish between emissions during summer (May–October and winter (November–April for emissions in Europe and East Asia, as well as from the global shipping sector and global emissions. The species included in this study are aerosols and aerosol precursors (BC, OC, SO2, NH3, as well as ozone precursors (NOx, CO, VOCs, which also influence aerosols to a lesser degree. Emission metrics for global climate responses of these emissions, as well as for CH4, have been calculated using global warming potential (GWP and global temperature change potential (GTP, based on dedicated RF simulations by four global models. The emission metrics include indirect cloud effects of aerosols and the semi-direct forcing for BC. In addition to the standard emission metrics for pulse and sustained emissions, we have also calculated a new emission metric designed for an emission profile consisting of a ramping period of 15 years followed by sustained emissions, which is more appropriate for a gradual implementation of mitigation policies.For the aerosols, the emission metric values are larger in magnitude for emissions in Europe than East Asia and for summer than winter. A variation is also observed for the ozone precursors, with largest values for emissions in East Asia and winter for CO and in Europe and summer for VOCs. In general, the variations between the emission metrics derived from different models are larger than the variations between regions and seasons, but the regional and seasonal variations for the best estimate also hold for most of the models individually. Further, the estimated climate impact of an illustrative mitigation

  16. A comparative analysis of UV nadir-backscatter and infrared limb-emission ozone data assimilation

    Directory of Open Access Journals (Sweden)

    R. Dragani

    2016-07-01

    Full Text Available This paper presents a comparative assessment of ultraviolet nadir-backscatter and infrared limb-emission ozone profile assimilation. The Meteorological Operational Satellite A (MetOp-A Global Ozone Monitoring Experiment 2 (GOME-2 nadir and the ENVISAT Michelson Interferometer for Passive Atmospheric Sounding (MIPAS limb profiles, generated by the ozone consortium of the European Space Agency Climate Change Initiative (ESA O3-CCI, were individually added to a reference set of ozone observations and assimilated in the European Centre for Medium-Range Weather Forecasts (ECMWF data assimilation system (DAS. The two sets of resulting analyses were compared with that from a control experiment, only constrained by the reference dataset, and independent, unassimilated observations. Comparisons with independent observations show that both datasets improve the stratospheric ozone distribution. The changes inferred by the limb-based observations are more localized and, in places, more important than those implied by the nadir profiles, albeit they have a much lower number of observations. A small degradation (up to 0.25 mg kg−1 for GOME-2 and 0.5 mg kg−1 for MIPAS in the mass mixing ratio is found in the tropics between 20 and 30 hPa. In the lowermost troposphere below its vertical coverage, the limb data are found to be able to modify the ozone distribution with changes as large as 60 %. Comparisons of the ozone analyses with sonde data show that at those levels the assimilation of GOME-2 leads to about 1 Dobson Unit (DU smaller root mean square error (RMSE than that of MIPAS. However, the assimilation of MIPAS can still improve the quality of the ozone analyses and – with a reduction in the RMSE of up to about 2 DU – outperform the control experiment thanks to its synergistic assimilation with total-column ozone data within the DAS. High vertical resolution ozone profile observations are essential to accurately monitor and

  17. FULL-SCALE CHAMBER INVESTIGATION AND SIMULATION OF AIR FRESHENER EMISSIONS IN THE PRESENCE OF OZONE

    Science.gov (United States)

    The paper discusses results of tests, conducted in the EPA large chamber facility, determining emissions and chemical degradation of volatile organic compounds (VOCs) from one electrical plug-in type pine-scented air freshener in the presence of ozone supplied by a device markete...

  18. Surface ozone in China: present-day distribution and long-term changes

    Science.gov (United States)

    Xu, X.; Lin, W.; Xu, W.

    2017-12-01

    Reliable knowledge of spatio-temporal variations of surface ozone is highly needed to assess the impacts of ozone on human health, ecosystem and climate. Although regional distributions and trends of surface ozone in European and North American countries have been well characterized, little is known about the variability of surface ozone in many other countries, including China, where emissions of ozone precursors have been changing rapidly in recent decades. Here we present the first comprehensive description of present-day (2013-2017) distribution and long-term changes of surface ozone in mainland China. Recent ozone measurements from China's air quality monitoring network (AQMN) are analyzed to show present-day distributions of a few ozone exposure metrics for urban environment. Long-term measurements of ozone at six background sites, a rural site and an urban are used to study the trends of ozone in background, rural and urban air, respectively. The average levels of ozone at the AQMN sites (mainly urban) are close to those found at many European and North American sites. However, ozone at most of the sites shows very large diurnal and seasonal variations so that ozone nonattainment can occur in many cities, particularly those in the North China Plain (NCP), the south of Northeast China (NEC), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin-Chongqing region (SCB). In all these regions, particularly in the NCP, the maximum daily 8-h average (MDA8) ozone concentration can significantly exceed the national limit (75 ppb). High annual sum of ozone means over 35 ppb (SOMO35) exist mainly in the NCP, NEC and YRD, with regional averages over 4000 ppb·d. Surface ozone has significantly increased at Waliguan (a baseline site in western China) and Shangdianzi (a background site in the NCP), and decreased in winter and spring at Longfengshan (a background site in Northeast China). No clear trend can be derived from long-term measurements

  19. Measurements of emission rates of hydrocarbons from sunflower as a function of temperature, light intensity and stress (ozone levels); Bestimmung von Emissionsraten pflanzlicher Kohlenwasserstoffe bei Sonnenblumen in Abhaengigkeit von Temperatur, Lichtintensitaet und Stress, insbesondere von der Belastung mit Ozon

    Energy Technology Data Exchange (ETDEWEB)

    Schuh, G.; Wildt, J.; Kley, D.

    1996-08-01

    The emission rates of isoprene, mono- and sesquiterpenes from sunflower (Helianthus annuus L. cv. giganteus) were determined in an environmental chamber, a continuously stirred tank reactor. {alpha}-pinene, {beta}-caryophyllene and two oxygenated compounds were emitted. The emission rates of all terpenes increased exponentially with temperature. Substance specific differences of the rate of increase of the emission rates were observed. For all substances the dependence of their emission rates on temperature increased with increasing light intensity. Increasing lightflux resulted in an increase of the emission rates for all substances. The raise of emission rates with lightflux was dependent on temperature and increased with increasing temperature. During periods without plant stress the emission rates exhibited a good correlation with the rate of transpiration as well as with the rate of net photosynthesis. Sunflowers emitted higher amounts of terpenes when they were stressed by mechanical, wounding and ozone treatment as well as nutrient- or water deficiency. The emission rates increased by a factor of 5-300. Exposure with ozone had an effect on hydrocarbon emission rates with a delay-time. 3-4 h after exposure with 25-120 ppb ozone the emission rates increased by factor of 5-100. This increase was only observed on the first day of exposure. Nutrient deficiency resulted in an increase of emission rates by a factor of 10-300. In situations of mechanical, wounding and ozone stress, substance specific changes in the emission spectrum were observed. A model was developed to explain the observed phenomena. The main pathway of ozone loss in the chamber is caused by the uptake through the stomata of the plants. However, up to 50% of the ozone loss must be explained by other processes indirectly caused by the plants. (orig./MG) [Deutsch] In Laborversuchen wurden Emissionsraten biogener Kohlenwasserstoffe von Sonnenblumen gemessen. Die groessten Emissionsraten wiesen die

  20. The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010

    Directory of Open Access Journals (Sweden)

    M. Parrington

    2012-02-01

    Full Text Available We have analysed the sensitivity of the tropospheric ozone distribution over North America and the North Atlantic to boreal biomass burning emissions during the summer of 2010 using the GEOS-Chem 3-D global tropospheric chemical transport model and observations from in situ and satellite instruments. We show that the model ozone distribution is consistent with observations from the Pico Mountain Observatory in the Azores, ozonesondes across Canada, and the Tropospheric Emission Spectrometer (TES and Infrared Atmospheric Sounding Instrument (IASI satellite instruments. Mean biases between the model and observed ozone mixing ratio in the free troposphere were less than 10 ppbv. We used the adjoint of GEOS-Chem to show the model ozone distribution in the free troposphere over Maritime Canada is largely sensitive to NOx emissions from biomass burning sources in Central Canada, lightning sources in the central US, and anthropogenic sources in the eastern US and south-eastern Canada. We also used the adjoint of GEOS-Chem to evaluate the Fire Locating And Monitoring of Burning Emissions (FLAMBE inventory through assimilation of CO observations from the Measurements Of Pollution In The Troposphere (MOPITT satellite instrument. The CO inversion showed that, on average, the FLAMBE emissions needed to be reduced to 89% of their original values, with scaling factors ranging from 12% to 102%, to fit the MOPITT observations in the boreal regions. Applying the CO scaling factors to all species emitted from boreal biomass burning sources led to a decrease of the model tropospheric distributions of CO, PAN, and NOx by as much as −20 ppbv, −50 pptv, and −20 pptv respectively. The modification of the biomass burning emission estimates reduced the model ozone distribution by approximately −3 ppbv (−8% and on average improved the agreement of the model ozone distribution compared to the observations throughout the free troposphere

  1. Decadal trends in tropospheric ozone over East Asian Pacific rim during 1998-2007: Implications for emerging Asian emissions impacts and comparison to European and North American records (Invited)

    Science.gov (United States)

    Tanimoto, H.; Ohara, T.; Uno, I.

    2010-12-01

    We examine springtime ozone trends at nine remote locations in East Asian Pacific rim during the last decade (1998-2007). The observed decadal ozone trends are relatively small at surface sites but are substantially larger at a mountainous site. The level and increasing rate of ozone at the mountainous site are both higher than those observed at background sites in Europe and North America. We use a regional chemistry-transport model to explore the observed changes and how changes in Asian anthropogenic emissions have contributed to the observed increasing trends. The model with yearly-dependent regional emissions successfully reproduces the levels, variability, and interannual variations of ozone at all the surface sites. It predicts increasing trends at the mountainous site, suggesting that increasing Asian anthropogenic emissions account for about half the observed increase. However, the discrepancy between the observation and model results after 2003 (the time of largest emission increase) suggests significant underestimation of the actual growth of the Asian anthropogenic emissions and/or incompleteness in the modeling of pollution export from continental Asia. These findings imply that improving emissions inventory and transport scheme is needed to better understand rapidly evolving tropospheric ozone in East Asia and its potential climatic and environmental impacts.

  2. Impact of near-surface atmospheric composition on ozone formation in Russia

    Science.gov (United States)

    Berezina, Elena; Moiseenko, Konstantin; Skorokhod, Andrey; Belikov, Igor; Pankratova, Natalia; Elansky, Nikolai

    2017-04-01

    One of the consequences of the human impact on the atmosphere is increasing in tropospheric ozone concentration, with the highest ozone level being observed in industrially developed and highly populated regions of the world. In these regions, main anthropogenic sources of carbon monoxide (CO), methane (CH4) and volatile organic compounds (VOCs) are concentrated. The oxidation of these compounds, when interacting with hydroxyl and nitrogen oxides at rather high temperature and sunlight, leads to ozone formation. CO and CH4 are slowly oxidized in the atmosphere and cause an increase in global and regional background ozone. However, the oxidation of some VOCs occurs during daylight hours and is accompanied by an increase in ozone concentration near VOCs sources, particularly in urban and industrial areas. The contribution of biogenic VOCs to ozone generation is estimated to be from 40 to 70% of the total contribution of all chemical ozone precursors in the troposphere [1], with isoprene playing the main role in ozone formation [2]. The impact of aromatic hydrocarbons to ozone formation is reported to be about 40% of the total ozone generation from the oxidation of anthropogenic VOCs [3]. In this study, the results of VOCs measurements (isoprene, benzene, toluene, phenol, styrene, xylene and propilbenzene) by proton mass spectrometry in different regions of Russia along the Trans-Siberian railway from Moscow to Vladivostok from TROICA-12 campaign on a mobile laboratory in summer 2008 are analyzed. It is shown that the TROICA-12 measurements were carried out mostly in moderately polluted (2≤NOx20 ppb) conditions ( 20 and 2% of measurements, correspondingly). The lower troposphere chemical regime in the campaign is found to be mainly NOx sensitive, both in rural and urban environments, with typical morning NMHC/NOx ratios being well above 20. Hence, ozone production rates are expected to be controlled by regional NOx emissions and their complex interplay with both

  3. Improved attribution of climate forcing to emissions by pollutant and sector

    Science.gov (United States)

    Shindell, D. T.

    2009-12-01

    Evaluating multi-component climate change mitigation strategies requires knowledge of the diverse direct and indirect effects of emissions. Methane, ozone and aerosols are linked through atmospheric chemistry so that emissions of a single pollutant can affect several species. I will show new calculations of atmospheric composition changes, radiative forcing, and the global warming potential (GWP) for increased emissions of tropospheric ozone and aerosol precursors in a coupled composition-climate model. The results demonstrate that gas-aerosol interactions substantially alter the relative importance of the various emissions, suggesting revisions to the GWPs used in international carbon trading. Additionally, I will present results showing how the net climate impact of particular activities depends strongly upon non-CO2 forcing agents for some sectors. These results will be highlighted by discussing the interplay between air quality emissions controls and climate for the case of emissions from coal-fired power plants. The changing balance between CO2 and air quality pollutants from coal plants may have contributed to the 20th century spatial and temporal patterns of climate change, and is likely to continue to do so as more and more plants are constructed in Asia.

  4. 3D analysis of high ozone production rates observed during the ESCOMPTE campaign

    Science.gov (United States)

    Coll, Isabelle; Pinceloup, Stéphanie; Perros, Pascal E.; Laverdet, Gérard; Le Bras, Georges

    2005-03-01

    The development of environmental policies to reduce the ozone levels around large agglomerations requires a good understanding of the development of ozone episodes. In particular, it is necessary to know the location and photochemical activity of the plume where ozone is formed. Measurement campaigns make it possible not only to characterize the concentration fields of ozone and its precursors but also to identify the zones of strong ozone production, by means of specific measurements and kinetic calculations. The combination of the observation-based data with numerical simulations allows to better characterize photochemical pollution. This paper presents a study carried out within the ESCOMPTE program and based on the determination of ozone production rates by experimental and numerical methods: ground measurements of peroxy radicals, NO x at a rural site, airborne measurements of NO X and O 3, Eulerian modeling. The reported case is of particular interest since it corresponds to an episode with very different photochemical situations. The diurnal variations of the peroxy radical concentration are analyzed in relation to those of ozone and its precursors. Ozone production rates— P(O 3)-are studied over one particular day. The results show particularly high concentrations of RO 2+HO 2 at ground level (up to 200 pptv) under the influence of the urban and industrial plume, but also highlight very high production rates of ozone (60 to 80 ppbv h -1) a few tens of kilometers from the sources. The results show satisfactory agreement between the various approaches. Modeling provides a four-dimensional (4D) description of the plumes, in particular the relation between the ozone precursor concentrations and P(O 3) on the ground.

  5. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol

    Science.gov (United States)

    Chatani, Satoru; Matsunaga, Sou N.; Nakatsuka, Seiji

    2015-11-01

    A new gridded database has been developed to estimate the amount of isoprene, monoterpene, and sesquiterpene emitted from all the broadleaf and coniferous trees in Japan with the Model of Emissions of Gases and Aerosols from Nature (MEGAN). This database reflects the vegetation specific to Japan more accurately than existing ones. It estimates much lower isoprene emitted from other vegetation than trees, and higher sesquiterpene emissions mainly emitted from Cryptomeria japonica, which is the most abundant plant type in Japan. Changes in biogenic emissions result in the decrease in ambient ozone and increase in organic aerosol simulated by the air quality simulation over the Tokyo Metropolitan Area in Japan. Although newly estimated biogenic emissions contribute to a better model performance on overestimated ozone and underestimated organic aerosol, they are not a single solution to solve problems associated with the air quality simulation.

  6. Estimation of biogenic emissions with satellite-derived land use and land cover data for air quality modeling of Houston-Galveston ozone nonattainment area.

    Science.gov (United States)

    Byun, Daewon W; Kim, Soontae; Czader, Beata; Nowak, David; Stetson, Stephen; Estes, Mark

    2005-06-01

    The Houston-Galveston Area (HGA) is one of the most severe ozone non-attainment regions in the US. To study the effectiveness of controlling anthropogenic emissions to mitigate regional ozone nonattainment problems, it is necessary to utilize adequate datasets describing the environmental conditions that influence the photochemical reactivity of the ambient atmosphere. Compared to the anthropogenic emissions from point and mobile sources, there are large uncertainties in the locations and amounts of biogenic emissions. For regional air quality modeling applications, biogenic emissions are not directly measured but are usually estimated with meteorological data such as photo-synthetically active solar radiation, surface temperature, land type, and vegetation database. In this paper, we characterize these meteorological input parameters and two different land use land cover datasets available for HGA: the conventional biogenic vegetation/land use data and satellite-derived high-resolution land cover data. We describe the procedures used for the estimation of biogenic emissions with the satellite derived land cover data and leaf mass density information. Air quality model simulations were performed using both the original and the new biogenic emissions estimates. The results showed that there were considerable uncertainties in biogenic emissions inputs. Subsequently, ozone predictions were affected up to 10 ppb, but the magnitudes and locations of peak ozone varied each day depending on the upwind or downwind positions of the biogenic emission sources relative to the anthropogenic NOx and VOC sources. Although the assessment had limitations such as heterogeneity in the spatial resolutions, the study highlighted the significance of biogenic emissions uncertainty on air quality predictions. However, the study did not allow extrapolation of the directional changes in air quality corresponding to the changes in LULC because the two datasets were based on vastly different

  7. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    Science.gov (United States)

    Tang, W.; Cohan, D. S.; Pour-Biazar, A.; Lamsal, L. N.; White, A. T.; Xiao, X.; Zhou, W.; Henderson, B. H.; Lash, B. F.

    2015-02-01

    Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3) regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 state implementation plan (SIP) modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES) observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB) and normalized mean error (NME) by up to 0.1. A sector-based discrete Kalman filter (DKF) inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx)-decoupled direct method (DDM) model to adjust Texas NOx emissions using a high-resolution Ozone Monitoring Instrument (OMI) NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCDs) is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The region-based DKF inversion suggests increasing NOx emissions by 10-50% in most regions, deteriorating the model performance in predicting ground NO2 and O3, while the sector-based DKF inversion tends to scale down area and nonroad NOx emissions by 50%, leading to a 2-5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using sector-based inversion-constrained NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05, increases the model

  8. Using air quality modeling to study source-receptor relationships between nitrogen oxides emissions and ozone exposures over the United States.

    Science.gov (United States)

    Tong, Daniel Q; Muller, Nicholas Z; Kan, Haidong; Mendelsohn, Robert O

    2009-11-01

    Human exposure to ambient ozone (O(3)) has been linked to a variety of adverse health effects. The ozone level at a location is contributed by local production, regional transport, and background ozone. This study combines detailed emission inventory, air quality modeling, and census data to investigate the source-receptor relationships between nitrogen oxides (NO(x)) emissions and population exposure to ambient O(3) in 48 states over the continental United States. By removing NO(x) emissions from each state one at a time, we calculate the change in O(3) exposures by examining the difference between the base and the sensitivity simulations. Based on the 49 simulations, we construct state-level and census region-level source-receptor matrices describing the relationships among these states/regions. We find that, for 43 receptor states, cumulative NO(x) emissions from upwind states contribute more to O(3) exposures than the state's own emissions. In-state emissions are responsible for less than 15% of O(3) exposures in 90% of U.S. states. A state's NO(x) emissions can influence 2 to 40 downwind states by at least a 0.1 ppbv change in population-averaged O(3) exposure. The results suggest that the U.S. generally needs a regional strategy to effectively reduce O(3) exposures. But the current regional emission control program in the U.S. is a cap-and-trade program that assumes the marginal damage of every ton of NO(x) is equal. In this study, the average O(3) exposures caused by one ton of NO(x) emissions ranges from -2.0 to 2.3 ppm-people-hours depending on the state. The actual damage caused by one ton of NO(x) emissions varies considerably over space.

  9. Effects of Acute Ozone Exposure and Methyl Jasmonate Treatment on White Pine Monoterpene and Sesquiterpene Emission Rates

    Science.gov (United States)

    Faiola, C. L.; Wagner, D.; Allwine, E.; Harley, P. C.; Vanreken, T. M.

    2010-12-01

    Biogenic volatile organic compounds (BVOCs) are produced by plants and include monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are one of the principal factors influencing the oxidative capacity of the atmosphere in forested regions, and impact both ozone concentration and secondary organic aerosol formation. Under unstressed conditions, the release of BVOCs to the atmosphere is primarily controlled by the vapor pressure of the relevant compounds within the plant tissue, which is in turn dependent on temperature as well as complex biochemical production processes. However, various natural and anthropogenic stressors can alter both the quantity and composition of the BVOCs emitted by plants. Many potential stressors are expected to become stronger as climate change effects escalate. The impacts of most stressors on BVOC emissions have not been well characterized, particularly in a field setting where changes in BVOC emissions could have influential feedbacks with climate. This study investigated the effects of two stressors on monoterpene and sesquiterpene emission rates at a field site in northern Michigan: acute ozone exposure and treatment with methyl jasmonate, an herbivory proxy. The study included six repetitions of the same experiment, each time using a new set of sub-canopy eastern white pine specimens. For each experiment, dynamic branch enclosures were simultaneously used on three specimens for sample collection: one ozone treatment tree, one methyl jasmonate treatment tree, and one control tree. Sampling lines were placed in each enclosure and VOCs were collected onto cartridges packed with Tenax GR adsorbent. Samples were collected several times per day for at least two days before treatment and for five days after treatment. Cartridges were analyzed via thermodesorption with an Agilent GC/MS/FID. This analysis allowed the identification and quantification of several monoterpene and sesquiterpene species in the samples

  10. Emissions from the Bena Landfill

    Science.gov (United States)

    Schafer, C.; Blake, D. R.; Hughes, S.

    2016-12-01

    In 2013, Americans generated 254 million tons of municipal solid waste (MSW). The gas generated from the decomposition of MSW is composed of approximately 50% methane, 50% carbon dioxide, and a small proportion of non-methane organic compounds (NMOCs). NMOCs constitute less than 1% of landfill emissions, but they can have a disproportionate environmental impact as they are highly reactive ozone precursors. During the 2016 Student Airborne Research Program (SARP), whole air samples were collected at the Bena landfill outside of Bakersfield, CA and throughout Bakersfield and analyzed using gas chromatography in order to quantify NMOC emissions. This area was determined to have elevated concentrations of benzene, trichloroethylene, and tetrachloroethylene, all of which are categorized by the EPA as hazardous to human health. Benzene was found to have a concentration of 145 ± 4 pptv, four times higher than the background levels in Bakersfield (36 ± 1 pptv). Trichloroethylene and tetrachloroethylene had concentrations of 18 ± 1 pptv and 31 ± 1 pptv which were 18 and 10 times greater than background concentrations, respectively. In addition, hydroxyl radical reactivity (ROH) was calculated to determine the potential for tropospheric ozone formation. The total ROH of the landfill was 7.5 ± 0.2 s-1 compared to total background ROH of 1.0 ± 0.1 s-1 . NMOCs only made up 0.6% of total emissions, but accounted for 67% of total ROH.These results can help to shape future landfill emission policies by highlighting the importance of NMOCs in addition to methane. More research is needed to investigate the ozone forming potential of these compounds at landfills across the country.

  11. Indoor Secondary Pollutants from Household Product Emissions inthe Presence of Ozone: A Bench-Scale Chamber Study

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.; Coleman,Beverly K.; Hodgson, Alfred T.; Weschler, Charles J.; Nazaroff, William W.

    2005-10-01

    Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.

  12. Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007

    NARCIS (Netherlands)

    Hodnebrog, Ø.; Solberg, S.; Stordal, F.; Svendby, T.M.; Simpson, D.; Gauss, M.; Hilboll, A.; Pfister, G.G.; Turquety, S.; Richter, A.; Burrows, J.P.; Denier Van Der Gon, H.A.C.

    2012-01-01

    The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors

  13. Analysis of Ozone in Cloudy Versus Clear Sky Conditions

    Science.gov (United States)

    Strode, Sarah; Douglass, Anne; Ziemke, Jerald

    2016-01-01

    Convection impacts ozone concentrations by transporting ozone vertically and by lofting ozone precursors from the surface, while the clouds and lighting associated with convection affect ozone chemistry. Observations of the above-cloud ozone column (Ziemke et al., 2009) derived from the OMI instrument show geographic variability, and comparison of the above-cloud ozone with all-sky tropospheric ozone columns from OMI indicates important regional differences. We use two global models of atmospheric chemistry, the GMI chemical transport model (CTM) and the GEOS-5 chemistry climate model, to diagnose the contributions of transport and chemistry to observed differences in ozone between areas with and without deep convection, as well as differences in clean versus polluted convective regions. We also investigate how the above-cloud tropospheric ozone from OMI can provide constraints on the relationship between ozone and convection in a free-running climate simulation as well as a CTM.

  14. Ground-level ozone in the Pearl River Delta and the roles of VOC and NO(x) in its production.

    Science.gov (United States)

    Shao, Min; Zhang, Yuanhang; Zeng, Limin; Tang, Xiaoyan; Zhang, Jing; Zhong, Liuju; Wang, Boguang

    2009-01-01

    In many regions of China, very rapid economic growth has been accompanied by air pollution caused by vehicle emissions. In one of these regions, the Pearl River Delta, the variations of ground-level ozone and its precursors were investigated. Overall, the ambient concentrations of NO(2) increased quickly between 1995 and 1996, but then slightly decreased due to stringent nitrogen oxide (NO(x)) emission controls. Nonetheless, ambient NO(2) levels in the Pearl River Delta remained high. The regional average concentrations of volatile organic compounds (VOCs) were 290 ppbC in summer and 190 ppbC in autumn. Local emissions and long-distance transportation of pollutants play important roles in the regional distribution of VOCs. Ambient O(3) production is significant in urban areas and also downwind of cities. The relative incremental reactivities (RIRs), determined by an observation-based model, showed that ground-level ozone formation in the Guangzhou urban area is generally limited by the concentrations of VOCs, but there are also measurable impacts of NO(x).

  15. Influence of wildfires on the variability and trend of ozone concentrations in the U.S. Intermountain West

    Science.gov (United States)

    Lu, Xiao; Zhang, Lin; Zhao, Yuanhong; Yue, Xu

    2016-04-01

    Wildfires are important sources of ozone by emitting large amounts of NOx and NMVOC, main ozone precursors at both global and regional scales. Their influences on ozone in the U.S. Intermountain West have recently received much interest because surface ozone concentrations over that region showed an increasing trend in the past two decades likely due to increasing wildfire emissions in a warming climate. Here we use the Lagrangian particle dispersion model (FLEXPART) as well as the GEOS-Chem chemical transport model to estimate wildfires' contribution on summer (June, July and August; JJA) ozone concentration variations, trends, and extremely high ozone events over the US Intermountain West for the past 22 years (1989-2010). We combine the resident time estimated from the FLEXPART 5-day backward trajectories and a high-resolution fire inventory to define a fire index representing the impact of wildfires on ozone concentration at a particular site for each day of summers 1989-2010. Over 26,000 FLEXPART back-trajectories are conducted for the whole time period and for 13 CASTNet surface monitoring sites. We build a stepwise multiple linear regression (SMLR) model of daily ozone concentrations using fire index and other meteorological variables for each site. The SMLR models explain 53% of the ozone variations (ranging from 12% to 68% for each site). We show that ozone produced from wildfires (calculated from SMLR model) are of high variability at daily scale (ranging from 0.1 ppbv to 20.7 ppbv), but are averaged to lower values of about 0.25-3.5 ppbv for summer mean. We estimate that wildfires magnify inter-annual variations of the regional mean summer ozone for about 32%, compared to the result with wildfires impact excluded from the SMLR model. Wildfire ozone enhancements increase at a rate of 0.04 ppbv per year, accouting for about 20% of the regional summer ozone trend during 1989-2010. Removing wildfires' impact would reduce 35% (46%) of the high-ozone days with

  16. Urban sprawl and air quality in large US cities.

    Science.gov (United States)

    Stone, Brian

    2008-03-01

    This study presents the results of a paper of urban spatial structure and exceedances of the 8-h national ambient air quality standard for ozone in 45 large US metropolitan regions. Through the integration of a published index of sprawl with metropolitan level data on annual ozone exceedances, precursor emissions, and regional climate over a 13-year period, the association between the extent of urban decentralization and the average number of ozone exceedances per year, while controlling for precursor emissions and temperature, is measured. The results of this analysis support the hypothesis that large metropolitan regions ranking highly on a quantitative index of sprawl experience a greater number of ozone exceedances than more spatially compact metropolitan regions. Importantly, this relationship was found to hold when controlling for population size, average ozone season temperatures, and regional emissions of nitrogen oxides and volatile organic compounds, suggesting that urban spatial structure may have effects on ozone formation that are independent of its effects on precursor emissions from transportation, industry, and power generation facilities.

  17. Emission characteristics of VOCs emitted from consumer and commercial products and their ozone formation potential.

    Science.gov (United States)

    Dinh, Trieu-Vuong; Kim, Su-Yeon; Son, Youn-Suk; Choi, In-Young; Park, Seong-Ryong; Sunwoo, Young; Kim, Jo-Chun

    2015-06-01

    The characteristics of volatile organic compounds (VOCs) emitted from several consumer and commercial products (body wash, dishwashing detergent, air freshener, windshield washer fluid, lubricant, hair spray, and insecticide) were studied and compared. The spray products were found to emit the highest amount of VOCs (~96 wt%). In contrast, the body wash products showed the lowest VOC contents (~1.6 wt%). In the spray products, 21.6-96.4 % of the VOCs were propane, iso-butane, and n-butane, which are the components of liquefied petroleum gas. Monoterpene (C10H16) was the dominant component of the VOCs in the non-spray products (e.g., body wash, 53-88 %). In particular, methanol was present with the highest amount of VOCs in windshield washer fluid products. In terms of the number of carbon, the windshield washer fluids, lubricants, insecticides, and hair sprays comprised >95 % of the VOCs in the range C2-C5. The VOCs in the range C6-C10 were predominantly found in the body wash products. The dishwashing detergents and air fresheners contained diverse VOCs from C2 to C11. Besides comprising hazardous VOCs, VOCs from consumer products were also ozone precursors. The ozone formation potential of the consumer and commercial spray products was estimated to be higher than those of liquid and gel materials. In particular, the hair sprays showed the highest ozone formation potential.

  18. Effect of coupled anthropogenic perturbations on stratospheric ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  19. Natural emissions under future climate condition and their effects on surface ozone in the Yangtze River Delta region, China

    Science.gov (United States)

    Xie, Min; Shu, Lei; Wang, Ti-jian; Liu, Qian; Gao, Da; Li, Shu; Zhuang, Bing-liang; Han, Yong; Li, Meng-meng; Chen, Pu-long

    2017-02-01

    The natural emissions of ozone precursors (NOx and VOCs) are sensitive to climate. Future climate change can impact O3 concentrations by perturbing these emissions. To better estimate the variation of natural emissions under different climate conditions and understand its effect on surface O3, we model the present and the future air quality over the Yangtze River Delta (YRD) region by running different simulations with the aid of the WRF-CALGRID model system that contains a natural emission module. Firstly, we estimate the natural emissions at present and in IPCC A1B scenario. The results show that biogenic VOC emission and soil NOx emission over YRD in 2008 is 657 Gg C and 19.1 Gg N, respectively. According to climate change, these emissions in 2050 will increase by 25.5% and 11.5%, respectively. Secondly, the effects of future natural emissions and meteorology on surface O3 are investigated and compared. It is found that the variations in meteorological fields can significantly alter the spatial distribution of O3 over YRD, with the increases of 5-15 ppb in the north and the decreases of -5 to -15 ppb in the south. However, only approximately 20% of the surface O3 increases caused by climate change can be attributed to the natural emissions, with the highest increment up to 2.4 ppb. Finally, Ra (the ratio of impacts from NOx and VOCs on O3 formation) and H2O2/HNO3 (the ratio between the concentrations of H2O2 and HNO3) are applied to study the O3 sensitivity in YRD. The results show that the transition value of H2O2/HNO3 will turn from 0.3 to 0.5 in 2008 to 0.4-0.8 in 2050. O3 formation in the YRD region will be insensitive to VOCs under future climate condition, implying more NOx need to be cut down. Our findings can help us understand O3 variation trend and put forward the reasonable and effective pollution control policies in these famous polluted areas.

  20. Emission control measures for precursors of tropospheric ozone. Pt. 1 and 2; Emissionsminderungsmoeglichkeiten bei Vorlaeufersubstanzen von bodennahem Ozon. Bd. 1: Systemanalyse der Ozonminderungsmassnahmen in den USA. Bd. 2: Luftreinhaltemassnahmen in den USA zur Minderung von VOC-Emissionen aus Kleinanlagen und Produkten und Vergleich mit europaeischen Regelungen

    Energy Technology Data Exchange (ETDEWEB)

    Leclaire, T; Schiefer, C; Bergmann, S; Hrabovski, Z [Institut fuer Umwelttechnologie und Umweltanalytik e.V. (IUTA), Duisburg (Germany)

    1998-08-01

    For more than two decades now experiences of ozone reduction have been made in the USA. In many regions great efforts for VOC control are made to reduce their high ozone concentrations in ambient air that in some cases reach up to more than twice the German peak concentrations. This report places focus on small stationary sources and products, for these sources actually contribute more than half of the VOC emissions in Germany and are still not regulated under the German Immission Control Law. Therefore, main aim of this examination was to determine the major elements of VOC control strategies in the U.S. and to consider, whether strategies and measures are transferable taking into account German circumstances. Volume 1 describes the strategies and measures for ozone control in the U.S. (national) as well as in five regions with high ozone concentrations in ambient air. The authorities and responsbilities at federal, state, regional, and local levels are highlighted, legislation and different types of regulations are explained, priorities concerning VOC versus NO{sub x} related control are mentioned and the control measures on different sources for reducing VOC and NO{sub x} are summarized briefly. Volume 2 contains a detailed description of control measures for reducing VOC emissions from products and stationary sources, namely the proposed national VOC emission standards for coatings and consumer products, the California Consumer Products Regulations, the state-wide requirements for industrial and commercial sources in California and the VOC related rules of the South Coast Air Quality Management District (LA and surrounded Countries). The South Coast Rules were chosen as an example for District Rules for they were generally the most stringent because of the extreme ozone concentration in this area. Moreover, the regulations for VOC emission control in Europe concerning small stationary sources and products are mentioned. The different approaches to control VOC

  1. Photochemically consumed hydrocarbons and their relationship with ozone formation in two megacities of China

    Science.gov (United States)

    Chang, C.; Wang, J.; Liu, S.; Shao, M.; Zhang, Y.; Zhu, T.; Shiu, C.; Lai, C.

    2010-12-01

    Two on-site continuous measurements of ozone and its precursors in two megacities of China were carried out in an urban site of Beijing and a suburban site near Guangzhou in the Pearl River Delta (PRD) to estimate precursor consumption and to assess its relationship with oxidant (O3+NO2) formation level. An observation-based method (OBM) with the precursor consumption concept was adopted to assess the relationship between oxidant production and amounts of photochemically consumed non-methane hydrocarbons (NMHCs). In this approach, the ratio of ethylbenzene to m,p-xylenes was used to estimate the degree of photochemical processing, as well as the amounts of photochemically consumed NMHCs by reacting with OH. By trying to correlate the observed oxidant with the observed NMHC concentration, the two areas both revealed nearly no to low correlation between them. However, it existed fair to good correlations (R2=0.68 for Beijing, 0.53 for PRD) between the observed oxidant level and the degree of photochemical processing (ethylbenzene/m,p-xylenes). Furthermore, after taking the approach of consumption to estimate the consumed amounts of NMHCs, an interesting finding reveals that the definite correlation existed between the observed oxidant level and the total consumed NMHCs. The good correlations (R2=0.83 for Beijing, 0.81 for PRD) implies that the ambient oxidant level correlated to the amount of consumed NMHCs. The results of the two megacities in China by using the OBM with the precursor consumption concept can provide another pathway to explore the relationship between photochemically produced oxidant and consumed precursors, and will be helpful to validate model results and to reduce uncertainty of model predictions. However, the method has some room for uncertainty, as injection of fresh precursor emissions and additional boundary ozone involved, etc. could affect the estimation of consumed NMHCs and observed oxidant levels. Assistance of approaches in assessing the

  2. Forests and ozone: productivity, carbon storage, and feedbacks.

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  3. Characterization of N-nitrosodimethylamine formation from the ozonation of ranitidine.

    Science.gov (United States)

    Lv, Juan; Wang, Lin; Li, Yongmei

    2017-08-01

    N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product which is formed during water disinfection in the presence of amine-based precursors. Ranitidine, as one kind of amine-based pharmaceuticals, has been identified as NDMA precursor with high NDMA molar conversion during chloramination. This study focused on the characterization of NDMA formation during ozonation of ranitidine. Influences of operational variables (ozone dose, pH value) and water matrix on NDMA generation as well as ranitidine degradation were evaluated. The results indicate high reactivity of ranitidine with ozone. Dimethylamine (DMA) and NDMA were generated due to ranitidine oxidation. High pH value caused more NDMA accumulation. NDMA formation was inhibited under acid conditions (pH≤5) mainly due to the protonation of amines. Water matrix such as HCO 3 - and humic acid impacted NDMA generation due to OH scavenging. Compared with OH, ozone molecules dominated the productions of DMA and NDMA. However, OH was a critical factor in NDMA degradation. Transformation products of ranitidine during ozonation were identified using gas chromatography-mass spectrometry. Among these products, just DMA and N,N-dimethylformamide could contribute to NDMA formation due to the DMA group in the molecular structures. The NDMA formation pathway from ranitidine ozonation was also proposed. Copyright © 2017. Published by Elsevier B.V.

  4. Results of ozone measurements in Northern Germany: A case study

    Science.gov (United States)

    Schmidt, Manfred

    1994-01-01

    At most of the German ozone recording stations which have records over a sufficiently long period, the results of the summer months of 1989 showed the highest values since the beginning of the measurements. One of the reasons for this phenomenon was the high duration of sunshine in that summer; for example, in Potsdam near Berlin in May 1989 the sunshine duration was the highest in May since the beginning of the records in 1893. For that reason we selected this summer for a case study. The basis for the study was mainly the ozone measuring stations of the network of Lower Saxony and the Federal Office of Environment (Umweltbundesamt). The results of these summer measurements point to intense sources of ozone, probably in form of gaseous precursors, in the Middle German industrial areas near Leipzig and Halle and in Northwestern Czechoslovakia, with coal-mining, chemical and petrochemical industries, coking plants and others. The maps of average ozone concentrations, number or days with high ozone maxima, ozone-windroses of the stations, etc., suggest that these areas could be a main source of precursors and of photochemical ozone production in summer smog episodes in Central Europe. Stations on the North Sea coast, at which early ozone measurements were made by our institute in 1973/74 are compared with similarly located stations of the Lower Saxon network in 1989 and the results show a reversal of the ozone-windroses. In 1973/74, the highest ozone concentrations were correlated with wind directions from the sea while in 1989 these concentrations were correlated with directions from the continent. In the recent years, photochemical ozone production on the continent is probably predominant, while in former years the higher ozone content of the maritime subpolar air masses has been explained by stratospheric-tropospheric exchange.

  5. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  6. Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality

    Science.gov (United States)

    Khare, Peeyush; Gentner, Drew R.

    2018-04-01

    Decades of policy in developed regions has successfully reduced total anthropogenic emissions of gas-phase organic compounds, especially volatile organic compounds (VOCs), with an intentional, sustained focus on motor vehicles and other combustion-related sources. We examine potential secondary organic aerosol (SOA) and ozone formation in our case study megacity (Los Angeles) and demonstrate that non-combustion-related sources now contribute a major fraction of SOA and ozone precursors. Thus, they warrant greater attention beyond indoor environments to resolve large uncertainties in their emissions, oxidation chemistry, and outdoor air quality impacts in cities worldwide. We constrain the magnitude and chemical composition of emissions via several bottom-up approaches using chemical analyses of products, emissions inventory assessments, theoretical calculations of emission timescales, and a survey of consumer product material safety datasheets. We demonstrate that the chemical composition of emissions from consumer products as well as commercial and industrial products, processes, and materials is diverse across and within source subcategories. This leads to wide ranges of SOA and ozone formation potentials that rival other prominent sources, such as motor vehicles. With emission timescales from minutes to years, emission rates and source profiles need to be included, updated, and/or validated in emissions inventories with expected regional and national variability. In particular, intermediate-volatility and semi-volatile organic compounds (IVOCs and SVOCs) are key precursors to SOA, but are excluded or poorly represented in emissions inventories and exempt from emissions targets. We present an expanded framework for classifying VOC, IVOC, and SVOC emissions from this diverse array of sources that emphasizes a life cycle approach over longer timescales and three emission pathways that extend beyond the short-term evaporation of VOCs: (1) solvent evaporation, (2

  7. Top-down estimates of benzene and toluene emissions in Pearl River Delta and Hong Kong, China

    OpenAIRE

    X. Fang; M. Shao; A. Stohl; Q. Zhang; J. Zheng; H. Guo; C. Wang; M. Wang; J. Ou; R. L. Thompson; R. G. Prinn

    2015-01-01

    Benzene (C6H6) and toluene (C7H8) are toxic to humans and the environment. They are also important precursors of ground-level ozone and secondary organic aerosols and contribute substantially to severe air pollution in urban areas in China. Discrepancies exist between different bottom-up inventories for benzene and toluene emissions in Pearl River Delta (PRD) and Hong Kong (HK), which are emission hot spots in China. This study provides top-down estimates of benzene and tolu...

  8. Simultaneous coastal measurements of ozone deposition fluxes and iodine-mediated particle emission fluxes with subsequent CCN formation

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2010-01-01

    Full Text Available Here we present the first observations of simultaneous ozone deposition fluxes and ultrafine particle emission fluxes over an extensive infra-littoral zone. Fluxes were measured by the eddy covariance technique at the Station Biologique de Roscoff, on the coast of Brittany, north-west France. This site overlooks a very wide (3 km littoral zone controlled by very deep tides (9.6 m exposing extensive macroalgae beds available for significant iodine mediated photochemical production of ultrafine particles. The aspect at the Station Biologique de Roscoff provides an extensive and relatively flat, uniform fetch within which micrometeorological techniques may be utilized to study links between ozone deposition to macroalgae (and sea water and ultrafine particle production.

    Ozone deposition to seawater at high tide was significantly slower (vd[O3]=0.302±0.095 mm s−1 than low tidal deposition. A statistically significant difference in the deposition velocities to macroalgae at low tide was observed between night time (vd[O3]=1.00±0.10 mm s−1 and daytime (vd[O3]=2.05±0.16 mm s−1 when ultrafine particle formation results in apparent particle emission. Very high emission fluxes of ultrafine particles were observed during daytime periods at low tides ranging from 50 000 particles cm−2 s−1 to greater than 200 000 particles cm−2 s−1 during some of the lowest tides. These emission fluxes exhibited a significant relationship with particle number concentrations comparable with previous observations at another location. Apparent particle growth rates were estimated to be in the range 17–150 nm h−1 for particles in the size range 3–10 nm. Under certain conditions, particle growth may be inferred to continue to greater than 120 nm over tens

  9. Effect of isoprene emissions from major forests on ozone formation in the city of Shanghai, China

    Directory of Open Access Journals (Sweden)

    F. Geng

    2011-10-01

    Full Text Available Ambient surface level concentrations of isoprene (C5H8 were measured in the major forest regions located south of Shanghai, China. Because there is a large coverage of broad-leaved trees in this region, high concentrations of isoprene were measured, ranging from 1 to 6 ppbv. A regional dynamical/chemical model (WRF-Chem is applied for studying the effect of such high concentrations of isoprene on the ozone production in the city of Shanghai. The evaluation of the model shows that the calculated isoprene concentrations agree with the measured concentrations when the measured isoprene concentrations are lower than 3 ppb, but underestimate the measurements when the measured values are higher than 3 ppb. Isoprene was underestimated only at sampling sites near large bamboo plantations, a high isoprene source, indicating the need to include geospatially resolved bamboo distributions in the biogenic emission model. The assessment of the impact of isoprene on ozone formation suggests that the concentrations of peroxy radicals (RO2 are significantly enhanced due to the oxidation of isoprene, with a maximum of 30 ppt. However, the enhancement of RO2 is confined to the forested regions. Because the concentrations of NOx were low in the forest regions, the ozone production due to the oxidation of isoprene (C5H8 + OH → → RO2 + NO → → O3 is low (less than 2–3 ppb h−1. The calculation further suggests that the oxidation of isoprene leads to the enhancement of carbonyls (such as formaldehyde and acetaldehyde in the regions downwind of the forests, due to continuous oxidation of isoprene in the forest air. As a result, the concentrations of HO2 radical are enhanced, resulting from the photo-disassociation of formaldehyde and acetaldehyde. Because the enhancement of HO2 radical occurs in regions downwind of the forests

  10. Predicting emissions from oil and gas operations in the Uinta Basin, Utah.

    Science.gov (United States)

    Wilkey, Jonathan; Kelly, Kerry; Jaramillo, Isabel Cristina; Spinti, Jennifer; Ring, Terry; Hogue, Michael; Pasqualini, Donatella

    2016-05-01

    In this study, emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin are predicted (with uncertainty estimates) from 2015-2019 using a Monte-Carlo model of (a) drilling and production activity, and (b) emission factors. Cross-validation tests against actual drilling and production data from 2010-2014 show that the model can accurately predict both types of activities, returning median results that are within 5% of actual values for drilling, 0.1% for oil production, and 4% for gas production. A variety of one-time (drilling) and ongoing (oil and gas production) emission factors for greenhouse gases, methane, and volatile organic compounds (VOCs) are applied to the predicted oil and gas operations. Based on the range of emission factor values reported in the literature, emissions from well completions are the most significant source of emissions, followed by gas transmission and production. We estimate that the annual average VOC emissions rate for the oil and gas industry over the 2010-2015 time period was 44.2E+06 (mean) ± 12.8E+06 (standard deviation) kg VOCs per year (with all applicable emissions reductions). On the same basis, over the 2015-2019 period annual average VOC emissions from oil and gas operations are expected to drop 45% to 24.2E+06 ± 3.43E+06 kg VOCs per year, due to decreases in drilling activity and tighter emission standards. This study improves upon previous methods for estimating emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin by tracking one-time and ongoing emission events on a well-by-well basis. The proposed method has proven highly accurate at predicting drilling and production activity and includes uncertainty estimates to describe the range of potential emissions inventory outcomes. If similar input data are available in other oil and gas producing regions, then the method developed here could be applied to those regions as well.

  11. 76 FR 16358 - Approval and Promulgation of Air Quality Implementation Plans; Connecticut, Maine, New Hampshire...

    Science.gov (United States)

    2011-03-23

    ... enforceable emission limits on ozone precursors; any judgment about whether those emission limits discharge... attainment demonstration modeling efforts conducted by the Ozone Transport Commission. Connecticut, Maine... Implementation Plans; Connecticut, Maine, New Hampshire and Rhode Island; Infrastructure SIPs for the 1997 Ozone...

  12. The influence of biogenic emissions from Africa on tropical tropospheric ozone during 2006: a global modeling study

    Directory of Open Access Journals (Sweden)

    J. E. Williams

    2009-08-01

    Full Text Available We have performed simulations using a 3-D global chemistry-transport model to investigate the influence that biogenic emissions from the African continent exert on the composition of the troposphere in the tropical region. For this purpose we have applied two recently developed biogenic emission inventories provided for use in large-scale global models (Granier et al., 2005; Lathière et al., 2006 whose seasonality and temporal distribution for biogenic emissions of isoprene, other volatile organic compounds and NO is markedly different. The use of the 12 year average values for biogenic emissions provided by Lathière et al. (2006 results in an increase in the amount of nitrogen sequestrated into longer lived reservoir compounds which contributes to the reduction in the tropospheric ozone burden in the tropics. The associated re-partitioning of nitrogen between PAN, HNO3 and organic nitrates also results in a ~5% increase in the loss of nitrogen by wet deposition. At a global scale there is a reduction in the oxidizing capacity of the model atmosphere which increases the atmospheric lifetimes of CH4 and CO by ~1.5% and ~4%, respectively. Comparisons against a range of different measurements indicate that applying the 12 year average of Lathière et al. (2006 improves the performance of TM4_AMMA for 2006 in the tropics. By the use of sensitivity studies we show that the release of NO from soils in Africa accounts for between ~2–45% of tropospheric ozone in the African troposphere, ~10% in the upper troposphere and between ~5–20% of the tropical tropospheric ozone column over the tropical Atlantic Ocean. The subsequent reduction in OH over the source regions allows enhanced transport of CO out of the region. For biogenic volatile organic C1 to C3 species released from Africa, the effects on tropical tropospheric ozone are rather limited, although this source contributes to the global burden of VOC by between ~2–4% and

  13. Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone

    Directory of Open Access Journals (Sweden)

    B. Sauvage

    2007-01-01

    Full Text Available We use a global chemical transport model (GEOS-Chem to evaluate the consistency of satellite measurements of lightning flashes and ozone precursors with in situ measurements of tropical tropospheric ozone. The measurements are tropospheric O3, NO2, and HCHO columns from the GOME satellite instrument, lightning flashes from the OTD and LIS satellite instruments, profiles of O3, CO, and relative humidity from the MOZAIC aircraft program, and profiles of O3 from the SHADOZ ozonesonde network. We interpret these multiple data sources with our model to better understand what controls tropical tropospheric ozone. Tropical tropospheric ozone is mainly affected by lightning NOx and convection in the upper troposphere and by surface emissions in the lower troposphere. Scaling the spatial distribution of lightning in the model to the observed flashes improves the simulation of O3 in the upper troposphere by 5–20 ppbv versus in situ observations and by 1–4 Dobson Units versus GOME retrievals of tropospheric O3 columns. A lightning source strength of 6±2 Tg N/yr best represents in situ observations from aircraft and ozonesonde. Tropospheric NO2 and HCHO columns from GOME are applied to provide top-down constraints on emission inventories of NOx (biomass burning and soils and VOCs (biomass burning. The top-down biomass burning inventory is larger than the bottom-up inventory by a factor of 2 for HCHO and alkenes, and by a factor of 2.6 for NOx over northern equatorial Africa. These emissions increase lower tropospheric O3 by 5–20 ppbv, improving the simulation versus aircraft observations, and by 4 Dobson Units versus GOME observations of tropospheric O3 columns. Emission factors in the a posteriori inventory are more consistent with a recent compilation from in situ measurements. The ozone simulation using two different dynamical schemes (GEOS-3 and GEOS-4 is evaluated versus observations; GEOS-4 better represents O3 observations by 5–15 ppbv

  14. The influence of African air pollution on regional and global tropospheric ozone

    Directory of Open Access Journals (Sweden)

    A. M. Aghedo

    2007-01-01

    Full Text Available We investigate the influence of African biomass burning, biogenic, lightning and anthropogenic emissions on the tropospheric ozone over Africa and globally using a coupled global chemistry climate model. Our model studies indicate that surface ozone concentration may rise by up to 50 ppbv in the burning region during the biomass burning seasons. Biogenic emissions yield between 5–30 ppbv increase in the near surface ozone concentration over tropical Africa. The impact of lightning on surface ozone is negligible, while anthropogenic emissions yield a maximum of 7 ppbv increase in the annual-mean surface ozone concentration over Nigeria, South Africa and Egypt. Our results show that biogenic emissions are the most important African emission source affecting total tropospheric ozone. The influence of each of the African emissions on the global tropospheric ozone burden (TOB of 384 Tg yields about 9.5 Tg, 19.6 Tg, 9.0 Tg and 4.7 Tg for biomass burning, biogenic, lightning and anthropogenic emissions emitted in Africa respectively. The impact of each of these emission categories on African TOB of 33 Tg is 2.5 Tg, 4.1 Tg, 1.75 Tg and 0.89 Tg respectively, which together represents about 28% of the total TOB calculated over Africa. Our model calculations also suggest that more than 70% of the tropospheric ozone produced by each of the African emissions is found outside the continent, thus exerting a noticeable influence on a large part of the tropical troposphere. Apart from the Atlantic and Indian Ocean, Latin America experiences the largest impact of African emissions, followed by Oceania, the Middle East, Southeast and south-central Asia, northern North America (i.e. the United States and Canada, Europe and north-central Asia, for all the emission categories.

  15. Emissions of terpenoids, benzenoids, and other biogenic gas-phase organic compounds from agricultural crops and their potential implications for air quality

    Science.gov (United States)

    Gentner, D. R.; Ormeño, E.; Fares, S.; Ford, T. B.; Weber, R.; Park, J.-H.; Brioude, J.; Angevine, W. M.; Karlik, J. F.; Goldstein, A. H.

    2014-06-01

    Agriculture comprises a substantial, and increasing, fraction of land use in many regions of the world. Emissions from agricultural vegetation and other biogenic and anthropogenic sources react in the atmosphere to produce ozone and secondary organic aerosol, which comprises a substantial fraction of particulate matter (PM2.5). Using data from three measurement campaigns, we examine the magnitude and composition of reactive gas-phase organic carbon emissions from agricultural crops and their potential to impact regional air quality relative to anthropogenic emissions from motor vehicles in California's San Joaquin Valley, which is out of compliance with state and federal standards for tropospheric ozone PM2.5. Emission rates for a suite of terpenoid compounds were measured in a greenhouse for 25 representative crops from California in 2008. Ambient measurements of terpenoids and other biogenic compounds in the volatile and intermediate-volatility organic compound ranges were made in the urban area of Bakersfield and over an orange orchard in a rural area of the San Joaquin Valley during two 2010 seasons: summer and spring flowering. We combined measurements from the orchard site with ozone modeling methods to assess the net effect of the orange trees on regional ozone. When accounting for both emissions of reactive precursors and the deposition of ozone to the orchard, the orange trees are a net source of ozone in the springtime during flowering, and relatively neutral for most of the summer until the fall, when it becomes a sink. Flowering was a major emission event and caused a large increase in emissions including a suite of compounds that had not been measured in the atmosphere before. Such biogenic emission events need to be better parameterized in models as they have significant potential to impact regional air quality since emissions increase by several factors to over an order of magnitude. In regions like the San Joaquin Valley, the mass of biogenic

  16. The effects of welding parameters on ultra-violet light emissions, ozone and CrVI formation in MIG welding.

    Science.gov (United States)

    Dennis, J H; Mortazavi, S B; French, M J; Hewitt, P J; Redding, C R

    1997-01-01

    This paper describes the relationships between ultra-violet emission, ozone generation and CrVI production in MIG welding which were measured as a function of shield gas flow rate, welding voltage, electrode stick-out and shield gas composition using an automatic welding rig that permitted MIG welding under reproducible conditions. The experimental results are interpreted in terms of the physico-chemical processes occurring in the micro- and macro-environments of the arc as part of research into process modification to reduce occupational exposure to ozone and CrVI production rates in MIG welding. We believe the techniques described here, and in particular the use of what we have termed u.v.-ozone measurements, will prove useful in further study of ozone generation and CrVI formation and may be applied in the investigation of engineering control of occupational exposure in MIG and other welding process such as Manual Metal Arc (MMA) and Tungsten Inert Gas (TIG).

  17. Techniques for Estimating Emissions Factors from Forest Burning: ARCTAS and SEAC4RS Airborne Measurements Indicate which Fires Produce Ozone

    Science.gov (United States)

    Chatfield, Robert B.; Andreae, Meinrat O.

    2016-01-01

    Previous studies of emission factors from biomass burning are prone to large errors since they ignore the interplay of mixing and varying pre-fire background CO2 levels. Such complications severely affected our studies of 446 forest fire plume samples measured in the Western US by the science teams of NASA's SEAC4RS and ARCTAS airborne missions. Consequently we propose a Mixed Effects Regression Emission Technique (MERET) to check techniques like the Normalized Emission Ratio Method (NERM), where use of sequential observations cannot disentangle emissions and mixing. We also evaluate a simpler "consensus" technique. All techniques relate emissions to fuel burned using C(burn) = delta C(tot) added to the fire plume, where C(tot) approximately equals (CO2 = CO). Mixed-effects regression can estimate pre-fire background values of C(tot) (indexed by observation j) simultaneously with emissions factors indexed by individual species i, delta, epsilon lambda tau alpha-x(sub I)/C(sub burn))I,j. MERET and "consensus" require more than emissions indicators. Our studies excluded samples where exogenous CO or CH4 might have been fed into a fire plume, mimicking emission. We sought to let the data on 13 gases and particulate properties suggest clusters of variables and plume types, using non-negative matrix factorization (NMF). While samples were mixtures, the NMF unmixing suggested purer burn types. Particulate properties (b scant, b abs, SSA, AAE) and gas-phase emissions were interrelated. Finally, we sought a simple categorization useful for modeling ozone production in plumes. Two kinds of fires produced high ozone: those with large fuel nitrogen as evidenced by remnant CH3CN in the plumes, and also those from very intense large burns. Fire types with optimal ratios of delta-NOy/delta- HCHO associate with the highest additional ozone per unit Cburn, Perhaps these plumes exhibit limited NOx binding to reactive organics. Perhaps these plumes exhibit limited NOx binding to

  18. Top-down estimates of benzene and toluene emissions in the Pearl River Delta and Hong Kong, China

    OpenAIRE

    Fang, Xuekun; Shao, Min; Stohl, Andreas; Zhang, Qiang; Zheng, Junyu; Guo, Hai; Wang, Chen; Wang, Ming; Ou, Jiamin; Thompson, Rona L.; Prinn, Ronald G.

    2016-01-01

    Benzene (C6H6) and toluene (C7H8) are toxic to humans and the environment. They are also important precursors of ground-level ozone and secondary organic aerosols and contribute substantially to severe air pollution in urban areas in China. Discrepancies exist between different bottom-up inventories for benzene and toluene emissions in the Pearl River Delta (PRD) and Hong Kong (HK), which are emission hot spots in China. This study provides top-down estimates of benzene and ...

  19. Unregulated gaseous exhaust emission from modern ethanol fuelled light duty vehicles in cold ambient condition

    Science.gov (United States)

    Clairotte, M.; Adam, T. W.; Zardini, A. A.; Astorga, C.

    2011-12-01

    According to Directive 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, all petrol and diesel used for transport purpose available on the market since the 1st of January 2011 must contain a reference value of 5.75% of renewable energy. Ethanol in gasoline could be a promising alternative to comply with this objective, and is actually available in higher proportion in Sweden and Brazil. In addition to a lower dependence on fossil fuel, it is well established that ethanol contributes to reduce air pollutant emissions during combustion (CO, THC), and presents a beneficial effect on the greenhouse gas emissions. However, these statements rely on numerous chassis dynamometer emission studies performed in warm condition (22°C), and very few emission data are available at cold ambient condition encountered in winter, particularly in the north of Europe. In this present study, the effects of ethanol (E75-E85) versus gasoline (E5) have been investigated at cold ambient temperature (-7°C). Experiments have been carried out in a chassis dynamometer at the Vehicle Emission Laboratory (VELA) of the European Commission's Joint Research Centre (JRC - Ispra, Italy). Emissions of modern passenger cars complying with the latest European standard (Euro4 and Euro5a) were tracked over the New European Driving Cycle (NEDC). Unregulated gaseous compounds like greenhouse gases (carbon dioxide, methane, nitrous oxide), and air quality related compounds (ammonia, formaldehyde, acetaldehyde) were monitored by an online Fourier Transformed Infra-Red spectrometer with 1 Hz acquisition frequency. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected in order to assess the ozone formation potential (OFP) of the exhaust. Results showed higher unregulated emissions at -7°C, regardless of the ethanol content in the fuel blend. Most of the emissions occurred during

  20. Isoprene biosynthesis in hybrid poplar impacts ozone tolerance

    Science.gov (United States)

    Behnke, K.; Kleist, E.; Uerlings, R.; Wildt, J.; Rennenberg, H.; Schnitzler, J. P.

    2009-04-01

    Isoprene is the most abundant volatile compound emitted by vegetation. It influences air chemistry and is thought to take part in plant defense reactions against abiotic stress such as high temperature or ozone. However, whether or not isoprene emission interacts with ozone tolerance of plants is still in discussion. We exploited transgenic non-isoprene emitting Grey poplar (Populus x canescens) in a biochemical and physiological model study to investigate the effect of acute ozone stress on the elicitation of defense-related emissions of plant volatiles, photosynthesis and the antioxidative system. We recorded that non-isoprene emitting poplars are more resistant to ozone as indicated by less damaged leaf area and higher assimilation rates compared to ozone-exposed wild type plants. The integral of green leaf volatile (GLV) emissions was different between the two poplar phenotypes and a reliable early marker for subsequent leaf damage. For other stress-induced volatiles like mono-, homo-, and sesquiterpenes, and methyl salicylate similar time profiles, pattern and emission intensities were observed in both transgenic and wild type plants. However, un-stressed non-isoprene emitting poplars are characterized by elevated levels of ascorbate and α-tocopherol as well as a more effective de-epoxidation ratio of xanthophylls than in wild type plants. Since ozone quenching properties of ascorbate are much higher than those of isoprene and furthermore α-tocopherol also is an essential antioxidant, non-isoprene emitting poplars might benefit from changes within the antioxidative system by providing them with enhanced ozone tolerance.

  1. The Uncertain Role of Biogenic VOC for Boundary-Layer Ozone Concentration: Example Investigation of Emissions from Two Forest Types with a Box Model

    Directory of Open Access Journals (Sweden)

    Boris Bonn

    2017-10-01

    Full Text Available High levels of air pollution including ground level ozone significantly reduce humans’ life expectancy and cause forest damage and decreased tree growth. The French Vosges and the German Black Forest are regions well-known for having the highest tropospheric ozone concentrations at remote forested sites in Central Europe. This box model study investigates the sensitivity of atmospheric chemistry calculations of derived ozone on differently resolved forest tree composition and volatile organic compound emissions. Representative conditions were chosen for the Upper Rhine area including the Alsatian Vosges/France and the Black Forest/Germany during summer. This study aims to answer the following question: What level of input detail for Alsace and Black Forest tree mixtures is required to accurately simulate ozone formation? While the French forest in Alsace—e.g., in the Vosges—emits isoprene to a substantially higher extent than the forest at the German site, total monoterpene emissions at the two sites are rather similar. However, the individual monoterpene structures, and therefore their reactivity, differs. This causes a higher ozone production rate for Vosges forest mixture conditions than for Black Forest tree mixtures at identical NOx levels, with the difference increasing with temperature. The difference in ozone formation is analyzed in detail and the short-comings of reduced descriptions are discussed. The outcome serves as a to-do-list to allow accurate future ozone predictions influenced by the climate adaptation of forests and the change in forest species composition.

  2. Technical discussions on Emissions and Atmospheric Modeling (TEAM)

    Science.gov (United States)

    Frost, G. J.; Henderson, B.; Lefer, B. L.

    2017-12-01

    A new informal activity, Technical discussions on Emissions and Atmospheric Modeling (TEAM), aims to improve the scientific understanding of emissions and atmospheric processes by leveraging resources through coordination, communication and collaboration between scientists in the Nation's environmental agencies. TEAM seeks to close information gaps that may be limiting emission inventory development and atmospheric modeling and to help identify related research areas that could benefit from additional coordinated efforts. TEAM is designed around webinars and in-person meetings on particular topics that are intended to facilitate active and sustained informal communications between technical staff at different agencies. The first series of TEAM webinars focuses on emissions of nitrogen oxides, a criteria pollutant impacting human and ecosystem health and a key precursor of ozone and particulate matter. Technical staff at Federal agencies with specific interests in emissions and atmospheric modeling are welcome to participate in TEAM.

  3. Ozone response to emission reductions in the southeastern United States

    Science.gov (United States)

    Blanchard, Charles L.; Hidy, George M.

    2018-06-01

    Ozone (O3) formation in the southeastern US is studied in relation to nitrogen oxide (NOx) emissions using long-term (1990s-2015) surface measurements of the Southeastern Aerosol Research and Characterization (SEARCH) network, U.S. Environmental Protection Agency (EPA) O3 measurements, and EPA Clean Air Status and Trends Network (CASTNET) nitrate deposition data. Annual fourth-highest daily peak 8 h O3 mixing ratios at EPA monitoring sites in Georgia, Alabama, and Mississippi exhibit statistically significant (p total oxidized nitrogen (NOy) mixing ratios at SEARCH sites declined in proportion to NOx emission reductions. CASTNET data show declining wet and dry nitrate deposition since the late 1990s, with total (wet plus dry) nitrate deposition fluxes decreasing linearly in proportion to reductions of NOx emissions by ˜ 60 % in Alabama and Georgia. Annual nitrate deposition rates at Georgia and Alabama CASTNET sites correspond to 30 % of Georgia emission rates and 36 % of Alabama emission rates, respectively. The fraction of NOx emissions lost to deposition has not changed. SEARCH and CASTNET sites exhibit downward trends in mean annual nitric acid (HNO3) concentrations. Observed relationships of O3 to NOz (NOy-NOx) support past model predictions of increases in cycling of NO and increasing responsiveness of O3 to NOx. The study data provide a long-term record that can be used to examine the accuracy of process relationships embedded in modeling efforts. Quantifying observed O3 trends and relating them to reductions in ambient NOy species concentrations offers key insights into processes of general relevance to air quality management and provides important information supporting strategies for reducing O3 mixing ratios.

  4. Assessment of ozone impacts on vegetation in southern Africa and directions for future research

    CSIR Research Space (South Africa)

    Van Tienhoven, AM

    2005-03-01

    Full Text Available in the high ozone levels measured at the beginning of the southern African summer.17,23,24 The concentrations of ozone precursors, the complex production and removal pro- cesses, and the short lifespan of ozone, mean that ozone concentration in the atmosphere... jointoformextensiveareasofchlorosisas the leaf ages. Damage to foliage can be extensive enough to cause complete loss ofleafycropssuchaslettuceandchicory.39 Visible symptoms of ozone effects must be interpreted with caution, particularly in field studies where interactions...

  5. Photo-chemical transport modelling of tropospheric ozone: A review

    Science.gov (United States)

    Sharma, Sumit; Sharma, Prateek; Khare, Mukesh

    2017-06-01

    Ground level ozone (GLO), a secondary pollutant having adverse impact on human health, ecology, and agricultural productivity, apart from being a major contributor to global warming, has been a subject matter of several studies. In order to identify appropriate strategies to control GLO levels, accurate assessment and prediction is essential, for which elaborate simulation and modelling is required. Several studies have been undertaken in the past to simulate GLO levels at different scales and for various applications. It is important to evaluate these studies, widely spread over in literature. This paper aims to critically review various studies that have been undertaken, especially in the past 15 years (2000-15) to model GLO. The review has been done of the studies that range over different spatial scales - urban to regional and continental to global. It also includes a review of performance evaluation and sensitivity analysis of photo-chemical transport models in order to assess the extent of application of these models and their predictive capability. The review indicates following major findings: (a) models tend to over-estimate the night-time GLO concentrations due to limited titration of GLO with NO within the model; (b) dominance of contribution from far-off regional sources to average ozone concentration in the urban region and higher contribution of local sources during days of high ozone episodes; requiring strategies for controlling precursor emissions at both regional and local scales; (c) greater influence of NOx over VOC in export of ozone from urban regions due to shifting of urban plumes from VOC-sensitive regime to NOx-sensitive as they move out from city centres to neighbouring rural regions; (d) models with finer resolution inputs perform better to a certain extent, however, further improvement in resolutions (beyond 10 km) did not show improvement always; (e) future projections show an increase in GLO concentrations mainly due to rise in

  6. Air pollution radiative forcing from specific emissions sectors at 2030

    Science.gov (United States)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  7. Why do Models Overestimate Surface Ozone in the Southeastern United States?

    Science.gov (United States)

    Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.; Thompson, Anne M.; Wennberg, Paul O.; Crounse, John D.; St Clair, Jason M.; Cohen, Ronald C.; Laughner, Joshua L.; Dibb, Jack E.; Hall, Samuel R.; Ullmann, Kirk; Wolfe, Glenn M.; Pollack, Illana B.; Peischl, Jeff; Neuman, Jonathan A.; Zhou, Xianliang

    2018-01-01

    Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease

  8. Why do models overestimate surface ozone in the Southeast United States?

    Directory of Open Access Journals (Sweden)

    K. R. Travis

    2016-11-01

    Full Text Available Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx  ≡  NO + NO2 and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°  ×  0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI for NOx from the US Environmental Protection Agency (EPA is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 ± 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes

  9. Why do Models Overestimate Surface Ozone in the Southeastern United States?

    Science.gov (United States)

    Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.; hide

    2016-01-01

    Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx = NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25 deg. x 0.3125 deg. horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a 15 regression of ozone and NOx oxidation products. However, the model is still biased high by 8 +/- 13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone

  10. Modeling the regional impact of ship emissions on NOx and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization

    Directory of Open Access Journals (Sweden)

    P. Pisoft

    2010-07-01

    Full Text Available In general, regional and global chemistry transport models apply instantaneous mixing of emissions into the model's finest resolved scale. In case of a concentrated source, this could result in erroneous calculation of the evolution of both primary and secondary chemical species. Several studies discussed this issue in connection with emissions from ships and aircraft. In this study, we present an approach to deal with the non-linear effects during dispersion of NOx emissions from ships. It represents an adaptation of the original approach developed for aircraft NOx emissions, which uses an exhaust tracer to trace the amount of the emitted species in the plume and applies an effective reaction rate for the ozone production/destruction during the plume's dilution into the background air. In accordance with previous studies examining the impact of international shipping on the composition of the troposphere, we found that the contribution of ship induced surface NOx to the total reaches 90% over remote ocean and makes 10–30% near coastal regions. Due to ship emissions, surface ozone increases by up to 4–6 ppbv making 10% contribution to the surface ozone budget. When applying the ship plume parameterization, we show that the large scale NOx decreases and the ship NOx contribution is reduced by up to 20–25%. A similar decrease was found in the case of O3. The plume parameterization suppressed the ship induced ozone production by 15–30% over large areas of the studied region. To evaluate the presented parameterization, nitrogen monoxide measurements over the English Channel were compared with modeled values and it was found that after activating the parameterization the model accuracy increases.

  11. Regional-scale modeling of near-ground ozone in the Central East China, source attributions and an assessment of outflow to East Asia The role of regional-scale transport during MTX2006

    Science.gov (United States)

    Li, J.; Wang, Z.; Akimoto, H.; Yamaji, K.; Takigawa, M.; Pochanart, P.; Liu, Y.; Kanaya, Y.

    2008-07-01

    A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was applied to study the source of the near-ground (pollutants. In particular, the model captured highly polluted and clean cases well. The simulated near-ground ozone over CEC is 60 85 ppbv (parts per billion by volume), higher than those (20 50 ppbv) in Japan and over the North Pacific. The simulated tagged tracer indicates that the regional-scale transport of chemically produced ozone over other areas in CEC contributes to the most fractions (49%) of the near-ground mean ozone at Mt. Tai in June, rather than the in-situ photochemistry (12%). Due to high anthropogenic and biomass burning emissions, the contributions of the ground ozone from the southern part of CEC plays the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai, which even reached 59 ppbv (62%) on 6 7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various source regions indicates that the spatial distribution of O3 over CEC is controlled by the photochemical reactions. In addition, the regional-scale transport of pollutants also plays an important role in the spatial and temporal distribution of ozone over CEC. The chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC. The mean contribution is 5 10 ppbv, and it can reach 25 ppbv during high ozone events. This work also studied the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries. It shows that the contribution of CEC ozone to mean ozone mixing ratios over Korea Peninsula and Japan is 5 15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was contributed by the ozone produced locally by the transported ozone precursors from CEC.

  12. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  13. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China

    Science.gov (United States)

    Liu, Yiming; Fan, Qi; Chen, Xiaoyang; Zhao, Jun; Ling, Zhenhao; Hong, Yingying; Li, Weibiao; Chen, Xunlai; Wang, Mingjie; Wei, Xiaolin

    2018-02-01

    Chlorine radicals can enhance atmospheric oxidation, which potentially increases tropospheric ozone concentration. However, few studies have been done to quantify the impact of chlorine emissions on ozone formation in China due to the lack of a chlorine emission inventory used in air quality models with sufficient resolution. In this study, the Anthropogenic Chlorine Emissions Inventory for China (ACEIC) was developed for the first time, including emissions of hydrogen chloride (HCl) and molecular chlorine (Cl2) from coal combustion and prescribed waste incineration (waste incineration plant). The HCl and Cl2 emissions from coal combustion in China in 2012 were estimated to be 232.9 and 9.4 Gg, respectively, while HCl emission from prescribed waste incineration was estimated to be 2.9 Gg. Spatially the highest emissions of HCl and Cl2 were found in the North China Plain, the Yangtze River Delta, and the Sichuan Basin. Air quality model simulations with the Community Multiscale Air Quality (CMAQ) modeling system were performed for November 2011, and the modeling results derived with and without chlorine emissions were compared. The magnitude of the simulated HCl, Cl2 and ClNO2 agreed reasonably with the observation when anthropogenic chlorine emissions were included in the model. The inclusion of the ACEIC increased the concentration of fine particulate Cl-, leading to enhanced heterogeneous reactions between Cl- and N2O5, which resulted in the higher production of ClNO2. Photolysis of ClNO2 and Cl2 in the morning and the reaction of HCl with OH in the afternoon produced chlorine radicals which accelerated tropospheric oxidation. When anthropogenic chlorine emissions were included in the model, the monthly mean concentrations of fine particulate Cl-, daily maximum 1 h ClNO2, and Cl radicals were estimated to increase by up to about 2.0 µg m-3, 773 pptv, and 1.5 × 103 molecule cm-3 in China, respectively. Meanwhile, the monthly mean daily maximum 8 h O3

  14. Analysis of tropospheric ozone and carbon monoxide profiles over South America based on MOZAIC/IAGOS database and model simulations

    Directory of Open Access Journals (Sweden)

    Marcia A. Yamasoe

    2015-10-01

    Full Text Available We analysed ozone and carbon monoxide profiles measured by commercial aircrafts from the MOZAIC/IAGOS fleet, during ascending and descending flights over Caracas, in Venezuela, from August 1994 to December 2009, over Rio de Janeiro, from 1994 to 2004 and from July 2012 to June 2013, and over São Paulo, in Brazil, from August 1994 to 2005. For ozone, results showed a clean atmosphere over Caracas presenting the highest seasonal mean in March, April and May. Backward trajectory analyses with FLEXPART, of case studies for which the measured concentrations were high, showed that contributions from local, Central and North America, the Caribbean and Africa either from anthropogenic emissions, biomass burning or lightning were possible. Satellite products as fire counts from MODIS, lightning flash rates from LIS, and CO and O3 from Infrared Atmospheric Sounding Interferometer and wind maps at different levels helped corroborate previous findings. Sensitivity studies performed with the chemical transport model GEOS-Chem captured the effect of anthropogenic emissions but underestimated the influence of biomass burning, which could be due to an underestimation of GFEDv2 emission inventory. The model detected the contribution of lightning from Africa in JJA and SON and from South America in DJF, possibly from the northeast of Brazil. Over São Paulo and Rio de Janeiro, GEOS-Chem captured the seasonal variability of lightning produced in South America and attributed this source as the most important in this region, except in JJA, when anthropogenic emissions were addressed as the more impacting source of ozone precursors. However, comparison with the measurements indicated that the model overestimated ozone formation, which could be due to the convective parameterisation or the stratospheric influence. The highest ozone concentration was observed during September to November, but the model attributed only a small influence of biomass burning from South

  15. Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring

    Directory of Open Access Journals (Sweden)

    T. W. Walker

    2010-09-01

    Full Text Available We interpret observations from the Intercontinental Chemical Transport Experiment, Phase B (INTEX-B in spring 2006 using a global chemical transport model (GEOS-Chem to evaluate sensitivities of the free troposphere above the North Pacific Ocean and North America to Asian anthropogenic emissions. We develop a method to use satellite observations of tropospheric NO2 columns to provide timely estimates of trends in NOx emissions. NOx emissions increased by 33% for China and 29% for East Asia from 2003 to 2006. We examine measurements from three aircraft platforms from the INTEX-B campaign, including a Canadian Cessna taking vertical profiles of ozone near Whistler Peak. The contribution to the mean simulated ozone profiles over Whistler below 5.5 km is at least 7.2 ppbv for Asian anthropogenic emissions and at least 3.5 ppbv for global lightning NOx emissions. Tropospheric ozone columns from OMI exhibit a broad Asian outflow plume across the Pacific, which is reproduced by simulation. Mean modelled sensitivities of Pacific (30° N–60° N tropospheric ozone columns are at least 4.6 DU for Asian anthropogenic emissions and at least 3.3 DU for lightning, as determined by simulations excluding either source. Enhancements of ozone over Canada from Asian anthropogenic emissions reflect a combination of trans-Pacific transport of ozone produced over Asia, and ozone produced in the eastern Pacific through decomposition of peroxyacetyl nitrates (PANs. A sensitivity study decoupling PANs globally from the model's chemical mechanism establishes that PANs increase ozone production by removing NOx from regions of low ozone production efficiency (OPE and injecting it into regions with higher OPE, resulting in a global increase in ozone production by 2% in spring 2006. PANs contribute up to 4 ppbv to surface springtime ozone concentrations in western Canada. Ozone production due to PAN transport is

  16. Impacts of Climate Change on Surface Ozone and Intercontinental Ozone Pollution: A Multi-Model Study

    Science.gov (United States)

    Doherty, R. M.; Wild, O.; Shindell, D. T.; Zeng, G.; MacKenzie, I. A.; Collins, W. J.; Fiore, A. M.; Stevenson, D. S.; Dentener, F. J.; Schultz, M. G.; hide

    2013-01-01

    The impact of climate change between 2000 and 2095 SRES A2 climates on surface ozone (O)3 and on O3 source-receptor (S-R) relationships is quantified using three coupled climate-chemistry models (CCMs). The CCMs exhibit considerable variability in the spatial extent and location of surface O3 increases that occur within parts of high NOx emission source regions (up to 6 ppbv in the annual average and up to 14 ppbv in the season of maximum O3). In these source regions, all three CCMs show a positive relationship between surface O3 change and temperature change. Sensitivity simulations show that a combination of three individual chemical processes-(i) enhanced PAN decomposition, (ii) higher water vapor concentrations, and (iii) enhanced isoprene emission-largely reproduces the global spatial pattern of annual-mean surface O3 response due to climate change (R2 = 0.52). Changes in climate are found to exert a stronger control on the annual-mean surface O3 response through changes in climate-sensitive O3 chemistry than through changes in transport as evaluated from idealized CO-like tracer concentrations. All three CCMs exhibit a similar spatial pattern of annual-mean surface O3 change to 20% regional O3 precursor emission reductions under future climate compared to the same emission reductions applied under present-day climate. The surface O3 response to emission reductions is larger over the source region and smaller downwind in the future than under present-day conditions. All three CCMs show areas within Europe where regional emission reductions larger than 20% are required to compensate climate change impacts on annual-mean surface O3.

  17. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China

    Science.gov (United States)

    Liang, Xiaoming; Chen, Xiaofang; Zhang, Jiani; Shi, Tianli; Sun, Xibo; Fan, Liya; Wang, Liming; Ye, Daiqi

    2017-08-01

    Increasingly serious ozone (O3) pollution, along with decreasing NOx emission, is creating a big challenge in the control of volatile organic compounds (VOCs) in China. More efficient and effective measures are assuredly needed for controlling VOCs. In this study, a reactivity-based industrial VOCs emission inventory was established in China based on the concept of ozone formation potential (OFP). Key VOCs species, major VOCs sources, and dominant regions with high reactivity were identified. Our results show that the top 15 OFP-based species, including m/p-xylene, toluene, propene, o-xylene, and ethyl benzene, contribute 69% of the total OFP but only 30% of the total emission. The architectural decoration industry, oil refinery industry, storage and transport, and seven other sources constituted the top 10 OFP subsectors, together contributing a total of 85%. The provincial and spatial characteristics of OFP are generally consistent with those of mass-based inventory. The implications for O3 control strategies in China are discussed. We propose a reactivity-based national definition of VOCs and low-reactive substitution strategies, combined with evaluations of health risks. Priority should be given to the top 15 or more species with high reactivity through their major emission sources. Reactivity-based policies should be flexibly applied for O3 mitigation based on the sensitivity of O3 formation conditions.

  18. Ozone modeling

    International Nuclear Information System (INIS)

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  19. Influence of titanium precursor on photoluminescent emission of micro-cube-shaped CaTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mazzo, Tatiana Martelli, E-mail: tatimazzo@gmail.com [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Avenida Almameda Saldanha da Gama, 89, Ponta da Praia, CEP 11030-400 Santos, SP (Brazil); Santilli do Nascimento Libanori, Gabriela [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Avenida Almameda Saldanha da Gama, 89, Ponta da Praia, CEP 11030-400 Santos, SP (Brazil); Moreira, Mario Lucio [Instituto de Física e Matemática, Universidade Federal de Pelotas, P.O. Box 354, Campus do Capão do Leão, 96001-970 Pelotas, RS (Brazil); Avansi Jr, Waldir [Departamento de Física, Universidade Federal de São Carlos, Jardim Guanabara, 13565-905 São Carlos, SP (Brazil); Mastelaro, Valmor Roberto [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São Carlense, 400, Arnold Schimidt, 13566-590 São Carlos, SP (Brazil); Varela, José Arana; Longo, Elson [INCTMN/LIEC, Instituto de Química, Universidade Estadual Paulista, P.O. Box 355, R. Francisco Degni, 55, Bairro Quitandinha, 14801-907 Araraquara, SP (Brazil)

    2015-09-15

    For this research, we studied the influence of titanium tetrachloride (TC) and titanium tetraisopropoxide (TTP) precursors on CaTiO{sub 3} (CTO) synthesis by employing a microwave-assisted hydrothermal (MAH) method regarding their respective short-, medium- and long-range features to determine if the use of different titanium precursors enhances the structural evolution of the material. The growth mechanism for the formation of the micro-cube-shaped CTO is proposed to obtain nanoparticle aggregation of self-assembly nanoplates. The disorder coupled to the oxygen vacancies of [TiO{sub 5}]–[TiO{sub 6}] in complex clusters in the CTO 1 powder and twists in bonding between the [TiO{sub 6}]–[TiO{sub 6}] complex clusters in the CTO 2 powder were mainly responsible for photoluminescent (PL) emission. - Highlights: • Different titanium precursors enhance the structural evolution of the material. • [TiO{sub 5}]–[TiO{sub 6}] and twists in bonding [TiO{sub 6}]–[TiO{sub 6}] were responsible for PL emission. • Micro-cube shaped was formed by nanoparticle aggregation of self-assembly nanoplates.

  20. The contribution to nitrogen deposition and ozone formation in South Norway from atmospheric emissions related to the petroleum activity in the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Solberg, S; Walker, S -E; Knudsen, S; Lazaridis, M; Beine, H J; Semb, A

    1999-03-01

    A photochemical plume model has been developed and refined. The model is designed to simulate the advection and photochemistry for several simultaneous point sources as well as the atmospheric mixing. the model has been used to calculate nitrogen deposition and ozone formation due to offshore emissions in the North Sea. Based on meteorological data for 1992 the calculations give a total contribution of 60-80 mg (N)/m{sub 2} at most in South Norway. Emission from British and Norwegian sector is calculated to contribute less than 5% each to the AOT40 index for ozone. (author)

  1. The contribution to nitrogen deposition and ozone formation in South Norway from atmospheric emissions related to the petroleum activity in the North Sea

    International Nuclear Information System (INIS)

    Solberg, S.; Walker, S.-E.; Knudsen, S.; Lazaridis, M.; Beine, H.J.; Semb, A.

    1999-03-01

    A photochemical plume model has been developed and refined. The model is designed to simulate the advection and photochemistry for several simultaneous point sources as well as the atmospheric mixing. the model has been used to calculate nitrogen deposition and ozone formation due to offshore emissions in the North Sea. Based on meteorological data for 1992 the calculations give a total contribution of 60-80 mg (N)/m 2 at most in South Norway. Emission from British and Norwegian sector is calculated to contribute less than 5% each to the AOT40 index for ozone. (author)

  2. Tropospheric ozone and aerosols in climate agreements: scientific and political challenges

    International Nuclear Information System (INIS)

    Rypdal, Kristin; Berntsen, Terje; Fuglestvedt, Jan S.; Aunan, Kristin; Torvanger, Asbjorn; Stordal, Frode; Pacyna, Jozef M.; Nygaard, Lynn P.

    2005-01-01

    In addition to the six greenhouse gases included in the Kyoto Protocol, the tropospheric ozone precursors CO, NMVOC and NO x and the aerosols/aerosol precursors black carbon, organic carbon and SO 2 also play significant roles in climate change. The aim of this paper is to review some of the main scientific and political challenges associated with incorporating tropospheric ozone and aerosol precursors into climate agreements, and to discuss how these challenges have a bearing on the design of future climate agreements. We argue that the optimal policy design for a particular substance depends on a combination of scientific and political concerns. We look particularly at regional climate effects, negative forcing, metrics (measuring climate effects against other gases on a common scale), political attractiveness, and verification and compliance. We systematically review the existing knowledge on these issues, explore their impact on policy design, and conclude that, with current scientific knowledge, CO and NMVOC could conceivably be included in a global climate agreement, either in a basket with the long-lived greenhouse gases or in a separate basket, while NO x and aerosols might be regulated more appropriately through regional agreements with links to a global agreement. However, the complexity and fairness implications of including tropospheric ozone precursors and aerosols might negatively affect the political feasibility of a future agreement

  3. Chemical processes related to net ozone tendencies in the free troposphere

    Science.gov (United States)

    Bozem, Heiko; Butler, Tim M.; Lawrence, Mark G.; Harder, Hartwig; Martinez, Monica; Kubistin, Dagmar; Lelieveld, Jos; Fischer, Horst

    2017-09-01

    Ozone (O3) is an important atmospheric oxidant, a greenhouse gas, and a hazard to human health and agriculture. Here we describe airborne in situ measurements and model simulations of O3 and its precursors during tropical and extratropical field campaigns over South America and Europe, respectively. Using the measurements, net ozone formation/destruction tendencies are calculated and compared to 3-D chemistry-transport model simulations. In general, observation-based net ozone tendencies are positive in the continental boundary layer and the upper troposphere at altitudes above ˜ 6 km in both environments. On the other hand, in the marine boundary layer and the middle troposphere, from the top of the boundary layer to about 6-8 km altitude, net O3 destruction prevails. The ozone tendencies are controlled by ambient concentrations of nitrogen oxides (NOx). In regions with net ozone destruction the available NOx is below the threshold value at which production and destruction of O3 balance. While threshold NO values increase with altitude, in the upper troposphere NOx concentrations are generally higher due to the integral effect of convective precursor transport from the boundary layer, downward transport from the stratosphere and NOx produced by lightning. Two case studies indicate that in fresh convective outflow of electrified thunderstorms net ozone production is enhanced by a factor 5-6 compared to the undisturbed upper tropospheric background. The chemistry-transport model MATCH-MPIC generally reproduces the pattern of observation-based net ozone tendencies but mostly underestimates the magnitude of the net tendency (for both net ozone production and destruction).

  4. Wintertime Emissions from Produced Water Ponds

    Science.gov (United States)

    Evans, J.; Lyman, S.; Mansfield, M. L.

    2013-12-01

    surfaces. These compounds are highly reactive and, because of their relatively high water solubility, tend to concentrate in produced water. The average methanol emission rate from unfrozen pond surfaces was more than 100 mg m-2 h-1. Methanol, used as an antifreeze and anti-scaler in the oil and gas industry, is abundant during winter inversions in the Uintah Basin and may also be a significant precursor to ozone production. Total VOC and methanol emissions from produced water ponds during winter were estimated to be 178 and 83 tons month-1, respectively, for the entire Uintah Basin.

  5. The Tropospheric Ozone Assessment Report (TOAR): A community-wide effort to quantify tropospheric ozone in a rapidly changing world

    Science.gov (United States)

    Cooper, O. R.; Schultz, M.; Paoletti, E.; Galbally, I. E.; Naja, M. K.; Tarasick, D. W.; Evans, M. J.; Thompson, A. M.

    2017-12-01

    Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone has shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, left scientists unable to answer the most basic questions: Which regions of the world have the greatest human and plant exposure to ozone pollution? Is ozone continuing to decline in nations with strong emissions controls? To what extent is ozone increasing in the developing world? How can the atmospheric sciences community facilitate access to the ozone metrics necessary for quantifying ozone's impact on human health and crop/ecosystem productivity? To answer these questions the International Global Atmospheric Chemistry Project (IGAC) initiated the Tropospheric Ozone Assessment Report (TOAR). With over 220 member scientists and air quality specialists from 36 nations, TOAR's mission is to provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause. TOAR has also built the world's largest database of surface ozone observations and generated ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity. Plots of these metrics show the regions of the world with the greatest ozone exposure for humans and crops/ecosystems, at least in areas where observations are available. The results also highlight regions where air quality is improving and where it has degraded. TOAR has also conducted the first intercomparison of tropospheric column ozone from ozonesondes and multiple satellite instruments, which provide similar estimates of the present-day tropospheric ozone burden.

  6. Effect of sequences of ozone and nitrogen dioxide on plant dry ...

    African Journals Online (AJOL)

    Ozone (O3) is the most important gaseous air pollutant in the world because of its adverse effects on vegetation in general and crop plants in particular. Since nitrogen dioxide (NO2) is a precursor of ozone, studying the implication of sequences of these two gases is very important. Hence, the effects of sequences of ...

  7. On the Role of Convection and Turbulence for Tropospheric Ozone and its Precursors

    International Nuclear Information System (INIS)

    Olivie, D.J.L.

    2005-01-01

    the TM model. Because the distribution of 222Rn is strongly influenced by convection, 222Rn is a useful tracer to investigate the transport characteristics of CTMs. The model simulated distribution of 222Rn is compared with observations from airborne field campaigns. We will also study the effect of these archived convective fluxes on the global distribution of NOx and ozone. In Chapter 3, question 2 and part of question 3 are addressed. The description of vertical diffusion in CTMs is still rather uncertain. Comparison with ground based observations of 222Rn at four continental locations are used to compare the effect of archived and off-line diagnosed vertical diffusion coefficients on the distribution of trace gases in the TM model. In Chapter 4, questions 4 and 5 are addressed. The parameterisation of NOx produced by lightning in CTMs is still a subject of much ongoing research. In this chapter, different aspects of the parameterisations of the production of NOx by lightning are investigated. We separately focus on the horizontal distribution of the lightning flashes, and on the vertical distribution of the produced NOx. For the horizontal distribution, we compare the effect of the standard TM model parameterisation that uses the convective precipitation as a proxy for the lightning ash frequency and a parameterisation that uses a combination of the updraft top and vertical velocity in the updraft as a proxy for the ash frequency. For the vertical distribution we compare how prescribed emission profiles perform opposed to emission profiles that are generated by explicitly describing the transport in lightning clouds. We use these different simulations to perform model simulations in the TM model which are compared with airborne measurements of NO and NOx. Chapter 5 presents the main conclusions of this thesis and an outlook to further research

  8. Contribution of ozone to airborne aldehyde formation in Paris homes.

    Science.gov (United States)

    Rancière, Fanny; Dassonville, Claire; Roda, Célina; Laurent, Anne-Marie; Le Moullec, Yvon; Momas, Isabelle

    2011-09-15

    Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m(3). The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. 40 CFR 52.1582 - Control strategy and regulations: Ozone.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy and regulations: Ozone... Control strategy and regulations: Ozone. (a) Subchapter 16 of the New Jersey Administrative Code, entitled... demonstration that emissions from growth in vehicle miles traveled will not increase motor vehicle emissions and...

  10. Ozone Pollution

    Science.gov (United States)

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  11. Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry

    Science.gov (United States)

    Yang, Xue; Xue, Likun; Wang, Tao; Wang, Xinfeng; Gao, Jian; Lee, Shuncheng; Blake, Donald R.; Chai, Fahe; Wang, Wenxing

    2018-01-01

    Carbonyls are an important group of volatile organic compounds (VOCs) that play critical roles in tropospheric chemistry. To better understand the formation mechanisms of carbonyl compounds, extensive measurements of carbonyls and related parameters were conducted in Beijing in summer 2008. Formaldehyde (11.17 ± 5.32 ppbv), acetone (6.98 ± 3.01 ppbv), and acetaldehyde (5.27 ± 2.24 ppbv) were the most abundant carbonyl species. Two dicarbonyls, glyoxal (0.68 ± 0.26 ppbv) and methylglyoxal (MGLY; 1.10 ± 0.44 ppbv), were also present in relatively high concentrations. An observation-based chemical box model was used to simulate the in situ production of formaldehyde, acetaldehyde, glyoxal, and MGLY and quantify their contributions to ozone formation and ROx budget. All four carbonyls showed similar formation mechanisms but exhibited different precursor distributions. Alkenes (mainly isoprene and ethene) were the dominant precursors of formaldehyde, while both alkenes (e.g., propene, i-butene, and cis-2-pentene) and alkanes (mainly i-pentane) were major precursors of acetaldehyde. For dicarbonyls, both isoprene and aromatic VOCs were the dominant parent hydrocarbons of glyoxal and MGLY. Photolysis of oxygenated VOCs was the dominant source of ROx radicals (approximately >80% for HO2 and approximately >70% for RO2) in Beijing. Ozone production occurred under a mixed-control regime with carbonyls being the key VOC species. Overall, this study provides some new insights into the formation mechanisms of carbonyls, especially their parent hydrocarbon species, and underlines the important role of carbonyls in radical chemistry and ozone pollution in Beijing. Reducing the emissions of alkenes and aromatics would be an effective way to mitigate photochemical pollution in Beijing.

  12. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2018-02-01

    Full Text Available Chlorine radicals can enhance atmospheric oxidation, which potentially increases tropospheric ozone concentration. However, few studies have been done to quantify the impact of chlorine emissions on ozone formation in China due to the lack of a chlorine emission inventory used in air quality models with sufficient resolution. In this study, the Anthropogenic Chlorine Emissions Inventory for China (ACEIC was developed for the first time, including emissions of hydrogen chloride (HCl and molecular chlorine (Cl2 from coal combustion and prescribed waste incineration (waste incineration plant. The HCl and Cl2 emissions from coal combustion in China in 2012 were estimated to be 232.9 and 9.4 Gg, respectively, while HCl emission from prescribed waste incineration was estimated to be 2.9 Gg. Spatially the highest emissions of HCl and Cl2 were found in the North China Plain, the Yangtze River Delta, and the Sichuan Basin. Air quality model simulations with the Community Multiscale Air Quality (CMAQ modeling system were performed for November 2011, and the modeling results derived with and without chlorine emissions were compared. The magnitude of the simulated HCl, Cl2 and ClNO2 agreed reasonably with the observation when anthropogenic chlorine emissions were included in the model. The inclusion of the ACEIC increased the concentration of fine particulate Cl−, leading to enhanced heterogeneous reactions between Cl− and N2O5, which resulted in the higher production of ClNO2. Photolysis of ClNO2 and Cl2 in the morning and the reaction of HCl with OH in the afternoon produced chlorine radicals which accelerated tropospheric oxidation. When anthropogenic chlorine emissions were included in the model, the monthly mean concentrations of fine particulate Cl−, daily maximum 1 h ClNO2, and Cl radicals were estimated to increase by up to about 2.0 µg m−3, 773 pptv, and 1.5  ×  103 molecule cm−3 in China, respectively. Meanwhile

  13. Ozone response to emission reductions in the southeastern United States

    Directory of Open Access Journals (Sweden)

    C. L. Blanchard

    2018-06-01

    Full Text Available Ozone (O3 formation in the southeastern US is studied in relation to nitrogen oxide (NOx emissions using long-term (1990s–2015 surface measurements of the Southeastern Aerosol Research and Characterization (SEARCH network, U.S. Environmental Protection Agency (EPA O3 measurements, and EPA Clean Air Status and Trends Network (CASTNET nitrate deposition data. Annual fourth-highest daily peak 8 h O3 mixing ratios at EPA monitoring sites in Georgia, Alabama, and Mississippi exhibit statistically significant (p  <  0.0001 linear correlations with annual NOx emissions in those states between 1996 and 2015. The annual fourth-highest daily peak 8 h O3 mixing ratios declined toward values of ∼ 45–50 ppbv and monthly O3 maxima decreased at rates averaging ∼ 1–1.5 ppbv yr−1. Mean annual total oxidized nitrogen (NOy mixing ratios at SEARCH sites declined in proportion to NOx emission reductions. CASTNET data show declining wet and dry nitrate deposition since the late 1990s, with total (wet plus dry nitrate deposition fluxes decreasing linearly in proportion to reductions of NOx emissions by ∼ 60 % in Alabama and Georgia. Annual nitrate deposition rates at Georgia and Alabama CASTNET sites correspond to 30 % of Georgia emission rates and 36 % of Alabama emission rates, respectively. The fraction of NOx emissions lost to deposition has not changed. SEARCH and CASTNET sites exhibit downward trends in mean annual nitric acid (HNO3 concentrations. Observed relationships of O3 to NOz (NOy–NOx support past model predictions of increases in cycling of NO and increasing responsiveness of O3 to NOx. The study data provide a long-term record that can be used to examine the accuracy of process relationships embedded in modeling efforts. Quantifying observed O3 trends and relating them to reductions in ambient NOy species concentrations offers key insights into processes of general relevance to air quality management and

  14. Exposure-Relevant Ozone Chemistry in Occupied Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly Kaye [Univ. of California, Berkeley, CA (United States)

    2009-04-01

    Ozone, an ambient pollutant, is transformed into other airborne pollutants in the indoor environment. In this dissertation, the type and amount of byproducts that result from ozone reactions with common indoor surfaces, surface residues, and vapors were determined, pollutant concentrations were related to occupant exposure, and frameworks were developed to predict byproduct concentrations under various indoor conditions. In Chapter 2, an analysis is presented of secondary organic aerosol formation from the reaction of ozone with gas-phase, terpene-containing consumer products in small chamber experiments under conditions relevant for residential and commercial buildings. The full particle size distribution was continuously monitored, and ultrafine and fine particle concentrations were in the range of 10 to>300 mu g m-3. Particle nucleation and growth dynamics were characterized.Chapter 3 presents an investigation of ozone reactions with aircraft cabin surfaces including carpet, seat fabric, plastics, and laundered and worn clothing fabric. Small chamber experiments were used to determine ozone deposition velocities, ozone reaction probabilities, byproduct emission rates, and byproduct yields for each surface category. The most commonly detected byproducts included C1?C10 saturated aldehydes and skin oil oxidation products. For all materials, emission rates were higher with ozone than without. Experimental results were used to predict byproduct exposure in the cabin and compare to other environments. Byproduct levels are predicted to be similar to ozone levels in the cabin, which have been found to be tens to low hundreds of ppb in the absence of an ozone converter. In Chapter 4, a model is presented that predicts ozone uptake by and byproduct emission from residual chemicals on surfaces. The effects of input parameters (residue surface concentration, ozone concentration, reactivity of the residue and the surface, near-surface airflow conditions, and

  15. Detection of greenhouse gas precursors from ethanol powered vehicles in Brazil

    International Nuclear Information System (INIS)

    Tavares, Juliana R.; Sthel, Marcelo S.; Rocha, Mila V. da; Lima, Guilherme R.; Silva, Marcelo G. da; Vargas, Helion

    2014-01-01

    The use of fossil fuels on the transport sector has caused the emission of various air pollutants, which can cause numerous damages to the atmosphere and to human health. In order to minimize pollutant emission, Brazilian government has encouraged the use of alternatives fuels, such as ethanol. Ethanol can be a great ally in global warming mitigation due to its potential to reduce carbon dioxide emissions in its renewable cycle. Otherwise, other pollutant gases emitted during ethanol combustion can contribute directly or indirectly to intensify global warming. In this study, Photoacoustic and Electrochemical sensors were used to detect greenhouse precursor gases, such as carbon monoxide, nitrogen oxides and especially ethylene, a primary pollutant in the generation of tropospheric ozone, in the exhaust of ethanol powered vehicles, in the range of ppmv. - Highlights: • Using CO 2 and Quantum Cascade Laser Photoacoustic Spectrometer, we could prove the presence of ethylene in the exhaust of ethanol vehicles for the first time. • Photoacoustic technique has proven excellent requirements, such as selectivity, sensitivity, and portability for ethylene detection in the vehicles exhaust. • Using electrochemical sensors, we could detect CO and NO x in ethanol powered vehicles in ppmV range

  16. Ozone modeling

    Energy Technology Data Exchange (ETDEWEB)

    McIllvaine, C M

    1994-07-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.

  17. Vertical ozone characteristics in urban boundary layer in Beijing.

    Science.gov (United States)

    Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi

    2013-07-01

    Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.

  18. The Unique OMI HCHO/NO2 Feature During the 2008 Beijing Summer Olympics: Implications for Ozone Production Sensitivity

    Science.gov (United States)

    Witte, J. C.; Duncan, B. N.; Douglass, A. R.; Kurosu, T. P.; Chance, K.; Retscher, C.

    2010-01-01

    In preparation of the Beijing Summer Olympic and Paralympics Games, strict controls were imposed between July and September 2008 on motor vehicle traffic and industrial emissions to improve air quality for the competitors. We assessed chemical sensitivity of ozone production to these controls using Ozone Monitoring Instrument (OMI) column measurements of formaldehyde (HCHO) and nitrogen dioxide (NO2), where their ratio serves as a proxy for the sensitivity. During the emission controls, HCHO/NO2 increased and indicated a NOx-limited regime, in contrast to the same period in the preceding three years when the ratio indicates volatile organic carbon (VOC)-limited and mixed NOx-VOC-limited regimes. After the emission controls were lifted, observed NO2 and HCHO/NO2 returned to their previous values. The 2005-2008 OMI record shows that this transition in regimes was unique as ozone production in Beijing was rarely NOx-limited. OMI measured summertime increases in HCHO of around 13% in 2008 compared to prior years, the same time period during which MODIS vegetation indices increased. The OMI HCHO increase may be due to higher biogenic emissions of HCHO precursors, associated with Beijing's greening initiative for the Olympics. However, NO2 and HCHO were also found to be well-correlated during the summer months. This indicates an anthropogenic VOC contribution from vehicle emissions to OMI HCHO and is a plausible explanation for the relative HCHO minimum observed in August 2008, concurrent with a minimum in traffic emissions. We calculated positive trends in 2005-2008 OMI HCHO and NO2 of about +1 x 10(exp 14) Molec/ square M-2 and +3 x 10(exp 13) molec CM-2 per month, respectively. The positive trend in NO2 may be an indicator of increasing vehicular traffic since 2005, while the positive trend in HCHO may be due to a combined increase in anthropogenic and biogenic emissions since 2005.

  19. Understanding the effectiveness of precursor reductions in lowering 8-hr ozone concentrations--Part II. The eastern United States.

    Science.gov (United States)

    Reynolds, Steven D; Blanchard, Charles L; Ziman, Stephen D

    2004-11-01

    Analyses of ozone (O3) measurements in conjunction with photochemical modeling were used to assess the feasibility of attaining the federal 8-hr O3 standard in the eastern United States. Various combinations of volatile organic compound (VOC) and oxides of nitrogen (NOx) emission reductions were effective in lowering modeled peak 1-hr O3 concentrations. VOC emissions reductions alone had only a modest impact on modeled peak 8-hr O3 concentrations. Anthropogenic NOx emissions reductions of 46-86% of 1996 base case values were needed to reach the level of the 8-hr standard in some areas. As NOx emissions are reduced, O3 production efficiency increases, which accounts for the less than proportional response of calculated 8-hr O3 levels. Such increases in O3 production efficiency also were noted in previous modeling work for central California. O3 production in some urban core areas, such as New York City and Chicago, IL, was found to be VOC-limited. In these areas, moderate NOx emissions reductions may be accompanied by increases in peak 8-hr O3 levels. The findings help to explain differences in historical trends in 1- and 8-hr O3 levels and have serious implications for the feasibility of attaining the 8-hr O3 standard in several areas of the eastern United States.

  20. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF{sub 6}. Danish consumption and emissions, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. (PlanMiljoe (Denmark))

    2007-07-01

    The objective of this project was to map the 2006 consumption of newly produced industrial ozone-depleting substances and the consumption and actual emissions of HFCs, PFCs, and SF{sub 6}. The evaluation was made in accordance with the IPCC guidelines and following the method employed in previous evaluations. (BA)

  1. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  2. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John; hide

    2018-01-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  3. Rates and regimes of photochemical ozone production over Central East China in June 2006: a box model analysis using comprehensive measurements of ozone precursors

    Directory of Open Access Journals (Sweden)

    Y. Kanaya

    2009-10-01

    Full Text Available An observation-based box model approach was undertaken to estimate concentrations of OH, HO2, and RO2 radicals and the net photochemical production rate of ozone at the top of Mount Tai, located in the middle of Central East China, in June 2006. The model calculation was constrained by the measurements of O3, H2O, CO, NO, NO2, hydrocarbon, HCHO, and CH3CHO concentrations, and temperature and J values. The net production rate of ozone was estimated to be 6.4 ppb h−1 as a 6-h average (09:00–15:00 CST, suggesting 58±37 ppb of ozone is produced in one day. Thus the daytime buildup of ozone recorded at the mountain top as ~23 ppb on average is likely affected by in situ photochemistry as well as by the upward transport of polluted air mass in the daytime. On days with high ozone concentrations (hourly values exceeding 100 ppb at least once, in situ photochemistry was more active than it was on low ozone days, suggesting that in situ photochemistry is an important factor controlling ozone concentrations. Sensitivity model runs for which different NOx and hydrocarbon concentrations were assumed suggested that the ozone production occurred normally under NOx-limited conditions, with some exceptional periods (under volatile-organic-compound-limited conditions in which there was fresh pollution. We also examined the possible influence of the heterogeneous loss of gaseous HO2 radicals in contact with aerosol particle surfaces on the rate and regimes of ozone production.

  4. Analysis of European ozone trends in the period 1995-2014

    Science.gov (United States)

    Yan, Yingying; Pozzer, Andrea; Ojha, Narendra; Lin, Jintai; Lelieveld, Jos

    2018-04-01

    Surface-based measurements from the EMEP and Airbase networks are used to estimate the changes in surface ozone levels during the 1995-2014 period over Europe. We find significant ozone enhancements (0.20-0.59 µg m-3 yr-1 for the annual means; P-value climate model EMAC, the importance of anthropogenic emissions changes in determining these changes over background sites are investigated. The EMAC model is found to successfully capture the observed temporal variability in mean ozone concentrations, as well as the contrast in the trends of 95th and 5th percentile ozone over Europe. Sensitivity simulations and statistical analysis show that a decrease in European anthropogenic emissions had contrasting effects on surface ozone trends between the 95th and 5th percentile levels and that background ozone levels have been influenced by hemispheric transport, while climate variability generally regulated the inter-annual variations of surface ozone in Europe.

  5. European air quality in the 2030's and 2050's: Impacts of global and regional emission trends and of climate change

    International Nuclear Information System (INIS)

    Lacressonniere, G.; Peuch, V.H.; Vautard, R.

    2014-01-01

    A chemistry-transport model using two-way nested regional (Europe) and global domains is used to evaluate the effects of climate and emission changes on air quality over Europe for the 2030's and 2050's, by comparison with the emissions and climate of the recent past. We investigated the pollutant levels under the implementations of reduced anthropogenic emissions (NOx, SO 2 , etc) over Europe and, at the global scale, under the Representative Concentrations Pathways (RCP8.5) scenario produced by the Fifth Assessment Report (AR5) of IPCC. The simulations show an increase in surface ozone in northwestern Europe and a decrease in southern areas in the future horizons studied here. Over Europe, average O 3 levels steadily increase with a rate of around 3 mg m 3 per decade in summer. For this pollutant, the contributions of long range transport over the Northern Hemisphere and climate changes have been assessed and appear to counterbalance and even slightly outweigh the effects of European reductions in precursors' anthropogenic emissions. The tropospheric ozone budget is found to be dominated by enhanced stratosphere-troposphere exchanges in future climate while the chemical budget is significantly reduced. Our results show that a NOx-limited chemical regime will stretch over most of Europe, including especially Western France in the future. These findings allow supporting efficient future precursor emissions abatement strategies in order to limit O 3 pollution and maintain or improve air quality standards in Europe. (authors)

  6. Role of photoexcited nitrogen dioxide chemistry on ozone formation and emission control strategy over the Pearl River Delta, China

    Science.gov (United States)

    A new hydroxyl radical formation pathway via photo-excited nitrogen dioxide chemistry is incorporated into a chemistry-only box model as well as a 3D air quality model to examine its potential role on ozone formation and emission control strategy over the Pearl River Delta region...

  7. Extreme value analysis for evaluating ozone control strategies.

    Science.gov (United States)

    Reich, Brian; Cooley, Daniel; Foley, Kristen; Napelenok, Sergey; Shaby, Benjamin

    2013-06-01

    Tropospheric ozone is one of six criteria pollutants regulated by the US EPA, and has been linked to respiratory and cardiovascular endpoints and adverse effects on vegetation and ecosystems. Regional photochemical models have been developed to study the impacts of emission reductions on ozone levels. The standard approach is to run the deterministic model under new emission levels and attribute the change in ozone concentration to the emission control strategy. However, running the deterministic model requires substantial computing time, and this approach does not provide a measure of uncertainty for the change in ozone levels. Recently, a reduced form model (RFM) has been proposed to approximate the complex model as a simple function of a few relevant inputs. In this paper, we develop a new statistical approach to make full use of the RFM to study the effects of various control strategies on the probability and magnitude of extreme ozone events. We fuse the model output with monitoring data to calibrate the RFM by modeling the conditional distribution of monitoring data given the RFM using a combination of flexible semiparametric quantile regression for the center of the distribution where data are abundant and a parametric extreme value distribution for the tail where data are sparse. Selected parameters in the conditional distribution are allowed to vary by the RFM value and the spatial location. Also, due to the simplicity of the RFM, we are able to embed the RFM in our Bayesian hierarchical framework to obtain a full posterior for the model input parameters, and propagate this uncertainty to the estimation of the effects of the control strategies. We use the new framework to evaluate three potential control strategies, and find that reducing mobile-source emissions has a larger impact than reducing point-source emissions or a combination of several emission sources.

  8. Effects of ZnO Seed Layers Prepared with Various Precursor Concentrations on Structural and Defect Emission Properties of ZnO Nanorods Grown by Hydrothermal Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soaram; Nam, Giwoong; Leem, Jae-Young; Kim, Yangsoo [Inje University, Gimhae (Korea, Republic of); Kim, Ghun Sik; Yoon, Sung Pil [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-07-15

    ZnO nanorods were grown by a hydrothermal method on ZnO seed layers that had previously been prepared from solutions containing various precursor concentrations. The effects of the ZnO seed layers prepared with various precursor concentrations on the structural and defect emissions of the ZnO nanorods were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) spectroscopy. The surface morphology of the ZnO seed layers changed with an increasing precursor concentration, and the diameters and densities of the ZnO nanorods depended on the morphologies of the ZnO seed layers. The ZnO seed layers prepared with various precursor concentrations affected the residual stress in the nanorods grown on the seed layers, the intensity and full widths at half maximum of the 2-theta angle in the XRD spectra for the nanorods, and the intensity and position of the defect emission peak in deep-level emission (DLE) PL spectra for the ZnO nanorods.

  9. N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: Reaction kinetics, mechanisms, and implications for NDMA formation control.

    Science.gov (United States)

    Lim, Sungeun; Lee, Woongbae; Na, Soyoung; Shin, Jaedon; Lee, Yunho

    2016-11-15

    Compounds with N,N-dimethylhydrazine moieties ((CH 3 ) 2 N-N-) form N-nitrosodimethylamine (NDMA) during ozonation, but the relevant reaction chemistry is hitherto poorly understood. This study investigated the reaction kinetics and mechanisms of NDMA formation during ozonation of unsymmetrical dimethylhydrazine (UDMH) and daminozide (DMZ) as structural model N,N-dimethylhydrazine compounds. The reaction of ozone with these NDMA precursor compounds was fast, and k O3 at pH 7 was 2 × 10 6  M -1  s -1 for UDMH and 5 × 10 5  M -1  s -1 for DMZ. Molar NDMA yields (i.e., Δ[NDMA]/Δ[precursor] × 100) were 84% and 100% for UDMH and DMZ, respectively, determined at molar ozone dose ratio ([O 3 ] 0 /[precursor] 0 ) of ≥4 in the presence of tert-butanol as hydroxyl radical (OH) scavenger. The molar NDMA yields decreased significantly in the absence of tert-butanol, indicating OH formation and its subsequent reaction with the parent precursors forming negligible NDMA. The k OH at pH 7 was 4.9 × 10 9  M -1  s -1 and 3.4 × 10 9  M -1  s -1 for UDMH and DMZ, respectively. Reaction mechanisms are proposed in which an ozone adduct is formed at the nitrogen next to N,N-dimethylamine which decomposes via homolytic and heterolytic cleavages of the -N + -O-O-O - bond, forming NDMA as a final product. The heterolytic cleavage pathway explains the significant OH formation via radical intermediates. Overall, significant NDMA formation was found to be unavoidable during ozonation or even O 3 /H 2 O 2 treatment of waters containing N,N-dimethylhydrazine compounds due to their rapid reaction with ozone forming NDMA with high yield. Thus, source control or pre-treatment of N,N-dimethylhydrazine precursors and post-treatment of NDMA are proposed as the mitigation options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Process Analysis of Typhoon Related Ozone Pollution over the Pearl River Delta during the PRIDE-PRD2006

    Science.gov (United States)

    Li, Y.; Wang, X.; Zhang, Y.

    2014-12-01

    There were two typhoon processes during Campaign PRIDE-PRD2006 in July 2006 and serious ozone pollution episodes occurred before the landing of the typhoons. Chemical transport model CMAQ was employed in this work to simulate the ozone pollution episode related by the typhoon KAEMI. According to the meteorological conditions, the pollution episode could be divided into three phases with the movement of the typhoon, which were (1) far away from the continent; (2) coming close to the continent; (3) before landing. Process analysis was applied to get the contributions of physical and chemical processes for the ozone. It revealed that transport process was dominant during this pollution episode, and the influence of chemical process increased in the second phase. Three typical regions, northern rural area, urban area and Hong Kong area, were selected to study the contribution of each chemical and physical process. In the first phase, the primary process in northern rural area and the urban area was vertical diffusion, accounting for 47% and 46% respectively. In the second phase, the primary process in northern rural area and the urban area was chemical process, accounting for 33% and 31% respectively. In the third phase, the region of high concentration ozone moved southward. For Hong Kong area, the western inflow was prominent as 40%. Sensitivity study showed that urban areas were VOCs-limited regime with decreased ozone concentration when reducing the emission of VOCs. On the contrary, the ozone concentration in downwind rural areas decreased with the reduction of NOx, and the reason may be the decrement of the accumulated precursors.

  11. Atmospheric Ozone and Methane in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Ivar S. A. Isaksen

    2014-07-01

    Full Text Available Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O, NOx compounds (NO, NO2, CO, hydrogen radicals (OH, HO2, volatile organic compounds (VOC and chlorine (Cl, ClO and bromine (Br, BrO. Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills.Methane is broken down by the hydroxyl radical (OH. OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO. Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material

  12. Quantitative evaluation of ozone and selected climate parameters in a set of EMAC simulations

    Directory of Open Access Journals (Sweden)

    M. Righi

    2015-03-01

    simulation of the temperature in the tropical tropopause layer. Ozone and ozone precursor concentrations, on the other hand, are very similar in the different model setups, if similar boundary conditions are used. Different boundary conditions however lead to relevant differences in the four simulations. Biases which are common to all simulations are the underestimation of the ozone hole and the overestimation of tropospheric column ozone, the latter being significantly reduced when lower lightning emissions of nitrogen oxides are used. To further investigate possible other reasons for such bias, two sensitivity simulations with an updated scavenging routine and the addition of a newly proposed HNO3-forming channel of the HO2+NO reaction were performed. The update in the scavenging routine resulted in a slightly better representation of ozone compared to the reference simulation. The introduction of the new HNO3-forming channel significantly reduces the overestimation of tropospheric ozone. Therefore, including the new reaction rate could potentially be important for a realistic simulation of tropospheric ozone, although laboratory experiments and other model studies need to confirm this hypothesis and some modifications to the rate, which has a strong dependence on water vapor, might also still be needed.

  13. Method to determine the sticking coefficient of precursor molecules in atomic layer deposition

    International Nuclear Information System (INIS)

    Rose, M.; Bartha, J.W.

    2009-01-01

    A method to determine the sticking coefficient of precursor molecules used in atomic layer deposition (ALD) will be introduced. The sticking coefficient is an interesting quantity for comparing different ALD processes and reactors but it cannot be observed easily. The method relies on free molecular flow in nanoscale cylindrical holes. The sticking coefficient is determined for tetrakis(dimethylamino)titanium in combination with ozone. The proposed method can be applied independent of the type of reactor, precursor delivery system and precursors.

  14. Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model

    Science.gov (United States)

    Jourdain, L.; Kulawik, S. S.; Worden, H. M.; Pickering, K. E.; Worden, J.; Thompson, A. M.

    2010-01-01

    Improved estimates of NOx from lightning sources are required to understand tropospheric NOx and ozone distributions, the oxidising capacity of the troposphere and corresponding feedbacks between chemistry and climate change. In this paper, we report new satellite ozone observations from the Tropospheric Emission Spectrometer (TES) instrument that can be used to test and constrain the parameterization of the lightning source of NOx in global models. Using the National Lightning Detection (NLDN) and the Long Range Lightning Detection Network (LRLDN) data as well as the HYPSLIT transport and dispersion model, we show that TES provides direct observations of ozone enhanced layers downwind of convective events over the USA in July 2006. We find that the GEOS-Chem global chemistry-transport model with a parameterization based on cloud top height, scaled regionally and monthly to OTD/LIS (Optical Transient Detector/Lightning Imaging Sensor) climatology, captures the ozone enhancements seen by TES. We show that the model's ability to reproduce the location of the enhancements is due to the fact that this model reproduces the pattern of the convective events occurrence on a daily basis during the summer of 2006 over the USA, even though it does not well represent the relative distribution of lightning intensities. However, this model with a value of 6 Tg N/yr for the lightning source (i.e.: with a mean production of 260 moles NO/Flash over the USA in summer) underestimates the intensities of the ozone enhancements seen by TES. By imposing a production of 520 moles NO/Flash for lightning occurring in midlatitudes, which better agrees with the values proposed by the most recent studies, we decrease the bias between TES and GEOS-Chem ozone over the USA in July 2006 by 40%. However, our conclusion on the strength of the lightning source of NOx is limited by the fact that the contribution from the stratosphere is underestimated in the GEOS-Chem simulations.

  15. 40 CFR 52.2585 - Control strategy: Ozone.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Ozone. 52.2585... strategy: Ozone. (a) Disapproval—On November 6, 1986, the Wisconsin Department of Natural Resources... would not be necessary to offset growth in emissions. (h) Approval—On November 15, 1993, the Wisconsin...

  16. The predicted impact of VOCs from Marijuana cultivation operations on ozone concentrations in great Denver, CO.

    Science.gov (United States)

    Wang, C. T.; Vizuete, W.; Wiedinmyer, C.; Ashworth, K.

    2016-12-01

    Colorado is the first the marijuana legal states in the United States since 2014. As a result, thousands of legal Marijuana cultivation operations are at great Denver area now. Those Marijuana cultivation operations could be the potential to release a lot of biogenic VOCs, such as monoterpene(C10H16), alpha-pinene, and D-limonene. Those alkene species could rapidly increase the peroxy radicals and chemical reactions in the atmosphere, especially in the urban area which belong to VOC-limited ozone regime. These emissions will increase the ozone in Denver city, where is ozone non-attainment area. Some previous research explained the marijuana smoke and indoor air quality (Martyny, Serrano, Schaeffer, & Van Dyke, 2013) and the smell of marijuana chemical compounds(Rice & Koziel, 2015). However, there have been no studies discuss on identifying and assessing emission rate from marijuana and how those species impact on atmospheric chemistry and ozone concentration, and the marijuana emissions have been not considered in the national emission inventory, either. This research will use air quality model to identify the possibility of ozone impact by marijuana cultivation emission. The Comprehensive Air Quality Model with Extensions, CAMx, are applied for this research to identify the impact of ozone concentration. This model is government regulatory model based on the Three-State Air Quality Modeling Study (3SAQS), which developed by UNC-Chapel Hill and ENVIRON in 2012. This model is used for evaluation and regulate the ozone impact in ozone non-attainment area, Denver city. The details of the 3SAQS model setup and protocol can be found in the 3SAQS report(UNC-IE, 2013). For the marijuana emission study scenarios, we assumed the monoterpene (C10H16) is the only emission species in air quality model and identify the ozone change in the model by the different quantity of emission rate from marijuana cultivation operations.

  17. Impacts of decadal variations in natural emissions due to land-cover changes on ozone production in southern China

    Directory of Open Access Journals (Sweden)

    Mengmeng Li

    2015-09-01

    Full Text Available The decadal variations in emissions of high-reactivity biogenic volatile organics (BVOCs, as a result of land-cover changes, could significantly impact ozone (O3 production. In this study, the Weather Research and Forecasting/Chemistry (WRF/Chem modelling system, coupled with dynamic vegetation data sets derived from Moderate Resolution Imaging Spectroradiometer (MODIS, 2001–2012 and Advanced Very High Resolution Radiometer (AVHRR, early 1990s measurements, were used to investigate the impacts of land-cover changes on natural emissions, and consequently O3 production, in the Pearl River Delta (PRD region of southern China over the past two decades. Model results indicate that BVOC emissions were highly dependent on forest area. The total BVOC emissions in the modelling domain increased by a factor of two due to afforestation since the early 1990s, declined slowly (−5.8% yr−1 until 2006 and then increased continuously (+9.1% yr−1 to 2012. The decadal variations in BVOC emissions have complex implications for summer O3 production in PRD, depending on the chemical regimes and prevailing winds. The impacts on O3 production were most sensitive in downwind areas, and it was found that the large increase in BVOC emissions during 2006–2012 tended to reduce surface O3 concentrations by 1.6–2.5 ppb in rural regions, but caused an increment of O3 peaks by up to 2.0–6.0 ppb in VOC-limited urban areas (e.g., Guangzhou, Foshan and Zhongshan. The opposite was true in the period 2001–2006, when the reduced BVOC emissions resulted in 1.3–4.0 ppb increases in daytime O3 concentrations over northern rural regions. Impact of the two-fold increase in BVOC emissions since the early 1990s to 2006 was a 0.9–4.6 ppb increment in surface O3 concentrations over the downwind areas. This study suggests that the potential impacts on ozone chemistry should be considered in long-term land-use planning and air-quality management.

  18. Ozone reduction strategy for the northeastern part of Austria: cooperation and compilation of the fundamentals

    International Nuclear Information System (INIS)

    Orthofer, R.; Winiwarter, W.

    1996-05-01

    This report is contribution to the implementation of an ozone reduction strategy for the northeastern part of Austria. The report contains a regional emission inventory, an emission projection for the years 1996, 2001 and 2006, an evaluation of further stationary sources reduction options. The ozone formation potentials of non-methane volatile organic compounds (NMVOC) emissions were calculated separately for both mobile and stationary source group, in order to assess the respective contribution to the local ozone formation. It can be shown that status-quo reduction measures are more efficient in terms of ozone formation potential during the summer season than in terms of NMVOC emission mass reduction. It is recommended that further NMVOC emission control should focus primarily on industrial solvent emissions, domestic heating of water during summertime with solid fuels, and on stubble burning in the fields. (author)

  19. 77 FR 26441 - Approval and Promulgation of Implementation Plans; North Carolina; Charlotte; Ozone 2002 Base...

    Science.gov (United States)

    2012-05-04

    ... Promulgation of Implementation Plans; North Carolina; Charlotte; Ozone 2002 Base Year Emissions Inventory... final action to approve the ozone 2002 base year emissions inventory portion of the state implementation... Air Act (CAA or Act). EPA will take action on the South Carolina submission for the ozone 2002 base...

  20. Effect of fiber material on ozone removal and carbonyl production from carpets

    Science.gov (United States)

    Abbass, Omed A.; Sailor, David J.; Gall, Elliott T.

    2017-01-01

    Indoor air quality is affected by indoor materials such as carpets that may act as sources and/or sinks of gas-phase air pollutants. Heterogeneous reactions of ozone with carpets may result in potentially harmful products. In this study, indoor residential carpets of varying fiber types were tested to evaluate their ability to remove ozone, and to assess their role in the production of carbonyls when exposed to elevated levels of ozone. Tests were conducted with six types of new unused carpets. Two sets of experiments were conducted, the first measured ozone removal and ozone deposition velocities, and the second measured primary carbonyl production and secondary production as a result of exposure to ozone. The tests were conducted using glass chambers with volume of 52 L each. Air exchange rates for all tests were 3 h-1. The ozone removal tests show that, for the conditions tested, the polyester carpet sample had the lowest ozone removal (40%), while wool carpet had the greatest ozone removal (65%). Most carpet samples showed higher secondary than primary carbonyl emissions, with carpets containing polypropylene fibers being a notable exception. Carpets with polyester fibers had both the highest primary and secondary emissions of formaldehyde among all samples tested. While it is difficult to make blanket conclusions about the relative air quality merits of various carpet fiber options, it is clear that ozone removal percentages and emissions of volatile organic compounds can vary drastically as a function of fiber type.

  1. Limitations of ozone data assimilation with adjustment of NOx emissions: mixed effects on NO2 forecasts over Beijing and surrounding areas

    Directory of Open Access Journals (Sweden)

    X. Tang

    2016-05-01

    Full Text Available This study investigates a cross-variable ozone data assimilation (DA method based on an ensemble Kalman filter (EnKF that has been used in the companion study to improve ozone forecasts over Beijing and surrounding areas. The main purpose is to delve into the impacts of the cross-variable adjustment of nitrogen oxide (NOx emissions on the nitrogen dioxide (NO2 forecasts over this region during the 2008 Beijing Olympic Games. A mixed effect on the NO2 forecasts was observed through application of the cross-variable assimilation approach in the real-data assimilation (RDA experiments. The method improved the NO2 forecasts over almost half of the urban sites with reductions of the root mean square errors (RMSEs by 15–36 % in contrast to big increases of the RMSEs over other urban stations by 56–239 %. Over the urban stations with negative DA impacts, improvement of the NO2 forecasts (with 7 % reduction of the RMSEs was noticed at night and in the morning versus significant deterioration during daytime (with 190 % increase of the RMSEs, suggesting that the negative data assimilation impacts mainly occurred during daytime. Ideal-data assimilation (IDA experiments with a box model and the same cross-variable assimilation method confirmed the mixed effects found in the RDA experiments. In the same way, NOx emission estimation was improved at night and in the morning even under large biases in the prior emission, while it deteriorated during daytime (except for the case of minor errors in the prior emission. The mixed effects observed in the cross-variable data assimilation, i.e., positive data assimilation impacts on NO2 forecasts over some urban sites, negative data assimilation impacts over the other urban sites, and weak data assimilation impacts over suburban sites, highlighted the limitations of the EnKF under strong nonlinear relationships between chemical variables. Under strong nonlinearity between daytime ozone concentrations and

  2. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  3. Surface ozone in the Colorado northern Front Range and the influence of oil and gas development during FRAPPE/DISCOVER-AQ in summer 2014

    Directory of Open Access Journals (Sweden)

    L. C. Cheadle

    2017-11-01

    Full Text Available High mixing ratios of ozone (O3 in the northern Front Range (NFR of Colorado are not limited to the urban Denver area but were also observed in rural areas where oil and gas activity is the primary source of O3 precursors. On individual days, oil and gas O3 precursors can contribute in excess of 30 ppb to O3 growth and can lead to exceedances of the EPA O3 National Ambient Air Quality Standard. Data used in this study were gathered from continuous surface O3 monitors for June–August 2013–2015 as well as additional flask measurements and mobile laboratories that were part of the FRAPPE/DISCOVER-AQ field campaign of July–August 2014. Overall observed O3 levels during the summer of 2014 were lower than in 2013, likely due to cooler and damper weather than an average summer. This study determined the median hourly surface O3 mixing ratio in the NFR on summer days with limited photochemical production to be approximately 45–55 ppb. Mobile laboratory and flask data collected on three days provide representative case studies of different O3 formation environments in and around Greeley, Colorado. Observations of several gases (including methane, ethane, CO, nitrous oxide along with O3 are used to identify sources of O3 precursor emissions. A July 23 survey demonstrated low O3 (45–60 ppb while August 3 and August 13 surveys recorded O3 levels of 75–80 ppb or more. August 3 exemplifies influence of moderate urban and high oil and gas O3 precursor emissions. August 13 demonstrates high oil and gas emissions, low agricultural emissions, and CO measurements that were well correlated with ethane from oil and gas, suggesting an oil and gas related activity as a NOx and O3 precursor source. Low isoprene levels indicated that they were not a significant contributor to O3 precursors measured during the case studies.

  4. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    Science.gov (United States)

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-02

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.

  5. Surface ozone variation at Bhubaneswar and intra-corelationship ...

    Indian Academy of Sciences (India)

    availability of ozone precursors control its forma- tion and decay ... izer and food processing industries along with ther- mal power ... radic growth of different industries such as cement, ...... Miller J, Preston E and Weinstein L 1982 Assessment of ... measurements at urban coastal site Chennai, in India;. J. Hazard. Mater.

  6. Spatial and temporal variation of surface ozone, NO and NO₂ at urban, suburban, rural and industrial sites in the southwest of the Iberian Peninsula.

    Science.gov (United States)

    Domínguez-López, D; Adame, J A; Hernández-Ceballos, M A; Vaca, F; De la Morena, B A; Bolívar, J P

    2014-09-01

    Surface ozone is one of the most important photochemical pollutants in the low atmosphere, causing damage to human health, vegetation, materials and climate. The weather (high temperatures and high solar radiation), orography (presence of the Guadalquivir valley) and anthropogenic (the cities of Cádiz, Córdoba, Huelva and Seville and two important industrial complexes) characteristics of the southwestern Iberian Peninsula make this region ideal for the formation and accumulation of ozone. To increase the knowledge of ozone behaviour in this area, the monthly, daily and weekly variations of ozone and its precursors, nitrogen oxides (NO(x) = NO + NO2), were analysed over a 4-year period (2003 to 2006). Using the k-means cluster technique, 12 representative stations of five different areas with different ozone behaviour were selected from a total of 29 monitoring sites. This is the first time that the analysis of these atmospheric pollutants has been carried out for the whole area, allowing therefore a complete understanding of the dynamics and the relationships of these compounds in this region. The results showed an opposite behaviour among ozone and NO and NO2 concentrations in urban and suburban zones, marked by maximums of ozone (minimums NO(x)) in spring and summer and minimums (maximums) in autumn and winter. A seasonal behaviour, with lower amplitude, was also observed in rural and industrial areas for ozone concentrations, with the NO and NO2 concentrations remaining at low and similar values during the year in rural zones due to the absence of emission sources in their surroundings. The daily cycles of ozone in urban, suburban and industrial sites registered a maximum value in the early afternoon (14:00-17:00 UTC) while for NOx two peaks were observed, at 7:00-10:00 UTC and 20:00-22:00. In the case of rural stations, no hourly peak of ozone or NO(x) was registered. The weekend effect was studied by using a statistical contrast tests (Student's t

  7. Hydrogen emissions and their effects on the arctic ozone losses. Risk analysis of a global hydrogen economy; Wasserstoff-Emissionen und ihre Auswirkungen auf den arktischen Ozonverlust. Risikoanalyse einer globalen Wasserstoffwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Feck, Thomas

    2009-07-01

    Hydrogen (H{sub 2}) could be used as one of the major components in our future energy supply in an effort to avoid greenhouse gas emissions. ''Green'' hydrogen in particular, which is produced from renewable energy sources, should significantly reduce emissions that damage the climate. Despite this basically environmentally-friendly property, however, the complex chain of interactions of hydrogen with other compounds means that the implications for the atmosphere must be analysed in detail. For example, H{sub 2} emissions, which could increase the tropospheric H{sub 2} inventory, can be released throughout the complete hydrogen process chain. H{sub 2} enters the stratosphere via the tropical tropopause and is oxidised there to form water vapour (H{sub 2}O). This extra water vapour causes increased radiation in the infrared region of the electromagnetic spectrum and thus causes the stratosphere to cool down. Both the increase in H{sub 2}O and the resulting cooling down of the stratosphere encourage the formation of polar stratospheric clouds (PSC) and liquid sulphate aerosols, which facilitate the production of reactive chlorine, which in turn currently leads to dramatic ozone depletion in the polar stratosphere. In the future, H{sub 2} emissions from a global hydrogen economy could therefore encourage stratospheric ozone depletion in the polar regions and thus inhibit the ozone layer in recovering from the damage caused by chlorofluorocarbons (CFCs). In addition to estimating possible influences on the trace gas composition of the stratosphere, one of the main aims of this thesis is to evaluate the risk associated with increased polar ozone depletion caused by additional H{sub 2} emissions. Studies reported on here have shown that even if around 90% of today's fossil primary energy input was to be replaced by hydrogen and if around 9.5% of the gas was to escape in a ''worst-case'' scenario, the additional ozone loss for unchanged CFC loading in the stratosphere

  8. 77 FR 24399 - Approval and Promulgation of Implementation Plans; Georgia; Atlanta; Ozone 2002 Base Year...

    Science.gov (United States)

    2012-04-24

    ... Promulgation of Implementation Plans; Georgia; Atlanta; Ozone 2002 Base Year Emissions Inventory AGENCY... approve the ozone 2002 base year emissions inventory, portion of the state implementation plan (SIP... technology (RACT), contingency measures, a 2002 base- year emissions inventory and other planning SIP...

  9. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  10. Trends and inter-annual variability of methane emissions derived from 1979-1993 global CTM simulations

    Directory of Open Access Journals (Sweden)

    F. Dentener

    2003-01-01

    Full Text Available The trend and interannual variability of methane sources are derived from multi-annual simulations of tropospheric photochemistry using a 3-D global chemistry-transport model. Our semi-inverse analysis uses the fifteen years (1979--1993 re-analysis of ECMWF meteorological data and annually varying emissions including photo-chemistry, in conjunction with observed CH4 concentration distributions and trends derived from the NOAA-CMDL surface stations. Dividing the world in four zonal regions (45--90 N, 0--45 N, 0--45 S, 45--90 S we find good agreement in each region between (top-down calculated emission trends from model simulations and (bottom-up estimated anthropogenic emission trends based on the EDGAR global anthropogenic emission database, which amounts for the period 1979--1993 2.7 Tg CH4 yr-1. Also the top-down determined total global methane emission compares well with the total of the bottom-up estimates. We use the difference between the bottom-up and top-down determined emission trends to calculate residual emissions. These residual emissions represent the inter-annual variability of the methane emissions. Simulations have been performed in which the year-to-year meteorology, the emissions of ozone precursor gases, and the stratospheric ozone column distribution are either varied, or kept constant. In studies of methane trends it is most important to include the trends and variability of the oxidant fields. The analyses reveals that the variability of the emissions is of the order of 8Tg CH4 yr-1, and likely related to wetland emissions and/or biomass burning.

  11. Destruction of disinfection byproducts and their precursors in swimming pool water by combined UV treatment and ozonation

    DEFF Research Database (Denmark)

    Cheema, Waqas Akram; Kaarsholm, Kamilla Marie Speht; Andersen, Henrik Rasmus

    Both UV treatment and ozonation are used to reduce different types of disinfection byproducts (DBP) in swimming pools. UV treatment is most common as it is particularly efficient in removing the repulsive chlorine like smelling chloramines (combined chlorine). UV treatment of a pool water increased...... chlorine reactivity and formation of chlor-organic DBP such as trihalomethanes. Based on the similar selective reactivity of ozone and chlorine we hypothesized that the created reactivity towards chlorine by UV treatment of dissolved organic matter in pool water might also be expressed as an increased...... reactivity towards ozone and that ozonation might saturate the chlorine reactivity created by UV treatment and mitigate the increased DBP formation. By experimentally treating pool water samples, we found that UV treatment makes pool water highly reactive to ozone. The created reactivity towards chlorine...

  12. Comparison of N-nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong Dong, E-mail: ydliu@bjut.edu.cn; Zhong, Rugang

    2017-01-05

    Highlights: • NDMA formation mechanisms from dimethylamine in chloramination/ozonation were reinvestigated by G4 method. • The reactivity order of halo-/hydroxyl-amines reacting with dimethylamine is NHCl{sub 2} ∼ NHBrCl > NH{sub 2}Cl >> NH{sub 2}OH. • Nitrene compound is an important intermediate to form NDMA in oxidation reaction. • Oxidation of unsymmetrical dimethylhydrazine by O{sub 2} is significantly less feasible compared to that by O{sub 3}. • The amines containing the second nitrogen source are potential NDMA precursors in ozonation. - Abstract: N-nitrosodimethylamine (NDMA) as a disinfection by-product has recently become the focus of considerable research interest due to its unusually high carcinogenicity. In this study, the formation mechanisms of NDMA from dimethylamine (DMA) during chloramination and ozonation were investigated by using the quantum chemical G4 method. The reactivity of haloamines and hydroxylamine reacting with DMA was found in the order: NHCl{sub 2} ∼ NHBrCl (Br{sup -}leaving) > NHBr{sub 2} > NH{sub 2}Cl ∼ NH{sub 2}Br >> NH{sub 2}OH. This offers a theoretical support for the experimentally proposed mechanism that dimethylamine reacts with NHCl{sub 2} rather than NH{sub 2}Cl to form chlorinated unsymmetrical dimethylhydrazine intermediate and the existence of bromochloramine in the presence of bromide during chloramination, and explains the observation that NDMA yield during ozonation is much lower than that during chloramination. Importantly, an N,N-dimethylaminonitrene was found to be a significant intermediate to form NDMA in oxidation reactions by molecular oxygen and ozone. Additionally, results suggest that the amines containing the second nitrogen source directly connecting or close to the N-(CH{sub 3}){sub 2} moiety are potential significant NDMA precursors upon ozonation. The findings of this study are helpful for expanding the knowledge of NDMA formation mechanism, and predicting potential NDMA precursors

  13. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hung-Lung, E-mail: hlchiang@mail.cmu.edu.tw [Department of Health Risk Management, China Medical University, Taichung, Taiwan (China); Lin, Kuo-Hsiung [Department of Environmental Engineering and Science, Fooyin University, Kaohsiung, Taiwan (China)

    2014-01-15

    Highlights: • Recycling of waste printed circuit boards is an important issue. • Pyrolysis is an emerging technology for PCB treatment. • Emission factors of VOCs are determined for PCB pyrolysis exhaust. • Iron-Al{sub 2}O{sub 3} catalyst was employed for the exhaust control. -- Abstract: The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and NOx, were 60–115, 0.4–4.0, 1.1–10, 30–95, and 0–0.7 mg/g, corresponding to temperatures ranging from 200 to 500 °C. When the pyrolysis temperature was lower than 300 °C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400 °C. When VOC exhaust was flowed through the bed of Fe-impregnated Al{sub 2}O{sub 3}, the emission of ozone precursor VOCs could be reduced by 70–80%.

  14. Removal of Ozone by Urban and Peri-Urban Forests: Evidence from Laboratory, Field, and Modeling Approaches

    Science.gov (United States)

    Carlo Calfapietra; Arianna Morani; Gregorio Sgrigna; Sara Di Giovanni; Valerio Muzzini; Emanuele Pallozzi; Gabriele Guidolotti; David Nowak; Silvano Fares

    2016-01-01

    A crucial issue in urban environments is the interaction between urban trees and atmospheric pollution, particularly ozone (O3). Ozone represents one of the most harmful pollutants in urban and peri-urban environments, especially in warm climates. Besides the large interest in reducing anthropogenic and biogenic precursors of O3...

  15. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    Science.gov (United States)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  16. Natural and human-related sources of ozone-forming trace gases in southern Africa

    CSIR Research Space (South Africa)

    Scholes, RJ

    1998-09-01

    Full Text Available or vehicular pollution. The cloud of tropospheric ozone which forms over southern Africa every spring probably has its main origin in natural emissions of the ozone-forming trace gases, including CO from vegetation fires, emissions of NO from soils...

  17. Long-term exposure to ambient ozone and mortality: a quantitative systematic review and meta-analysis of evidence from cohort studies.

    Science.gov (United States)

    Atkinson, R W; Butland, B K; Dimitroulopoulou, C; Heal, M R; Stedman, J R; Carslaw, N; Jarvis, D; Heaviside, C; Vardoulakis, S; Walton, H; Anderson, H R

    2016-02-23

    While there is good evidence for associations between short-term exposure to ozone and a range of adverse health outcomes, the evidence from narrative reviews for long-term exposure is suggestive of associations with respiratory mortality only. We conducted a systematic, quantitative evaluation of the evidence from cohort studies, reporting associations between long-term exposure to ozone and mortality. Cohort studies published in peer-reviewed journals indexed in EMBASE and MEDLINE to September 2015 and PubMed to October 2015 and cited in reviews/key publications were identified via search strings using terms relating to study design, pollutant and health outcome. Study details and estimate information were extracted and used to calculate standardised effect estimates expressed as HRs per 10 ppb increment in long-term ozone concentrations. 14 publications from 8 cohorts presented results for ozone and all-cause and cause-specific mortality. We found no evidence of associations between long-term annual O3 concentrations and the risk of death from all causes, cardiovascular or respiratory diseases, or lung cancer. 4 cohorts assessed ozone concentrations measured during the warm season. Summary HRs for cardiovascular and respiratory causes of death derived from 3 cohorts were 1.01 (95% CI 1.00 to 1.02) and 1.03 (95% CI 1.01 to 1.05) per 10 ppb, respectively. Our quantitative review revealed a paucity of independent studies regarding the associations between long-term exposure to ozone and mortality. The potential impact of climate change and increasing anthropogenic emissions of ozone precursors on ozone levels worldwide suggests further studies of the long-term effects of exposure to high ozone levels are warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. An assessment of ground-level ozone concentrations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1997-01-01

    Syncrude and Suncor have plans to develop new oil sands leases and to increase crude oil and bitumen recovery in the Athabasca oil sands region. A first air quality assessment was prepared as part of the Alberta Energy and Utilities Board application, in order to evaluate the emissions and potential impacts associated with the development. The Pembina Institute raised several issues with respect to potential future changes in ambient ozone levels as a result of the Aurora Mine operations. In response to these concerns, another more rigorous assessment was conducted to predict future ground-level ozone concentrations in the Fort McMurray area. This report includes: (1) ambient air quality guidelines for ozone, (2) emissions inventory for dispersion modelling, (3) dispersion modelling methodology, and (4) predicted ambient ozone concentrations. Ground level ozone (O 3 ) concentrations result from anthropogenically produced ozone, and from naturally occurring ozone. Ozone is not directly emitted to the atmosphere from industrial sources, but is formed as a result of chemical reactions between NO x and VOCs, which are emitted from industrial sources within the Athabasca oil sands region. NO x and VOC emissions associated with the Aurora Mine operation are predicted to increase hourly average ozone concentrations in the Fort McMurray area by only 0.001 ppm. 17 refs., 18 tabs., 5 figs

  19. The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010

    OpenAIRE

    M. Parrington; P. I. Palmer; D. K. Henze; D. W. Tarasick; E. J. Hyer; R. C. Owen; D. Helmig; C. Clerbaux; K. W. Bowman; M. N. Deeter; E. M. Barratt; P.-F. Coheur; D. Hurtmans; M. George; J. R. Worden

    2011-01-01

    We analyse the tropospheric ozone distribution over North America and the North Atlantic to boreal biomass burning emissions during the summer of 2010 using the GEOS-Chem 3-D global tropospheric chemical transport model, and observations from in situ and satellite instruments. In comparison to observations from the PICO-NARE observatory in the Azores, ozonesondes across Canada, and the Tropospheric Emission Spectrometer (TES) and Infrared Atmospheric Sounding Instrument (IASI) satellite instr...

  20. Photochemical production of ozone and control strategy for Southern Taiwan

    Science.gov (United States)

    Shiu, Chein-Jung; Liu, Shaw Chen; Chang, Chih-Chung; Chen, Jen-Ping; Chou, Charles C. K.; Lin, Chuan-Yao; Young, Chea-Yuan

    An observation-based method (OBM) is developed to evaluate the ozone (O 3) production efficiency (O 3 molecules produced per NO x molecule consumed) and O 3 production rate ( P(O 3)) during a field campaign in southern Taiwan. The method can also provide an estimate of the concentration of OH. A key step in the method is to use observed concentrations of two aromatic hydrocarbons, namely ethylbenzene and m, p-xylene, to estimate the degree of photochemical processing and amounts of photochemically consumed NO x and NMHCs by OH. In addition, total oxidant (O 3+NO 2) instead of O 3 itself turns out to be very useful for representing ozone production in the OBM approach. The average O 3 production efficiency during the field campaign in Fall (2003) is found to be about 10.2±3.9. The relationship of P(O 3) with NO x is examined and compared with a one-dimensional (1D) photochemical model. Values of P(O 3) derived from the OBM are slightly lower than those calculated in the 1D model. However, OH concentrations estimated by the OBM are about a factor of 2 lower than the 1D model. Fresh emissions, which affect the degree of photochemical processing appear to be a major cause of the underestimate. We have developed a three-dimensional (3D) OBM O 3 production diagram that resembles the EKMA ozone isopleth diagram to study the relationship of the total oxidant versus O 3 precursors. The 3D OBM O 3 production diagram suggests that reducing emissions of NMHCs are more effective in controlling O 3 than reducing NO x. However, significant uncertainties remain in the OBM, and considerable more work is required to minimize these uncertainties before a definitive control strategy can be reached. The observation-based approach provides a good alternative to measuring peroxy radicals for evaluating the production of O 3 and formulating O 3 control strategy in urban and suburban environments.

  1. Distribution ozone concentration in Klang Valley using GIS approaches

    Science.gov (United States)

    Sulaiman, A.; Rahman, A. A. Ab; Maulud, K. N. Abdul; Latif, M. T.; Ahmad, F.; Wahid, M. A. Abdul; Ibrahim, M. A.; Halim, N. D. Abdul

    2017-05-01

    Today, ozone has become one of the main air pollutants in Malaysia. The high ozone precursor concentrations have been encouraging the ozone production. The development of the Klang Valley, Malaysia has many types of physical activities such as urban commercial, industrial area, settlement area and others, which has increased the risk of atmospheric pollution. The purpose of this paper is to determine the spatial distribution between types of land use and ozone concentration that are occurred in the year 2014. The study areas for this paper include Shah Alam, Kajang, Petaling Jaya and Port Klang. Distribution of ozone concentration will be showed via spatial analysis tools in Geographic Information Systems (GIS) approached and the types of land use will be extracted using Remote Sensing technique. The result showed 97 ppb (parts-per-billion, 10-9) and 161 ppb recorded at Port Klang and Shah Alam respectively that are mainly represented by the settlement area. Therefore, the physical land use need to be monitor and controlled by the government in order to make sure the ozone production for daily per hour will not exceed the regulation allowed.

  2. Distribution ozone concentration in Klang Valley using GIS approaches

    International Nuclear Information System (INIS)

    Sulaiman, A; Ab Rahman, A A; Abdul Maulud, K N; Abdul Wahid, M A; Ibrahim, M A; Latif, M T; Abdul Halim, N D; Ahmad, F

    2017-01-01

    Today, ozone has become one of the main air pollutants in Malaysia. The high ozone precursor concentrations have been encouraging the ozone production. The development of the Klang Valley, Malaysia has many types of physical activities such as urban commercial, industrial area, settlement area and others, which has increased the risk of atmospheric pollution. The purpose of this paper is to determine the spatial distribution between types of land use and ozone concentration that are occurred in the year 2014. The study areas for this paper include Shah Alam, Kajang, Petaling Jaya and Port Klang. Distribution of ozone concentration will be showed via spatial analysis tools in Geographic Information Systems (GIS) approached and the types of land use will be extracted using Remote Sensing technique. The result showed 97 ppb (parts-per-billion, 10 -9 ) and 161 ppb recorded at Port Klang and Shah Alam respectively that are mainly represented by the settlement area. Therefore, the physical land use need to be monitor and controlled by the government in order to make sure the ozone production for daily per hour will not exceed the regulation allowed. (paper)

  3. Impact of the 2008 Global Recession on Air Quality over the United States: Implications for Surface Ozone Levels from Changes in NOx Emissions

    Science.gov (United States)

    Tong, Daniel; Pan, Li; Chen, Weiwei; Lamsal, Lok; Lee, Pius; Tang, Youhua; Kim, Hyuncheol; Kondragunta, Shobha; Stajner, Ivanka

    2016-01-01

    Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quantified by simulating O3 concentrations under two emission scenarios: business-as-usual (BAU) and recession. In the BAU case, the emission projection from the Cross-State Air Pollution Rule is used to estimate the would-be NOx emission level in 2011. In the recession case, the actual NO2 trends observed from Air Quality System ground monitors and the Ozone Monitoring Instrument on the Aura satellite are used to obtain realistic changes in NOx emissions. The model prediction with the recession effect agrees better with ground O3 observations over time and space than the prediction with the BAU emission. The results show that the recession caused a 12ppbv decrease in surface O3 concentration over the eastern United States, a slight increase (0.51ppbv) over the Rocky Mountain region, and mixed changes in the Pacific West. The gain in air quality benefits during the recession, however, could be quickly offset by the much slower emission reduction rate during the post-recession period.

  4. Vegetation-mediated Climate Impacts on Historical and Future Ozone Air Quality

    Science.gov (United States)

    Tai, A. P. K.; Fu, Y.; Mickley, L. J.; Heald, C. L.; Wu, S.

    2014-12-01

    Changes in climate, natural vegetation and human land use are expected to significantly influence air quality in the coming century. These changes and their interactions have important ramifications for the effectiveness of air pollution control strategies. In a series of studies, we use a one-way coupled modeling framework (GEOS-Chem driven by different combinations of historical and future meteorological, land cover and emission data) to investigate the effects of climate-vegetation changes on global and East Asian ozone air quality from 30 years ago to 40 years into the future. We find that future climate and climate-driven vegetation changes combine to increase summertime ozone by 2-6 ppbv in populous regions of the US, Europe, East Asia and South Asia by year 2050, but including the interaction between CO2 and biogenic isoprene emission reduces the climate impacts by more than half. Land use change such as cropland expansion has the potential to either mostly offset the climate-driven ozone increases (e.g., in the US and Europe), or greatly increase ozone (e.g., in Southeast Asia). The projected climate-vegetation effects in East Asia are particularly uncertain, reflecting a less understood ozone production regime. We thus further study how East Asian ozone air quality has evolved since the early 1980s in response to climate, vegetation and emission changes to shed light on its likely future course. We find that warming alone has led to a substantial increase in summertime ozone in populous regions by 1-4 ppbv. Despite significant cropland expansion and urbanization, increased summertime leafiness of vegetation in response to warming and CO2 fertilization has reduced ozone by 1-2 ppbv, driven by enhanced ozone deposition dominating over elevated biogenic emission and partially offsetting the warming effect. The historical role of CO2-isoprene interaction in East Asia, however, remains highly uncertain. Our findings demonstrate the important roles of land cover

  5. A process-based emission model of volatile organic compounds from silage sources on farms

    DEFF Research Database (Denmark)

    Bonifacio, H. F.; Rotz, C. A.; Hafner, S. D.

    2017-01-01

    Silage on dairy farms can emit large amounts of volatile organic compounds (VOCs), a precursor in the formation of tropospheric ozone. Because of the challenges associated with direct measurements, process-based modeling is another approach for estimating emissions of air pollutants from sources...... was evaluated using ethanol and methanol emissions measured from conventional silage piles (CSP), silage bags (SB), total mixed rations (TMR), and loose corn silage (LCS) at a commercial dairy farm in central California. With transport coefficients for ethanol refined using experimental data from our previous......% if feeds were delivered as four feedings per day rather than as one. Reducing the exposed face of storage can also be useful. Simulated use of silage bags resulted in 90% and 18% reductions in emissions from the storage face and whole farm, respectively....

  6. Impacts from a fossil fuel power plant on ozone levels in Memphis, Tennessee

    International Nuclear Information System (INIS)

    Mueller, S.F.; Bailey, E.M.

    1998-01-01

    The Tennessee Valley Authority (TVA) Allen power plant is located on the Mississippi River in the southwest corner of Memphis, Tennessee. Allen has three coal-fired cyclone boilers with a rated capacity of 272 MW each. It is a Phase 2 plant under Title IV of the Clean Air Act and is the largest single source of NO x in the Memphis area. TVA plans to reduce Allen NOx emissions through a combination of burning low-sulfur coal (which has the benefit of reducing NO x emissions while also reducing SO 2 emissions) and installing gas re-burn technology. A modeling study using the SAI, Inc., UAM-V photochemical model was conducted to examine the potential impacts of NO x reductions on ozone levels in the Memphis area. A series of four model simulations were made in which different Allen emissions scenarios were examined. The focus period of the photochemical modeling was 11--14 July 1995 when measurements in and near Memphis indicated peak hourly ozone levels of 135--140 ppb. This analysis primarily examined computed impacts within 50 km of Memphis. Allen was computed to contribute as much as 20--30 ppb to ground ozone levels 20-50 km downwind using its NO x emission rate before Title IV compliance. After compliance it was computed to contribute only about 10--20 ppb. At the same time, maximum daily ozone reductions due to Allen NO x titration of ozone were between 30 and 60 ppb. These benefits will be reduced by 30--50% after Title IV compliance, and are expected to occur within 30 km of the plant. More model grid cells indicated dis-benefits (net ground-level ozone increases) than benefits on three of the four episode days using the Title IV compliance emission rate. Significant ozone dis-benefits were expected because of the well-documented NO titration of ozone within plumes having a high ratio of NO to volatile organic compounds

  7. LaRC Modeling of Ozone Formation in San Antonio, Texas

    Science.gov (United States)

    Guo, F.; Griffin, R. J.; Bui, A.; Schulze, B.; Wallace, H. W., IV; Flynn, J. H., III; Erickson, M.; Kotsakis, A.; Alvarez, S. L.; Usenko, S.; Sheesley, R. J.; Yoon, S.

    2017-12-01

    Ozone (O3) is one of the most important trace species within the troposphere and results from photochemistry involving emissions from a complex array of sources. Ground-level O3 is detrimental to ecosystems and causes a variety of human health problems including respiratory irritation, asthma and reduction in lung capacity. However, the O3 Design Value in San Antonio, Texas, was in violation of the federal threshold set by the EPA (70 ppb, 8-hr max) based on the average for the most recent three-year period (2014-2016). To understand the sources of high O3 concentrations in this nonattainment area, we assembled and deployed a mobile air quality laboratory and operated it in two locations in the southeast (Traveler's World RV Park) and northwest (University of Texas at San Antonio) of downtown San Antonio during summer 2017 to measure O3 and its precursors, including total nitrogen oxides (NOx) and volatile organic compounds (VOCs). Additional measurements included temperature, relative humidity, pressure, solar radiation, wind speed, wind direction, total reactive nitrogen (NOy), carbon monoxide (CO), and aerosol composition and concentration. We will use the campaign data and the NASA Langley Research Center (LaRC) Zero-Dimensional Box Model (Crawford et al., 1999; Olson et al., 2006) to calculate O3 production rate, NOx and hydroxyl radical chain length, and NOx versus VOCs sensitivity at different times of a day with different photochemical and meteorological conditions. A key to our understanding is to combine model results with measurements of precursor gases, particle chemistry and particle size to support the identification of O3 sources, its major formation pathways, and how the ozone production efficiency (OPE) depends on various factors. The resulting understanding of the causes of high O3 concentrations in the San Antonio area will provide insight into future air quality protection.

  8. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF6. Danish consumption and emissions, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [PlanMiljoe (Denmark)

    2006-05-19

    The objective of this project was to map the 2004 consumption of newly produced industrial ozone-depleting substances and the consumption and actual emissions of HFCs, PFCs, and SF6. The evaluation was made in accordance with the IPCC guidelines, and following the method employed in previous evaluations and it covers the net consumption of ozone-depleting substances. The term 'net consumption' is understood as the amount of imported goods in bulk or drums, less any re-export of substances as raw materials. Ozone-depleting substances contained in finished products that are imported and exported are not included in the evaluation. This delimitation is in full compliance with international guidelines. The evaluation does not account for the consumption of ozone-depleting substances used as raw material in the production of other substances, such as tetra chloromethane, and which are not subsequently emitted to the atmosphere. The information on consumption has been gathered from importers, suppliers and enterprise end-users (usually purchasing departments), and Statistics Denmark. This method of data gathering means that the information gathered is about the quantities of substances traded. Purchase and sales figures are used as an expression of consumption. This approach is considered to be suitable and adequate for the present purpose, since experience from previous projects shows that a levelling out occurs with time and that the substances sold/purchased are consumed within a relatively small time horizon. None of the substances covered here are produced in Denmark. Furthermore, ozone-depleting substances are treated at chemical waste processing plants in Denmark. Treatment and destruction data was gathered for the evaluation, but in line with all previous evaluations it has not been accounted for in the consumption figures. (BA)

  9. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.

    Science.gov (United States)

    Brinkman, Gregory L; Denholm, Paul; Hannigan, Michael P; Milford, Jana B

    2010-08-15

    This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand. Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity. The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered. With 100% PHEV penetration, nitrogen oxide (NO(x)) emissions were reduced by 27 tons per day (tpd) from a fleet of 1.7 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd. These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days. Ozone concentration increases were modeled for small areas near central Denver. Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets.

  10. The effects of global changes upon regional ozone pollution in the United States

    Science.gov (United States)

    Chen, J.; Avise, J.; Lamb, B.; Salathé, E.; Mass, C.; Guenther, A.; Wiedinmyer, C.; Lamarque, J.-F.; O'Neill, S.; McKenzie, D.; Larkin, N.

    2009-02-01

    A comprehensive numerical modeling framework was developed to estimate the effects of collective global changes upon ozone pollution in the US in 2050. The framework consists of the global climate and chemistry models, PCM (Parallel Climate Model) and MOZART-2 (Model for Ozone and Related Chemical Tracers v.2), coupled with regional meteorology and chemistry models, MM5 (Mesoscale Meteorological model) and CMAQ (Community Multi-scale Air Quality model). The modeling system was applied for two 10-year simulations: 1990-1999 as a present-day base case and 2045-2054 as a future case. For the current decade, the daily maximum 8-h moving average (DM8H) ozone mixing ratio distributions for spring, summer and fall showed good agreement with observations. The future case simulation followed the Intergovernmental Panel on Climate Change (IPCC) A2 scenario together with business-as-usual US emission projections and projected alterations in land use, land cover (LULC) due to urban expansion and changes in vegetation. For these projections, US anthropogenic NOx (NO+NO2) and VOC (volatile organic carbon) emissions increased by approximately 6% and 50%, respectively, while biogenic VOC emissions decreased, in spite of warmer temperatures, due to decreases in forested lands and expansion of croplands, grasslands and urban areas. A stochastic model for wildfire emissions was applied that projected 25% higher VOC emissions in the future. For the global and US emission projection used here, regional ozone pollution becomes worse in the 2045-2054 period for all months. Annually, the mean DM8H ozone was projected to increase by 9.6 ppbv (22%). The changes were higher in the spring and winter (25%) and smaller in the summer (17%). The area affected by elevated ozone within the US continent was projected to increase; areas with levels exceeding the 75 ppbv ozone standard at least once a year increased by 38%. In addition, the length of the ozone season was projected to increase with

  11. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China.

    Science.gov (United States)

    Ou, Jiamin; Zheng, Junyu; Li, Rongrong; Huang, Xiaobo; Zhong, Zhuangmin; Zhong, Liuju; Lin, Hui

    2015-10-15

    The increasing ground-ozone (O3) levels, accompanied by decreasing SO2, NO2, PM10 and PM2.5 concentrations benefited from air pollution control measures implemented in recent years, initiated a serious challenge to control Volatile Organic Compound (VOC) emissions in the Pearl River Delta (PRD) region, China. Speciated VOC emission inventory is fundamental for estimating Ozone Formation Potentials (OFPs) to identify key reactive VOC species and sources in order to formulate efficient O3 control strategies. With the use of the latest bulk VOC emission inventory and local source profiles, this study developed the PRD regional speciated Oxygenated Volatile Organic Compound (OVOC) and VOC emission inventories to identify the key emission-based and OFP-based VOC sources and species. Results showed that: (1) Methyl alcohol, acetone and ethyl acetate were the major constituents in the OVOC emissions from industrial solvents, household solvents, architectural paints and biogenic sources; (2) from the emission-based perspective, aromatics, alkanes, OVOCs and alkenes made up 39.2%, 28.2%, 15.9% and 10.9% of anthropogenic VOCs; (3) from the OFP-based perspective, aromatics and alkenes become predominant with contributions of 59.4% and 25.8% respectively; (4) ethene, m/p-xylene, toluene, 1,2,4-trimethyl benzene and other 24 high OFP-contributing species were the key reactive species that contributed to 52% of anthropogenic emissions and up to 80% of OFPs; and (5) industrial solvents, industrial process, gasoline vehicles and motorcycles were major emission sources of these key reactive species. Policy implications for O3 control strategy were discussed. The OFP cap was proposed to regulate VOC control policies in the PRD region due to its flexibility in reducing the overall OFP of VOC emission sources in practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Stratospheric ozone reduction and its relation to natural and man made sources

    Energy Technology Data Exchange (ETDEWEB)

    Isaksen, I S [Oslo Univ. (Norway). Dept. of Geophysics

    1996-12-31

    Approximately 90 % of the total ozone mass is in the stratosphere (between approximately 12 and 50 km), the rest is in the troposphere (below 12 km). The global distribution of ozone in the stratosphere and its variation over time have been studied extensively over several decades. These studies include observations by ground based instruments (e.g. Dobson instruments), instruments on airborne platforms (e.g. ozone sondes) and on satellites, and model studies which simulate the chemical and dynamical behaviour of the stratosphere. These studies have given good information about the processes which determine the ozone distribution, and how man made emissions affect the distribution. Observations have revealed that there are large year to year variations in stratospheric ozone above a particular location. These variations are difficult to predict as they are connected to irregular weather patterns. However, the observations have shown that there has been a long term decrease in stratospheric ozone on a global scale during the last two decades. The decrease has been most pronounced during the last five to six years and is seen both in the Northern and the Southern Hemispheres. The strong decrease in stratospheric ozone over the Antarctic continent, which has been observed since the mid 80s, and which has reduced the total ozone column with more than 50 % compared with earlier observations, is proven to be a result of increased man made emissions of CFCs. There are also mounting evidences that Northern Hemispheric ozone reductions observed since 1980 are connected to man made emissions of CFCs

  13. Stratospheric ozone reduction and its relation to natural and man made sources

    Energy Technology Data Exchange (ETDEWEB)

    Isaksen, I.S. [Oslo Univ. (Norway). Dept. of Geophysics

    1995-12-31

    Approximately 90 % of the total ozone mass is in the stratosphere (between approximately 12 and 50 km), the rest is in the troposphere (below 12 km). The global distribution of ozone in the stratosphere and its variation over time have been studied extensively over several decades. These studies include observations by ground based instruments (e.g. Dobson instruments), instruments on airborne platforms (e.g. ozone sondes) and on satellites, and model studies which simulate the chemical and dynamical behaviour of the stratosphere. These studies have given good information about the processes which determine the ozone distribution, and how man made emissions affect the distribution. Observations have revealed that there are large year to year variations in stratospheric ozone above a particular location. These variations are difficult to predict as they are connected to irregular weather patterns. However, the observations have shown that there has been a long term decrease in stratospheric ozone on a global scale during the last two decades. The decrease has been most pronounced during the last five to six years and is seen both in the Northern and the Southern Hemispheres. The strong decrease in stratospheric ozone over the Antarctic continent, which has been observed since the mid 80s, and which has reduced the total ozone column with more than 50 % compared with earlier observations, is proven to be a result of increased man made emissions of CFCs. There are also mounting evidences that Northern Hemispheric ozone reductions observed since 1980 are connected to man made emissions of CFCs

  14. Hydrogen emissions and their effects on the arctic ozone losses. Risk analysis of a global hydrogen economy; Wasserstoff-Emissionen und ihre Auswirkungen auf den arktischen Ozonverlust. Risikoanalyse einer globalen Wasserstoffwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Feck, Thomas

    2009-07-01

    Hydrogen (H{sub 2}) could be used as one of the major components in our future energy supply in an effort to avoid greenhouse gas emissions. ''Green'' hydrogen in particular, which is produced from renewable energy sources, should significantly reduce emissions that damage the climate. Despite this basically environmentally-friendly property, however, the complex chain of interactions of hydrogen with other compounds means that the implications for the atmosphere must be analysed in detail. For example, H{sub 2} emissions, which could increase the tropospheric H{sub 2} inventory, can be released throughout the complete hydrogen process chain. H{sub 2} enters the stratosphere via the tropical tropopause and is oxidised there to form water vapour (H{sub 2}O). This extra water vapour causes increased radiation in the infrared region of the electromagnetic spectrum and thus causes the stratosphere to cool down. Both the increase in H{sub 2}O and the resulting cooling down of the stratosphere encourage the formation of polar stratospheric clouds (PSC) and liquid sulphate aerosols, which facilitate the production of reactive chlorine, which in turn currently leads to dramatic ozone depletion in the polar stratosphere. In the future, H{sub 2} emissions from a global hydrogen economy could therefore encourage stratospheric ozone depletion in the polar regions and thus inhibit the ozone layer in recovering from the damage caused by chlorofluorocarbons (CFCs). In addition to estimating possible influences on the trace gas composition of the stratosphere, one of the main aims of this thesis is to evaluate the risk associated with increased polar ozone depletion caused by additional H{sub 2} emissions. Studies reported on here have shown that even if around 90% of today's fossil primary energy input was to be replaced by hydrogen and if around 9.5% of the gas was to escape in a ''worst-case'' scenario, the additional ozone loss for

  15. Evaluating the effects of climate change on summertime ozone using a relative response factor approach for policymakers.

    Science.gov (United States)

    Avise, Jeremy; Abraham, Rodrigo Gonzalez; Chung, Serena H; Chen, Jack; Lamb, Brian; Salathé, Eric P; Zhang, Yongxin; Nolte, Christopher G; Loughlin, Daniel H; Guenther, Alex; Wiedinmyer, Christine; Duhl, Tiffany

    2012-09-01

    The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRF(E)), which estimates the relative change in peak ozone concentration for a given change in pollutant emissions (the subscript E is added to RRF to remind the reader that the RRF is due to emission changes only). A matrix of model simulations was conducted to examine the individual and combined effects offuture anthropogenic emissions, biogenic emissions, and climate on the RRF(E). For each member in the matrix of simulations the warmest and coolest summers were modeled for the present-day (1995-2004) and future (2045-2054) decades. A climate adjustment factor (CAF(C) or CAF(CB) when biogenic emissions are allowed to change with the future climate) was defined as the ratio of the average daily maximum 8-hr ozone simulated under a future climate to that simulated under the present-day climate, and a climate-adjusted RRF(EC) was calculated (RRF(EC) = RRF(E) x CAF(C)). In general, RRF(EC) > RRF(E), which suggests additional emission controls will be required to achieve the same reduction in ozone that would have been achieved in the absence of climate change. Changes in biogenic emissions generally have a smaller impact on the RRF(E) than does future climate change itself The direction of the biogenic effect appears closely linked to organic-nitrate chemistry and whether ozone formation is limited by volatile organic compounds (VOC) or oxides of nitrogen (NO(x) = NO + NO2). Regions that are generally NO(x) limited show a decrease in ozone and RRF(EC), while VOC-limited regions show an increase in ozone and RRF(EC). Comparing results to a previous study using different climate assumptions and models showed large variability in the CAF(CB). We present a methodology for adjusting the RRF to account for the influence of

  16. Climate Change Impacts on Projections of Excess Mortality at 2030 using Spatially-Varying Ozone-Temperature Risk Surfaces

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744

  17. The relative importance of impacts from climate change vs. emissions change on air pollution levels in the 21st century

    Directory of Open Access Journals (Sweden)

    G. B. Hedegaard

    2013-04-01

    Full Text Available So far several studies have analysed the impacts of climate change on future air pollution levels. Significant changes due to impacts of climate change have been made clear. Nevertheless, these changes are not yet included in national, regional or global air pollution reduction strategies. The changes in future air pollution levels are caused by both impacts from climate change and anthropogenic emission changes, the importance of which needs to be quantified and compared. In this study we use the Danish Eulerian Hemispheric Model (DEHM driven by meteorological input data from the coupled Atmosphere-Ocean General Circulation Model ECHAM5/MPI-OM and forced with the newly developed RCP4.5 emissions. The relative importance of the climate signal and the signal from changes in anthropogenic emissions on the future ozone, black carbon (BC, total particulate matter with a diameter below 2.5 μm (total PM2.5 including BC, primary organic carbon (OC, mineral dust and secondary inorganic aerosols (SIA and total nitrogen (including NHx + NOy has been determined. For ozone, the impacts of anthropogenic emissions dominate, though a climate penalty is found in the Arctic region and northwestern Europe, where the signal from climate change dampens the effect from the projected emission reductions of anthropogenic ozone precursors. The investigated particles are even more dominated by the impacts from emission changes. For black carbon the emission signal dominates slightly at high latitudes, with an increase up to an order of magnitude larger, close to the emission sources in temperate and subtropical areas. Including all particulate matter with a diameter below 2.5 μm (total PM2.5 enhances the dominance from emissions change. In contrast, total nitrogen (NHx + NOy in parts of the Arctic and at low latitudes is dominated by impacts of climate change.

  18. The study of international and interstate transport of ozone in Yuma, Arizona

    Science.gov (United States)

    Li, Y.; Sonenberg, M.; Wood, J. L.; Pearson, C. R.; Colson, H.; Malloy, J. W.; Pace, M.; Mao, F.; Paul, J.; Busby, B. R.; Parkey, B.; Drago, L.; Franquist, T. S.

    2017-12-01

    In October 2015, EPA reduced the National Ambient Air Quality Standards (NAAQS) for ozone from 75 parts per billion (ppb) to 70 ppb. Meeting the new standard may be extremely challenging for some areas, including rural Yuma County in the State of Arizona. Yuma County faces unique air quality challenges, since it borders the Mexican states of Baja California and Sonora, and the State of California. The present study investigates the contribution of international and interstate transport of ozone and ozone precursors to episodes of elevated ozone concentrations in Yuma. The Arizona Department of Environmental Quality (ADEQ) merged HYSPLIT modeling outputs with two years of hourly ground ozone monitor data to investigate the potential area contributions to ozone concentrations in Yuma County. This analysis found that elevated ozone concentrations in Yuma in 2014 and 2015 frequently coincided with back-trajectories over both California and Mexico, typically favoring Mexico during the spring. In May 2017, ADEQ installed a new ozone monitor in San Luis Rio Colorado, Sonora, Mexico (Latitude: 32.4665, Longitude: -114.7688), which is 29 km south of ozone site in Yuma County. We will present the first simultaneous observations of ozone seasons in Sonora, Mexico, eastern California, and Yuma.

  19. The effect of SST emissions on the earth's ozone layer

    Science.gov (United States)

    Whitten, R. C.; Turco, R. P.

    1974-01-01

    The work presented here is directed toward assessment of environmental effects of the supersonic transport (SST). The model used for the purpose includes vertical eddy transport and the photochemistry of the O-H-N system. It is found that the flight altitude has a pronounced effect on ozone depletion. The largest ozone reduction occurs for NO deposition above an altitude of 20 km.

  20. Analysis of the summertime buildup of tropospheric ozone abundances over the Middle East and North Africa as observed by the Tropospheric Emission Spectrometer instrument

    Science.gov (United States)

    Liu, Jane J.; Jones, Dylan B. A.; Worden, John R.; Noone, David; Parrington, Mark; Kar, Jay

    2009-03-01

    We use the GEOS-Chem chemical transport model to interpret observations of tropospheric ozone from the Tropospheric Emission Spectrometer (TES) satellite instrument in summer 2005. Observations from TES reveal elevated ozone in the middle troposphere (500-400 hPa) across North Africa and the Middle East. Observed ozone abundances in the middle troposphere are at a maximum in summer and a minimum in winter, consistent with the previously predicted summertime "Middle East ozone maximum." This summertime enhancement in ozone is associated with the Arabian and Sahara anticyclones, centered over the Zagros and Atlas Mountains, respectively. These anticyclones isolate the middle troposphere over northeast Africa and the Middle East, with westerlies to the north and easterlies to the south, facilitating the buildup of ozone. Over the Middle East, we find that in situ production and transport from Asia provides comparable contributions of 30-35% to the ozone buildup. Over North Africa, in situ production is dominant (at about 20%), with transport from Asia, North America, and equatorial Africa each contributing about 10-15% to the total ozone. We find that although the eastern Mediterranean is characterized by strong descent in the middle and upper troposphere in summer, transport from the boundary layer accounts for about 25% of the local Middle Eastern contribution to the ozone enhancement in the middle troposphere. This upward transport of boundary layer air is associated with orographic lifting along the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water.

  1. Trends in Surface Level Ozone Observations from Human-health Relevant Metrics: Results from the Tropospheric Ozone Assessment Report (TOAR)

    Science.gov (United States)

    Fleming, Z. L.; von Schneidemesser, E.; Doherty, R. M.; Malley, C.; Cooper, O. R.; Pinto, J. P.; Colette, A.; Xu, X.; Simpson, D.; Schultz, M.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.

    2017-12-01

    Ozone is an air pollutant formed in the atmosphere from precursor species (NOx, VOCs, CH4, CO) that is detrimental to human health and ecosystems. The global Tropospheric Ozone Assessment Report (TOAR) initiative has assembled a global database of surface ozone observations and generated ozone exposure metrics at thousands of measurement sites around the world. This talk will present results from the assessment focused on those indicators most relevant to human health. Specifically, the trends in ozone, comparing different time periods and patterns across regions and among metrics will be addressed. In addition, the fraction of population exposed to high ozone levels and how this has changed between 2000 and 2014 will also be discussed. The core time period analyzed for trends was 2000-2014, selected to include a greater number of sites in East Asia. Negative trends were most commonly observed at many US and some European sites, whereas many sites in East Asia showed positive trends, while sites in Japan showed more of a mix of positive and negative trends. More than half of the sites showed a common direction and significance in the trends for all five human-health relevant metrics. The peak ozone metrics indicate a reduction in exposure to peak levels of ozone related to photochemical episodes in Europe and the US. A considerable number of European countries and states within the US have shown a decrease in population-weighted ozone over time. The 2000-2014 results will be augmented and compared to the trend analysis for additional time periods that cover a greater number of years, but by necessity are based on fewer sites. Trends are found to be statistically significant at a larger fraction of sites with longer time series, compared to the shorter (2000-2014) time series.

  2. Ozone data assimilation with GEOS-Chem: a comparison between 3-D-Var, 4-D-Var, and suboptimal Kalman filter approaches

    Science.gov (United States)

    Singh, K.; Sandu, A.; Bowman, K. W.; Parrington, M.; Jones, D. B. A.; Lee, M.

    2011-08-01

    assimilation approaches (three dimensional variational and suboptimal KF), although derived from different theoretical considerations, provide similar ozone estimates, with relative differences of 5-10 % between the analyses and ozonesonde measurements. Adjoint sensitivity analysis techniques are used to explore the role of of uncertainties in ozone precursors and their emissions on the distribution of tropospheric ozone. A novel technique is introduced that projects 3-D-Variational increments back to an equivalent initial condition, which facilitates comparison with 4-D variational techniques.

  3. Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China

    Science.gov (United States)

    Xu, Zhengning; Huang, Xin; Nie, Wei; Chi, Xuguang; Xu, Zheng; Zheng, Longfei; Sun, Peng; Ding, Aijun

    2017-11-01

    Both anthropogenic emission and synoptic conditions play important roles in ozone (O3) formation and accumulation. In order to understand the influence of synoptic condition and holiday effects on ozone production in the Yangtze River Delta region, China, concentrations of speciated volatile organic compounds (VOCs) and O3 as well as other relevant trace gases were simultaneously measured at the Station for Observing Regional Processes of the Earth System (SORPES) in Nanjing around the National Day holidays of China in 2014, which featured substantial change of emissions and dominated by typical anti-cyclones. Different groups of VOC species and their chemical reactivities were comprehensively analyzed. We observed clear diurnal variations of short alkenes during the measurement period, considerable amount of short alkenes were observed during night (more than 10 ppb) while almost no alkenes were measured during daytime, which might be attributed to different chemical processes. The obvious enhancement of the VOC tracers during the National Day holidays (Oct. 1st-Oct. 7th) indicated that the holiday effect strongly influenced the distribution of VOC profile and chemical reactivity in the atmosphere. At the same time, two meso-scale anticyclone processes were also observed during the measurement period. The synoptic condition contributed to the accumulation of VOCs and other precursors, which consequently impacted the ozone production in this region. The integrated influence of synoptic and holiday effects was also analyzed with an Observation Based Model (OBM) based on simplified MCM (Master Chemical Mechanism) chemical mechanism. The calculated relative increment reactivity (RIR) of different VOC groups revealed that during the holidays, this region was in VOC-limited regime and the variation of RIR shows a close linkage to the development and elimination of anti-cyclones, indicating an in-negligible contribution of synoptic effect toward ozone production in this

  4. A direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard.

    Science.gov (United States)

    Simon, Heather; Baker, Kirk R; Akhtar, Farhan; Napelenok, Sergey L; Possiel, Norm; Wells, Benjamin; Timin, Brian

    2013-03-05

    In setting primary ambient air quality standards, the EPA's responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and risks associated with ambient ozone pollution using a statistical approach to adjust recent air quality to simulate just meeting the current standard level, without specifying emission control strategies. One drawback of this purely statistical concentration rollback approach is that it does not take into account spatial and temporal heterogeneity of ozone response to emissions changes. The application of the higher-order decoupled direct method (HDDM) in the community multiscale air quality (CMAQ) model is discussed here to provide an example of a methodology that could incorporate this variability into the risk assessment analyses. Because this approach includes a full representation of the chemical production and physical transport of ozone in the atmosphere, it does not require assumed background concentrations, which have been applied to constrain estimates from past statistical techniques. The CMAQ-HDDM adjustment approach is extended to measured ozone concentrations by determining typical sensitivities at each monitor location and hour of the day based on a linear relationship between first-order sensitivities and hourly ozone values. This approach is demonstrated by modeling ozone responses for monitor locations in Detroit and Charlotte to domain-wide reductions in anthropogenic NOx and VOCs emissions. As seen in previous studies, ozone response calculated using HDDM compared well to brute-force emissions changes up to approximately a 50% reduction in emissions. A new stepwise approach is developed here to apply this method to emissions reductions beyond 50% allowing for the simulation of more stringent reductions in ozone concentrations. Compared to previous rollback methods, this

  5. Top-down NOX Emissions of European Cities Derived from Modelled and Spaceborne Tropospheric NO2 Columns

    Science.gov (United States)

    Verstraeten, W. W.; Boersma, K. F.; Douros, J.; Williams, J. E.; Eskes, H.; Delcloo, A. W.

    2017-12-01

    High nitrogen oxides (NOX = NO + NO2) concentrations near the surface impact humans and ecosystems badly and play a key role in tropospheric chemistry. NO2 is an important precursor of tropospheric ozone (O3) which in turn affects the production of the hydroxyl radical controlling the chemical lifetime of key atmospheric pollutants and reactive greenhouse gases. Combustion from industrial, traffic and household activities in large and densely populated urban areas result in high NOX emissions. Accurate mapping of these emissions is essential but hard to do since reported emissions factors may differ from real-time emissions in order of magnitude. Modelled NO2 levels and lifetimes also have large associated uncertainties and overestimation in the chemical lifetime which may mask missing NOX chemistry in current chemistry transport models (CTM's). The simultaneously estimation of both the NO2 lifetime and as well as the concentrations by applying the Exponentially Modified Gaussian (EMG) method on tropospheric NO2 columns lines densities should improve the surface NOX emission estimates. Here we evaluate if the EMG methodology applied on the tropospheric NO2 columns simulated by the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) CTM can reproduce the NOX emissions used as model input. First we process both the modelled tropospheric NO2 columns for the period April-September 2013 for 21 selected European urban areas under windy conditions (averaged vertical wind speeds between surface and 500 m from ECMWF > 2 m s-1) as well as the accompanying OMI (Ozone Monitoring Instrument) data providing us with real-time observation-based estimates of midday NO2 columns. Then we compare the top-down derived surface NOX emissions with the 2011 MACC-III emission inventory, used in the CTM as input to simulate the NO2 columns. For cities where NOX emissions can be assumed as originating from one large source good agreement is found between the top-down derived

  6. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces.

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J; Nolte, Christopher G; Spero, Tanya L; Hubbell, Bryan; Rappold, Ana G

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results varied by region. Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1.6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.6 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels.

  7. Tropospheric Ozone and Photochemical Smog

    Science.gov (United States)

    Sillman, S.

    2003-12-01

    global background ozone can make the effects of local pollution events everywhere more acute, and can also cause ecological damage in remote locations that are otherwise unaffected by urban pollution. Ozone at the global scale is also related to greenhouse warming.This chapter provides an overview of photochemical smog at the urban and regional scale, focused primarily on ozone and including a summary of information about particulates. It includes the following topics: dynamics and extent of pollution events; health and ecological impacts; relation between ozone and precursor emissions, including hydrocarbons and nitrogen oxides (NOx); sources, composition, and fundamental properties of particulates; chemistry of ozone and related species; methods of interpretation based on ambient measurements; and the connection between air pollution events and the chemistry of the global troposphere. Because there are many similarities between the photochemistry of ozone during pollution events and the chemistry of the troposphere in general, this chapter will include some information about global tropospheric chemistry and the links between urban-scale and global-scale events. Additional treatment of the global troposphere is found in Volume 4 of this work. The chemistry of ozone formation discussed here is also related to topics discussed in greater detail elsewhere in this volume (see Chapters 9.10 and 9.12) and in Volume 4.

  8. Emissions of nitrogen oxides from road traffic - regulations, emissions and effects

    International Nuclear Information System (INIS)

    Sjoedin, Aake; Pihl-Karlsson, Gunilla; Johansson, Manne; Forsberg, Bertil; Erlandsson, Lennart

    2004-10-01

    The report is a review that aims to improve the basis for additional measures against the road traffic emissions of, in particular, NO x . An important question in the context is whether health effects of NO 2 should serve as a norm for the actions for emission reductions of NO x , or if the environmental effects of NO x -emissions in the form of acidification, eutrophication and ozone should play this role. WHO notes, in its latest review of health effect research, that one cannot demonstrate that NO 2 alone has any direct effects in concentrations at the current whole-year mean norm (40 μg/m 3 ). Such health effects that has been demonstrated in epidemiologic studies at these concentrations are caused by other traffic related emissions (e. g. particles) for which NO 2 constitutes a good indicator. WHO indicates the need for additional sharpening of the norms for ozone and particles. In this context, it is important to note that emissions of NO x on a regional scale contributes to formation of ozone as well as particles. Therefore there exist reasons to decrease the emissions of NO x in order to reach future recommended values for ozone and particles emissions. In the evaluations that will be done during 2004-2005 of the so called Goeteborg protocol, the EU's Ceiling Directives and the CAFE-programme, it is expected that new emissions objective for NO x will be suggested for 2015-2020, to cope with health and environment objectives in Europe. The report shows that that development that currently happens within the vehicle industry, for engines and exhaust emission control system are pursued to meet future exhaust requirement in the USA gives good conditions for the road traffic sector to contribute to that these objectives will reached

  9. Students' Understanding of the Greenhouse Effect, the Societal Consequences of Reducing CO2 Emissions and the Problem of Ozone Layer Depletion.

    Science.gov (United States)

    Andersson, Bjorn; Wallin, Anita

    2000-01-01

    Contributes to the growing body of knowledge about students' conceptions and views of environmental and natural resource issues. Questions 9th and 12th grade Swedish students' understandings of the greenhouse effect, reduction of CO2 emissions, and the depletion of the ozone layer. Observes five models of the greenhouse effect that appear among…

  10. A modelling case study to evaluate control strategies for ozone reduction in Southwestern Spain

    Science.gov (United States)

    Castell, N.; Mantilla, E.; Salvador, R.; Stein, A. F.; Millán, M.

    2009-09-01

    Ozone is a strong oxidant and when certain concentrations are reached it has adverse effects on health, vegetation and materials. With the aim of protecting human health and ecosystems, European Directive 2008/50/EC establishes target values for ozone concentrations, to be achieved from 2010 onwards. In our study area, located in southwestern Spain, ozone levels regularly exceed the human health protection threshold defined in the European Directive. Indeed, this threshold was exceeded on 92 days in 2007, despite the fact that the Directive stipulates that it should not be exceeded on more than 25 days per calendar year averaged over three years. It is urgent, therefore, to reduce the current ozone levels, but because ozone is a secondary pollutant, this reduction must necessarily involve limiting the emission of its precursors, primarily nitrogen oxides (NOx) and volatile organic compounds (VOC). During the central months of the year, southwestern Spain is under strong insolation and weak synoptic forcing, promoting the development of sea breezes and mountain-induced winds and creating re-circulations of pollutants. The complex topography of the area induces the formation of vertical layers, into which the pollutants are injected and subjected to long distance transport and compensatory subsidence. The characteristics of these highly complex flows have important effects on the pollutant dispersion. In this study two ozone pollution episodes have been selected to assess the ozone response to reductions in NOx and VOC emissions from industry and traffic. The first corresponds to a typical summer episode, with the development of breezes in an anticyclonic situation with low gradient pressure and high temperatures, while the second episode presents a configuration characteristic of spring or early summer, with a smooth westerly flow and more moderate temperatures. Air pollution studies in complex terrain require the use of high-resolution models to resolve the complex

  11. Spatial and temporal variability of tropospheric ozone over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, H.E.; Sladkovic, R. [Fraunhofer Inst. (IFU), Garmisch-Partenkirchen (Germany); Ancellet, G. [Universite Paris 6 (France). Service d`Aeronomie du CNRS; Areskoug, H. [Air Pollution Lab., Inst. of Applied Environmental Research, Stockholm Univ. (Sweden); Beck, J.; Waal, L. de [RIVM-LLO, Bilthoven (Netherlands); Boesenberg, J.; Grabbe, G. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Muer, D. de [Meteorological Inst. of Belgium (KMI), Brussels (Belgium); Dutot, A.L.; Etienne, A.; Perros, P.; Toupance, G. [Universite Paris XII-Creteil (France). Lab. de Physico-Chimie de l`Environment; Egelov, A.H.; Granby, K. [National Environmental Research Inst., Roskilde (Denmark); Esser, P.; Roemer, M. [IMW-TNO, Delft (Netherlands); Ferenczi, Z.; Haszpra, L. [Institute for Atmospheric Physics, Budapest (Hungary); Geiss, H.; Smit, H. [Forschungszentrum Juelich (Germany). Inst. fuer Chemie und Dynamik der Geosphaere (ICG-2); Gomiscek, B. [Ljubljana Univ. (Slovenia). Faculty of Chemistry and Chemical Technology; Kezele, N.; Klasinc, L. [Institut Rudjer Boskovic, Zagreb (Croatia); Laurila, T. [Finnish Meteorological Inst., Helsinki (Finland). Dept. of Air Quality; Lindskog, A.; Mowrer, J. [Swedish Environmental Research Inst. (IVL), Goeteborg (Sweden); Nielsen, T. [Risoe National Laboratory, Roskilde (Denmark); Schmitt, R. [Meteorologie Consult GmbH, Glashuetten (Germany); Simmonds, P. [International Science Consultants, Ringwood (United Kingdom); Solberg, S. [NILU, Kjeller (Norway); Varotsos, C. [Athens Univ. (Greece); TOR Task Group 1

    1997-12-31

    The first section is concerned with the characteristics of the TOR-measurement sites and the data used. It describes the methodologies employed for the selection of data in order to obtain representative ozone concentrations with minimum bias caused by the individual location. The question of representativeness of the O{sub 3} concentrations at the TOR sites was given special attention, since it is a crucial point for all conclusions drawn from the observations. Therefore several studies were focused on this issue. The further sections of the report deal with results on the spatial and seasonal variations of ozone concentrations over Europe. Results obtained from in-situ measurements in the boundary layer/lower free troposphere and from vertical soundings in the free troposphere are regarded separately. Finally, trend estimates are presented for ozone as well as for some of its precursors. (orig./KW)

  12. Spatial and temporal variability of tropospheric ozone over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, H E; Sladkovic, R [Fraunhofer Inst. (IFU), Garmisch-Partenkirchen (Germany); Ancellet, G [Universite Paris 6 (France). Service d` Aeronomie du CNRS; Areskoug, H [Air Pollution Lab., Inst. of Applied Environmental Research, Stockholm Univ. (Sweden); Beck, J; Waal, L de [RIVM-LLO, Bilthoven (Netherlands); Boesenberg, J; Grabbe, G [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Muer, D de [Meteorological Inst. of Belgium (KMI), Brussels (Belgium); Dutot, A L; Etienne, A; Perros, P; Toupance, G [Universite Paris XII-Creteil (France). Lab. de Physico-Chimie de l` Environment; Egelov, A H; Granby, K [National Environmental Research Inst., Roskilde (Denmark); Esser, P; Roemer, M [IMW-TNO, Delft (Netherlands); Ferenczi, Z; Haszpra, L [Institute for Atmospheric Physics, Budapest (Hungary); Geiss, H; Smit, H [Forschungszentrum Juelich (Germany). Inst. fuer Chemie und Dynamik der Geosphaere (ICG-2); Gomiscek, B [Ljubljana Univ. (Slovenia). Faculty of Chemistry and Chemical Technology; Kezele, N; Klasinc, L [Institut Rudjer Boskovic, Zagreb (Croatia); Laurila, T [Finnish Meteorological Inst., Helsinki (Finland). Dept. of Air Quality; Lindskog, A; Mowrer, J [Swedish Environmental Research Inst. (IVL), Goeteborg (Sweden); Nielsen, T [Risoe National Laboratory, Roskilde (Denmark); Schmitt, R [Meteorologie Consult GmbH, Glashuetten (Germany); Simmonds, P [International Science Consultants, Ringwood (United Kingdom); Solberg, S [NILU, Kjeller (Norway); Varotsos, C [Athens Univ. (Greece); TOR Task Group 1

    1998-12-31

    The first section is concerned with the characteristics of the TOR-measurement sites and the data used. It describes the methodologies employed for the selection of data in order to obtain representative ozone concentrations with minimum bias caused by the individual location. The question of representativeness of the O{sub 3} concentrations at the TOR sites was given special attention, since it is a crucial point for all conclusions drawn from the observations. Therefore several studies were focused on this issue. The further sections of the report deal with results on the spatial and seasonal variations of ozone concentrations over Europe. Results obtained from in-situ measurements in the boundary layer/lower free troposphere and from vertical soundings in the free troposphere are regarded separately. Finally, trend estimates are presented for ozone as well as for some of its precursors. (orig./KW)

  13. Estimating the Biogenic Non-Methane Hydrocarbon Emissions over Greece

    Directory of Open Access Journals (Sweden)

    Ermioni Dimitropoulou

    2018-01-01

    Full Text Available Biogenic emissions affect the urban air quality as they are ozone and secondary organic aerosol (SOA precursors and should be taken into account when applying photochemical pollution models. The present study presents an estimation of the magnitude of non-methane volatile organic compounds (BNMVOCs emitted by vegetation over Greece. The methodology is based on computation developed with the aid of a Geographic Information System (GIS and theoretical equations in order to produce an emission inventory on a 6 × 6 km2 spatial resolution, in a temporal resolution of 1 h covering one year (2016. For this purpose, a variety of input data was used: updated satellite land-use data, land-use specific emission potentials, foliar biomass densities, temperature, and solar radiation data. Hourly, daily, and annual isoprene, monoterpenes, and other volatile organic compounds (OVOCs were estimated. In the area under study, the annual biogenic emissions were estimated up to 472 kt, consisting of 46.6% isoprene, 28% monoterpenes, and 25.4% OVOCs. Results delineate an annual cycle with increasing values from March to April, while maximum emissions were observed from May to September, followed by a decrease from October to January.

  14. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    Science.gov (United States)

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen

  15. Ozone-forming potential of reformulated gasoline

    National Research Council Canada - National Science Library

    Committee on Ozone-Forming Potential of Reformulated Gasoline, National Research Council

    ... and comparison of the emissions from motor vehicles using different reformulated gasolines based on their ozone-forming potentials and to assess the concomitant impact of that approach on air-quality benefits...

  16. Climate/chemistry feedbacks and biogenic emissions.

    Science.gov (United States)

    Pyle, John A; Warwick, Nicola; Yang, Xin; Young, Paul J; Zeng, Guang

    2007-07-15

    The oxidizing capacity of the atmosphere is affected by anthropogenic emissions and is projected to change in the future. Model calculations indicate that the change in surface ozone at some locations could be large and have significant implications for human health. The calculations depend on the precise scenarios used for the anthropogenic emissions and on the details of the feedback processes included in the model. One important factor is how natural biogenic emissions will change in the future. We carry out a sensitivity calculation to address the possible increase in isoprene emissions consequent on increased surface temperature in a future climate. The changes in ozone are significant but depend crucially on the background chemical regime. In these calculations, we find that increased isoprene will increase ozone in the Northern Hemisphere but decrease ozone in the tropics. We also consider the role of bromine compounds in tropospheric chemistry and consider cases where, in a future climate, the impact of bromine could change.

  17. Vertical ozone transport in the Alps (VOTALP): the valley experiment 1996

    Energy Technology Data Exchange (ETDEWEB)

    Furger, M; Dommen, J; Graber, W K; Prevot, A; Poggio, L; Andreani, S; Keller, J; Portmann, W; Buerki, D; Erne, R; Richter, R; Tinguely, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The EU project VOTALP started its valley campaign in the summer of 1996 in the Mesolcina valley. The influence of thermal circulations on ozone concentrations and on the exchange of ozone and its photochemical precursors between the valley atmosphere and the free troposphere above was the main focus of the study. PSI has participated with various measurement systems (conventional meteorological surface stations, radiosondes, scidar/DOAS systems, chemical analysers). An overview of PSI`s activities in the field campaign is given, and some preliminary results are presented. (author) 1 fig., 2 tabs., 2 refs.

  18. Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan

    2015-01-01

    Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply.

  19. Products of BVOC oxidation: ozone and organic aerosols

    Science.gov (United States)

    Wildt, Jürgen; Andres, Stefanie; Carriero, Giulia; Ehn, Mikael; Fares, Silvano; Hoffmann, Thorsten; Hacker, Lina; Kiendler-Scharr, Astrid; Kleist, Einhard; Paoletti, Elena; Pullinen, Iida; Rohrer, Franz; Rudich, Yinon; Springer, Monika; Tillmann, Ralf; Wahner, Andreas; Wu, Cheng; Mentel, Thomas

    2015-04-01

    Biogenic Volatile Organic Compounds (BVOC) are important precursors in photochemical O3 and secondary organic aerosol (SOA) formation. We conducted a series of laboratory experiments with OH-induced oxidation of monoterpenes to elucidate pathways and efficiencies of O3 and SOA formation. At high NOx conditions ([BVOC] / [NOx] monoterpene mixes emitted from different plant species we observed increasing ozone formation with increasing [NOX]. Between 2 and 3 O3-molecules were formed from 1 monoterpene when ozone formation was BVOC limited. Under such high NOX conditions, new particle formation was suppressed. Increasing [BVOC] / [NOX] ratios caused increasing efficiency of new particle formation indicating that peroxy radicals are the key intermediates in both, photochemical ozone- and new particle formation. The classical chemistry of peroxy radicals is well established (e.g. Master Chemical Mechanism). Peroxy radicals are produced by addition of molecular oxygen to the alkyl radical formed after OH attack at the BVOC. They either react with NO which leads to ozone formation or they react with other peroxy radicals and form chemically stable products (hydroperoxides, alkoholes and ketones). Much less knowledge exists on such reactions for Highly Oxidized Peroxy Radicals, (HOPR). Such HOPR were observed during ozonolysis of several volatiles and, in case of monoterpenes as precursors, they can contain more than 12 Oxygen atoms (Mentel et al., 2015). Although the OH-initiated formation of HOPR is yet not fully understood, their basic gas phase reactions seem to follow classical photochemical rules. In reactions with NO they can act as precursor for O3 and in reactions with other HOPR or with classical less oxidized peroxy radicals they can form highly oxidized stable products and alkoxy radicals. In addition, HOPR-HOPR reactions lead to the formation of dimers that, in case of monoterpenes as reactants, consist of a skeleton with 20 carbon atoms. These dimers seem to

  20. Analysis of the effects of combustion emissions and Santa Ana winds on ambient ozone during the October 2007 southern California wildfires

    Science.gov (United States)

    A. Bytnerowicz; D. Cayan; P. Riggan; S. Schilling; P. Dawson; M. Tyree; L. Wolden; R. Tissell; H. Preisler

    2010-01-01

    Combustion emissions and strong Santa Ana winds had pronounced effects on patterns and levels of ambient ozone (O3) in southern California during the extensive wildland fires of October 2007. These changes are described in detail for a rural receptor site, the Santa Margarita Ecological Reserve, located among large fires in San Diego and Orange counties. In addition,...

  1. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin with Intensive Oil and Gas Production

    Science.gov (United States)

    Matichuk, R.; Tonnesen, G.; Luecken, D.; Roselle, S. J.; Napelenok, S. L.; Baker, K. R.; Gilliam, R. C.; Misenis, C.; Murphy, B.; Schwede, D. B.

    2015-12-01

    The western United States is an important source of domestic energy resources. One of the primary environmental impacts associated with oil and natural gas production is related to air emission releases of a number of air pollutants. Some of these pollutants are important precursors to the formation of ground-level ozone. To better understand ozone impacts and other air quality issues, photochemical air quality models are used to simulate the changes in pollutant concentrations in the atmosphere on local, regional, and national spatial scales. These models are important for air quality management because they assist in identifying source contributions to air quality problems and designing effective strategies to reduce harmful air pollutants. The success of predicting oil and natural gas air quality impacts depends on the accuracy of the input information, including emissions inventories, meteorological information, and boundary conditions. The treatment of chemical and physical processes within these models is equally important. However, given the limited amount of data collected for oil and natural gas production emissions in the past and the complex terrain and meteorological conditions in western states, the ability of these models to accurately predict pollution concentrations from these sources is uncertain. Therefore, this presentation will focus on understanding the Community Multiscale Air Quality (CMAQ) model's ability to predict air quality impacts associated with oil and natural gas production and its sensitivity to input uncertainties. The results will focus on winter ozone issues in the Uinta Basin, Utah and identify the factors contributing to model performance issues. The results of this study will help support future air quality model development, policy and regulatory decisions for the oil and gas sector.

  2. A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    V. E. Fioletov

    2016-09-01

    Full Text Available Sulfur dioxide (SO2 measurements from the Ozone Monitoring Instrument (OMI satellite sensor processed with the new principal component analysis (PCA algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr−1 to more than 4000 kt yr−1 of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources; power plants (297; smelters (53; and sources related to the oil and gas industry (65. The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005–2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30 % of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80 % over the 2005–2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr−1 and not detected by OMI.

  3. A Global Catalogue of Large SO2 Sources and Emissions Derived from the Ozone Monitoring Instrument

    Science.gov (United States)

    Fioletov, Vitali E.; McLinden, Chris A.; Krotkov, Nickolay; Li, Can; Joiner, Joanna; Theys, Nicolas; Carn, Simon; Moran, Mike D.

    2016-01-01

    Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr(exp -1) to more than 4000 kt yr(exp -1) of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005- 2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30% of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80% over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr(exp -1) and not detected by OMI.

  4. Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline

    International Nuclear Information System (INIS)

    Clairotte, M.; Adam, T.W.; Zardini, A.A.; Manfredi, U.; Martini, G.; Krasenbrink, A.; Vicet, A.; Tournié, E.; Astorga, C.

    2013-01-01

    Highlights: ► Most of the pollutants studied were emitted during the cold start of the vehicle. ► More carbonyls were associated with oxygenated fuel (E85–E75) than with E5. ► Acetaldehyde emissions were found particularly enhanced at −7 °C with E75. ► Elevated methane and ozone precursor emissions were measured at −7 °C with E75. ► Ammonia and toluene emissions associated to E75–E85 were lower than with E5. -- Abstract: According to directives 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, since 2011 all fuels on the market used for transport purpose must contain a fraction of 5.75% renewable energy sources. Ethanol in gasoline is a promising solution to reach this objective. In addition to decrease the dependence on fossil fuel, ethanol contributes to reducing air pollutant emissions during combustion (carbon monoxide and total hydrocarbons), and has a positive effect on greenhouse gas emissions. These considerations rely on numerous emission studies performed in standard conditions (20–30 °C), however, very few emission data are available for cold ambient temperatures, as they prevail in winter times in e.g., Northern Europe. This paper presents a chassis dynamometer study examining the effect of ethanol (E75–E85) versus gasoline (E5) at standard and low ambient temperatures (22 °C and −7 °C, respectively). Emissions of modern passenger cars complying with the latest European standards (Euro4 and Euro5a) were recorded over the New European Driving Cycle (NEDC) and the Common Artemis Driving Cycle (CADC). Unregulated compounds such as methane, ammonia, and small chain hydrocarbons were monitored by an online Fourier Transformed Infra-Red spectrometer. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected and analyzed offline by liquid and gas chromatography in order to evaluate the ozone formation

  5. Advancing Understanding of Emissions from Oil and Natural ...

    Science.gov (United States)

    Executive Summary Environmentally responsible development of oil and gas assets requires well-developed emissions inventories and measurement techniques to verify emissions and the effectiveness of control strategies. To accurately model the oil and gas sector impacts on air quality, it is critical to have accurate activity data, emission factors and chemical speciation profiles for volatile organic compounds (VOCs) and nitrogen oxides (NOx). This report describes a U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) Region 8 Regional Applied Research Effort (RARE) effort executed in Fiscal Year (FY) 2014 to FY 2016 that aimed to improve information on upstream oil and production emissions and identify areas where future work is needed. The project involved both field activities and data analysis and synthesis work with emphasis on product-related VOC emissions from well pads. In oil and gas basins with significant condensate and oil production, VOC emissions from well pads primarily arise from the separation of gas and liquid products and the storage process, with the control of emissions usually accomplished by enclosed combustion devices (ECDs), such as flares. Fugitive emissions of VOCs can originate from leaks and from potentially ineffective control systems. In the case of ECDs, byproducts of incomplete combustion may produce more highly reactive ozone precursor species. For both compliance and scientific purposes, the abili

  6. Multi-model Estimates of Intercontinental Source-Receptor Relationships for Ozone Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Fiore, A M; Dentener, F J; Wild, O; Cuvelier, C; Schultz, M G; Hess, P; Textor, C; Schulz, M; Doherty, R; Horowitz, L W; MacKenzie, I A; Sanderson, M G; Shindell, D T; Stevenson, D S; Szopa, S; Van Dingenen, R; Zeng, G; Atherton, C; Bergmann, D; Bey, I; Carmichael, G; Collins, W J; Duncan, B N; Faluvegi, G; Folberth, G; Gauss, M; Gong, S; Hauglustaine, D; Holloway, T; Isaksen, I A; Jacob, D J; Jonson, J E; Kaminski, J W; Keating, T J; Lupu, A; Marmer, E; Montanaro, V; Park, R; Pitari, G; Pringle, K J; Pyle, J A; Schroeder, S; Vivanco, M G; Wind, P; Wojcik, G; Wu, S; Zuber, A

    2008-10-16

    Understanding the surface O{sub 3} response over a 'receptor' region to emission changes over a foreign 'source' region is key to evaluating the potential gains from an international approach to abate ozone (O{sub 3}) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O{sub 3} response over East Asia (EA), Europe (EU), North America (NA) and South Asia (SA) to 20% decreases in anthropogenic emissions of the O{sub 3} precursors, NO{sub x}, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O{sub 3} concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern U.S. and Japan. The sum of the O{sub 3} responses to NO{sub x}, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale 'import sensitivity' as the ratio of the O{sub 3} response to the 20% reductions in foreign versus 'domestic' (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the 3 foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O{sub 3} response to foreign emissions is largest in spring and late fall (0.7-0.9 ppb decrease in all regions from the combined precursor reductions in the 3 foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8-1.6 ppb). High O{sub 3} values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA

  7. Establishing the common patterns of future tropospheric ozone under diverse climate change scenarios

    Science.gov (United States)

    Jimenez-Guerrero, Pedro; Gómez-Navarro, Juan J.; Jerez, Sonia; Lorente-Plazas, Raquel; Baro, Rocio; Montávez, Juan P.

    2013-04-01

    The impacts of climate change on air quality may affect long-term air quality planning. However, the policies aimed at improving air quality in the EU directives have not accounted for the variations in the climate. Climate change alone influences future air quality through modifications of gas-phase chemistry, transport, removal, and natural emissions. As such, the aim of this work is to check whether the projected changes in gas-phase air pollution over Europe depends on the scenario driving the regional simulation. For this purpose, two full-transient regional climate change-air quality projections for the first half of the XXI century (1991-2050) have been carried out with MM5+CHIMERE system, including A2 and B2 SRES scenarios. Experiments span the periods 1971-2000, as a reference, and 2071-2100, as future enhanced greenhouse gas and aerosol scenarios (SRES A2 and B2). The atmospheric simulations have a horizontal resolution of 25 km and 23 vertical layers up to 100 mb, and were driven by ECHO-G global climate model outputs. The analysis focuses on the connection between meteorological and air quality variables. Our simulations suggest that the modes of variability for tropospheric ozone and their main precursors hardly change under different SRES scenarios. The effect of changing scenarios has to be sought in the intensity of the changing signal, rather than in the spatial structure of the variation patterns, since the correlation between the spatial patterns of variability in A2 and B2 simulation is r > 0.75 for all gas-phase pollutants included in this study. In both cases, full-transient simulations indicate an enhanced enhanced chemical activity under future scenarios. The causes for tropospheric ozone variations have to be sought in a multiplicity of climate factors, such as increased temperature, different distribution of precipitation patterns across Europe, increased photolysis of primary and secondary pollutants due to lower cloudiness, etc

  8. SOA Formation Potential of Emissions from Soil and Leaf Litter

    Science.gov (United States)

    Faiola, C. L.; Vanderschelden, G. S.; Wen, M.; Cobos, D. R.; Jobson, B. T.; VanReken, T. M.

    2013-12-01

    In the United States, emissions of volatile organic compounds (VOCs) from natural sources exceed all anthropogenic sources combined. VOCs participate in oxidative chemistry in the atmosphere and impact the concentrations of ozone and particulate material. The formation of secondary organic aerosol (SOA) is particularly complex and is frequently underestimated using state-of-the-art modeling techniques. We present findings that suggest emissions of important SOA precursors from soil and leaf litter are higher than current inventories would suggest, particularly under conditions typical of Fall and Spring. Soil and leaf litter samples were collected at Big Meadow Creek from the University of Idaho Experimental Forest. The dominant tree species in this area of the forest are ponderosa pine, Douglas-fir, and western larch. Samples were transported to the laboratory and housed within a 0.9 cubic meter Teflon dynamic chamber where VOC emissions were continuously monitored with a GC-FID-MS and PTR-MS. Aerosol was generated from soil and leaf litter emissions by pumping the emissions into a 7 cubic meter Teflon aerosol growth chamber where they were oxidized with ozone in the absence of light. The evolution of particle microphysical and chemical characteristics was monitored over the following eight hours. Particle size distribution and chemical composition were measured with a SMPS and HR-ToF-AMS respectively. Monoterpenes dominated the emission profile with emission rates up to 283 micrograms carbon per meter squared per hour. The dominant monoterpenes emitted were beta-pinene, alpha-pinene, and delta-3-carene in descending order. The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and alpha-pinene. Measured soil/litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest that during fall and spring when tree emissions are lower, monoterpene emissions within forests may be

  9. Trends of rural tropospheric ozone at the northwest of the Iberian Peninsula.

    Science.gov (United States)

    Saavedra, S; Rodríguez, A; Souto, J A; Casares, J J; Bermúdez, J L; Soto, B

    2012-01-01

    Tropospheric ozone levels around urban and suburban areas at Europe and North America had increased during 80's-90's, until the application of NO(x) reduction strategies. However, as it was expected, this ozone depletion was not proportional to the emissions reduction. On the other hand, rural ozone levels show different trends, with peaks reduction and average increments; this different evolution could be explained by either emission changes or climate variability in a region. In this work, trends of tropospheric ozone episodes at rural sites in the northwest of the Iberian Peninsula were analyzed and compared to others observed in different regions of the Atlantic European coast. Special interest was focused on the air quality sites characterization, in order to guarantee their rural character in terms of air quality. Both episodic local meteorological and air quality measurements along five years were considered, in order to study possible meteorological influences in ozone levels, different to other European Atlantic regions.

  10. Trends of Rural Tropospheric Ozone at the Northwest of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    S. Saavedra

    2012-01-01

    Full Text Available Tropospheric ozone levels around urban and suburban areas at Europe and North America had increased during 80’s–90’s, until the application of NOx reduction strategies. However, as it was expected, this ozone depletion was not proportional to the emissions reduction. On the other hand, rural ozone levels show different trends, with peaks reduction and average increments; this different evolution could be explained by either emission changes or climate variability in a region. In this work, trends of tropospheric ozone episodes at rural sites in the northwest of the Iberian Peninsula were analyzed and compared to others observed in different regions of the Atlantic European coast. Special interest was focused on the air quality sites characterization, in order to guarantee their rural character in terms of air quality. Both episodic local meteorological and air quality measurements along five years were considered, in order to study possible meteorological influences in ozone levels, different to other European Atlantic regions.

  11. Are we approaching an Arctic ozone hole

    International Nuclear Information System (INIS)

    Braathen, Geir

    1999-01-01

    Observations during the last decade in the Arctic areas mainly made by satellite, on the ground and by probes and sensors in the stratosphere are presented. Future perspectives are deducted from the results. Factors that may influence the ozone layer negatively are: Emission rate of ozone destroying compounds, the rapidly increasing use of some substitutes, increased concentrations of steam from aeroplanes and increased amount of methane, decreasing temperature in the stratosphere due to increasing amounts of climatic gases, large volcanic eruptions and altered timing for the polar whirl dissolution. It is concluded that the ozone reduction will be larger than observed at present in the next 10 to 20 years

  12. Impact of preindustrial to present-day changes in short-lived pollutant emissions on atmospheric composition and climate forcing

    Science.gov (United States)

    Naik, Vaishali; Horowitz, Larry W.; Fiore, Arlene M.; Ginoux, Paul; Mao, Jingqiu; Aghedo, Adetutu M.; Levy, Hiram

    2013-07-01

    We describe and evaluate atmospheric chemistry in the newly developed Geophysical Fluid Dynamics Laboratory chemistry-climate model (GFDL AM3) and apply it to investigate the net impact of preindustrial (PI) to present (PD) changes in short-lived pollutant emissions (ozone precursors, sulfur dioxide, and carbonaceous aerosols) and methane concentration on atmospheric composition and climate forcing. The inclusion of online troposphere-stratosphere interactions, gas-aerosol chemistry, and aerosol-cloud interactions (including direct and indirect aerosol radiative effects) in AM3 enables a more complete representation of interactions among short-lived species, and thus their net climate impact, than was considered in previous climate assessments. The base AM3 simulation, driven with observed sea surface temperature (SST) and sea ice cover (SIC) over the period 1981-2007, generally reproduces the observed mean magnitude, spatial distribution, and seasonal cycle of tropospheric ozone and carbon monoxide. The global mean aerosol optical depth in our base simulation is within 5% of satellite measurements over the 1982-2006 time period. We conduct a pair of simulations in which only the short-lived pollutant emissions and methane concentrations are changed from PI (1860) to PD (2000) levels (i.e., SST, SIC, greenhouse gases, and ozone-depleting substances are held at PD levels). From the PI to PD, we find that changes in short-lived pollutant emissions and methane have caused the tropospheric ozone burden to increase by 39% and the global burdens of sulfate, black carbon, and organic carbon to increase by factors of 3, 2.4, and 1.4, respectively. Tropospheric hydroxyl concentration decreases by 7%, showing that increases in OH sinks (methane, carbon monoxide, nonmethane volatile organic compounds, and sulfur dioxide) dominate over sources (ozone and nitrogen oxides) in the model. Combined changes in tropospheric ozone and aerosols cause a net negative top

  13. Impact of dedicated E85 vehicle use on ozone and particulate matter in the US

    Science.gov (United States)

    Nopmongcol, Uarporn; Griffin, W. Michael; Yarwood, Greg; Dunker, Alan M.; MacLean, Heather L.; Mansell, Gerard; Grant, John

    2011-12-01

    Increased use of ethanol as a vehicle fuel worldwide warrants the need to understand air quality impacts of replacing gasoline with ethanol. This study evaluates the impacts of dedicated E85 (85% ethanol/15% gasoline) light-duty vehicles on emissions, ozone and particulate matter (PM) concentrations in the United States for a future year (2022) using a 3-D photochemical model, detailed emissions inventories that account for changes in all sectors studied, and winter and summer meteorology that occurred in 2002. Use of E85 introduces new emissions from ethanol production and distribution, reduces petrochemical industry emissions due to lower gasoline consumption, changes on-road vehicle emissions and alters biogenic emissions due to land use changes. Three scenarios with increased ethanol production for dedicated E85 light-duty vehicles were compared to a base case without increased ethanol production. Increased use of E85 caused both increases and decreases in ozone and PM, driven mainly by changes in NO x emissions related to biogenic and upstream petrochemical industry sources. In all states modeled, adoption of dedicated E85 vehicles caused negligible change in average higher ozone and PM concentrations of importance for air quality management strategies. Ozone and PM changes are relatively insensitive to how land area is allocated for switchgrass production. The findings are subject to various uncertainties, especially those in vehicle technology and emissions from cellulosic ethanol production.

  14. Biogenic nitrogen oxide emissions from soils: impact on NOx and ozone over west Africa during AMMA (African Monsoon Multidisciplinary Analysis: observational study

    Directory of Open Access Journals (Sweden)

    J. B. McQuaid

    2008-04-01

    Full Text Available Chemical and meteorological parameters measured on board the Facility for Airborne Atmospheric Measurements (FAAM BAe 146 Atmospheric Research Aircraft during the African Monsoon Multidisciplinary Analysis (AMMA campaign are presented to show the impact of NOx emissions from recently wetted soils in West Africa. NO emissions from soils have been previously observed in many geographical areas with different types of soil/vegetation cover during small scale studies and have been inferred at large scales from satellite measurements of NOx. This study is the first dedicated to showing the emissions of NOx at an intermediate scale between local surface sites and continental satellite measurements. The measurements reveal pronounced mesoscale variations in NOx concentrations closely linked to spatial patterns of antecedent rainfall. Fluxes required to maintain the NOx concentrations observed by the BAe-146 in a number of cases studies and for a range of assumed OH concentrations (1×106 to 1×107 molecules cm−3 are calculated to be in the range 8.4 to 36.1 ng N m−2 s−1. These values are comparable to the range of fluxes from 0.5 to 28 ng N m−2 s−1 reported from small scale field studies in a variety of non-nutrient rich tropical and sub-tropical locations reported in the review of Davidson and Kingerlee (1997. The fluxes calculated in the present study have been scaled up to cover the area of the Sahel bounded by 10 to 20 N and 10 E to 20 W giving an estimated emission of 0.03 to 0.30 Tg N from this area for July and August 2006. The observed chemical data also suggest that the NOx emitted from soils is taking part in ozone formation as ozone concentrations exhibit similar fine scale structure to the NOx, with enhancements over the wet soils. Such variability can not be explained on the basis of transport from other areas. Delon et al. (2008 is a companion paper to this one which models the impact of soil NOx emissions on the NOx and ozone

  15. Nitrogen soil emissions and belowground plant processes in Mediterranean annual pastures are altered by ozone exposure and N-inputs

    Science.gov (United States)

    Sánchez-Martín, L.; Bermejo-Bermejo, V.; García-Torres, L.; Alonso, R.; de la Cruz, A.; Calvete-Sogo, H.; Vallejo, A.

    2017-09-01

    Increasing tropospheric ozone (O3) and atmospheric nitrogen (N) deposition alter the structure and composition of pastures. These changes could affect N and C compounds in the soil that in turn can influence soil microbial activity and processes involved in the emission of N oxides, methane (CH4) and carbon dioxide (CO2), but these effects have been scarcely studied. Through an open top chamber (OTC) field experiment, the combined effects of both pollutants on soil gas emissions from an annual experimental Mediterranean community were assessed. Four O3 treatments and three different N input levels were considered. Fluxes of nitric (NO) and nitrous (N2O) oxide, CH4 and CO2 were analysed as well as soil mineral N and dissolved organic carbon. Belowground plant parameters like root biomass and root C and N content were also sampled. Ozone strongly increased soil N2O emissions, doubling the cumulative emission through the growing cycle in the highest O3 treatment, while N-inputs enhanced more slightly NO; CH4 and CO2 where not affected. Both N-gases had a clear seasonality, peaking at the start and at the end of the season when pasture physiological activity is minimal; thus, higher microorganism activity occurred when pasture had a low nutrient demand. The O3-induced peak of N2O under low N availability at the end of the growing season was counterbalanced by the high N inputs. These effects were related to the O3 x N significant interaction found for the root-N content in the grass and the enhanced senescence of the community. Results indicate the importance of the belowground processes, where competition between plants and microorganisms for the available soil N is a key factor, for understanding the ecosystem responses to O3 and N.

  16. Analyzing ground ozone formation regimes using a principal axis factoring method: A case study of Kladno (Czech Republic) industrial area

    Energy Technology Data Exchange (ETDEWEB)

    Malec, L.; Skacel, F. [Department of Gas, Coke and Air Protection, Institute of Chemical Technology in Prague, (Czech Republic)]. E-mail: Lukas.Malec@vscht.cz; Fousek, T. [Institute of Public Health, District of Central Czech Republic, Kladno (Czech Republic); Tekac, V. [Department of Gas, Coke and Air Protection, Institute of Chemical Technology in Prague, (Czech Republic); Kral, P. [Institute of Public Health, District of Central Czech Republic, Kladno (Czech Republic)

    2008-07-15

    Tropospheric ozone is a secondary air pollutant, changes in the ambient content of which are affected by both, the emission rates of primary pollutants and the variability of meteorological conditions. In this paper, we use two multivariate statistical methods to analyze the impact of the meteorological conditions associated with pollutant transformation processes. First, we evaluated the variability of the spatial and temporal distribution of ozone precursor parameters by using discriminant analysis (DA) in locations close to the industrial area of Kladno (a city in the Czech Republic). Second, we interpreted the data set by using factor analysis (FA) to examine the differences between ozone formation processes in summer and in winter. To avoid temperature dependency between the variables, as well as to describe tropospheric washout processes, we used water vapour content rather than the more commonly employed relative humidity parameter. In this way, we were able to successfully determine and subsequently evaluate the various processes of ozone formation, together with the distribution of ozone precursors. High air temperature, radiation and low water content relate to summer pollution episodes, while radiation and wind speed prove to be the most important parameters during winter. [Spanish] El ozono troposferico es un contaminante fotoquimico secundario cuyos contenidos estan influidos tanto por las razones de emision de las sustancias contaminantes primarias como por la variabilidad de las condiciones meteorologicas. En este trabajo utilizamos dos metodos estadisticos multivariados para el analisis de la influencia de las condiciones meteorologicas relacionadas con los procesos de transformacion de las sustancias contaminantes. Primero, estimamos la variabilidad de la descomposicion espacial y temporal de los precursores de ozono mediante el analisis discriminante (DA) en las areas cercanas a la zona industrial de Kladno (una ciudad de la Republica Checa

  17. Role of ozone and granular activated carbon in the removal of mutagenic compounds.

    Science.gov (United States)

    Bourbigot, M M; Hascoet, M C; Levi, Y; Erb, F; Pommery, N

    1986-01-01

    The identification of certain organic compounds in drinking water has led water treatment specialists to be increasingly concerned about the eventual risks of such pollutants to the health of consumers. Our experiments focused on the role of ozone and granular activated carbon in removing mutagenic compounds and precursors that become toxic after chlorination. We found that if a sufficient dose of ozone is applied, its use does not lead to the creation of mutagenic compounds in drinking water and can even eliminate the initial mutagenicity of the water. The formation of new mutagenic compounds seems to be induced by ozonation that is too weak, although these mutagens can be removed by GAC filtration. Ozone used with activated carbon can be one of the best means for eliminating the compounds contributing to the mutagenicity of water. A combined treatment of ozone and activated carbon also decreases the chlorine consumption of the treated water and consequently reduces the formation of chlorinated organic compounds. PMID:3816720

  18. Ozone fumigation under dark/light conditions of Norway Spruce (Picea Abies) and Scots Pine (Pinus Sylvestris)

    Science.gov (United States)

    Canaval, Eva; Jud, Werner; Hansel, Armin

    2015-04-01

    Norway Spruce (Picea abies) and Scots Pine (Pinus sylvestris) represent dominating tree species in the northern hemisphere. Thus, the understanding of their ozone sensitivity in the light of the expected increasing ozone levels in the future is of great importance. In our experiments we investigated the emissions of volatile organic compounds (VOCs) of 3-4 year old Norway Spruce and Scots Pine seedlings under ozone fumigation (50-150 ppbv) and dark/light conditions. For the experiments the plants were placed in a setup with inert materials including a glass cuvette equipped with a turbulent air inlet and sensors for monitoring a large range of meteorological parameters. Typical conditions were 20-25°C and a relative humidity of 70-90 % for both plant species. A fast gas exchange rate was used to minimize reactions of ozone in the gas phase. A Switchable-Reagent-Ion-Time-of-Flight-MS (SRI-ToF-MS) was used to analyze the VOCs at the cuvette outlet in real-time during changing ozone and light levels. The use of H3O+ and NO+ as reagent ions allows the separation of certain isomers (e.g. aldehydes and ketones) due to different reaction pathways depending on the functional groups of the molecules. Within the Picea abies experiments the ozone loss, defined as the difference of the ozone concentration between cuvette inlet and outlet, remained nearly constant at the transition from dark to light. This indicates that a major part of the supplied ozone is depleted non-stomatally. In contrast the ozone loss increased by 50 % at the transition from dark to light conditions within Pinus sylvestris experiments. In this case the stomata represent the dominant loss channel. Since maximally 0.1% of the ozone loss could be explained by gas phase reactions with monoterpenes and sesquiterpenes, we suggest that ozone reactions on the surface of Picea abies represent the major sink in this case and lead to an light-independent ozone loss. This is supported by the fact that we detected

  19. Cardiopulmonary mortality and COPD attributed to ambient ozone.

    Science.gov (United States)

    Khaniabadi, Yusef Omidi; Hopke, Philip K; Goudarzi, Gholamreza; Daryanoosh, Seyed Mohammad; Jourvand, Mehdi; Basiri, Hassan

    2017-01-01

    Tropospheric ozone is the second most important atmospheric pollutant after particulate matter with respect to its impact on human health and is increasing of its concentrations globally. The main objective of this study was to assess of health effects attributable to ground-level ozone (O 3 ) in Kermanshah, Iran using one-hour O 3 concentrations measured between March 2014 and March 2015. The AirQ program was applied for estimation of the numbers of cardiovascular mortality (CM), respiratory mortality (RM), and hospital admissions for chronic obstructive pulmonary disease (HA-COPD) using relative risk (RR) and baseline incidence (BI) as defined by the World Health Organization (WHO). The largest percentage of person-days for different O 3 concentrations was in the concentration range of 30-39µg/m 3 . The health modeling results suggested that ~2% (95% CI: 0-2.9%) of cardiovascular mortality, 5.9% (95% CI: 2.3-9.4) of respiratory mortality, and 4.1% (CI: 2.5-6.1%) of the HA-COPD were attributed to O 3 concentrations higher than 10µg/m 3 . For each 10µg/m 3 increase in O 3 concentration, the risk of cardiovascular mortality, respiratory mortality, and HA-COPD increased by 0.40%, 1.25%, and 0.86%, respectively. Furthermore, 88.8% of health effects occurred on days with O 3 level less than 100µg/m 3 . Thus, action is needed to reduce the emissions of O 3 precursors especially transport and energy production in Kermanshah. Copyright © 2016. Published by Elsevier Inc.

  20. Ozone impact minimization through coordinated scheduling of turnaround operations from multiple olefin plants in an ozone nonattainment area

    Science.gov (United States)

    Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2018-03-01

    Turnaround operations (start-up and shutdown) are critical operations in olefin plants, which emit large quantities of VOCs, NOx and CO. The emission has great potentials to impact the ozone level in ozone nonattainment areas. This study demonstrates a novel practice to minimize the ozone impact through coordinated scheduling of turnaround operations from multiple olefin plants located in Houston, Texas, an ozone nonattainment area. The study considered two olefin plants scheduled to conduct turnaround operations: one start-up and one shutdown, simultaneously on the same day within a five-hour window. Through dynamic simulations of the turnaround operations using ASPEN Plus Dynamics and air quality simulations using CAMx, the study predicts the ozone impact from the combined effect of the two turnaround operations under different starting-time scenarios. The simulations predict that the ozone impact from planned turnaround operations ranges from a maximum of 11.4 ppb to a minimum of 1.4 ppb. Hence, a reduction of up to 10.0 ppb can be achieved on a single day based on the selected two simulation days. This study demonstrates a cost-effective and environmentally benign ozone control practice for relevant stakeholders, including environmental agencies, regional plant operators, and local communities.

  1. A dynamic dilution system-based evaluation of the procedure adopted for determining ozone precursor volatile compounds.

    Science.gov (United States)

    Palluau, Fabienne; Mirabel, Philippe; Millet, Maurice

    2005-02-01

    A dynamic dilution system was created to evaluate the performance and the reliability of ozone precursor volatile organic compound (VOC) sampling ("TO-Can" canisters) and analysis (thermal desorption/gas chromatography/flame ionisation detection) techniques used by the "Laboratoire Interregional de Chimie du Grand Est (LIC)". Different atmospheres of VOCs were generated at concentrations between 0.8 and 25 ppb, with temperatures of 0, 10, 20 and 30 degrees C, and with relative humidities of 0, 30, 50, 70 and 90%. These conditions are generally representative of those commonly observed in ambient air in the eastern France. This dynamic dilution allows the simulation of a wide range of scenarios (concentrations, temperatures and relative humidities). After assessing the capacity and performance of the system, it was applied in order to evaluate the recoveries and stabilities of VOCs from canisters used for the collection and analysis of two mixtures of VOCs. The first mixture contained six alkanes (ethane, propane, butane, pentane, hexane and heptane), and the second contained five alkenes (ethene, propene, butene, 1-pentene and 1-hexene), five aromatics (benzene, toluene, ethylbenzene, m-xylene and o-xylene), acetylene, and 1,3-butadiene. No significant losses of alkanes from the canisters were observed after 21 days of storage, and good recoveries of alkanes from the canisters (>80%) were obtained regardless of the concentration, the temperature and the relative humidity. However, losses of certain aromatics were noted at low relative humidity.

  2. Regulating emission of air pollutants for near-term relief from global warming

    Science.gov (United States)

    Ramanathan, V.; Xu, Y.

    2011-12-01

    The manmade greenhouse gases that are now blanketing the planet is thick enough to warm the system beyond the 20C threshold. Even with a targeted reduction in CO2 emission of 50% by 2050, we will still be adding more than 50 ppm of CO2 and add another 10C to the warming. Fortunately, there are still ways to contain the warming by reducing non-CO2 climate warmers (methane, lower atmosphere ozone, black carbon and HFCs), using available and field tested technologies. The major advantage of going for these 'low-hanging fruits' is that this approach will clean up the air and improve health and food security of south and east Asia, thus engaging developing nations more effectively in climate negotiations. These non-CO2 mitigation actions will have significant (beneficial) impacts on the chemistry, clouds and precipitation of the atmosphere and these have to be quantified adequately. For example, reducing black and organic carbon emissions (through cleaner cooking technologies in developing countries) will also lead to significant reductions in carbon monoxide, which is an ozone precursor. The institutional infrastructure for reducing non-CO2 climate warmers already exist and have a proven track record for successful climate mitigation.

  3. Photochemistry of the African troposphere: Influence of biomass-burning emissions

    Science.gov (United States)

    Marufu, L.; Dentener, F.; Lelieveld, J.; Andreae, M. O.; Helas, G.

    2000-06-01

    The relative importance of biomass-burning (pyrogenic) emissions from savannas, deforestation, agricultural waste burning, and biofuel consumption to tropospheric ozone abundance over Africa has been estimated for the year 1993, on the basis of global model calculations. We also calculated the importance of this emission source to tropospheric ozone in other regions of the world and compared it to different sources on the African regional and global scales. The estimated annual average total tropospheric ozone abundance over Africa for the reference year is 26 Tg. Pyrogenic, industrial, biogenic, and lightning emissions account for 16, 19, 12, and 27%, respectively, while stratospheric ozone input accounts for 26%. In the planetary boundary layer over Africa, the contribution by biomass burning is ˜24%. A large fraction of the African biomass-burning-related ozone is transported away from the continent. On a global scale, biomass burning contributes ˜9% to tropospheric ozone. Our model calculations suggest that Africa is the single most important region for biomass-burning-related tropospheric ozone, accounting for ˜35% of the global annual pyrogenic ozone enhancement of 29 Tg in 1993.

  4. Evaluation of ozone generation and indoor organic compounds removal by air cleaners based on chamber tests

    Science.gov (United States)

    Yu, Kuo-Pin; Lee, Grace Whei-May; Hsieh, Ching-Pei; Lin, Chi-Chi

    2011-01-01

    Ozone can cause many health problems, including exacerbation of asthma, throat irritation, cough, chest ache, shortness of breath, and respiratory infections. Air cleaners are one of the sources of indoor ozone, and thus the evaluation of ozone generated by air cleaners is desired significant issue. Most evaluation methods proposed are based on chamber tests. However, the adsorption and desorption of ozone on the wall of test chamber and the deposition of ozone resulted from the surface reaction can influence the evaluation results. In this study, we developed a mass balance model that took the adsorption, desorption and deposition of ozone into consideration to evaluate the effective ozone emission rates of six selected air cleaners. The experiments were conducted in a stainless steel chamber with a volume of 11.3 m 3 at 25 °C and 60% relative humidity. The adsorption, desorption and deposition rate constants of ozone obtained by fitting the model to the experimental data were k a = 0.149 ± 0.052 m h -1, k d = 0.013 ± 0.007 h -1, and k r = 0.050 ± 0.020 h -1, respectively. The effective ozone emission rates of Air Cleaners No. 1, 2, and 3 ranged between 13,400-24,500 μg h -1, 7190-10,400 μg h -1, and 4880-6560 μg h -1, respectively, which were more stable than those of No.4, 5, and 6. The effective ozone emission rates of Air Cleaners No. 4, 5, and 6 increased with the time of operation which might be relevant to the decrease of ozone removal by the "aging" filter installed in these cleaners. The removal of toluene and formaldehyde by these six air cleaners were also evaluated and the clean air delivery rates (CADRs) of these two pollutants ranged from non-detectable to 0.42 ± 0.08 m 3 h -1, and from non-detectable to 0.75 ± 0.07 m 3 h -1, respectively. The CADRs showed an insignificant relationship with the effective ozone emission rates. Thus, the removal of toluene and formaldehyde might be resulted from the adsorption on the filters and the

  5. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA

    OpenAIRE

    Gorai, A. K.; Tuluri, F.; Tchounwou, P. B.; Ambinakudige, S.

    2015-01-01

    The influence of local climatic factors on ground-level ozone concentrations is an area of increasing interest to air quality management in regards to future climate change. This study presents an analysis on the role of temperature, wind speed, wind direction, and NO2 level on ground-level ozone concentrations over the region of Eastern Texas, USA. Ozone concentrations at the ground level depend on the formation and dispersion processes. Formation process mainly depends on the precursor sour...

  6. Characteristics of surface ozone in Agra, a sub-urban site in Indo ...

    Indian Academy of Sciences (India)

    Nidhi Verma

    2018-04-09

    Apr 9, 2018 ... In the present study, measurements of surface ozone (O3) and its precursors (NO and NO2) were carried out at a ...... from road traffic in Great Britain; Atmos. Environ. 54 ... L, Doddridge B G and Holben B N 1997 The impact of.

  7. Multimodel ensemble simulations of present-day and near-future tropospheric ozone

    NARCIS (Netherlands)

    Stevenson, D.S.; Dentener, F.J.; Schultz, M.G.; Ellingsen, K.; Noije, van T.P.C.; Wild, O.; Zeng, G.; Amann, M.; Atherton, C.S.; Bell, N.; Bergmann, D.J.; Bey, I.; Butler, T.; Cofala, J.; Collins, W.J.; Derwent, R.G.; Doherty, R.M.; Drevet, J.; Eskes, H.J.; Fiore, A.M.; Gauss, M.; Hauglustaine, D.A.; Horowitz, L.W.; Isaksen, I.S.A.; Krol, M.C.; Lamarque, J.F.; Lawrence, M.G.; Montanaro, V.; Muller, J.F.; Pitari, G.; Prather, M.J.; Pyle, J.A.; Rast, S.; Rodriguez, J.M.; Sanderson, M.G.; Savage, N.H.; Shindell, D.T.; Strahan, S.E.; Sudo, K.; Szopa, S.

    2006-01-01

    Global tropospheric ozone distributions, budgets, and radiative forcings from an ensemble of 26 state-of-the-art atmospheric chemistry models have been intercompared and synthesized as part of a wider study into both the air quality and climate roles of ozone. Results from three 2030 emissions

  8. A cloud-ozone data product from Aura OMI and MLS satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2017-11-01

    Full Text Available Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004–April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of  ∼ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden–Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.

  9. Emission sources of non-methane volatile organic compounds (NMVOCs) and their contribution to photochemical ozone (O3) formation at an urban atmosphere in western India.

    Science.gov (United States)

    Yadav, R.; Sahu, L. K.; Tripathi, N.; Pal, D.

    2017-12-01

    Atmospheric non-methane volatile organic compounds (NMVOCs) were measured at a sampling site in Udaipur city of western India during 2015 to recognize their pollution levels, variation characteristics, sources and photochemical reactivity. The samples were analyzed for NMVOCs using a Gas Chromatograph equipped with Flame Ionization Detector (GC/FID) and Thermal Desorption (TD) system. The main focus on understand the sources responsible for NMVOC emissions, and evaluating the role of the identified sources towards ozone formation. Hourly variations of various NMVOC species indicate that VOCs mixing ratios were influenced by photochemical removal with OH radicals for reactive species, secondary formation for oxygenated VOCs. In general, higher mixing ratios were observed during winter/pre-monsoon and lower levels during the monsoon season due to the seasonal change in meteorological, transport path of air parcel and boundary layer conditions. The high levels of propane (C3H8) and butane (C4H10) show the dominance of LPG over the study location. The correlation coefficients of typical NMVOC pairs (ethylene/propylene, propylene/isoprene, and ethane/propane) depicted that vehicular emission and natural gas leakages were important sources for atmospheric hydrocarbons in Udaipur. Based on the annual data, PMF analysis suggest the source factors namely biomass burning/ bio-fuel, automobile exhaust, Industrial/ natural gas/power plant emissions, petrol/Diesel, gasoline evaporation, and use of liquid petroleum gas (LPG) contribute to NMVOCs loading. The propylene-equivalent and ozone formation potential of NMVOCs have also been calculated in order to find out their OH reactivity and contribution to the photochemical ozone formation.

  10. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    International Nuclear Information System (INIS)

    Preisler, Haiganoush K.; Zhong Shiyuan; Esperanza, Annie; Brown, Timothy J.; Bytnerowicz, Andrzej; Tarnay, Leland

    2010-01-01

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  11. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Haiganoush K., E-mail: hpreisler@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 800 Buchanan St, Albany, CA 94710 (United States); Zhong Shiyuan, E-mail: zhongs@msu.ed [Department of Geography, Michigan State University, 116 Geography Building, East Lansing, MI 48824-1117 (United States); Esperanza, Annie, E-mail: annie_esperanza@nps.go [Sequoia and Kings Canyon National Parks, 47050 Generals Highway Three Rivers, CA 93271 (United States); Brown, Timothy J., E-mail: tim.brown@dri.ed [Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89521-10095 (United States); Bytnerowicz, Andrzej, E-mail: abytnerowicz@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Tarnay, Leland, E-mail: Leland_Tarnay@nps.go [Yosemite National Park, El Portal, CA 95318 (United States)

    2010-03-15

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  12. Ozone depleting substances and greenhouse gases HFCs, PFCs and SF{sub 6} consumption and emissions; Ozonlagsnedbrydende stoffer og drivhusgasserne HFC'er, PFC'er og SF{sub 6}. Forbrug og emissioner 2002

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [Planmiljoe, Veksoe Sjaelland (Denmark)

    2004-07-01

    The aim of the project is to map the 2002 Danish consumption of produced ozone depleting substances and the consumption and actual emission of the greenhouse gases HFCs, PFCs and SF{sub 6}. The inventory is performed, partly according to the guidelines recommended by IPCC (Intergovernmental Panel on Climate Change), and partly according to the method that has been used for previous mappings. The mapping is done partly in order to meet Denmark's international commitments to report and partly in order to monitor how the consumption of ozone depleting substances and the emissions of greenhouse gases develop. The mapping of ozone depleting substances includes the net consumption, meaning the amount of the imported raw materials in bulk or in drums minus any re-export of the substances in the form of raw materials. Mapping of the actual emissions of HFCs, PFCs and SF{sub 6} is done in continuation of previous greenhouse gas inventories. The inventory process is continuously improving due to development of international approved guidelines (IPCC) and the production of increasingly detailed data. (BA)

  13. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Science.gov (United States)

    Li, Jingyi; Mao, Jingqiu; Fiore, Arlene M.; Cohen, Ronald C.; Crounse, John D.; Teng, Alex P.; Wennberg, Paul O.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Peischl, Jeff; Pollack, Ilana B.; Ryerson, Thomas B.; Veres, Patrick; Roberts, James M.; Neuman, J. Andrew; Nowak, John B.; Wolfe, Glenn M.; Hanisco, Thomas F.; Fried, Alan; Singh, Hanwant B.; Dibb, Jack; Paulot, Fabien; Horowitz, Larry W.

    2018-02-01

    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July-August 2004), SENEX (June-July 2013), and SEAC4RS (August-September 2013) and long-term ground measurement networks alongside a global chemistry-climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (˜ 42-45 %), followed by NOx (31 %), total peroxy nitrates (ΣPNs; 14 %), and total alkyl nitrates (ΣANs; 9-12 %) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  14. PM2.5 and tropospheric ozone in China: overview of situation and responses

    Science.gov (United States)

    Zhang, Hua

    This work reviewed the observational status of PM2.5 and tropospheric ozone in China. It told us the observational facts on the ratios of typical types of aerosol components to the total PM2.5/PM10, and daily and seasonal change of near surface ozone concentration at different cities of China; the global concentration distribution of tropospheric ozone observed by satellite in 2010-2013 was also given for comparison; the PM2.5 concentration distribution and their seasonal change in China region were simulated by an aerosol chemistry-global climate modeling system. Different contribution from five kinds of aerosols to the simulated PM2.5 was analyzed. Then, it linked the emissions of aerosol and greenhouse gases and their radiative forcing and thus gave their climatic effect by reducing their emissions on the basis of most recently published IPCC AR5. Finally it suggested policies on reducing emissions of short-lived climate pollutants (SLCPs) (such as PM2.5 and tropospheric ozone) in China from protecting both climate and environment.

  15. Exploring the roles of temperature and NOx on ozone production in the Sacramento urban plume

    Science.gov (United States)

    Lafranchi, B. W.; Cohen, R. C.

    2009-12-01

    We investigate the role of temperature and NOx (NOx = NO+NO2) on ozone (O3) production in the Sacramento urban plume over a stretch of seven years (2001-2007) using data collected at UC Blodgett Forest Research Station (a forested site in the Sierra Nevadas about 80 km downwind of Sacramento, CA) and at a series of California Air Resources Board (CARB) sites along the Sacramento-Blodgett transect. The consistent daytime wind patterns between the Central Valley of California and the foothills of the Sierra Nevada mountains permits the assumption of plume transport from downtown Sacramento, over the CARB monitoring sites in the eastern suburbs, and past the Blodgett Forest research site. While NOx emissions are limited primarily to the urban and suburban regions of the transect, biogenic volatile organic compound (VOC) emissions are significant throughout the transect, thus there is a fast transition from VOC-limited to NOx-limited as the plume travels away from the urban center, and we have the opportunity to analyze the differences in ozone production across these two chemical regimes. For this analysis, the Sacramento-Blodgett transect is separated into three segments: urban, suburban, and rural, defined by the locations of selected monitoring sites. Ozone concentrations across each segment are controlled by chemical production (Pchem) and loss (Lchem), deposition to surfaces (Ldep), and mixing with background air (Lmix). At an assumed deposition rate, mixing rate, and background O3 concentration, the net chemical flux of ozone (Pchem - Lchem) can be inferred from differences in ozone concentrations between adjacent monitoring sites. We show that ozone production rates, in general, increase with temperature. We also show that decreases in NOx emissions over the period from 2001-2007 have been effective at reducing ozone production at all points along the transect, but only on days where temperatures are highest. At low temperatures, this decrease is less apparent

  16. Investigating a high ozone episode in a rural mountain site

    International Nuclear Information System (INIS)

    Monteiro, A.; Strunk, A.; Carvalho, A.; Tchepel, O.; Miranda, A.I.; Borrego, C.; Saavedra, S.; Rodríguez, A.; Souto, J.; Casares, J.; Friese, E.; Elbern, H.

    2012-01-01

    A very high ozone episode with observed hourly values above 350 μg m −3 occurred in July 2005 at the Lamas d’Olo air quality monitoring station, located in a mountainous area in the north of Portugal. Aiming to identify the origin and formation of this ozone-rich episode, a statistical analysis and a modelling approach were applied. A cross-spectrum analysis in the frequency domain and a synoptic analysis of the meteorological and air quality time series were performed. In order to go further in this analysis, a numerical modelling approach was applied. The results indicate that the transport of ozone and its precursors is the main responsible for the high ozone concentrations. Together with the local mountain breeze and subsidence conditions, the sea-breeze circulation transporting pollutants from the coastal urban and industrialized areas that reach the site during late afternoon turn out to be the driving forces for the ozone peaks. - Highlights: ► A very high ozone episode occurred in a rural mountain site of Portugal in 2004. ► Data cross-spectrum analysis in the frequency domain was performed. ► A numerical modelling approach was also applied. ► The sea-breeze circulation transported pollutants from the urban and industrialized coast. ► The mountain breeze and subsidence conditions were also driving forces for ozone peaks. - The sea-breeze transporting pollutants from the coast, the mountain breeze and subsidence conditions, were the driving forces for the ozone episode occurred in a rural mountain site.

  17. Vertical distribution and sources of tropospheric ozone over South China in spring 2004: Ozonesonde measurements and modeling analysis

    Science.gov (United States)

    Zhang, Y.; Liu, H.; Crawford, J. H.; Considine, D. B.; Chan, C.; Scientific Team Of Tapto

    2010-12-01

    The Transport of Air Pollutant and Tropospheric Ozone over China (TAPTO-China) science initiative is a two-year (TAPTO 2004 and 2005) field measurement campaign to help improve our understanding of the physical and chemical processes that control the tropospheric ozone budget over the Chinese subcontinent (including the Asian Pacific rim) and its surrounding SE Asia. In this paper, we use two state-of-the-art 3-D global chemical transport models (GEOS-Chem and Global Modeling Initiative or GMI) to examine the characteristics of vertical distribution and quantify the sources of tropospheric ozone by analysis of TAPTO in-situ ozonesonde data obtained at five stations in South China during spring (April and May) 2004: Lin’an (30.30N, 119.75E), Tengchong (25.01N, 98.30E), Taipei (25.0N, 121.3E), Hong Kong (22.21N, 114.30E) and Sanya (18.21N, 110.31E). The observed tropospheric ozone concentrations show strong spatial and temporal variability, which is largely captured by the models. The models simulate well the observed vertical gradients of tropospheric ozone at higher latitudes but are too low at lower latitudes. Model tagged ozone simulations suggest that stratosphere has a large impact on the upper and middle troposphere (UT/MT) at Lin’an and Tengchong. Continental SE Asian biomass burning emissions are maximum in March but still contribute significantly to the photochemical production of tropopheric ozone in South China in early April. Asian anthropogenic emissions are the major contribution to lower tropospheric ozone at all stations. On the other hand, there are episodes of influence from European/North American anthropogenic emissions. For example, model tagged ozone simulations show that over Lin’an in April 2004, stratosphere contributes 20% (13 ppbv) at 5 km, Asian boundary layer contributes 70% (46 ppbv) to ozone in the boundary layer, European boundary layer contributes 5% (3-4 ppbv) at 1.2 km, and North American boundary layer contributes 4.5% (3

  18. [Health impact of ozone in 13 Italian cities].

    Science.gov (United States)

    Mitis, Francesco; Iavarone, Ivano; Martuzzi, Marco

    2007-01-01

    to estimate the health impact of ozone in 13 Italian cities over 200,000 inhabitants and to produce basic elements to permit the reproducibility of the study in other urban locations. the following data have been used: population data (2001), health data (2001 or from scientific literature), environmental data (2002-2004), from urban background monitoring station and concentration/response risk coefficients derived from recent metanalyses. The indicators SOMO35 and SOMO0 have been used as a proxi of the average exposure to calcolate attributable deaths (and years of life lost) and several causes of morbility for ozone concentrations over 70 microg/m3. acute mortality for all causes and for cardiovascular mortality, respiratory-related hospital admissions in elderly, asthma exacerbation in children and adults, minor restricted activity days, lower respiratory symptoms in children. over 500 (1900) deaths, the 0.6% (2.1%) of total mortality, equivalent to about 6000 (22,000) years of life lost are attributable to ozone levels over 70 microg/m3 in the 13 Italian cities under study. Larger figures, in the order of thousands, are attributable to less severe morbidity outcomes. The health impact of ozone in Italian towns is relevant in terms of acute mortality and morbidity, although less severe than PM10 impact. Background ozone levels are increasing. Abatement strategies for ozone concentrations should consider the whole summer and not only "peak" days and look at policies limiting the concentration of precursors produced by traffic sources. Relevant health benefits can be obtained also under levels proposed as guidelines in the present environmental regulations.

  19. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer

    Science.gov (United States)

    Monks, P. S.; Archibald, A. T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K. S.; Mills, G. E.; Stevenson, D. S.; Tarasova, O.; Thouret, V.; von Schneidemesser, E.; Sommariva, R.; Wild, O.; Williams, M. L.

    2015-08-01

    Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a byproduct of the very oxidation chemistry it largely initiates. Much effort is focused on the reduction of surface levels of ozone owing to its health and vegetation impacts, but recent efforts to achieve reductions in exposure at a country scale have proved difficult to achieve owing to increases in background ozone at the zonal hemispheric scale. There is also a growing realisation that the role of ozone as a short-lived climate pollutant could be important in integrated air quality climate change mitigation. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models. It takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner. The review shows that there remain a number of clear challenges for ozone such as explaining surface trends, incorporating new chemical understanding, ozone-climate coupling, and a better assessment of impacts. There is a clear and present need to treat ozone across the range of scales, a transboundary issue, but with an emphasis on the hemispheric scales. New observational opportunities are offered both by satellites and small sensors that bridge the scales.

  20. Study of the emission of low molecular weight organic compounds of various plants

    International Nuclear Information System (INIS)

    Steinbrecher, R.; Stahl, K.; Slemr, J.; Hahn, J.

    1992-01-01

    Biogenic hydrocarbons are known to act as important precursors in tropospheric photochemical ozone formation. Large uncertainties exist about the composition of the mix of volatile organic compounds, emitted by various plant species and the respective emission rates. The emission and deposition behavior of wheat plants, as far as C 2 to C 9 hydrocarbons (NMHC), formaldehyde, and acetaldehyde are concerned, was studied both in the field (BIATEX experimental site, Manndorf, Bavaria) and in the laboratory. Vertical flux rates of the different compounds ranged from -4 to +4 nmol C m -2 surface area s -1 . Aldehydeemission showed a seasonal trend with high rates in spring and lower towards the end of the vegetation period. Ambient temperature appears to control only the flux of ethane, ethene, propane and propene, whereas acetaldehyde emission by wheat plants as well as by Norway spruce is controlled by light. Over a spruce canopy (BIATEX experimental site Schachtenau, Bayerischer Wald, national park, FRG) the 12 most abundant NMHC exhibited no distinct diurnal cycle, and only small differences in mixing ratios were detected between two heights (31 and 51 m) revealing that the impact of the canopy on the abundances of the non-terpenoid NMHCs present in the air above the canopy was small. Aldehyde mixing ratios above a spruce canopy, however, may significantly be influenced either by direct emission of aldehydes from spruce or by production of aldehydes during photochemical degradation of precursors. (orig.). 87 refs., 4 tabs., 25 figs [de

  1. Biogenic nitrogen oxide emissions from soils ─ impact on NOx and ozone over West Africa during AMMA (African Monsoon Multidisciplinary Experiment: modelling study

    Directory of Open Access Journals (Sweden)

    J.-P. Chaboureau

    2008-05-01

    Full Text Available Nitrogen oxide biogenic emissions from soils are driven by soil and environmental parameters. The relationship between these parameters and NO fluxes is highly non linear. A new algorithm, based on a neural network calculation, is used to reproduce the NO biogenic emissions linked to precipitations in the Sahel on the 6 August 2006 during the AMMA campaign. This algorithm has been coupled in the surface scheme of a coupled chemistry dynamics model (MesoNH Chemistry to estimate the impact of the NO emissions on NOx and O3 formation in the lower troposphere for this particular episode. Four different simulations on the same domain and at the same period are compared: one with anthropogenic emissions only, one with soil NO emissions from a static inventory, at low time and space resolution, one with NO emissions from neural network, and one with NO from neural network plus lightning NOx. The influence of NOx from lightning is limited to the upper troposphere. The NO emission from soils calculated with neural network responds to changes in soil moisture giving enhanced emissions over the wetted soil, as observed by aircraft measurements after the passing of a convective system. The subsequent enhancement of NOx and ozone is limited to the lowest layers of the atmosphere in modelling, whereas measurements show higher concentrations above 1000 m. The neural network algorithm, applied in the Sahel region for one particular day of the wet season, allows an immediate response of fluxes to environmental parameters, unlike static emission inventories. Stewart et al (2008 is a companion paper to this one which looks at NOx and ozone concentrations in the boundary layer as measured on a research aircraft, examines how they vary with respect to the soil moisture, as indicated by surface temperature anomalies, and deduces NOx fluxes. In this current paper the model-derived results are compared to the observations and calculated fluxes presented by Stewart et

  2. Top-down constraints on methane and non-methane hydrocarbon emissions in the US Four Corners

    Science.gov (United States)

    Petron, G.; Miller, B. R.; Vaughn, B. H.; Kofler, J.; Mielke-Maday, I.; Sherwood, O.; Schwietzke, S.; Conley, S.; Sweeney, C.; Dlugokencky, E. J.; White, A. B.; Tans, P. P.; Schnell, R. C.

    2017-12-01

    A NASA and NOAA supported field campaign took place in the US Four Corners in April 2015 to further investigate a regional "methane hotspot" detected from space. The Four Corners region is home to the fossil fuel rich San Juan Basin, which extends between SE Colorado and NE New Mexico. The area has been extracting coal, oil and natural gas for decades. Degassing from the Fruitland coal outcrop on the Colorado side has also been reported. Instrumented aircraft, vans and ground based wind profilers were deployed for the campaign with the goal to quantify and attribute methane and non-methane hydrocarbon emissions in the region. A new comprehensive analysis of the campaign data sets will be presented and top-down emission estimates for methane and ozone precursors will be compared with available bottom-up estimates.

  3. Origins of Tropospheric Ozone Interannual Variation (IAV) over Reunion: A Model Investigation

    Science.gov (United States)

    Liu, Junhua; Rodriguez, Jose M.; Thompson, Anne M.; Logan, Jennifer A.; Douglass, Anne R.; Olsen, Mark A.; Steenrod, Stephen D.; Posny, Francoise

    2016-01-01

    Observations from long-term ozonesonde measurements show robust variations and trends in the evolution of ozone in the middle and upper troposphere over Reunion Island (21.1 degrees South Latitude, 55.5 degrees East Longitude) in June-August. Here we examine possible causes of the observed ozone variation at Reunion Island using hindcast simulations by the stratosphere-troposphere Global Modeling Initiative chemical transport model for 1992-2014, driven by assimilated Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields. Reunion Island is at the edge of the subtropical jet, a region of strong stratospheric-tropospheric exchange. Our analysis implies that the large interannual variation (IAV) of upper tropospheric ozone over Reunion is driven by the large IAV of the stratospheric influence. The IAV of the large-scale, quasi-horizontal wind patterns also contributes to the IAV of ozone in the upper troposphere. Comparison to a simulation with constant emissions indicates that increasing emissions do not lead to the maximum trend in the middle and upper troposphere over Reunion during austral winter implied by the sonde data. The effects of increasing emission over southern Africa are limited tothe lower troposphere near the surface in August-September.

  4. Seasonal behavior and long-term trends of tropospheric ozone, its precursors and chemical conditions over Iran: A view from space

    Science.gov (United States)

    Choi, Yunsoo; Souri, Amir Hossein

    2015-04-01

    To identify spatial and temporal variations over the Iranian region, this study analyzed tropospheric formaldehyde (HCHO) and nitrogen dioxide (NO2) columns from Ozone Monitoring Instrument (OMI), carbon monoxide (CO) columns from the Measurement of Pollution in the Troposphere (MOPITT), and tropospheric column O3 (TCO) from OMI/MLS (Microwave Limb Sounder) satellites from 2005 to 2012. The study discovered high levels of HCHO (∼12 × 1015 molec./cm2) from plant isoprene emissions in the air above parts of the northern forest of Iran during the summer and from the oxidation of HCHO precursors emitted from petrochemical industrial facilities and biomass burning in South West Iran. This study showed that maximum NO2 levels (∼18 × 1015 molec./cm2) were concentrated in urban cities, indicating the predominance of anthropogenic sources. The results indicate that maximum concentrations were found in the winter, mainly because of weaker local winds and higher heating fuel consumption, in addition to lower hydroxyl radicals (OH). The high CO concentrations (∼2 × 1018 molec./cm2) in the early spring were inferred to mainly originate from a strong continental air mass from anthropogenic CO "hotspots" including regions around Caspian Sea, Europe, and North America, although the external sources of CO were partly suppressed by the Arabian anticyclone and topographic barriers. Variations in the TCO were seen to peak during the summer (∼40 DU), due to intensive solar radiation and stratospheric sources. This study also examined long-term trends in TCO and its precursors over a period of eight years in five urban cities in Iran. To perform the analysis, we estimated seasonal changes and inter-seasonal variations using least-squares harmonic estimation (LS-HE), which reduced uncertainty in the trend by 5-15%. The results showed significant increases in the levels of HCHO (∼0.08 ± 0.06 × 1015 molec./cm2 yr-1), NO2 (∼0.08 ± 0.02 × 1015 molec./cm2 yr-1), and peak

  5. Emissions implications of downscaled electricity generation scenarios for the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Nsanzineza, Rene; O’Connell, Matthew; Brinkman, Gregory; Milford, Jana B.

    2017-10-01

    This study explores how emissions from electricity generation in the Western Interconnection region of the U.S. might respond in circa 2030 to contrasting scenarios for fuel prices and greenhouse gas (GHG) emissions fees. We examine spatial and temporal variations in generation mix across the region and year using the PLEXOS unit commitment and dispatch model with a production cost model database adapted from the Western Electricity Coordinating Council. Emissions estimates are computed by combining the dispatch model results with unit-specific, emissions-load relationships. Wind energy displaces natural gas and coal in scenarios with relatively expensive natural gas or with GHG fees. Correspondingly, annual emissions of NOx, SO2, and CO2 are reduced by 20-40% in these cases. NOx emissions, which are a concern as a precursor of ground-level ozone, are relatively high and consistent across scenarios during summer, when peak electricity loads occur and wind resources in the region are comparatively weak. Accounting for the difference in start-up versus stabilized NOx emissions rates for natural gas plants had little impact on region-wide emissions estimates due to the dominant contribution from coal-fired plants, but would be more important in the vicinity of the natural gas units.

  6. Ozone and the oxidizing properties of the troposphere

    International Nuclear Information System (INIS)

    Megie, G.

    1996-01-01

    This article is about the rising concentration of ozone and photo-oxidizers observed in the troposphere, the atmosphere between the ground and a height of 10 to 15 km. This serious global environmental problem has up to now been less well known than the greenhouse effect or the decrease in stratospheric ozone. This is because it varies with time and place and involves many complicated physico-chemical and atmospheric processes. At our latitudes, the average ozone concentration in the air we breathe has quadrupled since the beginning of this century. In polluted areas it often exceeds the recommended norms. This increase in ozone concentrations in the lower atmosphere directly reflects the impact of man-made emissions of compounds like methane, carbon monoxide, hydrocarbons and nitrogen oxides. Sunlight acts on these compounds to form ozone via complicated chemical reactions. This change in oxidizing properties of the troposphere is beginning produce perceptible effects on vegetable production, human health and climate. (author). 24 refs., 5 figs., 4 tabs

  7. A statistical model to predict total column ozone in Peninsular Malaysia

    Science.gov (United States)

    Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.

    2016-03-01

    This study aims to predict monthly columnar ozone in Peninsular Malaysia based on concentrations of several atmospheric gases. Data pertaining to five atmospheric gases (CO2, O3, CH4, NO2, and H2O vapor) were retrieved by satellite scanning imaging absorption spectrometry for atmospheric chartography from 2003 to 2008 and used to develop a model to predict columnar ozone in Peninsular Malaysia. Analyses of the northeast monsoon (NEM) and the southwest monsoon (SWM) seasons were conducted separately. Based on the Pearson correlation matrices, columnar ozone was negatively correlated with H2O vapor but positively correlated with CO2 and NO2 during both the NEM and SWM seasons from 2003 to 2008. This result was expected because NO2 is a precursor of ozone. Therefore, an increase in columnar ozone concentration is associated with an increase in NO2 but a decrease in H2O vapor. In the NEM season, columnar ozone was negatively correlated with H2O (-0.847), NO2 (0.754), and CO2 (0.477); columnar ozone was also negatively but weakly correlated with CH4 (-0.035). In the SWM season, columnar ozone was highly positively correlated with NO2 (0.855), CO2 (0.572), and CH4 (0.321) and also highly negatively correlated with H2O (-0.832). Both multiple regression and principal component analyses were used to predict the columnar ozone value in Peninsular Malaysia. We obtained the best-fitting regression equations for the columnar ozone data using four independent variables. Our results show approximately the same R value (≈ 0.83) for both the NEM and SWM seasons.

  8. NOx emissions from large point sources: variability in ozone production, resulting health damages and economic costs

    International Nuclear Information System (INIS)

    Mauzerall, D.L.; Namsoug Kim

    2005-01-01

    We present a proof-of-concept analysis of the measurement of the health damage of ozone (O 3 ) produced from nitrogen oxides (NO x =NO+NO 2 ) emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air quality Model with Extensions (CAMx), to quantify the variable impact that a fixed quantity of NO x emitted from individual sources can have on the downwind concentration of surface O 3 , depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting O 3 -related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used 'cap and trade' approach to NO x regulation, which presumes that shifts of emission over time and space, holding the total fixed over the course of the summer O 3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NO x emissions from one place or time to another could result in large changes in resulting health effects due to O 3 formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NO x emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage. (author)

  9. The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations

    Science.gov (United States)

    Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.

    2006-01-01

    Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint

  10. Why are models unable to reproduce multi-decadal trends in lower tropospheric baseline ozone levels?

    Science.gov (United States)

    Hu, L.; Liu, J.; Mickley, L. J.; Strahan, S. E.; Steenrod, S.

    2017-12-01

    Assessments of tropospheric ozone radiative forcing rely on accurate model simulations. Parrish et al (2014) found that three chemistry-climate models (CCMs) overestimate present-day O3 mixing ratios and capture only 50% of the observed O3 increase over the last five decades at 12 baseline sites in the northern mid-latitudes, indicating large uncertainties in our understanding of the ozone trends and their implications for radiative forcing. Here we present comparisons of outputs from two chemical transport models (CTMs) - GEOS-Chem and the Global Modeling Initiative model - with O3 observations from the same sites and from the global ozonesonde network. Both CTMs are driven by reanalysis meteorological data (MERRA or MERRA2) and thus are expected to be different in atmospheric transport processes relative to those freely running CCMs. We test whether recent model developments leading to more active ozone chemistry affect the computed ozone sensitivity to perturbations in emissions. Preliminary results suggest these CTMs can reproduce present-day ozone levels but fail to capture the multi-decadal trend since 1980. Both models yield widespread overpredictions of free tropospheric ozone in the 1980s. Sensitivity studies in GEOS-Chem suggest that the model estimate of natural background ozone is too high. We discuss factors that contribute to the variability and trends of tropospheric ozone over the last 30 years, with a focus on intermodel differences in spatial resolution and in the representation of stratospheric chemistry, stratosphere-troposphere exchange, halogen chemistry, and biogenic VOC emissions and chemistry. We also discuss uncertainty in the historical emission inventories used in models, and how these affect the simulated ozone trends.

  11. Trends in on-road vehicle emissions and ambient air quality in Atlanta, Georgia, USA, from the late 1990s through 2009.

    Science.gov (United States)

    Vijayaraghavan, Krish; DenBleyker, Allison; Ma, Lan; Lindhjem, Chris; Yarwood, Greg

    2014-07-01

    On-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NO(x)), and volatile organic compounds (VOCs) during 1995-2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NO(x), and VOC emissions of 6.1%, 3.3%, and 6.0% per year, respectively, are noted during the 1995-2009 period despite an increase in total vehicle distance traveled. The CO and NO(x) emission trends are correlated with statistically significant downward trends in ambient air concentrations of CO and NO(x) in Atlanta ranging from 8.0% to 11.8% per year and from 5.8% to 8.7% per year, respectively, during similar time periods. Weather-adjusted summertime ozone concentrations in Atlanta exhibited a statistically significant declining trend of 2.3% per year during 2001-2009. Although this trend coexists with the declining trends in on-road NO(x), VOC, and CO emissions, identifying the cause of the downward trend in ozone is complicated by reductions in multiple precursors from different source sectors. Implications: Large reductions in on-road vehicle emissions of CO and NO(x) in Atlanta from the late 1990s to 2009, despite an increase in total vehicle distance traveled, contributed to a significant improvement in air quality through decreases in ambient air concentrations of CO and NO(x) during this time period. Emissions reductions in motor vehicles and other source sectors resulted in these improvements and the observed declining trend in ozone concentrations over the past decade. Although these historical trends cannot be extrapolated to the future because pollutant concentration contributions due to on-road vehicle emissions will likely become an increasingly smaller fraction of the atmospheric total, they provide an indication of

  12. Co-Mitigation of Ozone and PM2.5 Pollution over the Beijing-Tianjin-Hebei Region

    Science.gov (United States)

    Liu, J.; Xiang, S.; Yi, K.; Tao, W.

    2017-12-01

    With the rapid industrialization and urbanization, emissions of air pollutants in China were increasing rapidly during the past few decades, causing severe particulate matter and ozone pollution in many megacities. Facing these knotty environmental problems, China has released a series of pollution control policies to mitigate air pollution emissions and optimize energy supplement structure. Consequently, fine particulate matters (PM2.5) decrease recently. However, the concentrations of ambient ozone have been increasing, especially during summer time and over megacities. In this study, we focus on the opposite trends of ozone and PM2.5 over the Beijing-Tianjin-Hebei region. We use the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) to simulate and analyze the best emission reduction strategies, and adopt the Empirical Kinetics Modeling Approach (EKMA) to depict the influences of mitigating NOx and VOCs. We also incorporate the abatement costs for NOx and VOCs in our analysis to explore the most cost-effective mitigation strategies for both ozone and PM2.5.

  13. Air Pollution Radiative Forcing From Specific Emissions Sectors at 2030: Prototype for a New IPCC Bar Chart

    Science.gov (United States)

    Unger, N.; Shindell, D. T.; Koch, D. M.

    2007-05-01

    Reduction of short-lived air pollutants provides a way to mitigate global warming in the short-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the GISS atmospheric composition-climate model to quantify near future (2030 A1B) ozone (O3) and sulfate global mean direct radiative forcing impacts from 6 emissions sectors from 7 geographic regions. At 2030 the net forcings for the emissions sectors (including O3, sulfate, black and organic carbon forcings) are (in mW/m2): transportation = +106; biomass burning = +69; domestic = +38; power = -158; industry = -124. Hence the transportation sector is the most attractive target to counter global warming via reduction of short-lived air pollutants. Substantial transportation sector O3 forcings come from all regions (5-12 mW/m2). Central and Southern Africa and South America contribute the largest biomass burning O3 forcings (11-15 mW/m2). Domestic biofuel emissions from East Asia, South Asia and Central and South Africa and power and industry emissions from East Asia also contribute substantial O3 forcings (7-15mW/m2). The global mean sulfate forcings are dominated by the power and industry sectors with largest contributions from East Asia, South Asia and North Africa and Middle East (-30 to -50 mW/m2). Linear relationships exist between global mean radiative forcing by O3 and biomass burning and domestic biofuel CO precursor emissions independent of the region of origin with sensitivity of 0.02mW/m2/TgCO. Similarly, linear relationships are available for global mean radiative forcing by sulfate and SO2 precursor emissions that depend upon region but are independent of the emissions sector with sensitivities ranging from -3 to -12mW/m2/TgS. Such emissions to forcing diagnostics will assist development of climate-motivated policy for O3 and sulfate.

  14. Modeling ozone and aerosol formation and transport in the pacific northwest with the community Multi-Scale Air Quality (CMAQ) modeling system.

    Science.gov (United States)

    O'Neill, Susan M; Lamb, Brian K; Chen, Jack; Claiborn, Candis; Finn, Dennis; Otterson, Sally; Figueroa, Cristiana; Bowman, Clint; Boyer, Mike; Wilson, Rob; Arnold, Jeff; Aalbers, Steven; Stocum, Jeffrey; Swab, Christopher; Stoll, Matt; Dubois, Mike; Anderson, Mary

    2006-02-15

    The Community Multi-Scale Air Quality (CMAQ) modeling system was used to investigate ozone and aerosol concentrations in the Pacific Northwest (PNW) during hot summertime conditions during July 1-15, 1996. Two emission inventories (El) were developed: emissions for the first El were based upon the National Emission Trend 1996 (NET96) database and the BEIS2 biogenic emission model, and emissions for the second El were developed through a "bottom up" approach that included biogenic emissions obtained from the GLOBEIS model. The two simulations showed that elevated PM2.5 concentrations occurred near and downwind of the Interstate-5 corridor along the foothills of the Cascade Mountains and in forested areas of central Idaho. The relative contributions of organic and inorganic aerosols varied by region, but generally organic aerosols constituted the largest fraction of PM2.5. In wilderness areas near the 1-5 corridor, organic carbon from anthropogenic sources contributed approximately 50% of the total organic carbon with the remainder from biogenic precursors, while in wilderness areas in Idaho, biogenic organic carbon accounted for 80% of the total organic aerosol. Regional analysis of the secondary organic aerosol formation in the Columbia River Gorge, Central Idaho, and the Olympics/Puget Sound showed that the production rate of secondary organic carbon depends on local terpene concentrations and the local oxidizing capacity of the atmosphere, which was strongly influenced by anthropogenic emissions. Comparison with observations from 12 IMPROVE sites and 21 ozone monitoring sites showed that results from the two El simulations generally bracketed the average observed PM parameters and that errors calculated for the model results were within acceptable bounds. Analysis across all statistical parameters indicated that the NW-AIRQUEST El solution performed better at predicting PM2.5, PM1, and beta(ext) even though organic carbon PM was over-predicted, and the NET96 El

  15. Modeling the uncertainty of several VOC and its impact on simulated VOC and ozone in Houston, Texas

    Science.gov (United States)

    Pan, Shuai; Choi, Yunsoo; Roy, Anirban; Li, Xiangshang; Jeon, Wonbae; Souri, Amir Hossein

    2015-11-01

    A WRF-SMOKE-CMAQ modeling system was used to study Volatile Organic Compound (VOC) emissions and their impact on surface VOC and ozone concentrations in southeast Texas during September 2013. The model was evaluated against the ground-level Automated Gas Chromatograph (Auto-GC) measurement data from the Texas Commission on Environmental Quality (TCEQ). The comparisons indicated that the model over-predicted benzene, ethylene, toluene and xylene, while under-predicting isoprene and ethane. The mean biases between simulated and observed values of each VOC species showed clear daytime, nighttime, weekday and weekend variations. Adjusting the VOC emissions using simulated/observed ratios improved model performance of each VOC species, especially mitigating the mean bias substantially. Simulated monthly mean ozone showed a minor change: a 0.4 ppb or 1.2% increase; while a change of more than 5 ppb was seen in hourly ozone data on high ozone days, this change moved model predictions closer to observations. The CMAQ model run with the adjusted emissions better reproduced the variability in the National Aeronautics and Space Administration (NASA)'s Ozone Monitoring Instrument (OMI) formaldehyde (HCHO) columns. The adjusted model scenario also slightly better reproduced the aircraft HCHO concentrations from NASA's DISCOVER-AQ campaign conducted during the simulation episode period; Correlation, Mean Bias and RMSE improved from 0.34, 1.38 ppb and 2.15 ppb to 0.38, 1.33 ppb and 2.08 ppb respectively. A process analysis conducted for both industrial/urban and rural areas suggested that chemistry was the main process contributing to ozone production in both areas, while the impact of chemistry was smaller in rural areas than in industrial and urban areas. For both areas, the positive chemistry contribution increased in the sensitivity simulation largely due to the increase in emissions. Nudging VOC emissions to match the observed concentrations shifted the ozone hotspots

  16. Influence of future cropland expansion on regional and global tropospheric ozone

    Science.gov (United States)

    Squire, Oliver; Archibald, Alex; Telford, Paul; Pyle, John

    2013-04-01

    With the global population set to rise over the next 100 years, the fraction of land used for crop cultivation is likely to increase, the trend being most pronounced in developing regions such as Brazil and South East Asia. In these regions currently there stands natural rainforest, a high emitter of isoprene. As many staple crops, such as soy bean, are low emitters of isoprene, increasing the crop fraction in these regions will decrease isoprene emissions. Ozone over ~35 ppb has been shown to be damaging to plants, and as ground level ozone is sensitive to isoprene concentrations, altering isoprene emissions could increase ground level ozone, potentially resulting in crop damage. This mechanism was investigated by comparing two configurations of an atmospheric chemistry-climate model (UM-UKCA) under a 2100 climate following an IPCC scenario of moderate climate change. The first run had a present day crop distribution but isoprene emissions concurrent with 2100 temperatures and climatic conditions. The second run had isoprene emissions representative of both a 2100 climate and a 2100 crop distribution in accordance with the IMAGE model. By comparing these runs it was established that ozone increased by up to 8 ppb (~30%) due to crop land expansion. Over the Amazon (the most affected region) it was found that crops were exposed to a daily maximum 8-hour (DM8H) ozone above the 35 ppb threshold for up to 65 days more per year than in the base case. These conclusions suggest that increasing the crop fraction in current areas of natural rainforest could increase regional ground level ozone, having a significant effect on crop yield and air quality. The sensitivity of such conclusions to isoprene chemistry was examined by varying the isoprene chemistry scheme within the model. The CheT isoprene scheme used here (50 reactions) was compared with the AQUM (23 reactions) and CESM Superfast (2 reactions) isoprene schemes, all of which are currently used in Earth-system models

  17. The impact of climate change and emissions control on future ozone levels: Implications for human health.

    Science.gov (United States)

    Stowell, Jennifer D; Kim, Young-Min; Gao, Yang; Fu, Joshua S; Chang, Howard H; Liu, Yang

    2017-11-01

    Overwhelming evidence has shown that, from the Industrial Revolution to the present, human activities influence ground-level ozone (O 3 ) concentrations. Past studies demonstrate links between O 3 exposure and health. However, knowledge gaps remain in our understanding concerning the impacts of climate change mitigation policies on O 3 concentrations and health. Using a hybrid downscaling approach, we evaluated the separate impact of climate change and emission control policies on O 3 levels and associated excess mortality in the US in the 2050s under two Representative Concentration Pathways (RCPs). We show that, by the 2050s, under RCP4.5, increased O 3 levels due to combined climate change and emission control policies, could contribute to an increase of approximately 50 premature deaths annually nationwide in the US. The biggest impact, however, is seen under RCP8.5, where rises in O 3 concentrations are expected to result in over 2,200 additional premature deaths annually. The largest increases in O 3 are seen in RCP8.5 in the Northeast, the Southeast, the Central, and the West regions of the US. Additionally, when O 3 increases are examined by climate change and emissions contributions separately, the benefits of emissions mitigation efforts may significantly outweigh the effects of climate change mitigation policies on O 3 -related mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Multimodel ensemble simulations of of present-day and near-future tropospheric ozone

    NARCIS (Netherlands)

    Stevenson, D.S.; Dentener, F.J.; van Noije, T.P.C.; Eskes, H.J.; Krol, M.C.

    2006-01-01

    Global tropospheric ozone distributions, budgets, and radiative forcings from an ensemble of 26 state-of-the-art atmospheric chemistry models have been intercompared and synthesized as part of a wider study into both the air quality and climate roles of ozone. Results from three 2030 emissions

  19. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-02-01

    Full Text Available Widespread efforts to abate ozone (O3 smog have significantly reduced emissions of nitrogen oxides (NOx over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004, SENEX (June–July 2013, and SEAC4RS (August–September 2013 and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy in both 2004 and 2013. Among the major RON species, nitric acid (HNO3 is dominant (∼ 42–45 %, followed by NOx (31 %, total peroxy nitrates (ΣPNs; 14 %, and total alkyl nitrates (ΣANs; 9–12 % on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  20. Observations of Radical Precursors during TexAQS II: Findings and Implications

    Science.gov (United States)

    Olaguer, E. P.; Lefer, B. L.; Rappenglueck, B.; Pinto, J. P.

    2009-12-01

    The Texas Environmental Research Consortium (TERC) sponsored and helped organize significant components of the Second Texas Air Quality Study (TexAQS II). Some of the TERC-sponsored experiments, most notably those associated with the TexAQS II Radical and Aerosol Measurement Project (TRAMP) sited on top of the Moody Tower at the University of Houston, found evidence for the importance of short-lived radical sources such as formaldehyde (HCHO) and nitrous acid (HONO) in increasing ozone productivity. During TRAMP, daytime HCHO pulses as large as 32 ppb were observed and attributed to industrial activities upwind in the Houston Ship Channel (HSC), and HCHO peaks as large as 52 ppb were detected by in-situ surface monitors in the HSC. In addition, an instrumented Piper Aztec aircraft observed plumes of apparent primary formaldehyde in flares from petrochemical facilities in the HSC. In one such combustion plume, depleted of ozone by large NOx emissions, the Piper Aztec measured an HCHO-to-CO ratio three times that of mobile sources. HCHO from uncounted primary sources or ozonolysis of underestimated olefin emissions could significantly increase ozone productivity in Houston beyond previous expectations. Simulations with the CAMx model show that additional emissions of HCHO from industrial flares can increase peak ozone in Houston by up to 30 ppb, depending on conditions in the planetary boundary layer. Other findings from TexAQS II include significant concentrations of HONO throughout the day, well in excess of current air quality model predictions, with large nocturnal vertical gradients indicating a surface or near-surface source of HONO, and large concentrations of night-time radicals (~30 ppt HO2). Additional HONO sources could increase daytime ozone by more than 10 ppb. Improving the representation of primary and secondary HCHO and HONO in air quality models could enhance the effectiveness of simulated control strategies, and thus make ozone attainment

  1. Dynamic evaluation of CMAQ part I: Separating the effects of changing emissions and changing meteorology on ozone levels between 2002 and 2005 in the eastern US

    Science.gov (United States)

    A dynamic evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.0.1 was conducted to evaluate the model's ability to predict changes in ozone levels between 2002 and 2005, a time period characterized by emission reductions associated with the EPA's N...

  2. Assessing and evaluating urban VOC emissions in mid-latitude megacities from intensive observations in Paris and Los Angeles

    Science.gov (United States)

    Borbon, A.; Gilman, J. B.; Kuster, W. C.; McKeen, S. A.; Holloway, J. S.; Gros, V.; Gaimoz, C.; Beekmann, M.; De Gouw, J. A.

    2011-12-01

    Volatile Organic Compounds (VOC) affect urban air quality and regional climate change by contributing to ozone formation and the build-up of Secondary Organic Aerosols (SOA). Quantification of VOC emissions is a first critical step to predict VOC environmental impacts and to design effective abatement strategies. Indeed, the quality of ozone and SOA forecasts strongly depends on an accurate knowledge of the primary VOC emissions. However, commonly used bottom-up approaches are highly uncertain due to source multiplicity (combustion processes, storage and distribution of fossil fuels, solvent use, etc.) because of numerous controlling factors (driving conditions, fuel type, temperature, radiation, etc.), and their great variability in time and space. Field observations of VOC and other trace gases can provide valuable top-down constraints to evaluate VOC emission inventories at urban scales. In addition, the implementation of emission reduction measures raises the question of the increasing importance of VOC sources other than traffic. Here, we will evaluate VOC emissions of two mid-latitude megacities in the Northern Hemisphere: the Greater Paris area (Europe) and Los Angeles (USA). In 2009 and 2010, three intensive field campaigns took place in Paris and Los Angeles in the framework of the MEGAPOLI (EU FP7) and CalNex-2010 projects, respectively. Very detailed measurements of aerosol composition and properties, and their gaseous VOC precursors were carried out at ground-based sites (urban center and suburban) and on various mobile platforms. This contribution uses a comprehensive suite of VOC measurements collected by GC-MS/FID techniques at ground-based sites in both cities by a source-receptor methodology. First, emission ratios were estimated from the observations (uncertainty of ± 20%) and compared regarding regional characteristics and European vs. Californian control policies. Then, determined emission ratios were used to assess the accuracy of up

  3. Concentrations of motor vehicle exhaust emissions and ozone in the area surrounding a motorway; Konzentrationen von Kraftfahrzeugemissionen und Ozon im Nahbereich einer Autobahn

    Energy Technology Data Exchange (ETDEWEB)

    Corsmeier, U.; Vogel, H. [Forschungszentrum Karlsruhe GmbH Umwelt und Technik (Germany). Inst. fuer Meteorologie und Klimaforschung]|[Karlsruhe Univ. (T.H.). (Germany). Inst. fuer Meteorologie und Klimaforschung

    1998-01-01

    The measuring concept realized along the federal motorway BAB656, which makes use of meteorological and air-chemical measuring techniques under selected meteorological conditions, permits detecting the plume of motorway exhaust emissions beyond doubt. By simultaneous, comprehensive traffic surveys, the input parameters for numerical emission calculation models valid up to now could be verified. In part, as regards trafic density, fleet composition and driving speed, they were corrected. From the difference between the vertical profiles of the meteorological parameters and ozone concentration measured at the luff and lee sides of the motorway and from measurements of the concentrations of primarily emitted substances at ground level, the actual emissions of these substances for the motorway segment in kgh{sup 1} km{sup -}1 were calculated. (orig./KW) [Deutsch] Es konnte gezeigt werden, dass mit dem bei BAB656 realisierten Messkonzept mit Hilfe meteorologischer und luftchemischer Messtechnik bei ausgesuchten meteorologischen Bedingungen die Abluftfahne mit den auf einer Autobahn emittierten Substanzen zweifelsfrei detektiert werden kann. Durch gleichzeitige umfangreiche Verkehrserhebungen konnten die bisher gueltigen Eingabeparameter fuer numerische Emissionsberechnungsmodelle ueberprueft und was Verkehrsdichte, Flottenzusammensetzung und Fahrgeschwindigkeit angeht, teilweise korrigiert werden. Aus der Differenz der im Luv und Lee der Autobahn gemessenen Vertikalprofile meteorologischer Parameter und der Ozonkonzentration sowie der Messung der Konzentrationen primaer emittierter Substanzen am Boden konnten die Emissionen dieser Stoffe fuer den Autobahnabschnitt in kgh{sup -1} km{sup -1} aktuell berechnet werden. (orig./KW)

  4. Modification of the optoelectronic properties of two-dimensional MoS2 crystals by ultraviolet-ozone treatment

    Science.gov (United States)

    Yang, Hae In; Park, Seonyoung; Choi, Woong

    2018-06-01

    We report the modification of the optoelectronic properties of mechanically-exfoliated single layer MoS2 by ultraviolet-ozone exposure. Photoluminescence emission of pristine MoS2 monotonically decreased and eventually quenched as ultraviolet-ozone exposure time increased from 0 to 10 min. The reduction of photoluminescence emission accompanied reduction of Raman modes, suggesting structural degradation in ultraviolet-ozone exposed MoS2. Analysis with X-ray photoelectron spectroscopy revealed that the formation of Ssbnd O and Mosbnd O bonding increases with ultraviolet-ozone exposure time. Measurement of electrical transport properties of MoS2 in a bottom-gate thin-film transistor configuration suggested the presence of insulating MoO3 after ultraviolet-ozone exposure. These results demonstrate that ultraviolet-ozone exposure can significantly influence the optoelectronic properties of single layer MoS2, providing important implications on the application of MoS2 and other two-dimensional materials into optoelectronic devices.

  5. A statistical model for forecasting hourly ozone levels during fire season

    Science.gov (United States)

    Haiganoush K. Preisler; Shiyuan (Sharon) Zhong; Annie Esperanza; Leland Tarnay; Julide Kahyaoglu-Koracin

    2009-01-01

    Concerns about smoke from large high-intensity and managed low intensity fires have been increasing during the past decade. Because smoke from large high-intensity fires are known to contain and generate secondary fine particles (PM2.5) and ozone precursors, the effect of fires on air quality in the southern Sierra Nevada is a serious management...

  6. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    Science.gov (United States)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  7. Estimating State-Specific Contributions to PM2.5- and O3-Related Health Burden from Residential Combustion and Electricity Generating Unit Emissions in the United States.

    Science.gov (United States)

    Penn, Stefani L; Arunachalam, Saravanan; Woody, Matthew; Heiger-Bernays, Wendy; Tripodis, Yorghos; Levy, Jonathan I

    2017-03-01

    Residential combustion (RC) and electricity generating unit (EGU) emissions adversely impact air quality and human health by increasing ambient concentrations of fine particulate matter (PM 2.5 ) and ozone (O 3 ). Studies to date have not isolated contributing emissions by state of origin (source-state), which is necessary for policy makers to determine efficient strategies to decrease health impacts. In this study, we aimed to estimate health impacts (premature mortalities) attributable to PM 2.5 and O 3 from RC and EGU emissions by precursor species, source sector, and source-state in the continental United States for 2005. We used the Community Multiscale Air Quality model employing the decoupled direct method to quantify changes in air quality and epidemiological evidence to determine concentration-response functions to calculate associated health impacts. We estimated 21,000 premature mortalities per year from EGU emissions, driven by sulfur dioxide emissions forming PM 2.5 . More than half of EGU health impacts are attributable to emissions from eight states with significant coal combustion and large downwind populations. We estimate 10,000 premature mortalities per year from RC emissions, driven by primary PM 2.5 emissions. States with large populations and significant residential wood combustion dominate RC health impacts. Annual mortality risk per thousand tons of precursor emissions (health damage functions) varied significantly across source-states for both source sectors and all precursor pollutants. Our findings reinforce the importance of pollutant-specific, location-specific, and source-specific models of health impacts in design of health-risk minimizing emissions control policies. Citation: Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI. 2017. Estimating state-specific contributions to PM 2.5 - and O 3 -related health burden from residential combustion and electricity generating unit emissions in the United States. Environ

  8. A new diagnostic for tropospheric ozone production

    Science.gov (United States)

    Edwards, Peter M.; Evans, Mathew J.

    2017-11-01

    Tropospheric ozone is important for the Earth's climate and air quality. It is produced during the oxidation of organics in the presence of nitrogen oxides. Due to the range of organic species emitted and the chain-like nature of their oxidation, this chemistry is complex and understanding the role of different processes (emission, deposition, chemistry) is difficult. We demonstrate a new methodology for diagnosing ozone production based on the processing of bonds contained within emitted molecules, the fate of which is determined by the conservation of spin of the bonding electrons. Using this methodology to diagnose ozone production in the GEOS-Chem chemical transport model, we demonstrate its advantages over the standard diagnostic. We show that the number of bonds emitted, their chemistry and lifetime, and feedbacks on OH are all important in determining the ozone production within the model and its sensitivity to changes. This insight may allow future model-model comparisons to better identify the root causes of model differences.

  9. A new diagnostic for tropospheric ozone production

    Directory of Open Access Journals (Sweden)

    P. M. Edwards

    2017-11-01

    Full Text Available Tropospheric ozone is important for the Earth's climate and air quality. It is produced during the oxidation of organics in the presence of nitrogen oxides. Due to the range of organic species emitted and the chain-like nature of their oxidation, this chemistry is complex and understanding the role of different processes (emission, deposition, chemistry is difficult. We demonstrate a new methodology for diagnosing ozone production based on the processing of bonds contained within emitted molecules, the fate of which is determined by the conservation of spin of the bonding electrons. Using this methodology to diagnose ozone production in the GEOS-Chem chemical transport model, we demonstrate its advantages over the standard diagnostic. We show that the number of bonds emitted, their chemistry and lifetime, and feedbacks on OH are all important in determining the ozone production within the model and its sensitivity to changes. This insight may allow future model–model comparisons to better identify the root causes of model differences.

  10. Emissions inventory for the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, V.H.P.; Renteria, J.S. [Secretaria de Medio Ambiente, Col. Tiacopac San Angel (Mexico); Hernandez, C.G. [Departamento del Distrito Federal, Col. Centro (Mexico)] [and others

    1996-12-31

    The emissions inventory bears a broad relationship to the energy balance, reflecting the dependence of the emissions with reference to the use of energy. Actually the consumption of gasoline and diesel fuel in the transport sector represents collectively, the greatest comparative expense of energy and the major contributor of the ozone precursor pollutants HC, NO{sub x} and CO, relative to the total volume of emissions in the Mexico City Metropolitan Area (MCMA). Also, the industrial sector introduces significant emissions of SO{sub 2} and NO{sub x} due to its energy consumption of fuel oils and natural gas. In contrast, the great majority of suspended particulate in the MCMA emanate from degradation processes of surface soil along the periphery of the urban zone. To the federal and local authorities charged with the design of strategies for prevention and control of atmospheric pollution, the emissions inventory is a strategic tool that reflects the relative intensity of the various emitters to the load capacity of the atmosphere. A comprehensive inventory was compiled for 1995, categorizing the emissions generated by four sectors: industry, services, transport and surface soils and vegetation, considering the following pollutants: TSP, SO{sub 2}, NO{sub x}, HC and CO. The combined pollutant emissions are 4,009,628 tons/year of which 3% are generated by the industry, 10% by the services sector, 75% by the transport sector, and 12% by surface soils and vegetation.

  11. Ozone depleting substances management inventory system

    Directory of Open Access Journals (Sweden)

    Felix Ivan Romero Rodríguez

    2018-02-01

    Full Text Available Context: The care of the ozone layer is an activity that contributes to the planet's environmental stability. For this reason, the Montreal Protocol is created to control the emission of substances that deplete the ozone layer and reduce its production from an organizational point of view. However, it is also necessary to have control of those that are already circulating and those present in the equipment that cannot be replaced yet because of the context of the companies that keep it. Generally, the control mechanisms for classifying the type of substances, equipment and companies that own them, are carried in physical files, spreadsheets and text documents, which makes it difficult to control and manage the data stored in them. Method: The objective of this research is to computerize the process of control of substances that deplete the ozone layer. An evaluation and description of all process to manage Ozone-Depleting Substances (ODS, and its alternatives, is done. For computerization, the agile development methodology SCRUM is used, and for the technological solution tools and free open source technologies are used. Result: As a result of the research, a computer tool was developed that automates the process of control and management of substances that exhaust the ozone layer and its alternatives. Conclusions: The developed computer tool allows to control and manage the ozone-depleting substances and the equipment that use them. It also manages the substances that arise as alternatives to be used for the protection of the ozone layer.

  12. Climate effect of ozone changes caused by present and future air traffic

    Energy Technology Data Exchange (ETDEWEB)

    Ponater, M.; Sausen, R.; Feneberg, B. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1998-08-01

    The potential of aircraft-induced ozone changes to significantly enhance the climate impact of air traffic due to CO{sub 2}-emissions is investigated by means of simulations with an atmospheric general circulation model, coupled to a mixed layer ocean model. Results from several numerical experiments are presented, based on ozone increase patterns for 1992 aviation and on a future scenario for the year 2015. The climate signal is statistically significant for both time slices. Its strength is of comparable magnitude to that arising from aircraft CO{sub 2} emissions, thus meaning a nonnegligible contribution to the total effect. There are indications of a characteristic signature of the aircraft ozone related temperature response pattern, distinctly different from that typically associated with the increase of a well-mixed greenhouse gas. Likewise, the climate sensitivity to nonuniform ozone changes including a strong concentration perturbation at the tropopause appears to he higher than the climate sensitivity to uniform changes of a greenhouse gas. In a hierarchy of experiments based on an aircraft-related ozone perturbation with fixed structure (but increasing amplitude), the climate signal depends in a nonlinear way from the radiative forcing. (orig.) 44 refs.

  13. The Effectiveness of State and Local Incentives on Household Ownership of Alternative Fuel Vehicles - A SEM Analysis

    Science.gov (United States)

    2017-03-03

    California, where transportation accounts for over half of ozone precursors and particulate matter emissions, as well as nearly 40 percent of greenhouse gas emissions, has adopted the ambitious goal of reducing petroleum use in transportation by 50 p...

  14. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA.

    Science.gov (United States)

    Gorai, A K; Tuluri, F; Tchounwou, P B; Ambinakudige, S

    2015-02-01

    The influence of local climatic factors on ground-level ozone concentrations is an area of increasing interest to air quality management in regards to future climate change. This study presents an analysis on the role of temperature, wind speed, wind direction, and NO 2 level on ground-level ozone concentrations over the region of Eastern Texas, USA. Ozone concentrations at the ground level depend on the formation and dispersion processes. Formation process mainly depends on the precursor sources, whereas, the dispersion of ozone depends on meteorological factors. Study results showed that the spatial mean of ground-level ozone concentrations was highly dependent on the spatial mean of NO 2 concentrations. However, spatial distributions of NO 2 and ozone concentrations were not uniformed throughout the study period due to uneven wind speeds and wind directions. Wind speed and wind direction also played a significant role in the dispersion of ozone. Temperature profile in the area rarely had any effects on the ozone concentrations due to low spatial variations.

  15. Lower tropospheric ozone over India and its linkage to the South Asian monsoon

    Science.gov (United States)

    Lu, Xiao; Zhang, Lin; Liu, Xiong; Gao, Meng; Zhao, Yuanhong; Shao, Jingyuan

    2018-03-01

    Lower tropospheric (surface to 600 hPa) ozone over India poses serious risks to both human health and crops, and potentially affects global ozone distribution through frequent deep convection in tropical regions. Our current understanding of the processes controlling seasonal and long-term variations in lower tropospheric ozone over this region is rather limited due to spatially and temporally sparse observations. Here we present an integrated process analysis of the seasonal cycle, interannual variability, and long-term trends of lower tropospheric ozone over India and its linkage to the South Asian monsoon using the Ozone Monitoring Instrument (OMI) satellite observations for years 2006-2014 interpreted with a global chemical transport model (GEOS-Chem) simulation for 1990-2010. OMI observed lower tropospheric ozone over India averaged for 2006-2010, showing the highest concentrations (54.1 ppbv) in the pre-summer monsoon season (May) and the lowest concentrations (40.5 ppbv) in the summer monsoon season (August). Process analyses in GEOS-Chem show that hot and dry meteorological conditions and active biomass burning together contribute to 5.8 Tg more ozone being produced in the lower troposphere in India in May than January. The onset of the summer monsoon brings ozone-unfavorable meteorological conditions and strong upward transport, which all lead to large decreases in the lower tropospheric ozone burden. Interannually, we find that both OMI and GEOS-Chem indicate strong positive correlations (r = 0.55-0.58) between ozone and surface temperature in pre-summer monsoon seasons, with larger correlations found in high NOx emission regions reflecting NOx-limited production conditions. Summer monsoon seasonal mean ozone levels are strongly controlled by monsoon strengths. Lower ozone concentrations are found in stronger monsoon seasons mainly due to less ozone net chemical production. Furthermore, model simulations over 1990-2010 estimate a mean annual trend of 0

  16. Effects of ozone as a stand-alone and coagulation-aid treatment on the reduction of trihalomethanes precursors from high DOC and hardness water.

    Science.gov (United States)

    Sadrnourmohamadi, Mehrnaz; Gorczyca, Beata

    2015-04-15

    This study investigates the effect of ozone as a stand-alone and coagulation aid on the removal of dissolved organic carbon (DOC) from the water with a high level of DOC (13.8 mgL(-1)) and calcium hardness (270 mgL(-1)) CaCO3. Natural water collected from the Assiniboine River (Manitoba, Canada) was used in this study. Effectiveness of ozone treatment was evaluated by measurement of DOC, DOC fractions, UV254, and trihalomethane formation potential (THMFP). Additionally, zeta potential and dissolved calcium concentration were measured to discern the mechanism of ozone reactions. Results indicated that 0.8 mg O3/mg DOC ozone stand-alone can cause up to 86% UV254 reduction and up to 27% DOC reduction. DOC fractionation results showed that ozone can change the composition of DOC in the water samples, converting the hydrophobic fractions into hydrophilic ones and resulting in the reduction of THMFP. Also, ozone caused a decrease in particle stability and dissolved calcium concentration. These simultaneous ozonation effects caused improved water flocculation and enhanced removal of DOC. This resulted in reduction of the coagulant dosage when ozone doses higher than 0.2 mg O3/mg DOC were applied prior to coagulation with ferric sulfate. Also, pre-ozonation-coagulation process achieved preferential THMFP removal for all of the ozone doses tested (0-0.8 mg O3/mg DOC), leading to a lower specific THMFP in pre-ozonated-coagulated waters than in the corresponding ozonated waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Volatile organic compounds speciation and their influence on ozone formation potential in an industrialized urban area in Brazil.

    Science.gov (United States)

    Galvão, Elson Silva; Santos, Jane Meri; Reis Junior, Neyval Costa; Stuetz, Richard Michael

    2016-09-01

    Speciation and the influence on the ozone formation potential (OFP) from volatile organic compounds (VOCs) have been studied between February June 2013 in Vitória, ES, Brazil. Passive samplers were installed at three air-quality monitoring stations and a total of 96 samplings were collected. A total of 78 VOCs were characterized by gas chromatograph-mass spectrometer. The predominant group was organic acids, followed by alcohols and substituted aromatics and 14 precursor species were quantified. An analysis correlating concentrations with wind direction was conducted to identify possible sources. The OFP was calculated applying the scale of maximum incremental reactivity proposed by Carter.[ 23 ] Ozone precursors with the greatest OFP such as undecane, toluene, ethylbenzene and m, p-xylene compounds were the most abundant with means of 0.855, 0.365, 0.259 and 0.289 µg m(-3), respectively. The benzene, toluene, ethylbenzene and xylene (BTEX) group was found below the limits considered harmful to the health of the population living in Vitória. The OFP calculated for the precursors group was 22.55 µg m(-3) for the rainy season and 32.11 µg m(-3) for the dry season. The VOC/NOx ratio in Vitória is approximately 1.71, indicating that the region has a VOC-limiting condition for the production of ozone.

  18. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  19. Long range transport of CO and ozone from source regions in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, D.; Mahura, A. [Univ. of Alaska, Fairbanks, AK (United States)]|[Institute of Northern Ecological Problems, Moscow (Russian Federation); Novelli, P. [Univ. of Colorado, Boulder, CO (United States); Merrill, J. [Univ. of Rhode Island, Narraganset, RI (United States)

    1996-12-31

    Based on current understanding of the atmosphere, CO and photochemically produced ozone can be transported thousands of kilometers prior to being removed. Emissions from Asia have a possible impact on the CO and ozone concentrations over the U.S. west coast following transport across the Pacific Ocean. If this is correct, then there are implications for ozone control strategies in the downwind region. Evidence includes: (1) Global 3D chemical transport models indicating a monthly mean enhancement of 10-20% on the US west coast for both CO and ozone during winter-spring due to emissions from Asia; and (2) CO and O{sub 3} data from several Pacific sites which demonstrate that Asian pollutants can be transported great distances. The weekly flask data clearly define a CO seasonal cycle. In the present analysis we use a locally weighted smoothing technique to identify individual data outliers from the smoothed seasonal cycle. We hypothesize that these outliers represent periods when continental emissions influenced the atmospheric mixing ratios at these locations. Using isentropic back trajectories we try to identify a possible source region or pathway for each event and present a distribution of the trajectory types for the events. For the events at Midway, Mauna Loa, Guam and Shemya, we are able to identify a source region for elevated CO in 82, 72, 65 and 50% of the events, respectively. At Mauna Loa and Midway a majority of the events occur during spring and are mostly associated with transport from Asia. These events bring the highest CO mixing ratios observed at any time during the year to these sites, with CO enhancements up to 46 ppb. For Mauna Loa, a small number of events during summer are due to transport from North and Central America. In-situ ozone from Mauna Loa also demonstrates an impact from Asian emissions.

  20. A two-dimensional model study of past trends in global ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Kinnison, D.E.

    1988-08-01

    Emissions and atmospheric concentrations of several trace gases important to atmospheric chemistry are known to have increased substantially over recent decades. Solar flux variations and the atmospheric nuclear test series are also likely to have affected stratospheric ozone. In this study, the LLNL two-dimensional chemical-radiative-transport model of the troposphere and stratosphere has been applied to an analysis of the effects that these natural and anthropogenic influences may have had on global ozone concentrations over the last three decades. In general, model determined species distributions and the derived ozone trends agree well with published analyses of land-based and satellite-based observations. Also, the total ozone and ozone distribution trends derived from CFC and other trace gas effects have a different response with latitude than the derived trends from solar flux variations, thus providing a ''signature'' for anthropogenic effects on ozone. 24 refs., 5 figs

  1. Ozone initiated reactions and human comfort in indoor environments

    DEFF Research Database (Denmark)

    Tamas, Gyöngyi

    2006-01-01

    Chemical reactions between ozone and pollutants commonly found indoors have been suggested to cause adverse health and comfort effects among building occupants. Of special interest are reactions with terpenes and other pollutants containing unsaturated carbon-carbon bonds that are fast enough...... to occur under normal conditions in various indoor settings. These reactions are known to occur both in the gas phase (homogeneous reactions) and on the surfaces of building materials (heterogeneous reactions), producing a number of compounds that can be orders of magnitude more odorous and irritating than...... their precursors. The present thesis investigates the effects of ozone-initiated reactions with limonene and with various interior surfaces, including those associated with people, on short-term sensory responses. The evaluations were conducted using a perceived air quality (PAQ) method introduced by Fanger (1988...

  2. Surface ozone measurements in the southwest of the Iberian Peninsula (Huelva, Spain).

    Science.gov (United States)

    Carnero, Jose A Adame; Bolívar, Juan P; de la Morena, Benito A

    2010-02-01

    Photochemical ozone pollution of the lower troposphere (LT) is a very complex process involving meteorological, topographic emissions and chemical parameters. Ozone is considered the most important air pollutant in rural, suburban and industrial areas of many sites in the world since it strongly affects human health, vegetation and forest ecosystems, and its increase during the last decades has been significant. In addition, ozone is a greenhouse gas that contributes to climate change. For these reasons, it is necessary to carry out investigations that determine the behaviour of ozone at different locations. The aim of this work is to understand the levels and temporal variations of surface ozone in an industrial-urban region of the Southwest Iberian Peninsula. The study is based on ozone hourly data recorded during a 6-year period, 2000 to 2005 at four stations and meteorological data from a coastal station. The stations used were El Arenosillo and Cartaya--both coastal stations, Huelva--an urban site and Valverde--an inland station 50 km away from the coastline. The general characteristics of the ozone series, seasonal and daily ozone cycles as well as number of exceedances of the threshold established in the European Ozone Directive have been calculated and analysed. Analysis of the meteorological data shows that winter-autumn seasons are governed by the movement of synoptic weather systems; however, in the spring-summer seasons, both synoptic and mesoescale conditions exist. Average hourly ozone concentrations range from 78.5 +/- 0.1 microg m(-3) at Valverde to 57.8 +/- 0.2 microg m(-3) at Huelva. Ozone concentrations present a seasonal variability with higher values in summer months, while in wintertime, lower values are recorded. A seasonal daily evolution has also been found with minimum levels around 08:00 UTC, which occurs approximately 1-1.5 h after sunrise, whereas the maximum is reached at about 16:00 UTC. Furthermore, during summer, the maximum value

  3. Pre-Harvest Sugarcane Burning: Determination of Emission Factors through Laboratory Measurements

    Directory of Open Access Journals (Sweden)

    João Andrade Carvalho

    2012-02-01

    Full Text Available Sugarcane is an important crop for the Brazilian economy and roughly 50% of its production is used to produce ethanol. However, the common practice of pre-harvest burning of sugarcane straw emits particulate material, greenhouse gases, and tropospheric ozone precursors to the atmosphere. Even with policies to eliminate the practice of pre-harvest sugarcane burning in the near future, there is still significant environmental damage. Thus, the generation of reliable inventories of emissions due to this activity is crucial in order to assess their environmental impact. Nevertheless, the official Brazilian emissions inventory does not presently include the contribution from pre-harvest sugarcane burning. In this context, this work aims to determine sugarcane straw burning emission factors for some trace gases and particulate material smaller than 2.5 μm in the laboratory. Excess mixing ratios for CO2, CO, NOX, UHC (unburned hydrocarbons, and PM2.5 were measured, allowing the estimation of their respective emission factors. Average estimated values for emission factors (g kg−1 of burned dry biomass were 1,303 ± 218 for CO2, 65 ± 14 for CO, 1.5 ± 0.4 for NOX, 16 ± 6 for UHC, and 2.6 ± 1.6 for PM2.5. These emission factors can be used to generate more realistic emission inventories and therefore improve the results of air quality models.

  4. Ozone et propriétés oxydantes de la troposphère Ozone and Oxidizing Properties of the Troposhere

    Directory of Open Access Journals (Sweden)

    Académie des Sciences Groupe de Travail

    2006-11-01

    èles pertinents aux différentes échelles spatiales concernées. Up to now, the problem of the increase in ozone and photo-oxidants concentrations in the troposphere has remained less understood by decision-makers than that of the additional greenhouse effect or the decrease in the stratospheric ozone layer. Yet, the direct consequences of this increase concern the balance of plant ecosystems and the health of populations that are altered by the powerful oxidizing nature of this ozone as well as climatic balances, since ozone is a greenhouse-effect gas that is 1000 times more active than an equal concentration of carbon dioxide. On the global scale, experimental observations show that, since the start of the 20th century, the ozone level in the free atmosphere has been multiplied by 4 in the Northern hemisphere and by 2 in the Southern Hemisphere. This increase is the result of the direct production of ozone in the lower atmosphere by photochemical reactions, involving nitrogen oxides, volatile organic components, carbon monoxide and methane, the amount of which is increasing very fast as the result of anthropogenic activities. In addition to this increase on the global scale, there is also an increase in the frequency of the occurrence of local pollution episodes, linked mainly to the accumulation of ozone precursors, i. e. mainly nitrogen oxides and volatile organic compounds. Photochemical pollution phenomena are no longer solely the result of several large cities but are becoming prevalent in all the industrialized or developing countries. To cope with this fast increase, the present rate of which would lead to the doubling of the ozone concentrations in the troposphere in less than 40 years, regulatory measures are being set up in several countries, and particularly in the European Union. Respecting them will require the development of coherent strategies to reduce the precursors, based on models pertaining to the different spatial scales involved.

  5. VOC reactivity and its effect on ozone production during the HaChi summer campaign

    Directory of Open Access Journals (Sweden)

    L. Ran

    2011-05-01

    Full Text Available Measurements of ozone and its precursors conducted within the HaChi (Haze in China project in summer 2009 were analyzed to characterize volatile organic compounds (VOCs and their effects on ozone photochemical production at a suburban site in the North China Plain (NCP. Ozone episodes, during which running 8-h average ozone concentrations exceeding 80 ppbv lasted for more than 4 h, occurred on about two thirds of the observational days during the 5-week field campaign. This suggests continuous ozone exposure risks in this region in the summer. Average concentrations of nitrogen oxides (NOx and VOCs are about 20 ppbv and 650 ppbC, respectively. On average, total VOC reactivity is dominated by anthropogenic VOCs. The contribution of biogenic VOCs to total ozone-forming potential, however, is also considerable in the daytime. Key species associated with ozone photochemical production are 2-butenes (18 %, isoprene (15 %, trimethylbenzenes (11 %, xylenes (8.5 %, 3-methylhexane (6 %, n-hexane (5 % and toluene (4.5 %. Formation of ozone is found to be NOx-limited as indicated by measured VOCs/NOx ratios and further confirmed by a sensitivity study using a photochemical box model NCAR_MM. The Model simulation suggests that ozone production is also sensitive to changes in VOC reactivity under the NOx-limited regime, although this sensitivity depends strongly on how much NOx is present.

  6. CHARACTERIZATION OF NITROUS OXIDE EMISSION SOURCES

    Science.gov (United States)

    The report presents a global inventory of nitrous oxide (N2O) based on reevaluation of previous estimates and additions of previously uninventoried source categories. (NOTE: N2O is both a greenhouse gas and a precursor of nitric oxide (NO) which destroys stratospheric ozone.) The...

  7. Ozone Decline and Recovery: The Significance of Uncertainties

    Science.gov (United States)

    Harris, N. R. P.

    2017-12-01

    Stratospheric ozone depletion has been one of the leading environmental issues of the last 40 years. It has required research scientists, industry and government to work together to address it successfully. Steps have been taken to reduce the emissions of ozone depleting substances (ODS) under successive revisions of the measures in the 30 year old Montreal Protocol. These have led to a reduction in atmospheric ODS concentrations and so are expected over time to result in a reduction of chemical ozone depletion by ODS. This 'recovery' is being influenced by a number of other factors (natural variability, climate change, other changes in stratospheric chemistry) which makes it hard to provide good, quantitative estimates of the impact of the recent ODS reductions on stratospheric ozone. In this presentation, I discuss how ozone trends were linked to ODS during the period of ozone depletion and during the recent period of 'recovery', i.e. before and after the peak in atmospheric ODS. It is important to be as rigorous as possible in order to give public confidence in the advice provided through the scientific assessment process. We thus need to be as critical of our analyses of the recent data as possible, even though there is a strong expectation and hope from all sides that stratospheric ozone is recovering. I will describe in outline the main challenges that exist now and looking forward.

  8. Recent Biomass Burning in the Tropics and Related Changes in Tropospheric Ozone

    Science.gov (United States)

    Ziemke; Chandra, J. R. S.; Duncan, B. N.; Schoeberl, M. R.; Torres, O.; Damon, M. R.; Bhartia, P. K.

    2009-01-01

    Biomass burning is an important source of chemical precursors of tropospheric ozone. In the tropics, biomass burning produces ozone enhancements over broad regions of Indonesia, Africa, and South America including Brazil. Fires are intentionally set in these regions during the dry season each year to clear cropland and to clear land for human/industrial expansion. In Indonesia enhanced burning occurs during dry El Nino conditions such as in 1997 and 2006. These burning activities cause enhancement in atmospheric particulates and trace gases which are harmful to human health. Measurements from the Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) from October 2004-November 2008 are used to evaluate the effects of biomass burning on tropical tropospheric ozone. These measurements show sizeable decreases approx.15-20% in ozone in Brazil during 2008 compared to 2007 which we attribute to the reduction in biomass burning. Three broad biomass burning regions in the tropics (South America including Brazil, western Africa, and Indonesia) were analyzed in the context of OMI/MLS measurements and the Global Modeling Initiative (GMI) chemical transport model developed at Goddard Space Flight Center. The results indicate that the impact of biomass burning on ozone is significant within and near the burning regions with increases of approx.10-25% in tropospheric column ozone relative to average background concentrations. The model suggests that about half of the increases in ozone from these burning events come from altitudes below 3 km. Globally the model indicates increases of approx.4-5% in ozone, approx.7-9% in NO, (NO+NO2), and approx.30-40% in CO.

  9. Estimation of biogenic volatile organic compounds emissions in subtropical island--Taiwan.

    Science.gov (United States)

    Chang, Ken-Hui; Chen, Tu-Fu; Huang, Ho-Chun

    2005-06-15

    Elevated tropospheric ozone is harmful to human health and plants. It is formed through the photochemical reactions involving volatile organic compounds (VOCs) and nitrogen oxides (NO(x)). The elevated ozone episodes occur mainly in summer months in the United States, while the high-ozone episodes frequently occur during the fall in Taiwan. The unique landscape of Taiwan produces tremendous amounts of biogenic VOCs in the mountain regions that are adjacent to concentrated urban areas. The urban areas, in turn, generate prodigious amounts of anthropogenic emissions. Biogenic VOC emissions have direct influence on tropospheric ozone formation. To explore the air quality problems in Taiwan, this study attempts to develop a biogenic VOC emission model suitable for air quality applications in Taiwan. The emission model is based on the Biogenic Emissions Inventory System Version 2 and coupled with a detailed Taiwan land use database. The 1999 total Taiwan biogenic VOC emissions were estimated at 214,000 metric tons. The emissions of isoprene, monoterpenes, and other VOCs were about 37.2%, 30.4%, and 32.4% of total biogenic VOC emissions, respectively. The annual total biogenic VOC emission per unit area was more than two times the value of that in any European country, implying that detailed emissions estimates in any size of region will benefit the global biogenic emission inventories.

  10. Evaluation of consequences of emissions to air from the Sture oil terminal

    International Nuclear Information System (INIS)

    Knudsen, S.; Sloerdal, L.H.

    1997-01-01

    This report evaluates the consequences of emissions of NOx and volatile organic compounds (VOCs) from a planned gas recovery plant at Sture in the Norwegian municipality of Oeygarden. The new plant will distill methane and naphtha from crude oil and the emissions of VOC from loading the oil will be partly recovered. The report discusses the effects of emissions to air locally around the plant, regional deposition of nitrogen compounds and formation of ozone caused by the emissions of VOC and NOx. Calculations show that depositions of nitrogen compounds from emissions of nitrogen oxides from Sture contribute little to the nitrogen deposition in the area. The contribution of acids from nitrogen oxide emission will be too low to have measurable consequences for the acidification of the lakes in the region concerned. At times the present background level of ozone at Sture is high enough to cause reduced photosynthesis and plant growth. The ozone concentration will be little influenced by VOC emissions. The increased ozone concentration at ground level following emissions of nitrogen oxides and hydrocarbons is too low to affect the vegetation in the area. 9 refs., 5 figs., 4 tabs

  11. Impact of natural gas development in the Marcellus and Utica shales on regional ozone and fine particulate matter levels

    Science.gov (United States)

    Roohani, Yusuf H.; Roy, Anirban A.; Heo, Jinhyok; Robinson, Allen L.; Adams, Peter J.

    2017-04-01

    The Marcellus and Utica shale formations have recently been the focus of intense natural gas development and production, increasing regional air pollutant emissions. Here we examine the effects of these emissions on regional ozone and fine particulate matter (PM2.5) levels using the chemical transport model, CAMx, and estimate the public health costs with BenMAP. Simulations were performed for three emissions scenarios for the year 2020 that span a range potential development storylines. In areas with the most gas development, the 'Medium Emissions' scenario, which corresponds to an intermediate level of development and widespread adoption of new equipment with lower emissions, is predicted to increase 8-hourly ozone design values by up to 2.5 ppbv and average annual PM2.5 concentrations by as much as 0.27 μg/m3. These impacts could range from as much as a factor of two higher to a factor of three lower depending on the level of development and the adoption of emission controls. Smaller impacts (e.g. 0.1-0.5 ppbv of ozone, depending on the emissions scenario) are predicted for non-attainment areas located downwind of the Marcellus region such as New York City, Philadelphia and Washington, DC. Premature deaths for the 'Medium Emissions' scenario are predicted to increase by 200-460 annually. The health impacts as well as the changes in ozone and PM2.5 were all driven primarily by NOx emissions.

  12. Exhaust emissions of volatile organic compounds of powered two-wheelers: effect of cold start and vehicle speed. Contribution to greenhouse effect and tropospheric ozone formation.

    Science.gov (United States)

    Costagliola, M Antonietta; Murena, Fabio; Prati, M Vittoria

    2014-01-15

    Powered two-wheeler (PTW) vehicles complying with recent European type approval standards (stages Euro 2 and Euro 3) were tested on chassis dynamometer in order to measure exhaust emissions of about 25 volatile organic compounds (VOCs) in the range C1-C7, including carcinogenic compounds as benzene and 1,3-butadiene. The fleet consists of a moped (engine capacity ≤ 50 cm(3)) and three fuel injection motorcycles of different engine capacities (150, 300 and 400 cm(3)). Different driving conditions were tested (US FPT cycle, constant speed). Due to the poor control of the combustion and catalyst efficiency, moped is the highest pollutant emitter. In fact, fuel injection strategy and three way catalyst with lambda sensor are able to reduce VOC motorcycles' emission of about one order of magnitude with respect to moped. Cold start effect, that is crucial for the assessment of actual emission of PTWs in urban areas, was significant: 30-51% of extra emission for methane. In the investigated speed range, moped showed a significant maximum of VOC emission factor at minimum speed (10 km/h) and a slightly decreasing trend from 20 to 60 km/h; motorcycles showed on the average a less significant peak at 10 km/h, a minimum at 30-40 km/h and then an increasing trend with a maximum emission factor at 90 km/h. Carcinogenic VOCs show the same pattern of total VOCs. Ozone Formation Potential (OFP) was estimated by using Maximum Incremental Reactivity scale. The greatest contribution to tropospheric ozone formation comes from alkenes group which account for 50-80% to the total OFP. VOC contribution effect on greenhouse effect is negligible with respect to CO2 emitted. © 2013.

  13. Process-scale modeling of elevated wintertime ozone in Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  14. Lightning NOx and Impacts on Air Quality

    Science.gov (United States)

    Murray, Lee T.

    2016-01-01

    Lightning generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. Lightning nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. Lightning globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. Lightning contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. Lightning also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences lightning itself, with implications for regional lightning-nitrogen oxide production and feedbacks on downwind surface pollution. How lightning emissions will change in a warming world remains uncertain.

  15. Occurrence of ozone anomalies over cloudy areas in TOMS version-7 level-2 data

    Directory of Open Access Journals (Sweden)

    X. Liu

    2003-01-01

    because of rich ozone precursors and higher photolysis rates over high-frequency, low-altitude clouds than in clear areas. Ozone anomalies due to ozone retrieval errors have important implications in TOMS applications such as tropospheric ozone derivation and analysis of ozone seasonal variation.

  16. Degradation of the ammonia wastewater in aqueous medium with ozone in combination with mesoporous TiO2 catalytic

    Science.gov (United States)

    Liu, Zhiwu; Qiu, Jianping; Zheng, Chaocan; Li, Liqing

    2017-03-01

    TiO2 mesoporous nanomaterials are now widely used in catalytic ozone technology. In this paper, the market P25 as precursor hydrothermal method to prepare TiO2 mesoporous materials, ozone catalyst material characterization by transmission electron microscopy, surface area analyzers, and X-ray diffraction technique and found that nanotubes, nanosheets, nanorods through characterization results, nano-particles of different morphology and anatase and rutile proportion of the ozone catalytic material can be controlled by the calcination temperature and the temperature of hot water to give, and with the hot water temperature and calcination temperature, the catalyst becomes small aperture size larger catalyst crystalline phase from anatase to rutile gradually shift. Catalytic materials have been prepared by the Joint ozone degradation of ammonia wastewater to evaluate mesoporous TiO2 nanomaterials ozone catalytic performance, the results showed that: ammonia wastewater removal efficiency of various catalytic materials relatively separate ozone and markets P25 effects are significantly improved, and TiO2 nanotubes cooperate with ozone degradation ammonia wastewater highest efficiency, in addition, rutile TiO2 catalysts, the more the better the performance of their ozone catalysis.

  17. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    Science.gov (United States)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  18. The ABAG biogenic emissions inventory project

    Science.gov (United States)

    Carson-Henry, C. (Editor)

    1982-01-01

    The ability to identify the role of biogenic hydrocarbon emissions in contributing to overall ozone production in the Bay Area, and to identify the significance of that role, were investigated in a joint project of the Association of Bay Area Governments (ABAG) and NASA/Ames Research Center. Ozone, which is produced when nitrogen oxides and hydrocarbons combine in the presence of sunlight, is a primary factor in air quality planning. In investigating the role of biogenic emissions, this project employed a pre-existing land cover classification to define areal extent of land cover types. Emission factors were then derived for those cover types. The land cover data and emission factors were integrated into an existing geographic information system, where they were combined to form a Biogenic Hydrocarbon Emissions Inventory. The emissions inventory information was then integrated into an existing photochemical dispersion model.

  19. Experimental study of surface dielectric barrier discharge in air and its ozone production

    International Nuclear Information System (INIS)

    Pekárek, Stanislav

    2012-01-01

    For surface dielectric barrier discharge in air we studied the effects of frequency of the driving voltage on dissipated power, asymmetry of amplitudes of the discharge voltage, discharge UV emission, ozone production, ozone production of the discharge with TiO 2 and of the discharge in magnetic field. We found that for a particular voltage the dissipated power is higher for the frequency of the driving voltage of 26.3 kHz than for the frequency of 10.9 kHz; peak values of the positive half-periods of the discharge voltage are higher than peak values of the negative half-periods; intensity of the discharge UV emissions for wavelengths of 320-420 nm is for both frequencies a linear function of power; maximum ozone concentration for the frequency of the driving voltage of 26.3 kHz is obtained with smaller power than for the frequency of 10.9 kHz; placement of TiO 2 particles into the discharge chamber increases for both frequencies of the driving voltage maximum ozone concentration produced by the discharge and for the frequency of the driving voltage of 26.3 kHz increases ozone production yield. Finally, there is no observable effect of magnetic field on concentration of ozone produced by the discharge as well as on production yield. (paper)

  20. Ozone Climate Penalty and Mortality in a Changing World

    Science.gov (United States)

    Hakami, A.; Zhao, S.; Pappin, A.; Mesbah, M.

    2013-12-01

    The expected increase in ozone concentrations with temperature is referred to as the climate penalty factor (CPF). Observed ozone trends have resulted in estimations of regional CPFs in the range of 1-3 ppb/K in the Eastern US, and larger values around the globe. We use the adjoint of a regional model (CMAQ) for attributing changes in ozone mortality and attainment metrics to increased temperature levels at each location in North America during the summer of 2007. Unlike previous forward sensitivity analysis studies, we estimate how changes in temperatures at various locations influence such policy-relevant metrics. Our analysis accounts for separate temperature impact pathways through gas-phase chemistry, moisture abundance, and biogenic emissions. We find that water vapor impact, while mostly negative, is positive and large for temperature changes in urban areas. We also find that increased biogenic emissions plays an important role in the overall temperature influence. Our simulations show a wide range of spatial variability in CPFs between -0.4 and 6.2 ppb/K with largest values in urban areas. We also estimate mortality-based CPFs of up to 4 deaths/K for each grid cell, again with large localization in urban areas. This amounts to an estimated 370 deaths/K for the 3-month period of the simulation. We find that this number is almost equivalent to 5% reduction in anthropogenic NOx emissions for each degree increase in temperature. We show how the CPF will change as the result progressive NOx emission controls from various anthropogenic sectors and sources at different locations. Our findings suggest that urban NOx control can be regarded as an adaptation strategy with regards to ozone air quality. Also, the strong temperature dependence in urban environments suggests that the health and attainment burden of urban heat island may be more substantial than previously thought. Spatial distribution of average adjoint-based CPFs Adjoint-based CPF and Mortality CPF

  1. Emissions of nitrogen oxides from road traffic - regulations, emissions and effects; Vagtrafikens utslaepp av kvaeveoxider - reglering, utslaepp och effekter

    Energy Technology Data Exchange (ETDEWEB)

    Sjoedin, Aake; Pihl-Karlsson, Gunilla; Johansson, Manne [Swedish Environmental Research Inst., Goeteborg (Sweden); Forsberg, Bertil [Umeaa Univ. (Sweden). Public Health and Clinical Medicine; Ahlvik, Peter [Ecotraffic ERD3 AB, Stockholm (Sweden); Erlandsson, Lennart [AVL MTC AB, Stockholm (Sweden)

    2004-10-01

    The report is a review that aims to improve the basis for additional measures against the road traffic emissions of, in particular, NO{sub x}. An important question in the context is whether health effects of NO{sub 2} should serve as a norm for the actions for emission reductions of NO{sub x}, or if the environmental effects of NO{sub x}-emissions in the form of acidification, eutrophication and ozone should play this role. WHO notes, in its latest review of health effect research, that one cannot demonstrate that NO{sub 2} alone has any direct effects in concentrations at the current whole-year mean norm (40 {mu}g/m{sup 3}). Such health effects that has been demonstrated in epidemiologic studies at these concentrations are caused by other traffic related emissions (e. g. particles) for which NO{sub 2} constitutes a good indicator. WHO indicates the need for additional sharpening of the norms for ozone and particles. In this context, it is important to note that emissions of NO{sub x} on a regional scale contributes to formation of ozone as well as particles. Therefore there exist reasons to decrease the emissions of NO{sub x} in order to reach future recommended values for ozone and particles emissions. In the evaluations that will be done during 2004-2005 of the so called Goeteborg protocol, the EU's Ceiling Directives and the CAFE-programme, it is expected that new emissions objective for NO{sub x} will be suggested for 2015-2020, to cope with health and environment objectives in Europe. The report shows that that development that currently happens within the vehicle industry, for engines and exhaust emission control system are pursued to meet future exhaust requirement in the USA gives good conditions for the road traffic sector to contribute to that these objectives will reached.

  2. TROPOMI on the Copernicus Sentinel 5 Precursor: Launched?

    Science.gov (United States)

    Levelt, P.; Veefkind, J. P.; Kleipool, Q.; Ludewig, A.; Aben, I.; De Vries, J.; Loyola, D. G.; Richter, A.; Van Roozendael, M.; Siddans, R.; Tamminen, J.; Wagner, T.; Nett, H.

    2016-12-01

    The Copernicus Sentinel 5 Precursor (S5P) is the first of the European Sentinels satellites dedicated to monitoring of the atmospheric composition. S5P is planned for launch in the 4thquarter of 2016; hopefully in time for the AGU Fall Meeting! The mission objectives of S5P are to monitor air quality, climate and the ozone layer, in the time period between 2017 and 2023. S5P will fly in a Sun-synchronized polar orbit with a 13:30 hr local equator crossing time. The single payload of the S5P mission is TROPOspheric Monitoring Instrument (TROPOMI), which is developed by The Netherlands in cooperation with the European Space Agency (ESA). TROPOMI is a nadir viewing shortwave spectrometer that measures in the UV-visible wavelength range (270-500 nm), the near infrared (710-770 nm) and the shortwave infrared (2314-2382 nm). TROPOMI will have an unprecedented spatial resolution of 7x7 km2at nadir. The spatial resolution is combined with a wide swath to allow for daily global coverage. The TROPOMI/S5P geophysical (Level 2) operational data products include nitrogen dioxide, carbon monoxide, ozone (total column, tropospheric column & profile), methane, sulfur dioxide, formaldehyde and aerosol and cloud parameters. The main heritage for TROPOMI comes from OMI on EOS Aura and SCIAMACHY on Envisat. Many of the lessons learned in these missions have resulted in design improvements for TROPOMI. One of the most striking features is the high spatial resolution of 7x7 km2at nadir. The high spatial resolution serves two goals: (1) emissions sources can be detected with a higher accuracy and (2) the number of cloud-free ground pixels will increase substantially. The higher spatial resolution is also combined with a significantly higher signal-to-noise ratio per ground pixel, compared to OMI. This will further enhance the capabilities of TROPOMI to detect small emissions sources. The S5P will fly in a so-called loose formation with the U.S. Suomi NPP (National Polar

  3. 40 CFR 52.1982 - Control strategy: Ozone.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Ozone. 52.1982... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Oregon § 52.1982 Control strategy... emission control equipment, selected from a specific list on file at DEQ, is in place and operating...

  4. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions

    International Nuclear Information System (INIS)

    Tie Xuexi; Li Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-01-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10 x 10 km) biogenic emissions of isoprene (C 5 H 8 ), monoterpenes (C 1 H 16 ), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year -1 , respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year -1 , respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  5. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions.

    Science.gov (United States)

    Tie, Xuexi; Li, Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-12-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10x10 km) biogenic emissions of isoprene (C(5)H(8)), monoterpenes (C(10)H(16)), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year(-1), respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year(-1), respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  6. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Directory of Open Access Journals (Sweden)

    J. Gao

    2018-05-01

    Full Text Available As an important solar radiation absorbing aerosol, the effect of black carbon (BC on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC–boundary layer (BL interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC–BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection. For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the

  7. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Science.gov (United States)

    Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei

    2018-05-01

    As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC

  8. Regional ozone impacts of increased natural gas use in the Texas power sector and development in the Eagle Ford shale.

    Science.gov (United States)

    Pacsi, Adam P; Kimura, Yosuke; McGaughey, Gary; McDonald-Buller, Elena C; Allen, David T

    2015-03-17

    The combined emissions and air quality impacts of electricity generation in the Texas grid and natural gas production in the Eagle Ford shale were estimated at various natural gas price points for the power sector. The increased use of natural gas in the power sector, in place of coal-fired power generation, drove reductions in average daily maximum 8 h ozone concentration of 0.6-1.3 ppb in northeastern Texas for a high ozone episode used in air quality planning. The associated increase in Eagle Ford upstream oil and gas production nitrogen oxide (NOx) emissions caused an estimated local increase, in south Texas, of 0.3-0.7 ppb in the same ozone metric. In addition, the potential ozone impacts of Eagle Ford emissions on nearby urban areas were estimated. On the basis of evidence from this work and a previous study on the Barnett shale, the combined ozone impact of increased natural gas development and use in the power sector is likely to vary regionally and must be analyzed on a case by case basis.

  9. Detection of Changes in Ground-Level Ozone Concentrations via Entropy

    Directory of Open Access Journals (Sweden)

    Yuehua Wu

    2015-04-01

    Full Text Available Ground-level ozone concentration is a key indicator of air quality. Theremay exist sudden changes in ozone concentration data over a long time horizon, which may be caused by the implementation of government regulations and policies, such as establishing exhaust emission limits for on-road vehicles. To monitor and assess the efficacy of these policies, we propose a methodology for detecting changes in ground-level ozone concentrations, which consists of three major steps: data transformation, simultaneous autoregressive modelling and change-point detection on the estimated entropy. To show the effectiveness of the proposed methodology, the methodology is applied to detect changes in ground-level ozone concentration data collected in the Toronto region of Canada between June and September for the years from 1988 to 2009. The proposed methodology is also applicable to other climate data.

  10. Report card on low level ozone in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Onischak, M.

    1994-12-31

    It has been four years since the Clean Air Act was amended in November of 1990. Much work has been done in this time, and the country is beginning to see real air quality benefits. Although these changes have not completely licked the urban ozone problem yet, they have made a lot of progress. All of the urban areas which have been required to reduce their ozone levels have done a good job of lowering their emissions. While the urban areas have not all been able to meet every federal deadline, the areas have all been able to achieve the control milestones before the mandatory Clean Air Act sanctions have taken effect. Some areas are even ready to declare their ozone problems solved.

  11. Report card on low level ozone in urban areas

    International Nuclear Information System (INIS)

    Onischak, M.

    1994-01-01

    It has been four years since the Clean Air Act was amended in November of 1990. Much work has been done in this time, and the country is beginning to see real air quality benefits. Although these changes have not completely licked the urban ozone problem yet, they have made a lot of progress. All of the urban areas which have been required to reduce their ozone levels have done a good job of lowering their emissions. While the urban areas have not all been able to meet every federal deadline, the areas have all been able to achieve the control milestones before the mandatory Clean Air Act sanctions have taken effect. Some areas are even ready to declare their ozone problems solved

  12. Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials

    DEFF Research Database (Denmark)

    Poppendieck, D.G.; Hubbard, H.F.; Weschler, Charles J.

    2007-01-01

    at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged...

  13. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    Science.gov (United States)

    Patil, Jagadish G.; Vijayan, T.

    2010-02-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over μA) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 102-106 m-3 are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  14. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Jagadish G; Vijayan, T, E-mail: jagdishlove@gmail.co [Mahatma Education Society' s ' Pillai' s Institute of Information Technology, Engineering, Media Studies and Research' Dr. K M Vasudevan Pillai' s Campus, Sector 16, New Panvel, Navi Mumbai - 410 206 (India)

    2010-02-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over {mu}A) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 10{sup 2}-10{sup 6} m{sup -3} are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  15. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    International Nuclear Information System (INIS)

    Patil, Jagadish G; Vijayan, T

    2010-01-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over μA) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 10 2 -10 6 m -3 are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  16. Transportable lidar for the measurement of ozone concentration and flux profiles in the lower troposphere

    International Nuclear Information System (INIS)

    Zhao, Yanzeng; Howell, J.N.; Hardesty, R.M.

    1992-01-01

    In many areas of the United States, as well as in other industrial areas (such as Europe), elevated and potentially harmful levels of ozone are being measured during summer. Most of this ozone is photochemically produced. The relatively long lifetime of ozone allows industrially produced ozone to be transported on a hemispheric scale. Since the trends of tropospheric ozone are very likely dependent on the source strengths and distributions of the pollutants and the chemical/ transport process involved, a predictive understanding of tropospheric ozone climatology requires a focus on the chemical and transport processes that link regional emissions to hemispheric ozone trends and distributions. Of critical importance to these studies is a satisfactory data base of tropospheric ozone distribution from which global and regional tropospheric ozone climatology can be derived, and the processes controlling tropospheric ozone can be better understood. A transportable lidar for measuring ozone concentration and flux profiles in the lower troposphere is needed. One such system is being developed at the National Oceanic and Atmospheric Administration/Earth Resources Laboratory (NOAA/ERL) Wave Propagation Laboratory (WPL)

  17. Human mortality effects of future concentrations of tropospheric ozone

    International Nuclear Information System (INIS)

    West, J.; Szopa, S.; Hauglustaine, D.A.

    2007-01-01

    Here we explore the effects of projected future changes in global ozone concentrations on premature human mortality, under three scenarios for 2030. We use daily surface ozone concentrations from a global atmospheric transport and chemistry model, and ozone-mortality relationships from daily time-series studies. The population-weighted annual average 8-h daily maximum ozone is projected to increase, relative to the present, in each of ten world regions under the SRES A2 scenario and the current legislation (CLE) scenario, with the largest growth in tropical regions, while decreases are projected in each region in the maximum feasible reduction (MFR) scenario. Emission reductions in the CLE scenario, relative to A2, are estimated to reduce about 190,000 premature human mortalities globally in 2030, with the most avoided mortalities in Africa. The MFR scenario will avoid about 460,000 premature mortalities relative to A2 in 2030, and 270,000 relative to CLE, with the greatest reductions in South Asia. (authors)

  18. Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2009-02-01

    Full Text Available The impact that changes in future climate, anthropogenic US emissions, background tropospheric composition, and land-use have on summertime regional US ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations, where each set of simulations was conducted for five months of July climatology, using the Community Multi-scale Air Quality (CMAQ model. Projected regional scale changes in meteorology due to climate change under the Intergovernmental Panel on Climate Change (IPCC A2 scenario are derived through the downscaling of Parallel Climate Model (PCM output with the MM5 meteorological model. Future chemical boundary conditions are obtained through downscaling of MOZART-2 (Model for Ozone and Related Chemical Tracers, version 2.4 global chemical model simulations based on the IPCC Special Report on Emissions Scenarios (SRES A2 emissions scenario. Projected changes in US anthropogenic emissions are estimated using the EPA Economic Growth Analysis System (EGAS, and changes in land-use are projected using data from the Community Land Model (CLM and the Spatially Explicit Regional Growth Model (SERGOM. For July conditions, changes in chemical boundary conditions are found to have the largest impact (+5 ppbv on average daily maximum 8-h (DM8H ozone. Changes in US anthropogenic emissions are projected to increase average DM8H ozone by +3 ppbv. Land-use changes are projected to have a significant influence on regional air quality due to the impact these changes have on biogenic hydrocarbon emissions. When climate changes and land-use changes are considered simultaneously, the average DM8H ozone decreases due to a reduction in biogenic VOC emissions (−2.6 ppbv. Changes in average 24-h (A24-h PM2.5 concentrations are dominated by projected changes in anthropogenic emissions (+3 μg m−3, while changes in chemical boundary conditions have a negligible effect. On average, climate change reduces A24-h PM2

  19. Biochemical Removal of HAP Precursors From Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  20. Biochemical Removal of HAP Precursors From Coal

    International Nuclear Information System (INIS)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE's interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals